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Chapter 1 

Schur Multiplier Norms for Loewner Matrices 
 

The Dounds immediadately lead to upper bounds on the ratio of Schatten q-norms of 

commutators ‖[𝐴, 𝑓(𝐵)]‖𝑞 ‖[𝐴, 𝐵]‖𝑞⁄ . We also consider operator monotone Functions, for 

which sharper bounds are obtained. 

The main impetus behind the work presented is to find good upper bounds on the ratio 

                                          ‖[𝐴, 𝑓(𝐵)]‖𝑞 ‖𝐴, 𝐵‖⁄
𝑞
                                                (1) 

A basic property of any  Schur  multiplier norm is its  self-duality. If  ‖|∙|‖𝐷 is the  

dual  norm of  ‖|∙|‖, then   ‖|SL|‖ = ‖|SL|‖D. In  particular, ‖|SL|‖q  =  ‖|SL|‖q′, where 

1/𝑞  =  1 −  1/𝑞.  This  can  be  proven easily using a standard duality argument. 

 The  importance of Schur  multiplier norms for  the  problem considered follows 

from the  following proposition: 

Proposition (𝟏. 𝟏)[𝟏]: Let A be any matrix,  and let B be Hermitian with  eigenvalues 

bi . Let L be the Loewner matrix of  𝑓  at B : 

                          𝐿𝑖𝑗 ≔ {

𝑓(𝑏𝑖) − 𝑓(𝑏𝑗)

𝑏𝑖 − 𝑏𝑗
 ,             𝑏𝑖 ≠ 𝑏𝑗 ,

  𝑓′(𝑏𝑖),                              𝑏𝑖 = 𝑏𝑗 .  

                                (2) 

Then  

|‖[𝐴, 𝑓(B)]‖| ≤ ‖|SL|‖‖|[A, B]|‖. 
Proof. Working in the eigenbasis, the commutators can be expressed in terms of the Schur 

product as follows :   

[𝐴, 𝐵] =  𝐴 ∘ (𝑏𝑖 − 𝑏𝑗)
𝑛

𝑖,𝑗=1
, [𝐴, 𝑓(𝐵)] =  𝐴 ∘ (𝑓(𝑏𝑖) − 𝑓(𝑏𝑗))

𝑖,𝑗=1

𝑛
 

Consider now the Loewner matrix 𝐿 of the proposition. It is easy to see that this can be 

expressed in terms of 𝐿 as 

[𝐴, 𝑓(𝐵)] =  [𝐴, 𝐵] ∘ 𝐿 =  𝑆𝐿([𝐴, 𝐵]) 
Hence, the norms of both commutators are related by  

|‖[A, f(b)]‖|  ≤  |‖𝑆𝐿‖| ‖|[A, B]|‖ 
For the Schatten 2-norm (Frobenius norm), the induced Schur multiplier norm is easily 

calculated:  

‖𝑆𝐿‖2 = max
𝐴

‖𝐿 ∘ 𝐴‖2
‖𝐴‖2

 

                                                   = max
𝐴
(
∑ |𝐿𝑖𝑗|

2
|𝐴𝑖𝑗|

2
𝑖,𝑗

∑ |𝐴𝑖𝑗|
2

𝑖,𝑗

 )

1
2⁄

                 

                                                       = max
𝑖,𝑗
|𝐿𝑖𝑗|  .                                                    (3) 

Computing Schur multiplier norms for other norms than the 2-norm is in general very 

difficult, and the fact that all entries of 𝐿 are in a certain range by no means implies that 
‖𝑆𝐿‖ should be in that range. Indeed, when 𝐿 is upper triangular with all entries above the 

diagonal equal to 1, and all others 0, its Schur multiplier norm is 𝑂(log 𝑛). 
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      Using complex interpolation, bounds for general Schatten q-norms can be derived from 

bounds for the 1-norm and the 2-norm. Indeed, by a direct application,for any 1 ≤ 𝑞 ≤ 2 

we have 

                       ‖𝑆𝐿‖𝑞 ≤ ‖𝑆𝐿‖1
2−𝑞‖𝑆𝐿‖1

𝑞−1
.                                       (4) 

The first and easiest class of functions treated here are the functions that are operator 

monotone on a given interval 𝐼. 
Theorem(𝟏. 𝟐)[𝟏]: Let  𝑓  be an operator monotone function on the interval 𝐼. Let  𝐵  be an 

𝑛 ×  𝑛 Hermitian matrix with spectrum in I. Let L be the Loewner matrix of  𝑓  at 𝐵. Then, 

for all Schatten q-norms, 

                            ‖𝑆𝐿‖𝑞  ≤   𝑓
′(𝜆𝑚𝑖𝑛(𝐵))                                        (5) 

Note that here  𝑓′ is always non-negative over 𝐼. 
Proof:  If  𝑓 is operator monotone, then its Loewner matrix 𝐿  is a positive semidefinite 

matrix. By a theorem of Schur,  𝑆𝐿 is then a completely positive map and  ‖𝑆𝐿‖ (and hence  

‖𝑆𝐿‖1 ) is equal to 𝑚𝑎𝑥𝑖  𝐿𝑖𝑖. In the present case, this number is equal to max𝑖  𝑓′(𝑏𝑖  ). By the 

concavity of operator monotone functions, this maximum is equal to  𝑓  (𝑚𝑖𝑛𝑖 𝑏 𝑖). 
      For the Schatten 2-norm, we already found that  ‖𝑆 𝐿‖2 = 𝑚𝑎𝑥𝑖,𝑗  |𝐿𝑖𝑗|.  Again, in the 

present case 𝑚𝑎𝑥𝑖,𝑗  |𝐿𝑖𝑗 | = 𝑓′(𝑚𝑖𝑛𝑖  𝑏𝑖), which proves the inequality for the Frobenius 

norm. 

     Finally, using the complex interpolation, these two results imply that holds for all Schatten 

norms. Indeed, for any 1 ≤ 𝑞 ≤ 2, 

‖𝑆𝐿‖𝑞′ = ‖𝑆𝐿‖𝑞 ≤ ‖𝑆𝐿‖1
2−𝑞 ‖𝑆𝐿‖2

𝑞−1
≤ 𝑓′ (min

𝑖
𝑏𝑖). 

This immediately  yields: 

Corollary (𝟏. 𝟑)[𝟏]: Let  𝑓  be an operator monotone function on the interval  𝐼. Let  𝐵  be 

an 𝑛 ×  𝑛 Hermitian matrix with spectrum in 𝐼. Then, for any 𝑞 ≥ 1, 

‖[𝐴, 𝑓(𝐵)]‖𝑞 ≤ 𝑓′(𝜆𝑚𝑖𝑛(𝐵))‖[𝐴, 𝐵]‖𝑞 

This  corollary  can  be  seen  as  a  special  case  of  a  result  by  Kittaneh  and  Kosaki ,  

which  they dubbed  the commutator  version of the van Hemmen–Ando  inequality: 

Theorem (𝟏. 𝟒)[𝟏]: (Kittaneh–Kosaki). 𝐼𝑓 𝐴 𝑎𝑛𝑑 𝐵 are positive operators on a Hilbert space 

ℋ such that 𝐴 ≥ 𝑎 ≥ 0 and 𝐵 ≥ 𝑏 ≥ 0, then for any operator monotone function  

𝑓  𝑜𝑛 (0,∞) and any operator X on ℋ, 

‖𝑓(𝐴)𝑋 − 𝑋𝑓(𝐵)‖𝑞 ≤ 𝐶(𝑎, 𝑏)‖𝐴𝑋 − 𝑋𝐵‖𝑞 

 

where 1 ≤ 𝑞 ≤ ∞ and 

𝐶(𝑎, 𝑏) ≔ {

𝑓(𝑎) − 𝑓(𝑏)

𝑎 − 𝑏
                  𝑎 ≠ 𝑏       

               𝑓′(𝑎),                        𝑎 = 𝑏          

 

Their  proof  proceeds  along  completiely  different  lines,  and  relies  on  an  integral  repre- 

sentation  of operator monotone  functions  on  (0, ∞). 

    we  obtain  an  intermediary  result  needed,  which  may  be  of  independent  interest. 

The  numerical  radius is defined  as 

𝑤(𝐴) = sup
𝑥

|〈𝐴𝑥|𝑥〉|

‖𝑥‖2
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This is a norm, and its dual  norm is 

‖𝑌‖w∗ = sup
𝑥
 
|𝑇𝑟𝑌∗𝑋|

𝑤(𝑋)
 =  sup

𝑥
{|TrY∗X|:w(x) ≤ 1}, 

Which we will call the 𝑤∗ norm here. The unit ball of the 𝑤∗ norm is the -absolute convex 

hull of the matrices of the form 𝑥𝑥∗ with 𝑥 ∈ ℂ𝑛 and ‖𝑥‖ = 1;  i.e. it is  the  set  of  matrices 

∑ 𝜆𝑖  𝑥𝑖𝑥𝑖
∗

𝑖   for  which ∑ |𝜆𝑖|𝑖 ≤ 1 and ‖𝑥𝑖‖ = 1. This includes but is not limited to the normal 

matrices with trace norm not exceeding 1. 

In general, the numerical radius never exceeds the spectral norm, 𝑤(𝑋) ≤ ‖𝑋‖.  Likewise, 

the 𝑤∗ norm is bounded below by the trace norm. Indeed, 

‖𝑌‖𝑤∗ = sup
𝑥
 
|𝑇𝑟𝑌∗𝑋|

𝑤(𝑋)
≥ sup

𝑥

|𝑇𝑟𝑌∗𝑋|

‖𝑋‖
= ‖𝑌‖1    

For  normal  matrices  𝑋,  the  numerical  radius  is  equal  to  the  spectral  norm:  𝑤(𝑌) =
‖ 𝑌‖.  Here we show that for normal matrices the 𝑤∗  norm is equal to the trace norm. 

Theorem(𝟏. 𝟓)[𝟏]: If Y  is normal, then  ‖𝑌‖w∗ = ‖𝑌‖1    
Proof:  By  a  theorem  of  Ando, a  matrix  𝑋  has  numerical  radius  at  most  one  if  and  

only  if  there exist contractions  𝑊  and  𝑍 , where  𝑍  is Hermitian,  such that 

𝑋 =  (𝕀 +  𝑍)1 2⁄ 𝑊 (𝕀 −  𝑍)1 2⁄

The definition of the 𝑤∗ norm can therefore be rewritten as 

‖Y‖𝑤∗ = sup
𝑋
{|𝑇𝑟𝑌∗|: 𝑤(𝑋) ≤ 1} 

= sup
𝑊,𝑍
{|𝑇𝑟(𝑌∗ (𝕀 +  𝑍)1 2⁄ 𝑊 (𝕀 −  𝑍)1 2⁄ )|: 𝑍 = 𝑍∗, ‖𝑍‖ ≤ 1, ‖𝑊‖ ≤ 1} 

= sup
𝑍
{sup
𝑊
{|𝑇𝑟𝑊( (𝕀 −  𝑍)1 2⁄ 𝑌∗(𝕀 +  𝑍)1 2⁄ )|: ‖𝑊‖ ≤ 1}: 𝑍 = 𝑍∗, ‖𝑍‖ ≤ 1,} 

= sup
𝑍
{‖ (𝕀 − 𝑍)1 2⁄ 𝑌∗(𝕀 +  𝑍)1 2⁄ ‖

1
: 𝑍 = 𝑍∗, ‖𝑍‖ ≤ 1}. 

 

Since 𝑌 is normal , it has a unitary spectral decomposition 𝑌 = ∑ 𝜆𝑗𝑢𝑗𝑢𝑗
∗𝑛

𝑗=1  , with {𝑢𝑗}𝑗=1
𝑛

 

an orthonormal basis of ℂn . Hence , 

‖ (𝕀 −  𝑍)1 2⁄ 𝑌∗(𝕀 +  𝑍)1 2⁄ ‖
1
≤∑|𝜆𝑗|‖ (𝕀 +  𝑍)

1 2⁄ 𝑢𝑗𝑢𝑗
∗ (𝕀 + 𝑍)1 2⁄ ‖

1

 

 𝑗

 

Noting that for any Hermitian contraction 𝑍 

‖ (𝕀 − 𝑍)1 2⁄ 𝑢𝑗𝑢𝑗
∗ (𝕀 +  𝑍)1 2⁄ ‖

1
= 〈(𝕀 − 𝑍)1 2⁄ 𝑢𝑗|𝑢𝑗〉 ≤ ‖(𝕀 − 𝑍

2)1 2⁄ ‖ ≤ 1. 

 

We find 

‖ (𝕀 − 𝑍)1 2⁄ 𝑌∗(𝕀 + 𝑍)1 2⁄ ‖
1
≤∑|𝜆𝑗| = ‖𝑌‖1

 

 𝑗

 

And therefore 

‖Y‖𝑤∗ ≤ ‖𝑌‖1. 

Theorem(𝟏. 𝟔)[𝟏]: Let 𝐵 be a Hermitian 𝑛 ×  𝑛 matrix with eigenvalues (bj)j=1
n

 sorted in 

non-decreasing order, b1 ≤ b2 ≤ ⋯ ≤ bn . let 𝑓 be a function that is concave or convex 

on the interval [b1, bn] . let L be the loewner matrix of f at B then 

                         ‖SL‖2 ≤ max(|f′(b1)|, |𝑓
′(bn)|).                                    (6) 
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Proof: the upper bound is given by maxi,j |Lij| . For concave 𝑓 , the properties (R) of L 

imply that max𝑖,𝑗|𝐿𝑖𝑗| = max(|𝐿11|, |𝐿𝑛𝑛|). since Lii = 𝑓
′(𝑏𝑖). For convex 𝑓, simply replace 

𝑓 by − 𝑓 and note that both sides of the inequality are invariant under this sign change. 
For the Schur multiplier trace norm (operator norm ) we start with a technical proposition 

about certain standardised monotonously increasing concave functions,  as the general case 

follows easily from this case. 

Proposition(𝟏. 𝟕)[𝟏]: Let 𝐵 be a Hermitian 𝑛 ×  𝑛 matrix with eigenvalues (𝑏𝑗)𝑗=1
𝑛  sorted 

in non-decreasing order , 𝑏1 ≤ 𝑏2 ≤ ⋯ ≤ 𝑏𝑛. Let g be a function that is concave on the 

interval [ 𝑏1, 𝑏𝑛] , and for which 𝑔′(𝑏1) = 1 and 𝑔′(bn ) = 0 . Let K be the Loewner matrix 

of 𝑔 at 𝐵. Then 

             |SK|1 = |Sk| ≤ 1 + ∅
−1∑(1− g′(bj ))

n

j=1

,                     (7) 

where ∅ is the Golden Ratio,∅ = (1 + √5) 2 ≈ 1.618 .⁄  

Note that  the interpolation relation (4)  can again be used to obtain bounds for general 

Schatten .  norms . 

Proof:  The matrix K satisfies conditions (R) ,  and k11 = 1 and knn = 0 . From this 𝐼 will 

derive an upper bound on ‖Sk ‖  in terms of the diagonal elements kj = kjj .  

 

 

  The Schur multiplier norm of K can be characterised as 

|𝑆𝐾|1 = |𝑆𝑘| =  𝑚𝑎𝑥
𝑥∈ℂ𝑛

{‖𝑘 ∘ (𝑥𝑥∗)‖1: ‖𝑥‖ = 1} . 

We can find an upper bound on the trace norm of any matrix A by partitioning 𝐴 as the 

block matrix 

𝐴 = (
𝐵 𝑏
𝑏𝑇 𝑎

),  

where B is the upper  left (𝑛 −  1) × (𝑛 − 1)  submatrix of 𝐴, 𝑎 = 𝐴𝑛𝑛 and 𝑏 is the (n −
1)-dimensional vector consisting of the first (𝑛 −  1)  entries of the last column of 𝐴 .  By 

a result of Bhatia and Kittaneh, the trace norm of 𝐴 can be bounded above by the sum of the 

trace norms of the four blocks, i.e. 

      ‖𝐴‖1 = ‖𝐵‖1 + 2‖𝑏‖ + |𝑎| . 
when we apply this to the matrix 𝑘 ∘ (𝑥𝑥∗) , we have 𝑎 = 𝑘𝑛𝑛|𝑥𝑛|

2 = 0, 𝑏𝑖 = 𝑥𝑛𝑥𝑖𝑘𝑖𝑛 and 

𝐵𝑖𝑗 = 𝑘𝑖𝑗𝑥𝑖𝑥𝑗  , for 𝑖, 𝑗 = 1,⋯ , 𝑛 − 1.  

since the vector x is normalised , the norm of the subvector of its first n −  1 entries is equal 

to √1 − |𝑥𝑛|
2 .Introducing the (𝑛 − 1)-dimensional  normalised vector y with yi =

𝑥𝑖 √1 − |𝑥𝑛|
2 for ⁄   𝑖, 𝑗 = 1, . . ., 𝑛 − 1 ,  and partitioning K conformally with A as 

       𝑘 = (
𝑍 𝑢
𝑢𝑇 0

) 

we get b =  x𝑛√1 − |xn|
2(y ∘  u)  and B = (1 − |xn|

2)(Z ∘ (yy∗). Hence  

‖k ∘ (xx∗)‖1 ≤ (1 − |xn|
2)‖Z ∘ (yy∗)‖1 + 2|xn|√1 − |xn|

2‖y ∘ u‖ 
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As the maximisation over x reduces maximisation over |𝑥𝑛| and over y,  we obtain  

‖Sk‖ ≤ max
0≤x≤1

(1 − x2)‖SZ‖ + 2x√1 − x
2max

y
{‖y ∘ u‖: ‖y‖ ≤ 1} . 

The maximisation max  
y
{‖y ∘ u‖: ‖y‖ ≤ 1} yields max𝑢𝑖 , 𝑢𝑗, which because of (R) is 

equal to k1n and therefore bounded above by 1. Furthermore , substituting  a = ‖SZ‖ and 

x = cosθ ,  the remaining max-imisation is 

   max
0≤θ≤π/2

𝑎 (1 − con2θ) 2 + sin2θ⁄  , 

which is the monotonously increasing function 

 𝑣(𝑎) ∶= 𝑎/2 + √1 + (𝑎/2)2 
 This gives our second relation : 

                                                  ‖Sk‖ ≤ v(‖SZ‖).                                            (8) 
Let us write Z in terms of a matrix K with upper left element 1 and lower right element 0 

: Z = kn−1J + (1 − kn−1)k′ . where J is the n x n matrix with 𝐽𝑖𝑗 = 1. Note that 𝐾′ is a 

matrix that still obeys (R) but for which k′n−1 = 0 and k′1 = 1 , i.e.  it has the same 

characteristics  as  the matrix K we  started out with.  The diagonal elements of 𝐾′ in terms 

of those of K are given by 

                                             k′j ≔
kj−kn−1

1 − kn−1
 .                                          (9) 

By convexity of the Schur multiplier norm and the fact that llSJll = 1 , we have 

     ‖𝑆𝑍‖ ≤ 𝑘𝑛−1 + (1 − 𝑘𝑛−1)‖𝑆𝑘′‖, 
 so that, by (8) 

                                ‖𝑆𝑍‖ ≤ 𝑣( 𝑘𝑛−1 + (1 − 𝑘𝑛−1)‖𝑆𝑘′‖).                       (10) 
The two realtions (9) and (10) allow to find an easily computable upper bound on Sk via a 

recursion process.  This process stops after 𝑛 steps, as for a scalar ‖𝑆𝑎‖ = |𝑎| . In the 

recursion. We need in succession the elements 𝑘𝑛−1, 𝑘′𝑛−2, 𝑘′𝑛−3, ⋯ , 𝑘
(𝑚)

𝑛−𝑚 .which I’ll 

abbreviate by 𝑎𝑚.for 𝑚 = 0,… , 𝑛 − 2, . 

Calculating it through,  an explicit  formula for the elements is 𝑎0 = 𝑘𝑛−1 

And , for m = 1 ,… , n − 2, 

      𝑎𝑚 = 𝑘𝑛−𝑚−1
(𝑚)

=
𝑘𝑛−𝑚−1 − 𝑘𝑛−𝑚
1 − 𝑘𝑛−𝑚

 

The last element in this sequence is (since k1 = 1) 

      𝑎𝑛−2 =
𝑘1 − 𝑘2
1 − 𝑘2

= 1 . 

Then , denoting ‖𝑆𝑘(𝑚)‖by 𝑠𝑚,   𝑠𝑚 ≤ 𝑣(𝑎𝑚 + (1 − 𝑎𝑚)𝑠𝑚=1),   𝑠𝑛−2 = 1 . 

Defining 𝑡𝑚 = 𝑠𝑚 − 1 and 

    𝑏𝑚 = 1 − 𝑎𝑚 =
1 − 𝑘𝑛−𝑚−1
1 − 𝑘𝑛−𝑚

 , 

We have  

     𝑡𝑚 ≤ 𝑣(1 + 𝑏𝑚𝑡𝑚−1) − 1, 𝑡𝑛−2 = 0 . 
It is easily verified that 𝑣(1 + 𝑥) − 1 ≤ 1/∅ + 𝑥 , where ∅ is the Golden Ratio . Thus  

       𝑡𝑚 ≤ 𝑏𝑚𝑡𝑚+1 + 1 ∅⁄  ,    𝑡𝑛−2 = 0  , 
Whence 

      𝑡0 ≤ ∅
−1(1 + 𝑏0 + 𝑏0𝑏1 +⋯+ 𝑏0𝑏1…𝑏𝑛−3) 
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It is immediately checked that  

𝑏0𝑏1…𝑏𝑗 = 1−𝑘𝑛−𝑗−1 , 𝑓𝑜𝑟 𝑗 = 0,… , 𝑛 − 3 𝑎𝑛𝑑 𝑘1 = 1, 𝑘𝑛 = 0 ,so that   

𝑡0 ≤ ∅
−1∑(1− 𝑘𝑗)

𝑛

𝑗=1

 

This finally yields ‖Sk‖ ≤ s0 ≤ 1 + ∅
−1 ∑ (1 − kj) .

n
j=1 As kii=g

′(bi), the inequality of the 

proposition follows . 

Corollary (𝟏. 𝟖)[𝟏]: Let 𝐵 be a Hermitian n × n matrix with eigenvalues (bj)j=1
n  sorted in 

non-decreasing order, b1 ≤ b2 ≤ ⋯ ≤ bn . Let ℎ be a function that is concave on the 

interval [b1, bn] ,  and for which ℎ′(b1) = 0 and ℎ′(bn) = −1 .  Let K be the Loewner 

matrix of h at B. 

 Then.  

                        ‖𝑆𝑘‖ ≤ 1 + ∅
−1∑(1+ ℎ′(𝑏𝑗)) .

𝑛

𝑗=1

                                (11) 

Proof: This follows immediately from Proposition (1.7) with the matrix B replaced by 𝐵′ =

𝑏1 + 𝑏𝑛 − 𝐵  and defining ℎ(𝑥) = 𝑔(b1 + bn − x) , so that ℎ′(bj) = −𝑔
′(b1 + bn − bj) =

−𝑔′(b′j) . 

Theorem (𝟏. 𝟗)[𝟏]:  Let B be a Hermitian 𝑛 ×  𝑛 matrix with eigenvalues (bj)j=1
n  sorted in 

non-decreasing order, b1 ≤ b2 ≤ ⋯ ≤ bn .  Let f be a function that is concave on the interval 

[b1, bn]. Let L be the Loewner matrix of f at B.   

Then 

‖SL‖ ≤ (α − β) + min(|β| + ∅
−1∑(α− 𝑓′(bj))

n

j=1

, |α| + ∅−1∑(𝑓′(bj) − β)

n

j=1

) 

Where α = 𝑓′(b1) and β = 𝑓′(bn) . For any function that is convex on the interval 

[b1, bn], 

‖SL‖ ≤ (β − α) + min(|β| + ∅
−1∑(𝑓′(bj) − α)

n

j=1

, |α| + ∅−1∑(β − 𝑓′(bj))

n

j=1

) 

Proof:  General concave functions f can be mapped to the standardised functions 𝑔 and ℎ .  

Note that  

α ≔ f ′(b1) ≥ 𝑓
′(bj) ≥ 𝑓

′(bn) =: β . 

First we write 

𝐹(𝑥) = 𝛽𝑥 + (𝛼 − 𝛽)𝑔(𝑥). 
Then 

(𝛼 − 𝛽)𝑔′(𝑥) = 𝑓′(𝑥) − 𝛽 . 
Letting 𝐿 and 𝐾 be the Loewner matrices of 𝑓 and 𝑔,  respectively,  at 𝐵,   

   L = βJ + (α − β)k , 
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where 𝐽 is the matrix all of whose entries are 1.  As‖SJ‖ = 1 . 

‖SL‖ ≤ |β| + (α − β)‖Sk‖ ≤ |β| + (α − β)(1 + ∅
−1∑(1 − g′(bj))

n

j=1

)

= |β| + (α − β) + ∅−1∑((α − β) − f ′(bj) − β)

n

j=1

= |β| + (α − β) + ∅−1∑(α − f ′(bj))

n

j=1

 . 

We can also write 

     𝑓(𝑥) = 𝛼𝑥 + (𝛼 − 𝛽)ℎ(𝑥) 
and obtain in a similar way 

‖𝑆𝐿‖ ≤ |𝛼| + (𝛼 − 𝛽) + ∅
−1∑(𝑓′(𝑏𝑗) − 𝛽)

𝑛

𝑗=1

 

Taking the minimum of both bounds yields the bound of the corollary. 

 For convex f we just replace f by –f and apply the result for concave functions. Since now 

𝛼 ≔ 𝑓′(𝑏1) ≤ 𝑓
′(𝑏𝑗) ≤ 𝑓

′(𝑏𝑛) =: 𝛽 an appropriate sign change has to be applied to the 

bound . 

 When the spectrum of 𝐵 is not known, but it is known that b1 ≤ B ≤ bn , weaker bounds 

follow readily from this Theorem. 

Corollary (𝟏. 𝟏𝟎)[𝟏]:  Let B be a Hermitian n x n matrix bounded as  b1 ≤ B ≤ bn , Let 

f be a function that is either concave or convex on the interval [b1, bn] .  Let L be the 

Loewner matrix of f at B.  Then 

‖SL‖ ≤ |α − β|(1 + (n − 1)∅
−1) + min (|β|, |α|) 

Where α = f ′(b1) and β = f ′(bn) . 
Examples (𝟏. 𝟏𝟏) [𝟏]: 
As a first application , we consider the function 𝑓(𝑥) = |𝑥| . 
Theorem (𝟏. 𝟏𝟐)[𝟏]: Let 𝐵 be a Hermitian 𝑛 ×  𝑛 matrix with 𝑟 positive eigenvalues.  

Let 𝐿 be the Loewner matrix of the function 𝑓(𝑥) =  |𝑥| at B.  Then,  for 1 ≤ 𝑟 < 𝑛 . 

‖SL‖ ≤ 3 + 2∅
−1min (r, n − r) . 

If r is 0 or n , ‖SL‖ is 1 . 

Proof: For 1 ≤ 𝑟 <  𝑛,  𝛼 = 𝑓′(𝑏1) = 1, 𝛽 = 𝑓
′(𝑏𝑛 )=-1,𝑓′(bj)=1 for n − r values of j , 

and 𝑓′(bj) = −1 .  The bound follows by simple calculation. 

Since the bounds only depend on the diagonal elements of the Loewner matrix.  they are 

not expected to be sharp for specific functions.  For the absolute value function,  for 

example,  it is known that in the 𝑑 = 2 case the norm ratio lies between the values 1 and 

√2 ,  whereas the theorem gives the bound 3 + 2 ∅⁄   for r=1. 

For our second example,  consider  the following corollary of the main theorem.  Let C be 

a Hermitian matrix with spectrum c1 ≤ c2 ≤ ⋯ ≤ cn. By putting 𝐵 = 𝑔(𝐶) and ℎ = 𝑓 ∘
 𝑔, we find : 
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 Corollary (𝟏. 𝟏𝟑)[𝟏]:  For all 𝑛 × 𝑛 matrices 𝐴 and for any monotonously increasing 

function g and any function ℎ such that 𝑓 = ℎ ∘  𝑔−1 is concave, 
‖[A, h(C)]‖1
‖[A, g(C)]‖1

 

≤ (α − β) + min(|β| + ∅−1∑(α − f′(g(cj

n

j=1

))), |α| + ∅−1∑(f′(g(cj

n

j=1

)) − β)) , 

Where 𝛼 = 𝑓′(𝑔(𝑐1)) and 𝛽 = 𝑓′(𝑔(𝑐𝑛)). 
Consider the functions ℎ(𝑥) = log 𝑥 and 𝑔(𝑥) = log(𝑥) − log(1 − 𝑥) .thus , 𝑓(𝑥) = 𝑥 −
log(1 + 𝑒𝑥) which is monotonously increasing and concave , and (𝑓′ ∘ 𝑔)(𝑥) = 1 − 𝑥 . 

The bound of the corollary then simplifies to 

            cn − c1 +min(1 − cn + ∅
−1(1 − nc1), 1 − c1 + ∅

−1(ncn − 1))  

As n1 ≥ 0, this quantity is boded above by 1+∅−1 = ∅ . we have therefore proven : 

Corollary (𝟏. 𝟏𝟒)[𝟏]: For any A and for any positive semidefinite C with       Tr𝐶 = 1  

‖[A, log (C)]‖1 ≤ ∅‖[A, log(C) − log (𝕝 − C]‖1. 
Theorem (𝟏. 𝟏𝟓)[𝟓]: Let 𝑓 be an operator convex function, then all Loewner matrices 

associated with 𝑓 are conditionally negative definite one of the interesting relation, between 

operator monotone and convex function is that 𝑓(𝑡) is operator convex on [0,∞] if and only 

if 𝑔(𝑡) = 𝑓(𝑡) it is operator monotone on (0,∞) this class an important role in analysis . 

The class of function  𝑓(𝑡) = 𝑡𝑔(𝑡) where 𝑔 is operator convex seems equally in teresting 

in this context. 

Theorem (𝟏. 𝟏𝟔)[𝟔]: Let 𝑓 be a 𝑐1 function on (0,∞) and suppose 𝑓′(𝑡) > 0, if for all 

𝑝1, … , 𝑝𝑛 the Loewner matrix 𝐿𝑓(𝑝1, … , 𝑝𝑛) has exactly one positive eigenvalue , then the 

inversting function 𝑔 = 𝑓−1 is operator monotone. 
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Chapter 2 

Complete Characterization of Hadamard Powers Preserving 

Entrywise powers of symmetric matrices preserving positivity, monotonicity or 

convexity with respect to the Loewner ordering arise in various applications. Following 

Fitzgerald and Horn, it is well-known that there exits acritical exponent beyond which all 

entrywise powers preserve positive definiteness. Similar phenomena have also been shown 

by Hiai to accur for monotonicity and convexity.We extend the original problem by fully 

classifying the positive, monotone, or convex powers in amore general setting where 

additional rank constraints are imposed on the matrices. We also classify the entrywise 

powers that are super/sup. Additive with respect to the Loewner ordering. We extend all the 

previous characterizations to matrices with negative entries. 

Section (𝟐. 𝟏): Characterizing Entrywise Powers that are Loewner Positive 
 

Definition (𝟐. 𝟏. 𝟏)[𝟐] : Fix integers 𝑛 ≥ 2 and 1 ≤ 𝑘 ≤ 𝑛, and subsets 𝐼 ⊂ ℝ. Let ℙ𝑛
𝑘𝑘(𝐼) 

denotethe subset of matrices in ℙ𝑛(𝐼) t h a t  have rank at most k. Define: 

ℋ𝑝𝑜𝑠(𝑛, 𝑘):=  {𝛼 ∈  ℝ: the function 𝑥
𝛼 is positive on ℙ𝑛

𝑘( [0,∞))} ,        

ℋ𝑝𝑜𝑠
𝜙 (𝑛, 𝑘):=  {𝛼 ∈  ℝ: the function 𝜙𝛼 is positive on ℙ𝑛

𝑘(ℝ)} ,                 

ℋ𝑝𝑜𝑠(𝑛, 𝑘):=  {𝛼 ∈  𝑅: the function 𝜓𝛼 is positive on ℙn(ℝ)} .                (1) 

Similarly, let ℋ𝐽(𝑛, 𝑘),ℋ𝐽
𝜙
(𝑛, 𝑘),ℋ𝐽

𝜙
 (𝑛, 𝑘) denote the entrywise powers preserving 

Loewner properties on ℙ𝑛
𝑘  ([0, ∞)) or ℙ𝑛

𝑘  (ℝ), with 𝐽 ∈{ positivity, monotonicity, convexity, 

super-additivity, sub-additivity}. 

 

Theorem (𝟐. 𝟏. 𝟐)[𝟐]:  (Main result). Fix an integer n ≥ 2. The sets of entrywise real 

powers that are Loewner positive, monotone, convex, and super/sub-additive, are as listed. 

We complete classification of the powers preserving various Loewner proper-ties, previous 

contributions in the literature are also included for completeness. Note that there are many 

cases which had not been considered previously and which we settle completely in this 

section. For sake of brevity, we will only briefly sketch proofs for the previously addressed 

cases (in order to mention how the rank constraint affects the problem). We instead focus 

our attention on the cases that remain open in the literature. Our original contributions in 

this section are:  
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𝐽 ℋ𝐽(𝑛, 𝑘) ℋ𝐽
𝜙
 (𝑛, 𝑘) ℋ𝐽

Ψ (𝑛, 𝑘) 

Positivity 

𝐾 = 1 

 

2 ≤ 𝑘 ≤ 𝑛 

 

ℝ 

G–K–R 

ℕ⋃[𝑛 − 2,∞) 
FitzGerald–Horn 

 

ℝ 

G–K–R 

2ℕ⋃[𝑛 − 2,∞) 
FitzGerald–

Horn,Hiai,Bhatia–

Elsner,G–K–R 

 

ℝ 

G–K–R 

(−1 + 2ℕ)⋃[𝑛 − 2,∞) 
FitzGerald–

Horn,Hiai,G–K–R 

Monotonicity 

𝐾 = 1 

 

2 ≤ 𝑘 ≤ 𝑛 

 

[0,∞ ) 
G–K–R 

ℕ⋃[𝑛 − 2,∞) 
FitzGerald–Horn 

 

[0,∞ ) 
G–K–R 

2ℕ⋃[𝑛 − 1,∞) 
FitzGerald–

Horn,Hiai, G–K–

R 

 

[0,∞ ) 
G–K–R 

(−1 + 2ℕ)⋃[𝑛 − 1,∞) 
FitzGerald–

Horn,Hiai,G–K–R 

 

Convexity 

𝐾 = 1 

 

2 ≤ 𝑘 ≤ 𝑛 

 

[1,∞ ) 
G–K–R 

ℕ⋃[𝑛,∞) 
Hiai, G–K–R 

 

[1,∞ ) 
G–K–R 

2ℕ⋃[𝑛,∞) 
Hiai, G–K–R 

 

[1,∞ ) 
G–K–R 

(−1 + 2ℕ)⋃[𝑛,∞) 
Hiai, G–K–R 

Super-

additivity 

1 ≤ 𝑘 ≤ 𝑛 

 

ℕ⋃[𝑛,∞) 
G–K–R 

 

2ℕ⋃[𝑛,∞) 
G–K–R 

 

(−1 + 2ℕ)⋃[𝑛,∞) 
G–K–R 

Sup-

additivity 

𝐾 = 1 

 

2 ≤ 𝑘 ≤ 𝑛 

 

[1,∞ )⋃{1}𝑖𝑓𝑛 = 2, 
{0,1} 𝑖𝑓 𝑛 > 2 
G–K–R 

{1} 
G–K–R 

 

 

𝜙 

G–K–R 

𝜙 

G–K–R 

 

{0,1} 𝑖𝑓 𝑛 = 2 

{1} 𝑖𝑓 𝑛 > 2 
G–K–R 

{1} 
G–K–R 
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(i) W ecomplete all of the previously unsolved cases involving powers preserving 

positivity, monotonicity, and convexity. 

(ii) W eclassify all powers preserving super-additivity and sub-additivity. These 

properties have not been explored in the literature in the entrywise setting. 

(iii) W ealso examine negative powers preserving Loewner properties, which were also 

previously unexplored. 

(iv) Finally, we extend all of the above results – as well as those in the literature – by 

introducing rank constraints. Once again, we are able to obtain a complete 

classification of all real powers preserving the five aforementioned Loewner 

properties. 

Similar to many settings in the literature, one can define Hadamard critical exponents 

for positivity, monotonicity, convexity, and super-additivity for ℙ𝑛
𝑘  – these are the phase 

transition points akin. From Theorem (2.1.2), we immediately obtain the Hadamard critical 

exponents (CE) for the four Loewner properties for matrices with rank constraints: 

Corollary (𝟐. 𝟏. 𝟑)[𝟐]: Suppose 𝑛 ≥  2 and 1 ≤  𝑘 ≤  𝑛. The Hadamard critical 

exponents for positivity, monotonicity, convexity, and super-additivity for ℙ𝑛
𝑘  are 𝑛 −

2, 𝑛 − 1, 𝑛, 𝑛 respectively if 2 ≤  𝑘 ≤  𝑛, 𝑎𝑛𝑑 0, 0, 1, 𝑛 respectively if 𝑘 = 1. In 

particular, they are completely independent of the type of entrywise power used. 

An interesting consequence of Corollary (2.1.3) is that if k ≥ 2, then the sets of fractional 

Hadamard powers 𝑓α , 𝜙α , 𝑜𝑟 𝜓α that are Loewner positive, monotone, convex, or super-

additive on ℙ𝑛
𝑘  do not depend on k. 

Thus, entrywise powers that preserve such properties on ℙ𝑛
2  automatically preserve them 

on all of ℙ𝑛
  . Corollary (2.1.3) also shows that the rank 1 caseis different from that of 

other k, in that three of the critical exponents do not depend on n if 𝑘 = 1.This is not 

surprising for positivity because the functions 𝑓α , 𝜙α , 𝜓α are all multiplicative. 

Furthermore, note that if 2 ≤  𝑘 ≤  𝑛, then entrywise maps are Loewner convex on ℙ𝑛
𝑘  (i) 

if and only if they are Loewner super-additive. Finally, the structure of the 𝐻𝐽(𝑛, 𝑘)-sets is 

different for 𝐽 = sub-additivity, compared to the other Loewner properties. 

We prove Theorem (2.1.2) by systematically studying entrywise powers that are (i) 

positive, (ii) monotone, (iii) convex, and (v) super/sub-additive with respect to the 

Loewner ordering. Thus in each of the next four sections, we gather previous results from 

the literature, and extend these in order to compute the sets ℋ𝐽
𝐼I (n, k) f ormatrices with rank 

constraints. In doing so, as a special case we can complete the classification of powers 

𝑓α , 𝜙α , 𝜓α that are Loewner positive, monotone, or convex, for all matrices in ℙ𝑛
  = ℙ𝑛

𝑘  

(i.e., with no rank constraint). We then classify the entrywise real powers that are 

super/sub-additive and in the process demonstrate an interesting connection to Loewner 

convexity. 

The study of Hadamard powers originates in the work of FitzGerald and Horn. We begin 

our analysis by stating one of their main results that characterizes the Hadamard powers 

preserving Loewner positivity. 

Theorem (𝟐. 𝟏. 𝟒)[𝟐]: Suppose A ∈ ℙ𝑛
  ([0, ∞)) for some n ≥ 2. Then 𝐴°𝛼  ∈  ℙ𝑛

  for all 

𝛼 ∈  ℕ ∪ [𝑛 −  2,∞). 𝐼𝑓 𝛼 ∈  (0, 𝑛 −  2) is not an integer, then there exists A ∈ ℙ𝑛
  ((0, 

∞)) such that 𝐴°𝛼  ∉  ℙ𝑛
 . More precisely, Loewner positivity is not preserved for 𝐴 =

 ((1 +∈ 𝑖𝑗))𝑖.𝑗=1,
𝑛  for all sufficiently small 𝜖 > 0 with 𝛼 ∈  (0, 𝑛 −  2) \ℕ. 
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 Thus,  ℋ𝑝𝑜𝑠(𝑛, 𝑛)  =  ℕ ∪ [𝑛 −  2,∞)f orall 2 ≤ n ∈ ℕ. Additionally, Hiai  showed that 

the same results as above hold for the critical exponent for the even and odd extensions 

𝜙𝛼 𝑎𝑛𝑑 𝜓𝛼: 

Theorem (𝟐. 𝟏. 𝟓)[𝟐]: 

If 𝑛 ≥ 2 and 𝛼 ≥ 𝑛 − 2, them 𝛼 ∈ ℋ𝑝𝑜𝑠
𝜙 (𝑛, 𝑛) ∩ℋ𝑝𝑜𝑠

𝜓
 (𝑛, 𝑛). 

Theorem (𝟐. 𝟏. 𝟔)[𝟐]: Suppose n ≥ 2, and r ∈ (0, n − 2) \ 2 ℕ is real. Then   

 𝑟 ∉ ℋ𝑝𝑜𝑠
𝜙
 (𝑛, 𝑛). 

Theorem (𝟐. 𝟏. 𝟕)[𝟐]: Suppose 2 ≤ k ≤ n are integers with n ≥ 3. Then, 

ℋ𝑝𝑜𝑠
  (𝑛, 𝑘) = ℕ ∪ [𝑛 −  2,∞),ℋ𝑝𝑜𝑠

𝜙
 (𝑛, 𝑘) = 2ℕ ∪ [𝑛 −  2,∞), 

ℋ𝑝𝑜𝑠
𝜓
 (𝑛, 𝑘) = (−1 + 2ℕ) ∪ [𝑛 −  2,∞).                           (2) 

If instead k = 1 and/or n = 2 , then 

ℋ𝑝𝑜𝑠
  (𝑛, 𝑘) = ℋ𝑝𝑜𝑠

𝜙
 (𝑛, 𝑘) = ℋ𝑝𝑜𝑠

𝜓
 (𝑛, 𝑘) = (0,∞).                   (3) 

Proof. First suppose 𝑘 = 1, 𝑛 ≥  2, and 𝐴 =  𝑢𝑢𝑇 ∈ 𝕡𝑁
1  for some 𝑢 ∈  ℝ𝑛. Since the 

functions fα, ψα, φα are multiplicative for all α ∈ ℝ, we have 𝐴°𝛼 = 𝑢°𝛼 (𝑢°𝛼)𝑇  ∈
 𝕡𝑁
1 for 𝑢 ∈  [0,∞)𝑛, and similarly for 𝜓α [𝐴], ∅α [𝐴] f or 𝑢 ∈  ℝ𝑛. The result thus follows 

for 𝑘 = 1.Furthermore, the result is obvious for 𝑛 = 2 and all 𝛼 ∈  ℝ. 

Now suppose that 2 ≤  𝑘 ≤  𝑛 and 𝑛 ≥  3. We consider three cases corresponding to the 

three functions 𝑓(𝑥)  =  𝑓𝛼(𝑥), ∅α (x), and 𝜓α (x). 

Case 1: 𝑓(𝑥)  =  𝑓𝛼(𝑥). Consider the matrix 

𝐴 ∶=  (

1 1/√2 0

1/√2 1 1/√2

0 1/√2 1

) ⊕ 0(𝑛−3) (𝑛−3)  ∈  𝕡𝑛
2  (0,∞) . 

It is easily verified that 𝑓𝛼[𝐴]  ∉  𝕡𝑛
  𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼 ≤  0. Thus using Theorem (2.1.4) we have 

ℕ ∪ [𝑛 −  2,∞) = ℋ𝑝𝑜𝑠(𝑛, 𝑛)  ⊂ ℋ𝑝𝑜𝑠(𝑛, 𝑘)  ⊂  (0,∞). 

Now note that the counterexample ((1 + 𝜖𝑖𝑗))  ∈  𝕡𝑛
2  ([0,∞)) provided in Theorem 

(2.1.4) is a rank 2 matrix and hence α ∉ ℋ𝑝𝑜𝑠 (𝑛, 2) for any 𝛼 ∈  (0, 𝑛 −  2)\ ℕ. Thus 

ℋ𝑝𝑜𝑠 (n, 2) = ℕ ∪ [n − 2, ∞). Finally, since ℋ𝑝𝑜𝑠 (n, k) ⊂ℋ𝑝𝑜𝑠 (𝑛, 2), it follows that 

ℋ𝑝𝑜𝑠(𝑛, 𝑘) = ℕ ∪ [𝑛 −  2,∞). 

Case 2: f(x) = 𝜙𝛼 (x). Note that 2N ⊂ℋ𝑝𝑜𝑠
𝜙

 
 (n, k) b y the Schur product theorem. Using 

Theorem (2.1.5) and Case 1, it remains to show that no odd integer α ∈ (0, n − 2) belongs 

to ℋ 𝑝𝑜𝑠
𝜙  (n, k). To do so and for later use, first define the matrix 𝐴𝑟 for r ∈ ℕ as follows: 

                 (𝐴𝑟)𝑖𝑗 ∶=  (𝑐𝑜𝑠(𝑖 −  𝑗)𝜋/𝑟), 1 ≤  𝑖, 𝑗 ≤  𝑟.                       (4) 

Note that 𝐴𝑟  𝕡𝑟
2 since 𝐴𝑟 = 𝑢𝑢

𝑇 +  𝑣𝑣𝑇 , where u := (𝑐𝑜𝑠(𝑗𝜋/𝑟))𝑗=1
𝑟  and 𝑣 ≔

(𝑠𝑖𝑛(𝑗𝜋/𝑟))𝑗=1
𝑟 . The matrix 𝜙𝛼[𝐴𝛼+3] ∉ 𝕡𝛼+3

  for all 𝑝 ∈ (𝛼 −  1, 𝛼 + 1).  In particular, 

𝜙𝑝[𝐴𝛼+3] ∉ 𝕡𝛼+3
 . Since we are considering integer powers 𝛼 such that 𝛼 < 𝑛 −  2, we 

have 𝛼 + 3 ≤  𝑛, so 

𝐴𝛼+3⊕ 0(𝑛−𝛼−3)×(𝑛−𝛼−3)  ∈  𝕡𝑛
2 , 𝜙𝛼[𝐴𝛼+3⊕ 0(𝑛−𝛼−3)×(𝑛−𝛼−3)]  ∉  𝕡𝑛

 , 
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which proves that α ∉  ℋ 𝑝𝑜𝑠
𝜙 (𝑛, 2) for any odd integer 𝛼 ∈  (0, 𝑛 −  2), as desired. 

Case 3: 𝑓(𝑥)  =  𝜓𝛼(𝑥). Note that −1 + 2  ℕ ⊂ℋ 𝑝𝑜𝑠
ψ  (𝑛, 𝑘) by the Schur product theorem. 

Using Theorem (2.1.5) and Case 1, it remains to show that no even integer 𝛼 ∈ (0, 𝑛 −

 2) belongs to ℋ 𝑝𝑜𝑠
ψ  (n, k). The approach in this part is to prove a result similar to the 

main, but for the function 𝜓𝛼. The proof is therefore omitted for brevity. For future 

reference we point out that the key step in the proof uses the following assertion: 

                         𝜓𝑝[𝐴𝛼+3] ∉  𝕡𝛼+3
  ∀𝑝 ∈  (𝛼 −  1, 𝛼 + 1),                   (5) 

where 𝐴𝛼+3 is defined in (4). 

Our result on the full characterization of the even extensions of entrywise powers that 

preserve Loewner positivity, as given by Theorem (2.1.7), allows us to answer this question. 

By Theorem (2.1.7), the smallest 𝑛 ∈ℕ such that 𝜑𝑝[𝐴]  ∉ ℙ𝑛 for at least one matrix 𝐴 ∈

ℙ𝑛, 𝑖𝑠 𝑛 = ⌊𝑝⌋ + 3. Similarly, one can ask the analogous question for 𝜓: given 𝑝 ∈
(0,∞) \(−1 + 2ℕ), find the smallest n ∈ ℕ such that ψp[A]  ∉ ℙ𝑛for at least one A ∈

ℙ𝑛.Once again by Theorem (2.1.7), the answer to this question is 𝑛 = ⌊𝑝⌋+3. 

We now characterize the entrywise powers that are monotone with respect to the Loewner 

ordering. The following theorem by FitzGerald and Horn that is analogous but for 

monotonicity, answers the question for matrices with nonnegative entries. In what follows, 

we denote by 𝟏𝑛×𝑛  𝑡ℎ𝑒 𝑛 × 𝑛 matrix with all entries equal to 1. 

Theorem (𝟐. 𝟏. 𝟖)[𝟐]: Suppose 0 < 𝑅 ≤ ∞, I = (−R,R), and f: I → R. 
(i)For each 𝑛 ≥ 3, 𝑓 is monotone on ℙ𝑛(𝐼) if and only if 𝑓 is differentiable on I and 𝑓′ is 

Loewner positive on ℙ𝑛(𝐼). 

(ii) If n ≥ 1and α ≥ n − 1, then α ∈ ℋmono
φ

(n, n)  ∩ ℋmono
ψ

(n, n). Theorem (2.1.9) is a 

powerful result, but cannot be applied directly to study entrywise functions preserving 

matrices in the more restricted set ℙn
k. We thus refine the first part of the theorem to also 

include rank constraints. 

Proposition (𝟐. 𝟏. 𝟗)[𝟐]: Fix 0 < 𝑅 ≤ ∞, I = (−R, R), and 2 ≤ 𝑘 ≤ 𝑛. Suppose 𝑓: 𝐼 → 𝑅 

is differentiable. on 𝐼 and Loewner monotone on ℙn
k(𝐼). If 𝐴 ∈ ℙn

k(𝐼)is irreducible, .then 

f’[A] ∈ℙ𝑛. 

Proof: We first make the following observation (which in fact holds over any infinite field): 

Suppose 𝐴n×n  is a symmetric irreducible matrix. Then there exists a vector ζ ∈
𝐼𝑚 𝐴(𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒 𝑜𝑓 𝐴) with no zero component. 

To see why the observation is true, first suppose that all vectors in Im A have the ith 

component zero for some 1 ≤ 𝑖 ≤ n–  i. e. , 𝑒𝑖
𝑇𝐴𝑣 = 0 for all vectors v.  

Then the ith row (and hence column) of 𝐴 is zero, which contradicts irreducibility.  

Now fix vectors 𝑤𝑖 ∈ Im 𝐴 for all 1 ≤ 𝑖 ≤ 𝑛, such that the ith entry  

of wi is nonzero. Let W:= [w1|w2|  ··· |wn]; then for all tuples 𝒄 ∶= ([c1,···, cn]
T) ∈ ℝ𝑛,  

𝑊𝑐 =∑𝑐𝑖𝑤𝑖

𝑛

𝑖=1

∈ 𝐼𝑚 𝐴. 

Consider the set S of all 𝒄 ∈ ℝ𝑛 such that Wc has a zero entry. Then 𝑆 = ⋃ 𝑆𝑖
𝑛
𝑖=1 , where 

𝒄 ∈ 𝑆𝑖 if ei
T𝑊𝑐 = 0. Note that 𝑆𝑖 is a proper subspace of ℝ𝑛 since 𝑒𝑖 ∉ 𝑆𝑖 by assumption 

on 𝑤𝑖 . Since ℝ is an infinite field, 𝑆 is a proper subset of ℝ𝑛, which proves the observation. 
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Now given an irreducible matrix 𝐴 ∈ ℙn
k(𝐼), choose a vector ζ ∈  𝐼𝑚𝐴 as in the above 

observation. Let 𝐴ϵ ≔ 𝐴 + ϵζζ
𝑇𝑓𝑜𝑟 ϵ > 0;  𝑡ℎ𝑒𝑛 𝐴ϵ ∈ ℙn

k(𝐼) since     ζ ∈ 𝐼𝑚𝐴. Therefore 

by monotonicity, 
𝑓[𝐴ϵ]−𝑓[𝐴]

 ϵ
≥ 0. Letting ϵ → 0+, it follows  

that 𝑓′[𝐴] ∘ (ζζ
𝑇) ≥ 0.Now let ζ∘(−1) ≔ (ζ

 
−1, . . . , ζ

𝑛
−1)𝑇;then by the Schur Product 

Theorem, it follows that 𝑓′[𝐴] = 𝑓′[𝐴] ∘ (ζζ
𝑇) ∘ (ζ∘

(−1))(ζ∘
(−1)))𝑇) ≥ 0, which concludes 

the proof.  

With the above results in hand, we now completely classify the powers preserving Loewner 

monotonicity, and also specify them when rank constraints are imposed. 

Theorem (𝟐. 𝟏. 𝟏𝟎)[𝟐]: Suppose 2 ≤ k ≤ n are integers. Then, 

ℋ𝑚𝑜𝑛𝑜(𝑛, 𝑘) = ℕ ∪ [𝑛 − 1,∞),   ℋmono
φ (n, k) = 2ℕ ∪ [𝑛 − 1,∞), 

                                         ℋmono
ψ (n, k) = (−1 + 2ℕ) ∪ [𝑛 − 1,∞),                 (6) 

If instead 𝑘 = 1, then  

            ℋ𝑚𝑜𝑛𝑜(𝑛, 1) = ℋmono
φ (n, 1) = ℋmono

ψ (n, 1) = (0,∞).               (7) 
Proof: First suppose 𝑘 = 1 < 𝑛 and 𝐴 = 𝑢𝑢𝑇 , 𝐵 = 𝑣𝑣𝑇 ∈ ℙn

1 . If 𝐴 ≥ 𝐵 ≥ 0, then we 

claim that 𝑣 = 𝑐𝑢 for some 𝑐 ∈ [−1, 1]. To see the claim, assume to the contrary that 𝑢, 𝑣 

are linearly independent. We can then choose 𝑤 ∈ ℝ𝑛 such that 𝑤 is orthogonal to 𝑢 but not 

to 𝑣. But then 𝑤𝑇(𝐴 − 𝐵)𝑤 = −(𝑤𝑇𝑣)2 < 0, which contradicts the assumption 𝐴 ≥ 𝐵. 

Thus u, v are linearly dependent. Since 𝐴 ≥ 𝐵 ≥ 0, it follows that 𝑣 = 𝑐𝑢 with |𝑐|  ≤ 1. 

Now for all 𝛼 ≥ 0 and all 𝐴, 𝐵 ∈ ℙn
1([0,∞))such that 𝐴 ≥ 𝐵 ≥ 0, we use the 

multiplicativity of f𝛼 to compute:  

𝑓𝛼[𝐴] − 𝑓𝛼[𝐵] = 𝑓𝛼[𝑢]𝑓𝛼[𝑢]
𝑇 − 𝑓𝛼[𝑐𝑢]𝑓𝛼[𝑐𝑢]

𝑇 = (1 − (𝑐2)𝛼)𝑓𝛼[𝑢]𝑓𝛼[𝑢]
𝑇 ≥ 0. 

Thus f𝛼 is monotone on ℙn
1  ([0,∞)). Similar computations show the monotonicity of 𝜑𝛼 and 

𝜑𝛼on  ℙn
1(ℝ)𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼 ≥ 0. The same computations also show that f𝛼, 𝜑𝛼 , ψ𝛼 are not 

monotone on ℙn
1  (𝐼), for any 𝛼 < 0. 

Now suppose 2 ≤ 𝑘 ≤ 𝑛. Note that if 𝐴 ≥ 𝐵 ≥ 0, then one inductively shows using the 

Schur product theorem that  

A∘m ≥ B∘m ∀m ≤ N ⇒  A∘(N+1) − B∘(N+1) 

                                      = ∑ A∘m ∘ (A − B) ∘ B∘(N−m)
N

m=0

≥ 0.                                  (8) 

Therefore every positive integer Hadamard power is monotone on ℙ𝑛. We now consider 

three cases corre-sponding to the three functions 𝑓(𝑥) = f𝛼(𝑥), 𝜑𝛼(𝑥), and ψ𝛼(𝑥). 
Case 1: 𝑓(𝑥)  = f𝛼(𝑥). First suppose 𝛼 < 1. By considering the matrices 𝐵 =
𝟏2×2 𝑎𝑛𝑑 𝐴 = 𝐵 + 𝑢𝑢

𝑇  with 𝑢 = (1,−1)𝑇, we immediately obtain that f𝛼 is not 

monotone on  ℙ2
2([0,∞)), and hence not on  ℙn

k([0,∞)) for all 𝛼 < 1. Now the above 

analysis imply that ℋ𝑚𝑜𝑛𝑜(𝑛, 𝑘) ⊂ 𝑁 ∪ [𝑛 − 1,∞), since ((1 + ϵij)), 𝟏𝑛×𝑛  ∈

ℙn
2([0,∞))  ⊂ ℙn

k([0,∞)) provide the necessary counterexample for 𝛼 ∈ (0, 𝑛 − 1) \ℕ. 

Furthermore , ℕ ∪ [𝑛 − 1,∞)  = ℋ𝑚𝑜𝑛𝑜(𝑛, 𝑘)  ⊂ ℋ𝑚𝑜𝑛𝑜(𝑛, 𝑘), and thus ℋ𝑚𝑜𝑛𝑜(𝑛, 𝑘) =
ℕ ∪ [𝑛 − 1,∞). 
 

Case 2: 𝑓(𝑥) =  𝜑𝛼𝐵𝑦 𝐸𝑞(8)𝜑𝛼(𝑥) 𝜑2𝑛[𝐴] = A
∘2n  preserves monotonicity on ℙ𝑛. From 

this observation, it follows that 2ℕ ∪ [𝑛 − 1,∞) ⊂ ℋmono
φ

(n, n) ⊂ ℋmono
φ

(n, k). 
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We now claim that  

ℋmono
φ (n, k) ⊂ ℋpos

φ (n, k) ∩ℋ𝑚𝑜𝑛𝑜(𝑛, 𝑘) ⊂ {𝑛 − 2} ∪ 2ℕ ∪ [𝑛 − 1,∞). 

Indeed, the first inclusion above follows because every monotone function on ℙn
k(ℝ)is 

simultaneously monotone on ℙn
k([0,∞))and positive on ℙn

k(ℝ) by definition. The second 

inclusion above holds by Theorem(2.1.7)and Case 1. 

It thus remains to consider if 𝜑𝑛−2 is monotone on ℙn
k(ℝ). We consider three sub-cases: if 

𝑛 > 2 is even, then 𝑛 − 2 ∈ 2ℕ ∪ [𝑛 − 1,∞). Hence ℋmono
φ

(n, k)  = 2ℕ ∪ [𝑛 − 1,∞) 
by the analysis mentioned above in Case 2. Next if 𝑛 = 3, we produce a three-parameter 

family of matrices 𝐴 ≥ 𝟏3×3 ≥ 0 in ℙ3(ℝ)such that 𝜑1[𝐴]  ≱ 𝜑1[𝟏3×3]. Indeed, choose 

any 𝑎 > 𝑏 > 0 and 𝑐 ∈ (𝑎−1, 𝑏−1), and define  

𝑣 ≔ (𝑎, 𝑏 − 𝑐)𝑇, 𝐵 ≔ 13×3, 𝐴 ≔ 𝐵 + 𝑣𝑣𝑇 

Then both 𝐴, 𝐵 are in ℙ3
2 (ℝ), and 𝜑1[𝐴], 𝜑1[𝐵]  ∈ ℙ3(ℝ). However,  

det(𝜑1[𝐴] − 𝜑1[𝐵]) = 𝑑𝑒𝑡 (
𝑎2 𝑎𝑏 𝑎𝑐 − 2
𝑎𝑏 𝑏2 −𝑏𝑐

𝑎𝑐 − 2 −𝑏𝑐 𝑐2
) = −4𝑏2(𝑎𝑐 − 1)2 < 0. 

Thus 𝜑1is not monotone on ℙ3
2 (ℝ),. 

Finally, suppose 𝑛 > 3 is odd and that 𝜑𝑛−2is monotone on ℙn
k (ℝ). We then obtain a 

contradiction as follows: recall from 𝐸𝑞(5) that the matrix 𝐴𝑛 constructed in 𝐸𝑞.(4) 

satisfies: 𝜓𝑛−3[𝐴𝑛]/∈ ℙ𝑛. (Here, 𝛼 = 𝑛 − 3 = 𝑝 is an even integer in (0, 𝑛 −
2), since 𝑛 > 3 is odd. ) Moreover, 𝐴𝑛 ∈ ℙn

2(ℝ)  ⊂ ℙn
k(ℝ)is irreducible. Hence if 𝜑𝑛−2 is 

monotone on ℙn
k(ℝ), then by Proposition (2.1.9), 𝜓𝑛−3[𝐴𝑛]  =

1

𝑛−2
(𝜑𝑛−2)′[𝐴𝑛]  ∈ ℙ𝑛 . 

This is a contradiction and so 𝜑𝑛−2is not monotone for odd integers 𝑛 > 3. This concludes 

the classification of the powers 𝜑𝛼that preserve Loewner monotonicity. 

Case 3: 𝑓(𝑥)  = ψ𝛼 (𝑥).This case follows similarly to Case 2 and is therefore omitted.  

 

Section (2.2): Characteizing Entrywise Powers that are Loewner Convex 
We next characterize the entrywise powers that preserve Loewner convexity. Before 

proving the main result of this section, we need a few preliminary results. Recall that an 

𝑛 × 𝑛 matrix A is said to be completely positive if 𝐴 = 𝐶𝐶𝑇 for some 𝑛 × 𝑚 matrix C with 

nonnegative entries. We denote the set of 𝑛 × 𝑛 completely positive matrices by 𝐶𝑃𝑛. 

Lemma (𝟐. 𝟐. 𝟏)[𝟐]: Suppose 𝐼 ⊂ ℝ is convex, 𝑛 ≥ 2, and 𝑓: 𝐼 → 𝑅 is continuously 

differentiable. Given two fixed matrices 𝐴, 𝐵 ∈ ℙ𝑛(𝐼)such that  

(𝑖)𝐴 − 𝐵 ∈ 𝐶𝑃𝑛;  
(𝑖𝑖)𝑓[𝜆𝐴 + (1 − 𝜆)𝐵] ≤ 𝜆𝑓[𝐴] + (1 − 𝜆)𝑓[𝐵] for all 0 ≤ 𝜆 ≤ 1.  
𝑇ℎ𝑒𝑛 𝑓′[𝐴]  ≥ 𝑓′[𝐵].  
Proof : Since 𝐴 − 𝐵 ∈ 𝐶ℙ𝑛, there exist vectors 𝑣1, . . . , 𝑣𝑚 ∈ [0,∞)

𝑛 such that  

𝐴 − 𝐵 = 𝑣1𝑣1
𝑇 +⋯+ 𝑣𝑚𝑣𝑚

𝑇  

For 1 ≤ k ≤ m , let Ak = B + vk+1vk+1
T +··· +𝑣𝑚vm

T . Then 𝐴 =: 𝐴0 ≥ 𝐴1 ≥···≥ 𝐴𝑚−1 ≥
𝐴𝑚: = 𝐵. The rest of the proof is the same as the first part of the proof.  

Just as Proposition (2.1.9) was used in proving Theorem (2.1.10), we need the following 

preliminary result to classify the powers that preserve convexity. 
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Proposition (𝟐. 𝟐. 𝟐)[𝟐]: Fix 0 < 𝑅 ≤ ∞, 𝐼 = (−𝑅, 𝑅), and 2 ≤ 𝑘 ≤ 𝑛. Suppose 𝑓: 𝐼 →
ℝ is twice differentiable on I and Loewner convex on ℙn

k  (I). If A ∈

ℙn
k  (I)is irreducible, then 𝑓′′[A]  ∈ ℙn. 

Proof: Given an irreducible matrix 𝐴 ∈ ℙn
k  (𝐼), choose a vector 𝜁 ∈  𝐼𝑚𝐴 as in the 

observation at the beginning of the proof of Proposition (2.1.9). We now adapt the proof 

for the 𝑘 = 𝑛 case, to the 2 ≤ 𝑘 < 𝑛 case. Let 𝐴1: = 𝐴 + ζζ
𝑇

; then  𝐴1 ∈ ℙn
k(𝐼) for |ζ| 

small enough since ζ ∈ 𝐼𝑚𝐴. More generally, it easily follows that 𝜆 𝐴1 + (1 − 𝜆)𝐴 ∈
ℙn
k(𝐼) for all 𝜆 ∈ [0, 1]. Since  

𝑓[𝜆 𝐴1 + (1 − 𝜆)𝐴 ] ≤ 𝜆𝑓[ 𝐴1] + (1 − 𝜆)𝑓[𝐴]   ∀0 ≤ 𝜆 ≤ 1 

by convexity, it follows for 0 < 𝜆 < 1𝑡ℎ𝑎𝑡  
f[A + 𝜆( 𝐴1 − 𝐴)] − 𝑓(𝐴)

𝜆
≤ 𝑓[ 𝐴1] − 𝑓[𝐴] 

𝑓[ 𝐴1 + (1 − 𝜆)( 𝐴 − 𝐴1)] − 𝑓[ 𝐴1]

1 − 𝜆
≤ 𝑓[𝐴] − 𝑓[ 𝐴1]. 

Letting 𝜆 → 0+𝑜𝑟 𝜆 → 1−, we obtain  

( 𝐴1 − 𝐴) ∘ 𝑓
′[𝐴] ≤ 𝑓[ 𝐴1] − 𝑓[𝐴], (𝐴 −  𝐴1) ∘ 𝑓

′[ 𝐴1] ≤ 𝑓[𝐴] − 𝑓[ 𝐴1] 
Summing these two inequalities gives ( 𝐴1 − 𝐴) ∘ (𝑓′[ 𝐴1] – 𝑓′[𝐴])  ≥ 0. Note that 

( 𝐴1 − 𝐴)
∘−1 = (ζζ

𝑇)∘−1 ∈  ℙn
1  and so 𝑓′[ 𝐴1] – 𝑓′[𝐴]  ≥ 0. 

Finally, given ϵ > 0, define 𝐴ϵ: = 𝐴 + ϵζζ
𝑇

. Then 𝐴ϵ ∈ ℙn
k   (𝐼) and 𝑓′[𝐴ϵ]  ≥ 𝑓′[𝐴] by 

the previous paragraph for √ϵζ. Therefore, for all  ϵ > 0, 
𝑓’[𝐴ϵ] −𝑓[𝐴]

ϵ
≥ 0. Letting ϵ → 0+, 

it follows that 𝑓′′[𝐴]  ∘ (ζζ
𝑇)  ≥ 0. Now let ζ

∘(−1): = (ζ
1
−1, . . . , ζ

𝑛
−1)𝑇; then by the Schur 

Product Theorem, 

0 ≤ 𝑓′′[𝐴] ∘ (ζζ
𝑇) ∘ (ζ∘

(−1)(ζ∘
(−1))

𝑇
) = 𝑓′′[𝐴], 

which concludes the proof.  

Note that Lemma (2.2.1) and Proposition (2.2.2) generalize to the cone ℙ𝑛of matrices with 

the Loewner ordering, the elementary results from real analysis that the first and second 

derivatives of a convex (twice) differentiable function are nondecreasing and nonnegative, 

respectively. These parallels have been explored by 𝐻𝑖𝑎𝑖 in detail for 𝐼 = (−𝑅, 𝑅). We now 

state some assertions that concern Loewner convexity. 

Theorem (𝟐. 𝟐. 𝟑)[𝟐]: Suppose 0 < 𝑅 ≤ ∞, 𝐼 = (−𝑅, 𝑅), 𝑎𝑛𝑑 𝑓: 𝐼 → ℝ. 
(i)For each 𝑛 ≥ 2, 𝑓 is convex on ℙ𝑛(𝐼) if and only if 𝑓 is differentiable on 𝐼 and  𝑓′ is 

monotone on ℙ𝑛(𝐼). 

(ii)𝐼𝑓 𝑛 ≥ 1 and 𝛼 ≥ 𝑛, then 𝛼 ∈ ℋconv
φ (n, n) ∩ℋconv

ψ (n, n). 
With the above results in hand, we now extend them in order to completely classify the 

powers preserving Loewner convexity, and also specify them when rank constraints are 

imposed. 

Theorem (2.2.4) [2]: Suppose 2 ≤ 𝑘 ≤ 𝑛 are integers. Then,  

ℋ𝑐𝑜𝑛𝑣(𝑛, 𝑘) =  ℕ  ∪  [𝑛,∞),        ℋconv
φ (𝑛, 𝑘) 

                     =  2ℕ ∪ [𝑛,∞),
  
  ℋconv

ψ
(𝑛, 𝑘) 

                                               =  (−1 +  2ℕ) ∪ [𝑛,∞).                                     (9) 
If instead 𝑘 = 1, then 

      ℋ𝑐𝑜𝑛𝑣(𝑛, 1) =  ℋconv
φ (𝑛, 1) =    ℋconv

ψ (𝑛, 1) = [1,∞).           (10)  
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Proof: Suppose that 𝑘 = 1 < 𝑛 𝑎𝑛𝑑 𝐴 = 𝑢𝑢𝑇 , 𝐵 = 𝑣𝑣𝑇 ∈  ℙn
1  . If 𝐴 ≥ 𝐵 ≥ 0, then by 

the proof of Theorem(2.1.10), 𝑣 = 𝑐𝑢 for some 𝑐 ∈ [−1, 1]. Now for any 𝛼 > 0 and 𝜆 ∈
[0, 1],  

𝜆𝑓𝛼[𝐴] + (1 –  𝜆)𝑓𝛼[𝐵] − 𝑓𝛼[𝜆𝐴 + (1 –  𝜆)𝐵]

= (𝜆 + (1 –  𝜆)𝑐2𝛼 – (𝜆 + 𝑐2(1 –  𝜆))
𝛼
)𝑓𝛼[𝐴]. 

So fα is convex on  ℙn
1  (ℝ) if and only if (using 𝑏 = 𝑐2) 

𝜆 + (1 −  𝜆)𝑏𝛼  ≥ (𝜆 + (𝑏(1 –  𝜆))
𝛼
, ∀𝜆, 𝑏 ∈  [0, 1]. 

This condition is equivalent to the function 𝑥 ⟼ 𝑥𝛼 being convex on [0, 1] and hence 

on [0,∞)– in other words, if and only if 𝛼 ≥ 1. 𝐴 similar argument can be applied to 

analyze 𝜑𝛼 , ψ𝛼. If on the other hand 𝛼 < 1, then set 𝐴 ∶= 12×2⊕0(𝑛−2)×(𝑛−2) ∈ ℙn
1  (𝐼) 

and 𝐵:= 0𝑛×𝑛, and compute: 
1

2
𝑓[𝐴] + 

1

2
𝑓[𝐵]–  𝑓 [

1

2
(𝐴 +  𝐵)] =  

1

2
𝑓[𝐴]–  𝑓 [

1

2
𝐴] = (2−1 − 2−𝛼)𝑓[𝐴],      (11) 

which is clearly not in ℙ𝑛(ℝ)𝑖𝑓 𝛼 < 1. It follows that none of the functions  𝑓 = 𝑓𝛼 , 𝜑𝛼 , 𝜓𝛼 

is convex on ℙn
k  (𝐼)𝑓𝑜𝑟 𝛼 < 1, 𝑛 ≥ 2, and 1 ≤ 𝑘 ≤ 𝑛. 

  We now assume that 2 ≤ 𝑘 ≤ 𝑛, and show that ℕ ∪ [𝑛,∞)  ⊂ ℋ𝑐𝑜𝑛𝑣(𝑛, 𝑘). We first 

assert that for any differentiable function 𝑓: [0,∞)  → ℝ such that 𝑓′(𝑥)is monotone on 

ℙ𝑛([0,∞)), then f is convex on ℙ𝑛([0,∞)). This assertion parallels one implication in 

Theorem(2.1.10) for 𝐼 = [0,∞) instead of 𝐼 = (−𝑅, 𝑅). As the proof is similar to the proof 

of, it is omitted. 

Next, letting 𝑓(𝑥) = 𝑥𝛼  𝑓𝑜𝑟 𝛼 ∈ [𝑛,∞) ∪ ℕ, it follows immediately from Theorem(2.2.3) 
that 𝑓 is convex on ℙ𝑛([0,∞)).. Thus ℕ ∪ [𝑛,∞)  ⊂ ℋ𝑐𝑜𝑛𝑣(𝑛, 𝑛)  ⊂ ℋ𝑐𝑜𝑛𝑣(𝑛, 𝑘). Now 

note that for any 𝛼 ≥ 1, 𝜑𝛼
′ (𝑥) = 𝛼ψ𝛼−1(𝑥) and 𝜓𝛼

′ (𝑥)  = 𝛼𝜑𝛼−1(𝑥). Thus using Theorem 

(2.2.3), it follows that 2ℕ ∪ [𝑛,∞) ⊂ ℋconv
φ (n, k) and (−1 + 2ℕ )  ∪ [𝑛,∞)  ⊂

ℋconv
ψ
(n, k). 

Note that ℋ𝑐𝑜𝑛𝑣(𝑛, 𝑘)  ⊂ [1,∞), and similarly for ℋconv
φ (n, k) and ℋconv

ψ
(n, k). Thus to 

show the reverse inclusions, i.e., that ℋ𝑐𝑜𝑛𝑣(𝑛, 𝑘)   ⊂ ℕ ∪ [𝑛,∞)(and analogously for 

𝜑𝛼 , ψ𝛼), we consider three cases corresponding to the three functions 𝑓 = f𝛼 , 𝜑𝛼 , ψ𝛼. 

Case 1: 𝑓(𝑥)  = 𝑓𝛼(𝑥). 𝐿𝑒𝑡 𝛼 ∈ ℋ𝑐𝑜𝑛𝑣(𝑛, 𝑘) and consider the matrices 𝐴 = 𝐴ϵ =
((1 + ϵij))𝑖,𝑗=1

𝑛   and 𝐵 = 𝟏𝑛𝛸𝑛 for 𝜖 > 0.  Since 𝐴 − 𝐵 ∈ 𝐶ℙ𝑛, by Lemma(2.2.1) for 𝐼 =

[1, 1 + ϵ𝑛2], we have 𝑓𝛼
′[𝐴]  ≥ 𝑓𝛼

′[𝐵]. It follows that 𝛼 − 1 ≥ 𝑛 − 1 or 𝛼 ∈ ℕ. Therefore 

ℋ𝑐𝑜𝑛𝑣(𝑛, 𝑘) ⊂ ℕ ∪ [𝑛,∞). 

Case 2: 𝑓(𝑥)  = 𝜑𝛼(𝑥).Given 𝛼 ∈ ℋconv
φ (n, k)𝑓𝑜𝑟 𝑘 ≥ 2, first note by Case 1 that  

         ℋconv
φ (n, k)  ⊂  ℋconv

φ (n, 2)  ⊂ ℋ𝑐𝑜𝑛𝑣(n, 2)  =  ℕ ∪  [𝑛,∞).        (12) 

Thus it suffices to show that there is no odd integer in 𝑆 ≔ (0, 𝑛) ∩ℋconv
φ (𝑛, 2). First note 

that for every odd integer 𝛼 ∈ 𝑆, the function  is convex on  ℙ𝛼+1
2 (ℝ). There are now two 

cases: first if 𝛼 > 1, then define 𝐴𝛼+1 ∈  ℙ𝛼+1
2 (ℝ). Now 𝐴𝛼+1 is irreducible since 𝛼 ≥ 3. 

Applying Proposition (2.2.2) to 𝐴𝛼+1, we obtain 𝜑𝛼
′′[𝐴𝛼+1]  ≥ 0. Now if 2 ≤ 𝛼 < 𝑛, then 

this contradicts Case 2 of the proof of Theorem (2.1.7) since 𝛼 is an odd integer. Therefore 

𝛼 ∉ ℋconv
φ
(𝑛, 2)for all odd integers 𝛼 ∈ (1, 𝑛). The second case is when 𝛼 = 1 .  

Recall that if 𝛼 = 1 and 𝜑1: 𝑅 → 𝑅 is convex on  ℙ𝛼+1
2 (ℝ)  = ℙ2(ℝ), then 𝜑1(𝑥)  = |𝑥| 

would be differentiable on 𝑅, which is false. We conclude that ℋconv
φ
(𝑛, 2)  ⊂ 2ℕ ∪ [𝑛,∞). 
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Case 3: 𝑓(𝑥)  = ψ𝛼(𝑥).We now prove that ℋconv
ψ
(𝑛, 2)  ⊂ (−1 + 2ℕ) ∪ [𝑛,∞). Once 

again it suffices to show that no even integer 𝛼 ∈ (0, 𝑛) lies in ℋconv
ψ
(𝑛, 2). First assume 

that 𝛼 > 2. Then an argument similar to that for 𝜑𝛼  above (together with the analogous 

example in Theorem (2.1.7) for ψ𝛼) shows that 𝛼 ∉ ℋconv
ψ
(𝑛, 2). Finally, if 𝛼 = 2, we 

provide a three-parameter family of counterexamples to show that 𝜓2is not convex on 

 ℙ3
2(ℝ)and hence not convex on  ℙ𝑛

2(ℝ)by adding blocks of zeros). To do so, choose 0 <
𝑏 < 𝑎 < ∞ and 𝑐 ∈ (𝑎−1, min(𝑏−1, 2𝑎−1)), and define:  

𝑣 ∶=  (𝑎, 𝑏, −𝑐)𝑇 ,   𝐵:=  𝟏3×3,       𝐴:=  𝐵 + 𝑣𝑣
𝑇 

Clearly, 𝐴, 𝐵 ∈  ℙ3
2(ℝ)𝑎𝑛𝑑 𝐴 ≥ 𝐵. Moreover, 

𝐶 ∶=
1

2
(𝜓2[𝐴] + 𝜓2[𝐵]) –𝜓2[(𝐴 +  𝐵) 2⁄ ]  

=  
1

4
 (

𝑎4 𝑎2𝑏2  (3𝑎𝑐 −  2)(2 −  𝑎𝑐)

𝑎2𝑏2 𝑏4 𝑏2𝑐2

 (3𝑎𝑐 −  2)(2 −  𝑎𝑐) 𝑏2𝑐2 𝑐4
). 

Now verify that 𝑑𝑒𝑡𝐶 = −4−3[2𝑏(𝑎𝑐 − 1)]4 < 0. Thus 𝐴 ≥ 𝐵 ≥ 0 provide a family of 

counterexamples to the convexity 𝑜𝑓 𝜓2𝑜𝑛  ℙ3
2(ℝ) (𝑤𝑖𝑡ℎ 𝜆 =

1

2
).  

Powers that are Loewner super/sub-additive have been studied for matrix functions in 

parallel settings, where functions of matrices are evaluated through the Hermitian functional 

calculus instead of entrywise). We now characterize the powers that are Loewner super/sub-

additive when applied entrywise. 

Theorem (2.2.5) [2]: Suppose 1 ≤ 𝑘 ≤ 𝑛 are integers with 𝑛 ≥ 2. Then, 

(i) ℋ𝑠𝑢𝑝𝑒𝑟(𝑛, 𝑘)  = ℕ  ∪ [𝑛,∞),ℋsuper
φ

(𝑛, 𝑘)  = 2ℕ ∪ [𝑛,∞),ℋsuper
ψ

(𝑛, 𝑘)  =

(−1 + 2ℕ) ∪ [𝑛,∞).  

(ii) ℋ𝑠𝑢𝑏𝑏(𝑛, 𝑘)  = {

{1},                                    𝑖𝑓 2 ≤ 𝑘 ≤ 𝑛,           

{0,1},                                 𝑖𝑓 𝑘 = 1, 𝑛 > 2         

𝑛 > 2, (−∞, 0] ∪ {1},    𝑖𝑓 (𝑛, 𝑘) = (2,1).    

  

(iii) ℋsub
φ (𝑛, 𝑘) = ∅ for 𝑎𝑙𝑙 1 ≤ 𝑘 ≤ 𝑛. 

(iv) ℋsub
ψ
 = {0, 1}𝑖𝑓 (𝑛, 𝑘)  = (2, 1), and {1}otherwise. 

Before we prove the result, note that it yields a hitherto unknown connection between super-

additivity and convexity with respect to the Loewner ordering. 

Proof: Super-additivity . Fix an integer 1 ≤ 𝑘 ≤ 𝑛. First apply the definition of super-

additivity 𝑡𝑜 𝐴 = 𝐵 = 1𝑛𝛸𝑛 ∈ ℙ𝑛
𝑘([0,∞))to conclude that if 𝛼 ∈ 𝑅and one of 𝑓𝛼 , 𝜑𝛼 , 𝜓𝛼  is 

Loewner super-additive, then 𝛼 ≥ 1. We now consider three cases corresponding to the 

three functions   𝑓(𝑥)  = 𝑓𝛼(𝑥), 𝜑𝛼(𝑥), and 𝜓𝛼(𝑥) for 𝛼 ≥ 1. 

Case 1: 𝑓(𝑥)  = 𝑓𝛼(𝑥).That fαis super-additive on ℙ𝑛([0,∞))for 𝛼 ∈ 𝑁follows by 

applying the binomial theorem. Now, suppose 𝛼 ∈ (1,∞) \ℕ. We adapt the argument to our 

situation. First assume that 𝛼 ≥ 𝑛; then for 𝐴, 𝐵 ∈ ℙ𝑛([0,∞)) 

𝑓𝛼[𝐴 + 𝐵] = 𝑓𝛼[𝐴] + 𝛼∫𝐵 ∘ 𝑓𝛼−1[𝑡(𝐴 + 𝐵) + (1 − 𝑡)𝐴]𝑑𝑡 .

1

0

 



19 

Note that 𝑡(𝐴 + 𝐵) + (1 − 𝑡)𝐴 = 𝐴 + 𝑡𝐵 ≥ 𝑡𝐵 for all 0 ≤ 𝑡 ≤ 1. Since 𝛼 − 1 ≥ 𝑛 −
1, it follows 𝑓𝛼−1[𝑡(𝐴 + 𝐵) + (1 − 𝑡)𝐴] ≥ 𝑡

𝛼−1𝑓𝛼−1[𝐵]. Therefore, 

  𝑓𝛼[𝐴 + 𝐵] ≥ 𝑓𝛼[𝐴] + 𝛼𝑓𝛼[𝐵]∫ 𝑡
𝛼−1𝑑𝑡 = 𝑓𝛼[𝐴] + 𝑓𝛼[𝐵]

1

0

 

This shows that fαis super-additive on ℙn([0,∞)), and hence on ℙ𝑛
𝑘([0,∞)) if 𝛼 ≥ 𝑛. The 

last remaining case is when 𝛼 ∈ (1, 𝑛) \ℕ. Define 𝑔𝛼(𝑥) ∶= (1 + 𝑥)
𝛼. Given𝜖 >

0𝑎𝑛𝑑 𝑣 ∈ (0, 1)𝑛, apply Taylor’s theorem entrywise to 𝑔𝛼[𝜖𝑣𝑣
𝑇]to obtain:  

𝑔𝛼[𝜖𝑣𝑣
𝑇] = 1𝑛×𝑛 +∑𝜖𝑖

⌊𝛼⌋

𝑖=1

(
𝛼
𝑖
) 𝑓𝑖[𝑣]𝑓𝑖[𝑣]

𝑇 + 𝑂(𝜖1+⌊𝛼⌋)𝐶,                       (13) 

where 𝐶 = 𝐶(𝑣)is an 𝑛 × 𝑛 matrix that is independent of ϵ applied to 𝐹(𝑥) =

∑ 𝜖𝑖
⌊𝛼⌋
𝑖=1 (

𝛼
𝑖
) 𝑥𝑖 − 𝜖𝛼𝑥𝛼 and 𝑚 = 1 + ⌊𝛼⌋  ≤ 𝑛, there exist 𝑢 ∈ (0, 1)𝑛and 𝑥𝛼 ∈ ℝ

𝑛 such 

that 𝑥𝛼
𝑇𝐹[𝑢𝑢𝑇]𝑥𝛼 − 𝜖

𝛼 . It follows that  

𝑥𝛼
𝑇(𝑓𝛼[1𝑛×𝑛 + 𝜖𝑢𝑢

𝑇] − 1𝑛×𝑛 − 𝜖
𝛼𝑓𝛼[𝑢𝑢

𝑇])𝑥𝛼 = 𝑂(𝜖
1+⌊𝛼⌋)𝑥𝛼

𝑇𝐶𝑥𝛼 − 𝜖
𝛼 

and the last expression is negative for sufficiently small 𝜖 = 𝜖0 > 0. Hence 𝑓𝛼[1𝑛𝛸𝑛 +
𝜖0𝑢𝑢

𝑇]  ≱ 𝑓𝛼[1𝑛𝛸𝑛]  + 𝑓𝛼[𝜖0𝑢𝑢
𝑇]. This shows that 𝑓𝛼 is not super-additive on 

ℙ𝑛
1([0,∞))and hence on ℙ𝑛

𝑘([0,∞)), for 𝛼 ∈ (1, 𝑛)\ℕ . 
Case 2: 𝑓(𝑥)  = 𝜑𝛼(𝑥).Clearly, the assertion holds if 𝛼 ∈ 2𝑁 and 1 ≤ 𝑘 ≤ 𝑛, since in that 

case 𝜑𝛼 ≡ 𝑥
𝛼 . 𝑁𝑒𝑥𝑡 𝑖𝑓 𝛼 ≥ 𝑛 ≥ 2, then as in Case 1, for 𝐴, 𝐵 ∈ ℙ𝑛(ℝ),  

𝜑𝛼[A + B] = 𝜑𝛼[A] + 𝛼∫𝐵 ∘ 𝜓𝛼−1[t(A + B) + (1 − t)A]dt .

1

0

 

Since 𝛼 − 1 ≥ 𝑛 − 1, by Theorem (2.1.10) the function 𝜓𝛼−1is monotone on ℙ𝑛(ℝ). 
Thus, 

  𝜑𝛼[A + B] ≥ 𝜑𝛼[A] + 𝛼𝐵 ∘ 𝜓𝛼−1[𝐵]∫ 𝑡
𝛼−1𝑑𝑡 = 𝜑𝛼[𝐴] + 𝜑𝛼[𝐵]

1

0

 

It follows that 𝜑𝛼is super-additive on ℙ𝑛
𝑘(ℝ)for 𝛼 ∈ 2ℕ ∪ [𝑛,∞). Next note by Case1 that 

𝜑𝛼is not super-additive on ℙ𝑛
𝑘(ℝ)for 𝛼 ∈ (1, 𝑛) \ℕ. It thus remains to prove that 𝜑𝛼 is not 

super-additive on ℙ𝑛
𝑘(𝑅)𝑓𝑜𝑟 𝛼 ∈ (−1 + 2ℕ) ∩ [1, 𝑛). Note that for all 𝑢, 𝑣 ∈ ℝ𝑛, 𝑖𝑓 𝜑𝛼is 

super-additive, then  

𝜑𝛼[𝑢𝑢
𝑇 + 𝑣𝑣𝑇] ≥ 𝜑𝛼[𝑢𝑢

𝑇] + 𝜑𝛼[𝑣𝑣
𝑇] = 𝜑𝛼[𝑢]𝜑𝛼[𝑣]

𝑇 + 𝜑𝛼[𝑣]𝜑𝛼[𝑣]
𝑇 ∈ ℙ𝑛(ℝ) 

Thus, if 𝜑𝛼is super-additive, then it is also positive on ℙ𝑛
2(ℝ). We conclude by Theorem 

(2.1.7) that 𝜑𝛼is not super-additive for 𝛼 ∈ (−1 + 2ℕ) ∩ [1, 𝑛 − 2). 
The only two powers left to consider are 𝛼 = 𝑛 − 2 with nodd, and  𝛼 = 𝑛 − 1 with 𝑛 even. 

In other words, 𝑛 is of the form 𝑛 = 2𝑙 or  𝑛 = 2𝑙 + 1 with 𝑙 ≥ 1. Thus , 𝛼 = 2𝑙 − 1 ≥ 1 

in both cases. We claim that 𝜑2𝑙−1is not super-additive on ℙ𝑛
1(ℝ). To show the claim, first 

observe that if 𝑣 ∈ (−1, 1)𝑛, then 1 + 𝑣𝑖𝑣𝑗 > 0 for all 𝑖, 𝑗, and so by the binomial theorem, 

𝜑2𝑙−1[1𝑛×𝑛 + 𝑣𝑣
𝑇] − 1𝑛×𝑛 − 𝜑2𝑙−1[𝑣𝑣

𝑇] = ∑ (
2𝑙 − 1
𝑖
)𝑔𝑖[𝑣𝑣

𝑇] − 𝜑2𝑙−1[𝑣𝑣
𝑇]

2𝑙−1

𝑖=1
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where 𝑔𝑖(𝑥)  = 𝑥
𝑖𝑓𝑜𝑟 𝑥 ∈ ℝ and 𝑖 = 1, . . . , 2𝑙 − 1. By  Corollary (2.2.8) applied to the 

functions 𝑔1, 𝑔2, . . . , 𝑔2𝑙−1 = 𝜓2𝑙−1, 𝜑2𝑙−1𝑎𝑛𝑑 𝑚 = 2𝑙 ≤ 𝑛, there exist 𝑢 ∈ (−1, 1)𝑛 

and 𝑥 ∈ ℝ𝑛such that  

𝑥𝑇(𝜑2𝑙−1[1𝑛×𝑛 + 𝑢𝑢
𝑇] − 1𝑛×𝑛 − 𝜑2𝑙−1[𝑢𝑢

𝑇])𝑥 = −1 

This shows that 𝜑2𝑙−1is not super-additive on ℙn
1(ℝ), hence not on ℙn

k(ℝ). 
Case 3: 𝑓(𝑥)  = 𝜓𝛼(𝑥).The proof is similar to that of Case 2 and is thus omitted. 

(i) Sub-additivity for 𝑓𝛼 .First note that if 𝛼 ∈ ℝ, applying the definition of sub-additivity to 

𝐴 = 𝐵 = 1𝑛×𝑛 ∈ ℙ𝑛
1([0,∞))shows that 𝑓𝛼is not Loewner sub-additive for 𝛼 > 1. Clearly 

𝑓1is sub-additive on ℙ𝑛(𝐼), so it remains to study 𝑓𝛼 𝑓𝑜𝑟 𝛼 < 1. Now suppose 2 ≤ 𝑘 ≤
𝑛 𝑎𝑛𝑑 𝛼 < 1. By Theorem (2.1.7), there exists 𝐴 ∈ ℙn

2(𝐼)such that 𝑓𝛼[𝐴]  ∉ ℙ𝑛. Setting 

𝐵 = 𝐴, we obtain:  

𝑓𝛼[𝐴]  + 𝑓𝛼[𝐵]  − 𝑓𝛼[𝐴 + 𝐵]  = (2 − 2
𝛼)𝑓[𝐴]  ∉ ℙ𝑛. It follows that 𝑓𝛼 is not sub-additive 

on ℙn
k  (𝐼)for 𝛼 < 1. This settles the assertion for 2 ≤ 𝑘 ≤ 𝑛. 

The last case is if 𝑘 = 1 and 𝛼 < 1. For ease of exposition, the analysis in this case is 

divided into several sub-cases: 

Sub-case 1: 𝛼 ∈ (0, 1).Given 0 < 𝜖 < 1𝑎𝑛𝑑 𝑣 ∈ (0, 1)𝑛, apply Taylor’s theorem 

entrywise to 𝑔𝛼[𝜖 𝑣𝑣
𝑇], where 𝑔𝛼(𝑥) = (1 + 𝑥)

𝛼 as above. We obtain:  

f𝛼[1n×n + ϵ𝑣𝑣
T] − 1n×n − f𝛼[𝜖𝑣𝑣

T] = ϵ𝛼𝑣𝑣T − ϵ𝛼𝑓𝛼[𝑣𝑣
T] + 𝑂(ϵ2)𝐶 . 

where 𝐶 = 𝐶(𝑣) is an 𝑛 × 𝑛 matrix that is independent of ϵ. By Corollary (2.2.8) with 

 𝐹(𝑥) = 𝜖𝛼𝑥 − 𝜖𝛼𝑥𝛼 and 𝑚 = 2 ≤ 𝑛, there exist 𝑢 ∈ (0, 1)𝑛  and 𝑥𝛼 ∈ ℝ𝑛 such that  

𝑥𝛼
𝑇(𝑓𝛼[1𝑛×𝑛 + 𝜖𝑢𝑢

𝑇] − 1𝑛×𝑛 − 𝑓𝛼[𝑢𝑢
𝑇])𝑥𝛼 = 𝜖

𝛼 + 𝑂(𝜖2)𝑥𝛼
𝑇𝐶𝑥𝛼 

which is positive for 𝜖 > 0 small enough. Therefore 𝑓𝛼 is not sub-additive 𝑜𝑛 ℙ𝑛
1([0,∞)) 

for 𝛼 ∈ (0, 1). 
Sub-case 2: 𝛼 = 0.To see why 𝑓0 is indeed sub-additive on ℙ𝑛

1([0,∞)), given a subset 𝑆 ⊂
{1, . . . , 𝑛}we define 1S to be the matrix with (𝑖, 𝑗) entry 1 𝑖𝑓 𝑖, 𝑗 ∈ 𝑆 and 0 otherwise. Now 

given 𝐴 = (𝑎𝑖𝑗)  ∈ ℙ𝑛
1([0,∞)), define 𝑆(𝐴) ∶= {𝑖: 𝑎𝑖𝑖 ≠ 0}. Then 𝑓0[𝐴]1S(𝐴)  =

𝑓0 , 𝑓0[𝐵]  = 1S(𝐵)𝑓𝑜𝑟 𝐴, 𝐵 ∈ ℙ𝑛
1([0,∞)), and hence by inclusion–exclusion, 𝑓0[𝐴]  +

𝑓0[𝐵]  − 𝑓0[𝐴 + 𝐵]  = 1𝑆(𝐴)∩𝑆(𝐵) ∈ ℙ𝑛
1([0,∞)). Thus 𝑓0 is sub-additive on ℙ𝑛

1  ([0, ∞))as 

claimed. 

Sub-case 3: 𝛼 < 0, 𝑛 ≥ 3.The fact that 𝑓𝛼 is not subadditive on ℙ𝑛
1([0,∞)) for 𝛼 < 0 

follows by an argument similar to Sub-case 1. 

The argument is omitted for the sake of brevity. 

Sub-case 4: 𝛼 < 0, (𝑛, 𝑘)  = (2, 1).The bulk of the work in classifying the sub-additive 

entrywise powers 𝑓𝛼 lies in the remaining case of ℙ2
1 with 𝛼 < 0. We first show that f𝛼 is 

sub-additive on ℙ2
1([0,∞)) for all 𝛼 < 0. Setting 𝐴 ∶= (𝑎, 𝑏)𝑇(𝑎, 𝑏)and 𝐵:=

(𝑐, 𝑑)𝑇(𝑐, 𝑑), the problem translates to showing that 

(𝑓𝛼(𝑎
2) + 𝑓𝛼(𝑐

2) − 𝑓𝛼(𝑎
2 + 𝑐2)). 𝑓𝛼(𝑏

2) + 𝑓𝛼(𝑑
2) − 𝑓𝛼(𝑏

2 + 𝑑2)

≥ (𝑓𝛼(𝑎𝑏) + 𝑓𝛼(𝑐𝑑) − 𝑓𝛼(𝑎𝑏 + 𝑐𝑑))
2
. 

Note that if any of 𝑎, 𝑏, 𝑐, 𝑑 = 0 then the inequality is clear. Thus we may assume 

𝑎, 𝑏, 𝑐, 𝑑 > 0. Now define  

𝑓(𝑥, 𝑦) ≔ 𝑥𝛼 + 𝑦𝛼 − (𝑥 + 𝑦)𝛼 , 𝑔(𝑥, 𝑦) ≔ 𝑙𝑜𝑔𝑓(𝑒𝑥, 𝑒𝑦) 
Then proving the above inequality is equivalent to showing that (𝑔(𝑥1, 𝑦1) +
𝑔(𝑥2, 𝑦2))/2 ≥ 𝑔((𝑥1 + 𝑥2)/2, (𝑦1 + 𝑦2))/2) i.e., that g is midpoint-convex on ℝ2. Since 
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g is smooth, it suffices to show that its Hessian det  𝐻𝑔(𝑥, 𝑦) is positive semidefinite at all 

points in ℝ2. Astraightforward but longwinded computation demonstrates that det  𝐻𝑔(𝑥, 𝑦) 

= 0 for all x, y ∈ ℝ2 Thus it suffices to show that gxx is nonnegative on ℝ (and the result 

for 𝑔𝑦𝑦 follows by symmetry). We now compute, setting E:= ex + ey for notational 

convenience:  

𝑓(𝑒𝑥, 𝑒𝑦)𝑔𝑥𝑥(𝑥, 𝑦)
= (𝑒αx + 𝑒αy − 𝐸α)(α2𝑒αx − α𝑒𝑥𝐸α−1 − α(α − 1)𝑒2𝑥𝐸α−2)
− α2(𝑒𝑥𝐸α−1 − 𝑒αx)2

= α2𝑒α(𝑥+𝑦)𝐸α−2 (𝐸2−α − (𝑒(2−α)𝑥 + 𝑒(2−α)𝑦))

+ α𝑒𝑥+𝑦𝐸α−2(𝐸α − (𝑒αx + 𝑒αy)) 

Note that the difference in the first term is nonnegative because x2−α  is super-additive, 

while the difference in the second term is nonpositive because xα is sub-additive. Thus both 

terms are nonnegative, which concludes the proof for 𝑓𝛼. 

(ii) Sub-additivity for φα. By considering the matrices A = uuT, B = vvT  with u =
(1, 1)T  and v = (1,−1)T, it immediately follows that 𝜑αis not Loewner sub-additive on ℙ2

1 

(R), and hence not sub-additive on ℙn
k(ℝ)for all (n, k). 

(iii) Sub-additivity for 𝜓𝛼 . First note that 𝜓1(𝑥)  = 𝑥 is sub-additive on ℙn
k(ℝ)for all (𝑛, 𝑘). 

It is also not difficult to show that 𝜓0 is sub-additive on ℙ2
1(ℝ). Using part (a), it remains 

to prove that 𝜓0 is not sub-additive on ℙ𝑛
1(𝑅)for 𝑛 > 2, and 𝜓𝛼is not sub-additive on 

ℙ2
1(𝑅)for 𝛼 < 0. 

To see why 𝜓0 is not sub-additive on ℙ𝑛
1(ℝ)for 𝑛 ≥ 3, use the following three-parameter 

family of rank one counterexamples:  

(𝐴(𝑎, 𝑏, 𝑐) ∶= (−𝑎, 𝑐, 𝑐)𝑇(−𝑎, 𝑐, 𝑐), 𝐵(𝑎, 𝑏, 𝑐) ∶= (𝑐, −𝑏, 𝑐)𝑇(𝑐, −𝑏, 𝑐)),
0 <  𝑎 <  𝑏 <  𝑐. 

It remains to show that 𝜓αis not sub-additive on ℙ2
1(ℝ)for any  

 α < 0. 𝐿𝑒𝑡 𝐴 ∶= (1,−1)T(1,−1)and B:= (1, 1/2)T(1, 1/2). Then,  

𝜓α[𝐴] + 𝜓α[𝐵] − 𝜓α[𝐴 + 𝐵] = (
2 − 2α −1 + 21−α

−1 + 21−α 1 + (1 4⁄ )α − (5 4⁄ )α
) =: 𝐶α. 

We claim that detCα < 0 for all 𝛼 < 0, which shows that 𝜓α is not sub-additive on ℙ2
1(ℝ) 

and completes the proof. To see why the claim holds, compute for 𝛼 < 0:  

4α(2 − 2α)detCα = 4
α + 2α − 1 − 5α 

Note that the function fα(x) = x
α is convex on (0,∞)for α < 0, so Jensen’s inequality 

yields:  

2α = 𝑓α (
3

4
. 1 +

1

4
. 5) <

3

4
+
1

4
. 5α, 4α = 𝑓α (

1

4
. 1 +

3

4
. 5) <

1

4
+
3

4
. 5α 

Adding the two inequalities shows that det  Cα < 0 for α < 0, and the proof is complete. 

We conclude by discussing the following questions that naturally arise from the above 

analysis: 

(i) Is it possible to find matrices of rank exactly k(for some 1 ≤ k ≤ n) for which a non-

integer power less than 𝑛 − 2 is not Loewner positive? Similar questions can also be asked 

for monotonicity, convexity, and super/sub-additivity. 

(ii)Can we compute the Hadamard critical exponents for convex combinations of the two-

sided power functions 𝜑𝛼 , 𝜓α? 



22 

 

Corollary (𝟐. 𝟐. 𝟔)[𝟐]: 𝐹𝑖𝑥 𝛼 > 0 and integers 2 ≤ 𝑘 ≤ 𝑛. 𝐴 fractional power function 

𝑓 = 𝑓𝛼 , 𝜑𝛼 , ψ𝛼 is Loewner convex on ℙn
k(𝐼) if and only if f is Loewner super-additive. Here 

𝐼 = [0,∞)𝑖𝑓 𝑓 = 𝑓𝛼 and 𝐼 = 𝑅 otherwise. 

In order to prove Theorem (2.2.5), we extend classical results about generalized 

Vandermonde determinants to the odd and even extensions of the power functions. 

Proposition (2.2.7) [2]: Let 0 < 𝑅 ≤ ∞. Then, 

(i)the functions {f𝛼: 𝛼 ∈ 𝑅}  ∪ {𝑓 ≡ 1}are linearly independent on 𝐼 = [0, 𝑅); 
(ii)the functions {𝜑𝛼 , ψ𝛼: 𝛼 ∈ 𝑅}  ∪ {𝑓 ≡ 1}are linearly independent on 𝐼 = (−𝑅, 𝑅). 
Proof: Fix 𝛼1 <···< 𝛼𝑛 𝑎𝑛𝑑 𝑑𝑒𝑓𝑖𝑛𝑒 𝛼:= (𝛼1, . . . , 𝛼𝑛 ). We first show that the set of 

functions {𝑥𝛼𝑖: 𝑖 = 1, . . . , 𝑛} ∪ {𝑓 ≡ 1} is linearly independent on [0, 𝑅). Indeed,fix 𝑥:=
(0, 𝑥1, . . . , 𝑥𝑛) ∈ 𝑅

𝑛 for any 0 < 𝑥1 <···< 𝑥𝑛 < 𝑅;  

𝑥∘𝛼𝑗 ≔ (0, 𝑥1
𝛼𝑗 , ⋯ , 𝑥𝑛

𝛼𝑗
), 𝑗 = 1,⋯ , 𝑛, 

and (1, 1, . . . , 1) are linearly independent. 

We next show that the set of functions {𝜑𝛼𝑖 , 𝜓𝛼𝑖: 𝑖 = 1, . . . , 𝑛} ∪ {𝑓 ≡ 1} is linearly 

independent on (−𝑅, 𝑅). Indeed, fix 𝒙′: = ( 𝑥1, . . . , 𝑥𝑛) with 𝑥𝑖 ∈ (0, 𝑅) as above; then by 

the above analysis,  

𝜓(𝑥′, 𝛼) ≔ (

(𝜑𝛼𝑖(𝑥𝑗))𝑖,𝑗=1

𝑛

(𝜑𝛼𝑖(−𝑥𝑗))𝑖,𝑗=1

𝑛

(𝜓𝛼𝑖(𝑥𝑗))𝑖,𝑗=1

𝑛

(𝜓𝛼𝑖(−𝑥𝑗))𝑖,𝑗=1

𝑛 ).                              (14) 

Is a nonsingular matrix, since it is of the form (
M M
M −M

) for a nonsingular matrix M. But 

then (
Ψ(x′, α) 02n×1
11×2n 1

)  is also nonsingular, whence the points ±𝑥1, . . . , ±𝑥𝑛, 0provide 

the required nonsingular matrix. This proves the second assertion.  

Proposition (2.2.7) has the following consequence that is repeatedly used in proving 

Theorem (2.2.5). 
Corollary (𝟐. 𝟐. 𝟖)[𝟐]: Let 0 < 𝑅 ≤ ∞ 𝑎𝑛𝑑 𝐼 = (−𝑅, 𝑅)𝑜𝑟 𝐼 = [0, 𝑅). Fix integers 1 ≤
𝑚 ≤ 𝑛 and scalars 𝑐1, . . . , 𝑐𝑚 and  𝛼1 < 𝛼2 <···< 𝛼𝑚 .  Suppose  {𝑔1, . . . , 𝑔𝑚}  ⊂
{𝜑𝛼1 , . . . , 𝜑𝛼𝑚 , 𝜓𝛼1 , . . . , 𝜓𝛼𝑚}, and define 

𝐹(𝑥) ∶= ∑ 𝑐𝑖𝑔𝑖
𝑚
𝑖=1 (𝑥). Then there exist vectors 𝑢 ∈ (𝐼 ∩ (−1, 1)) 𝑛and 𝑣𝑖 ∈ ℝ

𝑛 that do 

not depend on 𝑐𝑖, such that 𝑣𝑖
𝑇𝐹[𝑢𝑢𝑇]𝑣𝐼 = 𝑐𝑖   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, . . . , 𝑚. 

Proof: Suppose first 𝐼 = (−𝑅, 𝑅). Choose scalars 𝛼𝑛 > 𝛼𝑛−1 >···> 𝛼𝑚+1 > 𝛼𝑚. By 

Proposition (2.2.7), the functions 𝜑𝛼1 , . . . , 𝜑𝛼𝑛 , 𝜓𝛼1 , . . . , 𝜓𝛼𝑛  are linearly independent. Thus, 

as in the proof of Proposition (2.2.7), for all pairwise distinct 𝑥1, . . . , 𝑥𝑛 ∈ (0, 1)  ∩ 𝐼, the 

matrix 𝛹(𝑥, 𝛼)as in Theorem(2.2.5) is nonsingular, where 𝑥 ≔ (𝑥1, . . . , 𝑥𝑛) and 𝛼:=
(𝛼1, . . . , 𝛼𝑛). Now consider the submatrix 𝐶𝑚×2𝑛 of 𝛹(𝑥, 𝛼) whose rows correspond to the 

functions gifor 1 ≤ 𝑖 ≤ 𝑚. Since Chas full rank, choose elements 𝑢1, 𝑢2, . . . , 𝑢𝑛 from 

among the ±𝑥𝑖 such that the matrix (𝑔𝑖(𝑢𝑗))𝑖𝑗
𝑚 = 1 is nonsingular. Now set 𝑢 ∶=

(𝑢1, . . . , 𝑢𝑛)
𝑇  ; then the vectors 𝑔𝑖[𝑢] are linearly independent. Choose 𝑣𝑖 to be orthogonal 

to 𝑔𝑗[𝑢]𝑓𝑜𝑟 𝑗 ≠ 𝑖, and such that 𝑣𝑖
𝑇𝑔𝑖[𝑢]  = 1. It follows that 𝑣𝑖

𝑇𝐹[𝑢𝑢𝑇]𝑣𝑖 = 𝑐𝑖 for all 𝑖. The 

proof is similar for 𝐼 = [0, 𝑅).  



23 

We now classify the entrywise powers that are Loewner super/sub-additive. 

Proposition (𝟐. 𝟐. 𝟗)[𝟐]: Let 0 < 𝑅 ≤ ∞, 𝐼 = [0, 𝑅)𝑜𝑟 (−𝑅, 𝑅), and f: I → ℝ be 

continuous. Suppose 1 ≤ 𝑙 < 𝑘 ≤ 𝑛 are integers, and A, B ≥ 0 are matrices in ℙ𝑛(𝐼)such 

that rank 𝐴 = 𝑙 and one of the following properties is satisfied: 

(i)𝑓[A]  ∉ ℙ𝑛;  
(ii)A ≥ B ≥ 0 and 𝑓[A]  ≱ f[B];  
(iii)A ≥ B ≥ 0 and 𝑓[λA + (1 – λ)B] ≰ λf[A] + (1 – λ)𝑓[B]  for some 0 < 𝜆 < 1;  
(v)𝑓[𝐴 + 𝐵]  ≱ 𝑓[𝐴]  + 𝑓[𝐵];  
(vi)𝑓[𝐴 + 𝐵]  ≰ 𝑓[𝐴]  + 𝑓[𝐵].  
Then there exist 𝐴′, 𝐵′ ≥ 0 such that rank 𝐴′ = 𝑘 and the same property holds when 

𝐴, 𝐵 are replaced by 𝐴′, 𝐵′ respectively. 

Note that the special cases of 𝑙 = 1, 2 answer question (1) above. 

Proof: We show the result for property (i) monotonicity; the analogous results for (ii) 

positivity, (iii)convexity, (v)super-additivity, and (vi)sub-additivity are shown similarly. 

Suppose A ≥ B ≥ 0 and rank A = l, but f[A] ≱ 𝑓[B]. Then there exists a nonzero vector 

𝑣 ∈ ℝ𝑛 such that 𝑣𝑇𝑓[𝐴]𝑣 < 𝑣𝑇𝑓[𝐵]𝑣. Now write 𝐴 = ∑ 𝜆𝑖𝑢𝑖𝑢𝑖
𝑇𝑙

𝑖=1  where 𝜆𝑖 = 0 and 

uiare the nonzero eigenvalues and eigenvectors respectively. Extend the uito an orthonormal 

set {𝑢1, . . . , 𝑢𝑘}, and define C:= ∑ 𝑢𝑖𝑢𝑖
𝑇𝑘

𝑖=𝑙+1 . Clearly, A + ϵC ≥ B + ϵC ≥ 0 and A +
ϵC, B + ϵC ∈ ℙn(I)for small ϵ > 0. 𝑆𝑖𝑛𝑐𝑒  

0 > 𝑣𝑇𝑓[𝐴]𝑣 − 𝑣𝑇𝑓[𝐵]𝑣 = lim
ϵ
 
→0+

𝑣𝑇 (𝑓[𝐴 + ϵC] − 𝑓[𝐵 + ϵC])𝑣 

and f is continuous, there exists small ϵ0 > 0 such that 𝑓[𝐴 + ϵ0𝐶]  ≱ 𝑓[𝐵 + ϵ0𝐶]. Now 

setting 𝐴′: = 𝐴 + ϵ0𝐶, 𝐵′: = 𝐵 + ϵ0C completes the proof, since 𝐴′ ∈ ℙ𝑛
𝑘(𝐼). 

Definition (𝟐. 𝟐. 𝟏𝟎)[𝟕]: let 𝐼 ⊂ 𝑅 be an interval with interior 𝐼0 . A function 𝑓 ∈ 𝐶(𝐼) is 

said to be a bsolutely monotonic on 𝐼 if it is in 𝐶∞(𝐼0) and 𝑓(𝑘)(𝑋) ≥ 0 for every 𝑋 ∈ 𝐼0 

and every 𝑘 ≥ 0.  
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Chapter 3 

Some Applications of Variation of Loewner Chains in Several 

Complex Variables 

 
We show atopological property of the class 𝑆0 of mappings with parametric 

representation on the Euclidean unit bull 𝔹𝑛, which for 𝑛 ≥ 2 immediately implies the 

density of the automorphisms of ℂ𝑛 that, restricted to 𝔹𝑛, have parametric representation, 

and second, to show that every normalized univalent mapping on 𝔹𝑛 whose image is Runge 

and which is ℂ1 up to the boundary embeds in to a normalized Loewner chain with range 

ℂ𝑛. 

 

Definition (𝟑. 𝟏)[𝟑]: A family (𝑓𝑡)𝑡≥0 of mappings is called a normalized subordination 

chain if {𝑒−𝑡𝑓𝑡 }𝑡≥0 is a family in ℋ0 and, for every 0 ≤ s ≤ t, there exists 𝜑𝑠,𝑡 ∶  𝔹
𝑛  →  𝔹𝑛 

holomorphic such that 𝑓𝑠= 𝑓𝑡 ∘ 𝜑𝑠,𝑡. A normalized subordination chain (𝑓𝑡)𝑡≥0 is called a 

normalized Loewner chain if {𝑒−𝑡𝑓𝑡 }𝑡≥0 is a family in S, and if, in addition, {𝑒−𝑡𝑓𝑡 }𝑡≥0 is 

a normal family, then (𝑓𝑡)𝑡≥0is called a normal Loewner chain. 

For every normalized subordination chain (𝑓𝑡)𝑡≥0we denote 

𝑅(𝑓𝑡):=⋃𝑓𝑡
𝑡≥0

  (𝔹𝑛) . 

This set is called the (Loewner) range of (𝑓𝑡)𝑡≥0. 

We say that a mapping 𝑓 ∈ 𝑆 embeds into a normalized Loewner chain (𝑓𝑡)𝑡≥0 if 

𝑓0 = 𝑓 
Let 

𝑆0 ∶= { 𝑓 ∈ 𝑆| 𝑓 embeds into a normal Loewner chain (𝑓𝑡)𝑡≥0} , 
𝑆1 ≔ {𝑓 ∈ 𝑆|𝑓 embeds into a normalized Loewner chain (𝑓𝑡)𝑡≥0with 𝑅(𝑓𝑡) = ℂ

𝑛} 

and 

𝑆𝑅 ∶= { 𝑓 ∈ 𝑆| 𝑓 (𝔹
𝑛) 𝑖𝑠 𝑅𝑢𝑛𝑔𝑒} . 

For the definition and basic properties of the Runge domains, one can consult . 

The class 𝑆0 is known as the class of mappings with parametric representation on 𝔹𝑛 and it 

is a compact set in ℋ0 with respect to the compact-open topology. 

Let   

𝑀 ∶=  {ℎ ∈ ℋ0(𝔹
𝑛)|ℜ〈ℎ(𝑧), 𝑧〉  ≥  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈  𝔹𝑛} . 

Various applications of this family in the theory of univalent mappings on 𝔹𝑛, and the 

references therein. 

Definition (𝟑. 𝟐)[𝟑]: A mapping 𝐺:𝔹𝑛 × [0,∞) → ℂ𝑛 is called a Herglotz vector field if 

𝐺(𝑧,·)is measurable, for every 𝑧 ∈ 𝔹𝑛, and 𝐺(·, 𝑡) ∈ 𝑀 , for a.e. 𝑡 ∈ [0,∞). 
For every Herglotz vector field G, we can associate the following Loewner–Kufarev PDE: 

∂ft
∂t
(𝑧) = 𝑑(𝑓𝑡)𝑧𝐺(𝑧, 𝑡),                                             (1) 

for a.e. 𝑡 ≥  0 and for every 𝑧 ∈ 𝔹𝑛. 
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Definition (𝟑. 𝟑)[𝟑]: A family (𝑓𝑡)𝑡≥0 of mappings is called a normalized solution to the 

Loewner–Kufarev PDE associated to a Herglotz vector field G if {𝑒−𝑡𝑓𝑡 }𝑡≥0 is a family 

in ℋ0, the mapping 𝑡 → 𝑓𝑡(𝑧) is locally absolutely continuous on [0, ∞) locally uniformly 

with respect to 𝑧 ∈ 𝔹𝑛 and it satisfies with G. 

A normalized solution (𝑓𝑡)𝑡≥0 to a Loewner–Kufarev PDE is called a normalized 

univalent solution if {𝑒−𝑡𝑓𝑡 }𝑡≥0 is a family in S, and if, in addition, {𝑒−𝑡𝑓𝑡 }𝑡≥0 is a 

normal family, then (𝑓𝑡)𝑡≥0 is called a canonical solution. 

Theorem (𝟑. 𝟒)[𝟑]:  
(i) Every normalized subordination chain (𝑓𝑡)𝑡≥0 is a normalized solution to a Loewner–

Kufarev PDE. 

(ii) Every Loewner–Kufarev PDE has a unique canonical solution. Moreover, this 

solution is a normal Loewner chain with range ℂ𝑛. 

(iii) Let (𝑓𝑡)𝑡≥0 be a normalized solution to the Loewner–Kufarev PDE(1) associated to 

a Herglotz vector field G. Then (𝑓𝑡)𝑡≥0 is a normalized subordination chain and there 

exists a holomorphic mapping Φ: ℂ𝑛 →  𝑅(𝑓𝑡), with Φ(0)  = 0 and 𝑑Φ0 =  𝐼, such that 

𝑓𝑡 = Φ ∘ 𝑔𝑡 , for every 𝑡 ≥ 0, where (𝑔𝑡)t≥0is the canonical solution of (1) with 𝐺. In 

particular, (𝑓𝑡)𝑡≥0 is a normalized Loewner chain if and only if Φ is biholomorphic (so, 

in this case, the range 𝑅(𝑓𝑡) is a Fatou–Bieberbach domain). 

Conversely, for every holomorphic mapping Φ: ℂ𝑛  →  ℂ𝑛, with Φ(0) = 0  and 𝑑Φ0 =  𝐼, 
and every canonical solution (𝑔𝑡)𝑡≥0 to a Loewner–Kufarev PDE (1) associated to a 

Herglotz vector field G, (Φ ∘  𝑔𝑡)t≥0 is a normalized subordination chain that satisfies (1) 

with G. 

By Theorem (4), we can deduce that in the case n =1):  

(i) every normalized solution to a Loewner–Kufarev PDE is a normalized 

subordination chain and vice versa; 

(ii) every normalized univalent solution to a Loewner–Kufarev PDE is a normalized 

Loewner chain and vice versa; 

(iii) every canonical solution to a Loewner–Kufarev PDE is a Normal Loewner chain 

and vice versa. 

We have the following characterizations: 

(i) (𝑓𝑡)𝑡≥0is normalized subordination chain if and only if there exist an entire 

holomorphic mapping Φ : ℂ𝑛 → ℂ𝑛, with Φ(0) = 0 a nd 𝑑Φ0  =  𝐼, and a normal 

Loewner chain (𝑔𝑡)t≥0 such that 𝑓𝑡 = Φ ∘ 𝑔𝑡, for every 𝑡 ≥  0; 

(ii) (𝑓𝑡)𝑡≥0is normalized Loewner chain if and only if there exist an entire univalent 

mapping Φ : ℂ𝑛 → ℂ𝑛, with Φ(0) =0 and  𝑑Φ0  =  𝐼, and a normal Loewner chain 

(𝑔𝑡)t≥0 such that 𝑓𝑡  = Φ ∘ 𝑔𝑡, for every t ≥ 0. 

Moreover, if Φ : ℂ𝑛 → ℂ𝑛 is an entire holomorphic mapping Φ : ℂ𝑛 → ℂ𝑛, with 

Φ(0) =0 and  𝑑Φ∘ = 𝐼, and  (𝑔𝑡)𝑡≥0 a normal Loewner chain, then (Φ ∘ 𝑔𝑡)𝑡≥0 is a 

normalized Loewner chain if and only if Φ is univalent and, considering also 

Theorem (4), 
(iii) (Φ ∘ 𝑔𝑡)𝑡≥0 is a normal Loewner chain if and only if Φ = I. 

𝐴𝑢𝑡0 (ℂ
𝑛) ∶=  {Φ Φ is an automorphism of ℂ𝑛 𝑤𝑖𝑡ℎ Φ(0) = 0, 𝑑Φ0  =  𝐼} , 

𝐴 ∶= { 𝜑 |𝜑 =  Φ |𝔹𝑛 , where Φ ∈  𝐴𝑢𝑡0(ℂ
𝑛)} 

and 

𝐴0 ∶=  𝐴 ∩ 𝑆0 . 
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We mention that examples of mappings in 𝐴0 can be found. If 𝑛 = 1, then we have 𝐴0  =
 𝐴 =  {𝐼} and 𝑆0  =  𝑆1  =  𝑆 =  𝑆𝑅. The last equality is a consequence of the classical 

result that a domain in ℂ is Runge if and only if it is simply connected. 

If n ≥ 2, then we have 𝑆0 ⊊ 𝑆1. 
From Theorem (4) we can deduce that 

𝑆1  = { 𝑓 ∈ 𝑆| 𝑓 =  Φ  𝑔,where 𝑔 ∈ 𝑆0 𝑎𝑛𝑑 Φ ∈ 𝐴𝑢𝑡 0ℂ
𝑛} .               (2) 

As mentioned in the introduction , it is proved that for n ≥ 2 

𝑆1  ⊂ 𝑆𝑅 ⊊  𝑆. 
By Andersén–Lempert theorem, it was proved that for n ≥ 2 : 

𝑆𝑅  =  �̅�, 
where the closure is with respect to the compact-open topology on ℋ0. 

Now, we can easy see that for 𝑛 ≥  2 

                                              𝐴 ⊊ 𝑆1 ⊂ 𝑆𝑅 = �̅� ⊊  𝑆.                                                                (3) 
We note that for 𝑛 ≥  2 Schleißinger proved that 

                                                   𝑆0 ⊊ �̅�,                                                                           (4) 

and then considered the following : is 𝐴0̅̅̅̅  = 𝑆0? 

Our first result is that (roughly speaking) 𝑆0 is “absorbing” in ℋ0 in the following sense: 

if a sequence in ℋ0 converges, uniformly on compacta of 𝔹𝑛, to a mapping in 𝑆0, then 

there exists a subsequence which rescaled in a natural prescribed way is in 𝑆0 and still 

converges to the same mapping. As a consequence of this result we give a simple proof of 

the fact that 𝐴0̅̅̅̅  = 𝑆0 for n ≥ 2. The same “absorbing” property holds also for 𝑆1. 
 The authors have been interested in the following question: is S1 = SR ? Our second result 

gives a partial answer to this question, namely we prove that every mapping in SR which 

is of class 𝐶1 up to the boundary is in S1. 

Our proofs heavily rely on the following definition and result obtained . 

Definition (𝟑. 𝟓)[𝟑]: A normalized Loewner chain (𝑓𝑡)𝑡≥0 is geräumig in [0, T), for some 

T > 0, if there exists a, b > 0 and c ∈ (0, 1] such that :  

(i) for all 𝑡 ∈  [0, 𝑇) and all 𝑧 ∈ 𝔹𝑛, 𝜇(𝑑(𝑓𝑡)𝑧) : = 𝑚𝑖𝑛 ‖𝑣‖=1‖𝑑(𝑓 ) 𝑣‖  ≥  𝑎, 

(ii)for 𝑎. 𝑒. 𝑡 ∈  [0, 𝑇) and all 𝑧 ∈  𝔹𝑛 , ‖
𝜕𝑓𝑡

∂t
(𝑧)‖   ≤  𝑏, 

(iii) for 𝑎. 𝑒. 𝑡 ∈  [0, 𝑇) andall 𝑧 ∈  𝔹𝑛 , ℜ 〈(𝑑(𝑓𝑡)
−1  

𝜕𝑓𝑡

∂t
(𝑧), 𝑧 〉 ≥  𝑐 ‖𝑧‖2 . 

We have 𝜇(𝐴)  =
1

‖𝐴−1‖
 , for every invertible linear operator A : ℂ𝑛 → ℂ𝑛. 

Theorem (𝟑. 𝟔)[𝟑]: Assume that (𝑓𝑡)𝑡≥0 is a normalized Loewner chain, respectively a 

normal Loewner chain. If (𝑓𝑡)𝑡≥0 is geräumig in [0, T), for some T > 0, then there exists 

𝜀0  >  0 such that for all 𝜀 ∈  (0, 𝜀0], setting 

𝛼(𝑡):= {
ε(1 − 

t

T
 ), t ∈  [0, T)

0, 𝑡 ∈  [T,∞),
 

The family (𝑓𝑡 + 𝛼(𝑡)ℎ)𝑡≥0 is a normalized Loewner chain, respectively a normal 

Loewner chain, for every ℎ : 𝔹𝑛 → ℂ𝑛 holomorphic with ℎ(0)  = 0, 𝑑ℎ0 = 0, 

sup
𝑧∈𝔹𝑛

 ‖ℎ(𝑧)‖ ≤  1 and sup
𝑧∈𝔹𝑛

‖𝑑ℎ𝑧‖ ≤ 1 

For any g ∈ℋ0 and 𝑇𝑟 ∈ (0, 1) we denote by gr the mapping which satisfies: 𝑔𝑟(𝑧) = 
1

𝑟
𝑔(𝑟𝑧), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈  𝔹𝑛. 
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If the mapping has some index, e.g. 𝑔𝛼 then we denote by 𝑔𝑟,𝛼 the corresponding rescaled 

mapping. 

We can deduce the next lemma. 

Lemma (𝟑. 𝟕)[𝟑]: Let 𝑛 ∈  ℕ∗, 𝑔 ∈ 𝑆0 and (𝑔𝑡)𝑡≥0 be a normal Loewner chain into 

which 𝑔 embeds. Then 

(i) for every r ∈ (0, 1), (𝑔𝑟,𝑡)𝑡≥0 is a normal Loewner chain which is geräumig in [0, T), 

for any 𝑇 > 0; in particular, 𝑔𝑟 ∈ 𝑆
0; 

(ii) for every r ∈ (0, 1) and for every univalent mapping 𝜑 ∶ ℂ𝑛 → ℂ𝑛 with 𝜑(0)  = 0 

and 𝑑𝜑0 =  𝐼, (𝜑 ∘  𝑔𝑟,𝑡)𝑡≥0 is a normalized Loewner chain which is geräumig in [0, T), 

for any T > 0; in particular, 𝜑 ∘  𝑔𝑟 ∈ 𝑆
1, for 𝜑 ∈  Aut (ℂ𝑛). 

Proof: Fix arbitrary 𝑟 ∈  (0, 1) and 𝑇 > 0. 

(i) Assume that condition (i) of  Definition (3.5) does not hold. Then there exists a 

sequence (𝑡𝑘)k∈ℕ in [0,T) which converges to some t ∈ [0, T] a nd a sequence (𝑧𝑘)k∈ℕ in 

𝔹𝑛 which converges to some z ∈ �̅�𝑛  such that ‖𝑑(𝑔𝑟𝑡𝑘)𝑧𝑘‖  =  ‖𝑑(𝑔𝑡𝑘)𝑟𝑧𝑘‖  →

 0, 𝑤ℎ𝑒𝑛 𝑘 → ∞.  implies that 𝑔𝑡𝑘  →  𝑔𝑡, when 𝑘 → ∞, uniformly on compacta of 𝔹𝑛. So 

‖𝑑(𝑔𝑡) 𝑟𝑧𝑘‖ → ‖ 𝑑(𝑔𝑡 )𝑟𝑧‖ , when k → ∞ . But then ‖ 𝑑(𝑔𝑡 )𝑟𝑧‖ = 0 , which is a 

contradiction. So there exists 𝑎 > 0 such that, for all t ∈ [0, T) a nd all 𝑧 ∈ 𝔹𝑛, 𝜇(𝑑(𝑔𝑟,𝑡)) ≥
𝑎. 

Condition (ii) follows, using the fact that the class 𝑀 is compact and combining Cauchy’s 

integral formula with the following inequality: 

                       ‖𝑔𝑡(𝑧)‖  ≤  𝑒
𝑡  

‖𝑧‖

1 − ‖𝑧‖
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥  0, 𝑧 ∈  𝔹n .                       (5) 

So there exists 𝑏 >  0 such that, for a.e. t ∈ [0, T)  and all z ∈ 𝔹n ,‖
∂𝑔r,t

∂t
(𝑧)‖ ≤  b. 

Condition (iii) of Definition (3.5) follows immediately. So there exists c ∈ (0, 1] such that, 

for a.e. t ∈ [0, T)  and all z ∈ 𝔹n,  

ℜ〈(𝑑(𝑔𝑟,𝑡)
−1
 
𝜕𝑔𝑟,𝑡
𝜕𝑡

(𝑧), 𝑧 〉 ≥  𝑐 ‖𝑧‖2. 

Since (𝑔𝑡)𝑡≥0 is a normal Loewner chain, (𝑔𝑟,𝑡)𝑡≥0 is a normal Loewner chain which is 

geräumig in [0, T). 

(ii) We consider a, b > 0 and 𝑐 ∈  (0, 1] obtained previously. 

Since 𝑠𝑢𝑝𝑡∈[0,𝑇),𝑧∈𝔹n ‖𝑔𝑟,𝑡(𝑧) ‖ <  ∞ , we have 

𝜆1 ∶=  sup
w∈𝑔𝑟,𝑡(𝔹

n),t∈[0,T)
‖(𝑑𝜙𝑤)

−1‖  ∈  (0,∞)  

and 

𝜆2 ∶=  sup
w∈𝑔𝑟,𝑡(𝔹

n),t∈[0,T)
‖(𝑑𝜙𝑤)

−1‖  ∈  (0,∞)  

So 

𝜇 (𝑑(𝜑 ∘  𝑔𝑟,𝑡)𝑧)  ≥  
1

‖(dϕ𝑔𝑟,𝑡(z))
−1‖ ‖(d(𝑔𝑟,𝑡)z)

−1‖
 ≥
𝛼

𝜆1
 , 
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for all t ∈ [0, T) a nd all z ∈ 𝔹n, 

‖
𝜕(𝜙 𝜊 𝑔𝑟,𝑡) 

∂t
(z)‖ ≤ ‖ d𝜙𝑔𝑟,𝑡(z)‖ ‖

𝜕𝑔𝑟,𝑡 

∂t
(z)‖ ≤  λ1 b, 

for a.e. t ∈ [0, T)  and all z ∈ 𝔹n, and 

𝑅 〈(𝑑(𝜙 𝜊 𝑔𝑟,𝑡)(z))
−1 𝜕(𝜙 ∘ 𝑔𝑟,𝑡)

𝜕𝑡
(𝑧), 𝑧〉 = 𝑅 〈𝑑𝑔𝑟,𝑡(z)

−1
𝑑𝑔𝑟,𝑡 

∂t
(𝑧)〉 ≥ c‖𝑧‖2, 

for a.e. t ∈ [0, T) and all z ∈ 𝔹n. 

Since (𝑔𝑟,𝑡)𝑡≥0 is a normal Loewner chain and the three conditions of Definition (3.5) 

are satisfied,( 𝜙 ∘ 𝑔𝑟,𝑡)𝑡≥0 is a normalized Loewner chain which is geräumig in [0, T). 

Proposition (𝟑. 𝟖)[𝟑]: Let n ∈ ℕ∗, 𝑔 ∈  𝑆0 and (𝑔𝑗) 𝑗∈ℕ  be a sequence in ℋ0 which 

converges, uniformly on compacta of 𝔹n, to 𝑔. Then for every sequence (𝑟𝑘)𝑘∈ℕ   in (0, 1) 

convergent to 1 there exists a subsequence of indexes (𝑗𝑘)𝑘∈ℕ such that 𝑔rk,jk∈ 𝑆0 , for all 

𝑘 ∈ ℕ, and (𝑔rk,jk)𝑘∈ℕ  converges, uniformly on compacta of 𝔹n, to 𝑔. 

The same property holds for 𝑆1. 
Proof: Fix arbitrary r ∈ (0, 1). 

Let (𝑔𝑡)𝑡≥0 be a normal Loewner chain into which g embeds. 

By Lemma (3.7) (i)𝑔 ∈ 𝑆0 and (𝑔 𝑟,𝑡) 𝑡≥0 is a normal Loewner chain which is geräumig in 

[0, T), for some T >0. 

We observe that 𝑔𝑟,𝑗 → 𝑔𝑟, when 𝑗 → ∞, uniformly on compacta of 
1

r
𝔹n. 

Let ε > 0bearbitrary. By the previous observation, we deduce that there exists 𝑗𝜀  ∈  𝑁 

sufficiently large such that 

sup
z∈𝔹n

‖𝑔r,j (z)  − 𝑔𝑟(𝑧)‖ ≤  ε andsup
z∈𝔹n

‖d(𝑔r,jε)z
 −  𝑑(𝑔𝑟)𝑧‖ ≤  ε 

Let ℎ𝑟,𝑗𝜀 ∶=  𝑔𝑟,𝑗𝜀 − 𝑔𝑟 . Note that ℎ𝑟,𝑗𝜀 is a holomorphic mapping on 𝔹n with ℎ𝑟,𝑗𝜀  (0) = 0 

and  𝑑(ℎ𝑟,𝑗𝜀) 
= 0.  

For a sufficiently small ε > 0, by Theorem(3.6), we have that 𝑔𝑟 + hr,jε ∈ 𝑆
0, hence 𝑔𝑟,𝑗𝜀 ∈

𝑆0. 

Now, let (𝑟𝑘)𝑘∈ℕ  be a sequence in (0, 1), convergent to 1. 

For every 𝑘 ∈ ℕ , by the previous argument, there exists jk ∈ ℕ  such that 𝑔rk,jk∈ 𝑆
0. 

Next, we show that 𝑔𝑟𝑘,𝑗𝑘→ 𝑔, when k→ ∞ , uniformly on compacta of 𝔹n. 

Let K := 𝔹n (0,R), with arbitrary R ∈ (0, 1). 

Since 𝑔𝑟𝑘,𝑗𝑘→𝑔, when k → ∞ , uniformly on compacta of 𝔹n, we have that 

𝑠𝑢𝑝 ζ∈K‖𝑔rk,jk (ζ) − 𝑔rk (ζ)‖  →  0, when k → ∞ . 

So it is sufficient to prove that 𝑠𝑢𝑝 ζ∈K‖𝑔(𝑟𝑘ζ) − 𝑔 (ζ)‖ → 0, when k → ∞ . 

By the mean value theorem for vector-valued functions we have 

‖𝑔(𝑟𝑘ζ)) − 𝑔 (ζ) ‖ ≤  (1 − 𝑟𝑘 ) ζ sup
z∈K
‖𝑑𝑔‖ , 

for all ζ ∈ K, so the proof is finished. 

To prove that the same property holds for S1, one can redo the same proof, using this time 

Lemma (3.7) (ii) and Theorem (3.6)for normalized Loewner chains.  
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Schleißinger show that S0 ⊂ �̅�, then suggested that we may have S0 = 𝐴0̅̅̅̅  for n ≥ 2. In the 

following, we prove that, indeed, this is a fact. 

 

Corollary (𝟑. 𝟗)[𝟑]: If n ∈ N such that n ≥ 2, then 𝑆0 = 𝐴0̅̅̅̅ . 

Proof: Let g ∈ S0. 

By (4) we have that there exists a sequence (𝜑𝑗)𝑗∈ℕ in A such that 𝜑𝑗 → g, when j → ∞ , 

uniformly on compacta of 𝔹n. 

Let (𝑟𝑘)𝑘∈ℕ  be a sequence in (0, 1) convergent to 1. By proposition (3.8) 

There exists a subsequence of indexes (𝑗𝑘)𝑘∈ℕ such that 𝜑𝑟𝑘,𝑗𝑘∈S0, for all k∈ℕ, and 

(𝜑𝑟𝑘,𝑗𝑘)𝑘∈ℕconverges, uniformly on compacta of 𝔹n, to g. 

We observe that (𝜑𝑟𝑘,𝑗𝑘)𝑘∈ℕis also a sequence in A. Hence g ∈𝐴0̅̅̅̅ . 

Denote 

𝐶1 (𝔹𝑛̅̅ ̅̅ ) ∶=  {𝑓 ∈  𝐶1(𝔹n) |𝑓 𝑎𝑛𝑑 𝑑𝑓 𝑒𝑥𝑡𝑒𝑛𝑑 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠𝑙𝑦 𝑡𝑜 𝔹𝑛} . 

The following result is an improvement of a recent result due to Arosio, Bracci and Wold. 

 

Theorem (𝟑. 𝟏𝟎)[𝟑]: SR ∩ 𝐶1 (�̅�𝑛) ⊂ S1, for any n ∈ ℕ∗. 

Proof: If n =1 , then we have S1 = SR , as mentioned in the introduction. 

Let n ≥ 2. 

Let f ∈SR ∩ 𝐶1(�̅�𝑛). 
Let ε > 0 be arbitrary. 

Let (𝑟𝑗)𝑗∈ℕ  be a sequence in (0, 1) convergent to 1. 

In the following we denote also by 𝑓 the continuous extension of 𝑓 to �̅�𝑛. 

Since 𝑓 is continuous on �̅�𝑛, there exists a sequence (𝑧𝑗)𝑗∈ℕ in ∂𝔹n such that 

‖𝑓𝑟𝑗  (𝑧𝑗  )  −  𝑓(𝑧𝑗)‖  = max
z∈𝔹𝑛̅̅ ̅̅

 ‖𝑓𝑟𝑗  (𝑧)  −  𝑓(𝑧)‖ . 

Up to a subsequence, we can assume (𝑧𝑗)𝑗∈ℕ converges to a point 𝑧0 ∈∂𝔹n. Since 𝑓 is 

continuous on �̅�n, 

it follows that 𝑓𝑟𝑗(𝑧𝑗)  →  𝑓(𝑧0), when j → ∞ , hence 𝑠𝑢𝑝 z∈𝔹n  𝑠𝑢𝑝 z∈𝔹n  ‖𝑓𝑟𝑗  (𝑧)  −

 𝑓(𝑧)‖ →  0,𝑤ℎ𝑒𝑛 𝑗 → ∞. 

Since the same argument is valid for df , we can choose j∈ℕ sufficiently large such that 

                          sup
z∈𝔹𝑛

 ‖𝑓𝑟𝑗  (𝑧)–  𝑓(𝑧)‖ ≤
ε

2
 .                                                        (6) 

and  

                        sup
z∈𝔹𝑛

 ‖𝑑(𝑓𝑟𝑗)(𝑧) – 𝑑𝑓𝑧‖ ≤
ε

2
 .                                                   (7) 

For simplicity we denote 𝑟 ∶=  𝑟𝑗. 
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By (3) we deduce that there exists a sequence (𝑓𝑖)𝑖∈ℕin 𝑆1 such that 𝑓𝑖 →  𝑓, uniformly on 

compacta of 𝔹𝑛, when 𝑖 → ∞. Since (𝑓𝑟,𝑖)𝑖∈ℕconverges, uniformly on compacta of 
1

𝑟
𝔹n, 

to 𝑓, we can choose 𝑖 ∈ ℕ, sufficiently large such that 

          sup
z∈𝔹𝑛

 ‖𝑓𝑟,𝑖(𝑧)  – 𝑓𝑟(𝑧)‖ ≤
ε

2
                                                            (8) 

and 

                sup
z∈𝔹𝑛

 ‖𝑑(𝑓𝑟,𝑖)(𝑧) – 𝑑
(𝑓𝑟)𝑧‖ ≤

ε

2
                                                       (9) 

Combining the inequalities  (6), (9) we have 

 sup
z∈𝔹𝑛

 ‖𝑓(𝑧) – 𝑓𝑟,𝑖(𝑧)‖ ≤ ε     𝑎𝑛𝑑   sup
z∈𝔹𝑛

 ‖𝑑𝑓𝑧 – 𝑑(𝑓𝑟,𝑖)𝑧‖ ≤ ε      (10) 

Since f ∈S1, by (2) we deduce that there exist 𝜑𝑖 ∈ Aut (ℂn) a nd 𝑔𝑖 ∈ 𝑆
0 such that 𝑓𝑖  = 

𝜑𝑖  ∘  𝑔𝑖  . 
Note that 

𝑓𝑟,𝑖(𝑧) =
1

𝑟
𝜑𝑖 (𝑟

1

𝑟
𝑔𝑖(𝑟𝑧)) , 

for all z ∈ 𝔹n. 

For simplicity we denote 𝜙 := 𝜙𝑟,𝑖 and 𝑔 ∶=  𝑔𝑖 . We have 𝜙 ∈ Aut0 (ℂn) , 𝑔𝑟 ∈ 𝑆
0 and 

𝑓𝑟,𝑖 =  𝜙 ∘ 𝑔𝑟. By (10) we have 

 𝑠𝑢𝑝
𝑧∈𝔹𝑛

 ‖𝑓(𝑧) – (𝜙 ∘  𝑔𝑟)(𝑧)‖ ≤ 𝜀     𝑎𝑛𝑑   𝑠𝑢𝑝
𝑧∈𝔹𝑛

 ‖𝑑𝑓𝑧  – 𝑑(𝜙 ∘  𝑔𝑟)𝑧‖ ≤ 𝜀      (11). 

Let (𝑔𝑡)𝑡≥0 be a normal Loewner chain into which g embeds. 

By Lemma (3.7) (ii) we have that (𝜙 ∘ 𝑔𝑟,𝑡)𝑡≥0 is a normalized Loewner chain which is 

geräumig in [0, T), for some time T > 0. 

Let ℎ𝑟: = 𝑓 − 𝜙 ∘ 𝑔𝑟. Note that ℎ is a holomorphic mapping on 𝔹n, with ℎ𝑟(0) = 0 and  

𝑑(ℎ𝑟)0 = 0.  

For a sufficiently small ε > 0, by Theorem (3.6), we have that (𝑓𝑡)𝑡≥0 with 𝑓𝑡 ≔  𝜙 ∘
 𝑔𝑟,𝑡 + 𝛼(𝑡)ℎ𝑟, for all t ≥ 0, is a normalized Loewner chain, where 

𝛼(𝑡):= {
1 − 

t

T
t ∈  [0, T),

0 ∈  [T,∞)
 

By Theorem (3.4)(i), (𝑓𝑡)𝑡 ≥ 0 is a normalized univalent solution of a Loewner–Kufarev 

PDE: 
𝜕𝑓𝑡
𝜕𝑓
(𝑧) = 𝑑(𝑓𝑡)𝑧𝐺(𝑧, 𝑡), 

for a.e. 𝑡 ≥ 0 andfor every 𝑧 ∈ 𝔹𝑛, where 𝐺 is a Herglotz vector field. By Theorem (3.4)(iii) 

there exists a normalized holomorphic mapping 𝜑 ∶ ℂ 
𝑛 → ℂ 

𝑛 such that 

𝑓𝑡 = 𝜑 ∘ 𝑘𝑡 ,   for all  𝑡 ≥  0, 
where (𝑘𝑡)𝑡 ≥ 0 is the canonical solution of the above Loewner–Kufarev PDE. 
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Since: 𝑓𝑡 = 𝜑 ∘ 𝑔𝑟,𝑡 = 𝜑 ∘ 𝑘𝑡 , for all 𝑡 ≥ 𝑇 (because 𝛼(𝑡) = 0,for all 𝑡 ≥ 𝑇), 𝑔𝑟,𝑡 , 𝑘𝑡 ∈ 𝑆, 

for all 𝑡 ≥ 𝑇, 𝜑 is a normalized automorphism of ℂ 
𝑛 and 𝑅(𝑔𝑡) = 𝑅(𝑘𝑡) = ℂ 

𝑛, we deduce 

that 𝜑 is also a normalized automorphism of ℂ 
𝑛. 

We observe that 𝑓 = 𝑓0 = 𝜑 ∘ 𝑘0 and 𝑘 ∈ 𝑆0. So, in view of (2), we deduce that 𝑓 ∈ 𝑆1.  

Theorem (𝟑. 𝟏𝟏)[𝟖]: Let h(𝑧, 𝑡) be Herglotz vector field of order ∞ on 𝐵𝑞 such that 

ℎ(𝑧, 𝑡) = 𝐴𝑧 + 𝑂(|𝑧|
2) with  

2min{Re〈𝐴𝑧, 𝑧〉: |𝑧| = 1} > max{Re 𝜆: 𝜆 ∈ sp(𝐴)} 

hermition where 〈∙,∙〉 is the her mition product on 𝑐𝑞 then the boeuner PDF 
𝑑𝑓𝑡(𝑧)

𝑑𝑡
=

𝐷𝑓𝑡(𝑧)ℎ(𝑧, 𝑡), admits alocally Lipshitz univalent solution (𝑓𝑡: 𝐵
𝑞 → 𝑐𝑞). The range 𝑈𝑡 ≥ 0 

of (𝐵𝑞) of any such solution is biholomorphic to 𝑐𝑞. 
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Chapter 4 

Nevanlinna Representations in Several Variabls   

 

We find Four different representation formulae and we show that every function 

in the Loewner class has one of the four representations, corresponding precisely 

to four different growth conditions at infinity. 

Section (𝟒. 𝟏) Nevanlinna’s Representations 

Theorem (𝟒. 𝟏. 𝟏)[𝟒]: (Nevanlinna’s Representation). Let ℎ be a function defined on Π. 

There exists a finite positive measure μ on ℝ such that 

                                       ℎ(𝑧) = ∫
dμ

t −  z
                                               (1) 

if and only if ℎ ∈ 𝑝 and 

                                    lim inf
y→∞

 𝑦 |ℎ(𝑖𝑦)| <  ∞.                                       (2) 

A closely related theorem, also referred to in the literature as Nevanlinna’s Represen- tation, 

provides an integral representation for a general element of 𝑝 

Theorem (𝟒. 𝟏. 𝟐)[𝟒]: A function ℎ: Π → 𝐶 belongs to the Pick class p if and only if there 

exist 𝑎 ∈ ℝ, 𝑏 ≥ 0 and a finite positive Borel measure μ on R such that 

                          ℎ(𝑧) = 𝑎 +  𝑏𝑧 + ∫
1 + tz

t −  z
𝑑𝜇 (𝑡)                     (3)   

for all 𝑧 ∈ Π. Moreover, for any ℎ ∈ 𝑝, the numbers 𝑎 ∈ 𝑅, 𝑏 ≥ 0 and the measure 𝜇 ≥ 0 

in the representation (3) are uniquely determined. 

What are the several-variable analogs of Nevanlinna’s theorems? In this paper we shall 

propose four types of Nevanlinna representation for various subclasses of the n-variable 

Pick class 𝑃𝑛, where 𝑃𝑛 is defined to be the set of analytic functions ℎ on the polyhalf- 

plane Π𝑛 such that Im ℎ ≥ 0. In addition, we shall present necessary and sufficient 

conditions for a function defined on Πn to possess a representation of a given type in 

terms of asymptotic growth conditions at ∞. 

The integral representation (1) of those functions in the Pick class that satisfy 

condition (2) can be written in the form 

ℎ(𝑧) =  〈(𝐴 −  𝑧)−1 1, 1〉𝐿2(𝜇) , 

where A is the operation of multiplication by the independent variable on 𝐿2(𝜇)  and 1 

is the constant function 1. We propose that an appropriate n-variable analog of the Cauchy 

transform is the formula 

ℎ(𝑧1, . . . , 𝑧𝑛) = 〈(𝐴 – 𝑧1𝑌1  −··· −𝑧𝑛𝑌𝑛)
−1 𝑣, 𝑣〉ℋ  for 𝑧1, . . . , 𝑧𝑛 ∈ Π,           (4) 

where ℋ is a Hilbert space, A is a densely defined self-adjoint operator on ℋ, 𝑌1, . . . , 𝑌𝑛 

are positive contractions on ℋ summing to 1 and 𝑣 is a vector in ℋ.  
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Theorem (𝟒. 𝟏. 𝟑)[𝟒]: A function h defined on Π belongs to 𝑃 if and only if the function A 

defined 

𝑜𝑛 Π ×  Π 𝑏𝑦 

𝐴(𝑧,𝒲) =
h(z) − h(𝒲)̅̅ ̅̅ ̅̅ ̅̅

z − �̅�
 

 is positive semidefinite, that is, for all n ≥ 1, z1, . . . ,zn ∈ Π, c1, . . . ,cn ∈ C, 

∑𝐴(𝑧𝑗 , 𝑧𝑖)𝑐�̅�𝑐𝑗  ≥  0. 

The following theorem, leads to a generalization of Theorem (4.1.3) to two variables. The 

Schur class of the polydisc, denoted by 𝑆𝑛, is the set of analytic functions on the polydisc 

𝔻𝑛 that are bounded by 1 inmodulus. 

Theorem(𝟒. 𝟏. 𝟒)[𝟒]: A function 𝜑 defined on 𝔻2 belongs to 𝑆2 if and only if there exist 

positive semidefinite functions A and A on 𝔻2 × 𝔻2 such that 

1 – 𝜑(𝜇)̅̅ ̅̅ ̅̅ ̅𝜑(𝜆) = (1 − �̅�1𝜆1)𝐴1(𝜆, 𝜇) + (1 − �̅�2𝜆2)𝐴2(𝜆, 𝜇).        (5) 

By way of the transformations 

                                   𝑧 = 𝑖
1 + 𝜆

1 − 𝜆
  𝜆 =

𝑧 −  𝑖

𝑧 +  𝑖
,                                        (6) 

and 

                           ℎ(𝑧) = 𝑖
1 + φ(λ)

1 − φ(λ)
,    φ(λ) =

ℎ(𝑧) − 𝑖

ℎ(𝑧) + 𝑖
                             (7) 

there is a one-to-one correspondence between functions in the Schur and Pick classes. 

Under these transformations, Theorem (4.1.4) becomes the following generalization of 

Pick’s theorem to two variables. 

Theorem (𝟒. 𝟏. 𝟓)[𝟒]: A function h defined on Π2 belongs to 𝑃2if and only if there exist 

positive semidefinite functions A and A on Π2 × Π2 such that 

ℎ(𝑧) − ℎ(𝑤)̅̅ ̅̅ ̅̅ ̅ = (𝑧1 −𝑤1̅̅̅̅ )𝐴1(𝑧, 𝑤) + (𝑧2  −  𝑤2)𝐴2(𝑧, 𝑤). 

 

In the light of Theorems (4.1.2) and (4.1.5) we define the Loewner class ℒ𝑛 to be the 

set of analytic functions ℎ on Π𝑛 with the property that there exist n positive semidefinite 

functions A1, . . . ,An on Πn such that 

                      ℎ(𝑧)  − ℎ(𝑤)̅̅ ̅̅ ̅̅ ̅ =∑(

𝑛

𝑗−1

𝑧𝑗 −𝑤𝑗̅̅ ̅)𝐴𝑗(𝑧, 𝑤)                               (8) 

for all 𝑧, 𝑤 ∈ Π𝑛. The Loewner class ℒ𝑛 played a  key, which gave a generalization to 

several variables of Loewner’s characterization of the one-variable operator-monotone 

functions. As the following theorem makes clear, ℒ𝑛 also has a fundamental role to play 

in the understanding of Nevanlinna representations in several variables. 
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Theorem (𝟒. 𝟏. 𝟔)[𝟒]: A function h defined on Π𝑛 has a representation of the form (8) if 

and only if h ∈ℒ𝑛 and  

                                            lim inf
y→∞

 𝑦 |ℎ(𝑖𝑦,… , 𝑖𝑦)| < ∞.                                   (9) 

In the cases when 𝑛 = 1 and 𝑛 = 2, Theorems (4.1.2) and (4.1.5) assert that 𝐿𝑛 = 𝑃𝑛, 

and so for 𝑛 = 1, Theorem (4.1.6) is Nevanlinna’s classical Theorem (4.1.1), and when 

𝑛 = 2, Theorem (4.1.6) is a straightforward generalization of that result to two variables. 

When there are more than two variables, it is known that the Loewner class is a proper subset 

of the Pick class, 𝐿𝑛 ≠ 𝑃𝑛. Nevertheless, Nevanlinna’s result survives as a theorem about 

the representation of elements of ℒ𝑛. Other than the work in very little is known about 

the representation of functions in 𝑃𝑛 for three or more variables. 

For a function ℎ on Π𝑛, we call the formula (3) a Nevanlinna representation of type 1. 

Thus, Theorem (4.1.6) can be rephrased as the assertion that ℎ has a Nevanlinna 

representation of type 1 if and only if ℎ ∈ ℒ𝑛 and h satisfies condition (9). Somewhat more 

complicated representation formulae are needed to generalize Theorem (4.1.2). We 

identify three further representation formulae, of increasing generality, and show that 

every function in ℒ𝑛 has a representation of one or more of the four types. 

For a function ℎ defined on Π𝑛, we refer to a formula 

ℎ(𝑧1, … , 𝑧𝑛) = 𝑎 + 〈(𝐴 − 𝑧1𝑌1  −··· −𝑧𝑛𝑌𝑛)
−1𝑣, 𝑣〉ℋ    

                                  for 𝑧1, . . . , 𝑧𝑛 ∈ Π,                                               (10) 
where a is a constant, ℋ is a Hilbert space, A is a densely defined self-adjoint operator 

on ℋ, Y1, . . . ,Yn are positive contractions on ℋ summing to 1 and 𝑣 is a vector in ℋ, as a 

Nevanlinna representation of type 2. 

Theorem (𝟒. 𝟏. 𝟕)[𝟒]: A function h defined on Π𝑛 has a Nevanlinna representation of 

type 2 if and only if ℎ ∈ ℒ𝑛 and 

                                        lim inf
𝑦→∞

 𝑦 Im ℎ(𝑖𝑦, . . . , 𝑖𝑦) <  ∞.                                         (11) 

A Nevanlinna representation of type 3 of a function ℎ defined on Π𝑛 is of the form 

ℎ(𝑧) = 𝑎 + 〈(1 −  𝑖𝐴)(𝐴 − 𝑧𝑦 )(1 + 𝑧𝑦 𝐴)(1 −  𝑖𝐴)
−1 𝑣, 𝑣〉 for all 𝑧 ∈  Π𝑛 

for some real a, some self-adjoint operator A and some vector 𝑣, where 𝑌1, . . . , 𝑌𝑛 are 

operators as in equation (4.1.5) above and 𝑧𝑌  =  𝑧1𝑌1 +··· + 𝑧𝑛𝑌𝑛. 

Theorem (𝟒. 𝟏. 𝟖)[𝟒]: A function ℎ defined on Π𝑛 has a Nevan Linna representation of 

type 3 if and only if ℎ ∈ ℒ𝑛 and 

lim inf
y→∞

 
1

𝑦
Im ℎ(𝑖𝑦,… , 𝑖𝑦) = 0. 

  Finally, Nevanlinna representations of type 4aregiven by the formula 

                                       ℎ(𝑧) = 𝑎 + 〈𝑀(𝑧)𝑣, 𝑣〉 ,                                 (12) 

where a ∈ ℝ and M(z) i san operator of the form 

[
−𝑖 0
0 1 − 𝑖𝐴

] ([
1 0
0 𝐴

] − 𝑧𝑝 [
0 0
0 1

])
−1

(𝑧𝑝 [
1 0
0 𝐴

]   + [
0 0
0 1

]) [
−𝑖 0
0 1 − 𝑖𝐴

]
−1

,     (13) 
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acting on an orthogonal direct sum of Hilbert spaces N⊕M. In equation (12), v is a vector 

in N⊕M. In equation (13), A is a densely-defined self-adjoint operator acting on M and 

zP is the operator acting on N⊕M via the formula 

𝑧𝑃  =  ∑𝑧𝑖 𝑃𝑖  

where 𝑃1, . . . , 𝑃𝑛 are pairwise orthogonal projections acting on N⊕M that sum to 1. 

Theorem (4.1.9) [4]: Let h be a function defined on Πn. Then h has a Nevanlinna 

representation of type 4 if and only if h ∈ℒ𝑛. 

A weaker, “generic” version of Theorem (4.1.9), where it was used to show that elements 

in Ln are locally operator-monotone. 

It turns out that for 1 ≤ k ≤ 4, if h is a function on Πn and ℎ has a Nevanlinna 

representation of type k, then for k ≤ j ≤ 4, h also has a Nevanlinna representation of type 

j. Thus, it is natural to define the type of a function in Ln to be the smallest k such that h 

has a Nevanlinna representation of type k. 

For h ∈ℒ𝑛 the type of h can be characterized in function-theoretic terms through the use of 

a geometric idea due to Carathéodory. A carapoint for a function 𝜑 in the Schur class 𝑆𝑛 

is a point τ ∈ 𝕋 such that 

lim inf
λ→τ

 
1−|𝜑(λ)|

1−‖λ‖∞
<  ∞. 

where 

‖λ‖∞ = max
1≤𝑖≤𝑛

|λi| 

Carathéodory introduced this notion in one variable, along the way to refining earlier. 

The following was Carathéodory’s main result; the notation    𝜆 
𝑛𝑡
→  𝜏 means that λ tends 

nontangentially to τ. 

 

Theorem (𝟒. 𝟏. 𝟏𝟎)[𝟒]: Let 𝜑 ∈S1, τ ∈ 𝕋. If τ is a carapoint for 𝜑, then 𝜑 is 

nontangentially differentiable at τ, that is, there exist values 𝜑 (τ) and 𝜑′ (τ) such that 

lim 
λ
nt
→ τ

 
𝜑 (λ)  −  𝜑 (τ)  − 𝜑′ (τ)(λ −  τ)

λ −  τ
= 0 

In particular, if τ is a carapoint for 𝜑 then there exists a unique point 𝜑 (τ) ∈ T such that 

𝜑 (λ) → 𝜑 (τ) as λ 
𝑛𝑡
→ τ. 

In several variables, carapoints have been studied. The strong conclusion of nontangential 

differentiability is lost in several variables; however, at a carapoint τ, there still exists a 

unimodular nontangential limit 𝜑 (τ). 

 

As the point χ = ( 1, . . . ,1) is transformed to the point ∞ = ( ∞, . . . ,∞)  by Theorem (4.1.10), 

it is natural to say that a function h ∈ℒ𝑛 has a carapoint at ∞ if the associated Schur function 
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𝜑, given by the transformation in equation (7), has a carapoint at 𝜒, and in that case to 

define ℎ(∞) b y 

                                                  ℎ(∞) = 𝑖
1 +  𝜑 (χ)

1 −  𝜑 (χ)
                                                              (14) 

The connection between carapoints and function types is given in the following Theorem. 

Theorem (𝟒. 𝟏. 𝟏𝟏)[𝟒]: For a function h ∈ℒ𝑛, 

(i) h is of type 1 if and only if ∞ is a carapoint of h and h(∞) = 0 ; 

(ii) h is of type 2 if and only if ∞ is a carapoint of h and h(∞) ∈ ℝ \ { 0}; 

(iii) h is of type 3 if and only if ∞ is not a carapoint of h; 

(v) h is of type 4 if and only if ∞ is a carapoint of h and h(∞) = ∞. 

As is clear from the formulae used to define the various Nevanlinna representations, 

Nevanlinna representations are generalizations of the resolvent of a self-adjoint operator. 

These structured resolvents, are analytic operator-valued functions on the polyhalf-plane Π𝑛 

with non-negative imaginary part, fully analogous to the familiar resolvent operator. There 

are also struc-tured resolvent identities for them. 

In modern texts Nevanlinna’s representation is derived from the Herglotz Representa-tion 

with the aid of the Cayley transform . We introduce the n-variable strong Herglotz class and 

then prove Theorem (4.1.9) by applying the Cayley transform. 

We derive the Nevanlinna representations of types 3, 2, and 1, we show how they arise 

naturally from the underlying Hilbert space geometry we give function-theoretic conditions 

for a function h ∈ℒ𝑛 to possess a representation of a given type. 

We introduce the notion of carapoints for functions in the Pick class and we establish the 

criteria for the type of a function using the language of carapoints. 

We give the growth estimates for functions in ℒ𝑛 that flow from our analysis of 

structured resolvents, and we present resolvent identities for structured resolvents. 

Results related to ours from a system-theoretic perspective have been obtained in recent 

works of J.A.Ball and D. Where Krein space methods are applied to similar problems. 

The resolvent operator (A − z)-1 1 of a densely defined self-adjoint operator A on a 

Hilbert space plays a prominent role in spectral theory. It has the following properties. 

(i) It is an analytic bounded operator-valued function of z in the upper half-plane Π; 

(ii) it satisfies the growth estimate ‖(A −  z) −1‖  ≤  1/ Im z for z ∈  Π; 
(iii) (A − z)-1 has non-negative imaginary part for all z ∈ Π; 

(v) it satisfies the “resolvent identity”. 

Here we are interested in several-variable analogs of the resolvent. These will again be 

operator-valued analytic functions with non-negative imaginary part, but now on the 

polyhalf-plane Πn. Because of the additional complexities in several variables we 

encounter three different types of resolvent; all of them have the four listed properties, 

with very slight modifications, and therefore deserve the name structured resolvent. 

For any Hilbert space ℋ, a positive decomposition of ℋ will mean an n-tuple 𝑌 =
(𝑌1, . . . , 𝑌𝑛) of positive contractions on H that sum to the identity operator. For any 𝑧 =
(𝑧1, . . . , 𝑧𝑛) ∈  ℂ

𝑛 and any n-tuple 𝑇 = (𝑇1, . . . , 𝑇𝑛)o fbounded operators we denote by zT 

the operator ∑  𝑧𝑗𝑇𝑗
 
𝑗 . Here each 𝑇𝑗 is a bounded operator from ℋ1 to ℋ2, for some 

Hilbert spaces ℋ1, ℋ2, so that zT is also a bounded operator from ℋ1 to ℋ2. 
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Definition(𝟒. 𝟏. 𝟏𝟐)[𝟒]: Let A be a closed densely defined self-adjoint operator on a 

Hilbert space ℋ and let Y be a positive decomposition of ℋ. The structured resolvent 

of A of type 2 corresponding to Y is the operator-valued function  

𝑧 − (𝐴 − 𝑧𝑌 )
−1 ∶ 𝛱𝑛  → ℒ(ℋ). 

The following observation is essentially. 

Proposition (𝟒. 𝟏. 𝟏𝟑)[𝟒]: For A and Y as in Definition (4.1.12) the structured resolvent 

(A − z )-1 is well defined on Πn and satisfies, for all z ∈ Πn, 

                                      ‖(𝐴 − 𝑧𝑌 )
−1‖  ≤

1

minj Im zj
 .                                     (15) 

Moreover 

𝐼𝑚 ((𝐴 − 𝑧𝑌 )
−1)  = (𝐴 − 𝑧𝑌

∗  )−1 (𝐼𝑚 𝑧𝑌 )(𝐴 − 𝑧𝑌 )
−1 

                               = (𝐴 − 𝑧𝑌 )
−1 (𝐼𝑚 𝑧𝑌 )(𝐴 – 𝑧𝑌

∗  )−1 ≥  0.                          (16) 

The range of the bounded operator (𝐴 − 𝑧𝑌 )
−1 is of course 𝒟(A), the domain of A. 

Proof. For any vector ξ in the domain of A, 

‖(𝐴 − 𝑧𝑌 )𝜉‖ ‖𝜉‖  ≥ | (〈𝐴 − 𝑧𝑌 )𝜉, 𝜉 |〉 
≥ |Im (𝐴 − 𝑧𝑌 )𝜉, 𝜉 | 
= (〈Im 𝑧𝑌 )𝜉, 𝜉〉 

= ∑(Im 𝑧𝑗) 〈𝑌𝑗𝜉, 𝜉〉

 

𝑗

 

≥ (min
𝑗
Im 𝑧𝑗) 〈∑𝑌𝑗𝜉, 𝜉

 

𝑗

〉 

= (min
𝑗
Im 𝑧𝑗) ‖𝜉‖

2 . 

Thus 𝐴 − 𝑧𝑌 has lower bound minj Im zj > 0, and so has a bounded left inverse. Asimilar 

argument with z replaced by 𝑧 shows that (𝐴 – 𝑧𝑌)
∗ also has a bounded left inverse, and 

so 𝐴 − 𝑧𝑌 has a bounded inverse and the inequality (15) holds. 

The identities (16) are easy.  

Resolvents of type 2 are the simplest several-variable analogues of the familiar one-

variable resolvent but they are not sufficient for the analysis of the several-variable Pick 

class. To this end we introduce two further generalizations. Let us first recall some basic 

facts about closed unbounded operators. 

Lemma (𝟒. 𝟏. 𝟏𝟒)[𝟒] : Let T be a closed densely defined operator on a Hilbert space ℋ, 

with domain 𝒟(T). The operator 1 + T* T  is a bijection from D(T* T) to H, and the 

operators 

𝐵 ≝ (1 + 𝑇∗ 𝑇)−1, 𝐶 ≝  𝑇(1 + 𝑇∗ 𝑇)−1 

are everywhere defined and contractive on ℋ. Moreover B is self-adjoint and positive, 

and ran C ⊂D (𝑇∗). 
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Proof: Although the final statement about ran C is not explicitly stated. We must show 

that for all v ∈  ℋ there exists y ∈  ℋ such that, for all h ∈  ℋ, 

〈𝑇ℎ, 𝐶𝑣 〉 =  〈ℎ, 𝑦〉 . 

It is straightforward to check that this relation holds for y = v − Bv, and so ran C ⊂ D(𝑇∗). 

Definition (𝟒. 𝟏. 𝟏𝟓)[𝟒]: Let A be a closed densely defined self-adjoint operator on a 

Hilbert space ℋ and let Y be a positive decomposition of ℋ. The structured resolvent of 

A of type 3 corresponding to Y is the operator-valued function M : Π n →ℒ(ℋ) g iven by 

           𝑀(𝑧) = (1 −  𝑖𝐴)(𝐴 − 𝑧𝑌 )
−1 (1 + 𝑧𝑌 𝐴)(1 −  𝑖𝐴)

−1 .                  (17) 

We denote theℓ1norm on ℂn by ‖·‖1.  Note that ‖𝑧𝑌‖ ≤ ‖𝑧‖1 for all z ∈ ℂn and all 

positive decompositions Y . 

Proposition (𝟒. 𝟏. 𝟏𝟔)[𝟒]: For A and Y as in Definition (4.1.15) the structured resolvent 

M(z) of type 3 given by equation (17) is well defined as a bounded operator on ℋ for all 

z ∈ Πn and satisfies 

                      ‖𝑀(𝑧)‖  ≤ (1 + 2 ‖𝑧‖1) (1 +
1 + ‖𝑧‖1
min𝑗Im z𝑗

) .                            (18) 

Proof. Since 

1 + 𝑧𝑌 𝐴 = 1 − 𝑖𝑧𝑌  +  𝑖𝑧𝑌 (1 −  𝑖𝐴):𝐷(𝐴)  → ℋ 

and (1 − 𝑖𝐴)−1 is a contraction on all of ℋ, with range 𝒟(𝐴), the operator 

(1+𝑧𝑌A)(1 − 𝑖𝐴)−1 1 is well defined as an operator on ℋ and 

‖(1 + 𝑧𝑌 𝐴)(1 −  𝑖𝐴)‖
−1  =  ‖(1 −  𝑖𝑧𝑌 )(1 −  𝑖𝐴)

−1  +  𝑖𝑧𝑌‖ 
                           ≤ ‖ 1 −  𝑖𝑧𝑌‖ + ‖𝑧𝑌‖ 

          ≤  1 + 2 ‖𝑧𝑌‖ 
                                                          ≤  1 + 2 ‖𝑧‖1.                                             (19) 

Similarly (1 − iA)(A − z )-1 is well defined on ℋ, and since 

𝑖(𝐴 − 𝑧𝑌 ) = −(1 −  𝑖𝐴) + (1 −  𝑖𝑧𝑌 ): 𝒟(𝐴)  → ℋ 

we have 

𝑖 =  −(1 −  𝑖𝐴)(𝐴 − 𝑧𝑌 )
−1  + (1 −  𝑖𝑧𝑌 )(𝐴 − 𝑧𝑌 )

−1 ∶  ℋ → ℋ. 

Thus, by virtue of the bound (15), 

‖(1 −  𝑖𝐴)(𝐴 − 𝑧𝑌 ) 
−1‖ = ‖ 𝑖 − (1 −  𝑖𝑧𝑌 )(𝐴 − 𝑧𝑌 )

−1‖ 
                                                    ≤  1 + ‖1 −  𝑖𝑧𝑌‖ ‖(𝐴 − 𝑧𝑌 )

−1‖ 

                                                             ≤  1 +
1 + ‖z‖1
minjIm zj

 .                                         (20) 

On combining the estimates (20) and (19) we obtain the bound (18).  
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The following alternative formula for the structured resolvent of type 3, valid on the dense 

subspace D(A) o f ℋ, allows us to show that Im M(z) ≥ 0. 

 

Proposition (𝟒. 𝟏. 𝟏𝟕)[𝟒]: For A and Y as in Definition (4.1.15) and z∈Πn 

𝑀(𝑧)|𝐷(𝐴) = (1 −  𝑖𝐴){(𝐴 − 𝑧𝑌 )
−1  −  𝐴(1 + 𝐴2 )−1} (1 +  𝑖𝐴)  (21) 

                      = (1 −  𝑖𝐴)(𝐴 − 𝑧𝑌 )
−1 (1 +  𝑖𝐴)  −  𝐴 ∶  𝒟(𝐴)  → ℋ.             (22) 

Moreover, for every v ∈ 𝒟 (A), 

Im〈𝑀(𝑧)𝑣, 𝑣〉  =  〈(1 −  𝑖𝐴)(𝐴 − 𝑧𝑌
∗  )−1 (𝐼𝑚 𝑧𝑌 )(𝐴 − 𝑧𝑌)

−1(1 +  𝑖𝐴)𝑣, 𝑣 〉 ≥  0.   (23) 

Proof: By Lemma (4.1.14) the operator 𝐴(1 + 𝐴2)−1 is contractive on ℋ and has 

range contained in 𝒟 (A). On 𝒟(A2)  w ehave the identity 

1 + 𝑧𝑌 𝐴 = 1 + 𝐴
2  −  (𝐴 − 𝑧𝑌 )𝐴. 

Since (1 + 𝐴2)−1 maps ℋ into 𝒟 (𝐴2)  w e  have 

(1 + 𝑧𝑌 𝐴)(1 + 𝐴
2 )−1  = 1 − (𝐴 − 𝑧𝑌 )𝐴(1 + 𝐴

2 )−1 ∶  ℋ → ℋ, 

and therefore 

 (𝐴 − 𝑧𝑌 )
−1 (1 + 𝑧𝑌 𝐴)

 (1 + 𝐴2 )−1 = (𝐴 − 𝑧𝑌 )
−1  

                         − 𝐴(1 + 𝐴2 )−1 ∶  ℋ → 𝒟(𝐴).                                          (24) 

Clearly 

 (1 + 𝐴2 )−1 (1 +  𝑖𝐴) = (1 −  𝑖𝐴)−1 𝑜𝑛 𝒟(𝐴) 

and so, on multiplying equation (24) fore-and-aftby 1±iA, we deduce that, as operators from 

𝒟(A) t o  ℋ, 

𝑀(𝑧)|𝒟(𝐴) = (1 −  𝑖𝐴)(𝐴 − 𝑧𝑌 )
−1 (1 + 𝑧𝑌 𝐴)(1 −  𝑖𝐴)

−1 
= (1 −  𝑖𝐴)(𝐴 − 𝑧𝑌 )

−1 (1 + 𝑧𝑌 𝐴)(1 + 𝐴
2)−1 (1 +  𝑖𝐴) 

= (1 −  𝑖𝐴) {(𝐴 − 𝑧𝑌 )
−1  −  𝐴(1 + 𝐴2 )−1} (1 +  𝑖𝐴). 

This establishes equation (21). 

The expression (22) follows from equation (21) since 

 (1 −  𝑖𝐴)𝐴(1 + 𝐴2 ) −1(1 +  𝑖𝐴) = 𝐴 𝑜𝑛 𝒟(𝐴). 

By equation (22) we have, for any z ∈ Πn and v ∈ 𝒟 (A), 

 𝐼𝑚 〈𝑀(𝑧)𝑣, 𝑣〉  = 𝐼𝑚 〈(1 −  𝑖𝐴)(𝐴 − 𝑧𝑌 )
−1 (1 +  𝑖𝐴)𝑣, 𝑣〉  −  𝐼𝑚 〈𝐴𝑣, 𝑣〉 

  = 𝐼𝑚 〈(𝐴 − 𝑧𝑌 )
−1 (1 +  𝑖𝐴)𝑣, (1 +  𝑖𝐴)𝑣〉 

and hence, by equation (16), 

𝐼𝑚 𝑀〈(𝑧)𝑣, 𝑣〉  =  〈(𝐴 − 𝑧𝑌
∗  )−1 (𝐼𝑚 𝑧𝑌 )(𝐴 − 𝑧𝑌 )

−1 (1 +  𝑖𝐴)𝑣, (1 +  𝑖𝐴)𝑣〉 , 
and so equation (23) holds.  

Corollary (4.1.18)[4]: For A and Y as in Definition (4.1.15)  the structured resolvent 

M(z) given by equation (17) satisfies Im M(z) ≥ 0 for all 𝑧 ∈  𝛱𝑛. 

For,by Propositions (4.1.16) and (4.1.17), M(z) i s a bounded operator on ℋ, and 

Im 〈𝑀(𝑧)𝑣, 𝑣〉 ≥  0 f or 𝑣 ∈ 𝒟(𝐴). The conclusion follows by the density of 𝒟(A) a nd 

continuity. 
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In the case of bounded A there is yet another expression for the structured resolvent of type 

3. 

Proposition (4.1.19)[4]: If A is a bounded self-adjoint operator on H and Y is a positive 

de-composition of ℋ then, for z ∈ Πn, 

𝑀(𝑧) = (1 + 𝑖𝐴)−1 (1 +  𝐴𝑧𝑌 )(𝐴 − 𝑧𝑌)
−1 (1 +  𝑖𝐴).           (25) 

Proof. Since A is bounded it is defined on all of ℋ. We have 

1 + 𝐴𝑧𝑌  = 1 + 𝐴
2  −  𝐴(𝐴 − 𝑧𝑌 ) 

and hence 

(1 +  𝐴𝑧𝑌 )(𝐴 − 𝑧𝑌 )  = (1 + 𝐴
2 )(𝐴 − 𝑧𝑌 )

−1  −  𝐴. 

Thus 

 (1 +  𝑖𝐴)−1 (1 +  𝐴𝑧𝑌)(𝐴 − 𝑧𝑌)
−1 (1 +  𝑖𝐴) = (1 −  𝑖𝐴)(𝐴 − 𝑧𝑌)

−1 (1 +  𝑖𝐴)  −  𝐴
=  M(z) 

by equation (22). 

Here are two examples of structured resolvents of type 3, one on ℂ2 and one on aninfinite-

dimensional space. 

Example (4.1.20) [4]: Let 

 ℋ = ℂ2, 𝐴 = [
1 0
0 −1

] , 𝑌1 =
1

2
[
1 1
1 1

] , 𝑌2 = 1 − 𝑌1, 𝑌 = (𝑌1, 𝑌2) . 

Then 

𝑀(𝑧) = (1 −  𝑖𝐴)(𝐴 − 𝑧𝑌 )
−1 (1 + 𝑧𝑌 𝐴)(1 −  𝑖𝐴)

−1 

=
1

1 − z1z2
[
(1 + z1)(1 + z2) −𝑖(z1 − z2)

𝑖(z1 − z2) −(1 − z1)(1 − z2)
] 

Example (𝟒. 𝟏. 𝟐𝟏) [𝟒]: Let ℋ = L2(ℝ), let A be the operation of multiplication by the 

indepen-dent variable t and let Y = P,𝑄 where P, 𝑄 are the orthogonal projection operators 

onto the subspaces of even and odd functions respectively in L2. Thus 

𝑃𝑓(𝑡) =
1

2
 {𝑓(𝑡) + 𝑓(−𝑡)}, 𝑄𝑓(𝑡) =

1

2
 {𝑓(𝑡)  −  𝑓(−𝑡)} . 

Let 𝑌′= ( Q, P). Note that 

𝑃𝐴 =  𝐴 𝑄, 𝑄 𝐴 =  𝐴𝑃 

and hence 

𝑧𝑌′  𝐴 =  𝐴𝑧𝑌, 𝑧𝑌𝑧𝑌′ = 𝑧1𝑧2 = 𝑧𝑌′  𝑧𝑌 . 

It follows that 𝑧𝑌 and 𝑧𝑌′ commute with 𝐴2, and it may be checked that 

(𝐴 − 𝑧𝑌 )
−1  = (𝐴 2 − 𝑧1𝑧2)

−1 (𝑧𝑌′ +  𝐴) = (𝑧𝑌′ +  𝐴)(𝐴 
2  −  𝑧1𝑧2)

−1 

and hence 

(𝐴 − 𝑧𝑌 )
−1 (1 + 𝑧𝑌 𝐴) = (𝐴 

2  −  𝑧1𝑧2)
−1 ((1 + 𝐴 2 )𝑧𝑌  + (1 + 𝑧1𝑧2)𝐴) . 
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A straightforward calculation now shows that the structured resolvent M(z) o f 𝐴 corre-

sponding to Y is given by 

(𝑀(𝑧)𝑓)(𝑡) =
(
1
2
(𝑧1  +  𝑧2 )(1 + 𝑡

2) + (1 + 𝑧1𝑧2 )𝑡) 𝑓(𝑡) +
1
2 (𝑧2 − 𝑧1 )(1 −  𝑖𝑡)

2𝑓(−𝑡)

𝑡2 − 𝑧1𝑧2
 

for all z ∈ Π2, f ∈ L2(ℝ) a nd 𝑡 ∈ ℝ. In particular, we note for future use that if f is an even 

function, 

                     𝑀(𝑧)𝑓)(𝑡) =
𝑡(1 + 𝑧1𝑧2)(1 − it)(it𝑧1  +  𝑧2)

𝑡2 − 𝑧1𝑧2
𝑓(𝑡)                       (26)  

The third and last form of structured resolvent that we consider has a 2 × 2 matricial form. 

As will become clear, this extra complication is needed for the description of the most 

general type of function in the several-variable Loewner class. 

By an orthogonal decomposition of a Hilbert space ℋ we shall mean an n-tuple 𝑃 =
 (𝑃1, . . . , 𝑃𝑛) oforthogonal projection operators with pairwise orthogonal ranges such that 

∑ 𝑃𝑗
𝑛
𝑗=1  is the identity operator. 

Proposition (4.1.22) [4]: Let ℋ be the orthogonal direct sum of Hilbert spaces N , M, let 

A be a densely defined self-adjoint operator on M with domain 𝒟(A) and let P be an 

orthogonal decomposition of H. For every z ∈ Πn the operator on H given with respect 

to the decomposition N⊕M by the matricial formula 

 𝑚(𝑧) = [
−𝑖 0
0 1 − 𝑖𝐴

] ([
1 0
0 𝐴

] − 𝑧𝑝 [
0 0
0 1

])
1

 

                                × (𝑧𝑝 [
1 0
0 𝐴

] + [
0 0
0 1

]) [
−𝑖 0
0 1 − 𝑖𝐴

]
−1

                        (27) 

is a bounded operator defined on all of H, and 

                 ‖𝑀(𝑧)‖  ≤ (1 + √10 ‖𝑧‖1 )  (1 +
1+√2 ‖𝑧‖1

minj Im zj
) .                            (28) 

Proof. Let 𝑧 ∈ Πn. Let the projection 𝑃𝑗 have operator matrix 

                                                      𝑝𝑗 = [
𝑋𝑗 𝐵𝑗
𝐵𝑗 𝑌𝑗

]                                                                     (29) 

with respect to the decomposition H = N⊕M . Then 

𝑋 = (𝑋1, . . . , 𝑋𝑛)  = (𝑌1, . . . , 𝑌𝑛) 

are positive decompositions of N , M respectively, and 

𝐵 = (𝐵1, . . . , 𝐵𝑛), 𝐵∗ = (𝐵1
∗, . . . , 𝐵𝑛

∗) 

are n-tuples of contractions summing to 0, from M to N and from N to M respectively. 

Since the 𝐵𝑗 are contractions we have 

‖𝑧𝐵‖  ≤ ‖ 𝑧‖1. 
For any z ∈ ℂn, 

                                                  𝑧𝑃 = [
𝑧𝑋 𝑧𝐵
𝑧𝐵∗ 𝑧𝑌

]                                                 (30) 
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Consider the third and fourth factors in the product on the right hand side; the product of 

these two factors is well defined as an operator on ℋ since (1 − 𝑖𝐴)−1 maps M to 𝒟(A). 

It is even a bounded operator, since, by virtue,  

(𝑧𝑝 [
1 0
0 𝐴

] + [
0 0
0 1

]) [
−𝑖 0
0 1 − 𝑖𝐴

]
−1

= [
𝑖𝑧𝑥 𝑧𝐵𝐴(1 − 𝑖𝐴)

−1

𝑖𝑧𝐵∗ (1 + 𝑧𝑌𝐴)(1 − 𝑖𝐴)
−1]              (31) 

Since 

‖(𝐴(1 −  𝑖𝐴))−1‖  =  ‖𝑖(1 − (1 −  𝑖𝐴)−1)‖  ≤ 2 

we can immediately see that the operator (31) is bounded. We can get an estimate of the 

norm of the operator matrix (31) if we replace each of the four operator entries by an upper 

bound for its norm. We find that 

‖(𝑧𝑝 [
1 0
0 𝐴

] + [
0 0
0 1

]) [
−𝑖 0
0 1 − 𝑖𝐴

]
−1

‖ ≤ ‖[
‖𝑧‖1 2‖𝑧‖1
‖𝑧‖1 1 + 2‖𝑧‖1

]‖

≤ 1 + ‖𝑧‖1 ‖[
1 2
1 2

]‖ = 1 + √10‖𝑧‖1                                                             (32) 

Now consider the second factor in the definition (4.1.23) of M(z). We find that 

([
1 0
0 𝐴

] − 𝑧𝑝 [
0 0
0 1

])
1

= [
1 −𝑧𝐵
0 𝐴 − 𝑧𝑌

]
−1

[
1 𝑧𝐵(𝐴 − 𝑧𝑌)

−1

0 (𝐴 − 𝑧𝑌)
−1 ]           (33)   

which maps H into N⊕𝒟(A). Hence the product of the first two factors in the product on 

the right hand side of equation (27) is 

 [
−𝑖 0
0 1 − 𝑖𝐴

] ([
1 0
0 𝐴

] − 𝑧𝑝 [
0 0
0 1

])
1

[
−𝑖 𝑖𝑧𝐵(𝐴 − 𝑧𝑌)

−1

0 (1 − 𝑖𝐴)(𝐴 − 𝑧𝑌)
−1]          (34) 

 Since 

‖(1 − 𝑖𝐴)(𝐴 − 𝑧𝑌)
−1‖ = ‖(1 − 𝑖𝑧𝑌)(𝐴 − 𝑧𝑌)

−1 − 𝑖‖ ≤ 1 + ‖1 − 𝑖𝑧𝑌‖‖𝐴 − 𝑧𝑌‖

≤ +
1 + ‖𝑧‖1
minj Im zj

 

we deduce from equation (34) that 

‖[
−𝑖 0
0 1 − 𝑖𝐴

] ([
1 0
0 𝐴

] − 𝑧𝑝 [
0 0
0 1

])
−1

‖ ≤ ‖[
1 ‖𝑧‖1‖(𝐴 − 𝑧𝑌)

−1‖

0 1 + (1 + ‖𝑧‖1)(𝐴 − 𝑧𝑌)
−1]‖

≤ 1 + ‖[
0 ‖𝑧‖1
0 1 + ‖𝑧‖1

] [
0 0
0 ‖(𝐴 − 𝑧𝑌)

−1‖]‖ 

            ≤ 1 +
1 + √2‖𝑧‖1
minj Im zj

                                                                                        (35) 

min𝑗  𝐼𝑚 𝑧𝑗  

On combining the estimates (35) and (34) we obtain the bound (28) for ‖𝑀(𝑧)‖ .  

Definition (4.1.23) [4]: Let ℋ be the orthogonal direct sum of Hilbert spaces N , M, let A 

be a densely defined self-adjoint operator on M with domain 𝒟(A) and let P be an orthogonal 

decomposition of ℋ. The structured resolvent of A of type 4 corresponding to P is the 

operator-valued function M : Π n →ℒ(ℋ) g ivenby equation (27). 
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We shall also refer to M(z) as the matricial resolvent of A with respect to P. The important 

property that Im M(z) ≥ 0 is not at once apparent from the formula (27); as with structured 

resolvents of type 3, there are alternative formulae from which this nproperty is more 

easily shown. Once again the alternatives suffer the minor drawback that they give 

M(z) o nlyon a dense subspace of ℋ. 

Proposition (4.1.24) [4]: With the notation of Definition (4.1.23), as operators on 

N⊕D (A), 

𝑀(𝑧) = [
−𝑖 0
0 1 − 𝑖𝐴

] ([
1 0
0 𝐴(1 + 𝐴2)−1

] 𝑧𝑝 + [
0 0
0 (1 + 𝐴2)−1

]) 

                                × ([
1 0
0 𝐴

] − [
0 0
0 1

] 𝑧𝑝)
−1

[
𝑖 0
0 1 + 𝑖𝐴

]                                  (36) 

= [
−𝑖 0
0 1 − 𝑖𝐴

] ([
1 0
0 0

] 𝑧𝑝 + [
0 0
0 1

]) ([
1 0
0 𝐴

] − [
0 0
0 1

] 𝑧𝑝)
−1

 [
𝑖 0
0 1 + 𝑖𝐴

]  

− [
0 0
0 𝐴

]                                                                                                                  (37) 

= [
−𝑖 0
0 1 − 𝑖𝐴

] ([
1 0
0 𝐴

] − 𝑧𝑝 [
0 0
0 1

])
−1

(𝑧𝑝 [
1 0
0 0

] + [
0 0
0 1

]) [
𝑖 0
0 1 + 𝑖𝐴

]

− [
0 0
0 𝐴

]                                                                                                                  (38) 

for all 𝑧 ∈  Π𝑛. Moreover, for all 𝑧, 𝑤 ∈  Πn,  

 𝑀(𝑧) − 𝑀(𝑤)∗ = [
−𝑖 0
0 1 − 𝑖𝐴

] ([
1 0
0 𝐴

] − 𝑤𝑝
∗ [
0 0
0 1

])
−1

 

      × (𝑧𝑝 −𝑤𝑝
∗) ([

1 0
0 𝐴

] − [
0 0
0 1

] 𝑧𝑝)
−1

[
𝑖 0
0 1 + 𝑖𝐴

]                      (39) 

on N⊕D (A). 

Proof. By Lemma (4.1.14) the operators (1 + 𝐴2)−1  and 

𝐶 ≝ 𝐼𝑚(1 −  𝑖𝐴)−1  =  𝐴(1 + 𝐴2)−1 

are self-adjoint contractions defined on all of M. Furthermore, 

𝑟𝑎𝑛(1 + 𝐴2)−1  =  𝒟(𝐴2 ),       𝑟𝑎𝑛 𝐶 ⊂ 𝒟(𝐴). 

We claim that, as operators on N⊕  𝒟 (A), 

  ([
1 0
0 𝐴

] − 𝑧𝑝 [
0 0
0 1

])
−1

(𝑧𝑝 [
1 0
0 𝐴

] + [
0 0
0 1

])

= ([
1 0
0 𝐶

] 𝑧𝑝

+ [
0 0
0 (1 + 𝐴2)−1

]) ([
1 0
0 𝐶

] − [
0 0
0 (1 + 𝐴2)−1

] 𝑧𝑝)
−1

      (40) 

We have 
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(𝑧𝑝 [
1 0
0 𝐴

] + [
0 0
0 1

]) ([
1 0
0 𝐶

] − [
0 0
0 (1 + 𝐴2)−1

] 𝑧𝑝)

= [
0 0
0 𝐶

] + 𝑧𝑝 [
1 0
0 𝐴𝐶

] − [
0 0
0 (1 + 𝐴2)−1

] 𝑧𝑝 − 𝑧𝑝 [
0 0
0 𝐶

] 𝑧𝑝

= [
0 0
0 𝐶

] + 𝑧𝑝 ([
1 0
0 𝐴𝐶

] − 1) + (1 − [
0 0
0 (1 + 𝐴2)−1

]) 𝑧𝑝

− 𝑧𝑝 [
0 0
0 𝐶

] 𝑧𝑝

= [
0 0
0 𝐶

] − 𝑧𝑝 [
0 0
0 (1 + 𝐴2)−1

] + [
1 0
0 𝐴𝐶

] 𝑧𝑝 − 𝑧𝑝 [
0 0
0 𝐶

] 𝑧𝑝

= ([
1 0
0 𝐴

] − 𝑧𝑝 [
0 0
0 1

]) ([
1 0
0 𝐶

] 𝑧𝑝 + [
0 0
0 (1 + 𝐴2)−1

]) 

This is an identity between operators on H, in both cases a composition ℋ→N⊕  

𝒟(A) →  ℋ, and moreover the first factor on the left hand side and the second factor on 

the right hand side are invertible, from N⊕𝒟(A) t o ℋ and from ℋ to N⊕𝒟(A) 

respectively. We may pre-and post-multiply appropriately to obtain equation (40), but note 

that the equation is then only valid as an identity between operators on N⊕D (A). 

On combining equations (27) and (40) we deduce that 

𝑀(𝑧) = [
−𝑖 0
0 1 − 𝑖𝐴

] ([
1 0
0 𝐶

] 𝑧𝑝 + [
0 0
0 (1 + 𝐴2)−1

])

× ([
1 0
0 𝐶

] − [
0 0
0 (1 + 𝐴2)−1

] 𝑧𝑝)
−1

[
−𝑖 0
0 1 − 𝑖𝐴

]
−1

 

Since 

[
−𝑖 0
0 1 − 𝑖𝐴

]
−1

= [
1 0
0 1 + 𝐴2

]
−1

[
𝑖 0
0 1 + 𝑖𝐴

] 

and 

[
1 0
0 1 + 𝐴2

] ([
1 0
0 𝐶

] − [
0 0
0 (1 + 𝐴2)−1

] 𝑧𝑝) = [
1 0
0 𝐴

] − [
0 0
0 1

] 𝑧𝑝 

we deduce further that 

  

𝑀(𝑧) = [
−𝑖 0
0 1 − 𝑖𝐴

] ([
1 0
0 𝐶

] 𝑧𝑝 + [
0 0
0 (1 + 𝐴2)−1

]) 

× ([
1 0
0 𝐴

] − [
0 0
0 1

] 𝑧𝑝)
−1

[
𝑖 0
0 1 + 𝑖𝐴

]                        (41) 

which proves equation (36). It is straightforward to verify that 
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([
1 0
0 𝐶

] 𝑧𝑝 + [
0 0
0 (1 + 𝐴2)−1

]) ([
1 0
0 𝐴

] − [
0 0
0 1

] 𝑧𝑝)
−1

 

                       = ([
1 0
0 0

] 𝑧𝑝 + [
0 0
0 1

]) ([
1 0
0 𝐴

] − [
0 0
0 1

] 𝑧𝑝)
−1

          (42) 

                    − [
0 0
0 𝐴(1 + 𝐴2)−1

]                                                                (43) 

Clearly 

[
−𝑖 0
0 1 − 𝑖𝐴

] [
0 0
0 𝐴(1 + 𝐴2)−1

] [
𝑖 0
0 1 + 𝑖𝐴

] = [
0 0
0 𝐴

] 

and so on suitably pre- and post-multiplying equation (42), we obtain equation (37). To 

prove equation ( 83 ), check first that 

([
1 0
0 𝐴

] − 𝑧𝑝 [
0 0
0 1

]) ([
1 0
0 0

] 𝑧𝑝 + [
0 0
0 1

])

= (𝑧𝑝 [
1 0
0 0

] + [
0 0
0 1

]) ([
1 0
0 𝐴

] − [
0 0
0 1

] 𝑧𝑝) 

as operators on N⊕𝒟(A). It follows that 

 ([
1 0
0 0

] 𝑧𝑝 + [
0 0
0 1

]) ([
1 0
0 𝐴

] − [
0 0
0 1

] 𝑧𝑝)
−1

=  

([
1 0
0 𝐴

] − 𝑧𝑝 [
0 0
0 1

])
−1

(𝑧𝑝 [
1 0
0 0

] + [
0 0
0 1

]) 

as operators from H to N⊕  𝒟 (A). On combining this relation with equation (37) we 

derive the expression ( 83 ) for M(z)|N ⊕ 𝒟 (A). 

We now derive the identity (39). Let 

𝐷 = [
𝑖 0
0 1 + 𝑖𝐴

] 

and consider z,w ∈ Πn. By equation (36) 

                                                 𝑀(𝑧) = 𝐷 ∗𝑊(𝑧)𝐷                                                       (44) 

on N⊕𝒟(A), where 

                          𝑊(𝑧) = 𝑅(𝑧)𝑆(𝑧)−1 − [
0 0
0 𝐴(1 + 𝐴2)−1

]                        (45) 

and 

 𝑅(𝑧) [
1 0
0 0

] 𝑧𝑝 + [
0 0
0 1

] , 𝑆(𝑧) = [
1 0
0 𝐴

] − [
0 0
0 1

] 𝑧𝑝 

We have seen that S(z) is invertible for any z ∈ Πn, so that W(z) is a bounded operator on 

ℋ. Clearly 

𝑀(𝑧)  −  𝑀(𝑤)∗  =  𝐷∗ (𝑅(𝑧)𝑆(𝑧)∗  −  𝑆(𝑤)∗−1 𝑅(𝑤)∗) 𝐷 
= 𝐷∗ 𝑆(𝑤)∗−1 (𝑆(𝑤)∗ 𝑅(𝑧)  −  𝑅(𝑤)∗ 𝑆(𝑧)) 𝑆(𝑧)−1 𝐷. 

Here 
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𝑆(𝑤)∗ 𝑅(𝑧) −  𝑅(𝑤)∗𝑆(𝑧)

=  [
1 0
0 0

] 𝑧𝑝 + [
0 0
0 𝐴

]   − 𝑤𝑝
∗  [
0 0
0 1

] − (𝑤𝑝
∗ [
1 0
0 0

] + [
0 0
0 𝐴

] − [
0 0
0 1

] 𝑧𝑝) 

= 𝑧𝑝 −𝑤𝑝
∗ 

Hence 

𝑀(𝑧)  −  𝑀(𝑤)∗  =  𝐷∗ 𝑆(𝑤)∗−1 (𝑧𝑝 −𝑤𝑝
∗ )𝑆(𝑧)−1 𝐷, 

which is equation (39). 

The next result shows that the matricial resolvent belongs not just to the operator Pick 

class, but to the smaller operator Loewner class. 

Proposition (4.1.52) [4]: With the notation of Definition (4.1.23), there exists an analytic 

operator valued function 𝐹 ∶ 𝛱𝑛 →ℒ(H) such that for all 𝑧, 𝑤 ∈  Πn, 

                         𝑀(𝑧)  −  𝑀(𝑤)∗  =  𝐹(𝑤)∗ (𝑧 − �̅�)𝑃 𝐹(𝑧)                         (46) 

on ℋ. 

Proof. The identity (39) shows that such a relation holds on N⊕𝒟(A); we must extend 

it to all of ℋ. Write 𝑃𝑗 as an operator matrix with respect to the decomposition ℋ = N⊕M, 

as in equation (30). Then z has the matricial expression (29). For 𝑧 ∈  𝛱𝑛 

𝐹#(𝑧) = ([
1 0
0 𝐴

] − [
0 0
0 1

] 𝑧𝑝)
−1

[
𝑖 0
0 1 + 𝑖𝐴

] 

Then 𝐹#(𝑧) is an operator from N⊕𝒟(A) t o ℋ, and we find that 

  𝐹#(𝑧) = [
1 0
−𝑧𝐵∗ 𝐴 − 𝑧𝑌

]
−1

[
𝑖 0
0 1 + 𝑖𝐴

] 

= [
𝑖 0

𝑖(𝐴 − 𝑧𝑌)
−1𝑧𝐵∗ 𝑖 + (𝐴 − 𝑧𝑌)

−1(1 + 𝑖𝑧𝑌)
 ] ∶  𝑁 ⊕𝒟(𝐴)  → ℋ. 

Let 

 𝐹(𝑧) = [
𝑖 0

𝑖(𝐴 − 𝑧𝑌)
−1𝑧𝐵∗ 𝑖 + (𝐴 − 𝑧𝑌)

−1(1 + 𝑖𝑧𝑌)
 ] : 𝑁 ⊕𝑀 → ℋ.    (47) 

Since 

 (𝐴 −  𝑧𝑌 )
−1 (1 +  𝑖𝐴) = 𝑖 + (𝐴 − 𝑧𝑌 )

−1 (1 +  𝑖𝑧𝑌 ) 

on N⊕𝒟(A) a ndthe right hand side of the last equation is a bounded operator on all of 

ℋ, it is clear that, for every z ∈ Πn, F(z) i sa continuous extension to ℋ of F (z) a nd is a 

bounded operator. Furthermore F is analytic on 𝛱𝑛. 

By Proposition (4.1.25), equation (39), the relation (46) holds on the dense subspace 

N⊕𝒟(A) o f ℋ for every z,w ∈ Πn. Since the operators on both sides of equation (46) are 

continuous on ℋ, the equation holds throughout ℋ.  

Corollary (4.1.52)[4]: A matricial resolvent has a non-negative imaginary part at every 

point of Πn. 
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Proof: In the notation, on choosing 𝑤 = 𝑧 in and dividing by 2i we obtain the relation 

Im 𝑀(𝑧) = 𝐹(𝑧)∗ (𝐼𝑚 𝑧𝑃 )𝐹(𝑧) 

on ℋ. We have 

Im 𝑧𝑃  = ∑(𝐼𝑚 𝑧𝑗)𝑃𝑗  ≥  0

 

𝑗

 , 

and so Im M(z) ≥ 0 on ℋ for all z ∈ Πn.  

Here is a concrete example of a matricial resolvent. 

 

Example ( 5.1.4 7)[4]: The function 

                    𝑀(𝑧) =
1

𝑧1 + 𝑧2
[

2𝑧1𝑧2 𝑖(𝑧1 − 𝑧2)

−𝑖(𝑧1 − 𝑧2) −2
]                            (48) 

is the matricial resolvent corresponding to 

ℋ =  ℂ2 , 𝑁 =  𝑀 =  ℂ, 𝐴 = 0 𝑜𝑛 ℂ, 𝑝1 =
1

2
[
1 1
1 1

] , 𝑝2 = 1 − 𝑝1. 

We derive a multivariable analog of the most general form of Nevanlinna representation for 

functions in the one-variable Pick class Theorem (4.1.2). We start with a multivariable 

Herglotz. We shall say that an analytic operator-valued function F on 𝔻𝑛 is a Herglotz 

function if Re F(λ) ≥ 0 for all λ ∈ 𝔻n. For present purposes we need the following 

modification of the notion. 

Definition (𝟒. 𝟏. 𝟐𝟖)[𝟒]: An analytic function F : 𝔻n → ℒ(K), where K is a Hilbert space, 

is a strong Herglotz function if, for every commuting n-tuple T = ( T1, . . . ,Tn) of operators 

on a Hilbert space and for 0 ≤ r < 1, Re F(rT) ≥ 0. 

 These functions were called Fn-Herglotz functions. The class of strong Herglotz functions 

has also been called the Herglotz–Agler class. It is clear that every strong Herglotz 

function is a Herglotz function, and in the cases       n =1  and  2 the converse is also true. 

Theorem (𝟒. 𝟏. 𝟐𝟗)[𝟒]: Let K be a Hilbert space and let 𝐹: 𝒟2 → ℒ(K) be a strong 

Herglotz function such that F(0) = 1 . There exist a Hilbert space ℋ, an orthogonal 

decomposition P of ℋ, an isometric linear operator V : K →ℋand a unitary operator U 

on ℋ such that, for all λ ∈ 𝒟n, 

                                      F(λ) = V∗
1 + UλP

1 − UλP
                                                  (49) 

Conversely, every function 𝐹: 𝒟𝑛 → ℒ (𝐾) expressible in the form (49) for some ℋ, P, 

V and U with the stated properties is a strong Herglotz function and satisfies F(0) = 1 . 

 Note that λP =∑   𝑗  λjPj has operator norm at most 𝜆 <  1 for λ ∈𝒟𝑛 , and hence equation 

(49) does define F as an analytic operator-valued function on 𝒟𝑛. 
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On specializing to scalar-valued functions in the n-variable Herglotz class we obtain the 

following consequence. 

Corollary (4.1.30)[4]: Let 𝑓 be a scalar-valued strong Herglotz function on 𝒟𝑛. There 

exists a Hilbert space ℋ, a u nitaryoperator ℒ on ℋ, an orthogonal decomposition P of ℋ, 

a r eal number a and a vector v ∈ℋsuch that, for all λ ∈ 𝒟n, 

                  𝑓(𝜆) = −𝑖𝑎 + 〈(𝐿 − 𝜆𝑝 )
−1
 (𝐿 + 𝜆𝑝 )𝑣, 𝑣〉 .              (50) 

Conversely, for any ℋ, L, P, a and v with the properties described, equation (50) defines f 

as an n-variable strong Herglotz function. 

Again, the right hand side of equation (50) is an analytic function of λ ∈ 𝒟n since 

 (𝐿 − 𝜆𝑝 )
−1  =  𝐿−1 (1 − 𝜆𝑝 𝐿

−1 )−1 

is a bounded operator and is analytic in λ. 

Definition (4.1.31)[4]: A Nevanlinna representation of type 4 o fa function h : Π n → C 

consists of an orthogonally decomposed Hilbert space ℋ = N⊕M , aself-adjoint densely 

defined operator A on M, an orthogonal decomposition P of ℋ, a r ealnumber a and a 

vector v ∈ℋ 

such that 

                                            ℎ(𝑧) = 𝑎 + 〈𝑀(𝑧)𝑣, 𝑣〉                                       (51) 

for all 𝑧 ∈  𝛱𝑛, where M(z) i sthe structured resolvent of A of type 4 corresponding to P. 

We wish to convert Corollary (4.1.30) to a representation theorem for suitable 

analytic functions on 𝛱𝑛. The fact that the corollary only applies to strong Herglotz 

functions 

results in representation theorems for a subclass of the Pick class 𝑃𝑛. Recall from the 

introduction: 

Definition (4.1.32)[4]: The Loewner class 𝐿𝑛 is the set of analytic functions h on Πn 

with the property that there exist n positive semi-definite functions An , . . . ,An on Πn × Πn, 

analytic in the first argument, such that 

ℎ(𝑧)  − ℎ(𝑤)̅̅ ̅̅ ̅̅ ̅ =  ∑(𝑧𝑗  −  𝑤𝑗̅̅ ̅)𝐴𝑗(𝑧, 𝑤)

𝑛

𝑗−1

 

for all z,w ∈ Πn. 

A function ℎ on Πn belongs to ℒ if and only if it corresponds under conjugation by the 

Cayley transform to a function in the Schur–Agler class of the polydisc. 

Another characterization: ℎ ∈ ℒ𝑛 if and only if, for every commuting n-tuple T of 

bounded operators with strictly positive imaginary parts, h(T) has positive imaginary part. 

We can now prove Theorem (4.1.9) from the introduction: a function ℎ defined on 𝛱𝑛 

has a Nevanlinna representation of type 4 if and only if ℎ ∈ℒ𝑛. 
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Theorem (4.1.33)[4]: Let ℎ be a function defined on 𝛱𝑛. then h has a nevanlinna represent 

tation of type 4 if and only if  ℎ ∈ℒ𝑛 

Proof: Let ℎ ∈ℒ𝑛 . Define an n-variable Herglotz function 𝑓 ∶  𝔻 
𝑛 →  ℂ by 

                                            𝑓(𝜆) = −𝑖ℎ(𝑧)                                                     (52) 

where 

                             𝑧𝑗  =  𝑖
1 + λj

1 − λj
      𝑓𝑜𝑟 𝑗 = 1, . . . , 𝑛.                                 (53) 

When λ ∈ 𝔻n the point z belongs to Πn, and so f(λ) is well defined, and since Im h(z) ≥ 0 we 

have Re f(λ) ≥ 0, so that f is indeed a Herglotz function. In fact f is even a strong Herglotz 

function: since h ∈ ℒ𝑛, the function 𝜑 ∈ 𝑆𝑛 corresponding to h lies in the Schur–Agler 

class of the polydisc, and so f = ( 1+ 𝜑)/(1 − 𝜑) i s  a  strong Herglotz function. 

By Corollary (4.1.30) there exist a real number a, a Hilbert space ℋ, a vector v ∈ℋ, a 

unitary operator 𝐿 on ℋ and an orthogonal decomposition P on ℋ such that, for all z ∈ 

Πn, 

ℎ(𝑧) = 𝑖𝑓(𝜆) = 𝑎 + 〈 𝑖(𝐿 −  𝜆)−1 (𝐿 +  𝜆)𝑣, 𝑣〉 
=  𝑎 + 〈𝑖[𝐿 −  (𝑧 −  𝑖)(𝑧 +  𝑖)−1 ]−1 [𝐿 + (𝑧 −  𝑖)(𝑧 +  𝑖)−1 ]𝑣, 𝑣〉 . 

Here and in the rest of this section z, λ are identified with the operators 𝑧𝑃 , 𝜆𝑃 on ℋ, and 

in consequence the relation 

𝜆 =
z −  i

z +  i
 

is meaningful and valid. 

For z ∈ Πn let 

𝑀(𝑧) = 𝑖 (𝐿 −  𝜆)−1 (𝐿 +  𝜆) = 𝑖 (𝐿 −
z −  i

z +  i
)
−1

 (𝐿 + 
z −  i

z +  i
).      (54) 

 Since L is unitary on ℋ and λ ∈ 𝒟n, the operator M(z) i sbounded on ℋ for every z ∈ 

Πn , by 

                                                       ℎ(𝑧) = 𝑎 + 〈 𝑀(𝑧)𝑣, 𝑣〉                                     (55) 

for all z ∈ Π2. Theorem (4.1.33) will follow provided we can show that M(z) is given 

by equation (27) for a suitable self-adjoint operator A. 

Observe that 

𝑀(𝑧) = 𝑖((𝑧 +  𝑖)𝐿 − (𝑧 −  𝑖)) −1((𝑧 +  𝑖)𝐿 + (𝑧 −  𝑖)) 
=  𝑖 (𝑧(𝐿 −  1) +  𝑖(𝐿 + 1))−1 (𝑧(𝐿 + 1) + 𝑖(𝐿 −  1)) .        (56) 

We wish to take out a factor 1 − L from both factors in equation (56), but this may be 

impossible since 1 − L can have a nonzero kernel. Accordingly we decompose ℋ into 

N⊕M where N = ker(1− L), M = 𝑁⊥ . With respect to this decomposition we can write 

L as an operator matrix 

𝐿 = [
1 0
0 𝐿0

] , 

where 𝐿0 is unitary and ker(1 − 𝐿0)  =  {0}. Substituting into equation (56) we have 
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𝑀(𝑧) = 𝑖 (𝑧 [
0 0
0 𝐿0 − 1

] + 𝑖 [
2 0
0 𝐿0 + 1

])
−1

(𝑧 [
2 0
0 𝐿0 + 1

] + 𝑖 [
0 0
0 𝐿0 − 1

] 𝑧) 

= (−𝑧 [
0 0
0 1 − 𝐿0

] + [
2𝑖 0

0 𝑖(1 + 𝐿0)
])
−1

(𝑧 [
2𝑖 0
0 𝑖(1 + 𝐿0)

]               

+ [
0 0
0 1 − 𝐿0

])                                                                                  (57) 

Formally we may now write 

𝑀(𝑧) = [
−
1

2
𝑖 0

0 (1 − 𝐿0)
−1
] (−𝑧 [

0 0
0 1

] + [
1 0

0 𝑖
1+𝐿0

1−𝐿0

])

−1

× (𝑧 [
1 0

0 𝑖
1+𝐿0

1−𝐿0

] +

[
0 0
0 1

]) [
2𝑖 0
0 𝑖(1 − 𝐿0)

]                                                                                  (58) 

but whereas equation (57) is a relation between bounded operators defined on all of ℋ, 

equation (58) involves unbounded, partially defined operators and we must verify that the 

product of operators on the right hand side is meaningful. 

Let 

𝐴 =  𝑖 
1 + 𝐿0
1 − 𝐿0

. 

Since L0 is unitary on M and ker (1 − 𝐿0) = {0}, the operator A is self-adjoint and 

densely defined on M. The domain 𝒟(A) o f A is the dense subspace ran(1 − L0) o f M. It 

follows from the definition of A that 

                                     ( 1 − 𝐿0)
−1  =

1

2
(1 −  𝑖𝐴),                                     (59) 

which is an equation between bijective operators from 𝒟(A) t o M. Likewise 

                        1 + 𝐿0  =  −2𝑖𝐴(1 −  𝑖𝐴)
−1 ∶  𝑀 → 𝒟(𝐴)                         (60) 

are bounded operators. 

Let us continue the calculation from the first factor on the right hand side of equation (57). 

Since ker(1 − 𝐿0) = {0}, the right hand side of the relation 

 −𝑧 [
0 0
0 1 − 𝐿0

] + [
2𝑖 0
0 𝑖(1 + 𝐿0)

] = (−𝑧 [
0 0
0 1

] + [
1 0
0 𝐴

]) [
2𝑖 0
0 1 − 𝐿0

] 

comprises a bijective map from ℋ to N⊕𝒟(A) followed by a bijection from N⊕  𝒟 (A) 

to ℋ (recall the equation (33)). We may therefore take inverses in the equation to obtain 

(−𝑧 [
0 0
0 1 − 𝐿0

] + [
2𝑖 0
0 𝑖(1 + 𝐿0)

])
−1

= [
−
1

2
𝑖 0

0 (1 − 𝐿0)
−1
] ([
1 0
0 𝐴

] − 𝑧 [
1 0
0 𝐴

])
−1

 

                                     = [
−
1

2
𝑖 0

0
1

2
(1 − 𝑖𝐴)−1

] ([
1 0
0 𝐴

] − 𝑧 [
0 0
0 𝐴

])
−1

     (61) 

as operators on N⊕𝒟(A). 
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Similar reasoning applies to the equation 

[
2𝑖 0
0 𝑖(1 + 𝐿0)

] + [
0 0
0 1 − 𝐿0

]                                                                                                 (62) 

= (𝑧 [
0 0
0 𝐴

] + [
0 0
0 1

]) [
2𝑖 0
0 1 − 𝐿0

] = (𝑧 [
1 0
0 𝐴

] + [
0 0
0 1

]) [
−
1

2
𝑖 0

0
1

2
(1 − 𝑖𝐴)−1

]

−1

; 

it is valid as an equation between operators on ℋ. The right hand side comprises an 

operator from ℋ to N⊕𝒟(A) followed by an operator from N⊕  𝒟 (A) t o ℋ, and so 

both sides of the equation denote an operator on ℋ. 

On combining equations (57), (61) and (62) we obtain 

𝑀(𝑧) = [
−
1

2
𝑖 0

0
1

2
(1 − 𝑖𝐴) 

] ([
1 0
0 𝐴

] − 𝑧 [
0 0
0 1

])
−1

× (𝑧 [
1 0
0 𝐴

] + [
0 0
0 1

]) [
−
1

2
𝑖 0

0
1

2
(1 − 𝑖𝐴) 

] 

Pre-multiply this equation by 2 and post-multiply by 1 to deduce that M(z) i sindeed the 

structured resolvent of A of type 4 corresponding to P, as defined in equation (27). 

Thus the formula (55) is a Nevanlinna representation of ℎ of type 4. 

Conversely, let ℎ ∈ℒn have a type 4 representation (51). By Proposition (4.1.25) there 

exists an analytic operator-valued function F :  Πn →ℒ(ℋ) s uchthat, for all z,w ∈ Πn, 

                       𝑀(𝑧)  −  𝑀(𝑤)∗  =  𝐹(𝑤)∗ (𝑧 − �̅�)𝑝 𝐹(𝑧)                           (63) 

on H. Hence 

ℎ(𝑧)  − ℎ(𝑤)̅̅ ̅̅ ̅̅ ̅ =  〈(𝑀(𝑧)  −  𝑀(𝑤)∗ )𝑣, 𝑣〉 
= 〈𝐹(𝑤)∗ (𝑧 − �̅�)𝑝 𝐹(𝑧)𝑣, 𝑣〉 

  =  ∑(

𝑛

j=1

𝑧𝑗  −  �̅�𝑗)𝐴𝑗(𝑧, 𝑤) 

for all z,w ∈ Πn, where 

𝐴𝑗(𝑧, 𝑤) =  〈𝑃𝑗𝐹(𝑧)𝑣, 𝐹(𝑤)𝑣〉 . 

The A are clearly positive semidefinite on 𝛱𝑛, and hence h belongs to the Loewner 

class ℒn.  

Nevanlinna representations of type 4 have the virtue of being general for functions in ℒn, 

but they are undeniably cumbersome. In this section we shall show that there are three 

simpler representation formulae, corresponding to increasingly stringent growth 

conditions on h ∈  ℒn. 

In Nevanlinna’s one-variable representation formula of Theorem (4.1.2), 
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                                           ℎ(𝑧) = 𝑎 +  𝑏𝑧 + ∫
1 + t𝑧
t −  z

 𝑑𝜇(𝑡),                                         (64) 

it may be the case for a particular h ∈ P that the bz term is absent. The analogous situation 

in two variables is that the space N in a type 4 representation may be zero. 

Equivalently, in the corresponding Herglotz representation, the unitary operator L does not 

have 1 as an eigenvalue. This suggests the following notion. 

Definition (𝟒. 𝟏. 𝟑𝟒)[4]: A Nevanlinna representation of type 3 of a function ℎ on Π𝑛 

consists of a Hilbert space ℋ, aself-adjoint densely defined operator A on ℋ, apositive 

decomposition Y of ℋ, a r ealnumber a and a vector v ∈  ℋ such that, for all z ∈ Πn, 

ℎ(𝑧) = 𝑎 + 〈(1 −  𝑖𝐴)(𝐴 − 𝑧𝑌 )
−1 (1 + 𝑧𝑌 𝐴)(1 −  𝑖𝐴)

−1 𝑣, 𝑣〉 .      (65) 

Thus h has a type 3 representation if ℎ(𝑧)  =  𝑎 +  〈𝑀(𝑧)𝑣, 𝑣〉 where M(z) i s  t h e  

structured resolvent of A of type 3 corresponding to Y . 

The authors derived a somewhat simpler representation which can also be regarded as an 

analog of the case b = 0  o f  Nevanlinna’s one-variable formula (64). 

Definition (𝟒. 𝟏. 𝟑𝟓)[4]: A Nevanlinna representation of type 2 of a function h on Πn 

consists of a Hilbert space ℋ, aself-adjoint densely defined operator A on ℋ, apositive 

decomposition Y of ℋ, a r ealnumber a and a vector α ∈  ℋ such that, for all z ∈ Πn 

                                 ℎ(𝑧) = 𝑎 + 〈(𝐴 − 𝑧𝑌)
−1 𝛼, 𝛼 〉.                                         (66) 

This means of course that, for all z ∈ Πn, 

ℎ(𝑧) = 𝑎 + 〈𝑀(𝑧)𝛼, 𝛼〉 

where M(z) is the structured resolvent of A of type 2 corresponding to Y. 

We wish to understand the relationship between type 3 and type 2 representations. 

Proposition (𝟒. 𝟏. 𝟑𝟔)[4]: If ℎ ∈𝑃𝑛 has a type 2 representation then ℎ has a type 3 

representation. 

Conversely, if ℎ ∈ 𝑃𝑛 has a type 3 representation as in equation (65) with the additional 

property that 𝑣 ∈ 𝒟(A) then h has a type 2 representation. 

Proof. Suppose that ℎ ∈ 𝑃𝑛 has the type 2 representation 

  ℎ(𝑧) = 𝑎0  +  〈(𝐴 − 𝑧𝑌) 𝛼, 𝛼〉 

for some 𝑎0  ∈  ℝ, positive decomposition Y and α ∈ℋ. We must show that h has a 

representation of the form (65) for some a ∈ ℝ and v ∈ ℋ. By Proposition (4.1.17):  

it suffices to find a ∈ ℝ and v ∈𝒟(A) s uch that 

ℎ(𝑧) = 𝑎 + 〈(1 −  𝑖𝐴)[(𝐴 − 𝑧𝑌 )
−1  −  𝐴(1 + 𝐴2 )−1] (1 +  𝑖𝐴)𝑣, 𝑣〉 

for all z ∈ Πn 

To this end, let 𝐶 =  𝐴(1 +  𝐴2)−1  and let 

                                     𝑎 =  𝑎0  +  〈𝐶 𝛼, 𝛼〉 .                                                      (67) 

Since 1 + iA is invertible on ℋ and ran (1 +  𝑖𝐴)−1  ⊂𝒟(A) w e may define 

                           𝑣 = (1 + 𝑖𝐴)−1 𝛼 ∈ 𝒟(𝐴).                                            (68) 
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Then 

  ℎ(𝑧) = 𝑎0  +  〈(𝐴 − 𝑧𝑌)
−1 𝛼, 𝛼〉 =  𝑎 − 〈〈𝐶 𝛼, 𝛼〉 + (𝐴 − 𝑧𝑌 )

−1 𝛼, 𝛼〉   
=  𝑎 + 〈{(𝐴 − 𝑧𝑌 )

−1  −  𝐶 }(1 +  𝑖𝐴)𝑣, (1 +  𝑖𝐴)𝑣〉   
=  𝑎 + 〈(1 −  𝑖𝐴){(𝐴 − 𝑧𝑌 )

−1  −  𝐶 } (1 +  𝑖𝐴)𝑣, 𝑣〉 

as required. Thus ℎ has a type 3 representation. 

Conversely, let ℎ have a type 3 representation (65) such that v ∈𝒟(A), that is 

ℎ(𝑧) = 𝑎 + 〈𝑀(𝑧)𝑣, 𝑣〉 

where a ∈ ℝ and M is the structured resolvent of A of type 3 corresponding to Y. Since 

v ∈𝒟(A) w emay define the vector 𝛼 ≝ (1 +  𝑖𝐴)𝑣 ∈ ℋ, and furthermore, by Proposition 

(4.1.17), 

  ℎ(𝑧) = 𝑎 + 〈(1 −  𝑖𝐴){ (𝐴 − 𝑧𝑌 )
−1  −  𝐶 }(1 +  𝑖𝐴)𝑣, 𝑣〉

=  𝑎 +  〈{(𝐴 − 𝑧𝑌 )
−1  −  𝐶} 𝛼, 𝛼〉 =  𝑎 − 〈𝐶𝛼, 𝛼 〉 + 〈(𝐴 − 𝑧𝑌)

−1 𝛼, 𝛼〉
=  𝑎0  +  〈(𝐴 − 𝑧𝑌 )

−1 𝛼, 𝛼〉 , 
where 𝑎0 ∈ ℝ is given by equation (67). Thus ℎ has a representation of type 2.   

A special case of a type 2 representation occurs when the constant term a in equation (66) 

is 0. In one variable, this corresponds to Nevanlinna’s characterization of the Cauchy 

transforms of positive finite measures on R. Accordingly we define a type 1 representation 

of ℎ ∈ ℒ𝑛 to be the special case of a type 2 representation of ℎ in which 𝑎 = 0 in 

equation (66). 

Definition (4.1.37)[4]: An analytic function ℎ on Πn has a Nevanlinna representation of 

type 1 i f there exist a Hilbert space ℋ, a d enselydefined self-adjoint operator A on ℋ, a 

positive decomposition Y of ℋ and a vector α ∈H such that, for all z ∈ Πn, 

                                      ℎ(𝑧) =  〈(𝐴 − 𝑧𝑌)
−1 𝛼, 𝛼 〉.                                   (69) 

A representation of type 1 is obviously a representation of type 2. The following 

proposition is an immediate corollary of Proposition (4.1.36). 

Proposition (𝟒. 𝟏. 𝟑𝟖)[4]: A function h ∈ℒ𝑛 has a type 1 representation if and only if h 

has a type 3 representation as in equation (65) with the additional properties that v ∈𝒟(A) 

and 

𝑎 − 〈𝐴(1 + 𝐴2 )−1 𝛼, 𝛼〉  = 0. 

For consistency with our earlier terminology for structured resolvents and represen-tations 

we should have to define a structured resolvent of type 1 to be the same as a structured 

resolvent of type 2. We refrain from making such a confusing definition. 

We conclude by giving examples of the four types of Nevanlinna repre-sentation in two 

variables. 

Example (𝟒. 𝟏. 𝟑𝟗)[𝟒]: The formula 

(i)                               ℎ(𝑧) = −
1

𝑧1+𝑧2
 =  〈(0 −  𝑧𝑌 )

−1 𝑣, 𝑣 〉𝐶  ,                      

where Y = (
1

2
,
1

2
) and 𝑣 =1/√2, exhibits a representation of type 1, with A =0 .  
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 (ii) Likewise 

ℎ(𝑧) = 1 − 
1

𝑧1+𝑧2
= 1 + 〈(0 −  𝑧𝑌 )

−1 𝑣, 𝑣 〉𝐶  

is a representation of type 2. 

(iii) Let 

ℎ(𝑧) =

{
 

 
1

1 + 𝑧1𝑧2
(𝑧1−𝑧2 +

𝑖𝑧2(1 + 𝑧1
2)

√𝑧1𝑧2
) 𝑖𝑓 𝑧1𝑧2 ≠ −1 

1

2
(𝑧1+𝑧2)                                               𝑖𝑓 𝑧1𝑧2 = −1

              (70) 

where we take the branch of the square root that is analytic in ℂ \ [0, ∞) w ith range Π. 

We claim that ℎ ∈P2 and that ℎ has the type 3 representation 

                                     ℎ(𝑧) =  〈𝑀(𝑧)𝑣, 𝑣〉𝐿2(ℝ)  ,                                        (71) 

where M(z) i sthe structured resolvent of type 3 given in Example (4.1.21) and v(t) =   

1/ √𝜋(1 + 𝑡2). To see this, let h be temporarily defined by equation (71). Since v is an 

even function in L2(R), equation (26) tells us that 

ℎ(𝑧) = ∫
𝑡(1 + 𝑧1𝑧2) + (1 −  𝑖𝑡)(𝑖𝑡𝑧1  +  𝑧2)

π(t 2 − 𝑧1𝑧2)(1 + t
2 )

∞

−∞

𝑑𝑡. 

Since the denominator is an even function of t, the integrals of all the odd powers of t in 

the numerator vanish, and we have, provided 𝑧1𝑧2 ≠−1, 

ℎ(𝑧) =
2

π
 ∫

𝑧2 + t 
2𝑧1

(t 2 − 𝑧1𝑧2)(1 + t
2 )
𝑑𝑡

∞

0

 

=
2

π
 ∫
𝑧2(1 + 𝑧1

2
 
)

1 − 𝑧1𝑧2
 

1

t 2 − 𝑧1𝑧2
+
𝑧1−𝑧2
1 + 𝑧1𝑧2

  
1

1 + t 2
𝑑𝑡

∞

0

 

Now, for 𝑤 ∈ Π, 

∫
𝑑𝑡

t 2 −w2
=
𝑖π

2𝑤

∞

0

 

and so we find that h is indeed given by equation (70) in the case that 𝑧1𝑧2 ≠ −1. When 𝑧1𝑧2 

= −1 we have 

ℎ(𝑧)
2

π
 ∫
𝑧2 + 𝑧1t 

2

(1 + t2 )2
𝑑𝑡

∞

0

=
1

2
(𝑧1𝑧2) 

Thus equation (71) is a type 3 representation of the function h given by equation (70). 

This function is constant and equal to i on the diagonal 𝑧1  =  𝑧2. 
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(v) The function 

ℎ(𝑧) =  
𝑧1𝑧2
𝑧1 + 𝑧2

= −(−
1

𝑧1
−
1

𝑧2
)
−1

 

clearly belongs to 𝑃2. It has the representation of type 4 

ℎ(𝑧) =  〈𝑀(𝑧)𝑣, 𝑣〉ℂ2   

where M(z) i sthe matricial resolvent given in Example (4.1.27) and 

𝑣 =
1

√2
(
1
0
) 

We claim that each of the above representations is of the simplest available type for the 

function in question; for example, the function ℎ in part (v) does not have a Nevan- Linna 

representation of type 3. To prove this claim. 

Section (4.2): Asymptotic Behavior and Types of Representations 

We shall give function-theoretic conditions for a function in ℒn to have a 

representation of a given type. These conditions will be in terms of the asymptotic 

behavior of the function at ∞. 

Every function in ℒ𝑛 has a type 4 representation, by Theorem(4.1.9). Let us characterize 

the functions that possess a type 3 representation. We denote by χ the vector (1, . . . ,1) of 

ones in ℂ𝑛. The following statement contains Theorem(4.1.8). 

Theorem (4.2.1)[4]. The following three conditions are equivalent for a function ℎ ∈ ℒ𝑛. 

(i) The function ℎ has a Nevanlinna representation of type 3; 

(ii)                                                                    lim
𝑛→∞

1

𝑠
 𝐼𝑚 ℎ(𝑖𝑠𝜒) = 0;                                         (72) 

(iii)                                                                  lim
𝑛→∞

1

𝑠
 𝐼𝑚 ℎ(𝑖𝑠𝜒) = 0;                                         (73) 

 Proof. (i)⇒(iii) Suppose that h has a Nevanlinna representation of type 3: 

ℎ(𝑧) = 𝑎 + 〈(1 –  𝑖𝐴)(𝐴 – 𝑧𝑌 )
−1 (1 + 𝑧𝑌 𝐴)(1 –  𝑖𝐴)

−1 𝑣, 𝑣〉                    (74) 

for suitable 𝑎 ∈ ℝ, ℋ, A, Y and v ∈ℋ. Since 

 (𝑖𝑠𝜒)𝑌 = ∑𝑖𝑠

 

𝑖

𝑌𝑗  =  𝑖𝑠 

we have 

ℎ(𝑖𝑠𝜒) = 𝑎 + 〈(1 −  𝑖𝐴)(𝐴 −  𝑖𝑠)−1 (1 +  𝑖𝑠𝐴)(1 −  𝑖𝐴)−1 𝑣, 𝑣〉 . 

Let ν be the scalar spectral measure for A corresponding to the vector v ∈ℋ. By the Spectral 

Theorem 
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ℎ(𝑖𝑠𝜒) = 𝑎 + ∫(1 −  𝑖𝑡)(𝑡 −  𝑖𝑠)−1 (1 +  𝑖𝑠𝑡)(1 −  𝑖𝑡)−1 𝑑𝜈(𝑡)

=  𝑎 + ∫
1 + 𝑖𝑠t

t −  𝑖𝑠
 𝑑𝜈(𝑡). 

Since 

Im
1 + ist

t −  is
 =
s(1 + t2)

s2  +  t2
  , 

we have 

1

𝑠
Im ℎ(𝑖𝑠𝜒) = ∫

1 + t2

s2  −  t2
  𝑑𝜈(𝑡). 

The integrand decreases monotonically to 0 as 𝑠 → ∞ and so, by the Monotone Conver- 

gence Theorem, equation (73) holds. 

(iii)⇒(ii) is trivial. 

(ii)⇒(i) Now suppose that ℎ ∈ ℒ𝑛 and 

𝑙𝑖𝑚 𝑖𝑛𝑓
𝑠→∞

1

𝑠
 𝐼𝑚 ℎ(𝑖𝑠𝜒) = 0  

By Theorem (4.1.9), h has a Nevanlinna representation of type 4: that is, there exist a, ℋ, 

𝑁 ⊂ ℋ, operators A, Y on 𝑁⊥ and a vector v ∈  ℋ with the properties described in 

Definition (4.1.34) such that 

ℎ(𝑧) = 𝑎 + 〈𝑀(𝑧)𝑣, 𝑣〉 

for all z ∈ Πn, where 

                    𝑀(𝑧) = [
−𝑖 0
0 1 − 𝑖𝐴

] ([
1 0
0 𝐴

] − 𝑧𝑃 [
0 0
0 1

])
−1

                        (75) 

× (𝑧𝑃 [
1 0
0 𝐴

] + [
0 0
0 1

]) [
−𝑖 0
0 1 − 𝑖𝐴

]
−1

 

Thus, for s > 0, since once again (𝑖𝑠𝜒)𝑃 =  𝑖𝑠, 

𝑀(𝑖𝑠𝜒) = [
−𝑖 0
0 1 − 𝑖𝐴

] [
1 0
0 (𝐴 − 𝑖𝑠)−1

] [
𝑖𝑠 0
0 1 + 𝑖𝑠𝐴

] [
𝑖 0
0 (1 − 𝑖𝐴)−1

]

=  [
𝑖𝑠 0
0 (1 − 𝑖𝐴)(𝐴 − 𝑖𝑠)−1(1 + 𝑖𝑠𝐴)(1 − 𝑖𝐴)−1

] 

Let the projections of v onto N , 𝑁⊥ be 𝑣1 , 𝑣2 respectively. Then 

ℎ(𝑖𝑠𝜒) = 𝑎 + 〈𝑀(𝑖𝑠𝜒)𝑣, 𝑣〉
=  𝑎 +  𝑖𝑠 ‖𝑣1‖

2  +  〈(1 −  𝑖𝐴)(𝐴 −  𝑖𝑠)−1 (1 +  𝑖𝑠𝐴)(1 −  𝑖𝐴)−1 𝑣2, 𝑣2〉 

and therefore 
1

2
𝐼𝑚 ℎ(𝑖𝑠𝜒) =  ‖𝑣1‖

2  +
1

2
 𝐼𝑚 〈(1 −  𝑖𝐴)(𝐴 −  𝑖𝑠)−1 (1 +  𝑖𝑠𝐴)(1 −  𝑖𝐴)−1  ≥ 𝑣2, 𝑣2〉

≥ ‖𝑣1‖
2 

 Hence 
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0 = lim
s→∞

inf
1

s
  Im ℎ(𝑖𝑠𝜒) ≥ ‖𝑣1‖

2 

It follows that 𝑣1 = 0.  

Let the compression of the projection 𝑃𝑗 to 𝑁⊥ be 𝑌𝑗 : then 𝑌 = (𝑌1 , . . . , 𝑌𝑛 ) is a positive 

decomposition of 𝑁⊥, and the compression of 𝑧𝑝 to 𝑁⊥is 𝑧𝑌. The (2, 2) block 𝑀22(𝑧) in 

M(z) i s 

𝑀22(𝑧) = (1 −  𝑖𝐴)(𝐴 − 𝑧𝑌 )
−1 (1 + 𝑧𝑌 𝐴)(1 −  𝑖𝐴)

−1 . 

Since 𝑣1 = 0 i t  follows that 

ℎ(𝑧) = 〈𝑎 +  𝑀(𝑧)𝑣, 𝑣〉 =  𝑎 +  〈𝑀22(𝑧)𝑣2, 𝑣2〉
=  𝑎 + 〈(1 −  𝑖𝐴)(𝐴 − 𝑧𝑌 )

−1 (1 + 𝑧𝑌 𝐴)(1 −  𝑖𝐴)
−1 𝑣2, 𝑣2〉 , 

which is the desired type 3 representation of h. 

It is shown that condition (iii) in the above theorem is also a necessary and sufficient 

condition that −ih have a Π𝑛-impedance-conservative realization. 

Type 2 representations were characterized by the following theorem in the case of two 

variables. The following result, which contains Theorem (4.1.7), shows that the result holds 

generally. 

Theorem [4.2.2][4]: The following three conditions are equivalent for a function ℎ ∈ℒn. 

(i) The function h has a Nevanlinna representation of type 2; 

(ii)                                 lim
s→∞

inf  𝑠 Im ℎ(𝑖𝑠𝜒) <  ∞;                                                                   (76) 

(iii)                             lim
𝑛→∞

 𝑠   Im ℎ(𝑖𝑠𝜒)  <  ∞.                                                                          (77) 

Proof. (i)⇒(iii) Suppose that h has the type 2 representation ℎ(𝑧)  =  𝑎 + 〈(𝐴 −
 𝑧 )−1 1𝑣, 𝑣〉 for a suitable real a, self-adjoint A, positive decomposition Y and vector v. 

Let ν be the scalar spectral measure for A corresponding to the vector v. Then, for s > 0, 

A−(isχ)Y = A − is and so 

𝑠 Im ℎ(𝑖𝑠𝜒) = 𝑠 Im∫
𝑑𝑣(𝑡)

t −  𝑖𝑠
= ∫

𝑠2𝑑𝑣(𝑡)

t 2 + 𝑠2
 

 The integrand is positive and increases monotonically to 1 as 𝑠 → ∞. Hence, by the 

Dominated Convergence Theorem 

lim
𝑠→∞

 𝑠   𝐼𝑚 ℎ(𝑖𝑠𝜒) = (ℝ) = ‖𝑣‖2 <  ∞. 

Hence (ii)⇒(iii). 

(iii)⇒(ii) is trivial. 

(ii)⇒(i) Suppose (ii) holds. A fortiori, 

lim
𝑠→∞

 
1

𝑠
𝐼𝑚 ℎ(𝑖𝑠𝑥) = 0  

by Theorem (4.2.1) ℎ has a type 3 for suitable a ∈ ℝ, ℋ, A, Y and v ∈ℋ. Let ν be the 

scalar spectral measure for A corresponding to the vector v. Then for s > 0 

𝑠 𝐼𝑚 ℎ(𝑖𝑠𝜒) = 𝑠 𝐼𝑚 ∫
1 + 𝑖𝑠𝑡

𝑡 − 𝑖𝑠
𝑑𝜈(𝑡) = ∫

𝑠2(1 + 𝑡2)

𝑡2 + 𝑠2
𝑑𝑣(𝑡) 
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As s → ∞ the integrand increases monotonically to 1 + 𝑡2. Condition (ii) now implies 

that 

∫  (1 + 𝑡2) 𝑑𝜈(𝑡)  <  ∞. 

It follows that v ∈𝒟(A). Hence, h has a representation of type 2.  

We proved Theorem (4.2.2) for 𝑛 = 2 usinga different approach from the present one 

From this theorem the characterization of type1 representations follows just as in the one-

variable case. We obtain a strengthening of Theorem (4.1.6). 

Theorem (4.2.3)[4]: The following three conditions are equivalent for a function ℎ ∈ℒn. 

(i)  The function ℎ has a Nevanlinna representation of type 1; 

(ii)  lim
𝑠→∞

𝑖𝑛𝑓  𝑠  |ℎ(𝑖𝑠𝜒)|  <  ∞; 

 (iii) lim
𝑠→∞

 𝑠  |ℎ(𝑖𝑠𝜒)| <  ∞;                                                                                                          (78) 

Proof: We follow Lax’s treatment of the one-variable Nevanlinna theorem. 

(i)⇒(iii) Suppose that h has a type 1 representation as in equation (69) for some ℋ, A, Y 

and v. Then 

ℎ(𝑖𝑠𝜒) =  〈(𝐴 −  𝑖𝑠)−1 𝛼, 𝛼〉 =  〈(𝐴 +  𝑖𝑠)(𝐴2  +  𝑠2 )−1 𝛼, 𝛼〉 , 

and so 

𝑅𝑒 𝑠ℎ(𝑖𝑠𝜒) =  〈𝑠𝐴(𝐴2  +  𝑠2 )−1 𝛼, 𝛼〉 , 𝐼𝑚 𝑠ℎ(𝑖𝑠𝜒) =  〈𝑠2 (𝐴2  +  𝑠2 )−1 𝛼, 𝛼〉 . 

Let ν be the scalar spectral measure for A corresponding to the vector α ∈ℋ. Then 

𝑅𝑒 𝑠ℎ(𝑖𝑠𝜒) = ∫
𝑠𝑡

𝑡2 + 𝑠2
  𝑑𝜈(𝑡), 𝐼𝑚 𝑠ℎ(𝑖𝑠𝜒) = ∫

𝑠2

𝑡2 + 𝑠2
 𝑑𝜈(𝑡). 

The integrand in the first integral tends pointwise in t to 0 as 𝑠 → ∞, and by the inequality 

of the means it is no greater than 1/2 ; thus the integral tends to 0 a s 𝑠 → ∞ by the 

Dominated Convergence Theorem. The integrand in the second integral increases 

monotonically to 1 as 𝑠 → ∞. Thus 

𝑅𝑒 𝑠ℎ(𝑖𝑠𝜒)  →  0, 𝐼𝑚 𝑠ℎ(𝑖𝑠𝜒)  →  ‖𝛼‖2 𝑎𝑠 𝑠 → ∞. 

Hence the inequality (78) holds. Thus (i)⇒(iii). 

(iii)⇒(ii) is trivial. 

(ii)⇒(i) Suppose that 

lim
𝑠→∞

𝑖𝑛𝑓  𝑠  |ℎ(𝑖𝑠𝜒)|  <  ∞; 

lim
𝑠→∞

𝑖𝑛𝑓  𝑠  𝐼𝑚 ℎ(𝑖𝑠𝜒)  ≤  lim
𝑠→∞

𝑖𝑛𝑓  𝑠  |ℎ(𝑖𝑠𝜒)|  <  ∞, 

h satisfies condition (76) of Theorem (4.2.2). Therefore h has a representation of type 2, 

say 

ℎ(𝑧) = 𝑎 + 〈(𝐴 −  𝑧𝑌 )−1 𝛼, 𝛼〉 . 
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It remains to show that 𝑎 = 0.The inequality (78) implies that there exists a sequence (𝑠𝑗) 

tending to ∞ such that ℎ(𝑖𝑠𝑗𝜒)  →  0. But 

𝑅𝑒 ℎ(𝑖𝑠𝑗𝜒) = 𝑎 + 〈𝐴(𝐴
2  +  𝑠𝑛

2)−1 𝛼, 𝛼〉  →  𝑎. 

Hence 𝑎 = 0 andℎ has a type 1 representation. This establishes (ii)⇒(i).  

How can we recognize from function-theoretic properties whether a given function in the 

n-variable Loewner class admits a Nevanlinna representation of a given type? In the 

preceding section it was shown that it depends on growth along a single ray through the 

origin. In this section we describe the notion of carapoints at infinity for a function in the 

Pick class, and in the next section we shall give succinct criteria for the four types in the 

language of carapoints. 

Carapoints (though not with this nomenclature) were first introduced by Carathéodory for 

a function 𝜑 on the unit disc, as a hypothesis in the “Julia–Carathéodory Lemma”. For any 

𝜏 ∈  𝑇, a function 𝜑 in the Schur class satisfies the Carathéodory condition at τ if 

                                              lim
λ →τ

𝑖𝑛𝑓
1 − |φ(λ)|

1 − |λ|
 <  ∞.                                  (79) 

The notion has been generalized to other domains by many authors. Consider domains 

𝑈 ⊂ ℂ𝑛 and 𝑉 ⊂ ℂ𝑚 and an analytic function 𝜑 from U to the closure of V.The 

function 𝜑 is said to satisfy Carathéodory’s condition at 𝜏 ∈ 𝜕𝑈 if 

                                                    lim
λ →τ

𝑖𝑛𝑓
dist(φ(λ), ∂V)

dist(λ, ∂U)
 <  ∞.                                (80) 

Thus, for example, when 𝑈 = Π𝑛,  𝑉 = Π, 𝑎 function ℎ ∈ 𝑃𝑛 satisfies Carathéodory’s 

condition at the point 𝑥 ∈ ℝ𝑛 if 

                                           lim
z →x

𝑖𝑛𝑓
Im h(z)

𝑚𝑖𝑛𝑗Im 𝑧𝑗
 <  ∞.                                       (81) 

This definition works well for finite points in ∂U, but for our present purpose we need to 

consider points at infinity in the boundaries of Πn and Π. We shall introduce a variant of 

Carathéodory’s condition for the class Pn with the aid of the Cayley transform 

                                       𝑧 =  𝑖 
1 + λ

1 −  λ
,    λ =  

z −  i

z +  i
,                                     (82) 

which furnishes a conformal map between 𝔻 and Π, and hence a biholomorphic map 

between 𝔻𝑛 and Π𝑛 by coordinatewise action. We obtain a one-to-one correspondence 

between 𝑆𝑛 \{1} and 𝑃𝑛 via the formulae 

                                ℎ(𝑧) = 𝑖 
1 + φ(λ)

1 –  φ(λ)
,   φ(𝜆) =

h(z) −  i

h(z) + i
                            (83) 

where 1 is the constant function equal to 1and λ, z are related by (82). For φ ∈ 𝑆𝑛 we 

define τ ∈ 𝕋𝑛 to be a carapoint of 𝜑 if 

                                             lim
λ →τ

𝑖𝑛𝑓
1 − |φ(λ)|

 1 − ‖λ‖∞
<  ∞.                                    (84) 
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We can now extend the notion of carapoints to points at infinity. The point (∞, . . . , ∞) in 

the boundary of Π𝑛 corresponds to the point χ in the closed unit polydisc; as in the last 

section, χ denotes the point (1, . . . ,1) ∈ ℂ𝑛. 

Definition (𝟒. 𝟐. 𝟒)[4]: Let ℎ be a function in the Pick class 𝑃𝑛 with associated function φ 

in the Schur class 𝑆𝑛 given by equation (83). Let 𝜏 ∈  𝕋𝑛, 𝑥 ∈ (ℝ ∪ ∞)𝑛 be related by 

                                      𝑥𝑗  =  𝑖
1 + τj

1 − τj
 𝑓𝑜𝑟 𝑗 = 1, . . . , 𝑛.                                (85) 

We say that 𝑥 is a carapoint for h if τ is a carapoint for φ. We say that h has a carapoint at 

∞ if h has a carapoint at (∞, . . . ,∞), that is, if φ has a carapoint at 𝜒. 

Note that, for a point 𝑥 ∈ ℝn, to say that 𝑥 is a carapoint of h is not the same as saying 

that h satisfies the Carathéodory condition (81) at 𝑥. Consider the function ℎ(𝑧) = −1/z 

in Pn . Clearly ℎ does not satisfy Carathéodory’s condition at 0 ∈ ℝn. 

However, the function φ in Sn corresponding to h is φ (λ) = −λ1, which does have a 

carapoint at −χ, the point in 𝕋n corresponding to 0 ∈ ℝn. Hence ℎ has a carapoint at 0. 

We shall be mainly concerned with carapoints at 0 and ∞. The following observation will 

help us identify them. For any ℎ ∈Pn  we define hb ∈P by 

ℎ𝑏 (𝑧) = ℎ (−
1

𝑧1
, … . ,

1

𝑧𝑛
)   𝑓𝑜𝑟 𝑧 ∈  𝛱𝑛 . 

For φ ∈Sn we define 

φ𝑏 (𝜆) = φ(−𝜆). 

If h and 𝜑 are corresponding functions, as in equations (83), then so are h𝑏 and φ𝑏 . 

Proposition (4.2.5)[4]: The following conditions are equivalent for a function ℎ ∈ 𝑃𝑛. 

(i) ∞ is a carapoint for ℎ; 

(ii) 0 is a carapoint for ℎ𝑏 ; 

(iii)  

lim inf
𝑦→0+

Im ℎ𝑏(𝑖𝑦χ)

𝑦|ℎ𝑏 (𝑖𝑦𝜒) + 𝑖|2
 <  ∞; 

(v)  

lim inf
𝑦→∞

𝑦 Im ℎ(𝑖𝑦χ)

 𝑦|ℎ (𝑖𝑦𝜒) + 𝑖|2
 <  ∞; 

Proof. (i)⇔(ii) Since −𝜒 ∈ 𝕋𝑛 corresponds under the Cayley transform to 0 ∈ ℝn, we 

have 

∞ 𝑖𝑠 𝑎 𝑐𝑎𝑟𝑎𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 ℎ ⇔  𝜒 𝑖𝑠 𝑎 𝑐𝑎𝑟𝑎𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝜑 ⇔ − 𝜒 𝑖𝑠 𝑎 𝑐𝑎𝑟𝑎𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝜑𝑏

⇔  0  𝑖𝑠 𝑎𝑐𝑎𝑟𝑎𝑝𝑜𝑖𝑛𝑡𝑜𝑓ℎ𝑏 . 
(ii)⇔(iii) A consequence of the 𝑛-variable Julia–Carathéodory, is that 𝜏 ∈ 𝕋𝑛 is a carapoint 

of φ ∈ 𝑆𝑛 if and only if 

lim inf
𝑟→1−

1 − |𝜑(𝑟𝜏)|

1 − 𝑟
 <  ∞. 
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It follows that 

0 𝑖𝑠 𝑎 𝑐𝑎𝑟𝑎𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟 ℎ𝑏 ⇔ − 𝜒 𝑖𝑠 𝑎 𝑐𝑎𝑟𝑎𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟 𝜑𝑏 ⇔ lim inf
𝑟→1−

1 − |𝜑𝑏(−𝑟𝜒)|

1 − 𝑟
 <  ∞.

⇔ lim𝑖𝑛𝑓
𝑟→1−

1 − |φb(−r, −r)|2

1 − 𝑟2
 <  ∞. 

Let 𝑖, 𝑦 ∈  Π be the Cayley transform of −𝑟 ∈ (−1, 0), so that 𝑦 → 0+ as 𝑟 →  1−. In view 

of the identity 

                              
1 − |𝜑(𝜆)|2

1 − ‖𝜆‖∞
2  
= (max

𝑗

|𝑧𝑗 + 𝑖 |
2

Im 𝑧𝑗
)
Im ℎ(𝑧)

|ℎ(𝑧) + 𝑖|2
                       (86) 

we have 

0 𝑖𝑠 𝑎 𝑐𝑎𝑟𝑎𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟ℎ𝑏  ⇔  lim inf
𝑦→0+

|iy +  i|2

𝑦

Im hb (iyχ)

|ℎ𝑏 (𝑖𝑦𝜒) + 𝑖|2
 <  ∞

⇔ lim inf
𝑦→0+

Im ℎ𝑏 (𝑖𝑦𝜒)

𝑦|ℎ𝑏 (𝑖𝑦𝜒) + 𝑖|2
 <  ∞. 

 (iii)⇔(v) Replace 𝑦 by 1/y.  

Corollary (𝟒. 𝟐. 𝟔)[𝟒]: If 𝑓 ∈ 𝑃𝑛 satisfies Carathéodory’s condition 

                                                lim inf
𝑧→𝑥

 
𝐼𝑚 𝑓(𝑧)

𝐼𝑚 𝑧
<  ∞                                           (87) 

at 𝑥 ∈  ℝ𝑛 then 𝑥 is a carapoint for 𝑓. If 

lim inf 
𝑦→∞

y Im 𝑓(𝑖𝑦𝜒) <  ∞ 

then ∞ is a carapoint for f. 

Proof. Let ℎ = 𝑓𝑏 ∈ 𝑃𝑛 . Clearly |ℎ𝑏 (𝑧)  +  𝑖|  ≥  1f or all 𝑧 ∈  𝛱𝑛. If the condition 

(87) holds for  𝑥 = 0 then 

 lim𝑖𝑛𝑓
𝑧→0

Im hb (z)

|hb (z) + i|2minj Im zj
≤ lim𝑖𝑛𝑓

𝑧→0
 
Im ℎ𝑏 (z)

minj Im zj
<  ∞. 

and hence, by (ii)⇔(iii) of Proposition (4.2.5), 0  is  a  carapoint for ℎ𝑏 = 𝑓. The case of 

a general 𝑥 ∈ ℝ𝑛 follows by translation.  

If ℎ ∈ 𝑃𝑛 has a carapoint at 𝑥 ∈ (ℝ ∪ ∞)𝑛 then it has a value at 𝑥 in a natural sense. 

If 𝜑 ∈ 𝑆𝑛 has a carapoint at 𝜏 ∈ 𝕋𝑛, there exists a unimodular constant 𝜑(𝜏)s uch that 

                                                        lim
𝜆
𝑛𝑡
→ τ

𝜑 (𝜆) = 𝜑(𝜏).                                              (88) 

Here 𝜆
𝑛𝑡
→τ means that 𝜆 tends nontangentially to 𝜏 in ℝ𝑛. 

Definition (𝟒. 𝟐. 𝟕)[𝟒]: If ℎ ∈ 𝑃𝑛 has a carapoint at 𝑥 ∈ (ℝ ∪∞)𝑛 then we define 

ℎ(𝑥) {

∞ if 𝜑(τ) = 1

𝑖
1 +  𝜑(τ)

1 −  𝜑(τ)
if 𝜑(τ) ≠ 1

 

where 𝜏 ∈ 𝕋𝑛 corresponds to 𝑥 as in equation (85). 
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Thus ℎ(∞) ∈ ℝ ∪ {∞}when ∞ is a carapoint of ℎ. 

In the example ℎ(𝑧) = −1/𝑧1, since the value of 𝜑(−𝜆) a t −𝜒 is 1, we have ℎ(0) = ∞. 

Although the value of ℎ(∞) i s defined in terms of the Schur class function 𝜑, it can be 

expressed more directly in terms of ℎ. 

Proposition (𝟒. 𝟐. 𝟖)[𝟒]: If ∞ is a carapoint of ℎ then 

                                         ℎ(∞) = ℎ𝑏 (0) = lim
𝑧
𝑛𝑡
→ ∞

 ℎ(𝑧).                                    (89) 

Here we say that 𝑧
𝑛𝑡
→∞ if 𝑧 → (∞, . . . , ∞) in the set {𝑧 ∈ Π𝑛 ∶ (−1/𝑧1, . . . , 

−1/𝑧𝑛 ) ∈ 𝑆} for some set 𝑆 ⊂ Π𝑛 that approaches 0 nontangentially, or equivalently, if 

𝑧 → (∞, . . . , ∞) i n a set on which ‖𝑧‖∞ min𝑗  𝐼𝑚 𝑧𝑗 is bounded. 

Proof: Clearly 

ℎ(∞) = ∞⟺  𝜑(𝜒) = 1 ⇔ 𝜑𝑏 (−𝜒) = 1 ⇔ ℎ𝑏 (0) =  ∞. 

Similarly, for 𝜉 ∈ ℝ, 

ℎ(∞) = 𝜉 ⇔ 𝜑(𝜒) =
ξ −  i

ξ +  i
 ⇔  𝜑𝑏 (−𝜒) =

ξ −  i

ξ +  i
 ⇔  ℎ𝑏 (0) = 𝜉. 

Thus, whether ℎ(∞) i s finite or infinite, ℎ(∞) =  ℎ𝑏 (0).  follows from the. 

We shall show that the type of a function ℎ ∈ ℒ𝑛 is entirely determined by whether or not 

∞ is a carapoint of ℎ and by the value of ℎ(∞). Let us make precise the notion of the type 

of a function in ℒ𝑛. 

Definition (𝟒. 𝟐. 𝟗)[𝟒]: A function ℎ ∈ ℒ𝑛  is of type 1ifit has a Nevanlinna representation 

of type 1. For 𝑛 = 2, 3 or 4 we say that ℎ is of type 𝑛 if ℎ has a Nevanlinna representation 

of type 𝑛 but has no representation of type 𝑛 − 1. 

Clearly every function in ℒn is of exactly one of the types 1 to 4. We shall now show 

Theorem (4.1.11). 

Theorem(𝟒. 𝟐. 𝟏𝟎)[𝟒]: A function ℎ defiend on Π𝑛 has a nevanlinna representation or 

type 2 if and only if ℎ ∈ ℒn are lim
𝑦→∞

inf 𝑦 𝐼𝑚 ℎ(𝑖𝑦,… , 𝑖𝑦)𝑆𝑛  for any function ℎ ∈ ℒ𝑛. 

(i) ℎ is of type 1 if and only if ∞ is a carapoint of ℎ and ℎ(∞) = 0;  

(ii) ℎ is of type 2 if and only if ∞ is a carapoint of h and ℎ(∞) ∈ ℝ\{0}; 
(iii) ℎ is of type 3 if and only if ∞ is not a carapoint of ℎ; 
(v) ℎ is of type 4 if and only if ∞ is a carapoint of h and ℎ(∞) = ∞. 

Proof. Let ℎ ∈ ℒn have a type 2 representation ℎ(𝑧)  =  𝑎 + 〈(𝐴 −  𝑧 )−1 𝑣, 𝑣〉 with 

𝑎 ≠0 .By  Theorem (4.2.2), 

lim inf 
𝑦
 
→∞

y Im ℎ(𝑖𝑦𝜒) <  ∞ 

By Corollary (4.2.6) , ∞ is a carapoint for ℎ. Furthermore, by Proposition(4.2.8). 

ℎ(∞) =  lim
𝑦
 
→∞
ℎ(𝑖𝑦𝜒) = 𝑎 ∈  ℝ \{0}. 
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Conversely, suppose that ∞ is a carapoint for ℎ and ℎ(∞) ∈ ℝ \{0}. By Proposition 

(4.2.5). 

lim
𝑦
 
→∞

𝑦 Im ℎ(𝑖𝑦𝜒)

 |ℎ(𝑖𝑦𝜒) + 𝑖|2
<  ∞ 

while by Proposition (4.2.8) 
lim
𝑦
 
→∞
|ℎ(𝑖𝑦𝜒) + 𝑖|2  =  ℎ(∞)2  + 1 ∈  (1,∞). 

On combining these two limits we find that 

lim inf
𝑦
 
→∞

 𝑦 Im ℎ(𝑖𝑦𝜒) < ∞, 

and so, by Theorem (4.2.2), ℎ has a representation of type 2. Since ℎ(∞) = 0 itis clear that 

ℎ does not have a representation of type 1. Thus (ii) holds. 

A trivial modification of the above argument proves that (i) is also true. 

(v) Let ℎ be of type 4. Then ℎ has no type 3 representation, and so, by Theorem (4.2.1), 
there exists 𝛿 > 0 and a sequence (𝑠𝑛) o f  positive numbers tending to ∞ such that 

1

𝑠𝑛
𝐼𝑚 ℎ(𝑖𝑠𝑛𝜒)  ≥  𝛿 > 0. 

Let 𝑦𝑛 = 1/𝑠𝑛; then −1/(𝑖𝑠𝑛) = 𝑖𝑦𝑛, and we have 

                          𝑦𝑛 𝐼𝑚 ℎ
𝑏 (𝑖𝑦𝑛𝜒) ≥  𝛿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥  1.                                  (90) 

Since |ℎ𝑏 (𝑧) + 𝑖| > 𝐼𝑚 ℎ𝑏(𝑧) f or all 𝑧, we have 

lim𝑖𝑛𝑓
𝑧
 
→0

Im ℎ𝑏 (z)

|ℎ𝑏(𝑧) + 𝑖|2 min𝑗  Im 𝑧𝑗
≤ lim𝑖𝑛𝑓

𝑧
 
→0

1

Im ℎ𝑏 (z)minj Im zj
≤ lim inf

𝑛
 
→∞

1

ynIm ℎ
𝑏 (𝑖𝑦𝑛𝜒)

≤  1/𝛿. 
Hence (0, 0) is a carapoint of ℎ𝑏 , and so ∞ is a carapoint of ℎ. Since 𝑦𝑛 → 0 it follows 

from the inequality (4.89) that Im ℎ𝑏(𝑖𝑦𝑛𝜒) → ∞, hence that ℎ𝑏(0)  =  ∞, and therefore 

that ℎ(∞) = ∞. 

Conversely, suppose that ∞ is a carapoint of ℎ and that ℎ(∞) = ∞. We shall show that 

                                           lim inf
𝑛
 
→∞

1

𝑠
𝐼𝑚 ℎ(𝑖𝑠𝑛𝜒) ≠ 0                                        (91) 

and it will follow from Theorem(4.2.1) that ℎ does not have a representation of type 3, that 

is, ℎ is of type 4. 

Let 𝜑 ∈ 𝑆𝑛 correspond to ℎ and let 𝑟 ∈ (0, 1) correspond to is ∈  Π. Then 

1

𝑠
𝐼𝑚 ℎ(𝑖𝑠𝑛𝜒)

1 −  𝑟

1 +  𝑟
     
1 − |𝜑(𝑟𝜒)|2

1 − |𝜑(𝑟𝜒)|2
  

                                      
1 − |𝜑(𝑟𝜒)|2

1 − 𝑟2
    

 (1 − 𝑟)2

1 − |𝜑(𝑟𝜒)|2
                                  (92) 

By hypothesis, 𝜒 is a carapoint for 𝜑 and 𝜑(𝜒)  = 1.By definition of carapoint, 

lim inf
𝑧
 
→𝑥

1 − |𝜑(z)|2

1 − ‖𝑧‖∞
2
= α < ∞ for all s > 0. 
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The n-variable Julia–Carathéodory Lemma  now tells us that        𝛼 > 0 and 

1 − |𝜑(rχ)|2

|1 − 𝑟|2
 ≤  α

1 − |𝜑(rχ)|2

1 − 𝑟2
  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 ∈ (0,1)            (93) 

On combining equations (92) and (93) we obtain 
1

𝑠
𝐼𝑚 ℎ(𝑖𝑠𝜒)  ≥

1

α
 >  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 > 0. 

Thus the relation (91) is true, and so, by , ℎ is of type 4. 

now follows easily. The function ℎ ∈ ℒ𝑛 is of type 3 if and only if it is not of types 1, 2 

or 4, hence if and only if it is not the case that ∞ is a carapoint for ℎ and ℎ(∞) ∈ ℝ ∪ {∞}, 
hence if and only if ∞ is not a carapoint of ℎ.  

We now show that there are functions in the Pick class 𝑃2 of all four types. We return to 

Example (4.1.39) and show that the functions in 𝑃2 which we presented there are indeed 

of the stated types. 

Example (𝟒. 𝟐. 𝟏𝟏)[𝟒]:  The function 

ℎ(𝑧) −
1

𝑧1 + 𝑧2
= 〈(0 − 𝑧𝑦 )

−1
𝑣, 𝑣〉ℂ 

where 𝑌 =
1

2
  and 𝑣 = 1/√2, is obviously of type 1. Let us nevertheless check that ∞ is a 

carapoint of ℎ and ℎ(∞) = 0, in accordance with . We have ℎ(𝑖𝑦, 𝑖𝑦) =
1

2
𝑖/𝑦 and hence 

lim inf
𝑦
 
→0+

 𝑦 𝐼𝑚 ℎ(𝑖𝑦, 𝑖𝑦) =
1

2
. 

(i) Thus ∞ is a carapoint for ℎ by Proposition (4.2.5). Moreover ℎ(𝑖𝑦, 𝑖𝑦) →  0 𝑎𝑠 𝑦 → ∞, 

and therefore ℎ(∞) = 0.  

(ii) It is immediate that the function 1 + ℎ, with ℎ as in (i), is of type 2, and that ∞ is a 

carapoint of 1 + ℎ with value 1. 

(iii) We have seen that the function 

ℎ(𝑧) =

{
 

 
1

1 + 𝑧1𝑧2
(𝑧1 − 𝑧2 +

𝑖𝑧2(1 + 𝑧1
2)

√𝑧1𝑧2
) 𝑖𝑓 𝑧1𝑧2 ≠ −1

1

2
(𝑧1𝑧2)                                         𝑖𝑓 𝑧1𝑧2 = −1

            (94) 

has a representation of type 3. To show that ℎ is indeed of type 3 we must prove that ∞ 

is not a carapoint of ℎ. 

For all 𝑦 > 0 w e have ℎ(𝑖𝑦, 𝑖𝑦) = 𝑖. Hence 

lim𝑖𝑛𝑓
𝑦
 
→∞

y Im ℎ(𝑖𝑦, 𝑖𝑦)

|ℎ(𝑖𝑦, 𝑖𝑦) + 𝑖|2
= lim inf

𝑦
 
→∞

𝑦

4
= ∞  
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By Proposition (4.2.5), ∞ is not a carapoint for ℎ. Thus ℎ is of type 3. 

(v) The function 

ℎ(𝑧) =
𝑧1𝑧2
𝑧1 + 𝑧2

= −1/ (−
1

𝑧1
−
1

𝑧2
) 

is clearly in 𝑃2. We gave a type 4 representation of ℎ in Example (4.1.39). We claim that 

∞ is a carapoint of ℎ. We have ℎ(𝑖𝑦, 𝑖𝑦) =
1

2
𝑖𝑦, and thus 

lim inf
𝑦
 
→∞

𝑦 Im ℎ(𝑖𝑦, 𝑖𝑦)

|ℎ(𝑖𝑦, 𝑖𝑦) + 𝑖|2
= lim𝑖𝑛𝑓

𝑦
 
→∞

1
2
𝑦2

|
1
2 𝑖𝑦 + 𝑖|

2

 

= 2  

Hence ∞ is a carapoint for ℎ. Furthermore ℎ(𝑖𝑦, 𝑖𝑦) =
1

2
𝑖𝑦 → ∞ as 𝑦 → ∞, and so 

ℎ(∞) = ∞. Thus ℎ is of type 4. 

Another example of a function of type 4 is ℎ(𝑧) = √𝑧1𝑧2  

The Nevanlinna representation formulae give rise to growth estimates for functions in the 

n-variable Loewner class. It turns out that growth is mild, both at infinity and close to the 

real axis. Even though the type of a function is determined by its growth on the single ray 

{𝑖𝑦𝜒 ∶ 𝑦 > 0}, in turn the growth of the function on the entire polyhalf-plane is constrained 

by its type. 

Consider first the one-variable case. If ℎ is the Cauchy transform of a finite positive 

measure 𝜇 then 

|ℎ(𝑧)| ≤  ∫
dμ(t)

|t −  z|
≤ ∫

dμ(t)

Im z
 =

𝐶

Im z
 

for some 𝐶 > 0 a nd for all 𝑧 ∈ Π. For a general function ℎ in the Pick class, by 

Nevanlinna’s representation there exist 𝑎 ∈ ℝ, 𝑏 ≥ 0 anda finite positive measure 𝜇 on ℝ 

such that, for all 𝑧 ∈ Π, 

ℎ(𝑧) α +  bz + ∫
1 + tz

t −  z
dμ(𝑡) 

α +  bz + ∫
1 + z2

t −  z
+ z dμ(𝑡) 

and therefore 

|ℎ(𝑧)| ≤ |𝑎|  +  𝑏|𝑧|  + (
1 + |z|2

Im 𝑧
+ |𝑧|)  𝜇(ℝ) ≤ 𝐶 (1 + |𝑧|  +

1 + |z|2

Im 𝑧
) 

for some 𝐶 > 0. 

Similar estimates hold for the Loewner class. 
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Proposition (𝟒. 𝟐. 𝟏𝟐)[𝟒]: For any function ℎ ∈ ℒ𝑛 there exists a non-negative number 

𝐶 such that, for all 𝑧 ∈ Π𝑛, 

|ℎ(𝑧)| ≤ 𝐶 (1 + ‖𝑧‖1 + 
1 + ‖z‖ 1

2

minj Im zj
).                        (95) 

For any function ℎ ∈ ℒ𝑛 of type 2 there exists a non-negative number 𝐶 such that, for 

all 𝑧 ∈ Π𝑛, 

|ℎ(𝑧)| ≤ 𝐶 (1 + 
1

minj Im zj
)                                  (96) 

For any function ℎ ∈ ℒ𝑛 of type 1 there exists a non-negative number 𝐶 such that, for 

all 𝑧 ∈  Π𝑛, 

|ℎ(𝑧)| ≤
𝐶

minj Im zj
.                                             (97) 

Proof. Let ℎ ∈ ℒ𝑛. Let N , M, A, P, and 𝑣 be as in Theorem (4.1.9) 

 ℎ(𝑧) = 𝑎 + 〈𝑀(𝑧)𝑣, 𝑣〉 

for all 𝑧 ∈ Π𝑛, where M(z) is the matricial resolvent given. By Proposition (4.1.22) we have, 

for all 𝑧 ∈ Π𝑛, 

‖𝑀(𝑧)‖  ≤ (1 + √10 ‖𝑧‖1 )  (1 +
1 + √2 ‖𝑧‖1
minj Im zj

)

≤  1 + √10 ‖𝑧‖1  +  𝐵
1 + ‖𝑧‖1 + ‖𝑧‖ 1

2

minj Im zj
 

for a suitable choice of 𝐵 ≥ 0. Hence 

|ℎ(𝑧)| ≤ |𝑎|  + ‖𝑀(𝑧)‖ ‖𝑣‖2 ≤ |𝑎| + (1 + √10 ‖𝑧‖1  +  𝐵
1 + ‖𝑧‖1 + ‖𝑧‖ 1

2

minj Im zj
)‖𝑣‖2 

Since 

1 + ‖𝑧‖1 + ‖𝑧‖ 1
2
 ≤
3

2
(1 + ‖z1‖

2 ), 

we have 

|ℎ(𝑧)| ≤ 𝐶 (1 +  ‖𝑧‖1  +  
1 + ‖𝑧‖ 1

2

minj Im zj
) 

for some choice of 𝐶 > 0 and for all 𝑧 ∈ Π𝑛. Thus the estimate (95) holds. 

To conclude the paper we point out that there are structured analogs of the classical 

resolvent identity 

 (𝐴 −  𝑧)−1  −  (𝐴 −  𝑤)−1  = (𝑧 −  𝑤)(𝐴 −  𝑧)−1 (𝐴 −  𝑤)−1 

for any z, w in the resolvent set of an operator A. 

Proposition (𝟒. 𝟐. 𝟏𝟑)[𝟒]: Let A be a densely defined self-adjoint operator on a Hilbert 

space ℋ  and let 𝑌 be a positive decomposition of ℋ. For all 𝑧, 𝑤 ∈ Π𝑛  
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 (𝐴 − 𝑧𝑌)
−1  −  (𝐴 − 𝑤𝑌)

−1  = (𝐴 − 𝑧𝑌)
−1(𝑧 − 𝑤)𝑌

 
 (𝐴 – 𝑤𝑌)

−1    (98) 

If M(z) is the structured resolvent of type 3 corresponding to A and Y then 

𝑀(𝑧)  −  𝑀(𝑤) |𝒟(𝐴) =                                                                                              
                       (1 −  𝑖𝐴)(𝐴 − 𝑧𝑌 )

−1 (𝑧 −  𝑤)𝑌 (𝐴 − 𝑤𝑌 )
−1 (1 +  𝑖𝐴).       (99) 

Proof. The first of these identities is immediate.  

𝑀(𝑧)  −  𝑀(𝑤) |𝒟(𝐴) = (1 −  𝑖𝐴) (𝐴 − 𝑧𝑌 )
−1  −  (𝐴 − 𝑤𝑌 )

−1 (1 +  𝑖𝐴), 
and the identity (99) follows from equation (98).  

Proposition (𝟒. 𝟐. 𝟏𝟒)[4]: Let ℋ be the orthogonal direct sum of Hilbert spaces N , 𝑀, let 

A be a densely defined self-adjoint operator on M with domain 𝒟(𝐴) and let 𝑃 be an 

orthogonal decomposition of ℋ. For every 𝑧, 𝑤 ∈ Π𝑛, as operators on 𝑁⊕𝒟(𝐴), 

𝑀(𝑧)  −  𝑀(𝑤) = [
−𝑖 0
0 1 − 𝑖𝐴

] ([
1 0
𝑜 𝐴

] − 𝑧𝑝 [
0 1
0 0

])
−1

  (𝑧 −  𝑤)𝑃 

                     × ([
1 0
𝑜 𝐴

] − [
0 0
0 1

])
−1

𝑤𝑝 [
𝑖 0
0 1 + 𝑖𝐴

]                        (100) 

Proof. Let 

𝐷 =  [
𝑖 0
0 1 + 𝑖𝐴

] : 𝑁 ⊕𝒟(𝐴)  → ℋ. 

By equations (37) and (38) we have 

𝑀(𝑧) −𝑀(𝑤)|𝑁 ⊕𝒟(𝐴)

= 𝐷∗ {([
1 0
𝑜 𝐴

] − 𝑧𝑝 [
0 1
0 0

])
−1

(𝑧𝑝 [
0 0
0 1

] + [
0 0
0 1

])
 

− ([
1 0
0 1

]𝑤𝑝 + [
0 0
0 1

]) ([
1 0
0 𝐴

] − [
0 0
0 1

]𝑤𝑝)
−1

} 𝐷

= 𝐷∗ ([
1 0
0 𝐴

] − 𝑧𝑝 [
0 1
0 0

])
−1

{(𝑧𝑝 [
0 0
0 1

] + [
0 0
0 1

])
 

− ([
1 0
0 𝐴

] − [
0 0
0 1

]𝑤𝑝) − ([
1 0
0 𝐴

] − 𝑧𝑝 [
0 1
0 0

]) ([
1 0
0 0

]𝑤𝑝 + [
0 0
0 1

])
  

}

× ([
1 0
0 𝐴

] − [
0 0
0 1

]𝑤𝑝)
−1

𝐷 
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