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Abstract

We formulated space-time in terms of twistors. In this formulation
the points of space-time (events) are derived from twistors. So twistors
are shown to be the primitive objects from which all concepts of space-
time arise. Differential equations, describing conformal fields may be
written in twistor terms. We utilized complex structure in R3 to construct
geometrical solutions for Laplace equation, wave equation and monopole
equation. The complex space used is the so called mini — twistor space
and the solutions in all the above cases is given by a contour integral of
a twistor function over a bundle space of one—dimensional complex
projective space.
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Introduction

Twistors were introduced by Sir Roger Penrose and his associates
since 1960, as a new way of describing the geometry of space-time where
the ordinary space—time concepts can be translated into twistor terms.
The primary geometrical object is not a point in Minkowiski space but a
null straight line (a twistor) or, more generally, a twisting congruence of
null lines. It turns out that twistor algebra has the same type of
universality in relation to the Lorentz group. Thus, twistor theory is a
applicable to quantum field theory and free fields of zero- rest- mass. It
also formulates other fields such as Yang Mills fields. The original
motivation was to unify general relativity and quantum mechanics in a
non-local theory based on complex numbers. The application of twistor
theory to differential equations and integrability has been an unexpected
spin off from the twistor programme. It has been developed over the last
30 years by the Oxford school of Penrose and Atiyah with the crucial
early input from Ward, Hitchin and further contributions from Lionel
Mason, George Sparling, Paul Tod, Nick Woodhouse and others.

Penrose realized that using the space-time continuum picture to
describe physical processes is inadequate not only at the plank scales of
10733¢cm but also at the much larger scales of elementary particles or
perhaps atoms, where the quantum becomes important. He believes that
space time is created out of quantum processes themselves at the sub a
tom level.

The mathematical tool in field theories is not suitable for the new
formulation since the field equations are based on well-behaved functions
varying smoothly in space time. Thus his mathematical tool is geometry
Instead of differential equations. However, space —time descriptions of
the normal kind have been used at the atomic or particle level for long
time with extraordinary accuracy. Thus, this new geometrical picture
must, at that level, be mathematically equivalent to the normal space—
time picture in the scene that some kind of mathematical Transformation
must exist between the two pictures.

The initial attempt to formulate discrete space — time used spinors
as the building block. The spinors is a mathematical object that is used in
the quantum theory to describe the spin of the elementary particles. It is
the simplest quantum object having only two possible states- spin up and
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spin down. It is argued that if the distinction between a spin up and spin
down is to have meaning within a quantum theory set in empty space, it
seems to imply the spinors actually create their own space — a sort of
guantum version of the more familiar space time. The rules for putting
spinors together involve pure addition and subtraction and have nothing
to do with the ideas of continuity. They join together to form a spin
network.

Twistor theory offers another alternative to the space-time
continuum, considering that the basic objects describing the geometry of
the space-time are four-dimensional complex vectors, called twistors. In
this approach the points are obtained from intersections of twistors,
becoming secondary objects. Twistor theory attempts to reformulate basic
physics in twistor language. Similar to strings, twistors are basic objects
with a dual character. They are used to replace the points as the basic
geometric objects, but can also be used to describe elementary particles.
Interactions between particles are explained by means of twistor
diagrams. One of the many advantages of twistor theory is that it has a
natural complex character, which is needed in working with quantum
mechanics.

In this thesis, we discuss the twistor space and some applications
for differential equations representing the non Abielian monopole
equation. The structure of this paper is as follows.

In chapter one we introduced the basic concepts used in this
research, such as manifold, differential manifold, fiber bundle and
tensors.

In chapter two we introduced the basic concepts and techniques
used in spinor and twistor theory. This is necessary in order to understand
why we are interested in the topics discussed in this research. Section 2.1
presents some basic spinor theory, focusing on the properties used here.
One of the main features of twistor theory is that it is conformal. In
section 2.2 we see how the conformal group arises naturally in the
spinorial setting. This chapter ends with the presentation in section 2.3 of
some important concepts and results in twistor theory, ending with the
representation of points as intersections of twistors.

In chapter three we studied the zero rest mass field equations and
their twistor solutions.
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Chapter four delt with the basic concepts used in this chapter, such
as complex projective space CP, and holomorphic line bundle. Section
(2) dealt with a complex structure on R3. In this section we defined the
twistor space to be the space of oriented lines in R3, it is infact the non-
trivial tangent bundle T S2. Differential equations in R3 in terms of
twistor functions have been treated in section (3). In this section we
motivated Penrose transform by introducing the solution of the wave
equation by a closed contour integral of a twistor function. Similarly
integrating of an appropriate twistor function along a closed contour
integral delivers a solution of a harmonic equation. The closed contour on
both cases is in the one — dimensional complex projective space. The last
section provided a twistor solution to the monopole equation. This
equation is infact shown to be the itegrability conditions for linear Lax
equations that were interpreted geometrically as null 2- planes that
correspond to the points of the twistor space T via the incidence relation
given by an equation (30) that yields two affine coordinates (4,n) where

A=my/m; and n = % correspond to the homogenous coordinates
Y

(w,my,m; ) on the twistor space T. Thus we constructed holomorphic

vector bundle over the twistor space T.

In chapter five we study advance application of twistor theory:
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Chapter One

Manifolds and Tensors

1.1 Introduction to Manifold:

Basically an m-dimensional (topological) manifold is a topological
space M which is locally homeomorphic to R™. A more precise definition
IS:

1.1.1 Definition: (Topological n-Manifolds)

A topological space M is called a topological n-manifolds, n € N, if
0] M is Hausdorff,

(i)  for any p € M there exists a neighborhood U of p which is
homeomorphic to an open subset V < R™, and
(ili) M has a countable bases of open sets.

1.1.2 Definition: (Coordinate Charts)

Let M be a topological n-manifold. A coordinate chart of M is a pair
(U, x), where
(i) U c M is open

(i) x:U—-xU c R™ isahomeomorphism, xU € R™, open
1.1.3 Definition: (Compatible Charts)

We see that two charts (U, x) and (V, y) of a topological manifolds
are C* -Compatible if UnV =@ or

2=y o x  uwan:x(UNV) > yUnV) (L1)

is a C*-diffeomorphism,



Fig (1)

1.1.4 Definition: (A C™-Atlas)

A C™-atlas, A or simply an atlas on a locally Euclidean space M is a
set of C* -compatible charts such that

M = UyxeaU (1.2)

An atlas A is said to be maximal if it is not contained in a larger
atlas; in other words, if U is any other atlas containing M ,then U = M

1.1.5 Definition: (A differentiable or (Smooth) n- Manifold)

A differentiable n-manifolds or (smooth n- manifold) is a pair
(M, A), Where M is a topological n-manifold and A is a maximal C*-
atlas of M, also called a differentiable structure of M.

1.1.6 Note

We abbreviate M or M™ and say that M is a C*-manifold, a
differentiable manifold, or a smooth manifold.

1.1.7 Definition

Let (M™,A ) and (N™, B ) be C*-manifold. We say that a mapping
fiM —> N is C* (or smooth) if each local representation of f (with
respect to A and B) is C*. More precisely, if the composition y o f o x~1
is smooth mapping x(U n f~1V) - yV for every charts (U, x) € A and
(V,y) € B.We say that f: M — N is C*- diffeomorphism if f is C* and
it has an inverse f~1 is €, too.
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Fig (2)
1.1.8 Remark

Equivalently, f:M - N is C* if, for every p € M, there exist
charts (U,x) inM.And (V,y)in N suchthatp e U, fU cV,andyo f o
x~Lis C*®(xU).

1.1.9 Example:
(i) M =R", A ={id}, A = acanonical structure.

(i) If M is a differentiable manifold and U < M is open, then U is a
differentiable manifold in a natural way

(iti) Product manifolds. Let (M,A) and (N,B) be differentiable
manifolds and let p;:MXN->M and p,MXN —> N be the
projections.

Then

C = {(U XV,(xopg,yo pz)): (U,x) e A, (V,y) € B} (1.3)

Is C*-atlason M x N. For example

(i)  Cylinder R x 1!

(i) ToursSt xSt =T?



1.1.10 Tangent Space

Let M be a differentiable manifold, p € M and y:1 - M a C*-path
such that y(t) = p for some t € I, where t € I is an open interval.

Fig (3)
Write
C(p)={f:U->R|f €C”(U),U some nieghborhood of p}.
1.1.11 Note

Here U may depend on f, therefore we write C*(p) instead of
C*(U).

Now the path y defines a mapping y;: C*(p) —» R,
vef = (foy)'(®) (1.4)
1.1.12 Note

The real-valued function f oy is defined on some neighborhood of t €
I and (f oy)'(t) is its usual derivative at t.

Interpretation: We may interprete y.f as “a derivative of f in the
direction of y at the point p”



1.1.13 Example:( M = R™)

Ify =y, .....,y™ 1 - R™is smooth path and y = y1(¢t), ......,y™(t) is
the derivative of y att, the

vef = (o)’ @ = f@Ir®) =7 - Vf(p) (1.5)

Fig (4)
In general: The mapping y, satisfies:

Suppose f.g € C*(p) f,geC*(p)and a,b € R. Then

() ve(af +bg) = ayef + byeg,

(i) ve(fg) = g@vef + f(0IVeg.
We see that y, is a derivation.
Motivated by the discussion above We define

1.1.14 Definition: (A Tangent Vector)

A tangent vector of M, p € M is a mapping v: C*(p) — R that satisfies:

() vlaf +bg) =av(f) +bv(f) f,.g € C®(p),a,b ER

(i)  v(fg) =g@v(f)+fv()



1.1.15 Definition: (The Tangent Space)

The tangent space at p is (R-) linear vector of tangent vector at p,
denoted by T,M or M,,

1.1.16 Definition (Tangent Map)

Let M™ and N™ be differentiable manifolds and let f: M — N be C*
map. The tangent map of f at p is a linear map fi:T,M — TN
defined by

(fv)g =v(gef),vgeC®(f(p)),v € T,M (1.6)
We also write f,,, or T, f

1.1.17 Remarks

It easily seen that f,, is a tangent vector at f(p) forall v € T,M and that
f. is linear

1.1.18 Tangent Bundle

Let M be a differentiable manifold. We define the tangent bundle TM
of M as a disjoint union of all tangent spaces of M, i.e.

TM = Upey TyM (1.7)

Points in TM are thus pairs (p,v), where p € M and v € T,M. We
usually abbreviate v = (p, v), because the condition v € T,,M determines
p € M uniquely.

Letm: TM — M be the projection
n(v) =p, if veET,M (1.8)

The tangent bundle TM has a canonical structure of a differentiable
manifold.



1.1.19 Definition: (Sub Manifolds)

Let M and N Dbe differentiable manifold and F:M — N be C* map.
We say that
(i)  fisasubmersionif £, : T,M - Tf(p)N is surjective Vvp € M
(i)  fisanimmersioniff,, : T,M - Tf(p)N is injective Vp € M
(i)  f is an embedding if f isan f : M — fM immersion and is a

homeomorphism.

If M c N and the inclusioni : M - N, i(p) = p is an embedding,
we say that M is a submanifold of N.

1.1.20 Remark

If f:M™—> N" is an immersion, then m <n and is the
codimension of f.

1.1.21 Examples

@ I M. ... M, are smooth manifolds, then all projections
My X ... .. X M, — M; are submersions.

(i) (M =R, N=R? o:R - R?a(t) = (t,]|t]) is not differentiable
att = 0. This ais not an immersion

Y

0

Fig (5)

(iv) o:R - R? a(t) = (t3,t%) is C* but not an immersion since
& (0) = 0.
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(V) o:R - R? a(t) =(t3—4t, t> —4) is C* and an immersion

but not an embedding (a(+2) = (0,0)) .

L 4

Fig (7)

(vi) The map o« (in the picture below) has an inverse but it is not an
embedding since the inverse in not continuous.

Fig (8)
(vii) The following o is an embedding



Fig (9)
1.1.22 Definition: (Orientation)

A smooth manifold M is orientation if it admits a smooth atlas
{(Ug» x4)} such that for every a and g, with U, nUp =W # @, the
Jacobian determinant of x4 o x;* is a positive at each point q € x,W,

ie.

det(xg o x;l)’(q) > 0,Vq € x,W (1.9)
W
a2
(\ 1\ \\ 20
0 — S P S v
B ,/ o

/- Togt A\ \
I y - ."i._‘ ‘-.. 1 1Y
— R\ |
. RN /
. - ._ ‘\:}H\\ .,-’/
Fig (9)

In the opposite case M is non orientable. If M is orientable, then an atlas
satisfying (1.9) is called an orientation of M. Furthermore, M (equipped
with such atlas) is said to be oriented. We say that two atlases satisfying
(1.9) determine the same orientation if their union satisfies (1.9), too.



1.2 Fibre Bundles
1.2.1 Definition: (Fibre Bundle)

A fibre bundle over a topological space X is a collection
(E, m, F) satisfying the following conditions

(1) E and F are topological spaces.
(i) m:E — X isacontinuous surjection,

(i) For all x € X there is a neighbourhood U 3 x and a
homeomorphism @ : 7 1(U) > U X F making the following
diagram commute

TT_l(U) — 2 s UxF

Projy

Fig (10)
We call E the total space, X the base space, m the projection, F the fibre,
and (U, ¢) alocal trivialisation.
1.2.2 Remark

Morally, a fibre bundle is a space E which is locally a direct
product of spaces X and F

1.2.3 Example

The direct product X x F is called the trivial bundle with fibre F
over X.

10



1.2.4 Defnition: (A local Section)

A local section of the fibre bundle (E, =, F,X) over an open set
UcX isamap s: U — E such that m o s = idy. The space of
local sections over U is denoted I'(U, E).

1.2.5 Remark

The sections of a fibre bundle form a sheaf on X. We abuse notation by
referring to this sheaf as E, when it is convenient.

1.2.6 Definition: (Transfer Function)

Let (¢, U;) and (¢; U;)) be two local trivialisations with
Uijj = U;NU; # @.Thenon U;; X F we define the transfer function

Tij = @i o @; (1.10)
1.2.7 Remark
This is a homeomorphism by definition of ¢; and ¢; .
1.2.8 Definition: (The Transition Function)
Denote the homeomorphism group of F by Homeo(F). Define

the transition function t;; : U;; » Homeo(F) by

Tij(x, f) = (x,t;(X)f) (1.11)
1.2.9 Remark

The transition functions for a fibre bundle tell us how to glue
together the locally trivial areas on overlaps. They can be regarded as
encoding the twisting of the fibre bundle. Clearly if E is the trivial bundle
X X F then one can choose all transition functions such that

1.2.10 Lemma
The transition functions satisfy the following relations

11



(l) tl](.X) = ldF on Ui'

(iti) ;O ()t (x) = idpon Ui n Uj N Uk.

1.2.11 Remark

Apply the language of Cech cohomology to maps U —
Homeo(F) taking the abelian group operation to be pointwise
multiplication. The conditions (ii) and (iii) then say that the transition

functions {ti j} form a 1-cochain and a 1-cocycle respectively.

1.2.12 Theorem: (Reconstructing Fibre Bundles)

Let X be a space with open covering {U;}. Suppose we are given a
space F, a group G < Homeo(F) and functions ¢;;: U; - G
satisfying the 1-cocycle condition. Then there exists a fibre bundle E over
X with fibre F and transition functions ¢;; .

Proof

Let E = U;(U; x F) endowed with the product topology. Define

an equivalence relation on E by

x.f) ~ g iff x =y and g = t;(Xf (1.13)

Whenever (x,f) € U; X F and (y,g) € U; X F. Note that we
required the cocycle condition for this to be transitive. Now we let £ =

E /~ endowed with the quotient topology.

There is a natural projectionz : E = X given by n([x, f]) = x.
Wedefine local trivialisations ¢; ([x,f]) = (x,f), which are

homeomorphisms by construction of E, and clearly satisfy the required
commutative diagram. Finally on U;; we have

Qi o9 (% f) = (x, ti;;()f) (1.14)

12



So the transition functions are ¢;; .

1.2.13 Remark

We have an immediate converse to the statement in Remark 3:9,
namely if we can choose all transition functions such that ¢;;(x) = idp
then the bundle is trivial.

1.2.14 Lemma

Let (E,m, F) be a fibre bundle over X with transition functions t;;
relative to a covering U; of X. Suppose we are given a collection of maps
fi + U — F satisfying on Uj;

fi(x) = t;;(x)fi(x) (1.15)
Then {f;} determines a global section of E and all global sections arise in
this way.
Proof

Let @;: 11 (U;) = U; x Fbe the local trivialisations inducing the
transition functions t;; . Then f; determines a local section f; of E over
U; by

fi@) = o (% fi(x) (1.16)

Now on U;; we have
fi0) =07 (i) = 0,7 (%, 4:£,(0)
= <Pj_1<Pj<Pi_1 (x;fi(x)) = fi(x) (1.17)
So the local sections glue to form a global section f. Conversely if fisa
global section then by restriction we obtain local sections f on U; with

]Ei - ]E] on UU .
Defining f;(x) = proj, o ¢@; o f(x) we have
(x.£,00) = @07 (% £1(0) = (w0 t:fi(0) (1.19)

on U;; as required.

13



1.2.15 Definition

Let (E,m, F) be a fibre bundle over X, and G a subgroup of
Homeo(F). A G-atlas for (E,m, F) is a collection (U;; ;) of local
trivialisations such that X = U U; and the induced transition functions are
G-valued.

1.2.16 Definition
A G-bundle (E, r, F, G) is a fibre bundle with a maximal G-atlas. ¢
is called the structure group of the bundle.

1.2.17 Remark

By definition of transition functions we consider the structure
group G to have a natural left action on the fibre F. We see that for a
certain class of bundles one can also define a right action of G on the total
space E. This distinction is conceptually important as we develop the
theory.
1.2.18 Lemma

Consider a G-bundle (E, m, F) over X. Let H be the set of transition
functionsat x € X. Then H = G.

Proof

Clearly H c G. Let g € G and h € H. Then there are local
trivialisations ¢; and ¢; in some neighbourhood U of x such that

(xxh.f)=@io@ix,f) forall f € F (1.20)
Define
o = (idy xgh™) o, : 1™ (U) » U XF (1.21)

a local trivialisation. Note that ¢, must be in the G-atlas of E for it is
maximal. Moreover

o @i(x,f) = (x,gh™"h.f) = (x,g.f) (1.22)

SO g € H as required.

14



1.2.19 Remark

Every fibre bundle can be considered as a G-bundle by choosing
G = Homeo(F). More generally an H-bundle is clearly a G-bundle if
H <G.
The converse is more subtle, and motivates the following definition.

1.2.20 Definition

Let E be a G-bundle, and suppose there exists a choice of local
trivialisations such that the transition functions take values in H < G.
Then we say that the structure group of E is reducible to H.
1.2.21 Example

A bundle is trivial iff its structure group is reducible to {id}

1.2.22 Remark

We note without proof that the reducibility of structure groups is
related to spontaneous symmetry breaking in Yang-Mills theory and the
identification of Riemannian metrics in differential geometry.

1.2.23 Definition

Let (E;, m; , F;) be fibre bundles over X; fori = 1,2. A morphism
of fibre bundles is a continuous map f : E; — E, mapping each fibre
71 1(x) of E; onto a fibre 71 (y) of E,.

1.2.24 Definition (Cotangent Bundle)

We defined earlier that the differential of a function f € C*(p) at
p is alinear map df,: T,M — R

df,v =vf,v €T,M (1.23)

Hence df, € T,M* (= the dual of T,M). We call T,M" the
cotangent space of M atp .If (U,x),x = (xq, ... ... X,) is a chart at p and
((01)p) oo (8,),) is the basis of T,M consisting of coordinate vectors,
then differentials dxl?’ =1, ... n of function x; (at p) form the dual
basis of T,M*.Hence the differential ( at p) of function f € C*(p)can be
written as

df, = (3;),fdxiP.
15



We define the cotangent bundle of M as a disjoint union of all
cotangent spaces of M

TM* = Upey TyM* (1.24)
1.3 Tensors
1.3.1 Definition: (Multilinear Mapping)

Let v,....,V, and W be (real) vector spaces. A mapping
F:vg, ... ,V, = W is called a multilinear (more precisely, k-linear) if it is
linear in each variable, i.e.

F(Vq, o, av; + bv; ... ... V) = aF(Vq, oo o Upy o V) + (Vg e vy, - 1g) (1.25)
Anda,beRi=1,...... k for all
1.3.2 Definition (Dual Space)

Let IV be a finite dimensional (real) vector space. A linear map
w:V =R is called a covector on V and the vector space of all covectors
(on V) is called the dual space of V and denoted by IV*

1.3.4 Definition: (Covariant Tensor)

A multilinear function T:V, — R is called a covariant tensor of
degree k on V, and the set of all covariant tensor of degree k is denoted
T, (V). if T,S € T\,(V) and a € R ,we define

S+T)Wy,...v)=SWy,..v) + T(vy, ... %) (1.26)
And
(@aS)(wy,..vx) =aS(wy,...vx) (1.27)
1.3.5 The Tensor Product Operation:

The Tensor Product Operation @: T (V) X T;(V) = Tjy (V) is
defined by

(S ® T)(v1 y oy Uy Uk g1y ey vk_l_l) = S(v1 ) aes vk)T(vk+1 ) nes vk_l_l) (128)
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1.3.6 Note
Itisnottrueingeneralthat S QT =T Q S.
1.3.7 The Identities of Tensor Product

The following of & are easy to establish

() ($1+85)QRT=5QRT+ 5, QT,
(i) ST +T,)=S QT +S T,
(iii) @) ®T=5SQ@T)=a(S®T),
(iv) ERTHKRKU=S5S Q(TRXRU).

And so both (SQRT)XR U, S Q (T ® U) are simply written as S Q
TQ®RU.
1.3.8 Note

(1) The first three identities above, indicate that @ is bilinear,
while the last indicate that & is associative

(i) T, (V) = V* (The dual of V).
1.3.9 Theorem

Let ey, ... .. ,e, be a basis for V, and let el, ...... ,e™ be the dual
basis of V*, so that

. . (Lifi=]
i) =8¢ =
OEL {0’ e ij} (1.29)
Then the set of all k-fold tensor products ePr ® eP2 ®Q ... & ePk, 1 <
D1Dz, won o ,Pr < n is a basis for Ty (V), which therefore has dimension
nk,
1.3.10 Lemma

The setof all {p, py, ..., Dk} 1 < DLy v v, Pk < 1 s the set of
all ranges of function, p:1,..,k = 1,..,n in k = 7 notation, the set of
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all e @eP2 ®..QePk could be written ePipen”

ep =eP1ReP2®..QePk

where

Proof
P ® . ® P (eq, eq,) = €7 (e,): €77 (eg,) P (eg,)
= 531 832 83"

_ {1, if p1=qu Pk = QR}
0, otherwise

Lifp=4q
= {0’ if p#q } (1.30)
Hence
p_ 1, ifB =q
el (eg) = &, _{0, fp*aq } (1.31)

Ty (V), then
n
T(wy, .., vy) = Z A14,02q, ...aquT(eql, ...,eqk)
qd1,-+9k=1
= Yy T(eql, ) eqk)eq1 ® ... ek (vy, ..., k) (1.32)
Thus
T =20 et T(eql, " eqk)e‘h@ e . Qe K (1.33)
i.e
=Y 1=3 Cqel 1.34
T deﬁk T(eg) e deﬁk Cg e (1.34)
Where
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Cq=T (eg) = T(eql, ...,eqk) (1.35)

And

TV, ..., V) = quﬁ; Cgeg (Vo) Vi) (1.36)

Consequently

{2}z span T(V) (1.37)
BEn
Suppose now that there are numbers {a,, } -y such that
Y za,e? =0 (1.38)
Then

_ 4 oD _ . sP
0= deﬁk ape= (eg) = de_k ag5g =aq (1.39)

Thus aqg =0, for all geﬁk, and therefore {eg}peﬁ; are linearly

independent, and dim (T, (V) = n*), where n = dim V. For this reason
we write

T.WN)=V"Q ... ® V* (k factors) = QXV* (1.40)

If T e T, (V),and if we write

T = 231 ..... Qr=1 qu,...,qkeq1 ReQ .. Qelk (1.41)
where T, .. =T(eq,, ... eq,). then the set of n* numbers T, _, are
called the components of T relative to the given bases {e, ...... ,en}

and(its dual) {el, ... ... ,e™}of Vand V* respectively.
1.3.9 Definition: (Contravariant Tensors)

We define the space of contravariant tensors of degree s, denoted
T°asT* =V ..®V (stimes). Then every contravariant tensor k of
degree s can be expressed uniquely as a linear combination
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K=3 i=1K""e ®..Qe; (1.42)

where K'1+is are components (they are n® numbers) of K with respect to
the basis {ey, ... ... ,en} of V.

K = Z EEEKB e2 (143)

1.3.10 Definition: (Mixed Tensor Space)

We define the (mixed) tensor space type (r,s) or tensor space of
contravariant degree r and covariant degree s, as the tensor product

TN =T"QRT,=VR.ATRAV' R ..Q V* (1.43)
(V:r times, V*: s times) in particular T = T", T2 = T,, T = R.
An element of T/ is called a tensor of type (7, s).
1.3.11 Remark
(i) T*W),T,(V)and TF are vector spaces in a natural way.

(i)  We make a convention that both 0-covariant and 0- contravariant
tensor are real numbers, i.e. T°(V) = T,(V) =R

1.3.12 Examples

(i)  Any linear map w:V — R is 1-covariant tensor. Thus T, (V) = V™.
Similarly T*(V) =V*" =V

(i) If ¥V is an inner product space, then any inner product on V is a 2-
covariant tensor (a bilinear real -valued mapping, i.e. a bilinear
form).

(iii) The determinant is an n-covariant tensor on R".
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1.3.13 Definitions

In terms of a basis {ey, ..., e, } of V and the dual basis {e}, ...,e"}
of V*, every tensor K of type (r, s) can be expressed uniquely as:

K= ) KM =Kihe, ®.@e, @ ®..Q ek

J1s0]s J1u
il""'i?";jll""js

=Y Ky epel (1.44)

peﬁr,q en

Kjif,'.:}?: (there are n"*S)of them) are called the components of K with

respect to the basis {ey, ..., e, } of V, and its dual {e}, ..., e} of V*.
1.4 Linear Transformation

If f:V->W is a linear transformer it induces a linear
transformation f*: T, (W) — T, (V) defined by

(" TY(q, .., V) =T(fvq, ..., fU) (1.45)

forT € T,(W)and vy, ...,v, €V, itistrue that f*(SQRT) = f*(S) ®
f*(T). As an example of a covariant tensor of degree 2 on R", is an
inner product <, > € T, (R")

<xy>=T(xy) =X x'y/ T(e,e;) =%;;Tijx'y’  (1.46)

T = Zi,j Tijei ® e/, (1.47)
where Tl] = Tji and Zi,jTijxixj >0 lfx # 0.

Generally, we define an inner product on V to be a covariant tensor
T of degree 2 such that T is symmetric, that is T(v,w) = T(w, v), for
w,v €V, and such that T is positive definite: T (v,v) # 0.

T=Zi’jTijei®€j, TUZT

jio Zi,j Tl] vivj >0ifv+0 (148)
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It is a standard result, that if T is an inner product on V, then V has an
orthonormal basis with respect to T, i,e a basis {e,, ..., e, } such that

T (e, &) = 6ij (1.49)

Then T has the simple expansion.

T=elQRel+e?Re’+--+e"Re™ (1.50)
And
T(v,w) =v,wy +v,w, + - v,W,, = 2T w; (1.51)
If v=_vq,.... ,Up), w(wy, ... ... ,w,,) relative to the orthonormal basis

1.5 Alternating Covariant Tensors

A tensor w € T,(V) is called alternating (or skew-symmetric) if,
w(V0(1), -, VO(y) = (Sgn o) w(vy, ..., v,) for all permutations o of
{1, ..., k} such a tensor is called a k-form on V, the set of all alternating
covariant tensors of degree K is a subspace of T, (V) denoted by A*(v).

If T € T,.(V), we define Alt(T) by

Alt(T)(vq, ..., V) = %Zoesk(sgn 0) * T(Vo1), r Vo))  (1.52)

where Sy, is the set of all permutation of {1, 2, ..., k}.

1.5.1 Lemma

(i) If T € T, (V,then Alt(T) € A,(v).
(i) If we A, (v),then Alt(w) =w.
(iii) If T €Tp(V), then Alt(AltT) = Alt T.

i,e (Alt)? = Alt (idempotent) or Alt : T, (V) —» A, (V) the range of Alt
IS a projection .
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It follows that T, (V) = A, (V) @ S (V) where S¥(V) = N(Alt)
(the null space of Alt) is called the space of symmetric tensor of degree.

Thus T is symmetric if T(Vg(1), ) Vo) = T (V1) wer) Viy).

Proof

(1)  Noting that for a fixed permutation n — o o n is bijection on

Sk, we have

1
(AT) (Vp(ay, ) Vpao) = 15 Zoesi (581 0) T(Vorp(a)s -r Voop(i)

1
= Z (sgnoop ™) T(vs. pLop(1)r Voo p=Lop(k))

O0€ESk

= % Zcesk(sgn o) T(Vc(l), ...,vc(k)) = (sgn p)(Alt T)(vq, ..., vp).

=~ Alt(T) € AX(V).
(i)  if w e AX(V), then

Alt(w)(vq, ..., vy)

1 1 ,
- E z (Sgn G) (Vo-(l)’ ""V()'(k)) = E Z (Sgn G) T(Vl, ""Vk)

OESK OESk

1
]

z (sgn 0)? Jw(vy, ..., vy)

OESK
= w(Vq, ..., Vp),

~Alt(w) =w

(iiiy If T € T, (V) then Alt(T)€e A*(V) by (i).

(1.53)

Hence

Alt(Alt T) = Alt T by (b). Now if w e AK(V) ¢ € AL(V)
then w @ ¢ is usually not in A<*(V) we there for define a new

product
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1.6 The Wedge (or Exterior) Product

The wedge (or exterior) product A : AK(V) x AY(V) - AK*L(V) by

(k+L)!
k!L!

wAp = Alt(w@p) (1.54)

1.6.1 Properties of A

The following properties of A are true
() (Wi + wy)An = widn + wyAn,
(i) wAmMl +n2)=wAnl+ wan2,
(iii) (aw)An =wA(an) = a(w An) (a € R),
(iv) wAn = (—=1Dn Aw where w € AK(V) ,n € AL(V).
V) frwan = fwAfm
(i) waAne=wAmnAe)

and so we just write w A n A ¢ for either

wAnA @ =¥ AR w @1 @) (1.55)

k!L!m!

1.6.2 Note

Since a k-form w is alternating it follows that if w € AX(V) then
w(vy,...,vy) =0, if any one of the k argument is repeated, it then
follows that w(vy,...,vg) = 0, if the vectors {v,,...,vi} are linearly
dependent , and there for AX = 0 if k > n, wheren = dim V.

1.6.3 Theorem
The set of all eP1A...AePk, 1 <p, < p, <+ < pk < n is a basis
for AX(V) which there fore haes dimension [k] = m.
Proof
If we A¥(V) c T, (V) then we can write
W =20 pe=10p.p,.p, P ® eP?Q ... QePk (1.56)

Thus
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w = Alt (w) =37 Alt(eP1 @ eP2Q ...QePk) (1.57)

Pk=1p1p, .0k

Since each of Alt(ePr ® eP2Q ... ®ePk) is a constant (O'+k_'1' or _k—l) times

|
one of eP1A...AePk, 1 < p; < p, < -+ < pp < n, these elements span
AX (V).

[Alt(ePr @ eP2 @ ... QePk) = %556611/1 .. \ek, (1.58)
where

6g =det(8})) =sgno,ifp=qoo] (1.59)

To show that {ePiAeP2A..AePk}1 <p; < p, < <px<n, IS
independent, we note that

sgno,ifp=qoo=28"
eP1AePz2A ... AePk(e, ,...,e, ) = ! 1.60
( 4 qk) { 0, otherwise (1.60)
Thus if
Y1<p,< py<--<pr<n Ap,p,.p T ACPZA L AePk =0 (1.61)

Thenfor 1 <p; < p, < < pr < n,we have

— pl pz pk
0= Xi<p,<p,<-<py<n Ap,p,.p 7 A€P2A .. Ae (ech""’eCIk)

— b _
- Z15F)1< p2<-<Ppk=n aPlPZ---Pk(sCI - aCI1Cl2---CIk (162)

If we A¥(V) then
W = Y1<p,< py<-< pg <n WgeplAePZA ... \ePk (1.63)
Where
Wp = Wp,p, .pj = W(ep,, €p,» -r€p,) (1.64)
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1.6.4 Note

if dim V = n, then A"V has dimensionl, this means that n-forms
on V are multiple of any non-zero one.

1.6.5 Example

The determinant function D an n-form on R™ the element of A"
(R™) uniquely determined by setting D(ey,...,e,) =1, and its value
D(x%,...,x™) at n-tuple < x!,..,x">ER"XR"x..XR" is the
determinant of the matrix x = (x;;), whose j the column is x/, j=
1,...,n. Thus

D = D(ey, ..., e,) e1Ae?A ... Ae™ = elAe?A ... Ae™
D(ﬁl, ...,g") = elAe?A ...Ae"(gl, ...,g”)

= nlAlt(e'®e?® ... ® e™)(x1, ..., x™)

1
= n!a Z (sgno)(e'®..Q e")(g"(l), ...,g“(n))

OESh
= Zaesn(sgn o) X16(1)X20(2) =+ Xno(n) (1.65)
1.6.6 Example:

. X11 X712
i |

X21 xzz| = Loes, (S9N 0) X15(1)%20(2)

Sy (1;) sgn=1, Gi) sgn = —1.

z (sgn o) X1o(1)X20(2) = X11X22 — X12X21
O'ESZ

X11 X12 X13
X21 X2 X323
X31 X322 X33

Ssi (195) son =1, (y73)s9m==1(357) sgn=—1

26
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= Zaesg (sgn o) X10(1)X20(2)X30(3)




(1;2) sgn = —1, (;g?) sgn =1, (éig) sgn = 1.

Z (SgN 0) X15(1)X26(2)X30(3) = X11X22X33 T X12X23X31 +
0'653

X13X21X32 — X12X21X33 — X13X22X31 — X11X23X32.

1.6.7 lemma

Let ey, ..., e, be abasis for V and let w € A°(V). If v; = 3L, a;je;
, 1 <j < n,arenvectorsinV, then

w( vy, ..., vp) = det(a;;)w( ey, ..., e,) (1.66)
Proof
Define n € T, (R™) by
nay, ., ay) =wQie,ai1€i, - tieq Ain€i) (1.67)
Thenn € A"(R™) and so
n =Adet,1€ER (1.68)

Hence n (64, ..., 6,) = A1 = w(ey, ..., €,)S0 that

n n
W(Ul, . Un) = W(z aé;, ,Z ainei)
i=1 i=1
= n(a4 ...,a,) (1.69)
=w(ey, ..., ey).det(ay, ...,ay) = det(a;;)w(ey, ..., ep) (1.70)

it follows that for 1 < p; < p, <+ < px <n,

(eTtAeT2A ... AeT) (v, ..., vy,) = det(t;) (1.71)
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where t;; = e9i(v;), itis true that if f:V — V is linear and dimV =n ,
then f*: A™(V) - A™(V) is multiplication by det f.

Now let M be a C*-manifold with each point p € M, we have associated
a vector space, the tangent space M,,, thus we can perform tensor products
on M, ,and get the tensor spaces T, (M,), space of covariant tensors of
degree k on M,, i.e

T, (M,) = M;QM; ® ... QM;; = ®FM;, (1.72)
Similarly T"(Mp), space of contra variant tensors of degree k on M,,.
TEMy) = M, @ M, @ ..Q M, = QM, (1.73)
and the space of tensors of type (7, s),
TI(My) = M, ® ... @ M,QMS ® ..QMS = TT(M,)®T;(M,) (1.74)

Also A¥ (M,) is space of alternating (skew-symmetric) covariant tensors
of degree k (k-forms) over M,,.

1.7 Transformation Laws for Tensors

For a change of a basis of V, the components of tensors are subject
to the following transformations.

Let e,,...,e, and e, ..., e,, be two basis of V related by a non-singular
linear transformation,

EL=Z]A{e],l=1,,n, el=Z]BlJEJ,l=1,,n (175)

where B = (Bj) is the inverse matrix of the matrix 4 = (4}) (herei isa
row index (the upper index), j a column index (the lower index)) so that
Y A{B}‘ = 8. ,the corresponding change of the dual basis in V* is given
by

e =YBei=1.,n e=3A¥¢,i=1.,n (L76)

To derive the first equation we have

28



e =Y, (e)el =€ (Ble) el =3 BF (e eel, (L77)
YxBf6;el =Y;Bjel (1.78)
And for the second
el = ei(g)e = ) el (Ake,)?
J J.k
=Y Af6) e = Y Al e, (1.78)
_11

If k is a contravariant tensor of degree its components K and K
with respect to e ; and e; respectively, are related by

—iy iy i by i
K == Zjb---:jr lel B]r Kjl J (179)

Also

J1-- ]r

Kll i — Z}l 11 AHK

AR (1.80)

Similarly, the components of a covariant tensor L of degree s are related
by
Li,iy = Zjpjs Al APL (1.81)

is J1--Js

and

]1 IsT
11 As Z]l ]sB B L

e (1.82)

For a tensor k type (7, s):

iq1..1
K=Y i K €, ®. .Qe; ®e1 @ ...Qes

—lpedy

= Zil'---:ir:jl:---]s K] jS ell ® ®el ®e ® . ®E]S (183)

We have the following transformation of components:

SL iq Iy gmy mg k1 kr
Kjl,...,js - Zkl ..... kr,ml,...,ms Bk1 ."Bk‘r‘Ajl A K ,mg

(1.84)
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Ky... ky

il"' iT' _ il iT‘ mq S_
I<j1'---'js - Zkl,...,kr,ml,...,ms Ak1 '"Akrle '"Bjs Kml,...,ms- (1-85)

1.8 Tensor bundles
Let M be a smooth manifold

We define tensor bundles on M as disjoint unions
(i)  k-covariant tensor bundle

T*M = Upen T*(T,M) (1.86)
(if) [ -contravariant tensor bundle

TM = Upen T.(T,M) (1.87)
(iii)  (k, 1)-tensor bundle

T*M = Upen T (T, M) (1.88)
equipped with natural C *-structures.
We identify

T'M = T,M = M X R

T'M = TM*
T'M =TM
TEM = TkM
T’M = T;M (1.89)

1.9 Tensor Fields
1.9.1 Definition: (Tensor Fields)

A tensor field of type (r,s) on a subset N of a manifold M is an
assignment of a tensor K,, € T (M,,) to each point p € N. In a coordinate

neighborhood U with a local coordinate system(x?,...,x™), we take

0

b= 1,..,n , as a basis for each tangent space M,, p € Uand
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dxt, i =1,...,n as the dual basis of M. Under a change of coordinate
(El, .., %) these are related by transformations:

d _ v ox a j a_xJ

o Do AT o

o g o ; ow

axt axlax T gxt
—zjidxf dx —Z]—d _ T i 20X g0

J = x4 v’

A tensor field K of type (r, s) defined on U is the n expressed by:

K_le ..... Ly J e ]sl(h oJs 6x11®

1Q®..Qdx’s  (1.91)

where K]lll;: are functions on U, called the components of K with

respect to the local coordinate system (x%,...,x*). We say that K is smooth
(of class C*) if its components K]lllx are functions of class C*.under a

change of coordinates (El,...,in) the components of K transform
according to

_l1 i‘r _ Z 6?1 afi‘r‘ dxd1 dx4s D1... Dr (1 92)
J1rewds T AP PrA10ls §p1 T §xPr 0%, " m;,  d1els )
i >d1 =~ds
g by _ axi1  9xir ax xS —p1... D
I(Jl ]T Zpl """ Prid1,- ds ox. e ox ) 0x i " 0X; q1,---9s * (1'93)
p1 Pr J1 Js

1.9.2 Example:
(1) for K of type (1, 0):

ox' —j
DY TR 14
oxJ - ox’

(iv) for K of type (0,1):

31



_ dx/ 0%’ _
Ki= a_fll(]’ Kid:z K]
j J

(iii) For K of type (0,2): k € T}

— —ij  NC0xFaxt O 0x X
Ki; K IZL: p g Ky Kij = WWKRL-

Because

. o 0 _x zaxk 0 EaxLa
7T o ox') o' 0x*’ La g/ 0!

X
dxk oxt

—1 —7
7 ox ox’

kL
k

Since all tensor bundles are smooth manifolds, we may consider their
smooth sections.

1.9.3 Definition

We say that a section s:M — T¥M is a (k, 1)-tensor field (recall
that T s = id,, , and so s(p) € TF ((TpM)). A smooth -tensor field is

a smooth section M — T/. Similarly, we define (smooth) k-covariant
tensor fields and [ -contravariant tensor fields. Since O-covariant and 0-
contravariant tensors are real numbers, (smooth) 0-covariant tensor fields
and (smooth) O-contravariant tensor fields are (smooth) real-valued
functions.

Denote
T*(M) = {smooth sections on T*(M)}
= {smooth k-covariant tensor fields}
T;(M) ={smooth sections on T;,(M)}
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= {smooth [ -contavariant tensor fields}
T} (M) = {smooth sections on T} (M)}
= {smooth (k, [)-tensor fields}.

If (U,x),x=(xx2?....x™), is achartand o is a tensor field in U, we
may write

o=0; . 5 dx"* Q.. ®dx',ifoisak-covariant tensor field,

o =c/r19j, ® .. & dj, if o isan [ -contravariant tensor field, or
oc=c gy @ . @ dx*dj, ® ... ® )y, if o is a (k,1)-tensor

lllk

field. Functions oy, ;, o/tJt and /'t are called the

component functions of o with respect to the chart (U, x). Again we
have:

1.9.4 Lemma

Let o be a (k,1)-tensor field on M. Then the following are
equivalent:

(i) oeT M)

(i) The component functions of o (with respect to any chart) are

smooth;
(iv) if Uc M isopenand x;...... x, € T(U) are smooth vector
fieldsin U and wt...... .. w! € 71(M) are smooth covector fields

in U, then the function
p e o(Xy oo, X Wl w! ) (1.94)

IS smooth.
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1.10 Differential Forms
1.10.1 Definition: (A 1-form)

Let TP9(M) = Uyey TP4(T,,M). A 1-form on M is a function
a: M - T%(M) such that a,, € T%1(T,,M) and (for any Y € I'(TM)) the
function a(Y) given by a(Y)(x) = a,(Y,) isin C*(M).

A tensor field of type (p,q) on M is a function S: M — TP4(M)

such that S, € T?4(T,M) and (for any 1-forms aj,...,a, and vector

fields Yy, ..., ¥, on M) the function S(ay, ..., @, Y3, ..., ¥,) given by

S(al, s U, Y1, Yq)(x) = S(alx, coos Ups Yigs won) qu) (1.95)

isin C*(M) . The space of all tensor fields of type (p, q) on M is denoted
by JP4(M).
1.10.2 Definition: (A k-form)

A k-form on M is a tensor field w € g% (M) such that w, €
A*(T,M). The space of k-form on M is denoted by A*(M). For a €
AY(M) and B € A/ (M) we define a A B € AP/ (M) by

(@AB)y =ayABy . If@:U > R" (1.96)

is a chart ¢ = (x%,...,x™)(x' € C*(U)) then dx?,...,dx™ are defined
to be those 1-forms on U with x*(9;) = &;.

Any w € A¥(M) can be written on U as
1 . .
W = EZ Wi, i dx AL A dxt (1.97)

Where w;, ;. = w(9;,, ..., 0;,) € C(U).

k
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1.10.3 Definition

If f € C®(M), then df € AY(M) is defined by df (Y) = Y[f] for
arbitrary Y € I'(TM). For o € A¥(M), we define dw to be the
(k + 1) —form that when restricted to U is given by

1 , :
dw = FE d(w;, ;) ANdx't A LA dxte

= =% 0wy, ] dx't A . A dx (1.98)

We can prove that, as define, is independent of the choice of coordinates.
In fact, dw can be defined (without reference to coordinates) as that (k +
1) —form such that for any X;, ..., X;+1 € I'(TM) we have

k+1
dw(Xq, oo, Xxs1) = Z(—1)i+1xi [W(Xq, oo Xiy ooy X )]

i=1

+ Tasicjen(—D (X X} Xy o, Ky, By o, Kiar)  (199)

where the circumflex means that symbol beneath it is to be omitted. The
operator d: A¥(M) — A**1(M) called exterior differentiation.

If aeA (M) and S €A/(M), then (from the coordinate
definition) we easily obtain d(a A B) = da A B + (—1)'a A dpB, and

d°=dod=0. (1.100)
1.4.6 Definition

If f:M—>N is a map and w € A*(N), then the pull-back
f * w € A¥(M) is defined by

(f * (l))x(Yl, ey Yk) = a)f(x) (f*xyb ,f*xYk)fOI’ Yl' ey Yk € TxM (1101)
When

k=0,f*w=wfeC”M). (1.102)
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It can be proved that

df *w=f*do,f*(@AB) = *a)A(f *p) (1.103)
And

(f°g)*w=g=*f *w. (1.104)
1.10.4 Definition

In order to integrate forms, we introduce some topological notions.
A subset W < M is closed if its complement W€ = {x € M|x & W} is
open

1.11 Differential Calculus

Let k be a commutative ring with unit and A a commutative and
associative algebra over k having 1 as its element. In Applications, k will
usually be the real number field and A the algebra of differentiable
functions on a manifold.

1.11.1 Definition

A derivation X isamap X : A — A such that
(i) X € Homk(A,A), and
(i) X(ab) = (Xa)b + a(Xb) foreverya,b € A

If no non-zero element in k annihilates A, k can be identified with a
subalgebra of A and with this identification we have X, = 0 for every
x € k. In fact, we have onlytotakea = b = 1in (iij)toget X; = 0
and consequently X, = X; = 0.

We shall denote the set of derivations by C. Then C is obviously an A-
module with the following operations:

i) X +Y)(a) = Xa+ Ya
(i)  (aX)(b) = a(Xb) fora,b € Aand X,Y € C.
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We have actually something more: If X,Y,€ C,then [X,Y] € C.
1.11.2 The Properties of Bracket Product

This bracket product has the following properties:

() [X: + X, Y] = [Xo, Y] + [X3,Y]

(i) [X, Y] = —[V,X]

i) [X,[Y,Z]] + [V,[Z,X]] + [Z, [X,Y]] = O,

for X,Y,Z € C. The bracket is not bilinear over A, but only over k. We
have

X, aY](b) = {X(a¥) — (a¥)(X)} (b) = (Xa)(Yb) + a[X, Y](b) (1.105)
so that
[X,aY] = (Xa)Y + a[X,Y] forX,Y € C,a € A.  (1.106)
The skew commutativity of the bracket gives
[aX,Y] = —(Y&)X + a[X,Y] (1.107)

When A is the algebra of differentiable functions on a manifold, C is the
space of differentiable vector fields.
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Chapter Two

Twistor Theory

2 .1 Spinors

The machinery of twistor theory is best presented in terms of
spinors. These can be regarded as the square root of Minkowski
geometry. Indeed they lie in the fundamental representation of SIL(2, C),
a double cover of the proper orthochronous Lorentz group. Much as the
introduction of the imaginary unit i simplifies and clarifies elementary
algebra, the language of spinors allows a unified treatment of physical
theories.

We begin by demonstrating the fundamental isomorphism
identifying Hermitian spinors with real vectors. This immediately extends
to a dictionary between real tensors and higher valence spinors, which we
use liberally. Simple algebraic properties of spinors are developed
rigorously, including the definition of a covariant derivative on a spinor
field.

We rewrite physical field equations in spinor language, to facilitate
their solution by twistor methods.

2.1.1 Definition: (A Minkowski Space-Time M)
A Minkowski space-time M is a four-dimensional real manifold R*
with line element given by the following expression:

ds? = ng,dx%dx? = (dx°)? — (dx')? — (dx?)? — (dx3)? (2.1)

where 1,4, = diag(+1,—1,—1,—1) is the Minkowski metric. Here x° =
ct denotes the temporal coordinate, with ¢ the speed of light, the
remaining coordinates (x1!,x2,x3) represent spatial coordinates. The
indices a, b assume the values 0, 1, 2, and 3 in this formula. Throughout
this thesis, we will use Einstein's convention where summation is
assumed on repeated indices.

2.1.2 The Light Cone Structure

Each point in Minkowski space-time can be characterized by four
coordinates with respect to an arbitrary origin (x°,x!, x2,x3). Such a
point is called an event in space-time. To each event we can associate a
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corresponding light-cone given by the vanishing of the form ds? in (2.1).
This surface determines three regions of interest in space-time:

(i)

(if)

(iii)

The interior of the cone, characterized by ds? > 0. This inequality
implies that the interior of the cone is causal; since the speed of
propagation is less than c. Vectors joining the event E with points
in the interior of the light-cone are called time-like vectors. The
upper half of the cone is called future light-cone, and the lower half
is called past light-cone.

The surface of the cone, characterized by ds? = 0, where the speed
of propagation is equal to c. Vectors joining the event E with
points on the surface of the cone are called null vectors, of length
equal to zero.

The exterior of the cone, characterized by ds? < 0, this inequality
implies that the exterior of the cone is acausal, due to the speed of
propagation being greater than c. Vectors joining E with points
outside of the cone are called space-like vectors.

Figure 11: The light-cone associated to
an event E in Minkowski space-time.

We should mention that the meaning of the inequalities defining these
regions depends on the signature chosen. Here we will work with a

39



signature (+ - - -). In a signature (- + ++), space-like vectors are
characterized by ds? > 0.

2.1.3 Definition: (Lorentz Transformation)
A Lorentz transformation A% is a linear transformation of M that
preserves the metric 1,y :

AcclAlc)lnab = MNca (2-2)
or, in matrix notation

2.1.4 The Lorentz Group L = 0(1, 3)
The Lorentz group L = @(1,3) is the group of all such linear
transformations.

2.1.5 Note
From (2.3) we have

(detA)? =1or detA = +1 (2.4)

The Lorentz group is not connected, having four components. We are
particularly interested in the one that contains the identity and preserves
the time orientation, denoted L%.: Here + denotes the sign of the
determinant preserving the overall orientation, and T means that A9 > 0,
which preserves the time orientation. L% is doubly covered by SO(1,3)

2.1.6 The Spin Space

In  the Minkowski space M, consider a vector
Ve =O%VvLv2v3) (in some orthonormal frame). We use here the
abstract index notation introduced by Penrose, where the index a merely
indicates the type of quantity (vector, form, etc.) rather than assuming
numerical values.

To each such vector one can associate by a one-to-one
correspondence a Hermitian matrix as follows:

f:M - M (C)
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p 0 3 1 1193
FVe) = 44 = v'+ve v 41w ] (2.5)

5|
V2 Ilpl —jp?2 p9 — 3

where the matrix V44 can be written also as:

A4 VOO VOi )
- (Vlo VL) (2.6)

The spinor indices 4 , A take the values 0,1 and 0, 1, respectively, and
the prime stands for complex conjugation.

The determinant of the matrix £ (V%) is half the length of the vector V¢:

detf(V%) =

N R

[(V0)2 = (V1)2 = (V)2 = (V3)?] = snapV VP (2.7)

2.1.7 Definition

We define spinor space to be a 2-dimensional complex vector
space S with elements a? where A = 0, 1. These are called spinors acts.
SLL(2,C) on S in the natural way

@:SL(2,C) xS > S

A, a) — Aa (2.8)
2.1.8 Definition
We define conjugate spinor space to be the 2-dimensional complex
vector space S consisting of the complex conjugates of elements of S. The
elements are also called spinors but are written B4 to distinguish them
from elements of S. SL(2, C) acts on S according to

@:SL(2,0) xS > S
(4,8) — Aa (2.9)

2.1.9 Definition:

Let M# be an element of SL(2,C), and Mgi its Hermitian conjugate.
We can define a linear transformation of the vector V¢ by
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Ve VA4 o MA VBB MY (2.10)

If the vector V¢ is null and future-pointing, the rank of f(V%) becomes
equal to one. In this case VA4 can be factored as:
VAA = gAgA (2.11)

where a4 is a complex two-dimensional vector, and @4 is its complex
conjugate:

1

ot = [“0] and @4 =[50 1] (2.12)
a

The vectors a“ determine a complex two-dimensional vector space S on
which SILL(2, C) acts, called spin space.

2.1.10 Definition:
The following spaces can also be defined

0] S = §: the complex conjugate spin space with elements ,BA
(i)  S*: the dual spin space with elements y,
(iii)  S*: the dual of the complex conjugate spin space, with elements &4

2.1.11 Properties of Spinor
1. Note that the spinors in (2.12) have valence one. Higher valence
spinors can be obtained by considering tensor products of the spin
spaces defined above S , S, S*an S*:

AiiB A.C
\_V_J
Ky DS
o El.c..F E'.k..F' € (gs)@(gs)@(%s )®<%>s )
3 4

(2.13)

where we used the notation %DS tomean SQ ..Q S
1 —'—’kl
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2.

In our discussion of the five-dimensional conformal algebra we
will use the concepts and properties of symmetric and
antisymmetric spinors. For a spinor S of valence n we have:

§AB) = Ly o). (B) (2.14)

n!

and
gl4..B] — %Zasign(a)Sa(A) ........ a(B) (2.15)

where the sum is on all permutations ¢ and sign(o) = %1,
depending on whether o is an odd or an even permutation. These
results hold for both primed and unprimed indices.

Symmetric spinors factorize into outer products of spinors of
valence one:

Sa...p) =%4 -...Pp (2.16)

The spinors o, .... Bgare called the principal null directions of the
spinor S(p,n,d,s). This is a significant simplification of spinor
calculus. We will see shortly that antisymetric spinors simplify as
well.

In a two-dimensional space, any completely skew quantity with
more than two indices is identically equal to zero. There is thus a
unique completely skew two index spinor (up to complex
multiples), denoted €,5. This spinor is preserved by SL(2,C), much
in the way the metric n,, Iis preserved by the Lorentz
transformations in (2.2):

MEME €sp = €xc (2.17)
for any M4 € SL(2,C) . It follows that each spin space has such a

spinor attached, and whether we mention it explicitly or not, by S
we will generally mean the pair (S, €45).

. The spaces (S,eq5) and  (S,e45) are related by an anti-

isomorphism called complex conjugation. It is usually denoted by
an overbar:

43



ale S=al=qa4 €S:

ale S=adl=a4 €s (2.18)
This extends to higher valence spinors as well, for example:
aABCD = g ABCD' (2.19)

. We should remark here that if €45 is chosen such that €,; =1 in
some basis of S, we can write:

0 1 — 4B
€xp = €48 = (_1 0) = ;5 €48 (2.20)

. By convention, primed and unprimed indices can be commuted:

T =T (2.21)

A'B'CD’ cas =T acp -

In general, the order among primed (unprimed) indices matters:

T (2.22)

asc * T'eac
. Similar to the use of the metric n,;, to raise and lower indices in
Minkowski space, the spinor €,5 provides an isomorphism between
the spin-space S and its dual S* by raising and lowering indices of
spinors. Since €45 IS skew, one must be very careful when
performing these operations; the adjacent indices must be
descending to the right in order to avoid introducing a sign change.
For example:
EABaB — aA’
BPess = —BPepa = —Pa (2.23)

Likewise, €;5 and €48 raise and lower indices in the complex
conjugate space S and its dual S*:

ePys =y e$,
pPeig=—pPeip=—ps €S (2.24)
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11.

12.

9. Some important identities satisfied by the €45 Spinor are:

GABCZCB = 664' and GABECB = 65 (225)

where &5 is the spinor Kronecker delta, satisfying:

68 =ef = —€5 (2.26)
We also have:
€agecp] = 0 (2.27)
and
€ag€P = 8560 — 62655 (2.28)

These relations lead to
ed =2 (2.29)

All spinors a# are null with respect to €45, in the sense that
espaia® = aga® = 0: (2.30)

The complex conjugate relation holds as well.
A Hermitian spinor is a spinor with equal number of primed and
unprimed indices such that the spinor and its complex conjugate
are the same:
Yypcp = AaBcp = *ABCD (2.31)

Note

the skew spinor €,z is Hermitian. The Hermitian spinor €45,
€ sgcorresponds in fact to the metric n,,:

Nab = €ap€ip (2.32)

The correspondence between Hermitian spinors and tensors can be
made rigorous by means of the Infeld-van der Waerden symbols,
which establish a one-to-one correspondence between Hermitian
spinors with n primed and n unprimed indices, and tensors of
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13.

14.

valence n; in this process each tensor index a is replaced by a pair
of spinor indices AA. For example, the correspondence between a
vector V¢ and a spinor VA4 s given by

yAA = yagAd
Ve =vAigd, (2.33)
For more properties of the mixed spinor-tensor symbols ag{“i. For

simplicity, we will omit writing these symbols for the remaining of
this thesis.

We mentioned in property (3) that antisymmetric spinors simplify.
They do so with the help of the skew tensor €,5, as follows: a
skew pair of indices can be removed as an € spinor with a
contraction on the removed indices:

1
S..[4B].. = EEABS...C C.. (2.34)

From this point of view, any spinor can be reduced to a
combination of € spinors and symmetric spinors. The same
property holds for complex conjugate spinors as well. This,
together with property (3), and the fact that spinor indices only
take two values, shows that spinor calculus is much simpler than
tensor calculus.

An example of interest that will be used in section 3.3 is a valence
two skew tensor, S,;,. Such a tensor can be written as:

Sab =S pppe =S pean =Sag€ap tSap€ag (239

where S,zand S g are symmetric spinors, called the anti-self-

dual (a.s.d.) and self-dual (s.d.) parts of S,,, respectively,
satisfying:
*Tab = _iTab and Tab == SAB EArBr (236)
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15.

And
*Tap = iTap  aNd Typ = SAB (2.33)

In a Lorentzian space-time, S, , and S are related by the complex
conjugation anti-isomorphism. In general, a complex space-time
and a four complex-dimensional Riemannian manifold cannot be
distinguished, which allows the following property to bevalid in
both types of spaces. The arena for twistors, as it will be shown
soon, is a complexified compactified Minkowski space-time. One
can define an operation of complex conjugation in complexified
space- times, but this map is not invariant under general
holomorphic coordinate transformations in a complex space. In this
case, a real quantity is replaced by its complex conjugate, but a pair
of complex conjugate quantities (p, p) is replaced by independent
complex quantities (p, p).

The dual of a skew two-tensor S, is given by:

* 1
Sap = > €ab S (2.37)

where €44 1S a completely skew four-tensor. The spinor version
of e4pcaq 1S:

€abcd = €AABBCCDD = €ABCDABCD (2.38)
which can be simplified by using property (13) as
€abca = L(€ac€rpEis€cp — €an€c €EAp€nc) (2.39)
Raising the last two indices, we obtain:
ect = i (65805055 — 62856550) (2.40)

which, used in (2.37), leads to:

*

Sab = _iSABEAB + SABEAB (241)
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16.  We end this section by introducing a brief description of the spinor
connection. A spinor field a“ defines a null a.s.d. skew vector
(with a sign ambiguity)

Fop = F4p€ ppr + FA’B’ €4B (2.42)

where F,p; and F o5 are symmetric. By using property (3) we can
factorize both spinors and write:

Fop = a40p€ pgr + 04 0p €45 (2.43)

The Levi-Civita connection V, of the Minkowski space M extends
uniquely for null a.s.d. skew two-vectors to define a connection
V44 on the spin bundles, provided:

VAA €pc = 0= VAA EBrCr (244)

All these properties seem to point to the fact that spinor calculus is
indeed much simpler than tensor calculus.

2.2 The Conformal Group €(1, 3)

One of the main features of twistor theory is that it is a conformal
theory. This section shows that the conformal character arises naturally in
spinor calculus, and consequently, becomes a natural part of twistor
theory.

2.2.1 The Conformal Map

A conformal map is a map of the Minkowski space- time M to
itself which preserves its conformal structure, that is sends the metric g,
to

gab = -ngab (2-45)
for some nowhere zero smooth function (:

We should mention here that (M, g,;) and (M, g,, ) have identical
causal structures if and only if g,, and g, are related by a conformal
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transformation. The conformal structure of a space-time is in fact the null
cone structure of that space-time.

In addition to all the spinor quantities defined in the previous
section, one natural step in constructing the spinor calculus is to find the
analogue of the Lie derivative from tensor calculus, that is to find an
expression for the Lie derivative of a spinor a# in the direction of a
vector field X¢.

It can be shown that this is possible only for conformal Killing
vectors X which satisfy:

Ly Gab = kGap, (2-46)

for constant k, and indices a, b = 0, 1, 2, 3. Here L, denotes the Lie
derivative in the direction of the vector X.
(2.46) can be written as:

1
VaXp) = Ekgab (2.47)
with general solution of the form:

Xa = Pa _Mabxb + Dxa + [Z(Q-x)xa - Qa(x-x)] (2-48)
where p, , M,, = —M,,, D and g, are constants of integration.

The Killing vectors generate the conformal group C(1,3). From
(2.48) we can see that C(1,3) is fifteen-dimensional, depending on the
following parameters:

(i)  Ten of them, p, and M, generate the Poincaré group which is

given by the semidirect sum of the translations p,and the
Lorentz transformations M:

Xg — My x? + p, = —Myx? + pg: (2.49)
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The Lorentz transformations preserve the metric g,,, the
translations p, acton x, as:

Xg > Xq + &g, (2.50)
where &, IS a constant.
As the full symmetry group of relativistic field theories, the
representations of the Poincaré group describe all elementary
particles and is therefore of major importance.

(i) D defines a dilation, sending
Xq F PXg (2.51)
for p>0;

(iii)  Four of them, q,, define the special conformal transformations.
If the meaning of p,, Mg, and D is obvious, that is not the
case with the special conformal transformations. To determine
their significance, set all the parameters equal to zero, except
qa, In (2.48). We obtain the equation:

0xq
Xq = % =2(q - x)xq — qq(x - x) (2.52)

with solutions:

Xq(0)—sqqA(0)
2.
1-2s(q-x(0))+s2(q-q)A(0) ( 53)

Xa(S) =

where A= x,x* = x * x.

2.2.2 Note

We obtain infinite values of X, at the zeros of the quadratic
denominator. This suggests introducing some points at infinity in
Minkowski space, thus compactifying it. The role of the special
conformal transformations is to interchange the points at infinity with
finite points of M.

To describe the points at infinity, one considers first
a six-dimensional real manifold with a flat metric of signature (2, 4)
which in coordinates (t, v, w, X, Yy, z) has the form:

ds? = dt? + dv* — dw? —dx? — dy? — dz* (2.54)
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The O(2, 4) null cone is then given by:
t2+ vi—w?—x?—y?— 22 =0 (2.55)

The group ©(2,4) preserves the form (2.54) and is 2-1 isomorphic
to the conformal group C(1, 3):

The compactified Minkowski space M consists of M with a null
cone at infinity, and the special conformal transformations interchange
this cone with the null cone of the origin.

Figure 12: The null cones of the
origin and infinity.

Although we started this section with the apparent goal of defining
a spinor Lie derivative, the real purpose was to show that the conformal
group arises naturally in spinor theory. Like the Lorentz group, the
conformal group is not connected either. The component of interest is the
one that contains the identity, denoted by CI(1, 3), doubly covered by
SO(2, 4).
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2.3 Elements of Twistor Theory
2.3.1 The Concept of A twistor
There are many ways to visualize a twistor:

(i)

(if)

(iii)
(iv)

Geometrically, a (null) twistor can be described as an entire light
ray (the "life" of a photon: its past, present, and future). A space-
time event E will then be thought of as the family of light rays that
pass through E, with an S2 topology. This family of light rays is
called a celestial sphere.

Twistors can also be defined in terms of physical quantities
characterizing the classical system of zero-rest-mass, such as
(null) momentum P%, and angular momentum M,,. In this
approach, twistors transform in a natural way under the group
SU (2,2), and in particular under the Poincaré group. Twistors can
also be defined as elements of the natural representation space C*
for SU(2,2), via the following covering maps:

2:1 2:1
SU(2,2) — SO(2,4) — €1(1,3) (2.60)

Twistors can be viewed as solutions to a diferential equation,
called twistor equation.

From another geometric point of view, the locations of twistors
can be described in terms of the geometry of a three-dimensional
complex projective space, as totally null 2-surfaces, called «a-
planes:

2.3.2 Complexifed Minkowski Space-Time

For a complete description of twistors we will need an upgrade of

the Minkowski space time, namely the complexifed compactifed
Minkowski space, CM¢. We discussed briefy the compactifcation of M,
denoted M, in section (2.2)

2.3.3 Definition

CM is a four-dimensional complex manifold, C*, endowed with a

non-degenerate complex bilinear form n, such that:

n(zw) = 2'wW-z'w!-22w?-Z*wi=z,w, (2.61)
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where z=(z9%z%,2%,z3) and w = (W% wl, w2 w?) are arbitrary four-
complex dimensional vectors.

As in the real case, to each vector z¢ in C* we can attach a matrix
AA.

p 0 3 1 P2
Za N ZAA — (Z1 + Z 5 Z 0+ lZ3) (2.62)
Z- — Uz Z  —Z

but this matrix is not Hermitian in general

2.4 The Twistor Equation
2.4.1 Definition The Twistor Equation

The twistor equation is a solution of a diferential equation:
vA 4ge =0 (2.63)

Here V44 denotes the spinor covariant derivative from equation (2.44).

Twistor theory is a conformal theory. This is derived from the fact
that (2.63) is invariant under a conformal rescaling of the metric tensor,
and of the epsilon spinor:

Jab = 0%gan  and  éyp = Qeyp (2.64)
2.4.2 Solution of Twistor Equation

The general solution of (2.63), depending on the point x € CM,
has the form:

7A(x) = wh — ixAm; (2.65)
where w# is a constant of integration, and 7; is a constant associated

with this specifc solution. x44 s the spinor version of the position vector
x% with respect to some origin.
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2.4.3 Note
The solutions ¢4 are completely determined by the four complex
components of w# and r; in a spin-frame at the origin.

2.4.4 Difinition : The Twistor Z“

The twistor Z% is pair of Spinors (w4, 1) if Z represented by
(w?,14) then we can take twistor components

7% =(2%2%72%73) = WO, wt, my, mp) (2.66)
2.4.5 Difinition: a Conjugate Twistor

We define a conjugate twsitor Z, = (W,ﬁ‘i) to have components

Zy = (7o, Ty, Who, wht)
2.4.6 Definition: The Twistor Space

The collection of all twistors determines a four-dimensional
complex vector space, called twistor space, and denoted by T.

The four complex components of Z%* completely determine the
solutions ¢4(x). ¢4 is called the spinor field associated with the twistor
A
2.4.8 Definition

A twistor is a pair of spinors related by a diferential equation, or as
a nonzero four-dimensional complex vector.

2.4.9 Geometrically
The location of the twistor Z% is given by the vanishing of the
associated spinor 4. This gives the equation:

7A(x) =0 = wA = ixAny (2.67)

2.4.10 A Complex Conjugate Twistor Equation:

Since in spinor theory each equation is accompanied by its
complex conjugate, we can also define a complex conjugate twistor
equation:
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VA KB — g (2.68)
With solution
PA(x) = 7A — ix*y, (2.69)

2.4.11 Definition: The Dual Twistor Space
The pair of spinors (v, {4)determines a dual twistor W, and the
collection of all dual twistors is called the dual twistor space,T*.

2.5 Twistor Pseudonorm
2.5.1 Definition: (The Norm of A twistor

We defne the norm of a twistor by:
2972, =W, + mwA=wOT,tw' Ty + mgw® + myw ! (2.70)
where we used that the conjugate of z¢

2.5.2 Definition: The (pseudo) Norm
By introducing new variables (w, x, y, z) € z% via the relations

wl=w+y wl=w+z, tg=w—y, mi=w-—1z (2.71)
(2.70) becomes:

2%, = WW + XX —yy — zZ (2.72)
z%Z, is called the (pseudo) norm of the twistor z¢.

2.5.3 The Helicity of The Twistor z“
The following quantity is called the helicity of the twistor z%:

1 =
==z%z
Z 2 a
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2.5.4 Classification of Twistor

Based on the sign of the helicity, twistors can be classified as:

0] Null, if ), = 0. This defnes the space of null twistors, N:
(i)  Right-handed, if Y > 0. This defines the top half T* of the

twistor space T:
(i)  Left- handed, if ), < 0. This defines the bottom half T~ of T

The case when the helicity is equal to zero is of particular interest. For a

fixed twistor, w4 and 4 are constant spinors, equation (2.67) can then be

regarded as an equation for x44 .

The solution of this equation is in general complex, and is given by
Vx4 = x44(0) 4+ 244 (2.73)
where A4 is an arbitrary spinor and x44 (0) is a particular solution.

Since the Minkowski space is an affine space, we can adjust the origin
such that the particular solution is in fact the solution at the origin.

If real solutions exist, then x44 = ¥44  and we obtain that:
2%Z,= WA, + mywd = i XM, - iMA T = 0 (2.74)

We see that real points can only exist in the region of the twistor space of
zero helicity.
It can be shown that if (2.74) holds and w4 # 0 , the solution space of

(2.67) in M is a null geodesic for real values of r:
XM = xAM(0) + rénd (2.75)
If m; =0, the twistor (w#,0) can be regarded as a twistor at
infnity, lying in the compactifcation of the Minkowski space. This twistor

is denoted by I, and is represented
by the matrix:

0 0
g =(, 4s) (2.78)



Its dual (and twistor complex conjugate) is:

[aB — (ESB 8) (2.79)

This is one other way of obtaining the compactification of the
complexifid Minkowski space, by adding a twistor at infinity.

The infinity twistors are objects which break the conformal invariance:
the conformal group SU(2,2) acts on the twistor space ~ C*/{0}, but

only the Poincaré group (which is a subspace of SU(2,2)) preserves
18,

2.6 a-Planes and B-Planes
The locus of a twistor Z% in CM is given by the region in which its

associated spinor field {4 vanishes, leading to the equation:

wA = ixA4m, (2.80)

The solution of this equation is described in (2.73). Since A4 varies, we

obtain a family of vectors xA4 passing through xA4 (0). Their endpoints
determine a complex two-plane with tangent vectors of the form

vA = Q474 (2.81)
for fixed w4 and varying 14.
One can easily show that these vectors are null:

vV = (A1) (i) =0 (2.82)
And mutually orthogonal:

vaWe = (M) (i) = 0 (2.83)

This last relation also tells us that the metric n this complex two-plane
inherits from the Minkowski space is null, since:

nw,w) = ng,viw, = vw, =0 (2.84)
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It follows that the locus of the twistor z% is a null two-plane in
complexified Minkowski space. Such a plane consists of all the end
points of the complex vectors pr originating from the point xA4 (0),
and is called an a-plane. a-planes are totally nulltwo-planes that are self-

dual.

/ o-p lane
A

Sl (V)]

Figure 13: The a-plane is determined by the
endpoints of the vectors corresponding to the

solutions of the null twistor equation.

2.6.1 Solutions of the Null Twistor Equation.

Similarly, the location of a dual twistor W, in CM is a null two-
plane, called a g -plane, which has the property of being anti-self-dual.
By setting <pA = 0 equal to zero, we obtain the following equation for

x44,

74 = x4y, (2.85)

with solution
xA4 = x A4 | pApA (2.86)

where p4 varies and v is fixed.

It is very important to note that in complex Minkowski space,
there are two distinct families of totally null two-planes: the a-planes
corresponding to Z« twistors, and the S-planes corresponding to dual
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twistors W, . This will be of interest when we discuss the interpretation
of the twistor space as a quadric in CP>.

In the case when t; = 0, there is no finite locus of the twistor Z¢.
If, additionally, w4 is nonzero, then the locus of the twistor Z% can be
interpreted as a generator of the null cone at infinity.

2.7 Projective Twistor Space

We saw from equation (2.73) that a twistor z% = (w?, 1 )
determines an a -plane; it is obvious that a multiple of Z* will determine
the same a -plane. Viceversa, an a —plane determines a twistor, but not
uniquely, only up to a scale factor A:

(WA, ) ~Awh, At 4) (2.87)
for 2 € c™/{0} . This freedom is not a shortcoming of twistor theory, in
fact it is of interest when one brings in quantum physics.

Equation (2.87) states that an a -plane is an equivalence class of
twistors [z%] , called projective twistor. The set of all such equivalence
classes (a -planes) determine the projective twistor space, IPT, in which
the a -planes are represented by points.

The extra information contained in the twistor space T compared
to PT is the choice of scale for the spinor m; associated to a particular
a -plane.

Since the twistors z* are defined in C* and obey the equivalence
relation (2.87), it follows that the projective twistor space PT can be
represented by a three dimensional complex projective space.

In general, we will use the notation z> even if we refer to the
equivalence class [z*], but in that case the components of z* in (14) will
be written between square brackets and referred to as "homogeneous
coordinates” of the corresponding point in IPT.

Similarly , 8 -planes correspond to points in a dual projective
twistor space, denoted PT*, also represented by a CIP3.In the projective
twistor space, the norm of a twistor is not well-defined any longer, but the
sign of the norm can still be used to divide the projective twistor space
into three regions, PT* ,PN and PT~ , correspondingto Y >0,
>=0 and ) <0 respectively.
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2.8 Twistor Space and Minkowski Geometry

A twistor with 2s = Z*Z, = 0 represents a null real straight line
(i.e. the word line of some particle of zero spin)

(i) If S # 0 there is no such real line, but there is in a certain sense a
"complex line".

(i)When S =0 , Z%and AZ% (1 + 0) represent the same line so
that the most directly geometrically interpretable twistor space is
the space N of equivalence classes {A1Z*}whenS =0 Z%# 0

N={{1Z%2#0,1eC} :Z%Z, = 0, Z* # 0} (36)

Which represents the set of null line in M we shall therefore consider the
space C of equivalence classes of twistors, defined like N but without the
requirement s = 0 (fig 14) this is complex projective three space CP(3)
which has three complex or six real dimensions.

Fig (14) projection of twistor space into C

It is not just the complexification of N, which would have ten real
dominions. In fact even the complex points of € may be represented as
real structure in M. The conformal transformations of M correspond to
proactive point transformations of € preserving N.
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We now consider the space of lines (projective lines) in IPT an see
the corresponding image in M.

Alinein PT is CP?! given by the intersection of two planes

Z%A, =ZFBg =0 (2.88)
Of course there is some freedom in the choice of A, and Bjg.

What is the space of these lines in PT?
Each is determined by a skew simple (0,2) twistor L.g. The
condition for simplicity can be written

3LOC[BL]/8] = Loc'BLyé' + Lo(yLSﬁ + L°<6LBV =0 (289)

which defines a quadric Qin CP > (called the Klein quadric). By
changing the coordinates we can see that Q is actually the space of
generators of the cone

T2+ V2 —-W?—X?-Y2%2-22=0 (2.90)
In C°.
Here is the change of coordinates:

[
V2
1
V == L03 + ELOl

T = (Los — Li3)

1
W = L23 + ELOl

[
X=-—=(Lyy — L
\/7( 02 13)

-1
Y =—(Lyp, — L
\/E( 02 13)

Z =%l — Loo) (2.91)

Here is the embedding of M in the cone:
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1 1
X% > (xo,z(l — xPxp), _E(l + xPx}) ,xl,xz,x3>

Thought of in R6 our cone is the 0(2, 4) null cone of
ds? = dT? + dV? — dW? — dX? — dY ? — dZ>. (2.92)

Each of its generators (except those for which W — V = 0) meets the
plane
w-vV=1 (2.93)

in a point, and the intersection of this plane and the cone is just
Minkowski space M.

So the space of generators is a compactification M€ of M. It is the
conformal compactification: the extra generators form a null cone at
infinity.

We have shown that there is a four real dimensional family of lines
in IPT corresponding to M, but we have not so far shown how to identify
them in PT.

For a twistor Z to lie on a line L it must satisfy two linear
equations. Except when the line is given by Z%? = Z3 = 0, these can be
written

C) =515 ) () @2.9%)

Where x¢ is the space-time point corresponding to L. More
concisely, if we write Z* = (w4, 4) we have

wA = x4y, (2.95)
If Z also lies on the line corresponding to yAA , then

XAANA = yAAT[A (296)
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and so the matrix x44 — yAA must be singular. The condition for this is
that x® and y%are null-separated. If in

wA = ixAA, (2.97)
we think of the twistor as fixed and solve for the point x44 we find that

xA4 = x84 4 yAnh (2.98)

for arbitrary u?.

So Z% = (w4, m4) corresponds to this alpha-plane: it is a totally null two
complex dimensional plane in complex Minkowski space.

PT CM€
Complex Projective line < > point
Point < > alpha-plane
Intersection of lines > null-separation of points

In general an alpha-plane will have no real point, but when it does it
contains a whole real null ray: if x4 is real then so is

xA4 = x4 4 riginh (2.99)

for any real r.

If Z% is the twistor for this alpha-plane then

Y (Z) = wAT, 4+ whny
= Z°2* + Z7'7° + 7°7* + 7'7°
= 0. (2. 100)

This Hermitian form ). divides PT into three regions:

Y(Z) >0 PT
Y (2Z)= 0 PN
x(Z) <0 PT-
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PN is the space of real null rays: it is a five real dimensional manifold
with a C — R structure. We could imagine discovering projective twistor
space this way.

If x4 is real then any Z lying on the corresponding line in IPT satisfies
wA = ixAAg, (2.101)
And hence has }(Z) = 0.
Thus points in real (compactified) Minkowski space correspond to lines
lying entirely in PN.
Any two twistors on a given line in PN represent null rays through the
Corresponding point in M.
So intrinsically the line in PN is the celestial sphere of the space-time
point.
Lines lying entirely in PT™* correspond to points
744 = xAA _ jyAdg, (2.102)
with yAA timelike and future-pointing, or in other words points z44 in the
future tube.
This will lead later to a very elegant twistor description of positive
frequency, using the fact that positive frequency fields can be
characterized by having holomorphic extensions into the future tube.
2.9 Geometric Correspondences
We saw that points in PT correspond to a -planes, and from (2.75)
we have that points in PN correspond to null geodesics. If an a -plane
contains a real point, then it will contain the whole null geodesic given in
(2.75).
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Figure 15: Geometric correspondences in the complexified
Minkowskispace, PT and PN.

Figure (15) describes some of the geometric correspondences
mentioned in this section: for X and Y null twistors, their corresponding
null geodesics, yyx and vy, meet at the point p. The points p and g are
said to be null separated if there is a null geodesic y joining them. Each

point will be represented in PT by a projective line (L, and L), and the

null geodesic y joining p and g in CM, becomes the intersection point of

L, and L, in PT. Each null twistor is represented by a point in IPT, and

the point at the intersection of the null geodesics yy and yy is represented
by a line passing through the points corresponding to the two null twistors
XandY .

Other geometric correspondences can be made as follows: if we

interpret (15) as an equation with x44 fixed and solve for (w*, T4), We

obtain that

wh = ix4Ar (2.103)
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with m; arbitrary, which defines a complex two-plane.

Factorization by the equivalence relation (35) leads to a CP?, with
the two-sphere topology. The fixed space-time point x determines a
Riemann sphere in IPT. If x is real, this sphere lies entirely in PN.

We obtain that a complex space-time point corresponds to a sphere
in PT, and a real space-time point corresponds to a sphere in PN.

2.10 Space-Time Points as Intersection of Twistors
Consider two null twistors Z{ and Z5 with their respective null
geodesics, yz, and y, defined as in (2.75). Since Z{" and Z3 are null,
they satisfy
787, =287, =0 (2.103)

The condition for these geodesics to meet at a point Pe M is
787, =0 (2.104)
This is called incidence of twistors condition.

Since real points can only exist in N, we may define a point in the
real Minkowski space M by the intersection of two null geodesics. From
(2.103) and (2.104) it follows that any nontrivial linear combination of
the null twistors Z{ and Z¥

7% = AZ% + uz% (2.105)

For (4,u) € C?/(0,0) will also be null and will define a null
geodesic, y,, which intersects the other two geodesics at the same
intersection point, p € M. Since 4 and u are arbitrary, (2.105) defines a
family of null geodesics intersecting at P, that is it defines the null cone
of the point P.
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Figure 16: Points are
represented by intersections of null twistors.

This null cone is a two-dimensional subspace of the twistor space
T, lying entirely in N, or can be thought of as a projective line L, lying in
PN.

The family of null geodesics corresponding to the null twistor z* in
(2.105), intersecting at the point P, can be interpreted as actually
representing the point P.

In general, any two-dimensional subspace of T can be interpreted
as a point in Minkowski space, but the point is not real unless Z{ and Z¥
are null and orthogonal.

Consider now the lines in PT which do not lie entirely in PN. An
arbitrary line passing through the two points Z* and Z§ is given by:

peb = 7875 _ 797F (2.106)

The point P corresponds thus (up to proportionality) to a simple
skew 2-index twistor P*#, satisfying:

pef = plaBl = and PpleBpYId = (2.107)

Finally, for P%# to represent a finite point of M, it is also required
that
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P .5 # 0, (2.108)
where I,z is one of the infinity twistors defined in (2.78).

It has been shown thus that twistor geometry can be used to replace
entirely the pointwise approach to the structure of space-time.
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Chapter Three

Zero—Rest Mass Field Equations
3.1 The Zero-Rest Mass Equation

3.1.1 Definition: (Helicity Operator)

The helicity operator h on a particle state is defined as the
projection of the spin operator s along the direction of the momentum
operator p. Mathematically we write h = (p - s)/|p]|.

3.1.2 Remark.

Helicity is a good quantum number for massless fields, since we
cannot boost to a frame which changes the sign of the momentum.

3.1.3 Definition: (Weyl Equations)
We define the Weyl equations for spinor field yg, ¥, on M by

5”(3#1,01-\, = O and O-Haull)L = O (3 1)

where o# = (1,0%) and a* = (1,—0c") . These describe massless non-
interacting fermion fields.

3.1.4 Lemma
g has helicity +1/2 and 1, has helicity —1/2.

Proof
Fourier transforming the first equation we obtain

UipilpR (p) = EYr(p) (3.2)

Sincem = 0wehave E = |p| and thus

(o-p)/IplYr(®) = Yr(p) (3.3)

Recall that for spin 1/2 particles we define S = o/2 whence
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hpr(@) == Pr(D)

as required. The negative helicity case follows similarly.

3.1.5 Lemma
The Weyl equations may equivalently be written

Visiat=0 and VAA,BA =0
where a has helicity —1/2 and B, has helicity +1/2.

Proof
By convention we choose

a= 1P, €S and Bi= Pr € S

Now recall that

VAL g4 = Y gaye and Vu=YoV, .

The result follows easily.

3.1.6 Definition: (Maxwell's Equations)

We define Maxwell's equations for a bivector field F on M by

dFt =0 and dF- =0

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

where F* is the SD and F~ the ASD part of F. These describe a

masslessnon-interacting source-free electromagnetic field.

3.1.7 Remark

We note that F* describes a field of helicity +1, while F~ describes a

field of helicity —1

3.1.8 Lemma.
Maxwell's equations may equivalently be written
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VA4, =0  and Vaiis =0 (3.9)

where 45 has helicity -1 and 45 has helicity +1.

Proof
An easy calculation shows that Maxwell's equations are equivalent
to
VeF) = (3.10)
and
VeF, =0 (3.11)
Now write
Fap =Wap €45+ Wip €Eap and V% = v44 (3.12)

and we're done.

3.1.9 Definition: (Zero Rest Mass (ZRM) Equations)
We define the zero rest mass (ZRM) equations for symmetric
valence n spinor fieldsy, pand ¥; g onM by

vA4 Y, =0 for helicity 0 (3.13)

3.2 Whittaker's Formula

Ultimately we are interested in fields on space-time (solutions of
some field equation -for example the wave equation) and their description
as objects in the twistor space. As a first step we consider Laplace's
equation in R3 (a static solution to the wave equation), now the twistorial
description is essentially a classical formula of Whittaker (1903).

The formula of Whittaker states that, up to a translation in space a
(local) complex valued solution to Laplace's equation in R3.
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0%¢ 0%¢ 9%
o7, + 772 + o 0 (3.14)
IS given by an integral
p(x) = foznf(H,xg + ix; cos O + ix, sin0)do (3.15)

where f(z,w) is a complex analytic function in 2-variables (with
singularities away from the path of integration). Before proving this
formula let us give it a different interpretation.

Set
q=x,+ix, ,u=x3 and exp (i0) = exp(ih) (3.16)

to be the unit circle over which we take a contour integration. Then

q—2izu+z%> G = —2ie"¥(x3 + ix; cosO + ix,sinf)  (3.17)
So that we may equivalently write the integral

n= %((x +iy) + 220 — (x + iy){?) (3.18)
(up to a modification of f) as

p(x) = ﬁ ¢ f(z,q— 2izu + z* §)dz (3.19)

We see that the 2nd argument w = q — 2izu + z2g , up to a factor of 2,
is the incidence relation between a twistor (z,w) and the corresponding
line in 3-space. It is therefore natural to view f(z,w) as a function
defined on a domain of twistor space TCP?.
3.2.1 Note

Given a point x € R3, the set of twistors incident with x (the set of
lines passing through x) form a copy of CP! c TCP! which we
write CP(x) . We then consider the integration as taking place along a
contour contained in CP1(x). We therefore very loosely have the
correspondence:

harmonic function on a domain of R3 < holomorphic function
f(z,w)on a domain of twistor space + choice of contour.
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3.2.2 Proof of Whittaker's Formula

We establish the formula (3.18). Now a solution ¢ to Laplace's
equation Ap = 0 is analytic. Let x, be a regular point for ¢: by
translation we may suppose that x, is the origin and we expand ¢ in a
power series about the origin:

o =Y,a;x" = ay +a;xt + a,x? + azx® + a;;(x1)? + a;xtx? +. (3.19)

If we write this in homogeneous parts:
®=0Q0+0;+0Q; + - (3.20)

where Q,, is homogeneous of degree n, then it is easily seen that each Q,,
is also harmonic.

Now in 3 variables, there are 2n + 1 linearly independent
harmonic homogeneous polynomials of degree n,e.g.n = 1: x,y,
n=2:xy,yz,xz,x>*—y?y?— Z? These can be generated as
follows:

Consider the function of u,x?!,x2,x3, homogeneous of degree n
in x, given by

(x% +ix cosu + ix?sinu)® = ¥r_o gx(x) cosku + Y hy(x) sinku (3.21)

Then g, = gx(xt,x%,x3) and  h, = hp(xt, x2,x3) form (2n+ 1)
linearly independent harmonic functions of degree n. By the theory of
Fourier series

gr(x) = %fozn(x3 + ix! cosu + ix? sinu)™ cos kudu (3.22)
hi(x) = %fozn(x3 + ix! cosu + ix? sinu)" sin kudu (3.23)

which gives the required form.
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3.2.3 Example
Set f(z,w) =z/w. This function has simple poles at
z =1i(u =+ |x|)/q . Evaluate the contour integral

pr(0) = (3((c+iy) +220 = (x +y)%),n)  (3.24)

along a contour surrounding the pole i (u + |x|)/q, but not surrounding
the other pole. To be more specific, take the contour |x| = 2, then the
above property is satisfied for {R3:q # 0,0 > 9|x|?> — 16u?}.

Set {x € R3:q # 0,0 < 9|x|? — 16u?}. Then for x € U, calculating the
residue, the integral (3.24) gives the harmonic function

o(x) = L (3.24)

" 24]x]

Well-defined off the x3-axis g = 0. Note that (3.24) only determines the
harmonic function for x € U, where as the function clearly extends to
R3/{x3 — axis}.

If on the other hand we let x e V. ={xeR3:q # 0,0 > 9|q|* —
16u?} , the contour surrounds the other pole and we get a different
harmonic function

o(x) = -4 (3.25)

2q|x|

In order to describe the harmonic function ¢ in terms of twistor
space we have to work a bit harder! We avoid discussion of twistor
cohomology, but to give a flavour of what occurs, we outline the
procedure to determine a global solution. Take an appropriate open cover
{U;} of twistor space TCP1.

3.2.4 Note

For a given x € R3, the integration takes place along a contour in
the corresponding Riemann sphere CP1(x) ¢ TCP' (this is where
f(z,w) is defined!) Suppose that U;NU, > CP(x) and let V; =
U;NCP(x), V, = U,NCP(x). Then we require the contour to lie in
v, NV,. Furthermore we require the twistor function f to be defined in a
neighbourhood of this contour - in fact in U;NU,and we write it as f;,.
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More generally, with respect to the open cover {U;}, we have a collection
of twistor functions ffijg defined on the intersections U;NU; . These must
satisfy the cocycle conditions and define an element of cohomology. In
the space-time context this is the basis of the Penrose transform (an
integral transform) relating sheaf cohomology on twistor space and zero-
rest-mass felds on space time.

The twistor function is replaced by an element of the cohomology
group and the field now becomes a function of an element of the
cohomology group.

3.3 Integral Formulae

3.3.1Definition
We define the future tube of complexified Minkowski space by:

CM* = Cg (T
3.3.2Remark
Recall that in quantum field theory we discard negative frequency

fields, for they correspond to unphysical negative energy particles.
Therefore we are most interested in solving the ZRM equations for
positive frequency fields. We note a field ¢, 5 on Minkowski space is
of positive frequency if it can be extended to the forward tube CM* by
analytic continuation. Using hyperfunctions one may obtain the converse
statement also. Motivated by this, we shall seek solutions of the ZRM
equations defined on CM*,

3.3.3 Theorem
Recall the helicity n/2 ZRM equations for a valence n spinor field

VA4, =0 (3.26)

V5@ == Ty e gpy fZOMe dn®  (3.27)
where

() f is homogeneous of degree (—n — 2)in Z¢
Gy Z% = (wh,m; )
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(iii) p,, denotes restriction to the line P1 c PT defined by x via the
twistor correspondence

(iv) T4 are homogeneous coordinates on P?

(v) the contour is arbitrary, provided it avoids the singularities of f and
varies continuously with x

Proof

First observe that the integral is well-defined on P!, since the
entire integrand (including the difierential) has homogeneity 0 in 7 .
Applying the chain rule we obtain

2 of awe _ . of
Vai Def (Z%) = 57 D f WA 04 ) = Doz ——5 = imipe 5 (3.28)

Now difierentiating under the integral sign we get

1
Veei.....s = Py PTTs e g T¢Px 5, TTE dr® (3.29)
which is clearly symmetricin 4 ... ... ... C and so satisfies the ZRM

equations in the form of Lemma.

3.3.4 Remark
We may regard f as a section of 0(—n — 2) on P3.

3.3.5 Remark

Our proof is incomplete, for we have not demonstrated that an
appropriate contour exists. We see in Example 3.4.7 that this is indeed a
nontrivial problem. We leave this subtle point to the rigorous methods of
3.1.3 There, we solve the problem using the fact that CM™* is Stein.

3.3.6 Theorem

have solutions on CM™* given by

V.50 = — $prois el f(Zme dn (3.30)

271
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where f is homogeneous of degree (n — 2) in Z“ and all other notation
IS as in the previous theorem.

3.3.7 Example (Wave Equation)

The alert reader may notice that we have not explicitly verified our
formulae in the case n = 0. This is not hard to check, so instead we
compute an example to develop our intuition. Consider the twistor

function
1

f@) = G (3.31)
This has homogeneity -2 in Z* so applying Theorem 3.4.1 should yield a

solution to the wave equation. For convenience set
at =id,x* + 44 and B4 =iBx*4 4+ B4 (3.32)
so that the integral reads

1 1 .
Y(x) = P @m T dm® (3.33)
Observe that an appropriate contour exists iff the poles are distinct.
Indeed any choice of contour varying continuously with x and enclosing
one of the poles becomes singular when the poles coincide. If we want
Y (x) to be well-defined on CM* we need to place some restriction on A,
and Bg.

Now A, and By define a line L in PT and hence a point y € M via the
dual twistor correspondence. We see that ¥ (x)) is singular at precisely
those x € CM which are complex null separated from y. We have that
Y (x) is singular iff L, = #(x) intersects L in PT. Therefore it sufices to
choose A, and Bg such that L lies entirely in PT~ for ¢ to be well-
defined on CM*.

We may now assume that the poles are distinct, so in particular

a’Bs # 0 (3.34)
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Let z be a coordinate on P! given by
mi; =a4 +2z03 (3.35)

Then the integral becomes

1

A,
a‘my

YO = o $ e, = (3.36)

by the residue theorem. Now since A, and By lie on the line defined by y
we have, by the dual twistor correspondence

A% = —iy44 4, and B4 = —iy44B, (3.37)
Whence we obtain

aBsi= Agx* BPxgs— Ay y* BPxgi— Ay x* BByg; + Ay BByg
(3.38)

Now using the relations
04 — 00 0i — —
xM x4 = X XpF X7 X4 = Xq X159 — XoiXgi =0 (3.39)

x4 x = xMx; (3.40)

We may conclude that

Ay BB x4y, = % A, BB x? (3.41)
Treating the other terms similarly we obtain

2
Ay BA(x—y)?

Y(x) = (3.42)

It is now trivial to check that y(x) satisfies the wave equation, as
required.
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3.3.8 Example (ASD Coulomb Field)
It is claimed that the twistor function

7172 7053
f(Z%) = log—5— (3.43)
Produces an ASD Coulomb field F*¥ where F% = E/ = iB/ and
Eoxr/rd
Let F be an ASD Coulomb field. Then by Theorem we may write
Fap = Faips = Pap€is (3.44)
In particular we have
Ey = Fo1 = —®o1
1
E, = Fy, = 5(4’11 — @Poo)
1.
E, = Fp3 = —El(fl’oo — ®11) (3.45)
Now we calculate ¢,z using the contour integral formula
1 of of " ‘
0ap(t,x,y,2) = Py p(x) = 2i me --------- 9wB fZ*)mg dre
= L g Gam ~8amo)(Obms ~0670) o i (3.46)
2mi (xlAnAn()— xOA”A”i)
Choosing local coordinates gz = (1,¢) and using the convention
500 01 _ 1 (t+x y+iz
<x1() xli) V2 (y —iz t— X) (3.47)
we get
1 _ <0 1. _ <0 ,
Oip = 1 ¢d( (84mi —628)(85ms —857) T[E’-dT[E (348)

2mi

(N2 -iz)+VZx{~ 1/V2(y+iz)i2)”
79



This has double poles at

= —V2 x+/2x2+2y2+272
o -2 (y+iz)

Denote these {; and {,. The residue at (; is

d 2(84m; — 84 O (85mi — 659)
a¢ (v +i2)2(¢ — {3)?

= ppe,

1
= —— (—89(54 — 586) — 58(5% — 63¢))

+(65(84 — 84¢1) (85 — 85C1) (v +12)/7)

Now we calculate explicitly

1-C1 = —
Po1 ( (1(y+iz) /r)= 2r3
Lz)
Poo = 5 QU QP+ /) fr=
Qoo = (yz_rng)
Whence we fiend
y

Ex == ; y Ey = F EZ == ;
as required.
3.3.9 Remark

(3.49)

(3.50)

(3.51)

(3.52)

It is natural to ask whether we can formulate an inverse twistor
transform. Givena ZRM field ¢ on CM™, what is the set of twistor
functions which vyield ¢ under the Penrose integral? This is not
immediately obvious. Suppose we are given f producing ¢ via the
integral formula with contour I" at x. Let h and hh be holomorphic on
opposite sides of I'. Then certainly f +h—h will also generate ¢.
Indeed we now proceed to reformulate the ideas of this section in the

language of sheaves, thus obtaining a bijective transform.
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3.4 Penrose Transform

3.4.1. Radon Transform

Integral geometry goes back to Radon who considered the
following problem: let f:R? - R be a smooth function with suitable
decay conditions at oo (for example a function of compact support as
shown below)

and let L — R? be an oriented line. Define a function on the space of
oriented lines in R? by

o(L) = [f (3.53)

Radon has demonstrated that there exists an inversion formula ¢— f.
Radon’s construction can be generalized in many ways and it will become
clear that Penrose’s twistor theory is its far reaching generalization.
Before moving on, it is however worth remarking that an extension of
Radon’s work has led to Nobel Prize awarded (in medicine) for pure
mathematical research! It was given in 1979 to Cormack, who unaware of
Radon’s results had rediscovered the inversion formula for (3.53), and
had explored the set-up allowing the function f to be defined on a non-
simply connected region in R? with a convex boundary. If one only
allows the lines which do not pass through the black region
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Fig (17)

or are tangent to the boundary of this region, the original function f may
still be reconstructed from its integrals along such lines. In the application
to computer tomography, one takes a number of 2D planar sections of 3D
objects and relates the function f to the (unknown) density of these
objects. The input data given to a radiologist consist of the intensity of the
incoming and outgoing x-rays passing through the object with intensities
I, and I, respectively

o(L) = L%zlogll —~logly = — [ f (3.54)

L
where dI/l = —f (s) ds% = —f(s)ds is the relative infinitesimal intensity
loss inside the body on aninterval of length ds.

The Radon transform then allows to recover f from this data, and
the generalization provided by the support theorem becomes important if
not all regions in the object (for example patient’s heart) can be x-rayed.

3.4.2John Transform

The inversion formula for the Radon transform (3.53) can exist
because both R? and the space of oriented lines in R? are two
dimensional. Thus, at least naively, one function of two variables can be
constructed from another such function (albeit defined on a different
space). This symmetry does not hold in higher dimensions, and this
underlines the following important result of John. Let f: R®> - R be a
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function (again, subject to some decay conditions which makes the
integrals well defined) and let L € L < R3be an oriented
line. Define

o) = [f (3.55)

L

, OF

¢(0~’1 , U, By .32) = fjooof(als + B1 azs + ﬁz's)ds (3.56)

where (o,/) parametrize the four-dimensional space T of oriented lines in
R3. (Note that this parametrization misses out the lines parallel to the
plane x5 = const. The whole construction can be done invariantly without
choosing any parametrization, but here we choose the explicit approach
for clarity.) The space of oriented lines is four dimensional, and 4 > 3 so
expect one condition on ¢. Differentiating under the integral sign yields
the ultrahyperbolic wave equation

o’ 9% _
02,08, 0aydB;

0 (3.57)

And John has shown that all smooth solutions to this equation arise from
some function on R3. This is a feature of twistor theory an unconstrained
function on twistor space (which in this case is identified with R3) yields
a solution to a differential equation on spacetime. After the change of
coordinates

a,=x+y,a,=t+z,=t—z=t-z, B, =x—y (3.58)

the equation becomes which may be relevant to physics two times! The
integral formula given in the following section corrects the ‘wrong’
signature to that of the Minkowski space and is a starting point of twistor
theory.
3.4.3 Penrose Transform

In 1969, Penrose gave a formula for solutions to the wave equation
in the Minkowski space

BO(x,y,z,t) = gﬁrcwlf((z +t)+ (x+ iYL (x—iy)—(z—1t)A, /1) daA
(3.59)
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Here I' c CIP! is a closed contour and the function f is holomorphic on
CIP* except some number of poles. Differentiating the RHS verifies that

2’0 9%0 9%  9%p _
atz  9x2  9y2 azz_o (3.60)

Despite the superficial similarities, the Penrose formula is
mathematically much more sophisticated than John’s formula (3.56). One
could modify a contour and add a holomorphic function inside the
contour to f without changing the solution ¢.

The question we now discuss is how fields in M are represented in
twistor space. We shall find that the general zero-rest-mass free fields can
be remarkably concisely represented by holomorphic (complex analytic)
functions g(Z%) and f(W,)on the twistor space and its dual, C*. But in
order to make the correspondence we must take suitable contour integrals.
Thus only the residues at the poles of f will be physically meaningful;
consequently formalism will be based on contour integrals in C.

3.4.4 Lemma
A function f(x44,74) on F pushes down to a function on P iff

4V, 4f = 0 inevery coordinate chart.

Proof
We demonstrate that this is equivalent to the stated condition in our
preferred patch (P!,M!,F!). Then the general result follows by a

combinatorial argument. Clearly f(xAA,nA) yields a function on P! iff is
constant each a-plane defined by x44 and ;. We observe

1AV if =0 & Vuf = &,my for some &, ()
o f = Empxtt = Ew, (3.61)
and the result follows.

3.4.5 Remark

In particular a function f(x44,7;) on F pushes down to a twistor
function iff the given condition holds in the non-projective sense. We
shall make frequent use of this observation
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3.4.6 Theorem
HY(PT*,0(-n— 2)) =
{ZRM fields @ 5 of helicity n/2on CM*} (3.62)

where we may view the set of ZRM fields as a group under addition since
the ZRM equations are linear.

Proof

The avour of the proof is as follows. We construct a short exact
sequence of sheaves culminating in the sheaf of germs of the desired
ZRM fields. Recalling the long exact sequence in cohomology, we obtain
the require disomorphism by identifying certain sheaves as zero.

Define the sheaves Z,,(m) on F* by stipulating that ¢4 5(x,u) must
satisfy the following conditions

(i) @4 g isasymmetric holomorphic valence n primed spinor
fieldon F*

(i) @4 g ishomogeneous of degree minm

(iii) @4 g satisfies the ZRM equation V44 ¢; s = 0 throughout
F+

3.4.7 Note
Immediately that Z,(0) consists of symmetric n index primed
spinor fields which are independent of m, so there is a canonical sheaf
isomorphism
Z,(0) = {ZRM fields @4 p of helicity n/2 onCM*} (3.63)
Define a sheaf morphism

P Zn+1(m - 1) - Zn(m) (3-64)

©ip..c— T Qhp. ¢ (3.65)
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We claim that this morphism is surjective, and it suffices to check this
locally by Theorem. Let @45 ¢ € Z,(m) be arbitrary. Define
pointwise for each (x44, ;) € F*

1
B.70)@os...¢ 55P5..c

1
B1D)i5..¢ 7795..c

which we can do since m; # 0 € F by definition. When 4 = 0 or
n; # 0 individually an obvious modiffcation can be made. Then clearly

neighbourhood in which P(@4 ¢) = @z ¢

Consider the special case m = 0. Let K denote the sheaf kernel of P:
Z,+1(—1). Define on F* the sheaves

scalarfields f( x, t)homogeneous of degree n}
in T which push down to twistor functions

T(n)={

We claim that K is isomorphicto T (—n — 2). Indeed let X; s € K be
an (n + 1) index spinor field on F*, homogeneous of degree —1 in .

Xi...5 = Q4 - Bpy (3.72)
We then deduce

A A4 Py = 0= 4 ....néa(A P =0
=1 T[ACZA =0
= nAaA =0, ....nB,BB =0
(3.73) = XA.....B = T4 ....n,;f(x, ﬂ) =0

Now since  # 0 the ZRM equations imply

m; VAAF =0 (3.74)
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which is precisely the condition that f pushes down to a twistor function.
Observe also that f is homogeneous of degree (—n — 2) in m. The
converse is obvious.

We thus have a short exact sequence of sheaves

TL'A....TL'B TL'A
0= T(n-2)——2p1(-1)=2,(00 —0 (3.75)

Whence we obtain a long exact sequence of cohomology

oo HO(F*, Zy (—1)) > HO(F*,2,(0)) >

HY(F*,Zpy1(—n—2)) » HY(F*, Z11 (1)) (3.76)

We now identify these groups.

(i)

(i)

(iii)

(iv)

Suppose s(x,m) € H°(F*,Z,,1(—1)). Then s is a global
section of Z,,,(—1) over F*. For fixed x, s defines a global
section of O0O(-1) over P!, so s = 0. Thus
HO(F*, Zp1 (1)) =0.

H°(F*,Z,(0)) is clearly the desired group of ZRM fields on
F*.

Observe that we may canonically identify T (—n — 2) with the
sheaf of twistor functions homogeneous of degree (—n — 2) on
T* which itself is naturally intepreted as the sheaf O0(—n — 2)
on PT*, . We may therefore write Hl(F+,T(—n—2)) =
HY(PT*,0(-n— 2),)

We note without proof that CM™* is Stein. Since Z,,.,(—1) is a
sheaf of holomorphic sections of a vector bundle. Thus the
pullback G of Z,.,(—1) to CM* has H1(CM™*,G) = 0. Recall
that H'(PP',0(—1)) = 0. Hence the pullback H of Z,.,(—1)
to P! has HY(P!,7) = 0. Applying a suitable Kiinneth
formula, we get H*(F*,Z,,1(—1)) = 0.

Therefore we may conclude that §* provides the required isomorphism in
the statement of the theorem, and our proof is complete.
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3.4.8 Remark

We may regain the contour integral formulation of the Penrose
transform by explicitly analysing the map(8*)~1. Recall that to define §*
we F* consider the cochain complex of sheaves on F*

0-CT(—n—2)) - C%(Zy41 (1)) > C°(Z,(-1)) - 0
ld lLd ld

0-CHT(—n—2)) > CYZpy1(-1)) > C(Z,(-1)) -0
ld ld ld

Choose a cover which is Leray for all the given sheaves on F* and
work with Cech cohomology.

Letf;; € H'(PT*,0(—n — 2)). Then by commutativity of the
above diagram

Tjf...Tg fij € Hl(PT+, O(—n — 2)) (3.78)
Therefore we may write
T4 - Tg fij = PiWjla...c (3.79)

for;4..¢ € C°( Zy41(—1)). Now define

Vi =Wa.gm € C(Z,(0) (3.80)

and note that ;4 5 € H°(Z,(0)) by the isomorphism
HY(T(—n—-2)) = H°(Z,(0)) proved above. Thus there is a ZRM

PiVi.s=Vii.s= Vji.s T (3.81)

Now for fixed x we know that p, f;; defines an element of O(—n — 2)
over P'.Therefore 7y ....m5 py f;; is an element of O(—1) over P'.
Employing Sparling's formula we may therefore write
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.1 £ - .
Wi = 1 5 $ () Ga S pfor WA, E)GS¢

1

= — $ 4. g pufor WA, {3)0edlC (3.82)

2T

3.4.9 Remark

We lacked some rigour in our proof above, failing to mention the
subtleties involved in comparing sheaves on different spaces. More
complete reasoning requires the use of spectral sequences, which we have
not discussed.

3.4.10 Theorem

Proof
This proof has a similar flavor to the previous argument. Define on
F* the following sheaves
K(n) = {holomorphic functions f(x,m) homogeneous of degree nin m}
Qs(n + 1) = f spinor fields P,(x, t)homogeneous of degree
(n + 1in m; and satisfying n;V*y, = 0
Define a sheaf morphism D, : k(n) - Q,(n + 1) by
Daf = 4 Vuuf (3.84)

Let T (n) denote the kernel of D, and identify as before

T (n) = {scalar fields f (x,m) homogeneous of degreen
in T which push down to twistor functions}

Now we have a short exact sequence of sheaves
Dy
0> TMm o k(n) > Qun + 1)

whence we obtain a long exact sequence of cohomology

89



0 - H°(F*,T(n)) » H°(F*,k(n)) - H°(F*,Q (n + 1))2
HY(F*, T(m))H*(F*, k(n))

We investigate each of these groups in turn.
(i) Letf € (F*,T(n)). Then we may write

fOom) = py 5l b (3.85)

where u; 5 is a symmetric holomorphic spinor field on ‘cmM*. The
push down condition is

nlmA .. wBVoeps g =0 (3.86)
Ve bigy =0 (3.87)

Hence we may identify HO(F*, T (n)) with the group T (n) of u4 3
on cM* satisfying this equation.

(i) Let 2 € H°(F*, k(n)). Then we may write
A= A p(x)mh ... 7B (3.88)
where A4 gz is a symmetric holomorphic spinor field on cm*.
There are no additional constraintson A5 z so we identify
HO(F*, k(n)) with the group A,, of such 4; 5.
(iii) Let Y, € H°(F*, Q4(n+ 1)) and write
Y4 =Pas.cCOnt .. ° (3.89)
where 1,4 ¢ 1S a holomorphic spinor field on cM* symmetric

inits (n + 1) primed indices. The defining condition for
Qu(n+ 1) gives
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nPrh .. ”CVSEDA.....C’A =0
A V?DIIJA.....ch =0 (3.90)

We identify HO(F*, Q,(n + 1))with the group y1,, of ¥4 . on cm*
satisfying this equation.

(iv)  Asin the previous proof, we somewhat unrigorously write
HY(F*,T (n)) = HY(PT*,0(n)).

(v)  Recall that H*(P*,0(n)). Also k(n) is coherent analytic as a
sheaf of sections of the trivial C-bundle over F*. Using again
that cM™ is Stein, and an appropriate Kunneth formula we

obtain HX(F*, k(n)) = 0.

Rewriting the long exact sequence in our new notation we have the
section

05T S Ay S Pliy > HY(PT,0(n)) > 0
where the reader may easily check that o is given by
o(As.¢) = Vs 6 (3.91)
We now relate this sequence to ZRM fields using Hertz potentials. Let

®,,,, denote the group consisting of (n + 2) unprimed index ZRM
fields ¢, p on cm*. Define a group homomorphismP : ¢Yl., - &, .,

by
P(Wap..p) = V?B...Vg%)s....b (3.92)
We check that this is well-defined by computing

ViV VoWas..0 = Vi VoV, p5a =0 (3.93)
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which may be verified by expanding out the symmetrisers on each side.
Moreover observe that P is surjective. We know that given ¢4 p €
d,,,, there exists Y,z p defined on cM* such that

Pa.p = Vg ----Vg¢AB....D
Vs p =0 (3.94)

since cM* is simply connected and has vanishing second homotopy
group. In particular we immediately have ¥, 5 € ¥1,, asrequired.

Finally we claim that ker(P) = im(o). For the reverse inclusion
we compute

Vs V3Varga, p.5= Vi - VaVias pja =0 (3.95)

(o}

We therefore have an exact sequence

P
0-T(M) S Ay Yhos > Ppys (3.96)

Comparing with (3.1) we obtain ®,,,, = H(PT™*,0(n)) as required.

3.4.11 Remark
We observe that an explicit inverse twistor transform exists in this
case. Givena ZRM fieldy, [

let ¥,z be a Hertz potential. We must construct a cover {U;} of PT*
and twistor functions fj;, on Uj;. Choose {U]-} with the property that.

There exists Y i € PT* such that for all z* € U; the line joining Y ¥ and
z% lies entirely in PT*.

Now suppose z* € U;NUj. Denote by Y;,Y, and Z the «-planes
in cM*corresponding to ¥ ¥, Y i and z%. Observe that Y; intersects Z in a
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point p; e cm* defined by the line joining Y ¥ and z% in PT™. Similarly
we define p, = Y, NZ € cM™.

We now hypothesise an integral formula for f,. Let Z « = w4, m5).

Choose an arbitrary contour I, from p; to p, lying in Z and define
fjeZ ) = [y Wapc..o . mPdx P (397)

We must check that f;, is indendendent of I, defines a 1-cocycle and
reproduces the potential ¥,z 5 under 5

3.5 The Solutions of Zero Rest Mass Equation

The question we now discuss is how fields in M are represented in
twistor space. We shall find that the general zero-rest-mass free fields can
be remarkably concisely represented by holomorphic (complex analytic)
functions g(Z%) and f(WW,) on the twistor space and its dual C*. But in
order to make the correspondence we must take suitable contour integrals.
Thus only the residues at the poles of f will be physically meaningful;
consequently the subsequent formalism will be based on contour
integration in C.

The solutions of the equations (3.13) can be represented by a set of
quantities ¢,.(P, 04,:8) where r = 0,1, ...n; 04,/% are a pair of basis
spinors at the point P and

¢r = Pap..p 1 ..1° OF .. OF (3.98)

r n-r

Now 0,4 and g define null twistor through P, namely U,, V; say, i.e.
Uy © (04, —ip?'0,), Vs © (15, —ip®% 15). (3.99)
Thus we have the quantities:

D, (Uy Vg) = ¢,(P,04,15), r=0,....n (3.100)
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If U, and,V are restricted to be null twistors with real intersection, @,

represent a zero-rest-mass field in M. Such a field may be regarded as
defined on some three-parameter initial set (Cauchy hypersurface) and
thence extended over the rest of space by the field equations. In twistor
terms it would be economic if we could describe the field on M by some
field on the (complex) 3-space C, or C*. So far it appears that we must
define the field on pairs of points U, V in C*.

Let us take the point P and define a standard tensor and spinor
reference frame such that:

uzpoo,:p°+p1_ f—p°1'=p2+ip3
V2 V2
- , 2_:.3 , 0_
F=p = 14 \/;p v=p = Pﬁpl (3.101)

§ =&, u=1u,v=1v if and only if p® is real. The field equations
(3.13) become:

Z‘? =20, 9¢, )0V = Oy /0T =0,..,n—1 (3.102)

These equation are automatically satisfied if

b, = ﬁgsK AMF(Au+2E, &+ Av)dA (3.103)

Where F is a holomorphic (i.e. analytic or regular in the complex sense)
function of three complex variables, the contour K being taken to
surround the poles of F in a suitable way. The resulting field will always

be analytic in the real sense with respect to u, v, & &,but we may
represent non- analytic fields as limits of analytic fields as limits of
analytic ones. )

A real null factor at p® = (u,v,& &) has direction given by
du: dv: dé: d€ where:

du + Ad& =0 = dé + Adv (3.104)
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for some complex A (possibly infinite). For the Minkowski metric is
2(dudv — d&d&)sothat dudv = d&dé& for all null direction. Thus
durdv:dé:df =A1:1: —A: —A. The corresponding null twistor is
Uy + AV, =W, o (7T, @) where

Ty Ty , X (—d:l)f _dcf) (3.105)
And
A=17y/Ty = Wy /W, .
Thence, as
o4 = —ipAA' Ty,

Wy, W3) = (&%, &") = —i(TTy , 1) (g i) = —iWy(u+ A&, & + Av).
(3.106)
Thus
(Wo, Wy, Wy, W) = Wo(1,4,—(u+ A8 ), —i(§ + Wv)).
If we therefore set:

f(Wy) = (W) " 2F (Wy /W, iW, /Wy, iWs /W) (3.107)
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Figurel7. The Kerr theorem

Then f(W,) is homogeneous of degree —m — 2 in W,. (We can now
check that this has the correct transformation properties under rotation for

spin % n). The final formula is:

®,(Ug V) = 5= $ A f Uy + AV, )dA (3.108)

We may now generalize by taking any U,, Vz (no longer necessary null)
thus defining complex fields on complex points Up, Vpy. It seems
(although there is as yet no completely satisfactory theorem) that the set
of such fields is extremely general. For a particular field it is clear that f
Is not unique since all the contour integrals remain the same under f —
f + h where h is regular inside the contour. We may regard this as a sort
of gauge invariance. This non-uniqueness of f would clearly lead to
difficulties for any proposed explicit formula giving f in terms of ¢, ;.

It is however easy to construct special type of solution for f. For example
¢, is called null if:

Gup..L = AuQp ....qy (3.109)

And such a field arises when the contour surrounds only a single simple
pole [24]. (Note that a general symmetric spinor may be written as
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symmetrized product of one-spinors). More generally, the algebraically
special fields

Gbap..L = a(AaB.Bc "-/1L) (3.110)

If ¢ is algebraically special (e.g.null) there is associated with it a
shearfree null congruence.

If

f(Wa) = p(Wa)/q(Wa) (3.111)

Then q(W,) = 0 is a four (real) dimensional surface in a six dimensional
space (C), and intersects. The 5-dimensional surface N in a 3-
dimensional set of points (fig.17). This represents 3-parameter null
congruence in M. By a theorem of R. P. Kerr this congruence must be
shearfree. The theorem is that acongruence of null lines is shearfree if and
only if it is representable in C as the intersection of N with a complex
analytic surface S in C (or as a limiting case of such an intersection). It
was partly this theorem that motivated the study of holomorphic functions
in twistor space.

If we suppose g = 0 is a plane (i.g g(W,) = A*W,) then we obtain the
above method a “linear” system of null lines in M (a Robinson
congruence), which we may consider to be a geometrical picture of the
(complex) twistor A% (which previously had no intuitively obvious
picture associated with it). These “Robinson” congruences are largely
what led to the name twistor, for they are shearfree, and twist with a
handedness dependent on the sign of A%A,,.

If we consider the source free spin % n massless field in M (compactified

Minkowski space), which has the correct peeling-off behavior toward
infinity, then the field will not match at infinity unless we take a fourfold
covering for odd n (two fold for n =0 mod 4). (This reflected in the
behavior of the integrals introduced above since the homogeneity degree
of f(Z) is —n — 2 and twistors are 4-valued). Rather than work with
awkward covering spaces, however, we shall make the convention that a
source-free field with the correct peeling-off properties is to be regarded
as continuous across infinity if it has the right “Grgin discontinuity” at
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infinity (i.e. a general free wave of spin % n should jump by a factor of
in+2).

Consider then the fields with correct peeling-off and Grgin behavior
(which momentum Eigen state, for example, do not have). These may be
uniquely) split into positive and negative energy fields. A process
equivalent to Grgin's harmonic analysis technique applied to the positive
energy fields is the following. Instead of Z, = Z? etc., let us take twistor
coordinates so that we get the more natural-looking Zy = (Z°,
Z1,—72%,—-73), the Hermitiam form Z%Z,, of signature ~ (+ + —-),
being now diagonalised. The orthonormal basis {Eia} then has two
vectors of positive and two of negative length. These points give us four
planes (fig.18) and the simplest possible function of positive frequency
has as its singular region just the planes shaded in fig.18. A general

function for spin % n fields of positive frequency is:

— (Z )ao(za)al
f(Z(Z) = Za0a1a2a3 (22)32"'1(23)“3"'1 fa0a1a2a3 (3112)

Where f; q.a,q, 1S @ COnstant and aga,a,a; are non negative integers
satisfying ap + a; + n = a, + a3 . If Sis the set of singularities of this
function then assuming suitable convergence S N C~" is disconnected in
two pieces, and so will yield a positive frequency field.

3.6 Quantization

We start out by considering how to connect the spin s of relativistic
dynamics, which appeared in the classical twistor picture of regular
momentum discussed above with spin s of the zero-rest-mass fields just
considered.

The momentum of a particle with zero-spin was described by
T4, (Tamy = p, ) While the position of the centre of mass is then
determined by w? = iX44m,, As
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Figure.18
7% o (w4, my) Zy o (T, 0%
We find that
iz% Z, o iwtdi, +ny do?
= X, dit, + myd(X44 T,)
= X441 d iy + mypd(XA4) T, + mp X A4 diT,
=y T,dXA4 = P,dX® (3.113)
If X44' s real. Thus, taking the exterior derivative,
idZ*Ad Z, = dP, A dX® (3.114)

And the right hand side is just the two-form preserved under canonical
transformations, i.e. by Hamiltonian equations. (For a fuller account of
this correspondence). This suggests that we should regard iZ%, Z, as
canonically conjugate variables. Thus in the passage to a quantum theory
we should expect iZ%, Z, to become canonically conjugate operators
(with Z, « 8/9Z%, etc.).

In the operator form
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P, =id/0x® (and X* = —id/0P,)
P XP — Xbp, =82, (3.115)

Units being chosen so that A = 1. Thus we shall want

7% =0/0Z, (Z, =—-0/0Z%)
And
Za Z_ﬁ - Z_ﬁZ“ == 6g ) (3116)

Where these operators are taken to act on functions f( Z,). Now ¢ is
essentially given by f(Z,), and it is clear from taking complex

function g(Z%). Now

_ 0 _ - _ -
24f(2) = 5 (2); Zof @) = Zof (D)
29 = 2°g(2); 2e9(2) = ~529(Z) (3117)

Previously we had Z% Z, = 2s, where S* = sP%, s being the spin parallel
to the direction of motion. So consider the operator S defined by

4S == 7% Z, + Z2,7% = 2(Z, 2%+ 2) = 2(Z* Z, — 2) (3.118)
Then

s9(Z%) == ((n+2) - 2)g(Z*) = sg(Z%) (3.119)

For g is homogeneous of degree (—n —2) and 2s =n whereas
Z%0g(Z)/0Z* gives kg(Z%) where k is the homogeneity degree. (One
may, incidentally, say that the fact that 55 = 4 in twistor space, i.e. its 4-
dimensionality, is related to the need for the degree (—n — 2) in the
definition of f). We also find Sf(Z,) = sf(Z,) if n = —2s, so that the
twistor field corresponding to spinors with primed indices are of opposite
helicity, as we expect. The fact the spin is half-integral is a consequence
of the one valuedness of f.
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We may inquire what is the effect of Z%, Z, when acting on the fields
¢ .... Consider

fWe) = (Q“We) f (W), (3.120)

Which is the result of Q% Z,. If Q% & (Q4,Q,4), eq. (3.120) corresponds
to:

bap..L. ™ QA¢AB....L =Yp..L (3.121)

Where 04 = Q4 — ix44'Q,,, and ¥, , satisfies the zero-rest-mass field
equation for spin (n — 1).

Similarly, if R, & (Ry, RA'), the operator R,Z“ acts so that:
d
f(We) = Rg mf(Wa), (3.122)

1. P Y,
bap..L ™ El(n + Do Vi R" + iRM Vb ap..1 = Xap..m» (3.123)

where X,z , IS a solution of the zero-rest-mass field equation for
spin(n + 1). Thus Z, raises, and Z* lowers, the helicity by one half.
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Chapter Four

Applications of Twistor Space in 3D
4.1 3D Twistors and The Biharmonic Equation

The use of complex variable techniques in applied mathematics,
and especially fluid dynamics, is dominated by two-dimensional
applications through the prescription

w=x + iy (4.1)

On the other hand, in the context of relativistic physics in four or
more dimensions, the use of twistor methods due to R. Penrose and co-
workers is becoming an ever more present tool in the hands of theoretical
physicists. The focus of much of the published work has been on time-
independent problems within the general context of theoretical relativistic
physics. In this section the idea is to present such methods as being a
routinely useful tool in traditional applied mathematics. To this end, an
example of the application of twistor theory to viscous fluid flow is
presented. In particular, the solution of various biharmonic problems will
be presented using contour integral techniques. The ultimate goal of this
work is a better understanding of the Navier-Stokes equations through the
geometry of holomorphic complex variable techniques at first sight, even
our most basic goal might seem to be an unreasonable proposal. For
example, the biharmonic equation in two dimensions, with the
w = x + iy prescription, amounts to

0202 =0 (4.2)
with the general real solution
¥ = Re{wf(w) + g(w)} (4.3)

where f and g are both locally holomorphic. This is generally regarded as
going outside the holomorphic context as it involves w in an essential
way. We shall show that equation (4.3) is in fact the two-dimensional
projection of an essentially holomorphic three-dimensional result.
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4.2.1 The Navier-Stokes Equations:
The Navier-Stokes equations are the set of nonlinear partial
differential equations that describe the flow of fluids

4.2.2 Steady Viscous Incompressible Flow

A large class of fluids can be characterized by their density p a
scalar field not presumed to be constant, and their dynamic viscosity u.
The flow is characterized by a velocity vector field v, and an associated
scalar pressure field p.

Conservation of mass is expressed by the continuity equation

9
a—’; +V.(pv) =0 (4.4)

and the conservation of momentum is expressed by the Navier-Stokes
equations

p(—‘+z-Zz) =—Vp+uviy (4.5)

4.2.3 Remedial Fluids

If the fluid is incompressible in the sense that is a constant in both
time and space, we have the condition:

V.v=0 (4.6)

To analyze matters further, we introduce the vorticity vector

w

V xXv (4.7)
We demand incompressibility but allow for non-zero vorticity. We let

H = (p + %pyz) (4.8)

4.2.4 Recasting of Navier-Stokes
If V.v = 0 then V2v = —V X v using simple identities from vector
calculus the Navier-Stokes equations may then be recast in the form
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v

1
p(a—;—z Xw)+z(p+§p22)=—uz><w (4.9)

Taking the curl of this, we get vorticity equation

ow
o Telw—w.Vy=vViw (4.10)

where the kinematic viscosity v = u/p

4.2.5 The ‘Stream Vector Potential

Since the velocity field is divergence-free, we may introduce a
vector potential ¥ such that

v=VxY¥ (4.11)
and furthermore we may choose it so that it is divergence free
V¥=0 (4.12)

In theoretical physics, notably electromagnetic theory, this is known as
setting a gauge condition. The tradition in fluid dynamics is to mainly use
the vector potential only when it can be reduced to a single function using
some type of symmetry. The resulting object is a stream function. For
example, planar 2D flow is obtained by setting (and note that this
automatically satisfies the gaugecondition)

¥=-yye, (4.13)

4.2.6 Good ldea in 3D Too
We will work with the full vector form. First of all we note that
under the assumption that ¥ satisfies V. = 0.

w = —V2y (4.14)



and the vorticity equation becomes, denoting % by:

VY = %{(( VW).V)Ux ¥ - (T x®).V) (VW) + 29} (4.15)

or indeed as

v =y x (v ¥) x 2w) wl + v (4.16)

This latter representation of the Navier-Stokes equations is well-known in
the 2D planar casewhere it reduces to the equation

2
g _ 1000 V2)

=y (4.17)

4.1.7 Potential Flow

Here w is zero and V*¥ = 0 vorticity equations satisfied as
identity. The potential ¢ is

¢(r) = [(Yx ¥).dr’ (4.18)
and is harmonic conjugate of i in 2D case
Vip =0 , VY =0 (4.19)
4.2.8 The Biharmonic Limit

When viscosity v — oo, ignore non-linearities time-independent Navier-
Stokes equations reduce to

V4Y = 0 (4.20)

which is the biharmonic limit, also known as Stokes flow. We want to
understand the biharmonic structure for the 3D vector version of

TR,

S A—| 421
ow2ow” (4.21)
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We shall focus on the solution of this equation by complex variable
methods. It is now well known (see for example lack of any solution for
asymptotically uniform two-dimensional flow past a cylinder. However,
in attempting to construct a twistor description of fluid flow we must be
able to at least solve the biharmonic equation. It is to this that we now
turn.

4.2.9 Twistor Solutions of The Laplace and Biharmonic Equation

We need anew picture to proceed. It is very well known that the
Laplace equation can be solved in terms of holomorphic functions in two
dimensions. Among devotees of twistor methods, and student of
Bateman, Whittaker, it is known that this can be carried out in three
dimensions. Want to extend to the biharmonic case .This can be done.
This is at least an opportunity to explain how to use complex methods in
3 dimensions. In 2 D we let z = x + iy . What also have a z ? (Never put
z = x + iy) but what complex structure do we use ? the key is twistor
space for 3D

The twistor space associated with R® is first, as a real space, the set
of oriented straight lines in R®. Relative to some origin O. Let r denote
the position vector of the point on a given line nearest to 0. Then r is
orthogonal to the direction of the line, which we denote by u with u.u =

1. So the set of oriented straight lines is the set.
TS? = {(r,u)eR® x S%|r.u = 0} (4.22)

This set is a naturally the tangent bundle to a complex manifold, where
S2as the Riemann sphere CPL. This TCP! (complex tangent bundle) is
the twistor space.

4.2.11 Defining A Points |

How do we define a point in ordinary space in terms of some
structure on TCP? A point may be regarded as the intersection of all
straight lines through it. This means that a point is necessarily some
vector field in TCP? that is defined globally.
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4.2.12 Defining A Points 11
To see the implications of this we introduce two open sets that
cover CP!. We can take coordinates for the sphere as & on one patch

(covering everything except infinity), and & =% on another patch,

covering everything except & = 0. Over each of these respective patches
we can define coordinates for the tangent bundle as (n,¢) and (ﬁ@ :
where the relevant vector fields are, respectively

(4.23)

4.2.13 Defining A Points 111
Consider now a holomorphic vector field. On the ¢ patch it can be

written as

)
fo(§) 3¢ (4.24)
for some fq, and on the & patch, it can be written as

fi(€) :—E (4.25)

for some f;.

4.1.14 Defining A Points IV
On the intersection of the two patches equality of the two
representations gives us

AEDED 5= fo© 5 (4.26)

If we make a Taylor series expansion of both functions,

0

O =) aigm (427)

n

Deduce that the coefficients a:, vanish if n > 2., the global vector field
smust be of the form, for example on the 7 patch:
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n(&) = a+ bé + c&? (4.28)

so that such quadratics are the only holomorphic vector fields, and these
correspond to points of C*, parametrized in some way by (a, b, c).

4.1.15 Summary of Reality and Metric
Further analysis of this system allows the identification of real

points in R®, and the construction of a natural metric. The points are real
if and only if
c=-—-a and b=-b (4.29)

The induced metric is proportional to the discriminant of the quadratic,
and we shall normalize matters such that

ds? = dx? + dy? + dz? = db? — dadc (4.30)
The metric for real points:
ds? = dx? + dy? + dz? = db? + dada (4.31)

4.1.16 The Final Point Correspondence

If we pick our coordinate system such that the real part of a is , we see
that we can take the imaginary part of a to be £y and set b = +2z.

The convention is to set:

1, (§) = (e + iy) + 22§ — (x — iy)§* (4.32)

This gives us the correspondence between real points in 3D and global
holomorphic vector fields

4.1.17 Solving the Scalar Laplace Equation

We consider a function f(n, &) defined on twistor space. This can
then be thought of as restricted to the special global sections of twistor
space represented by 7,(¢), and the ¢ dependence integrated out by

integration over a contour C. We set:
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¢(r) = [f (0,9, ©)de (4.33)

4.1.18 Laplace Il
It is easy to check ¢ satisfies the scalar Laplace’s equation. To see
this observe that

0" f (1. (5), ik
J0eD) _ (4 - gy Sren (3

0°f (1 ()6 o
! (;'; )+ g Srmen  (35)

() _ 0
Py —(25)"6 = =n, (4.36)

and that adding these three expressions with k = 2 gives zero identically
for any choice of f.

4.1.19 Note

many different choices of f will give rise to the same. Such
choices differ by the additions of functions that are holomorphic inside or
outside of C, so that one must pursue a cohomological approach in order
to state a formal isomorphism between structures on twistor space and
solutions of the Laplace equation.
4.1.20 Solving the Scalar Biharmonic Equation

How do we modify the integrand f(nz(f),f), say to some

holomorphic function g, to arrange that V*g = 0 but h(r,¢ )? We try to
build g from £ by multiplying by some prefactor, so that:

g=h(r,&)f(n.¢) (4.37)

Now

V2g = V2hf = fV2h + RVZf + 2VhVf = fV2h + 2VRVf  (4.38)

That is, as f satisfies the Laplace equation.

109



V2g = fV2h = 2VhVf (4.39)

4.1.21 Biharmonics 11
If we furthermore choose h to be linear in r matters simplify further and
we have

V2g = 2VhVf (4.40)

Let us set, w.l.o.g, h = u(§).r, so that. Vh = u(&) We also note that
) ) .
v=Zwm=La-ia+e20 (4.41)

4.1.22 Biharmonics 111
Putting this all together, we arrive at

V2g = V2hf = 2u(). (1 - €%,i(1+ 89,20 5L = 2y ) 3 (442)

We can now see that V*g = 0 of this last expression vanishes identically,
while this expression does not itself vanish unless

Nu@) () =0 (4.42)
4.1.23 Biharmonics IV
To see what is happening, we can now make matters more explicit.
We let

u($) = uy(§), u2($), u3($) (4.43)

Then
u.r =u(x +u(§)y +uz(§)z (4.44)

And

M@ (&) = (ug (&) + iy (8)) + 2u3(6)¢ - (ug(8) — iy (9))E%  (4.45)
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4.2.24 Biharmonics
In terms of these variables the proposed integral representation for
solutions of the 3D scalar biharmonic equation is just

Y= fc délxu, (§) + yu,(8) + Zu3(f)]f(7lg(f)'s;) (4.46)

orindeed , with w = x + iy

W == dilwg — (&) + Wg + () + 22u3(DIf (151, ) (447)

where

g+(&) = u1((f) + iuz(f)) (4.48)

4.2.25 The Scalar Biharmonic Problem In 2D

Suppose we want no z-dependence. We set U; =0 and w = x + iy, so
that

w = j dEfwg — ©) +Wg + OIf (e, ) (4.49)

We can write this in the equivalent form

= w j dEf, (e €) + W ] A& fy (10 €) (4.50)

Now consider the second term. This is w@(x, y,z) where @ is a solution
of Laplace’s equation and is just

$(x,y,2) = j dEf, (e €) (451)

We want this not to depend on z either. But this looks awkward given
that

Nr@) = (x +iy) + 228 — (x — iy)é? (4.52)

Actually it is not
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¢wwl+hﬂ0=1ﬁﬁXw®)+M£) (4.53)

The equation we need is

¢(x,y,z+h/2) = ¢p(x,y,2) (4.54)

This does not require that

£, + k&, €) = (1), ¢) (4.55)

Instead we need

@) +1h8,8) = £'(n.(9,8) + 9o, §,0) — g1 (6,8 (4.56)

where g, is holomorphic on and inside C and g, is likewise outside.
Cauchy’s theorem. Let’s take C to be unit circle, or to be deformable to
the unit circle. Now differentiate w.r.t h then set h = 0. We obtain, for
some G;,

of, _
f%— Go(m,¢) — G1(m, &) (4.57)

We integrate this w.r.t. n and divide by &. We obtain, for some H;,

;) = Ho@) Hi@mg)

? 3 3
and recall that H, must be holomorphic inside C and H; holomorphic
outside. Now we evaluate the integral of Eq. (4.51) using calculus of
residues. The first term in Eq. (4.55) is easy, and we get

(4.58)

2miHy(n,(0),0) = K(w) (4.59)

for some function K (w), giving a contribution to ¢ of wk(w) When we

calculate the contribution of the second term of Eq. (4.55) to the integral

of Eq. (4.51), we make the transformation & — £ and obtain an integrand

that is a function of 7 = (x —iy) —2z& — (x + iy)&2. Taking the
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residue at € = 0 gives a function of w = x — iy, also to be multiplied
by w.

The other two terms in Eq. (4.50) may be treated similarly. We end
up with four terms contributing to:

¥ = wK,(w) + wk,(W) + wK; (W) + wk,(w) (4.60)

When W is real we must have Eq. (4.24). So the fully holomorphic picture
in three dimensions projects, via the calculus of residues, to a two-
dimensional picture and generates the familiar yet superficially non-
holomorphic two-dimensional representation of solutions to biharmonic
(and Laplace) equations. In three dimensions our functions are contour
integrals.

4.1.26 The Axis-Symmetric Scalar Problem
We go back to the representation

1
W =3 [delwg - )+ wg + © + 2201 F(1,6,6) (461

withw = x + iy. We can regard this as three pieces, where we discard
the factors of a half:

W_ = w [ dEg — (O (n,(5),€) = wip_ (4.62)
Y, =w fc dég + (s‘)f(ng(f),f) =wih, (4.62)
W; = ch dfus(f)f(ng(f)'f) = 7Y, (4.63)

In order to develop axis-symmetric solutions, we need to understand the
action of the group of rotations about the z-axis. We need to bear in mind
the formula

n=w+ 2z& — wé? (4.64)

with w = x + iy. Under a rotation about the z-axis, z— z and
w — exp(i®)w this IS compatible with the action
(m, &) = exp(iD)(n, &). In seeking axis-symmetric solutions for i, o we
need to arrange that
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dég — f - exp(—i®)dég — f (4.65)
dég+ f - exp(i®)dég + f (4.66)
déusf - déusf (4.66)

To treat all of these situations together, we consider the case where.
déh(n, &) - exp(im@)déh(n, &) . To this end we consider the contour of
integration to be the unit circle and consider a basic set

= %f f§n+1 -m (468)

where fory, ,m = 0, and for ¢, m = 1. So our task now is to
calculate

Ui = o [ 6 g O+ 226 —WEDT (469)

By multiplying these by the relevant factors of w,w,z form = —1,1,0
we get an interesting set of axis-symmetric biharmonic functions. The
functions n, m themselves are now contour integral solutions of Laplace’s
equation. This is of course of interest in itself.

To evaluate this set we lety = 0 since ¥,,,,(r, 6, $) = ™ (r,6,0).
Then, we have, in spherical polar coordinates

Ynm = —f déEM=1(2 cos(8) + sin(H))™ (4.70)

2mi

Parametrizing the integral as & = e, we obtain

Unm = (22211 [ dtet™t (cos(@) + G — f) sin(6) sin(t))n (4.71)

Performing some manipulations, we see that, discarding normalizations,
if n#1.
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r*P*(cos(8)) n=0,1,223,.

lljn,ma 1 _ _ (4.72)
s PM™(cos(9)) n=-k-1, k 1,2,3,.
When n = —1 matters are quite subtle as the integral branches

depending on the sign of z! A full treatment of this is rather beyond the
scope of this paper but we note that in this case,

gm
Wrm Zﬂlj ";W + 2z& — wé? (4.73)
The quadratic in the denominator has two roots * given by
-7+ _ B
¢y = _ZMj/r r=\x2+y2+z2 W=x-—1iy (4.73)

These roots are located, using standard spherical polar coordinates, at

& =etan (g) , &_ = e cot (g) (4.74)
and we can write
T]m
-1m 4.75
Vo mef A (G TS (475)

The details of the global evaluation of this are lengthy. We note here that
when z > 0, |&,| <1 and when m > 0, the single residue inside the
unit circle

I ¥ S £ 4
Yo1m = G =) 2 (4.76)

so in particular we obtain the Coulomb field in the region z > 0 when
= 0. The reader is invited to explore the other cases.

3.2.27 Axis-Symmetric Stokes Flow

This is traditionally modelled in terms of the Stokes stream
function Ws(r, 8). The components of the velocity field are given by
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1 e, 1oy,
Yr = Z2sne 00 Y6 = 5ing or

(4.77)

What this representation is really telling us, as is made clear in modern
fluid theory, is that the vector potential ¥ for the flow is given by

Vs

-
— rsin(0) ¢

(4.78)

as is revealed, together with the fact that W it is divergence-free, by
elementary calculations with the curl and div operator expressed in a
spherical basis. A further elementary calculation in vector calculus shows
that symmetric for an axis-symmetric function f(r, 9)

f _ -1 2
vx (Y X in(®) §¢) ~ T rsin(@) (E*f)eq (4.79)

where the operator D? is given by

D2 _62f+sin66( 1 af) .80
I =2t 57 50 \sina a0 (4.80)
The biharmonic condition may be expressed as the scalar PDE

D*¥. =0 (4.81)

4.1.29 Cartesian Basis

However, this representation in some ways obscures the underlying
simplicity of the problem. To see why, we need to work with the problem
in the full vector form, and, perhaps surprisingly, recast it in a Cartesian
basis. In this way we can use the contour integral technology already
developed for the scalar biharmonic problem. We write the basis vector
e in the form

—ye, +xe, —ye,+xe, 1

€p = JxZtyz  rsin(@)  rsin(6)

Re{wlie, + e, |} (4.82)
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where w = x + iy as before. We could equally well write this down in
terms of w. Now recall that the full vector potential is given in terms of
the Stokes streamfunction by the relation)

Y = s (4.83)
= rsin(6) E¢ '
and if W is real we can write the vector potential as
W = Refw,——¥__; 4.84
¥ =Re sm[lfx-l'gy] (4.84)

The components of this with respect to a Cartesian basis must satisfy the
scalar biharmonic equation, or indeed, as a special case, the Laplace
equation. We now appeal to equation (4.62), where we note that W¥_ is
just a harmonic function. It follows that we can write the parts of W, that
are biharmonic

4.1.30 Cartesian Analysis
Cartesian components must satisfy the scalar biharmonic equation

1 1
W, = r25in2(0) g(r, ) = wwz—m_f a3/ (g)

for some complex function f. f can be expanded as a Laurent series:
Here g iharmonic and axis-symmetric and can therefore be written in
terms of the y, , functions given in equation (4.69) or indeed in terms of
normal Legendre functions and powers of r via a Laurent expansion of
f in the form

W, = ww j a ) Eiﬁl (W + 228 — W) ™ (4.85)

2mi

n=-—oo

The terms in the series can be evaluated in terms of Legendre
functions.We argue that these relations are the natural axis-symmetric
versions of (4.60). Of course, in general, we need to add in harmonic
components, just as in the 2D planar case where we canaddto ¥  any
pair k,(w) and k,(W)of holomorphic and anti-holomorphic functions. To
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treat this we look again at the representation in a Cartesian basis, this time
in the form:

Y= " 51n(9) (—sin(p)e, — Cos(gb)ey) (4.86)
We deduce that the function
_ Fs +i0
L= r sin(6) ¢ (4.87)

must be harmonic and therefore a solution of Laplace’s equation with
= 41 as described above. By packaging this up as before, we can
write these harmonic contributions to W, say Wsy in the elegant form

tp—v_vjd (n>+WJd1(n) 4.88
for some choice of complex functions g and y .
4.1.31 The Stokes Stream Function

The contour integral solution for the Stokes stream function for
axis-symmetric biharmonic flow

vy =ww o [agor (D) 4o [ aep (1) + o [ de v (3) 89)

where n is written in terms of X,Y,Z and where f,5,n, have Laurent

series expansions that generate expansions in terms of powers of y and
regular n and modified (B, y) functions.

4.1.34 Example: (Simple Twistor Function)
f constant gives a contribution to Ws proportional to

ww = 12 sin?(0) (4.90)
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We also know (at least locally) that the choice f(z) =1/z gives a
Coulomb field and a contribution to W, proportional to

ww
— =T sin?(0) (4.91)

Another interesting contribution can be generated by the choice
B(z) = ziz , Where an elementary exercise in the calculus of residues leads
to a contribution to ¥, of the form

ww 1
I'_3 =;Sll’l (9) (492)

If we take a general linear combination of these three in the form
sin?(0) {A r’ + Br + %} (4.93)

we obtain a valid stream function. The particular choice

w U 2(9) 2+3ar+a3 494
s—zsm r > o (4.94)

gives the well-known stream function for very viscous flow around a
sphere of radius a and uniform flow at rate U at infinity. Having non-
dimensionalized we would, for example, scale so that a = 1. In general
we have a contour integral technique for solving the PDE given by
equation (4.81).

4.1.35 Small but Non-Vanishing Reynolds Number

A natural question to ask is to wonder how much of the above is
dependent on the purely linear structure that arises in the biharmonic
limit. We cannot yet answer this question for a general Reynolds number
in three dimensions, but we can observe that something very interesting
happens when we (i) go back to two dimensions and (ii) consider the case
of a small but non-zero Reynolds number.

Let us go back to the non-dimensional form of (4.17). This is

119



(1, 72
D = Rgp(x—y)w) (4.95)

In terms of the complex variable w = x + iy, we can write this in the
form

0% R(oy 8% oy 0%y
Yowzow? ~ 2 <aw dwow? 0w awaw2> (4.96)
Rather than pursuing the approach of Legendre (1949) and Ranger (1991,
1994) we can consider instead the interesting physical case of small but
non-vanishing Reynolds number. Let us assume that the solution for
may be written as

Y =Py + RY, + O(R?) (4.97)
and that

Yo = Re{wfo(w) + go(w)} (4.98)

This is a very strong assumption, and it is well known that this
assumption of a power series dependence on the Reynolds number may
fail. There may not indeed be a sensible form for i, over a simple
domain of interest. We illustrate that the low Reynolds number
perturbation equation may indeed be integrated using holomorphic
methods. The result may be of use in refining the results for a certain sub-
class of problems where there is both a meaningful ¥, and the inertia
terms in the Navier-Stokes equations (i.e. the non-linear terms) arising
from Y, remain small over the entire domain of interest. Under these
strong assumptions we can proceed. The equation for i, is, under these
assumptions,

iajzfj_vz = %(fo" W) [W fy(w) + go' W) + fo)] = fo W)[wfy (w) +
90’ W) + fow)]) (4.99)
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This may be solved almost explicitly as follows. We let
F(w), G(w), H(w) be holomorphic functions with the properties

F'(w) = fo(w), G'(w)=gow), H'W)=faw)fy W) (4.100)

Then a particular solution to Eq. (4.99) is given by

Wip = %Im ((WF'(W) —2F(W))F(w) + F'(w)G(w) + WTZH(W)>

and a complementary function exists in the obvious form

Y1cr = Re{wfi(w) + g1 (W)} (4.101)

Where f; and g, are arbitrary holomorphic functions. So we can see that
apart from the practical issue on constructing the integrals in Eq. (4.100),
the first perturbation can be constructed by separate integration of the w
and W components. In fact, we have shown that the perturbative non-
linear problem may be solved in terms of free holomorphic functions
F,G, f;, g, and the solution, apart from the construction of H, is given
explicitly in terms of this holomorphic information. This observation
gives some hope that a corresponding three-dimensional structure might
exist

4.2 Non-Abelian Monopoles and Euclidean Mini-Twistors
4.2.1 Complex structure on R3

It is well known that the problem of finding harmonic functions in
R? can be solved ‘in one line’ by introducing complex numbers: any
solution of a two-dimensional Laplace equation @,, + @,, = 0 is a
real part of a function holomorphic in x + iy. This technique fails when
applied to the Laplace equation in three dimensions as R3 cannot be
identified with C™ for any n.

We shall associate a two-dimensional complex manifold with the
three-dimensional Euclidean space. Define the twistor space T to be the
space of oriented lines in R3. Any oriented line is of form v + su,s €
R where u is a unit vector giving the direction of the line and v is
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orthogonal to u and joins the line with some chosen point (say the origin)
in R3,

T = {(u,v) € s?x R3,u-v = 0}

ul=1, un.v=0

and the dimension of T is a four. For each fixed u € S? this space
restricts to a tangent plane to S2. The twistor space is the union of all
tangent planes—the tangent bundle T S?2.

This is a topologically non-trivial manifold: locally it is
diffeomorphic to S?2 x R? but globally it is twisted in a way analogous
to the M“obius strip.

Reversing the orientation of lines inducesamap t: T — T given
by t(u,v) = (—u,v). The points p = (x,y,z) in R3 correspond to two
spheres in T given by t -invariant maps

u- (uv(w) =p—(p-wu €T (102)
which are sections of the projection T — S2.
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4.2.2 Differential Equations and Twistor Functions

Introduce the local holomorphic coordinates on an open set U c
T whereu = (0,0,1) by

uq +iuy vy +ivy ug +iuy

— — Q2
)\ o 1-113 E CPl_ S ! o 1—V3 (1—113)2 3

(103)

and analogous complex coordinates (X,#) in an open set U containing
u = (0,0,1). On the overlap

A= 1/a : fi= —n/A% (104)

In the holomorphic coordinates, the line orientation reversing involution
T IS given by

W) = (-3~ @) (4.105)

From equation (102) we get the t -invariant holomorphic map
A-> (AN =(x+iy) + 2Az — A3(x — iy)). (4.106)

4.2.3 Harmonic Functions
To find a harmonic functionat P = (x,y,z)

(i)  Restrict a twistor function f (1,n) defined on U n U to a line
(4.106) P = CP' = §2
(i)  Integrate along a closed contour integral

O(x,y,2) = $_5 f(A, (x +iy) + 24z — 2*(x — iy) )dA (4.107)

(iii)  Differentiate under the integral to verify

020 020 020
0x2 = 0y? 0z2

=0 (4.108)

This formula was already known to Whittaker
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4.2.4 Abelian Monopole Equation
Small modification of the formula can be used to solve a first-order
linear equation for a functiong and a magnetic

Potential A = (4,, A,, A5 )of the form

VO =VAA (4.109)

This is the abelian monopole equation.
Geometrically, the one-form A =Ajdxf IS a connection on a U(1)
principal bundle over R3 , and @ is a section of the adjoint bundle.

Taking the curl of both sides of this equation implies that @ is
harmonic, and conversely given a harmonic function @ locally one can
always find a one-form A such that the abelian monopole equation holds.
4.2.5 Non-Abelian Monopoles Equation
Replacing U(1) by a non-Abelian Lie group generalizes this picture to

some equations on R in the following way:
Let (4;,@) be anti- Hermitian traceless n by n matrices on R®. Define
the non-abelian magnetic field

04 0Ag
oxk  ox!

Fkl == + [Ak 'Al ], k,l == 1,2 ,3. (4110)

The non-Abelian monopole equation is a system of nonlinear PDESs
a0 1
o [4;,0] = 5 EirtFr - (4.111)

These are three equations for three unknowns as ( A, @) are defined up to
gauge transformations

A- gAg~t —dgg™t, 0 - gogfor g = g(x,y,t) € SU(n) (4.112)
and one component of A (say A;) can always be set to zero.
4.2.6 Twistor Solution to the Monopole Equation

The twistor solution to the monopole equation consists of the
following steps:
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« Given (Aj(X),Q)(X)) solve a matrix ODE along each oriented line
x(s) =v+ su

av i .

—+ (WA +ip)V =0 (4.113)

Space of solutions at p € R3 is a complex vector space C™.

» This assigns a complex vector space C™ to each point of T, thus giving
rise to a complex vector bundle over T with patching matrix(/l,)T, n,ﬁ) €
GL(n,C).

Open covering

T=U 17 C

Patching matrix T=T5
F: Un U— GL(n. C)

« The monopole equation (4.111) on R3 holds if and only if this vector
bundle is holomorphic, i.e. the Cauchy—Riemann equations

o, L) (4.114)

hold.
« Holomorphic vector bundles over TCP'are well understood. Take one
and work backwards to construct a monopole. We shall work through the
details of this reconstruction in the proof of theorem 4.2.8
4.2.7 The Ward Model and Lorentzian Mini-Twistors

In this section, we shall demonstrate how mini-twistor theory
can be used to solve nonlinear equations in 2+1 dimensions.

Let A = dudx” and @ be a one-form and a function respectively
on the Minkowski space,1 with values in a Lie algebra of the general
linear group. They are defined up to gauge transformations (4.112) where
g takes values in GL(n, R).
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Let D, =0,+ A4, be a covariant derivative, and define
Dy = d® + [A, @]. The Ward model is a system of PDEs (4.111) where

now the indices are raised using the metric on R%1 . If the metric and the
volume form are chosen to be

h = dx? — 4dudv , vol =du Adx Adv (4.115)

where the coordinates (x, u, v) are real the equations become
D9 = % Fuw Dy® = Fyy D,® = F (4.116)

where F,, =[D,,D,|]. These equations arise as the integrability
conditions for an over determined system of linear Lax equations

LW=0,L,¥=0 (4.117)
Where

L, =D, — A(D, + ©), L,=D,— @ —AD, (4.118)

and ¥ =W¥(x,u,v,A) takes values in GL(n,C). We shall follow and
‘solve’ the system by establishing a one-to-one correspondence between
its solutions and certain holomorphic vector bundles over the twistor
space T. This construction is of interest in soliton theory as many known
integrable models arise as symmetry reduction and/or choosing a gauge in
(4.117). To this end, we note a few examples of such reductions.

« Choose the unitary gauge group G = U(n). The integrability
conditions for (4.118) imply the existence of a gauge 4, = 0, and
A, = —¢, and amatrix / : R** - U(n) such that

Au=]T0u] . Ay=-0=]70).  (4119)

With this gauge choice equations (4.116) become the integrable chiral
model

av(l_lau ) - ax(]_lax D=0 (4.120)
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This formulation breaks the Lorentz invariance of (4.116) but it allows
the introduction of a positive definite energy functional. Where more
details can be found.

» Solutions to equation (4.116) with the gauge group SL(2,R) which are
invariant under a null translation given by a Killing vector K such that the
matrix K 1 A is nilpotent are characterized by the KdV equation.

* The direct calculation shows that the Ward equations with the gauge
group SL(3, R) are solved by the ansatz

0 0 1
®=<0 00)
—e¥ 0 0

. 0 0 1 Y, 0 0 e 2% 0 0
A_E(O 0 0>dx+(1 -y, 0>du+< 1 0 el/))dv
e 0 0 0 04 0 0 0 O

iff Y (u,v) satisfies the Tzitz"eica equation

0N _ o o29 (4.121)

This reduction can also be characterized in a gauge invariant manner
using the Jordan normal forms for the Higgs fields for details.

4.2.8 Null Planes and Ward Correspondence
The geometric interpretation of the Lax representation (4.117) is
the following. For any fixed pair of real numbers (n, 1) the plane

n=v+xA+ ul? (4.122)

is null with respect to the Minkowski metric on R%*, and conversely all
null planes can be put in this form if one allows A = co. The two vector
fields

6o = 0y — A0, , 8, = 0, — A0, (4.123)
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span this null plane. Thus the Lax equations (4.117) imply that the
generalized connection (4, @) is flat on null planes. This underlies the
twistor approach, where one works in a complexified Minkowski
spaceM = C3, and interprets (n, A) as coordinates in a patch of the
twistor space T = TCP!, withn € C being a coordinate on the fibres and
A € CP! being an affine coordinate on the base. We shall adopt this
complexified point of view from now on.
It is convenient to make use of the spinor formalism based on the
isomorphism
T =5®S, (4.124)

where S is the rank two complex vector bundle (spin bundle) over M
and © is the symmetrized tensor product. The fibre coordinates of this
bundle are denoted by (° m!) and the sections M — S are called
spinors. We shall regard S as a symplectic bundle with an anti-symmetric
product

k-p=k!—klp®=ce(k,p) (4.125)

on its sections. The constant symplectic form ¢ is represented by a matrix

€ap = (_01 é) (4.126)

This gives an isomorphism between S and its dual bundle, and thus can
be used to ‘rise and lower the indices’ according to k, = kBeyp, k4 =
kBeAB where 45548 is an identity endomorphism.

Rearrange the spacetime coordinates (u, x, v) of a displacement vector as
a symmetric two-spinor

(v *
. _<x 3 v) (4.127)

such that the spacetime metric is

h = —2dx,pdx48 (4.128)
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The twistor space of M is the two-dimensional complex manifold T =
TCP!. Points of T correspond to null 2-planes in M via the incidence
relation

xA B,y = (4.129)

Here (a),no,nl) are homogeneous coordinates on T as (w,my) ~

* - : 0
(c?w,cmy), where ¢ € C*. In the affine coordinates A :=%, n =

w/(m)? equation (4.129) gives (4.128).

The projective spin space P(S) is the complex projective line CP?.
The homogeneous coordinates are denoted by mw, = (m,,m; ), and the
two-set covering of CP! lifts to a covering of the twistor space T:

U={wmy),m #0}, U={wm),mn,# 0} (4.130)

The functions A = my/m;, 1 = 1/2 are the inhomogeneous coordinates
in U and U, respectively. It then follows that A = —rt/n° .

Fixing (w, ,)gives a null plane in M. An alternative interpretation
of (4.128) is to fix x4 This determines was a function of m,, i.e. a

section of A =7,/7, when factored out by the relation (w,m,) =

(c?w,cm,). These are embedded rational curves with self-intersection
number 2, as infinitesimally perturbed curve n + én with én = dv —
A6x + A% Su  generically intersects (4.126) at two points. Two curves
intersect at one point if the corresponding points in M are null separated.
This defines a conformal structure on M.
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cp'

The space of holomorphic sections of TCP* —» CPlis M = C3. The real
spacetime R2*! arises as the moduli space of those sections that are
invariant under the conjugation

t(w,m, = (W, 7)) (4.131)

which corresponds to real x42. The points in T fixed by 7 correspond to
real null planes in R>! . The following result makes the mini-twistors
worthwhile.

4.2.8 Theorem
There is a one-to-one correspondence between:

0] The gauge equivalence classes of complex solutions to (4.112) in
the complexified Minkowski space M with the gauge group
GL(n,C).

(i)  Holomorphic rank n vector bundles E over the twistor space T
which are trivial on the holomorphic sections of TCP! - CP!.

Proof.

Let (A4,@) be a solution to (4.116). Therefore we can integrate a
pair of linear PDEs L,V = L,V = 0, where L,, L, are given by (4.118).
This assigns an n-dimensional vector space to each null plane Z in a
complexified Minkowski space, and so to each point Z € T. It is a fibre
of a holomorphic vector bundle u: E — T. The bundle E is trivial on
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each section, since we can identify fibres of E|L, at Z,,Z; because
covariantly constant vector fields at null planes Z,,Z, coincide at a
common point p € M.

Conversely, assume that we are given a holomorphic vector bundle
E over T which is trivial on each section. Since E|Lp is trivial and Lp =
CP1, the Birkhoff-Grothendieck theorem gives

E|L,=0 @&0...... CX ... @0 (4.132)

and the space of sections of E restricted to L, is C™. This gives us a
holomorphic rank n vector bundle E over the complexified three-
dimensional Minkowski space. We shall give a concrete method of
constructing a pair (4, ¢) on this bundle which satisfies (4.131). Let us
cover the twistor space with two open sets U and U as in (4.130).
Let

X: p”Y(U)->UxC", R: pH(U)->UTxCc™ (4.133)

be local trivializations of E, and letF =8 °X:C" > C™ be a
holomorphic patching matrix for a vector bundle E over TCP* defined on
U nU . Restrict F to a section (4.129) where the bundle is trivial, and
therefore F can be spli:

F=HH, (4.134)

where the matrices H and H are defined on M x CP' and are
holomorphic in w4 aroundr? =04 =(1,0) and =4 =14 =(0,1)
respectively. As a consequence of §,F = 0 the splitting matrices satisfy

H_16AH - H_15AH == Tl.-Bq)AB (4135)
for some ®,5(x*) which does not depend on A. This is because the RHS
and LHS are homogeneous of degree 1 in w4 and holomorphic around

A = 0and A = oo, respectively.
Decomposing
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CDAB = CD(AB) + EABQ (4136)

gives a one-form ®,zdx4? and a scalar field ¢ = (1/2)eABCI>AB on the
complexified Minkowski space, i.e.

A A, +0
Dyp = ( u x ) 4.137
AB Ax _ (Z) Av ( )
The Lax pair (4.116) becomes
LA == 6A+ H_15AH (4138)
where §, = n8d,5, so that
L,(HY = —H Y(§,H)H™* + H Y (§,H)H 1 =0 (4.139)

and ¥ = H~1! is a solution to the Lax equations regular around A = 0. Let
us show explicitlythat (4.117) holds. Differentiating (4.135) with respect
to &, yields

SAH16,H) = — (H"1§4H)(H 18§,H) (4.140)

which holds for all 4 if
D,(CP4) = 0, (4.141)

where Dy = 04c + Py4e. This is the spinor form of the Yang—Mills—
Higgs system (3.112).

« To single out the Euclidean reality conditions leading to non-abelian
monopoles (4.111) on R3 with the gauge group SU(n), the vector bundle
E must be compatible with the involution. This comes down to detF =
1 and

F*(Z) =F(z(2)) (4.142)

where Z € T and * denotes the Hermitian conjugation.

. To single out the Lorentzian reality conditions, the bundle must be
invariant under the involution (4.131). Below we shall demonstrate
how the gauge choices leading to the integrable chiral model
(4.120) can be made at the twistor level.

Let
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h=Hx*, 4= 04, h=Hx*n4= 14 (4.143)

so that

CDAO == h_l aAO h , cDAl = E_l aAl ii (4144)

The splitting matrices are defined up to a multiple by an inverse of a non-
singular matrix g = g(x*) independent of 74

H=Hg™*, H=Hg™? (4.145)
We choose g such that A = 1 so
CDA]_ == lA q)AB == O (4146)
and

CI)AB == _lBOCh_l aAC h (4147)

A, +0=A,=0
Dp=—A+9=A =0 (4.148)

This is the Ward gauge with J(x*) = h. In this gauge, the system
(3.141) reduces to

which is (4.120). The solution is given by

J(x*) =Wt (x#, 1 = 0) (4.150)

where ¥ = H~!is a solution to the Lax pair.

 In the abelian case n = 1 the patching matrix becomes a function
defined on the intersection of two open sets, and we can set F = exp(f )
for some f. The nonlinear splitting (4.145) reduces to the additive
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splitting of f which can be carried out explicitly using the Cauchy
integral formula. The Higgs field is now a function that satisfies thewave
equation and is given by the formula

0
¢ = [sLp.dp (4.151)

where T is a real contour in a rational curve w = x48m, my. If the
Euclidean reality conditions are chosen, we recover the Whittaker
formula (4.107).
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CHAPTER FIVE

Applications of Twistor Space in Six Dimensions

5.1 Spinors in Six Dimensions

In the following, we shall be working with the complexification of
flat six-dimensional space-time M® := C®. Notice that reality conditions
leading to real slices of M® with Minkowski or split signature can be
imposed if desired.

5.1.1 The Spin Bundle

The spin bundle on M® is of rank eight and decomposes into the
direct sum S @ S of the two rank-4 sub bundles of anti-chiral spinors, S,
and chiral spinors, S. There is a natural isomorphism identifying S and S
with the duals SY and SV (for details; this identification basically works
via an automorphism of the Clifford algebra corresponding to charge
conjugation). Therefore, we may exclusively work with, say, S and SV.

We shall label the corresponding spinors by upper and lower
capital Latin letters from the beginning of the alphabet, e.g. Yy for a
section of S and Y, for a section of SY, with A,B,....=1,..., 4.

5.1.2 The Tangent Bundle
We may identify the tangent bundle Ty, with the anti-symmetric
tensor product of the chiral spinor bundle with itself via

Tys = SAS (5.1)
a O« a
aM = aX_MHaAB = 9xAB (5.2)
Here, we coordinatised M® by x™, for M,N,...= 1,...,6 and used the
identification
6:x=xM->5(x) =x"B (5.3)

with
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1
xAB = 54BxM & xM 40‘XIBXAB (5.4)

where 342, ols are the six-dimensional sigma-matrices.

The induced linear mapping G* is explicitly given as

1
Oag = ZO-XIB OMm (5.5)

and the (flat) metric nyy on M can be identified with the Levi-Civita
symbol %EABCD in spinor notation. Hence,

1 -
O-XIB = ESABCDGMCD (5.6)

And we can raise and lower indices according to:
1 1
0aB = 5 EABCD 0 o= P = > BP9y, (5.7)

For any two six-vectors p = (pM)and q = (q™), we shall write:

1
p-q:= pua" =7 pasa®® = eapcop*Bq P, (5.8)

and we have
p%:= p-p = det pAB, (5.9)

5.2. Zero Rest Mass Fields in Six Dimensions:
Next we wish to discuss zero-rest-mass fields in the six-
dimensional spinor-helicity formalism.

Let us start by considering a momentum six-vector p = (pym). If
we impose the null-condition p? = 0, then we have

det pyp = 0 = det pAB. (5.10)
These equations are solved most generally by:
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PAB = kAakaSab and pAB = T(Aar(BbEab (511)

witha,b,...,a,b,...= 1,2 and 3P = —¢b2 and €4h = —Epga-

We shall refer to such a momentum as null-momentum. Moreover,
transformations of the form k., —» MPk,, and k24 — 1\7[{9;12“5 with
detM = 1 =detM will leave p invariant, which shows that the
indices a,a,... are little group indices. The little group of (complex) null-
vectors in six dimensions is therefore SL (2, C) x SL (2, C).

Notice that k,,kAP = 0 since pag = %eABCDpCD, which, in turn,

shows that k,, and kA are not independent. Notice also that k4, has 4 X
2 = 8 components, but three of them can be fixed by little group
transformations.

Thus, ka, has indeed exactly the five independent components
needed to describe the (five-dimensional) null-cone in six dimensions.

Fields form irreducible representations of the Lorentz group which
are induced from representations of the little group. In six dimensions, the
spin label of fields therefore has to be generalized to a pair of integers,
labelling the irreducible representations of the little group SL (2,C) X

SL(2, C).

As an example of zero-rest-mass fields, let us consider the fields in
the V' = (2,0) tensor multiplet. This multiplet is a chiral multiplet and

hence the fields transform trivially under the SL (2, C) subgroup.

Amongst these fields, there is a self-dual three-form H = dB,
which transforms as the (5.29) of the little group.

In spinor notation, H has components Hg = d¢(sBgy°, where Bg®
Is trace-less and denotes the components of a two-form potential B in
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spinor notation. In addition, we have four Weyl spinors s, in the (5. 1)
and five scalars ¢V in the trivial representation (1, 1) of the little group.

Notice that the a priori six components of ¢! = —¢! are reduced
to five by the condition $"Q;; = 0, where I],...= 1,...,4 and Qy; is an
invariant form of the underlying R-symmetry.

In the following, we shall work with complex fields. The zero-rest-
mass field equations (i.e. the free equations of motion) for the fields in
the tensor multiplet read as:

HAB =0 W|th aACHCB = 0, aABLlJB = 0, |:|¢ =0 (512)

where we suppressed the R-symmetry indices.

Notice that the second equation is the Bianchi identity (which, of
course, is equivalent to the field equation for self-dual three forms). The

corresponding plane waves are given by the expressions (i := vV—1 )
Hagab = Ka@aKksp) e*P, Ya, = kpae™P and ¢ =e*P  (5.13)

This follows from straightforward differentiation. Here, the
representations of the little group formed by the fields become explicit.

Furthermore, since
HAB = OC(ABB)C (514)

we can express the plane waves of Hpp in terms of the plane
waves of the potential two-form Bg®. To this end, we note that in spinor
notation, gauge transformations of Bg® are mediated by gauge parameters

Apg = Aap) Via Bg® — Bp® + 94CA g — 9pcACA. (5.15)
We shall choose Lorenz gauge, which in spinor notation reads as

d1aBg;" = 0 = 9IAB Pl (5.16)
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The residual gauge transformations are given by gauge parameters
that obey 0 - A = 0. Let us now choose reference spinors p,, and define
the null-momentum

qap = HaaMppe” sothatp - q # 0. (5.17)

Then the plane waves of the potential two-form Bg® in Lorenz
gauge are given by:

. AB
= kA kg, e*P  with kA= —2jL <Ba 5.18
(aKBb)

A
B
B pq

ab

Clearly, Bg® is trace-less and one can check that 6C(ABB)C yields the
components for HABH 5, given in (5.13).Since

dCAB:2 =0 (5.19)
we also have

HAB = gCAB.B) = ¢ (5.20)

Which implies that Bg® does indeed yield a self-dual field strength.
Furthermore, the choice of p,, is irrelevant since changes in p,, merely

correspond to (residual) gauge transformations of Bg®, a fact that is
already familiar from four dimensions. One may analyze other spin fields
in a very similar way and we shall present a few more comments in
Remark 5.1 below.

We shall mostly be interested in chiral zero-rest-mass fields, i.e.
fields forming representations (2h+ 1,1),h € %NO, of the little group

SL(2,€) xSL(2,C). These fields will carry 2h symmetrized spinor
indices. Specifically, using the conventions:

[kK] =®%detSY , [-k]=[k]¥ and [0]=[k] ® [-k] forke N
, S[xk] =S ®o_, [*+k] for some Abelian sheaf S on M6, (5.21)
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We shall denote the sheaf of chiral zero-rest-mass fields on M® by Z;,,

Zh =
ker{d*B: (0" $V)[1] - (O SY Qo , $)o[2]} for h =2,
ker{o := - 0%B 9, : [1] - [2]} for h=0,

(5.22)

Here, the subscript zero refers to the totally trace-less part. The factors
[+K] are referred to as conformal weights, as they render the zero-rest-
mass field equations conformably invariant.

For the discussion of conformal weights in the four-dimensional
setting.

Remark

Recall that there is a potential formulation of zero-rest-mass fields in four
dimensions. This formulation generalizes to six dimensions, as we shall

demonstrate now. Consider anh € %N* from the potential fields
Byt = B (fa--fana) € HO(MS, (O™ S @, SVo[1] (5.23)

We derive a field strength Ha, 2, € H'(U, ©?" S¥)) according
to

. By...Byn_
HA1----A2h '_ a(A1]31 "'aAzh 1 B2n 1BA2h) e (524)

The equations
HAl----AZh — aA(AlBAAz....Azh) =0 (525)

Then imply that
0%%1Hy, 4, =0 (5.26)

Furthermore, the pair of spinors (HAl____Azh,HAl"--Azh) Is invariant under
gauge transformations of the form
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BBAAl....Azh_ 2 BBAA]_....Azh_ 2 4 [aCBAC(AAlAzh_ 2) _ aC(AACBAl""AZh— 2]

(5.27)

0

Where the subscript zero refers again to the totally trace-less part and
AppPri2n = 2 = £pppAaf2h - 2) s totally trace-less itself.

Note

the traces of [9gAC(AALA2n- 2) — §CAA pA1-A2n-2)] glways drop
out of the above definition of (Ha, a, HA-A2n). Altogether, the
spinor field Hy, _a,, can therefore be regarded as a section of the sheaf
Z.

5.3 Twistor Space of Six-Dimensional Space-Time

In this section, we shall review a particular twistor space associated
with M® that is a very natural generalization of known twistor spaces and
suitable for the description of chiral theories in six dimensions. Here we
shall present a detailed discussion of its constructions from an alternative
point of view.

5.3.1 Remark.

We shall always be working with locally free sheaves and therefore
we shall not make a notational distinction between vector bundles and
their corresponding sheaves of sections. We shall switch between the two
notions freely depending on context.

5.3.2 Twistor Space From Space-Time
Let us consider the projectivisation P(SY) of the dual anti-chiral
spin bundle SV.

Since SV is of rank four, P(SY) — M® is a P3-bundle over M®.
Hence, the projectivisation P(SY) is a nine-dimensional complex
manifold F° = C® x IP3, the correspondence space.

We take
(x,2) = (x4B, 1)) (5.28)
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as coordinates on F°, where A, are homogeneous coordinates on P3.

Consider now the following vector fields on F°:

d
aXAB

VA=}\B

(5.29)

5.3.3 Note

AaVA =0 because of the anti-symmetry of the spinor indices in
the partial derivative. These vector fields define an integrable rank-3
distribution on F®, which we call twistor distribution. Therefore, we have
a foliation of F? by three-dimensional complex manifolds.

The resulting quotient will be twistor space, a six-dimensional manifold
denoted by IP6. We have thus established the following double fibration:

(5.30)

Let (z,A) = (2% 44) be homogeneous coordinates on P7 and assume

that A, # 0. This effectively means that we are working on the open
subset

P} = P7\P3 (5.31)

of IP7, where the removed P2 is given by z# = 0 and A, = 0.

In the double fibration (5.30), the projection , is the trivial projection
and

m: (x3%,0) = (2% 2a) = (x*%,208) = (x** Ag, M), (5.32)
Thus, P® forms a quadric hypersurface inside Pj , which is given by the
equation

ZA}\A =0 (533)

We shall refer to the relation
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A = xAB )\ (5.34)

as incidence relation, because it is a direct generalisation of Penrose’s
incidence relation in four dimensions.
5.4 Geometric Twistor Correspondence.

The double fibration (5.30) shows that points in either of the base
spaces M® and P® correspond to subspaces of the other base space:

For any point x € M®, the corresponding manifold X =
m(n;1(x)) © P is a three dimensional complex manifold bi-
holomorphic to IP? as follows from (5.34).

Conversely, for any fixed p = (3,1) € P®, the most general solution to
the incidence relation (5.34) is given by

XAB = XéB + SABCDP.C}\D, (535)
where x4B is a particular solution and p, is arbitrary. This defines a
totally null-plane t, (7 1 (p)) in MS.

This plane is three-dimensional because of the freedom in the choice of
la given by the shifts uy = ps + 0A4 for @ € C which do not alter the
solution (5.35).

Altogether, points in space-time correspond to complex projective three-
spaces in twistor space while points in twistor space correspond to totally
null three-planes in space-time.

Thus, twistor space parametrises all totally null three-planes of space-
time.

5.5 Twistor Space as A normal Bundle.

The above considerations imply that P® can be viewed as a
holomorphic vector bundle over P3, where the global holomorphic
sections are given by the incidence relation (5.34). In fact, (5.34) shows
that P® is a rank-3 subbundle of the bundle Op3(1) ® C* - P3, whose
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total space is IP}. Here and in the following, Ops(1) denotes the dual
tautological bundle over P3.

To identify the sub bundle P®, let us denote by Nyx the normal bundle of

some complex sub manifold Y of a complex manifold X,i: Y < X. This
bundle is defined by the following short exact sequence:

0—- TY - I*TX = NY|X -0 (536)

Let us now specialise to Y = P3 and X = P7 with coordinates (z2,2,)
on PP7 as before.

If P? © P7 is given by z2 = 0 and A, # 0, then

Tos = (5) (5.37)
And

0

i}
T]p7 == <OZ_A ) a)

(5.38)
The normal bundle of Nps p7 of P3 inside P7 is given by

which implies that
NIP3|IP7 = 093(1) X (:4, (539b)

Since the coefficient functions of the basis vector fields c’)ziA and % are
A

linear in the coordinates. Hence, the z# can be regarded as fibre
coordinates of Npsp7, While the A, are base coordinates. Using these

results, we find that our twistor space P® fits into the short exact sequence

k
0 = P® = Npspr = Op3(2) = 0, (5.40a)
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Where
k: (242 » 24 A4 (5.40b)

Note
The sequence (5.40a) can be regarded as an alternative definition
of twistor space.

Again, we see that P is a rank-3 subbundle of Op:(1) ® C* - P3 as
stated earlier.

It also shows that P® is the normal bundle of P23 inside the quadric
hypersurface Q® & IP7 given by the zero locus

zA0, = 0. (5.41)
Moreover, notice that the open subset Q°® n P} can be identified with P®.

5.6 Space-Time From Twistor Space

Next we wish to address the problem of how to obtain space-time
M®, and in particular the factorisation (5.2) of the tangent bundle, from
twistor space using (5.40a). To this end, consider the long exact sequence
of cohomology groups induced by the short exact sequence (5.40a),

k
0 - H°(P3,P®) — HO(IP?, Npsp7) = H(IP?, O0p3 (2)) —
 HI(P?, P®) > H(P?, Npspr) > H1(P?, 055 (2)) = . (5.42)

where we have slightly abused notation by again using the letter k. To
compute these cohomology groups, we recall a special case of the Borel—
Weil-Bott theorem:

5.6.1 Lemma: (Bott’s Rule)

Let V be an n-dimensional complex vector space. Consider its
projectivisation IP(V) together with the hyperplane bundle Opg,)(1).
Furthermore, set

Opvy (k) =K OIP(V)(l): OP(V)(_k) = 0¥(V) (k) (5.44)
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And

Oﬂm(v) (O) = Oﬂm(v) fOI' k eEN. (545)
Then
oOkvY forq=0Ck >0
HA (P(V); Opv) (k)) = O*nryvQ®detV forq=n—-1 €Ck<-n
0 otherwise,
(5.46)

where det V = A™V. From Bott’s rule for V = C*, we find that
H'(IP3, Npsp7) = 0 = H*(IP?, 0p3 (2)) (5.47)

and furthermore
H(P3,P®) =0, (5.48)

Since Kk is surjective. Therefore, the long exact sequence of cohomology
groups (5.42) reduces to

k
0 —» HO(P3,P%) - HO(PP3, NP3|P7) - HO(]P>3,0P3(2)) -0 (5.49)
By applying Bott’s rule again, we deduce from the latter sequence that
dim¢ HO (P3,P%) = 6 (5.50)
Because of (5.43) and (5.45), we may now apply Kodaira’s theorem of
relative deformation theory to conclude that there is a six-dimensional
family of deformations of P2 inside the quadric hypersurface Q¢ & P7.
We shall denote this family by M® and the individual deformation of P3
labelled by x € M® as .

Next we define the correspondence space F® according to

F? := {(p,x) € P® x M®|p € &}, (5.51)
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5.6.2 Note

F? is fibred over both P® and M®. The typical fibres of m,: F° -
P® are complex projective three-spaces IP3. Hence, we have again
established a double fibration of the form (5.30), where the fibres of F® —
P® a2 three-dimensional complex submanifolds of M®.

On F° we may ¢t : r h relative tangent bundle, denoted by T,
along the fibration 1;: F? — P®. It is of rank three and defined by

0- T.,.[1 - TF9 - 1T1*T]p7 - 0. (5.52)

By construction, the vector fields VA given in (5.29) annihilate
z* =x"B)g and therefore, T, can be identified with the twistor

distribution generated by V4, cf. (5.29). Hence, sections p, of Ty, are

defined up to shifts by terms proportional to A, (recall that A,VA = 0).
Then we define a bundle N on F° by

0> T »mTye > N -0
ua — e45Puchp (5.53)
EAB N EAB}\B

Clearly, the rank of N is three and the restriction of N to the fibre w5 (x)
of F? — P® for x € M® is isomorphic to the pull-back mjNgps oOf the

normal bundle Ngps 0f & < P°. Thus, N can be identified with 7 N, ps.

These considerations allow us to reconstruct the tangent bundle T ;6 from
twistor space. In fact, we may apply the direct image functor (with regard
to 1r,) to the short exact sequence (5.53). Since both direct images T, Ty,

and 15, T,;, vanish, we obtain
TM6 = “2*“;N§<|P6 = (TMG)X = HO(),Z, NﬁlPG). (554)

Elements of H° (%, Ng ps) are given in terms of elements of HO(IP%, P®) by

allowing the latter to depend on x. One can check that this dependence is
holomorphic in an open neighbourhood of x.
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What remains to be understood is how the explicit factorisation (5.29) of
the tangent bundle emerges from the above construction and in particular
from HO(P3, P®). To show this, we consider the Euler sequence for P3,

0 - Ops = 0p3(1) Q C* - Tpz — 0. (5.55)
Upon dualising this sequence and twisting by Opz(2), we
0 = 042 0ps (2) ®= Ops (1) ® C* = Ops(2) = 0 (5.56)
By comparing with (5.40a), we may conclude that
Pé = 01(2) with QP(K): QP: ® Ops(K), (5.57)

Thus, elements of HO(IP3,P®) can also be viewed as elements of
HO(P3,Q'(2)). The latter are of the form w = w”BA,dAg with
w8 = —wBA, Since

S, = HO(&, 04 (1) (5.58)

via sh—>shr, for s €S, , we indeed find the factorization
(Tye)x = S A Sy. This concludes our construction of space-time from
twistor space.

5.6.2 Remark

Notice that an identification of the form (5.29) amounts to
choosing a (holomorphic) conformal structure. This can be seen as
follows:

Let X be a six-dimensional complex spin manifold. The first definition of
a conformal structure on X (and perhaps the standard one) assumes an
equivalence class [g], the conformal class, of holomorphic metrics g on X.
Two given metrics g and g’ are called equivalent if

g =vg (5.59)
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For some nowhere vanishing holomorphic function y. Thus, a conformal
structure is a line subbundle L in TY O Ty.

An alternative definition of a conformal structure assumes a factorisation
of the form Ty = S A S, where S is the rank-4 chiral spin bundle.

This isomorphism in turn gives (canonically) the line subbundle
detSY = A*SY inTY O TY since upon using splitting principle
arguments, one finds the identification

Ky = detTy = ®3 detSY (5.60)

for the canonical bundle Ky. Hence, det SY can be identified with the line
bundle L from above, and the metric g is then of the form y?&,gcp.

5.7 Penrose Transform in Six Dimensions

Having defined twistor space, we would like to understand
differentially constrained data on space-time in terms of differentially
unconstrained data on twistor space. Specifically, we are interested in the
chiral fields introduced in Section 5.2 and prove the following theorem:

5.7.1 Theorem
Consider the double fibration (5.30). Let U € M® be open and
convex and set U := m;}(U)cF° and U :=m,(m;1(U)) c P°,

respectively. For h € %NO, there is a canonical isomorphism
P H3 (ﬁ, 0g(—2h - 4)) > HO(U, zp), (4.1)

Where zy, is the sheaf of chiral zero-rest-mass fields defined in (5.22).

This transformation is called the Penrose transform.
5.8 Cohomological Considerations
5.8.1Relative de Rham Complex

The starting point of our considerations is the double fibration
(5.30). As a first tool in proving the Penrose transform, we introduce the
relative differential forms Qﬁl, I.e. the differential p-forms along the

fibres of the fibration 1;: F® — PS,
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We have already introduced the corresponding relative tangent bundle in
(5.52). Simply dualising this sequence, we obtain the definition of the
sheaf of relative one-forms from

0 - mQps > Qo — Q. - 0. (5.61)

Recall from our previous discussion that in our parametrisation, sections
ua of the relative tangent bundle T, are defined up to shifts by terms

proportional to A,.
This, in turn, induces the condition w®X, = 0 on sections w® of QF .
We shall come back to this point when discussing the direct images of

1
ol .

In general, we introduce the relative p-forms Qﬁl on F? with respect to
the fibration 1;: F° — P® according to

0-mQpe A 087 - 08 »0F - 0 (5.62)
Thus, relative p-forms have components only along the fibres of
mi;: F? - P® (i.e. any contraction with a vector field which is a section of
1t; TP® vanishes). The coefficient functions in local coordinates, however,
depend on both the base and the fibre coordinates. Note that the

maximum value of p here is three.

If we let Pry : Q2 — Q7 be the quotient mapping, we can define the
relative exterior derivative d,, by setting

dy, = Pry od: QF - 00" (5.63)
Where d is the usual exterior derivative on F°.

In local coordinates (x“B,A,) on F°, the relative exterior
derivative can be presented in terms of the vector fields (5.29).
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Next, observe that the relative differential d,, induces the relative de
Rham complex.

This complex is given in terms of an injective resolution of the
topological inverse ;1 0ps 0f Opes 0N the correspondence space F°:

-1 Ay q Gm op 9 g
0 - 1y Ops > Opo — Qp, — Q. — Qn — 0. (5.64)

A natural question is now if the sheaves Qﬁl have an interpretation in
terms of certain pull-back sheaves from space-time and twistor space.

5.8.2 Note
The vectors fields (5.29) are given by

VA = ~gABCD); gy, (5.65)

where d 5 are the vector fields spanning Tys.

In terms of the V4, the map dr,: Opo — Q}tl reads explicitly as
VAfo of = VAf= ZefBp90pf € Op. (5.66)

This shows that wh = VAf is a section of
T[; (det SV ® 0M6 S)® 01:9“; 0P6(1).

Clearly, it is not the most general section of this sheaf, since we have
Aaw? = AVAf=0 (5.67)

see also our comments given below (5.62). For a general section s of
3 (detSY @ S)® o M Ops(1), the map A, : sh — s\, gives a
section of T detSY ®o,m Ops(2) and its kernel gives Qr, .
Altogether, we conclude that Qf fits into the following short exact
sequence:
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0 > 0k - m(detS' @ H®o ,m; Ops(1) -
— 15 detSY ® oM Ops(2) > 0 (5.68)

Using the notation (5.21), we then obtain the following proposition:

5.8.3 Lemma
The sheaves appearing in the relative de Rham sequence (4.5) can

be canonically identified as follows. With Q7 (k) := Q7 ® 0,01 Ops (K,
we have

0 - 0F = m(APS)[PI® o T Ope(p) = m3[1]® 0, Or, (2) = 0
(5.69)
Proof:
Using the fact that short exact sequences of the form 0 - ¢ -
F — L — 0, where L is the sheaf of sections of some line bundle, always
induce 0 — APE - APF - AP71EQL —» 0, the sequence (5.68)
immediately leads to (5.69).

Finally, we point out that the relative de Rham sequence (5.64) has a
natural extension via twisting by a holomorphic vector bundle.
Specifically, let E - P® be a holomorphic vector bundle over P® and
consider the pull-back bundle m;E over the correspondence space F°. We
may tensor (5.64) by 17 10ps(E), which is the sheaf of sections of 1;E
that are constant along ;: F® — P®. Because Ops (T1;E) = 1} Ops(E) and
Opo ®n510P6n;10p6(E) are canonically isomorphic, we find

dp dp
0 - 77 20ps (E) - Q% (E) = ....— Q3 (E) - 0, (5.70a)
where we have defined

09, (E) = Ops(m{E) and O} (E) = Q§1®0F90F9 (miE), (5.70b)
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5.8.4 Direct Image Sheaves.
The next important ingredient for our subsequent discussion isthe

direct images of QF (E) with respect to the fibration m,: F* — P® for the
special case E = Ops(k), k € Z. To compute those, we shall make use
of the following lemma:
5.8.5 Lemma
Let V be a four-dimensional complex vector space together with
its projectivisation P(V). Using the shorthand notations QP(Kk) :
Q]l]';(v) ® Opv) (k) and Q°(k) := Op(v)(k), we have the following list

of sheaf cohomology groups:

okvV for q=0 € k>0
HI(P(V),Q°(K) ={ ©*k*v®detV forq=3GCk< —4
0 otherwise

(5.71a)

( k-1 v
V@V
®—®l for q=0C k>2

Okv
C for q=1C k=0
HY(P(V), Q' (k) =<{ V'® detV for q=3 € k=-3
-k-3 VV Vv v
G)G)_kTV%I ®detV for q:3@k<—3
\ 0 otherwise,
(5.71b)
(V® det VV for q=0 € k=3,
k-3 VV \Y
C)(Dl(_—”/%@detvv for q=0 € k>3,
Hq([P(V),QZ(k)) =4 C for q=2 € k=0,
—k—lV Vv
G)G)——k\;@ for q:3@kS—2,
\ 0 otherwise,

HI(P(V), @° (k) =

Ok *VVR® det VY
O7kv
0
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for q=0C k=>4
for q=3 Ck<0
otherwise



(5.71d)

Notice that here, we are essentially computing the Dolbeault cohomology
groups Hg'q(IP)3,0]P3 (k)) of the complex projective three-space P3 with
values in Ops (k) via the Dolbeault isomorphism.

Proof:

We already know the cohomology groups (5.71a) from Bott’s rule
given in Lemma 5.6.1 Moreover, after computing (5.71b), all remaining
cases follow directly from (5.715.71a) and (5.71b) via Serre duality.17 In
fact, we find the cohomology groups (5.71c) and (5.71d) from

HA(P(V ), 02(k)) = [H3-9(P(V ), Q' (-K))]"
HI(P(V), Q' (k) = [H3"9(P(V), Q° (k)] (5.72)

To compute (5.71b), let us consider the Euler sequence (5.55). We can
dualise this sequence and twist by Op(y (k) to obtain

0 - o'k - Qk-1DQVY - Q°%k) - 0. (5.73)

From this sequence and Bott’s rule, we derive the long exact sequences of
cohomology groups

0 > HO(P(V),Q'(K) - HO(P(V),00(k— DRVY) >
S HO(P(V),2°(0) - HY(P(V), Q') -0,  (5.74a)
And
0 —» H3(P(V),0'(K) - H3(P(V),Q°k-1)®V") -
- H3(P(V),Q%k)) - 0, (5.74b)

where we used H2(P(V ), Q'(k)) = 0.

Let us start with HA(P(V ), Q1(k)) for g = 0, 1. For k < 0, the sequence
(5.74a) together with Bott’s rule yield that
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HO(P(V),Q'(k)) = 0 = HY(P(V), Q1(k)) (5.75)
while for k = 0 we find
HO(P(V),Q(0)) =0 (5.76)

And
HY(P(V),Q!(0)) = H(P(V),0°(0)) = C. (5.77)

For k = 1, (5.74a) also shows that
HO(P(V),Q(1)) = 0 = HY(P(V),Q'(1)) (5.78)
while for k > 2 we find H*(P(V ), Q1 (k)) = 0 since k is surjective.
The rest of HO(]P(V ), Q! (k)) then follows from the short exact sequence
0 -» H(P(V),0'(k) » O VvV@VV -0kVV -0. (5.79)

It remains to find H3(P(V),Q(k)). The sequence (4.13b) and Bott’s
rule show that for k > —2, H3(IP(V), Q!(k)) = 0. while for k = —3, we
get H3(P(V),Q}(-3)) = V¥ @ detV. For k < —3, (4.13b) reads as

0 - H3(P(V),0'K) O %3 V® det VQVY O ** V® det V
-0
(5.80)
which gives the remaining cases for H3([P>(V ),Ql(k)). This completes
the proof.
Next, we compute the direct image sheaves m,, Q% (Ops(k)).
Using the short-hand notation Q7 (K): QY (Ops(k)), we have the
following proposition:
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5.8.6 Proposition

Let k, := 2p + k. The direct image sheaves ;,Q} (k) are given

by
Oko S for q=0C ky=0
1,08 (k) = (O k=4 sV)[1] for q=3 Gk, < —4
0 otherwise
(5.81a)
( ki—1 gV vy v
O415'®, S
Ok 5V [1] for q=0 € k; =2
“3*91111(1() =9 [1] for q=1 €k, =0
(@_kl_3 SV®y 6S) [2] for q=3 € k; < -3
M> /o
\0 otherwise
(5.81b)
(O3 S®0M65)0 (1]  for q=0 G k, >3
[2] for q=2 € k, =0
T[g*.Q‘lz-[l(k) = < @—kz—l SV®O 6SV
M —
( Ok s )[2] for q=3 € k, < -2
\ 0 otherwise
(5.81c)
And
(Ok™*5)[2] for q=0 € k; =4
;0% (K) = (©~ks sv)[3] for q=3 Ek; <0
0 otherwise
(5.81d)

where (Q‘S"@OMGS)O is the totally trace-less part of Q‘SV®0M6S

which is
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S for L=0,

Lgv ~{ 0'SY®y .S .
(O > ®0M6S)o —GL—losl\\/[/6 for 1=0 (582)

Proof
By definition of direct image sheaves, our task is to compute the

cohomology groups H4(m; 1 (U), Qﬁl(k)) for open sets U c M®.

Notice that it suffices to work with Stein open sets U so that U’ :=
m,1(U) = U x P2 c F? since there are arbitrarily small Stein open sets
on M®. We could now apply the direct image functor to the short exact
sequences of Proposition 5.8.3 to obtain the direct images. There is,
however, a quicker way of computing these.

Consider the case when p = 0. It is rather straightforward to see
that in this case, we have the identification

H(U’, O3, (k)) = {holomorphic functions : U —» H(IP3, Ops (k))} (5.83)

and we can directly apply the results of Lemma 5.8.3 The other
cohomology groups can be characterised analogously.

We first recall our discussion of the relative one-forms, Q}Tl(O) =
Qr, that led to the sequence (5.69).

Let
(x,2) = (x%B,2,) (5.84)

be local coordinates on F?, as before.

Then the components w? of a relative one-form w are of weight
one in A and obey w?A,.

This essentially implies that

wh = ~eABP 5y, (5.85)
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where w,ag = —wpga depends (holomorphically) on x. Together
with our results for the twistor space P® presented at the end of Section
5.3.2, we may conclude that:

HA(U’, %, (0)) = {holomorphic functions : U — HI(P?, Q' (2)} (5.86)

This argument generalizes to the remaining cohomology groups
H(U', Q7 ) for p = 2,3, and we have

HI(U’, 07, (0)) = {holomorphic functions : U — HI(IP3, QP(2p))[p]}
(5.87)
Therefore, if we let k, := 2p + k, we obtain

Ha(U’, 07, (kK)) = {holomorphic functions : U — H4 (P3, Qp(kp)) [p]}
(5.88)

In summary, all the cohomology groups Hq(ngl(U),Qﬁl(k)) are

characterised in terms of the cohomology groups appearing in Lemma
5.8.5 for V = SY, which yields (5.81).

So far, we have computed the direct images of the sheaves Qﬁl(k).The

resolutions (5.64) and (5.70a) also contain the topological inverse sheaves
17 10pe and m710ps(Ops(k)), respectively. The direct images of these
sheaves are computed using spectral sequences.

In the following, we shall merely recall a few facts about spectral
sequences and we refer to for a more detailed account.

For us, a spectral sequence is basically a sequence of two-dimensional
arrays of Abelian groups

E. = (EPYforr=1,2,.. (5.89)

which are labelled by p,q = 0,1,2,... together with differential
operators d, : EP? — EP*"97™1 that obey
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d,od, = 0. (5.90)

In addition, the arrays are linked cohomologically from one order to the
next. Specifically, we have

Ker d,: P9, EP*TAT+1

im dp: EP7P9TTE L gPA

Eryy = HPA(E) =

r+1 —

(5.91)

There also is a well-defined limit of the spectral sequence in terms of the
inductive limit

EPY = lim ind EP (5.92)

r—-oo

If Uc M® is open and U’ := ;1 (U), the resolution (5.70a) yields a
spectral sequence with initial terms

EY? = HI(U', QF_(E)) (5.93)

and differential operators d: EY? — EP™™? induced by d : 0% (E) -
1

QYT (E).

This spectral sequence converges to the cohomology group

EP = HP*(U’, 71 0ps (E)) (5.94)
which is mnemonically written as
HA (U',Qf;l(E)) = HP*(U’, 71 O0pe (E)). (5.95)
Altogether, we have the following proposition:

5.8.6 Proposition
Let U be an open set in M® and let U’ := ;1 (U) < F®. Then there
IS a spectral sequence

EPY = Ha (U’,Qﬁl(k)) = HP*(U', 71 0ps (K)) (5.96)
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where the differential operators d;: EP® — EP*"9 are induced by the
: - N +1
relative exterior derivative d. :Qp (k) = Qn. (k).

Hence, we have an explicit way of computing H4(U’, t;10ps(K)) in
terms of the cohomology groups H9(U’, Qﬁl (k).

5.9 Cohomology Groups of Topological Inverse Sheaves.

The final ingredient we need is a result due to Buchdahl. Above
we have computed the direct images of sheaves on the correspondence
space F° along the fibration m,: F° — M® to obtain certain sheaves on
space-time M®.

In the Penrose transform, these sheaves on F° originate from
sheaves on twistor space. To connect the cohomology groups of both
kinds of sheaves, we can use the following proposition:

5.8.7 Lemma
Let X and Y be complex manifolds andm: X — Y a surjective
holomorphic mapping of maximal rank with connected fibres.

Furthermore, let S be an Abelian sheaf on Y . If there is an ny > 0 such
that H4(m 1(p),C) =0forq = 1,...,n,and forall p € Y, then

™ : HA(Y,S) » HIX " 1S) (5.97)

is an isomorphism for g = 0,...,n, and a monomorphism for q = n, +
1. The requirements of this proposition for the projection m;: F® — M®
are always satisfied in our setting. Because we always work with convex
subsets U c M® we always have the isomorphism H9(U’,S) =

H9(U,my* S), where U’ := m;*(U) € F® and U := m; (n31(V)) < PC.

In a compactified version of the twistor correspondence, one has to
supplement Theorem 4.1 by the above requirements.
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Proof

We are now ready to prove Theorem 5.8.3 We shall first proof the case
h > 0, that is —2h — 4 < —4, and then come to the case h = 0, which is
slightly more complicated.

Case h > 0. Recall that sections s of the sheaf Z;, defined in (2.9) obey
the free field equation

aABlIJBAl.....Azh_l =0 (5.98)
We thus have to prove that,
P : H3(U,0g5(—-2h —4)) » H°(U, Z) (5.99)
is an isomorphism. We already know from Proposition 4.4 that
H3(U,04(—2h —4)) = H3(U',n;t Og(-2h —4)  (5.100)
which reduces (5.99) to
H3 (U, ;! Og(—=2h — 4) = H°(U, 2}) (5.101)

Firstly, we notice that there is a particular spectral sequence, the Leray
spectral sequence L, = (L), which gives

129 = HP (U, nd Qb (—2h— 4)) — HP+a (U', Q! (=2h— 4)) (5.102)
For fixed 1, Proposition 4.2 for h > 0 tells us that 7, Qf (—2h —4) = 0
if ¢ # 3. Thus, the Leray spectral sequence L>% is degenerate at the
second level. Therefore, we have

L5 =159 for p,q > 0, (5.103)

cf. (5.92). Recall that if a spectral sequence (EP'?) has the property that
for some ry, Ep'? = 0 forq # qo, then
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Ep 10 = HP*do, (5.104)

This property together with (5.102) then imply

p-3 30l (_on_
i (U0l (—2h— 4)) = {1 (um.0k, (—2h-4))  forp=3
1 0 for p<3

(5.106)

Secondly, Proposition 4.3 yields another spectral sequence E, = (EP'?)
with
EP9 = Hq(U’ QP (—2h - 4)) — HP*9(U', 17 0ps(—2h — 4))
(5.107)
Explicitly, the r = 1 array in this sequence reads as (k = —2h — 4):

HO (U’ Q?Tl(k)
U’, O, (k)
H2
H3 (U',09, (k)

H4-

N 7N 7N N /N

)= HO (U105, 00) = 1O (U705, ()
)= i ( )= 1 ( )

U’ le(k)) I 2 (U’,Q}tl(k))dll) H2 (U',Qil(k)) i}
)= 1 )= 1 ( )
) ( )= 1 )

U’ Q?Tl %)

(5.108)
We may now replace these cohomology groups by H4 (U’,Qf;1 (k)) using
(5.106) to obtain

0
0
0

HO (U3, 05,00) > HO (U’ 3,0k, () — - HO (U, 13,03, (1))
H! (U, md, 08, (19) — H? (U', 3,05, 10 ) = - H! (U, 7,03, (1))
H2 (U, 08,00) > H? (U, 1.0k, (0) — - — H2 (U', 3,03, ()

H? (U3, 05,00) > B2 (U3, 0%, (0) — - H? (U, 13,03, (1))
(5.109)

o O O
oS O O

w
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This diagram together with (5.91) then yield the following identification:

ES? = ker{HO (U, 3, Q2 (—2h — 4)) = HO (U, 3, QL (—2h— 4))}
(5.110)

Furthermore, all E?? = 0 for p + q = 3 with q # 3, and E9® = E>® =

~+Er>. From Proposition 4.2, it follows that w3, Q% (—2h—4) =
(©#sY)[1] and w3, QL (—2h —4) = (O*715VQ,S)o[2].

In addition, the relative exterior derivative d :H? (U’,le(k)) -

H3 (U’, Q}Tl(k)) induces the differential operator

0 : H° (U, 3,08, (—2h—4)) - H®(U,m3.0k (~2h —4))
(5.111)
In summary, from (4.28) and (5.107) we may therefore conclude that

H? (0,0g(=2h — 4)) = B3(U', ;05 (~2h — 4)) = E3® = H(U, Zy,)

(5.112)
Case h = 0. The proof for h = 0 is similar to the one presented above
albeit somewhat more difficult. Firstly, we shall be dealing with a
second-order partial differential operator and secondly, on a more
technical level, the appropriate spectral sequence will degenerate
differently.

Recall that Z, is the sheaf of solutions to the Klein—Gordon equation.

That is, its sections describe scalar fields on space-time forming the
trivial representation under the little group. We wish to prove that

P 13 (0,05(-4)) - H°(U, Z0) (5.113)

IS an isomorphism. Again, by virtue of Proposition 4.4, we only need to
show that
H3 (U, m7*0g(—4)) = H°(U, Z,) (5.114)
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From lemma 5.8.3, we see that

[1] for (g,1) = (3,0)
T, Qn, (—4) = {[2] for (q,1) = (2,2) (5.115)
0 otherwise

When (q,1) = (3,0), the corresponding Leray spectral sequence (5.102)
yields

HP (U’, Q?tl(—z})) = {Hp_3 (U' “3*9%1(—4)) HP=3(U,[1]) for p=3
for p=>3
(5.116)

Moreover, with (5.115) the Leray spectral sequence (5.102) also gives
HP (U, ), 0k (—4)) =0 forp,q = 0 and1 = 1,3 (5.117)
When (q,1) = 2, 2), we derive

-2 2 2 (_ ~ -2
HP (U';ﬂﬁl(—4)) = {Hp (U' T2+, ( 4)) = HP2(U,[2]) for p=>2
for p>2
(5.118)

Next, the r = 1 part of the spectral sequence (5.107) for h = 0 is given
by

Ho (U7,0%, (-9) In o (U’,Q}Tl(—z})) I o (U',Q%l(—zy))dl% HO (U' 91?;1(—4))
H' (U7, 09, (-4) 4 (v, 0k, (-9) T (U’,Q%Tl(—z;))dl% H' (U7, 03, (-4))
H? (U7, 09, (-49) Iy 2 (v, 0k, (-9) I 2 (U',Q%l(—zy))dl% H? (U7, 03, (-4)
H3 (U', le(—4)) R (U' 91111(—4)) I g3 (U’,Q?Tl(—zl))dl% H3 (U’ Qil(—4))
H* (U', a9, (—4)) o e (U’ 91111(—4)) Iny e (U’,Q?Tl (—4)) I e (U' 03 (—4))

(5.119)
Our above calculations show that the second and fourth columns of
this diagram are zero, while the first and third ones are non-zero in
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general. Hence, the differential operator d, on Ef’q vanishes identically
and therefore, we have the identification EP? = ED'9. Substituting (5.116)
— (5.118) into this diagram, we eventually find

0 -0 - 0 -0
0 -0 - 0 -0
0 -0 ->HYU,[2) -0
H°(U,[1]) -0 ->H'(U[2) -0
H'(U,[1) -0 - H*(U,[2) -0
H?(U, [1]) -0 > H(U,[2)) -0
H°(U,[1]) -0 ->H*(U,[2]) -0

(5.120)

Furthermore, the differential operator d, on E® maps ES° to E> and
since EPY = EPY and thus, Ey° = HO(U,[1]) and E2* = H°(U,[2]),
respectively, we have a map o: HO(U,[1]) » H°(U,[2] which is
induced by d,. One can see that this map is a composition of first-order
differential operators and it is indeed the one we defined in (5.22).
Finally, we note that

EY® = ker{o: H°(U,[1]) - H°(U,[2]} (5.121)
together with E)® = ... = EX>. Altogether,
H? (0,05(—4)) = H3(U', {05 (—4)) = ES® = H°(U,Z0) (5.122)
which completes the proof for h = 0.
5.10. Integral Formulee
Similarly to four dimensions, we can write down certain contour
integral formule yielding solutions to the zero-rest-mass field equations
in six dimensions.

5.10.1 Integral Formula on Twistor Space
Let us choose a sufficiently fine open Stein covering
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u={0,} (5.123)
of U. We shall make use of the abbreviations U, :== U, N Uy, Upe =
U,n0,nT,, etc.

The simplest choice for U is a lift of the standard cover of P3 to U
requiring four patches U,,a =1, ...,4,. In this case, there is only one

quadruple overlap of four patches, and a holomorphic function
fonoa = Fona(z ) (5.124)

on Uj,3, € U of homogeneity —2h — 4 represents an element of
H3(U,0g(—2h — 4)). For simplicity, we shall assume a “Cech cocycle
f_,1_4 Of this form in the following. Note that this is not the most general
way of representing elements of H3(U,0g). This, however, requires
merely a technical extension of our discussion below using branched
contour integrals.

Let us now restrict to h > 0 and construct zero-rest-mass fields ¢ €
H°(U, Z},). That is, y forms the representation (2h + 1,1) of the little
group SL(2,C) x SL(2,C) cf. (5.22).

We start from a “Cech cocycle f_,,_,, which we restrict to ® = P? to

obtain f_,,_, =f_,,_.(x*A,A) on the intersection U;,3,N&. Using the
holomorphic SL(4, C)-invariant measure on P3 given by

QGO = AP, ddg A dAc A Ay (5.125)
we can write down the contour integral
‘~|JA...A2h (x) = Sﬁ@ Q(B'O))\A 7\A2hf—2h—4(x "AA) (5.126)

where the contour C is topologically a three-torus contained in Uj,s,.
Clearly

0*BYga, a,,_, =0 forh>0andoy =0 forh =0, (5.127)
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as follows from straightforward differentiation under the integral.

5.10.2 Integral Formula on Thickened Twistor Space.

More recently, similar integral formulee were discussed by the
cohomology groups H3(U,0g(2h — 4)). with h > 0. However, these
cohomology groups yield trivial space-time fields. Therefore, their
integral formule make only sense if one thickens (via infinitesimal
neighbourhoods) P® into its ambient space PP/ = Op3(1)QC*.
Thickenings of manifolds occur in various twistor geometric contexts.
The most prominent examples appear in the twistor descriptions of Yang-—
Mills theory and Einstein gravity in four space-time dimensions.

To thicken our twistor space P®, consider Op7, the sheaf of
holomorphic functionson PP7, and 7, the ideal subsheaf of Op consisting
of those functions that vanish on P® — IP7. ¢-th order thickening (or ¢-th
infinitesimal neighbourhood) of P® inside P? is the scheme P[i,] defined
by

PG = (P®,0p7 /77*1 (5.128)
5.10.3 Note

We recover the twistor space as the zeroth order thickening, i.e.
P%; = P® Moreover, a cover of P® will also form a cover of Bj,. The
spaces P[?;] can be thought of as the jets of the embedding of P® into the
larger manifold PP7.

In local coordinates (z#,2,) on P7, we have

(zA, At =0fori> ¢ (5.129)
But

(z%2a)' # 0for0 <i <£onPj. (5.130)

This implies that on the first order thickening P[61] , the four vector fields

oA are linearly independent and act freely on functions on P[61].
Differential operators of order £ constructed out of these four vector

fields act freely on functions on P[?,]. As we shall see momentarily, this
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fact is the essential ingredient for writing down a contour integral leading
to zero-rest-mass fields.
Proceeding analogously to four dimensions, we shall now construct a

second contour integral by replacing A, in (5.126) by the derivatives %

and adjusting the homogeneity of f_,,_, for h > 0 accordingly. The
resulting 2h derivatives in the contour integral should act freely, and
therefore we have to consider a thickening of U c P® to 2h-th order, that
is, Upp) © POpan.

Let
AR iGN CWY (5.131)

2h—-4

be a representative of the cohomology group

H3(Upan ,0g,,,y (2h = 4)) forh > 0. (5.132)
It is expanded as

B (0 = 8 +21>11,z ..ghng, A () (5.133)

where the coefficients 8, 4, for 1 < 2h are uniquely defined for 0 <
1 < 2h. We may rewrite the above expansion as

?z[i}i(z' A) = mz -ZAZh?Al....AZh(Z; M)+ (5.134)

where the ellipsis denotes terms that contain at most 2h — 1 factors of

2. As the coefficients ?A .A,, are uniquely fixed, they can be extracted

from fz[flh4 Upon restriction to & = P* we may write

’fAl....Azh (X ) }\; }\) = 7 Zh] ( 7\) 2 (5135)

9z81 " 0z Azh foh-a —x-

The latter relation can then be used to construct the contour integral
formula

Wa, 4, (0 =$.0C0 . (x-A,0) (5.136)
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= §, QG0 o_. £20 (5 M| (5.137)

wBoh ggAy azAZS 2h 4 —x
where the contour is again a three-torus. By dlfferentiation under the
integral, one may check that this is indeed a zero-rest-mass field, i.e.

a‘L\BL|JBA1....A2h_1 =0, (5.138)
Since
d d
P }\[Am (5.139)

under the integral.

More generally, we can write down the following contour integral, which
interpolates between the above two formulae (5.126) and (5.137):

G 0 v
J*h §7Aj+h+1 7§z A2n) _2] —4

Lz
Z=XA
(5.140)
Here, j = —h,...,h and the indices A, ....A,;,, are symmetrised in the
integrand. Again, it is straightforward to check that these fields satisfy the

field equation 0By, = 0.

Ya, . A (x) = _‘f Q(3’0)7\(A1 e A
c

~Azh-1

5.11 Minitwistors and Monopoles
5.11.1Minitwistor Space

The twistor space used to describe monopoles on three dimensional
space-time M3 := C3 is Hitchin’s minitwistor space P2. It can be
regarded as the tangent space of P! or, equivalently, the total space of the
holomorphic line bundle 0 p1(2) —» P

In the twistor picture, the restriction of the moduli space of sections from
M* to M3 amounts to restricting the line bundle P3 to the diagonal P?

with p, = 4, in the base P! x P! of P3. We can achieve this by
quotenting by the distribution

d 0
Dps = (Pl (Ao, = bazy)) (5.141)
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That is, P2?:= P?/Dps , and the holomorphic line bundle
Op1«p1(1,1) - P x P! reduces to the line bundle Op: (2) —» PI.
The correspondence space is obtained by taking the quotient of F© by the
distribution

9 9 9
D pe = <m».uﬁ/1ﬁ (A“G_ua — Ua @)) (5.142)
so that
pti= 2~ 3 x pt. (5.143)
D pe

Here, we have the double fibration

T T8
X u

P? M3

with m, : (x*8, u,)7 - (z,pua) = (x“ﬁua,uﬁ,ua) and n8 being the
trivial projection. In the case of P2, we have a geometric twistor
correspondence between points in M? and holomorphic embeddings
P! & P2, as well as between points in P? and two-planes in M3,
5.11.2Note

that the twistor distribution here is of rank two and it is generated
by the vector fields u,d%?, i.e.

P? = F*/(u,0%) with 998 = g@ g8 2
5.11.3 Remark

There is an alternative way of obtaining the minitwistor space from
the ambitwistor space in the non-Abelian setting. Firstly, one reduces to
the miniambitwistor space underlying a Penrose-Ward transform for
solutions to the three-dimensional Yang—Mills—Higgs theory. Restricting
to BPS solutions then amounts to restricting the miniambitwistor space to

the minitwistor space.

(5.144)
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Penrose—Ward transforms. The construction of the Abelian monopole
equations in the twistor context has been discussed extensively in the
literature comments in the following.

The Penrose-Ward transform works here in the familiar way. A
holomorphic vector bundle over P? which becomes holomorphically
trivial upon restriction to the submanifolds

£ = P! o P2 can be pulled back to F*.

Specifically, we have

f = {fw} € H'(U,05)for U c P2 (5.145)
The pull-back of £ can be split holomorphically,
flav=m7f'ap = Ko —h'p. (5.146)

Using the Liouville theorem, this allows us to introduce a global
relative one-form A" with components

A% = pg 0%FH =1 pug(A%F — e%p), (5.147)

where the fields on the right-hand-side depend only on space-time. From
the flatness condition on the corresponding curvature, we obtain

fap = 0459, (5.148)

where f,p is the curvature of A,p. This is the spinorial form of the
Bogomolny monopole equation

F:=dA =%;d0 (5.149)
in three dimensions
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List of Symbols

No Symbols Meaning
1 M Topological n-manifold
2 .M Tangent vector at p
3 T,M" Cotangent space of M atp
4 ™™ Tangent bundle of M
5 TM* Cotangent bundle of M
6 A The wedge (or exterior) product
7 yAA Spinor covariant derivative
8 VA Twistor
9 T Twistor space
10 Z, Conjugate twsitor
11 T* Dual twistor space
12 ZRM Zero Rest Mass
13 SD Self-dual
14 ASD Anti-self-dual
15 P Density
16 ¢ Lorentz transformation
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