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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction:  

PID controllers date to 1890s governor design. PID controllers were 

subsequently developed in automatic ship steering. One of the earliest examples 

of a PID-type controller was developed by Elmer Sperry in 1911, while the first 

published theoretical analysis of a PID controller was by Russian American 

engineer Nicolas Minorsky, (Minorsky 1922). Minorsky was designing 

automatic steering systems for the US Navy, and based his analysis on 

observations of a helmsman, noting the helmsman controlled the ship based not 

only on the current error, but also on past error as well as the current rate of 

change; this was then made mathematical by Minorsky. His goal was stability, 

not general control, which simplified the problem significantly. While 

proportional control provides stability against small disturbances, it was 

insufficient for dealing with a steady disturbance, notably a stiff gale (due to 

steady-state error), which required adding the integral term. Finally, the 

derivative term was added to improve stability and control. 

Trials were carried out on the USS New Mexico, with the controller 

controlling the angular velocity (not angle) of the rudder. PI control yielded 

sustained yaw (angular error) of ±2°. Adding the D element yielded a yaw error 

of ±1/6°, better than most helmsmen could achieve. The Navy ultimately did not 

adopt the system, due to resistance by personnel. Similar work was carried out 

and published by several others in the 1930s. [1] 

In the early history of automatic process control the PID controller was 

implemented as a mechanical device. These mechanical controllers used a lever, 
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spring and a mass and were often energized by compressed air. These pneumatic 

controllers were once the industry standard. 

Electronic analog controllers can be made from a solid-state or tube 

amplifier, a capacitor and a resistor. Electronic analog PID control loops were 

often found within more complex electronic systems, for example, the head 

positioning of a disk drive, the power conditioning of a power supply, or even 

the movement-detection circuit of a modern seismometer. Nowadays, electronic 

controllers have largely been replaced by digital controllers implemented with 

microcontrollers or FPGAs. However, analog PID controllers are still used in 

niche applications requiring high-bandwidth and low noise performance, such as 

laser diode controllers.  

Most modern PID controllers in industry are implemented in 

programmable logic controllers (PLCs) or as a panel-mounted digital controller. 

Software implementations have the advantages that they are relatively cheap and 

are flexible with respect to the implementation of the PID algorithm. PID 

temperature controllers are applied in industrial ovens, plastics injection 

machinery, hot stamping machines and packing industry. 

 A proportional–integral–derivative controller (PID controller) is a control 

loop feedback mechanism (controller) commonly used are used in industrial 

production for controlling equipment or machines (Industrial control systems).  

Control system is a device, or set of devices, that manages, commands, 

directs or regulates the behavior of other devices or systems. There are two 

common classes of control systems, open loop control systems and closed loop 

control systems. In open loop control systems output is generated based on 

inputs. In closed loop control systems current output is taken into consideration 

and corrections are made based on feedback. A closed loop system is also called 

a feedback control system. 
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 In the case of linear feedback systems, a control loop, including sensors, 

control algorithms and actuators, is arranged in such a fashion as to try to 

regulate a variable at a setpoint or reference value. An example of this may 

increase the fuel supply to a furnace when a measured temperature drops. PID 

controllers are common and effective in cases such as this. Control systems that 

include some sensing of the results they are trying to achieve are making use of 

feedback and so can, to some extent, adapt to varying circumstances. 

 Linear control systems use linear negative feedback to produce a control 

signal mathematically based on other variables, with a view to maintain the 

controlled process within an acceptable operating range. The output from a 

linear control system into the controlled process may be in the form of a directly 

variable signal, such as a valve that may be 0 or 100% open or anywhere in 

between. Sometimes this is not feasible and so, after calculating the current 

required corrective signal, a linear control system may repeatedly switch an 

actuator, such as a pump, motor or heater, fully on and then fully off again, 

regulating the duty cycle using pulse-width modulation. [2] 

 The PID control scheme is named after its three correcting terms, whose 

sum constitutes the manipulated variable (MV). The proportional, integral, and 

derivative terms are summed to calculate the output of the PID controller. The 

proportional term produces an output value that is proportional to the current 

error value. The proportional response can be adjusted by multiplying the error 

by a constant Kp, called the proportional gain constant, the contribution from the 

integral term is proportional to both the magnitude of the error and the duration 

of the error. The integral in a PID controller is the sum of the instantaneous error 

over time and gives the accumulated offset that should have been corrected 

previously. The accumulated error is then multiplied by the integral gain (Ki) 

and added to the controller output, and last term the derivative of the process 

error is calculated by determining the slope of the error over time and 

multiplying this rate of change by the derivative gain (Kd). The magnitude of the 
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contribution of the derivative term to the overall control action is termed the 

derivative gain (Kd).  

 

1.2 Objective: 

Study the PID controller theory, design and tuning using five methods 

with certain transfer function and compare the result.  

 

1.3 Methodology: 

We extract the open loop response with step function to get some points 

that helping to calculate the parameters of PID function (Kp, Ti, Td) any method 

has table explain used to find his own value, simulate these values to get the 

transient response of the closed loop system (settling time (ts), the rise time (tr) 

and the peak overshoot (MP%)) finally discussed the results, compare it and 

choose the best method. 

 

1.4 Thesis Structure: 

         This thesis will be divided into five chapters. Chapter one deals an 

introduction, while chapter tow makes a review of the previous studies, Chapter 

three view a PID controller theory, Chapter four will cover the proposed tuning 

methods to be evaluated and their responses will be compared using percent 

overshoot, settling time, and rise time, and finally chapter 5 will draw 

conclusions and the recommendations.  

 

 

 

 

 

 



5 

 

CHAPTER TOW: 

LITERATURE REVIEW  

 

 

2.1 Background: 

PID (proportional integral derivative) control is one of the earlier control 

strategies. Its early implementation was in pneumatic devices, followed by 

vacuum and solid state analog electronics, before arriving at today’s digital 

implementation of microprocessors. It has a simple control structure which was 

understood by plant operators and which they found relatively easy to tune. 

Since many control systems using PID control have proved satisfactory, it still 

has a wide range of applications in industrial control. According to a survey for 

process control systems conducted in 1989, more than 90 of the control loops 

were of the PID type. PID control has been an active research topic for many 

years. Since many process plants controlled by PID controller shave similar 

dynamics it has been found possible to set satisfactory controller parameters 

from less plant information than a complete mathematical model These 

techniques came about because of the desire to adjust controller parameters in 

situ with a minimum of effort, and also because of the possible difficulty and 

poor cost benefit of obtaining mathematical models. The two most popular PID 

techniques were the step reaction curve experiment, and a closed-loop 

experiment under proportional control around the nominal operating point. [3] 

By most accounts PID control was introduced in 1910, by Elmer Sperry’s 

ship autopilot. The Fulscope pneumatic controller, which was introduced by 

Taylor Instrument Companies, was completely redesigned in 1939. This new 

improved version provided in addition to proportional and reset control, an 

action dubbed “Pre-act” by the Taylor Instrument Company. In the same year 
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“Hyper-reset” was introduced in the Stabilog pneumatic controller, which was a 

product designed by the Foxboro Instrument Company which also previously 

only had proportional and reset control. The Pre-act and Hyper-reset terms 

provided a control action proportional to the derivative of the error signal. The 

reset provided a control action proportional to the integral of the error signal 

therefore both controllers offered PID control. Only the Taylor Instrument 

Fulscope offered full field adjustment of the controller parameters. The Stabilog 

had to be set at the factory to one of the four available derivative-plus-integral 

terms. The proportional gain of the controller was field adjustable. With the 

availability of adjustments for the three terms came the problems. There were no 

established rules or methods for choosing the appropriate settings for each of the 

three terms in the controller. The Taylor Instrument Companies realized that this 

was a weakness and carried out extensive studies in an attempt to devise a set or 

rules for choosing the proper controller settings for the process being controlled. 

[4] 

The end results of these studies were two papers, by J.G. Ziegler and N.B. 

Nichols, which were published in 1942 and 1943. Their work presented two 

ways of determining controller settings. One was based on open-loop tests the 

other on closed-looped tests. Both were based on empirical data. Their 

contribution was a quantum leap forward in the science of tuning industrial 

controllers. It was about ten years or more after that before other authors started 

to improve and refine their recommendations, but the essence of their approach 

has remained unchanged to this day. With advances in technology over the years 

and the advent of digital computing, automatic control now offers a wide range 

of choices for control schemes. [5, 6] 

PID control algorithms remain the most popular control scheme applied in 

industry. They are utilized in more than 90% of control applications. The PID 

controller use has been recommended for the control of processes with low to 

medium order plant transfer functions that have relatively small time delays. The 
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PID control scheme is also well suited when parameter setting must be made 

using tuning rules and when controller synthesis is performed either once or 

more often due to its ability to allow for easy parameter changes. The success of 

PID control in the process and manufacturing industry is based on the ability to 

stabilize and control around 90% of existing processes. [7] 

This success is overshadowed, however, by a lack of performance in 

many applications. It has been reported that a large percentage of the installed 

PID controllers are operated in a manual mode, and that about 65% of the loops 

operating in the automatic mode generate a greater variance in closed-loop 

operation than in open-loop operation (i.e. the automatic controllers are poorly 

tuned). [7, 8] 

 This deficiency in controller performance is usually the result of a poorly 

chosen set of operating parameters due to:  

 Lack of knowledge among commissioning personnel and operators. 

 Generic tuning methods based on criteria that do not match the specific 

needs. 

 The large variety of PID structures, which leads to errors during the 

application of standard tuning rules. 

 

These and other surveys show that the selection of PID controller tuning 

parameters is a common problem in many applications. The most straight-

forward way to set up controller parameters is through the use of tuning rules. 

Currently there is a plethora of literature on the subject of PID tuning techniques 

and standards. The problem is that this information is disseminated among a 

large variety of sources and therefore is not conveniently communicated to the 

engineering and industrial community. The topic has been covered and 

discussed in media such as journal papers, conference papers, websites and 

books for the last sixty to seventy years. [7] 
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  A. O’Dwyer, author of the Handbook of PI and PID Controller Tuning 

Rules, has recorded 408 separate sources of tuning rules. Another issue is the 

fact that current undergraduate courses in control theory only minimally cover 

the ideal independent or parallel version of the PID control algorithm. There is 

no single PID algorithm. Different fields of engineering using feedback control 

have used different algorithms ever since feedback controls systems began to be 

mathematically analyzed. [9]  

It is often forgotten or simply not known that different manufacturers 

implement different versions of the PID controller algorithm. The engineer 

responsible for tuning a control loop must be aware of the form of the algorithm 

used for the PID controller. Controller tuning rules that work reasonably well on 

one PID architecture may not work well on another. Another issue is that many 

engineers prefer one method of tuning over another due to familiarity or ease of 

use. The question is which method gives the lowest percent overshoot and 

settling time consistently for a variety of plants. This is motivation behind the 

work in this thesis on the evaluation of tuning techniques used in industry. [7] 
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CHAPTER THREE 

PID THEORY 

 

3.1 Overview: 

 This chapter will give an introduction to PID controller design. In section 

3.2.1 the proportional controller will be reviewed. The definition of steady-state 

error will be reviewed as well as the rules for determining steady-state error. 

Examples of proportional design for a type zero and type one system will be 

demonstrated using the root locus method, section 3.2.2 there will be a review of 

the ideal integral compensator. This section will use root locus techniques to add 

a PI (proportional plus integral) controller to a system to improve its steady-state 

error without appreciably changing its transient response, section 3.2.3 will 

cover the design of a PD (proportional plus derivative) controller. It will be 

shown that the PD controller can be used to improve transient response as well 

as offer a slight improvement in steady-state error, and section 3.2.4 the 

realization and design of a PID (proportional plus integral plus derivative) 

controller will be reviewed. Using root locus techniques, a PID controller will be 

designed and tested to offer an improvement of steady state error as well as 

transient response. 

 

3.2 The PID controller types: 

Design of different form of the controller: 

3.2.1 The proportional controller: 

The proportional controller or P controller is the most basic controller. It 

is simple to implement and easy to tune. Figure (3.1) is a block diagram of a 
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proportional controller. In this system R(s) is the reference input and U(s) is the 

output of the controller. G(s) is the plant transfer function, and C(s) is the 

variable being controlled. The error E(s) equals R(s) – C(s). [8] 

 

Figure (3.1): Block diagram of a proportional controller 

If we consider a step input to the system and make the assumption that U(t) 

must be a finite non-zero  value, in order to evoke a non-zero output C(t), an 

error E(t) must exist. Letting Uss be the steady-state output of the controller and 

Ess be the steady-state error we have Uss = K Ess. 

Rearranging we have: 

    
 

 
         (1) 

As K is increased the steady-state error can be made smaller. This example 

assumes that there is no integration in the forward path of the system, i.e. the 

plant G(s) does not have a pure integration in its transfer function. If the plant, 

G(s) were to be approximated as the simplified transfer function we would have 

the following system shown in Figure (3.2).  

 

Figure (3.2): Proportional controller acting on a motor 
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In this case there will be zero steady-state error. For the same step input R(t), as 

C(t) increases E(t) will decrease until it reaches zero since E(t) = R(t) –C(t). 

Since an integrator can have a constant output without any input there will 

always be a non-zero value for C(t). 

Depending on the type of system, a proportional controller, or any controller for 

that matter, may or may not have a non-zero steady-state error. The following 

rules apply to negative unity feedback systems. It can be shown that the number 

of pure integrations in the forward path transfer function G(s) of a closed loop 

negative feedback system will determine the steady-state error, e(∞), for step 

input R(s) : 

  ( )        
  ( )

    ( )
     (2)  

 

For a unit step input, substituting R(s) = 1/s into Equation (3.2) gives: 

 ( )     
   

 
 ⁄

    ( )
    
   

 

    ( )
   

The term,         ( )  is given the symbol Kp and is called the position error 

coefficient.  

 ( )  
 

    
     (3) 

To get a small steady-state error to a step input, Kp must be made high. This can 

be achieved by increasing the proportional gain K. Therefore, the higher the 

gain, the smaller the error will be. [10] 

The error coefficient can be increased, and the result is a reduction in 

error simply by increasing K, the proportional gain of the system. However, 

increasing K may lead to instability. Since this is a review of proportional 

control, the system type, i.e. how many pure integrations in the forward transfer 

function G(s), will determine the value of the steady-state error. In most cases, it 
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is required that the steady-state error of the closed loop system due to a step 

input be zero. For this to be so, Kp must be infinite. The open loop transfer 

function, KG(s) can be expressed in factored form as, 

  ( )  
 (    )  (    ) 

  (    )  (    ) 
 

If the power   of the factor   , is zero, then it is clear that Kp will not be 

infinite. However, if    is greater than or equal to one, Kp will always be 

infinite. Therefore the value of n determines the value of the error coefficients, 

which in turn determine whether the steady-state error equals zero. A system is 

called type zero if n=0, type one if n=1, type tow if n=2, and so on. Table (3.1) 

is a summary of system type and steady state errors. 

Table (3.1): Relationships between input, system type, static error constants, and steady-state errors 

 

 

For Figure (3.2), if we let   ( )  
 

(   )(   )
 , type one system which is a 

second order it can be seen by the step response plot in Figure (3.3) that the 

steady state error for a proportional gain K of one that      
 

    
=0.9333 . [7] 
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Figure (3.3): Second order type one system step response with gain of 1 

 

A plot of the root locus in Figure (3.4) of the system shows that it will 

remain stable as the gain K is increased.  

 

Figure (3.4): Root locus of second order system 
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By raising the controller gain to 400 we achieve a steady-state error of 

0361. The system remains stable and the settling time decreases, however we 

have introduced a certain amount of overshoot and ringing into the system. 

Figure (3.5) depicts the results of a step response to the system with the gain 

increased to 400.  

 

 

Figure (3.5): Second order plant response with gain of 400 

 

If the plant were to be represented as a type one third order system with        

  ( )  
 

 (   )(   )
 , type tow system the steady state error for a step input will 

now be zero. Increasing the gain beyond a certain point will cause instability. By 

reviewing the root locus plot in Figure (3.6) we see that when the system gain is 

increased to a value greater than 120, the poles of the system will move into the 

right half plane and the system will become unstable. [9] 



15 

 

 

Figure (3.6): Root locus of a third order system 

Figure 7 shows step responses for K = 1 and 100. It should be noted that both 

systems have zero steady state error, however as the gain is increased to 100 the 

system starts to ring. The tradeoff is that with K=100 the response has a shorter 

settling time. If the gain is increased to 120 and beyond the system will become 

unstable. Note that as shown in Figure 8, with a gain of 120 the system oscillates 

at its natural frequency of 3.87 radians/sec.  

 

Figure (3.7): Step response for type 1 third order system with K=1, K= 100 
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Figure (3.8): Step response for type one third order system with K=120 

 

Tuning a proportional controller is fairly straightforward. The gain is 

simply raised until instability appears, then it is decreased until the desired 

performance is achieved. In industry when tuning a loop, if it is possible to 

apply a square wave to the system the following procedure is used  

        1. Set K low 

        2. Apply a square wave having a fundamental frequency that is about 10% 

of the system bandwidth (point where gain has fallen to -3db) to insure that there 

is no roll off of the output due to bandwidth limitations. 

        3. Raise K for little or no overshoot. 

        4. If the system response does not meet operation criteria, continue 

lowering K until satisfactory results are obtained. Otherwise the process 

complete. 

A square wave is a rather difficult command to follow perfectly like that of a 

step response, therefore a small amount of overshoot to a square wave is 

acceptable in most cases. 
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Often times other factors, primarily noise, will ultimately limit the proportional 

gain to a value below what the stability criterion demands. [10] 

 

3.2.2 Integral controller: 

The major shortcoming of the proportional controller for a type zero 

system is that the steady state error is not exactly zero. This is readily corrected 

by using an ideal integral compensator. Because the integral output will grow 

ever larger with even small DC error, any integral gain will eliminate steady-

state error. This single advantage is why PI (proportional plus integral) control is 

often preferred over P only control. A compensator that uses pure integration to 

improve steady-state error is referred to as an ideal integral compensator. The 

ideal compensator has to be constructed with active components, which in the 

case of electric networks requires the use of active amplifiers and sometimes 

additional power sources. A passive compensator is less expensive to 

implement, however in this case the steady-state error is not driven to zero, 

where as it is in cases where ideal compensation is used. [10]  

It has been shown in section 3.2.1 that steady-state error can be removed simply 

by adding a pure integration to the controller or plant in a cascaded system. This 

of course will change the system type from a type zero to a type one. The 

problem that may arise is that adding this pure integration will also change the 

transient response characteristics of the system. Figure (3.9) shows a type zero, 

third order, plant using a proportional controller. 
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Figure (3.9): type zero proportional controlled system 

If this system were operating with the desired transient response, corresponding 

to a damping ratio ζ = 0.2, we would require a gain       as can be seen by 

the plot of the root locus for the system in Figure (3.10). However, this system 

gives us a steady-state error of 0.186. This can be seen in Figure (3.11). It 

should also be noted that this system can be approximated as a second order 

system since the third pole is much farther to the left real component σ = -16 

than the two dominant poles for which σ= -1.49. 

 

Figure (3.10): P only system operating at 0.2 damping ratio 
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Figure (3.11): Step response for P only compensated system 

 

If we were to add an integrator to the proportional controller, the system 

type becomes one, therefore eliminating any steady-state error to the step input. 

The problem here is that the original pole location for ζ =0.2 is no longer on the 

root locus for the system, as can be seen in figure (3.10). 

 

Figure (3.12): Root locus for PI control with 0.2 damping ratio and no zeros 
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Analyzing the root locus in Figure (3.12) it is found that a system gain of 412 

will result in a damping ration ζ=0.2. This will give the same percent overshoot 

as the original system but with zero steady-state error. However the transient 

response will be considerably slower i.e. longer rise time and longer settling 

time, as seen in Figure (3.13). [9] 

 

Figure (3.13): Normalized step response for P and PI controller with pure integration and no zero 

The system can be made more like the original P only system shown in 

Figure (3.11) and still eliminate steady state error by adding a zero to the 

controller near the origin. The effect of the zero will help cancel out the angular 

contribution of the added pole at the origin. This is the final implementation of 

an ideal PI controller; one realization of the system is depicted in Figure (3.14). 

[8] 
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Figure (3.14): Full PI compensator with zero added 

If parameter a in Figure (3.14) is chosen to be equal to 0.2 we have the 

root locus plot shown in Figure (3.15).  

 

Figure (3.15): Root locus of PI system with zero added 

Note that this root locus is extremely close to the original root locus of the 

proportional only system. The result is a system with the desired transient 

response and zero steady-state error to a step input. This can be seen in the step 

response plot of Figure (3.16).  
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Figure (3.16): Step response for P and PI system with zero added 

It should be noted the transient response of both systems are rather 

similar, however the settling time of the PI system is approximately 14 seconds 

while the settling time of the P only system is time of the PI system is 

approximately 14 seconds while the settling time of the P only system is fact is 

that the compensated system reaches the uncompensated system’s final value in 

less time. The remaining time is used to improve the steady-state error over that 

of the uncompensated system. The typical textbook realization of the ideal PI 

controller is in what is called the parallel form shown in Figure (3.17). [10] 

 

Figure (3.17): Parallel form of PI controller 

The controller transfer function is given by:  
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  ( )     
  

 
 
  (  

  
  
)

 
    (4) 

 

Where, comparing with the compensator of Figure (3.14), it can be seen 

that   
  

  
 and      the process for tuning a PI controller is much the same 

as tuning a P controller. The following method may be used in industry, 

provided that a square wave can be applied to the system: 

i. Zero Ki and set Kp low. 

ii. Apply a square wave at about 10% of the desired loop bandwidth to 

insure there is no roll off. 

iii. Raise Kp for little or no overshoot. 

iv. If the system response is too noisy, lower Kp until it is not. 

v. Raise Ki for 15% overshoot. 

 

3.2.3 The Derivative Controller: 

If a system were to already have zero steady-state error, i.e. type one or 

greater, or an acceptable level of steady-state error, the designer may want to 

improve the transient response of the system. The design objective here may be 

to reduce settling time and achieve a desirable percent overshoot. This can be 

accomplished by the use of ideal derivative compensation. The term ideal refers 

to the fact that a pure differentiation is applied to the forward path. The ideal 

proportional plus derivative PD controller uses active components in its 

realization, and the pros and cons of design and manufacturing the system are 

similar to those of the previous active PI network. 

The transient response of a system can be chosen by selecting the required 

closed-loop pole locations on the s-plane. If these pole locations are not already 

on the root locus of the system, then the system root locus must be reshaped in 
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order to include these poles. One way to accomplish this is to add a zero to the 

forward path transfer function. 

 

  ( )           (5) 

 

This is the ideal derivative or PD controller and is the sum of a 

differentiator and a pure gain. In the next example the effects of adding zeros at 

-3, -4 and -6 will be examined on the following uncompensated plant. [9] 

 

 ( )  
 

(   )(   )(   )
 

 

Figure (3.18) shows the root locus of the uncompensated system with a 

damping ratio ζ = 0.6. 

 

Figure (3.18): Type zero system before PD compensation 

 

Note that the real component of the original system’s third closed loop pole for 

achieving the damping ratio of 0.6 that is at least 5 times that of the dominant 

closed loop poles. Thus, the original system can be approximated as a second 
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order system. Now, adding a zero to the original system at -3 gives the 

corresponding transfer function, and the root locus shown in Figure (3.19) 

 

 

 ( )  
 (   )

(   )(   )(   )
 

 

Figure (3.19): Type zero compensated system with zero at -3 

 

Notice that the zero at -3 cancels out the open loop pole at -3, thus turning 

the system into a pure second order system. It can also be seen for the same 

damping ratio, the pole and gain values have changed. Figure (3.20) is the root 

locus for the original system with a zero added at -4 thus,  

 

 ( )  
 (   )

(   )(   )(   )
 

 

It can be seen on this plot that for the same damping ratio, the pole, and 

gain values have changed from those of the previous two systems. Also note that 

the third closed loop pole is not far removed from the two dominant closed loop 
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pole locations, however the third pole is in close enough proximity to the added 

zero to approximate a pole zero cancellation. Therefore this system can be 

approximated as a second order system. [9] 

 

Figure (3.20): Type zero compensated system with zero at -4 

 

In Figure (3.21) the zero is now moved to -7 giving the transfer function  

 

 ( )  
 (   )

(   )(   )(   )
 

 

Again it is observed that this system has different pole and gain values for 

a ζ = 0.6. This system can also be approximated as a second order system 

because of the fact that the zero is fairly far removed from the dominate pole 

pair and it is also in close proximity to the third pole, offering a rough 

approximation of pole zero cancellation. 
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          Figure (3.21): Type zero compensated system with zero at -7 

 

By examining the normalized step responses to the four systems in Figure 

(3.22) it can be seen that the percent overshoot in each case is the same, 

corresponding to the choice of ζ = 0.6. It can also be observed that the peak time 

and settling time have decreased from those of the original uncompensated 

system. From Figure (3.23) which shows the actual step responses of the 

systems, it can be observed that as the added zeros traverse farther to the left 

from the dominant pole pair on the real axis, (as seen on the root locus) there is a 

point where the effect of the zero is lessoned and the system response starts 

reverting back to that of the original uncompensated system. [8] 
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Figure (3.22): Normalized step responses for uncompensated and derivative compensated systems 

 
Figure (3.23): Step responses for uncompensated and derivative compensated systems 

 

It can be seen that the step responses for the systems with a zero at -3 and 

-4 give the most improvement to transient response and steady-state error 

therefore, it is important to make a judicious choice when selecting the zero 

location. The common textbook realization of a PD control scheme is shown in 

Figure (3.24) 

 
Figure (3.24): Implementation of PD controller 
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The transfer function of the controller itself can be represented as  

  ( )          (  
 

  
)   (6) 

With this representation K / Kd can be chosen to equal the negative value 

of the required controller zero, while Kd can be chosen to meet the required loop 

gain. Some things to consider about pure derivative gain are the fact that 

differentiation is a noisy process. Derivatives by nature have high gain at high 

frequencies. The level of noise is usually low, but the frequency of noise is high 

compared to the signal. Differentiation at high frequencies can lead to large 

unwanted signals. [9, 10] 

 

 

3.2.4 The Proportional Integral Derivative Controller: 

A system that can be used to improve steady-state error as well as 

transient response is known as the proportional integral derivative controller or 

PID controller. The mathematical or ideal textbook configuration of the system 

can be seen in Figure (3.25). 

 

Figure (3.25): Ideal PID representation 

 

The controller transfer function can be represented as 
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  (7) 
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Notice that this controller has one pole at the origin and two zeros. From the 

review for PI and PD controllers it can be seen that one of the zeros and the pole 

at the origin will pertain to the ideal integral compensator, and the remaining 

zero will be used to design in the ideal derivative compensator [10]. 

The following process can be used to design a PID system. Choosing the 

example plant transfer 

 

  ( )  
(     )

(   )(   )(   )
 

 

and the operating criteria that the uncompensated system operating at 25% 

overshoot is to be improved to have a 30% reduction in settling time and zero 

steady-state error, while maintaining 25% overshoot. The root locus of the 

system is plotted and the closed loop pole for 25% over shoot is determined. As 

shown in Figure 26, the third pole and zero are found to be a little closer than we 

would like from the dominant poles to evaluate the system as if it were second 

order. A simulation was performed and it was found that the second order 

approximation is still sufficiently valid for us to proceed. Next we find the 

compensator pole that will yield the 30% reduction in settling time and still 

maintain 25% over shoot. Using Equation (8) the settling time (Ts) of the 

uncompensated system is found to be 1.166 seconds; through simulation, the 

settling time was actual.986 seconds, which is sufficiently close to this 

demonstration. The new required settling time is.816 seconds, using the 

calculated value of settling time. The real part of the new pole location is σ = -

4.902.  

 

   
 

   
 
 

 
     (8) 
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   Where σ is the real part of the closed loop dominant pole obtained from the 

root locus  

 

Figure (3.26): System before PID implementation 

 

Again, using Equation (3.10), ωd is found to equal 11.133. The new closed loop 

poles for 25% overshoot and a reduced settling time of 0.816 seconds are  

               

Finding the pole and zero angles and using Equation (9) to solve for    We 

have          . 

Using Equation (3.10) the compensator zeroes location is found to be-50.833. 

    (9) 

 

Where             

 

                                               (10) 

 

The root locus of the compensated system,  

 

  ( )  
 (     )(        )

(   )(   )(   )
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Is plotted and it can be seen that a second order approximation is still 

questionable. A simulated step response is applied to the system and it can be 

seen that the first part of the design goal has been accomplished. The percent 

over shoot remains at 25% while the settling time has decreased from 0.986 

second to 0.671 seconds, which is a 31% reduction in settling time. Figure 

(3.27) is the new root locus, while Figure (3.28) gives step responses for the 

original and compensated systems.  

 
Figure (3.27) Root locus of derivative compensated system 

 

 
Figure (3.28) Step responses for uncompensated and derivative compensated systems 
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It can be seen from the step response plots that the system steady-state 

error has already improved. Next we will add an ideal integral compensator to 

complete the design of the PID controller. The ideal integral compensator will 

be added to reduce the remaining steady-state error to zero. The key here is to 

place the integral compensator zero close to the origin. The choice for the zero 

of the ideal integral compensator will be -0.9 which gives us the PID controller 

and plant transfer function as  

 ( )  
 (     )(        )(     )

 (   )(   )(   )
 

 

Where K is equal to 1.9. Figures (3.29) and (3.30) show the root locus plot for 

the PID system and the corresponding step responses. Notice that the root locus 

for the PID system now has four closed loop poles. The step response shows that 

while the ideal derivative compensator decreased the settling time by the desired 

amount and also lowered the steady state error, the PID compensator brought the 

steady-state error two zero, however the settling time increased from that of the 

derivative compensation, yet was still an improvement from that of the 

uncompensated system. [9] 

 
Figure (3.29): PID compensated root locus 
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Figure (3.30): Step responses for uncompensated, derivative, and PID 

 

The PID controller transfer function is 

 

    ( )  
 (        )(     )

 
 
   (                  ) 

 
 

 

Comparing this to Equation (7) and solving for the gains Ka, Kb, and Kc, we 

obtain Ka = 98.297, Kb = 86.925, Kc = 1.9. 
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CHAPTER FOUR 

SIMULATION AND RESULTS 

 

4.1 Introduction: 

In this chapter will explain the tuning methods, the way to use it, the 

system that able to work with it, applied it to example transfer function and 

calculate the result using MATLAB and compare it.  

The transfer function: 

 ( )  
  

(   )(   )(   )
 

Firstly, for the open loop methods need to determine the open loop 

response and the close loop method to frequency response in tests of system 

section and compensate it in table of method and extract the transient response 

parameters (tr, ts and MP%) using MATLAB code in appendix A, compare the  

result and choose the ideal method. 

4.2 System tests: 

4.2.1 Open loop step response: 

Figure (4.1) shows the open loop step response (source value=1), and extract the 

open loop parameters (a=0.0289, K=0.156, L=0. 197, T=1.063). 
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Figure (4.1) open loop response of the system 

 

4.2.2 Close loop response (Frequency response): 

               Figure (4.2) display to the root locus diagram of the system. In figure 

(4.3) a, b and c the closed loop response shown with various gain values. 

 

Figure (4.2): Root locus of the system 
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Figure (4.3.a) closed loop response without gain 

 

Figure (4.3.b) closed loop response with K=10 

 

Figure (4.3.c) closed loop response with K=72. 
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4.3 Tuning methods: 

4.3.1 Ziegler Nichols Open loop tuning method: 

        In 1942 J.G Ziegler and N.B. Nichols derived their first method of PID 

tuning through empirical testing. This method was based on the plant reaction to 

a step input and characterized by two parameters. The method is often referred 

to as the Open Loop, or Step Response tuning method. The parameters T, a and 

L is determined by applying a unit step function of the process. [11] 

 

Figure (4.4) Open loop parameter identification 

 

Ziegler and Nichols suggested that set the values of the parameters Kp Ti and Td 

according to the formula shown in Table (4.1) 

Table (4.1) opens loop tuning method parameters 

Controller Kp Ti Td 

P 1/a   0 

PI 0.9/a 3L  

PID 1.2/a 2L L/2 
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Figure (4.5): Block diagram of the system using simulink 

 

Applying this method on the system  give the value  

 

Figure (4.6) system response using a PID controller tuned by the open loop method 

 

4.3.2 Ziegler Nichols Closed loop tuning method: 

             In this method,  firstly set T, =   and Td = 0. Using the proportional 

control action only (see Figure 4.7), increase K, from 0 to a critical value Kcr at 

which the output first exhibits sustained oscillations. (If the output does not 

exhibit sustained oscillations for whatever value K, may take, then this method 

does not apply.) 

Kp Ti Td 

41.522 0.394 0.085 
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Figure (4.7) Closed-loop system with a proportional controller. 

 

Figure (4.8) Sustained oscillation with period Pcr. 

 

Thus, the critical gain Kcr, and the corresponding period Pcr, are experimentally 

determined (see Figure 4.8). Ziegler and Nichols suggested that set the values of 

the parameters Kp Ti and Td according to the formula shown in Table (4.2). [11] 

 

Table (4.2): Ziegler-Nichols Tuning Rule Based on Critical Gain Kc, and Critical Period Pcr 

Controller Kp Ti Td 

P 0.5Kcr   0 

PI 0.45Kcr Pcr/1.2 0 

PID 0.6Kcr 0.5Pcr 0.125Pcr 

 

 

As shown in the closed loop response from the root locus diagram can we 

extract that Kcr=72 and Pcr=0.8 

Kp Ti Td 

43.2 0.4 0.1 
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Figure (4.9): system response using a PID controller tuned by the closed loop method 

 

4.3.3 Cohen-Coon tuning method: 

        This method also likes Ziegler Nichols open loop method also referring to 

the open loop response (FOPTD) in figure (4.1). 

The different controllers can be designed with the direct use of Table (4.3). [12] 

                   
  

 
                       

 

   
 

Table (4.3) controller parameters of Cohen–Coon method. 

Controller Kp Ti Td 

P  

 
(  

     

   
) 

    

PI    

 
(  
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PD     

 
(  
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PID     
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The PID controller parameters of the system 

 

 

 

Figure (4.10) system response using a PID controller tuned by the Cohen coon method 

 

 

4.3.4 Chien–Hrones–Reswick PID Tuning: 

           This method that has proposed by Chien, Hrones and Reswich, it's a 

modification of open loop Ziegler and Nichols method. They proposed to use 

“quickest response without overshoot” or “quickest response with 20% 

overshoot” as a design criterion. They also made the important observation that 

tuning for set point responses and load disturbance responses are different.    To 

tune the controller according to the C- H-R method the parameters of first order 

plus dead time model are determined in the same manner of the Z-N method. 

The controller parameters can then be determined from the Tables (4.4) and 

(4.5). The tuning rules based on the 20% overshoot design criterion are quite 

similar to the Z-N method. However, when the 0% overshoot criteria is used, the 

Kp Ti Td 

44.69 0.522 0.0704 
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gain and the derivative time are smaller and the integration time is larger. This 

means that the proportional action and the integral action, as well as the 

derivative action, are smaller. [12] 

Table (4.4) CHR is tuning for set-point regulation 

Controller With 0% overshoot With 20% overshoot 

Kp Ti Td Kp Ti Td 

P 0.3/a   0 0.7/a   0 

PI 0.35/a 1.2T 0 0.6/a T 0 

PID 0.6/a T 0.5L 0.95/a 1.4T 0.47L 

 

Table (4.5) CHR is tuning for disturbance rejection 

Controller With 0% overshoot With 20% overshoot 

Kp Ti Td Kp Ti Td 

P 0.3/a   0 0.7/a   0 

PI 0.6/a 4L 0 0.7/a 2.3L 0 

PID 0.95/a 2.4L 0.42L 1.2/a 2L 0.42L 

  

          As shown the second table give values almost equal ZN open loop method 

We can neglect it and design the controller from the first table. Set point 

regulation 0% overshoot:  

 

 

 

Kp Ti Td 

20.76 1.063 0.0985 
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Figure (4.11) system with PID controller tuned using CHR 0% overshoot method 

 

And 20% overshoot: 

 

 

 

 

Figure (4.12) system with PID controller tuned using CHR 20% overshoot method 

 

 

 

Kp Ti Td 

32.87 1.4882 0.09259 
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4.3.5 TheWang–Juang–Chan Tuning method: 

        Based on the optimum ITAE criterion, the tuning algorithm proposed by 

Wang, Juang, and Chan is a simple and efficient method for selecting the PID 

parameters. [12] 

 If the k, L, T parameters of the plant model are known, the controller 

parameters are given by 

   
(       

       

 
)(      )

 (   )
,               ,      

     

      
   (11) 

Then; 

 

 

 

 

Figure (4.13) system with PID controller tuned using TheWang–gang–chain method 

 

4.4 The results and compare: 

        The parameters of the PID controllers designed by the various methods 

shown in table (4.6) 

Kp Ti Td 

19.61 1.073 0.1051 
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Table (4.6) 

PID 

parameters for each tuning method. 

 

            The response of the system with  the each method shown in table (4.7) 

Table (4.7) 

parameter of the system response 

 

 

Tuning 

method 

Kp Ti Td 

ZN 

(Open loop) 

41.522 0.394 0.085 

ZN 

(closed loop) 

43.2 0.4 0.1 

Cohen-Coon 44.69 0.522 0.0704 

CHR 

0% overshoot 

20.76 1.063 0.0985 

CHR 

20%overshoot 

32.87 1.4882 0.09259 

Wang Juang 

Chan 

19.61 1.07258 0.1051 

Tuning method Time rise 

(tr) 

Time settling 

(ts) 

Overshoot 

(MP%) 

ZN 

(Open loop) 
0.202 3.38 55.5 

ZN 

(closed loop) 
0.194 2.67 49.4 

Cohen-Coon 0.199 3.22 53.3 

CHR 

0% overshoot 
0.368 1.97 8.67 

CHR 

20%overshoot 
0.262 2.59 17.3 

Wang Juang 

Chan 
0.39 2.1 5.98 
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Figure (4.13) system responses all curves 
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CHAPTER FIVE  

CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion: 

In this thesis, studying the PID theory, design of different form of the 

controller and evaluated five different methods used in industry to tune PID 

controllers. The five methods were chosen because they are the more popular 

ones, also it wanted to evaluate open loop methods as well as closed loop 

methods of tuning, this tuning PID controller rules just work with the ideal 

structure of PID.  

After using simulation and get the result it notice that some method gives 

a big value in overshoot and great time rise so to choose the suitable method of 

the system most determine the desired specification may be the result from the 

simulation is not equal the real system result because the simulation 

environment is perfectly opposite the reality.  

It was concluded that PID controller is still great and important. It’s 

deserve more focus and investigations to get most accuracy tuning methods that 

will help in all fields that need it.  

 

5.2 Recommendations: 

 Tuning the PID controller for a plant that unknown transfer function. 

 


