الآية

﴿ بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ ﴾

قال تعالى:

قُلْ لَوْ كَانَ الْبَحْرُ مِدَادًا لِكَلِمَاتِ رَبِّي لَنَفِدَ الْبَحْرُ قَبْلَ أَنْ تَنْفَدَ كَلِمَاتُ رَبِّي وَلَوْ جِئْنَا بِمِثْلِهِ مَدَدًا ﴿١٠٩﴾

صدق الله العظيم

سورة الكهف الآية (109)

Dedication

To my father

To my mother

To my family

To my Teachers

To my friends

Who enlighten my way

As a torch of hope

And success

I dedicate thih work

Acknowledgement

Great thanks to allah who bless me to finish this study. Thanks also to my supervisor Doctor: Ibrahim Khider Ibrahim for giving me a part of his time and aids in order to achieve this study.

I am grateful to all those who stood beside me and gave me support to bring this work.

Abstract

The glutathione sulfur transferases (GSTs) are a group of enzymes involved in the detoxification process of carcinogens and other substances. The genes encoding these enzymes are polymorphic in human and the phenotypic absence of enzyme activity (null genotype) may have an effect on the risk of several cancers.

This was analytical case control study, was conducted in Gezira State during the period from February to April 2016, to investigate the association between GSTM1 Null polymorphism and childhood acute lymphoblastic leukemia.

A total of forty patients (Cases) diagnosed with ALL attended to the National Cancer Institute, Gezira State, and 30 healthy volunteers (control) were enrolled for this study. Three milliliter (3ml) of venous blood was collected from each participant in ethylene diamine tetra acetic (EDTA) container. For molecular analysis DNA is extracted from blood samples by salting out method; the analysis of GSTM1 genetic polymorphism was performed using Allele specific polymerase chain reaction (PCR). The results were analyzed by statistical package for social sciences (SPSS) computer program.

The frequency of GSTM1 null polymorphism was 75% in ALL patients, while it was 53% in the control group. The difference was not statistically significant (OR= 1.34, 95%C I (1.11 - 1.39), P=0.059).

Blasts percentage in patients with null genotype (mean±SD: 59.4± 26.65) when compared to those with patients have normal genotype (mean±

SD:72.0±15.31), The result showed that there was not statistically significantly lower (P.value=0.076).

.

Comparison of Hb concentration in patients with null genotype (mean± SD:7.0±2.60) and those with GSTM1 genotype (mean± SD:5.9±2.76), showed no statistically significant difference (*p.value*=0.269).

The mean of TWBCs counts among patients with null genotype (mean:66.6, SD:56.23), While among the normal GSTM1 (mean:54.4, SD: 66.27) and the difference was statistically inisignificantly higher (*p.value*=0.574).

Comparison of TWBCs counts in patients with null genotype (mean± SD:66.6±56.23) and those with GSTM1 genotype (mean± SD:54.4±66.27), showed no statistically significant difference (*p.value*=0.574).

Comparison of platelets counts in patients with null genotype (mean± SD:60.6±94.81) and those with GSTM1 genotype (mean± SD:42.1±41.34), showed no statistically significant difference (*p.value*=0.556).

Comparison of age in patients with null genotype (mean± SD:7.8±4.05) and those with GSTM1 genotype (mean± SD:5.6±3.10), showed no statistically significant difference (*p.value*=0.373).

Results showed that no correlation between GSTM1 null polymorphism and each of gender and family history of ALL (P.value=0.262 & 0.620 respectively).

Concluded that there was no statistically significant association between GSTM1 null polymorphism and childhood ALL development.

مستخلص البحث

الانزيمات المحولة للجلوتاثيون هي مجموعة من الانزيمات التي تدخل في عملية ازالة السموم من المسرطنات وغيرها من المواد. الجينات الحاملة لشفرة الانزيمات هي متعددة الاشكال في البشر والغياب المظهري في نشاط الانزيمات بمكن ان يكون له تاثير خطر الاصابة بعدة انواع من السرطانات.

هذه دراسة تحليلية مقارنة حالة ضابطة اجريت في ولاية الجزيرة في الفترة ما بين فبراير الي ابريل 2016 وذلك لفحص العلاقة بين الانزيم المحول للجلو تاثيون ميو 1 في وضي سرطان الدم الابيض الليمفاوي عند الاطفال بالسودان.

اختير عدد اربعين مريضا شخصوا بسرطان الدم الابيض الليمفاوي والذين حضروا للمعهد القومي للسرطان بولاية الجزيرة وثلاثون متطوعين اصحاء تم اختيار هم كعينة ضابطة. جمعت 3 مل من الدم الوريدي من كل متبرع في حاوية مضاد تجلط يحتوي علي ايثايلين ثنائي الامين رباعي حامض الاستيك. استخرج الحمض النووي منزوع الاوكسجين للتحليل الجزئي عن طريق الترسيب بواسطة الملح. تغيير الشكلياء الجين للانزيم المحول للجلاتثيون حدد باستخدام اليل البلمرة المتسلسلة. حللت النتائج باستخدام الحزم الاحصائية للعلوم الاجتماعية المحوسب.

كانت نسبة تغير الشكلياء لدي غياب الانزيم المحول للجلاتثيون ميو 1 75% عند الاطفال المصابين بسرطان الدم الليمفاوي الحاد بينما كانت53% في العينات الضابطة وكانت ليست لها دلالة احصائية معنوية (القيمة الشاذة 1.34, القيمة المعنوية 0.059).

كانت نسبة متوسط الخلايا غير الناضجة ليست ذات دلالة وصفية عالية (القيمة المعنوية=0.076) عند المرضى ذوي الانزيم الطبيعي (المتوسط± الانحراف المعياري: 72± ±59.4) مقارنة بالمرضى الذين ليس لديهم الانزيم هو (المتوسط± الانحراف المعياري: 59.4±).

عندما قورنت نسبة متوسط خضاب الدم في المرضى الذين ليس لديهم الانزيم (المتوسط الانحراف المعياري: 7.0 ± 0.00) والمرضى الذين لديهم الانزيم (المتوسط الانحراف المعياري: 5.9 ± 0.00). عندما ورق ذات دلالة احصائية (القيمة المعنوية= 0.269 ± 0.00). عندما قورنت نسبة متوسط كريات الدم البيضاء في المرضى الذين ليس لديهم الانزيم (المتوسط الانحراف الانحراف المعياري: 56.00 ± 0.00) والمرضى الذين لديهم الانزيم (المتوسط الانحراف المعياري: 56.00 ± 0.00) ولم يكن هناك فروق ذات دلالة احصائية (القيمة المعنوية=50.00).

عندما قورنت نسبة متوسط الصفائح الدموية في المرضى الذين ليس لديهم الانزيم (المتوسط± الانحراف المعياري: 60.6± 94.81) والمرضى الذين لديهم الانزيم (المتوسط± الانحراف المعياري: 41.31) ,ولم يكن هناك فروق ذات دلالة احصائية (القيمة المعنوية=6.550).

كانت نسبة متوسط الاعمار ليست ذات دلالة وصفية عالية (القيمة المعنوية=0.373) عندالمرضى الذين ليس لديهم الانزيم (المتوسط: 7.8/الانحراف المعياري: 4.05) مقارنة بالمرضى ذوى نوع الانزيم الطبيعى هو (المتوسط: 5.6/الانحراف المعياري: 3.10).

كما اظهرت النتائج عدم وجود علاقة بين غياب الانزيم ونسبة المرض بين الجنسين والتاريخ المرضي للاسرة بسرطان الدم الليمفاوي الحاد, وايضا اوضحت الدراسة ان غياب الانزيم المحول للجلاتثيون ميو 1 لا يمثل عامل خطورة لتطور سرطان الدم الابيض الليمفاوي الحاد عند الاطفال.

CONTENTS

	Subject	Page
الآية		I
Dedication		II
Acknowledge	ment	III
Abstract		IV
مستخلص البحث	4	VI
Contents		VIII
List of tables		XIII
List of figures		XIV
Abbreviation		XV
	Chapter one	
	Introduction and Literature review	
1.1	Introduction	1
1.2	Literature review	2
1.2.1	Acute lymphoblastic leukemia (ALL)	2
1.2.1.1	Classification of Acute lymphoblastic leukemia	a 3
	(ALL)	
1.2.1.1.1	Morphological Classification (French-American-	- 3
	British, FAB)	
1.2.1.1.1	L1 Subtype	3
1.2.1.1.1.2	L2 Subtype	3
1.2.1.1.3	L3 Subtype	4
1.2.1.1.2	WHO Classification of ALL	4

1.2.1.1.3	Immunological classification of ALL	4
1.2.1.1.3.1	B lineage	5
1.2.1.1.3.2	T lineage	5
1.2.1.2	Etiology	5
1.2.1.3	Incidence and pathogenesis	6
1.2.1.4	Clinical features	7
1.2.1.5	Investigations and diagnosis	8
1.2.1.5.1	Full blood count and blood film	8
1.2.1.5.2	Bone marrow aspirate biopsy	8
1.2.1.5.3	Immunophenotyping of blood or marrow blasts	8
1.2.1.5.4	Molecular studies	8
1.2.1.5.5	Bone marrow cytogenetics	8
1.2.1.5.6	Chest xray and Computed tomography	10
1.2.1.6	Prognosis	11
1.2.1.7	Treatment	11
1.2.2	Detoxification system	12
1.2.2.1	Enzyme Systems Involved in Detoxification	13
1.2.2.1.1	The Phase I System	13
1.2.2.1.2	The Phase II System	13
1.2.2.1.3	The Phase III System	14
1.2.3	Glutathione S-transferases (GSTs)	14
1.2.3 1	Definition	14
1.2.3.2	Classification of Glutathione S-transferases	14
1.2.3.3	Glutathione S-transferase mu 1 (GSTM1)	15
	Previous Studies	17

Chapter Two		
Rationale and Objectives		
2.1	Rationale	19
2.2	Objectives	20
2.2.1	General Objective	20
2.2.2	Specific Objectives	20
Chapter Th	ree	
Materials and	d Methods	
3.1	Study design /area/ and duration	21
3.2	Study population and sample size	21
3.3	Inclusions criteria	21
3.4	Exclusion criteria	21
3.5	Ethical consideration s	21
3.6	Data collection	21
3.7	Data presentation	21
3.8	Sampling	21
3.9	Sample collection	22
3.10	Methodology	22
3.10.1	Complete Blood Count (CBC) and blast	22
	percentage	
3.10.2	DNA extraction by salting out method	22
3.10.2.1	Principle	22
3.10.2.2	Procedure	22
3.10.3	Determination of DNA quality and purity	23
3.10.4	DNA storage	23

3.10.5	Molecular analysis	23
3.10.5.1	Detection of GSTM1null genotype	23
3.10.5.2	Demonstration of PCR product	24
3.11	Interpretation of result	25
3.12	Data Analysis	25
	Chapter Four	
	The Results	
4.1	Demographic data	26
4.2	Comparisons of hematological findings in	27
	GSTM1 null group and normal GSTM1 group	
4.3	Comparison of age in GSTM1 null group and	28
	normal GSTM1 group	
4.4	Correlation between gender and GSTM1	28
	polymorphism	
4.5	Correlation between family history of Malignant	29
	disease and GSTM1 polymorphism	
4.6	Association of ALL and GSTM1 null	29
	polymorphism	
	Chapter Five	
D	iscussion, Conclusion and Recommendations	
5.1	Discussion	30
5.2	Conclusions	32
5.3	Recommendations	33
References and Appendixes		
References		34
Appendixe1: Questionnaire		37

Appendix 2 : Reagent	38
Appendix 3: Images	39

List of Tables

Table	Title	Page
No		
1.1	Frequencies of Common Genetic Aberrations in	10
	Childhood and Adult ALL	
3.1	Oligonucleotideds sequences for GSTM1	23
3.2	PCR mixture	24
3.3	PCR protocol	24
4.1	The mean of hematological findings related to GSTM1 genotype among cases	27
4.2	The mean of age among the case	28
4.3	Correlation between gender and GSTM1 polymorphism	28
4.4	Correlation between family history and GSTM1polymorphism	29

List of Figures

Figure	Title	Page
No		
1.1	Blood film of patient with acute lymphoblastic	2
	leukaemia	
1.2	Peripheral blood picture in L1ALL	3
1.3	Peripheral blood picture in L2 ALL	3
1.4	Peripheral blood picture in L3 ALL	4
4.1	Gender distribution among the both group	26
4.2	frequency of family history of disease among patient	26
	sample	
4.3	GSTM1 genotype among patients and control group	27

Abbreviation

ALL Acute Lymphocytic Leukemia

AML Acute Myeloid Leukemia

BMT Bone Marrow Transplant

CD Cluster of differentiation

CNS Central Nervous System

CR Complete Remission

CI Confidence Interval

DNA Deoxyribo Nucleic Acid

EDTA Ethylene Diamine Tetra Acetic

FISH Fluorescence in situ hybridization

FAB French–American–British

FBC Full Blood Count

GSH Glutathione

GSTM1 Glutathione S Transferase Mue 1

GSTP1 Glutathione S Transferase Pi 1

GSTT1 Glutathione S Transferase Theta 1

Hb Hemoglobin

Ig Immunoglobulin

M Molar

OR Odd Ratio

PAS Periodic Acid Shciff

PV Polycythemia Vera

PCR Polymerase Chain Reaction

P.value Probability Value

RNA Ribo Nucleic acid

ROS Reactive Oxygen Species

RCLB Red Cell Lysis Buffer

SDS Sodium dodecyl Sulfate

SD Standerd Deviation

SPSS Statistical Package for Social Sciences

TDT Terminal Deoxynucleotidy1 Transferase

TWBCs Total White Blood Cells

t Translocation

TE Tris EDTA

WBC White Blood Cells

WCLB White Cell Lysis Buffer

WHO World Health Organization