الآية

قال تعالى:

﴿ ويسألونك عن الروح قل الروح من أمر ربي وما

أُوتِيتُم مِن الْعَلَمِ إِلَّا قَلِيهً ﴾

سورة إلاسراء

(85) كَمْ الْ

Dedication

To our mothers who never stop loving us...

To our fathers who never stop believing in us...

To everyone who taught us the meaning of invention and hope ...

To all our teachers...

To everyone made us able to complete this stage of our life ...

To all our friends...

Thanks...

ACKNOWLEDGMENTS

Thank God for the wisdom and perseverance that he has been bestowed upon us during this research project, and indeed, throughout our life, we can do everything through him who gives us strength.

Dr. Giddani Osman Addalan. His support, guidance, advice throughout the research project, as well as his pain-staking effort in proof reading the drafts, is greatly appreciated. Indeed, without his guidance, we would not be able to put the topic together.

Last but not least, we would like to thank our parents for their unconditional support, both financially and emotionally throughout our degree.

Abstract

Energy losses occur in the process of supplying electricity to the consumer due to technical and commercial losses. The overall aim of this research is reducing losses in Sudanese National Grid using NEPLAN software.

The techniques has been used are Adding small generation and Unified power flow controller (UPFC). The optimal location for generation was MARNGAN and the losses has been reduced to less than its value at base case.

The Line stability index has been used to detect the optimal location for UPFC which was the line connecting between MARNGAN and HASAHESA.

المستخلص

مفاقيد القدرة تحدث خلال عملية إمداد الطاقة الكهربائية للمستهلك وذلك بسبب المفاقيد التقنية والاقتصادية الهدف الرئيسي من هذا البحث هو تقليل المفاقيد في الشبكة القومية السودانية بمساعدة برنامج

NEPLAN

التقنيات التي استخدمت هي اضافه توليد بسعه قليله و متحكمة سريان القدرة الموزعة (UPFC). الموقع الامثل للتوليد وجد في مارينجان وقد قلت المفاقيد الى اقل من نصف قيمتها في الحالة العادية, تم استخدام مؤشر استقرارية الخطوط لتحديد الموقع الامثل لل(UPFC) وقد وجد ان الموقع الامثل يقع بين مارينجان والحصاحيصا.

Contents

Title		Page
		No.
الآية		I
Dedication		II
Acknowledgement		III
Abstract		IV
المستخلص		V
Contents		VI
List of Figures		IX
List of Tables		X
List of Abbreviations		XI
	CHAPTER ONE	
	INTRODUCTION	
1.1	Background	1
1.2	Problem statement	2
1.3	Objective	2
1.4	Methodology	2
1.5	Layout of project	2
	CHAPTER TWO	
	LITRATURE REVIEW	
2.1	Introduction	4
2.2	Technical losses	5
2.3	Main Reasons for Technical Losses	5
2.3.1	Lengthy Distribution Lines	5

2.3.2	Inadequate Size of Conductors of Distribution Lines	6
2.3.3	Installation of Distribution Transformers away from	6
	load centers	
2.3.4	Low Power Factor of Primary and secondary	7
	Distribution System	
2.3.5	Load Factor decreasing	7
2.3.6	Inadequate Transformers size and selection	8
2.3.7	Balance three phase loads	8
2.3.8	Switching off Transformers	9
2.3.9	Harmonic	9
2.4	Types of Technical Losses	9
2.4.1	Permanent (Fixed) Technical Losses	9
2.4.2	Variable Technical Losses	12
2.5	Non-Technical (Commercial) Losses	12
2.5.1	Main reasons for Non-Technical Losses	13
	CHAPTER THREE	
	LOSSES REDUCTION TECHNIQUES	
3.1	Introduction	14
3.2	Load Flow analysis	14
3.3	Adding small generation substations	14
3.4	FACTS devices	17
3.4.1	FACTS devices benefits	17
3.5	Unified Power Flow Controller (UPFC)	18
3.6	Optimal location for UPFC	18
3.7	Line stability index (Lmn) calculation	20
3.8	UPFC parameter setting	22
3.9	Criteria for optimal location of UPFC	22
<u> </u>		

3.10	Software developments	22
	CHAPTER FOUR	
	SIMULATION AND RESULT	
4.1	Sudanese electrical network	24
4.2	Load flow results	26
4.3	Losses reduction using distributed generation	29
	technique	
4.4	Losses reduction using UPFC	32
4.5	UPFC parameter	34
	CHAPTER FIVE	
	CONCLUSION AND RECOMMENDATION	
5.1	Conclusion	38
5.2	Recommendation	39
	References	40
	Appendix	42

List of figures

Figure No.	Title	Page No.
Figure 3.1	Unified power Flow Controller (UPFC)	18
Figure 3.2	Two bus system	20
Figure 3.3	Schematic symbol of UPFC in NEPLAN	23
Figure 4.1	Sudanese electrical network	25
Figure 4.2	line losses in base case and after adding generator	32
Figure 4.3	line losses in base case and after adding generator	37

List of tables

Table No.	Title.	Page No.
1.1	Transmisson and distribution losses	4
	percentages in some countries	
4.1	Transmisson and distribution losses	24
	percentages in some countries	
4.2	Bus voltages and angles at best case	26
4.3	Lines losses	27
4.4	The weakest buses in the network	29
4.5	impact of adding substation on the network	29
	losses	
4.6	impact of adding substation on line losses	30
4.7	Lmn calculations	32
4.8	The UPFC parameters	34
4.9	impact of adding UPFC on line losses	35

List of abbreviations

AC	Alternating current
DC	Direct current
FACTS	Flexible AC transmission system
UPFC	Unified power flow controller
DG	Distributed generator
P	Active power ,Mw
Q	Reactive power, Mvar
Lmn	Line stability index
θ	Line impedance angle
Ss	Phase angle at the sending end
Sr	Phase angle at the receiving end
Vs	Sending voltage, V
Vr	Receiving voltage, V
S	Apparent power ,VA
Z	Line impedance , Ω
X	Line reactance $,\Omega$
NTL	Non-technical losses
STATCOM	Static Synchronous Compensator.
TCSC	Thyristor Controlled series capacitor
SVC	Static VAR Compensators.
LT	Line transmission
PF	Power factor
SSSC	Static Synchronous Series Compensator.