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ABSTRACT 

An autonomous quad-rotor is an unmanned aerial vehicle that has four-

fixed rotors, where two rotors per axis and each of the axes are aligned with 

the other. Rotors are powered by four motors and propellers to lift the aircraft 

quad-rotor are a type of a helicopter aircraft that has vertical take-off and 

landing capabilities. The main objective of this project is to study and develop 

an autonomous quad-copter that is capable of flying under the control of an 

autopilot that’s sustainable and expandable for future researches. In order to 

achieve this objective a comprehensive study of aerodynamics has been 

included. Focusing on helicopters in particular especially in the field of 

control surfaces and components, in addition to rapid survey to the history of 

helicopter development.  

An electronic circuit was designed for the control of the quad-rotor. 

Components used in the design and the implementation of the quad-rotor such 

as brushless DC motors, propellers, sensors, batteries and the microcontroller 

are all discussed in detail. The MATLAB software was used 

to analysis for a particular combination of components, and the system has 

given good flight performances and acceptable efficiency. The Arduino C 

programming language has been used for programming the system. The 

microcomputer receives the Hover, Pitch, Roll, and Yaw commands plus the 

feedback from the sensors and generates control signals to the four motors. 

The movement of the motors is controlled by varying PWM signals that are 

sent to each of the motors. 
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 مستخلصال
 المروحیة الرباعیة طائرة بدون طیار ذات أربعة دوّارات ثابتة،حیث یوجد دوارین إثنین علي كل

 بائیة لرفع جسم الطائرة فيكهر تدور الدوّرات بواسطة أربعة محركات .محور ویتعامد كل من المحورین

الرئیسي  الهدفإن  .سیا   أر  الهبوطمكانیة الاقلاع و إتمتلك  ي، وتعتبر من الطائرات العمودیة والتالهواء

علي الطیران بتحكم  دراسة وتطویر منظومة المروحیة الرباعیة لتكون قادرة هوالبحث  هذامن 

حث دراسة شاملة الب یتضمنداف لأهولتحقیق تلك ا. آلـــي،وتكون نواة للبحث والتطویر المستقبلي 

التحكم للمروحیة  وجه الخصوص التركیز علي المروحیات وبالتحدید اسطح لىوع الهوائیةللدینامیكیة 

 .تهاومكونا

 بعد دراسة المكونات الإلكترونیة المستخدمة في ئرة التحكم الإلكترونیة للمروحیةتم تصمیم دا 

 تم.حســـاســـات والبطــاریات والمتحكـم الدقیقموالبناء المنظومة مثل محركات التیار المستمر والمــراوح 

لتحلیل المكونات الإلكترونیة المكونة للنظام ، وقد اعطى النظام مدى ( MATLAB)إستخدام برنامج 

 لكتابة أوامر التحكم في نظام المروحیة،( Arduino C) تم إستخدام لغة برمجة .طیران وكفاءة جیدین

ربعة والتغذیة العكسیة للمقارنة مع أوامر التحكم من القنوات الأالدقیق  حیث یستقبل المتحكم

یتم التحكم في سرعة المحركات . ربعة لمحركات الأفي التحكم ل سات وبذا یتم تولید إشاراتاالمحس

 .حدا ىكل محرك عل إلى رسالهایتم ا ض النبضة للإشارة التيعر بواسطة التحكم ب
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CHAPTER ONE 

INTRODUCTION 

 

1.1 General Concepts 

Flying robots or Unmanned Aerial Vehicles (UAV) are becoming 

increasingly common and span a huge range of size and shape. They have 6 

degrees of freedom and they are actuated by forces that is, their motion model 

is expressed in terms of forces and torques rather than velocities and so,A 

dynamic model is used rather than a kinematic model [1]. 

The system under design is quad-rotor flying robot, compared to the 

fixed wing aircraft quad-rotor is highly maneuverable and can be flown safely 

indoors which makes quad-rotor well suited for laboratories, compared to 

conventional helicopters which have large main rotor and tail rotor. Quad-

rotor is easier to fly, does not has the complex swash plate mechanism and is 

easier to model and control. The system takes a simple configuration of four 

motors spinning a total of four propellers attached to the shafts of each motor, 

the motors are housed in a frame takes a shape of – × –configuration.  

1.2 Problem Statement 

Quadrotor flying robots are highly unstable systems. The problem is to 

take them back to stability during flight as fast as it could, and also achieve 

the autonomous navigation of a pre-planned path or trajectory. 

1.3 Objectives 

  Implement the real time response of quad-rotor flying robot 

 Design a proportional integral derivative (PID) controller to control and 

improve system performance. 
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 Design a complementary filter algorithm to get the sensor fusion using 

the raw data of the IMU sensor board. 

  Plan a specific path for the quadrotor to take to a reach certain target 

using trajectory algorithms. 

1.4 Methodology 

 Study of all previous studies. 

 Study the basics of 3D geometry, linear algebra and the frame of 

reference coordinate system. 

 Study and analyze the dynamics and the kinematics of the system. 

 Design of PID controller using manual tuning. 

 Build Arduino microcontroller program to control quad-rotor 

altitude with PID algorithm as software included in the controller. 

 Mathematically model the system and create a well descriptive 

simulated design.  

1.5 Layout of Thesis 

This study consists of five chapters; Chapter One gives an introduction 

to the principles of the work, in addition its reasons, motivation and 

objectives. Chapter Two discuses the theoretical background of control 

systems, navigation, nonlinear systems, flying robots, quad-rotor background, 

quad-rotor structure, quad-rotor manoeuvrability, quad-rotor components, 

PID controller and microcontroller systems. Chapter Three presents the 

system mathematical model includes kinematic and dynamic equations that 

describe the behavior of quad-rotor and control design that accomplish the 

stabilization of quad-rotor system. Chapter Four deal with the practical model 

of the system and shows the experimental results. Finally, Chapter five 

provides the conclusions and recommendations. 
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CHAPTER TWO 

THEORICAL BACKGROUND AND 

LITERATURE REVIEW 

 

2.1 Control System 

One of the most commonly asked questions by a novice on a control 

system is: What is a control system? To answer the question, we can say that 

in our daily lives there are numerous "objectives" that need to be 

accomplished. For instance, in the domestic domain, we need to regulate the 

temperature and humidity of homes and buildings for comfortable living. For 

transportation, we need to control the automobile and airplane to go from one 

point to another accurately and safely. Industrially, manufacturing processes 

contain numerous objectives for products that will satisfy the precision and 

cost effectiveness requirements [1]. 

In recent years, control systems have assumed an increasingly 

important role in the development and advancement of modern civilization 

and technology. Practically every aspect of our day-to-day activities is 

affected by some type of control system [1]. 

 Control systems are found in abundance in all sectors of industry, such 

as quality control of manufactured products, automatic assembly lines, 

machine-tool control, space technology and weapon systems, computer 

control, transportation systems, power systems, robotics, Micro-Electro-

Mechanical Systems (MEMS), nanotechnology, and many others. Even the 

control of inventory and social and economic systems may be approached 

from the theory of automatic control [1].     

Since advances in the theory and practice of automatic control provide 

the means for attaining optimal performance of dynamic systems, improving 
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productivity, relieving the drudgery of many routine repetitive manual 

operations, and more, most engineers and scientists must now have a good 

understanding of this field[2]. 

2.2.1 Advantages of control system  

With control systems we can move large equipment with precision that 

would otherwise be impossible. We can point huge antennas toward the 

farthest reaches of the universe to pick up faint radio signal controlling these 

antennas by hand would be impossible. Because of control systems, elevators 

carry us quickly to our destination, automatically stopping at the right floor. 

We alone could not provide the power required for the load and the speed; 

motors provide the power, and control systems regulate the position and speed 

[2]. 

2.1.2 Historical review 

The first significant work in automatic control was James Watt's 

centrifugal governor for the speed control of a steam engine in the eighteenth 

century. Other significant works in the early stages of development of control 

theory were due to Minor sky, Hazen and Nyquist among many others. In 

1922, Minor sky worked on automatic controllers for steering ships and 

showed how stability could be determined from the differential equations 

describing the system. In 1932, Nyquist developed a relatively simple 

procedure for determining the stability of closed-loop systems on the basis of 

open-loop response to steady-state sinusoidal inputs.  

A significant date in the history of automatic feedback control systems 

is 1934, when Hazen’s paper ‘‘Theory of Servomechanisms’’ was published 

in the Journal of the Franklin Institute, marking the beginning of the very 

intense interest in this new field. It was in this paper that the word 

servomechanism originated, from the words servant (or slave) and 

mechanism. Black’s important paper on feedback amplifiers appeared in the 
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same year. After World War II, control theory was studied intensively and 

applications have proliferated many books and thousands of articles and 

technical papers have been written, and the application of control systems in 

the industrial and military fields has been extensive. This rapid growth of 

feedback control systems was accelerated by the equally rapid development 

and widespread use of computers. 

  During the decade of the 1940s frequency response methods 

(especially the Bode diagram methods due to Bode) made it possible for 

engineers to design linear closed loop control systems that satisfied 

performance requirements. From the end of the 1940s to the early 1950s the 

root-locus method due to Evans was fully developed. The frequency-response 

and root-locus methods, which are the core of classical control theory, lead to 

systems that are stable and satisfy a set of more or less arbitrary performance 

requirements. Such systems are, in general, acceptable but not optimal in any 

meaningful sense.  

   Classical control theory, which deals only with single input 

single output systems, becomes powerless for multiple input multiple output 

systems. Since about 1960, because the availability of digital computers made 

possible time domain analysis of complex systems, modern control theory, 

based on time domain analysis and synthesis using state variables, has been 

developed to cope with the increased complexity of modern plants and the 

stringent requirements  on accuracy, weight, cost in military, space and 

industrial applications [2]. 

2.1.3 Open loop control system 

          Those systems in which the output has no effect on the control action 

are called open-loop control systems. In other words, in an open-loop control 

system the output is neither measured nor fed back for comparison with the 

input. One practical example is a washing machine. Soaking, washing, and 
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rinsing in the washer operate on a time basis. The machine does not measure 

the output signal, that is, the cleanliness of the clothes. 

          In any open-loop control system the output is not compared with the 

reference input. Thus, to each reference input there corresponds a fixed 

operating condition; as a result, the accuracy of the system depends on 

calibration. In the presence of disturbances, an open-loop control system will 

not perform the desired task. Open-loop control can be used, in practice, only 

if the relationship between the input and output is known and if there are 

neither internal nor external disturbances. Clearly, such systems are not 

feedback control systems. Note that any control system that operates on a 

time basis is open loop. For instance, traffic control by means of signals 

operated on a time basis is another [2]. 

2.1.4 Closed-loop control systems 

           A system that maintains a prescribed relationship between the output 

and the reference input by comparing them and using the difference as a 

means of control is called a closed-loop control system. An example would be 

a room temperature control system. By measuring the actual room 

temperature and comparing it with the reference temperature, the thermostat 

turns the heating or cooling equipment on or off in such a way as to ensure 

that the room temperature remains at a comfortable level regardless of outside 

conditions. 

           In a closed-loop control system the actuating error signal, which is the 

difference between the input signal and the feedback signal (which may be the 

output signal itself or a function of the output signal and its derivatives and/or 

integrals), is feedback to the controller so as to reduce the error and bring the 

output of the system to a desired value. The term closed-loop control always 

implies the use of feedback control action in order to reduce system error [2]. 
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2.2 Nonlinear Systems 

A system is nonlinear if the principle of superposition does not apply. 

Thus, for a nonlinear system the response to two inputs cannot be calculated 

by treating one input at a time and adding the results. Although many physical 

relationships are often represented by linear equations, in most cases actual 

relationships are not quite linear. In fact, a careful study of physical systems 

reveals that even so-called "linear systems" are really linear only in limited 

operating ranges.  

In practice, many electromechanical systems, hydraulic systems, 

pneumatic systems, and so on, involve nonlinear relationships among the 

variables. For example, the output of a component may saturate for large 

input signals. There may be a dead space that affects small signals. (The dead 

space of a component is a small range of input variations to which the 

component is insensitive). Square-law nonlinearity may occur in some 

components. For instance, dampers used in physical systems may be linear for 

low-velocity operations but may become nonlinear at high velocities, and the 

damping force may become proportional to the square of the operating 

velocity. 

In control engineering a normal operation of the system may be around 

an equilibrium point, and the signals may be considered small signals around 

the equilibrium. (It should be pointed out that there are many exceptions to 

such a case). However, if the system operates around an equilibrium point and 

if the signals involved are small signals, then it is possible to approximate the 

nonlinear system by a linear system. Such a linear system is equivalent to the 

nonlinear system considered within a limited operating range. Such a 

linearized model (Linear Time-Invariant model) is very important in control 

engineering. 

The linearization procedure to be presented in the following is based on 

the expansion of nonlinear function into a Taylor series about the operating 
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point and the retention of only the linear term. Because of neglecting higher-

order terms of Taylor series expansion, these neglected terms must be small 

enough; that is, the variables deviate only slightly from the operating 

condition [1, 2]. 

2.3 Flying Robots 

            Flying robots or Unmanned Aerial Vehicles (UAV) are becoming 

increasingly common and span a huge range of size and shape. Applications 

include military operations, surveillance, meteorological investigations and 

robotics research. Fixed wing UAVs are similar in principle to passenger 

aircraft with wings to provide lift, a propeller or jet to provide forward thrust 

and control surface for maneuvering. Rotorcraft UAVs have a variety of 

configurations that include conventional helicopter design with a main and 

tail rotor, a coax with counter-rotating coaxial rotors and quadrotors. 

Rotorcraft UAVs are used for inspection and research and have the advantage 

of being able to take off vertically [3]. 

Flying robots differ from ground robots in some important ways:  

             Firstly they have 6 degrees of freedom and their configuration q ∈ SE 

(3). Secondly they are actuated by forces, their motion model is expressed in 

term of forces and torques rather than velocities as was the case for the 

bicycle model – we use a dynamic rather than a kinematic model. Underwater 

robots have many similarities to flying robots and can be considered as 

vehicles that fly through water and there are underwater equivalents to fixed 

wing aircraft and rotorcraft. The principle differences underwater are an 

upward buoyancy force; drag forces that are much more significant than in air 

and added mass [3]. 
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2.3.1 Robot navigation 

           Robot navigation is the problem of guiding a robot towards a goal. 

The human approach to navigation is to make maps and erect signposts, and 

at first glance it seems obvious that robots should operate the same way. 

However many robotic tasks can be achieved without any map at all, using an 

approach referred to as reactive navigation. For example heading towards a 

light, following a white line on the ground, moving through a maze by 

following a wall, or vacuuming a room by following a random path. The 

robot is reacting directly to its environment: the intensity of the light, the 

relative position of the white line or contact with a wall.  

              Today more than 5 million Roomba vacuum cleaners are cleaning 

floors without using any map of the rooms they work in. The robots work by 

making random moves and sensing only that they have made contact with an 

obstacle. The more familiar human-style map-based navigation is used by 

more sophisticated robots. This approach supports more complex tasks but is 

itself more complex. It imposes a number of requirements, not the least of 

which is a map of the environment. It also requires that the robot’s position is 

always known [3]. 

 Reactive navigation 

               Surprisingly complex tasks can be performed by a robot even if it 

has no map and no real idea about where it is. As already mentioned robotic 

vacuum cleaners use only random motion and information from contact 

sensors to perform a complex task. Insects such as ants and bees gather food 

and return it to the nest based on input from their senses, they have far too 

few neurons to create any kind of mental map of the world and plan paths 

through it. Even single-celled organisms such as flagellate protozoa exhibited 

goal seeking behavior [3].  
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 Map-Based navigation 

               The key to achieving the best path between points A and B, is to use 

a map. Typically best means the shortest distance but it may also include 

some penalty term or cost related to traversability which is how easy the 

terrain is to drive over – it might be quicker to travel further but over better 

roads. Amore sophisticated planner might also consider the kinematics and 

dynamics of the vehicle and avoid paths that involve turns that are tighter than 

the vehicle can execute [3]. 

2.3.2 Robot localization 

              In the previous discussion of map-based navigation it is assumed that 

robot had a means of known position. Some of common techniques had been 

discussed to estimate the location of a robot in the world using an approach 

known as localization.  

             Today GPS makes outdoor localization so easy to be generated. 

Unfortunately GPS is a far from perfect sensor since it relies on very weak 

radio signals received from distant orbiting satellites. This means that GPS 

cannot work where there is no line of sight radio reception, for instance 

indoors, underwater, underground, in urban canyons or in deep mining pits. 

GPS signals are also extremely weak and can be easily jammed and this is not 

acceptable for some applications. GPS has only been in use since 1995 yet 

human-kind has been navigating the planet and localizing for many thousands 

of years [3]. 

2.4 Quadrotor Robot 

            A quadrotor is a helicopter which has four equally spaced rotors, 

usually arranged at the corners of a square body. With four independent 

rotors, the need for a swash plate mechanism is alleviated. The swash plate 

mechanism was needed to allow the helicopter to utilize more degrees of 
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freedom, but the same level of control can be obtained by adding two more 

rotors [3].  

           The development of quadrotors has stalled until very recently, because 

controlling four independent rotors has proven to be incredibly difficult and 

impossible without electronic assistance. The decreasing cost of modern 

microprocessors has made electronic and even completely autonomous 

control of quadrotors feasible for commercial and military [3]. 

                       Quadrotor has received considerable attention from researchers 

as the complex phenomena of the quadrotor have generated several areas of 

interest. The basic dynamical model of the quadrotor is the starting point for 

all of the studies but more complex aerodynamic properties has been 

introduced. Different control methods has been researched, including PID 

controllers , back stepping control , nonlinear H∞ control, LQR controllers, 

and nonlinear controllers with nested saturations. Control methods require 

accurate information from the position and attitude measurements performed 

with a gyroscope, an accelerometer, and other measuring devices, such as 

GPS, and sonar and laser sensors [3]. 

 

    Figure 2.1: Quadrotor propellers direction and drag torques.       
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2.5 Quadrotor Structure  

Quadrotor control is a fundamentally difficult and interesting problem. 

With six degrees of freedom (three translational and three rotational) and only 

four independent inputs (rotor speeds), quadcopters are severely under 

actuated. In order to achieve six degrees of freedom, rotational and 

translational motions are coupled.  

The resulting dynamics are highly nonlinear, especially after 

accounting for the complicated aerodynamic effects. Finally, unlike ground 

vehicles, quadrotors have very little friction to prevent their motion, so they 

must provide their own damping in order to stop moving and remain stable. 

Together, these factors create a very interesting control problem. A very 

simplified model of quadrotor dynamics and design controllers is presented to 

follow a designated trajectory. Then controllers will be tested with a 

numerical simulation of a quadrotor in flight. 

2.5.1 Quadrotor configurations  

Figure 2.2 shows the two simple configurations of quadrotors, and as 

shown the four motors are arranged in ‘+’ and ‘×’ configuration. Propellers 1 

and 3 rotates clockwise, while 2 and 4 rotates counter clockwise and this is 

required to compensate the action/reaction effect generated by the rotor. In 

order to have all thrusts in the same direction propellers 1 and 3 are selected 

to be in opposite pitch with respect to 2 and 4 [4, 5]. 

 

Figure 2.2: Quadrotor Configurations 
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2.5.2 Quadrotor basic mechanics 

If speeds of independent motors are varied, the position and orientation 

of the robot will be controlled. If one of the rotors spins faster as in Figure 2.3 

below, the robot will pitch in one direction. In order to move the vehicle from 

one side to another, just translating it along the horizontal direction the robot 

needs to be pitched forward so that the thrust factor points in the horizontal 

direction. That allows the vehicle to accelerate forward. But then when the 

robot get close to the destination the vehicle needs to be stopped by pitching it 

in the opposite direction, creating a reverse thrust that allows it slow down 

when it gets to its destination. And finally pitch back to equilibrium [5]. 

 

Figure 2.3: The creation of movement in quadrotors 

2.6 Quadrotor Manoeuvrability 

Quadrotors are three dimensional robots that need six degrees of 

freedom. The movement in the three dimensional space is generated by 

coupling the linear movement (translation) with the angular movement 

(rotation) resulting in a robot that can linearly move through and rotate about 

the three principal axis (x, y and z) [5].   

         The rotation around the three principal axes is shown in figure 3.3. 

Assuming the robot heading (nose) is aligned with the Y axis, each axis 

rotation is defined by an angle as follow: 
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Figure 2.4: Quadrotor orientation 

 The rotation around the Y axis is known as the pitch, denoted by Phi 

( ) 

 The rotation around the X axis is known as the roll, denoted by Theta 

( ) 

 The rotation around the Z axis is known as the yaw, denoted by Psi ( ) 

2.6.1 Roll and pitch 

To make the quadrotor rotate about the roll or pitch axes, the flight 

controller makes the motors on one side of the quadrotor spin faster than the 

motors on the other side. This means that one side of the quadrotor will have 

more lift than the other side, causing the quadrotor to tilt. So, for example, to 

make a quad rotor roll right (or rotate about the roll axis clockwise), the flight 

controller will make the two motors on the left side of the quadrotor spin 

faster than the two motors on the right side. The left side of the craft will then 

have more lift than the right side, which causes the quadrotor to tilt. 

 Similarly, to make a quad rotor pitch down (rotate about the pitch axis 

clockwise) the flight controller will make the two motors on the back of the 

craft spin faster than the two motors on the front.  

2.6.2 Yaw rotation 

          Controlling the quadrotor’s rotation about the yaw axis is a bit more 

complex than controlling its rotation about the roll or pitch axes. First, 

rotation about the yaw axis is shown as in Figure 2.6. 
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Figure 2.5: The roll and pitch orientations 

When assembling and programming quadrotors, The motors were set up so 

that each motor spins in the opposite direction than its neighbors. In other 

words, starting from the front-left motor and moving around the quadrotor 

clockwise, the motors rotational directions alternate, CW, CCW, CW, CCW. 

This rotational configuration is used to neutralize, or cancel out, each motor’s 

tendency to make the quadrotor rotate. 

       When a propeller spins, for example, clockwise, conservation of 

angular momentum means that the body of the quadrotor will have a tendency 

to spin counter-clockwise. This is due to Newton’s third law of motion, “for 

every action, there is an equal and opposite reaction.” The body of the 

quadrotor will tend to spin in the direction opposite to the rotational direction 

of the propellers. This is shown clearly in Figure 2.6 below: 

 

Figure 2.6: The reaction moments due to rotor spinning  
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             Bringing it all together now, each of the quadrotor four rotors tends to 

make the quadrotor rotate in the opposite direction than their spin. So by 

using pairs of rotors spinning in opposite directions it is possible to cancel out 

this effect and the quadrotor does not spin about the yaw axis. 

           So therefore, when it is actually required to rotate the quadrotor about 

the yaw axis, the flight controller will slow down opposite pairs of motors 

relative to the other pair. This means the angular momentum of the two pairs 

of propellers will no longer be in balance and the craft rotates. So quadrotor 

can be rotated in either direction by slowing down different pairs of motors. 

2.6.3 Application of quadrotors 

         Currently, the main quadrotor applications are defense related and the 

 main investments are driven by future military scenarios. Most military 

unmanned aircraft systems are primarily used for intelligence, surveillance, 

reconnaissance (ISR), and strikes. The next generation of quadrotors will 

execute more complex missions such as air combat, target detection, 

recognition, destruction, strike/suppression of an enemy’s air defense, 

electronic attack, network node/communications relay, aerial 

delivery/resupply, anti-surface ship warfare, anti-submarine warfare, mine 

warfare, ship to objective maneuvers, offensive and defensive counter air and 

airlift. 

           Today the civilian markets for Quadrotors are still emerging. However, 

the expectations for the market growth of civil and commercial Quadrotors 

are very high for the next decade [5]. 

 

 Potential civil applications of Quadrotors are: 

 Inspection of terrain, pipelines, utilities, buildings, etc 

 Law enforcement and security applications 

 Surveillance of coastal borders, road traffic, etc  

  Disaster and crisis management, search and rescue 
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  Environmental monitoring. 

  Agriculture and forestry. 

  Fire fighting. 

  Communications relay and remote sensing. 

  Aerial mapping and meteorology. 

  Research by university laboratories. 

  And many other applications. 

2.7 Brushless DC Motors 

A motor is an electrical machine that converts electrical energy into 

mechanical energy. The working principal is based on the theory that when a 

current-carrying conductor is placed in a magnetic field, it experiences a 

mechanical force whose direction is giving by Fleming’s  left- hand rule. 

The brushless motor, unlike the DC brushed motor, has the permanent 

magnets glued on the rotor. It has usually four magnets around the perimeter. 

The stator of the motor is composed by the electromagnets, usually four of 

them, placed in a cross pattern with 90 degrees angle between them.  

The major advantage of the brushless motors due to the fact that the 

rotor carries only the permanent magnets, is that it needs no power at all. No 

connection needs to be made with the rotor, thus, no brush-commutator pair is 

needed and this is how the brushless motors took their name. This feature in 

brushless motor increase the reliability, as the brushes wears off very fast. 

Moreover, brushless motors are more silent and more efficient in terms of 

power consumption.  

2.8 Electronic Speed Controllers  

An Electronic Speed Controller or ESC is an electronic circuit with the 

purpose of varying motor's speed, its direction and possibly also to act as a 

dynamic brake. The ESC generally accepts a nominal 50 hertz PWM servo 
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input signal whose pulse width varies from 1 ms s to 2 ms, when supplied 

with a 1 ms width pulse at 50 Hz, the ESC responds by turning off the DC 

motor attached to its output. A 1.5 ms pulse-width input signal drives the 

motor at approximately half-speed. When presented with 2.0 ms input signal, 

the motor runs at full speed.  

The correct phase varies with the motor rotation, which is to be taken 

into account by the ESC: Usually, back EMF from the motor is used to detect 

this rotation. Computer-programmable speed controls generally have user-

specified options which allow setting low voltage cut-off limits, timing, 

acceleration, braking and direction of rotation. Reversing the motor's direction 

may also be accomplished by switching any two of the three leads from the 

ESC to the motor. There are three wires that go between the motor and the 

ESC since these motors are three phase motors, there are three coils inside. 

The coils are energized in sequence to make the motors spin. So the ESC's job 

is to energize the coils in sequence, but it needs to time each cycle correctly 

so the motor can actually accelerate to the right speed. The ESC has a 

microcontroller inside that turns on or off the coils using FETs and also 

determines timing by measuring the feedback in the coils caused by the 

movement of the magnets. 

2.9 Inertial Measurement Unit Sensor 

   A sensor is a device that converts a physical phenomenon into an 

electrical signal. As such, sensors represent a main part of the interface 

between the physical world and the world of electrical devices. The other part 

of this interface is represented by actuators, which convert electrical signals 

into physical phenomena. 

An Inertial Measurement Unit or IMU is the main component of 

inertial guidance systems used in air space, and watercraft, including guided 

missiles. An IMU works by sensing motion including the type, rate, and 
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direction of that motion using a combination of accelerometers and 

gyroscopes. Accelerometers are placed such that their measuring axes are 

orthogonal to each other. An IMU works by detecting the current rate of 

acceleration, as well as its changes in rotational attributes, including pitch, roll 

and yaw. This data is then fed into a computer, which calculates the current 

speed and position, given a known initial speed and position. 

IMU usually consists of two main parts they are: 

 Accelerometer 

   Rate Gyros 

2.10 Proportional Integral Derivative Controller 

A Proportional Integral Derivative PID controller is a feedback control 

algorithm widely used in industrial control systems. A PID controller 

calculates the error value which is the difference between a measured process 

variable and a desired set point, the controller attempts to minimize the error 

by adjusting the process.  

     The PID controller algorithm involves three separate constant 

parameters as shown is Figure 2.7 and is accordingly sometimes called three-

term control: the proportional, the integral and derivative values, denoted P, I, 

and D. These values can be interpreted in terms of time: P depends on the 

present error, I on the accumulation of past errors, and D is a prediction of 

future errors, based on current rate of change. The weighted sum of these 

three actions is used to adjust the process via a control element such as the 

position of a control valve, a damper, or the power supplied to a heating 

element. 
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Figure 2.7: Proportional Integral Derivative PID 

 

2.10.1 Proportional controller 

The Proportional term produces an output value that is proportional to 

the current error value. The proportional response can be adjusted by 

multiplying the error by a constant Kp, called the proportional gain constant. 

The proportional term is given by:   

 

  P=Kp (e (t))                                                                                                (2.1) 

Where P is the proportional controller, Kp is the gain, e(t) the error signal. 

A high proportional gain results in a large change in the output for a 

given change in the error. If the proportional gain is too high, the system can 

become unstable. In contrast, a small gain results in a small output response to 

a large input error, and a less responsive or less sensitive controller. If the 

proportional gain is too low, the control action may be too small when 

responding to system disturbances. Tuning theory and industrial practice 

indicate that the proportional term should contribute the bulk of the output 

change. 
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2.10.2 Proportional integral controller 

       The main function of the integral action is to make sure that the process 

output agrees with the set point in steady state. With Proportional control, 

there is normally a control error in steady state. With integral action, small 

positive error will always lead to an increasing signal, and a negative error 

will give a decreasing control signal no matter how small the error is. 

 

PI= Kp (e (t)) +Ki      dt                                                                            (2.2) 

Where PI is the Proportional integral controller, Ki  is the integral gain. 

2.10.3 Proportional derivative controller 

The purpose of the derivative action is to improve the close-loop 

stability. Because of the process dynamics, it will take some time before a 

change in the control variable is noticeable in the progress output. Thus, the 

control system will be late in correction for an error. The action of a controller 

with proportional and derivative may be interpreted as if the control is made 

proportional to the predicted process output, where the prediction is made by 

extrapolating the error by the tangent to the error curve. 

 

PD=            
     

  
                                                                                                    (2.3) 

Where PD is the proportional derivative controller,    is the gain. 

2.10.4 Proportional integral derivative controller 

The Proportional Integral Derivative PID controller has three terms. 

The Proportional term P corresponds to proportional control. The integral 

term I give a control action that is proportional to the time integral of the zero. 

The derivative term D is proportional to the time derivative of the control 

error. This term allows prediction of the future error. There are many 
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variations of the PID algorithm that will substantially improve its 

performance and operability. 

 

PID=           
     

  
                                                                       (2.4) 

 

By taking Laplace transform PID controller transfer function become: 

    =    
   

 
                                                                                          (2.5) 

Where      is the output signal. 

2.10.5 Tuning of proportional integral derivative controller 

The process of selecting the controller parameters to meet given 

performance specifications is known as controller tuning. There are several 

methods for tuning a PID loop. The most effective methods generally involve 

the development of some form of process model, and then choosing P, I, and 

D based on the dynamic model parameters. 

In particular, when the mathematical model of the plant is unknown 

and therefore analytical design methods cannot be used, PID controls prove to 

be most useful. In the field of process control systems, it is well known that 

the basic and modified PID control schemes have proved their usefulness in 

providing satisfactory control, although in many given situations they may not 

provide optimal control. 

If a mathematical model of the plant can be derived, then it is possible 

to apply various design techniques for determining parameters of the 

controller that will meet the transient and steady-state specifications of the 

closed loop system. However, if the plant is so complicated that its 

mathematical model cannot be easily obtained, then an analytical or 

computational approach to the design of a PID controller is not possible then 

only experimental approaches are used to the tuning of PID controllers. 
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There are many methods of PID tuning such as: 

Manual tuning. 

Ziegler-Nichols. 

Tyreus luyben. 

Cohen-coon. 

Software tools. 

2.11 Microcontroller 

It is a highly integrated chip that contains all the components 

comprising a controller. Typically this includes a CPU, RAM, ROM and I/O 

ports. Unlike a general-purpose computer, which also includes all of these 

components, a microcontroller is designed for a very specific task to control a 

particular system. As a result, the parts can be simplified and reduced, which 

cuts down on production cost. 

2.11.1 History of microcontroller 

The first computer system on a chip optimized for control applications 

was the Intel 8048 microcontroller with both RAM and ROM on the same 

chip. Most microcontrollers at that time had two variants; one had an erasable 

EEPROM program memory, which was significantly more expensive than the 

PROM variant which was only programmable once. 

 The introduction of EEPROM memory allowed microcontrollers 

(beginning with the Microchip PIC16x84) to be electrically erased quickly 

without an expensive package as required for EPROM. The same year, Atmel 

introduced the first microcontroller using Flash memory. Other companies 

rapidly followed suit, with both memory types. Nowadays microcontrollers 

are low cost and readily available for hobbyists, with large online 

communities around certain processors. 
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            A microcontroller is a single-chip computer .Micro suggests that the 

device is small, and controller suggests that it is used in control applications. 

Another term for microcontroller is embedded controller, since most of the 

microcontrollers are built into (or embedded in) the devices that controlling. 

Microcontrollers have traditionally been programmed using the 

assembly language of the target device. Although the assembly language is 

fast, it has several disadvantages. An assembly program consists of 

mnemonics, which makes learning and maintaining a program written using 

the assembly language difficult. Also, microcontrollers manufactured by 

different firms have different assembly languages, so the user must learn a 

new language with every new microcontroller he or she uses. 

Microcontrollers can also be programmed using a high-level language, 

such as BASIC, PASCAL, or C. High-level languages are much easier to 

learn than assembly languages and also facilitate the development of large 

and complex programs. 

2.11.2 Microcontroller application 

Microcontroller applications are found in many life filed, for example 

in Cell phone, watch, recorder, calculators, mouse, keyboard, modem, fax 

card, soundcard, battery charger, door lock, alarm clock, thermostat, air 

conditioner, TV Remotes, in Industrial equipment like Temperature and 

pressure controllers, counters and timers. 

2.11.3 Arduino microcontroller 

Arduino is a small microcontroller board with a USB plug to connect to 

the computer and a number of connection sockets that can be wired up to 

external electronics, such as motors, relays, light sensors, laser diodes, 

loudspeakers, microphones, etc. Arduino can either be powered through the 

USB connection from the computer or from a 9V battery. Arduino can be 
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controlled from the computer or programmed by the computer and then 

disconnected and allowed to work independently. 

 The Arduino board 

It is an open-source electronics prototyping platform based on flexible, 

easy-to-use hardware and software. It's intended for artists, designers, 

hobbyists, and anyone interested in creating interactive objects or 

environments in simple terms, the Arduino is a tiny computer system that can 

be programmed with instructions to interact with various forms of input and 

output. The current Arduino board model, the Uno, is quite small in size 

compared to the average human hand, as shown in Figure 2.8. 

 Although it might not look like much to the new observer, the Arduino 

system allows creating devices that can interact with the world. By using an 

almost unlimited range of input and output devices, sensors, indicators, 

displays, motors, and more, the exact interactions required to create a  

 

Figure 2.8: The size of Arduino. 
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Figure 2.9: Arduino microcontroller board 

functional device can be programmed. For example, artists have created 

installations with patterns of blinking lights that respond to the movements of 

passers-by, high school students have built autonomous robots that can detect 

an open flame and extinguish it, and geographers have designed systems that 

monitor temperature and humidity and transmit this data back to their offices 

via text message. In fact, there are infinite numbers of examples with a quick 

search on the Internet. By taking a quick tour of the Uno Starting at the left 

side of the board there are two connectors, as shown in Figure 2.10. 

 

Figure 2.10: The USB and power connectors 

On the far left is the Universal Serial Bus (USB) connector. This 

connects the board to the computer for three reasons; to supply power to the 

board, to upload the instructions to the Arduino, and to send and receive from 

a computer. On the right is the power connector, this connector can power the 

Arduino with a standard mains power adapter. 
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At the lower middle is the heart of the board: the microcontroller, as 

shown in Figure 2.11. 

 

Figure 2.11: The microcontroller 

The microcontrollers represent the “brains” of the Arduino. It is a tiny 

computer that contains a processor to execute instructions, includes various 

types of memory to hold data and instructions from the sketches, and provides 

various avenues of sending and receiving data. Just below the microcontroller 

are two rows of small sockets, as shown in Figure 2.12. 

 

Figure 2.12: The power and analog sockets 

The first row offers power connections and the ability to use an 

external RESET button. The second row offers six analog inputs that are used 

to measure electrical signals that vary in voltage. Furthermore, pins A4 and 

A5 can also be used for sending data to and receiving it from other devices. 

Along the top of the board are two more rows of sockets, as shown in Figure 

2.13. 

 

Figure 2.13: The digital input/output pins 
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Sockets (or pins) numbered 0 to 13 are digital input/output (I/O) pins. 

They can either detect whether or not an electrical signal is present or 

generate a signal on command. Pins 0 and 1 are also known as the serial port, 

which is used to send and receive data to other devices, such as a computer 

via the USB Connector circuit. The pins labelled with a tilde (~) can also 

generate a varying electrical signal, which can be useful for such things as 

creating lighting effects or controlling electric motors. 

Next are some very useful devices called light-emitting diodes (LEDs); 

these very tiny devices light up when a current passes through them. The 

Arduino board has four LEDs: one on the far right labelled ON, which 

indicates when the board has power, and three in another group, as shown in 

Figure 2.14. 

The LEDs labelled TX and RX light up when data is being transmitted or 

received between the Arduino and attached devices via the serial port and 

USB. 

The L-LED connected to the digital I/O pin number 13. The little black 

square part to the left of the LEDs is a tiny microcontroller that controls the 

USB interface that allows Arduino to send data to and receive it from a 

computer. 

  

 

Figure 2.14: The onboard LEDs 

And, finally, the RESET button is shown in Figure 2.15. 
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Figure 2.15: The RESET button 
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CHAPTER THREE 

SYSTEM MODELLING AND DESIGN 

 

3.1 Introduction 

A quadrotor is a helicopter which has four equally spaced rotors, 

usually arranged at the corners of a square body .With four independent 

rotors, the development of quadcopters has stalled until very recently, because 

controlling four independent rotors has proven to be incredibly difficult and 

impossible without electronic assistance. The decreasing cost of modern 

microprocessors has made electronic and even completely autonomous 

control of quadcopters feasible for commercial, military, and even hobbyist 

purposes.  

The design and development of quadrotor platforms have gained 

popularity in recent years, due to their flexibility and potential capabilities. 

Considerable work has been done to investigate aerodynamic factors in hope 

of enhancing vehicle performance and efficiency. Some of these factors 

include the distortion and disruption of airflow due to the flow interaction 

between the four rotating blades at close proximity and propeller blade 

flapping. Airfoil and platform designs can also be customized in order to 

improve aerodynamic efficiency. 

The flight dynamics of a quadcopter is complex and this makes attitude 

and position estimation as well as controller implementation challenging. 

There have been several attempts to model the quadrotor helicopter in order to 

comprehend its dynamics. 

Numerous controllers, both linear and nonlinear, have been proposed to 

allow the platform to achieve a high level of stability. Examples include 

model reference adaptive control a nonlinear controller derived using back-

stepping approaches and a controller based on a nested saturation technique. 
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There is also a considerable body of work on estimating attitude for onboard 

flight control systems. Apart from attitude estimation and stabilization, work 

has been done to expand the capabilities of the platforms. Altitude control is 

seen as essential for many applications and thus, it has been investigated and 

some significant studies on it can be found. Autonomous navigation and 

collision avoidance algorithms are useful in enhancing the system autonomy. 

3.2 Quadcopter Kinematics 

           Kinematic is the branch of classical mechanics which describes the 

motion of points (alternatively "particles"), bodies (objects), and systems of 

bodies without consideration of the masses of neither those objects nor the 

forces that may have caused the motion. Understanding the kinematics is the 

key idea of understanding the behavior of the quadrotor; because it helps 

defining the position and orientation of objects in an environment, which is in 

general a fundamental requirement in robotics.  

3.2.1 The coordinate system and frame of reference theory  

A point in space is a familiar concept from mathematics and can be 

described by a coordinate vector, also known as a bound vector, as shown in 

Figure 3.1a. The vector represents the displacement of the point with respect 

to some reference coordinate frame. A coordinate frame, or Cartesian 

coordinate system, is a set of orthogonal axes which intersect at a point 

known as the origin. 

More frequently it is required to consider a set of points that comprise 

some object. It is assumed that the quadrotor body is rigid and that its 

constituent points maintain a constant relative position with respect to the 

object’s coordinate frame as shown in figure 3.1b. Instead of describing the 

individual points, the position and orientation of the quadrotors are described 

by the position and orientation of its coordinate frame. 
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The position and orientation of a coordinate frame is known as its pose 

and is shown graphically as a set of coordinate axes. The relative pose of a 

frame with respect to a reference coordinate frame is denoted by the symbol 

‘ ’, pronounced ksi.  Figure 3.2 shows two frames {A} and {B} and the 

relative pose   
  which describes {B} with respect to {A}. The leading 

superscript denotes the reference coordinate frame and the subscript denotes 

the frame being described.  

 

 

Figure 3.1: Point P is described by a coordinate vector with respect to an 

absolute coordinate frame. 
 

  
 
 

  can be thought of as describing some motion –picking up {A} and 

applying a displacement and a rotation so that it is transformed to {B}. If the 

initial superscript is missing we assume that the change in pose is relative to 

the world coordinate frame denoted O. 

The point P in Figure 3.2 can be described with respect to either 

coordinate frame. Formally it’s expressed as: 

 

      =  
 
 

 .                                                                                                 (3.1) 
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where the right-hand side expresses the motion from {A} to {B} and then to 

P. The operator · transforms the vector, resulting in a new vector that 

describes the same point but with respect to a different coordinate frame. 

 

 

                             Figure 3.2: The pose of {B} relative to {A} is  
 
 

 

 

3.2.2 Representing pose in 2-dimention  

Figure 3.7 shows a coordinate frame {B} that we wish to describe with 

respect to the reference frame {A}. It is clearly seen that the origin of {B} has 

been displaced by the vector t =(x, y) and then rotated counter-clockwise by 

an angle θ. A concrete representation of pose is therefore the 3-vector     
 
 

  (x, 

y, θ , the symbol   denote that the two representations are equivalent.  

The approach is to consider an arbitrary point P with respect to each of 

the coordinate frames and to determine the relationship between    and   . 

Referring again to Figure 3.3 the problem will be considered in two parts: 

rotation and then translation. 

To consider just rotation a new frame {V} whose axes are parallel to 

those of {A} is created but whose origin is the same as {B} as in Figure 3.4 

.Point P can be expressed with respect to {V} in terms of the unit-vectors that 

define the axes of the frame as follow: 
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  =  

          
         

  
   

  
                                                                           (3.1) 

 

Which describes how points are transformed from frame {B} to frame {V} 

when the frame is rotated, this type of matrix is known as a rotation matrix 

and denoted by   
 . Eq.3.1 can be written as in Eq.3.2 

 

 
   

  
     

  
   

  
                                                                                                   (3.2) 

 

 

Figure 3.3: Relative pose between frame {A} and {B} 

 

Figure 3.4: A new frame {V} parallel to {A} to account for rotation 

 



35 
 

The second part of representing pose is to account for the translation between 

the origins of the frames shown in Figure 3.3. Since the axes {V} and {A} are 

parallel this is simply vector addition 

 

 
          
         

  
  

  

 

                                                                         (3.3)  

 

Or more compactly: 

 

 
  

  

 

  =  
  

  
     

  
  

  

 

    

 

    =  
  
  
     

            ,       =   
                                                           (3.4) 

 

where t =(x, y) is the translation of the frame,   
  is the rotation and   

  is 

referred to as a homogeneous transformation, which represent the 

combination of the translation and rotation. 

It is clear now that the pose             
    

          
         
   

  

 

Defining the pose (position and orientation) of an object helps defining the 

robot position relative to different surrounding environment objects like 

cameras and different obstacles, as in Figure 3.5. 

                                 

3.2.3 Representing pose in 3-dimention  

Any two independent orthonormal coordinate frames can be related by 

a sequence of rotations (not more than three) about coordinate axes, where no 

two successive rotations may be about the same axis [3]. The 3-dimensional 

case is an extension of the 2-dimensional case discussed in the previous 

section. An extra coordinate axis is added, typically denoted by Z that is 

orthogonal to both the X and Y axes. The direction of the z-axis obeys the 
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right-hand rule and forms a right-handed coordinate frame. Unit vectors 

parallel to the axes are denoted   ,    and    such that     =      . 

A point P is represented by its X, Y and Z coordinates (X, Y,Z) or as a bound 

vector: 

   

P = x    + y   + z                                                                                                     (3.5) 

    

 

 

Figure 3.5: Multiple 3-dimensional coordinate frames and relative poses 

 

The approach is to again to consider an arbitrary point P with respect to 

each of the coordinate frames and to determine the relationship between    

and   .The problem will be considered in two parts: rotation and then 

translation. 

Rotation is surprisingly complex for the 3-dimensional case, 

considering rotation about a single coordinate axis. Figure 3.6 shows a right-

handed coordinate frame, and that same frame after it has been rotated by 

various angles about different coordinate axes. 

The issue of rotation has some subtleties which are illustrated in Figure 

3.7. This shows a sequence of two rotations applied in different orders. It’s 

clearly seen that the final orientation depends on the order in which the 

rotations are applied. This is a deep and confounding characteristic of the 3-
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dimensional world which has intrigued mathematicians for a long time. 

Mathematicians have developed many ways to represent rotation like: 

orthonormal rotation matrices, Euler and Cardan angles, rotation axis and 

angle, and unit quaternions. 

 

Figure 3.6: Rotation of a 3D coordinate frame. 

 

 
Figure 3.7: The non-commutivity of rotation 

 



38 
 

 Orthonormal rotation matrices 

Just as for the 2-dimensional case the orientation of a coordinate frame 

can be represented by its unit vectors expressed in terms of the reference 

coordinate frame. Each unit vector has three elements and they form the 

columns of a 3×3 orthonormal matrics   
 . 

 

 
  

  

  
   =    

  
  

  

  
                                                                                        (3.6)                 

 

which rotates a vector defined with respect to frame {B} to a vector with 

respect to {A}.  The orthonormal rotation matrices for rotation of θ about the 

X, Y and Z axes are: 

 

      =  
   
          
         

                                                                  (3.7) 

 

      =  
         
   

          
                                                                  (3.8) 

 

      =  
          
         
   

                                                                   (3.9) 

 

Which describe the rotation around each of the principal axis by an angle  . 

 

 lThree Angle Representations 

     Euler’s rotation theorem states that any rotation can be represented by 

not more than three rotations about coordinate axes. This means that in 

general an arbitrary rotation between frames can be decomposed into a 

sequence of three rotation angles and associated rotation axes 

Euler’s rotation theorem requires successive rotation about three axes such 

that no two successive rotations are about the same axis. There are two classes 
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of rotation sequence: Eulerian and Cardanian, named after Euler and Cardano 

respectively. The Eulerian type involves repetition, but not successive, of 

rotations about one particular axis: XYX, XZX, YXY, YZY, ZXZ, or ZYZ. 

The Cardanian type is characterized by rotations about all three axes: XYZ, 

XZY, YZX, YXZ, ZXY, or ZYX. In common usage all these sequences are 

called Euler angles and there are a total of twelve to choose from. 

If we take the ZYZ, the total rotation would be: 

 

R =                                                                                            (3.10) 

Another widely used convention is the roll-pitch-yaw angle sequence angle:  

 

R =                                                                                           (3.11)             

                                                                         

which are intuitive when describing the attitude of quadrotor . Roll, pitch and 

yaw (also called bank, attitude and heading) refer to rotations about the X, Y, 

Z axes, respectively. This XYZ angle sequence, technically Cardan angles, is 

also known as Tait-Bryan angles or nautical angles. Generally for aerospace 

and ground vehicles the x-axis is commonly defined in the forward direction, 

z-axis downward and the y-axis to the right-hand side. 

So either the orthonormal rotation matrices or there angle 

representations a different rotation matrix will be obtained. The rotation 

matrix is then combined with the translation part to yield the transformation 

matrix, which contain all the information needed to describe the position and 

orientation of the quadrotor with respect to the world coordinate frame. 

3.3 Quadcopter Dynamics 

To start analyzing the dynamics, two coordinate frames are defined. 

One attached to the moving robot, and the other, the inertial coordinate 

system as in Figure 3.8. 
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 b1, b2, b3 constitute the set of unit vectors that describe the body fixed 

coordinate system, and likewise a1, a2, a3 describe a coordinate system that's 

fixed to the inertial frame. There are four rotors, each of which is 

independently actuated.  r is the position vector of the center of mass. The Z-

X-Y convention will be used. The first rotation about the Z axis through psi 

( ), the second rotation about the X axis through phi ( ), this is the roll 

angle, and finally, the pitch about the Y axis through theta ( ).  

Looking at the external forces and moments that act on the airframe, 

the sum of the forces is obtained by adding up the thrust vectors and the 

gravity vector. The sum of the moments is obtained by adding up the reaction 

moments, as well as the moments of the truss forces. The notation for the 

quadrotor model is shown in Figure 3.9. The body-fixed coordinate frame 

{B} has its z-axis downward following the aerospace convention. 

 

                         Figure 3.8: Body frame and inertial frame of the quadrotor 

        The quadrotor has four rotors, labeled 1 to 4, mounted at the end of each 

cross arm. The rotors are driven by electric motors powered by electronic 

speed controllers. Some low-cost quadrotors use small motors and reduction 

gearing to achieve sufficient torque. 

3.3.1 Acting force calculations 

The rotor speed is    and the thrust is an upward vector in the vehicle’s  
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negative z-direction, where b > 0 is the lift constant that depends on the air 

density, the cube of the rotor blade radius, the number of blades, and the 

chord length of the blade. 

   =        , i = 1,2,3,4                                                                              (3.12) 

 

Figure 3.9: Quadrotor notation showing the four rotors, their thrust vectors 

and directions of rotation. 

 

Summing over all the motors, it is found that the total thrusts on the 

quadcopter (in the body frame) is given by: 

 

   =     
 
    =   

 
 

    

                                                                              (3.13) 

 

3.3.2 The net torques  

Once the forces on the quadcopter have been computed, the acting torque 

should also be determined. Each rotor contributes some torque about the body 

z axis. This torque is the torque required to keep the propeller spinning and 

providing thrust; it creates the instantaneous angular acceleration and 
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overcomes the frictional drag forces. Three different torques are generated as 

follow: 

 

 The torque about the vehicle’s x-axis, the rolling torque, is 

 

            =db       
 
                                                                            (3.14) 

 

 The torque about the vehicle’s y-axis, the pitching torque, is 

 

  =db       
 
                                                                           (3.15) 

 

 The torque about the vehicle’s z-axis, the yawing torque: 

             =                       
 
    

 
    

 
             (3.16) 

 

           where the different signs are due to the different rotation directions of 

the rotors. A yaw torque can be created simply by appropriate coordinated 

control of all four rotor speeds. The torques in the body frame: 

 

  = 

             
 
         

         
 
    

         
 
    

 
    

 
   

                                                      (3.17) 

 

3.3.3 Equations of motion  

In the inertial frame, the acceleration of the quadcopter is due to thrust, 

gravity, and linear friction. The thrust vector in the inertial frame can be 

obtained by using rotation matrix R to map the thrust vector from the body 

frame to the inertial frame. Thus, the translational dynamics of the vehicle in 

world coordinates is given by Newton’s second law: 

 

    =  
 
 
  

      
 
 
 
  

                                                                            (3.18) 
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where   is the velocity of the vehicle in the world frame, g is 

gravitational acceleration, m is the total mass of the vehicle and   is the total 

upward thrust. The first term is the force of gravity which acts downward in 

the world frame and the second term is the total thrust in the vehicle frame 

rotated into the world coordinate frame. 

While it is convenient to have the linear equations of motion in the 

inertial frame, the rotational equations of motion are useful in the body frame, 

so that rotations about the center of the quadcopter can be expressed instead 

of about the inertial center. Deriving the rotational equations of motion from 

Euler’s equations for rigid body dynamics expressed in vector form, Euler’s 

equations can be written as: 

 

                                                                                                        (3.19) 

 

Where J is a 3 ×3 inertia matrix of the vehicle. ω is the angular velocity vector 

and   =             
 
    is the torque applied to the airframe according to Eq. 

3.14 to 3.16 

The quadrotor can be modeled as two thin uniform rods crossed at the origin 

with a point mass (motor) at the end of each as in figure 3.9. With this in 

mind, it’s clear that the symmetries result in a diagonal inertia matrix of the 

form: 

 

    

     
     

     

                                                                                (3. 20) 

 

The motion of the quadrotor is obtained by integrating the forward 

dynamics. Eq. 3.18 and Eq. 3.19 where the forces and moments on the 

airframe are functions of the rotor speeds. 
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                       (3.21) 

 

The matrix   is of full rank if b, k, d > 0 and can be inverted to give the rotor 

speeds required to apply a specified thrust   and moment   to the airframe. 

 

 

 

 
 
  

 

  
 

  
 

  
 
 

 
 
       

 
  
  
  

                                                                               (3.22) 

 

 

3.3.4 Quadrotor parameters determine 

Eq. 3.22 is the equation of motion to be used in the six degree-of-

freedom quadrotor model. However, Quadrotor parameters b, k, d and I 

Matrix must be determined. 

 The moments of inertia for the quadrotor are calculated assuming a 

spherical dense center with mass   and radius  , and point masses of mass   

located at a distance of    from the center as shown in Figure 3.10. 

 

 

Figure 3.10: Simplified mechanical model for the inertia matrices  
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The inertia for a solid sphere is given by           . Therefore 

    
    

 
                                                                                        (3.23)   

    
    

 
                                                                                        (3.24) 

    
    

 
                                                                                        (3.25) 

Where M is the mass of the sphere (body without the motors), m is the mass 

of the motor plus its propeller, d is distance from the center of the motor to 

the center of the sphere. 

The parameters were experimentally obtained in table 3.1 

Table 3.1: Quad rotor experimentally obtained  Parameters 

Parameter Value 

G 9.81      

M 1.04    

R 7    

   16.5    

     6*            

     6*            

     12*            
 

The two constant b and k were not experimentally obtained but were 

obtained by setting random values > 0 and then observing and comparing the 

system performance in simulation and hardware real time, the approximated 

values were found to be : k =        , b =      . 

3.4 Control Design  

The purpose of deriving a mathematical model of a quadcopter is to 

assist in developing controllers for physical quadcopters. The inputs to the 

system consist of the angular velocities of each rotor, since the voltages 

across the motors are that can be controlled. Note that in the simplified model, 
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only the square of the angular velocities,   
  is used and never the angular 

velocity itself,  . For notational simplicity, the inputs   =   
  is introduced. 

If   
  can be set, clearly    can be set as well. With this, the system can be 

written as a first order differential equation in state space. 

 Let    be the position in space of the quadcopter,    be the quadcopter 

linear velocity,    be the roll, pitch, and yaw angles, and    be the angular 

velocity vector. System state space equations are: 

 

                                                                                                              (3.26) 

 

      
 
 
  

   
 

 
                                                                                   (3.27) 

 

      

     
       
        

 

  

                                                                     (3.28) 

 

C is cosine , S is sine  

 

      

       
  

       
   

       
  

   

 

  
 

             

   
             

   

             

    

  
 

                                                    (3.29) 

 

 

3.5 PID Controller  

In order to stabilize the quadcopter, PID controller algorithm will be 

used, with a component proportional to the error between the desired 

trajectory and the observed trajectory, a component proportional to the 

derivative of the error and a component proportional to the integral of the 
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error. The quadcopter under design will only have a gyro, so only the angle 

derivatives   ,    and    will be used as a feedback to the controller; these 

measured values will give us the derivative of our error, and their integral will 

provide us with the actual error. It is required to stabilize the quadrotor in a 

horizontal position, so the desired velocities and angles will all be zero. 

Torques are related to the angular velocities by       , so it is required to set 

the torques proportional to the output controller, with        ). Thus, 

 

      = 

                     

            

                   
   

 

 

 

 
 
                    

 

 
       

 

 

 

 
 

                   
 

 
      

 

 

 

 
 

                   
 

 
      

 

 

 

 
 
 

 
 

                                              (3.30) 

 

The thrust is proportional to a weighted sum of the inputs: 

 

  
  

             
      

      
                  

  

              
                        (3.31) 

 

Solving for each   , the following input values are obtained: 

 

   
  

               
 
               

    
                                                         (3.32) 

 

   
  

               
 
     

  
 
     

   
                                                             (3.33) 

 

   
  

               
 
                

    
                                                      (3.34) 
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                                                             (3.35) 

 

The block diagram in Figure 3.11 bellow shows the internal structure of 

the PID controller used for stability; the three angular velocities are feedback 

signals that are compared to a set point to determine the status that the system 

should apply 

 

  

 

Figure 3.11: PID controller block diagram 
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CHAPTER FOUR 

QUADROTOR IMPLEMNTAION and 

SIMULATION 

4.1 System Simulation  

The equations of motion describing the quadrotor behavior have been 

completed, it is now possible to create a simulation environment in which to 

test and view the results of various inputs and controllers. Although more 

advanced methods are available, a simulator which utilizes Euler’s method for 

solving differential equations to evolve the system state will be used In 

MATLAB. Codes for MATLAB simulations are available in Appendix B. 

4.1.1 Angle simulation  

Figure 4.1 shows the Roll, Pitch and yaw angles for the status of the 

quadrotor and as it is clear from the graph the PID controller tends to drive 

the three angles to zero in order to stabilize the robot.  

 

Figure 4.1: PID sets the three angles to zero 
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4.1.2 Angular velocity simulation  

 Figure 4.2 shows the angular velocity of the quadrotor (Roll, Pitch and 

Yaw rates). The controller tends to drive the angular velocity (in all three 

axes) to zero in order to stabilize the robot  

 

Figure.4.2: PID sets the three angular velocities to zero. 

4.1.3 Flight simulator 

Reading the forces (thrusts) acting on the quadrotor body it is possible 

to draw the quadrotor in a three-dimensional visualization which is updated as 

the simulation is running as in Figure 4.3 bellow: 

 

Figure 4.3: Quadrotor visual simulation. 
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4.2 System Practical Model 

System practical model is separated into two parts: the mechanical 

parts which consist of frame, arms and propellers. And electrical part which 

consists of Arduino UNO, Electronic speed controller, Lithium Polymer 

battery, brushless motor, propellers, transmitter and receiver, and the inertial 

measurement unit. 

4.1.1 System mechanical part 

Selection of appropriate material for a mechanical part is an essential 

element of all engineering projects. The main mechanical parts of the system 

are the frame, arms and propellers as in Figure 4.4 bellow: 

 

Figure 4.4: Assembled mechanical frame. 

i. Frame 

In considering the frame, the first consideration is the material to be 

used. It must be lightweight, sturdy, and affordable. The forces which act on 

the aircraft primarily will be gravity and air pressure. Gravity allows for 

construction under the guidance of a limited mass to allow for structural 

stability on the ground, as well as control of the quadrotor in the air. Air 

pressure, which is used to determine the airspeed, will affect the quadrotor’s 

stress on the screws at higher altitudes. The higher the altitude, the lighter the 
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air, the smaller the forces against the frame, which implies the quadrotor’s 

frame, is being stretched. This is what is kept in mind when considering for 

the base material for our aircraft. For the project, three materials are 

possibilities due to their popularity: wood, aluminum and plastic-carbon fiber. 

Plastic carbon fiber was the best choice. With plastic, tests flight can be 

performed repeatedly, and modifications can be easily made on it. 

Furthermore, due to its increased strength to stress, plastic is less likely to 

bend due to take-off or stable flight; also, it carries a stronger stability to the 

frame. Figure 4.5 shows unassembled frame components. 

 

Figure 4.5: Carbon – Fiber quadrotor frame 

Plastic is less weight from the other material to meet the minimum 

quadrotor requirements. The lightweight frame must be designed to support 

all the quadrotor subsystem. 

ii. Propeller 

Quadrotors use two clockwise (CW) and two counter clockwise (CCW) 

propellers. Propellers are classified by length and pitch. For example 10×4.5 

propellers are 10 inch long and have a pitch of 4.5 inch.  



53 
 

Generally, increased propeller pitch and length will draw more current. 

Also the pitch can be defined as the travel distance of one single prop 

rotation. In a nutshell, higher pitch means slower rotation, but will increase 

vehicle’s speed which also uses more power. 

 comparison between high pitch and low pitch props  

Generally a propeller with low pitch numbers can generate more 

torque. The motors do not need to work as hard so it pulls less current with 

this type of propeller. Lower pitch propellers will also improve stability. A 

higher pitch propeller moves greater amount of air, which could create 

turbulence and cause the aircraft to wobble during hovering.  

 comparison between small length and large length props  

When it comes to the length, propeller efficiency is closely related 

to the contact area of a propeller with air, so a small increase in 

propeller length will increase the propeller efficiency. A smaller 

propeller is easier to stop or speed up while a larger propeller takes 

longer to change speeds (inertia of movement). Smaller propeller also 

means it draws less current; that is why Hexacoptors and Octacopters 

tend to use smaller propellers than quadrotor of similar size. 

   Increased propeller pitch and length will draw more current and 

the high current effect on the motors and increase their heat quickly; 

high KV motors need small propellers to work efficiently. Low KV 

motors need a large propeller to work efficiently, If a large propeller is 

used on a high KV motor, it will draw a lot of current and become so 

hot quickly , If a small propeller on a low KV motor is used , it will 

pull a small weight and decrease stability. With a well balanced motor 

and propeller combination, the quadrotor should achieve great 

efficiency, not only improve battery life time, but also allows great user 

control experience. 
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Figure 4.6: 10 × 4.5 propeller 

4.1.2 System electrical part 

The electrical circuit consists of Arduino UNO, ESC, LiPo battery, brushless 

DC motor, transmitter and receiver 

i.  Arduino Uno 

Arduino Uno as shown in Figure 4.3 is a microcontroller board based 

on ATmega 328P microcontroller. It has 14 digital input/output pins (of 

which 6 can be used as pulse width modulation (PWM) outputs), 6 analog 

inputs, a 16 MHz quartz crystal, a USB connection, a power jack, header and 

a reset button. Using PID library in Arduino Uno code (See Appendix C) as a 

PID controller has many benefits: 

 There are many ways to write the PID algorithm. A lot of time was 

spent making the algorithm in this library as solid as any found in 

industry. 

 When using the library all the PID code is self-contained. This makes 

your code easier to understand. It also lets you do more complex stuff, 

like having 8 PIDs in the same program. 
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Figure 4.7: Arduino Uno 

iii. Electronic speed controller(Brushless ESC 40A) 

This is a solid Electronic Speed Controller or ESC, shown in Figure 

4.4, ideal for use with quadrotor. It can support a max of 30 Amp 

continuous output to handle both large and small motors. This ESC used 

with Configuration to perform a throttle calibration with all motors at once 

with quadrotor. 

Specifications:  

The Specifications of Esc is  

 Cont Current:30A  

 Burst Current: 55A  

 BEC Mode: Linear  

 BEC : 5v / 3A  

 Lipo Cells: 2-6  

 NiMH : 5-18  

 Weight: 33g  

 Size: 55x28x13mm 
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Figure 4.8: Electronic speed controller (ESC) 30A. 

iv. Lithium-Polymer Battery Series 

Lithium-polymer batteries offer a variety of significant advantages over 

NiCd, NiMH and Li-Ion batteries for use in R/C electric devices. It is very 

important to have a good understanding of the operating characteristics of 

LiPo batteries - especially how to charge and care for them safely. Always 

read the specifications printed on the battery’s label and this instruction 

sheet in their entirety prior to use. Failure to follow these instructions can 

quickly result in severe, permanent damage to the batteries and its 

surroundings and even start a Fire. Before and after every use of the LiPo 

battery, all cells should be inspected to ensure no physical damage or 

swelling is evident. Such signs can often indicate a dangerous problem 

exists with the battery that could lead to failure. 

Specifications   

 Minimum Capacity: 5200mAh  

 Configuration: 14.8v / 4Cell  

 Constant Discharge rate: 30C  
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 Pack Weight: 361g  

 Pack Size: 136x 42 x 30mm  

 

 Voltage Cells:  

While the batteries exact voltage may not be printed on the battery but 

it will tell how many cells the battery has. LiPo batteries are made up of cells. 

Each cell is 3.5 volts, for example the battery shown in Figure 4.9 is a 4s 

battery. This means that is has 4cells, which would give it a total voltage of: 

3.7x4=14.8v 

 

Figure 4.9:  Lipo battery 5200 mah 

v. Brushless DC Motor 

Brushless DC Motor’s stator comprises steel laminations, slotted 

axially to accommodate an even number of windings along the inner 

periphery. The rotor is constructed from permanent magnets with from two-

to-eight N-S pole pairs. The BLDC motor’s electronic commutator 

sequentially energizes the stator coils generating a rotating electric field that 

drags the rotor around with it. Efficient operation is achieved by ensuring that 
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the coils are energized at precisely the right time. Brushless motors have 

neither commutator nor brushes. 

 

Figure 4.10: Brushless DC motor. 

vi. Transmitter and Receiver 

The receiver is what goes into your aircraft and controls the 

servos and motor(s). You can see from this receiver that it is a 5 

channel receiver (Aileron, Elevator, Throttle, Rudder, and Aux). The 

BAT slot is not considered a channel. The receiver above connects 

wirelessly to the transmitter using a 2.4 GHz frequency. 2.4 GHz 

frequency is the standard frequency for RC planes. The receiver runs 

by 5v, and sends signals to the servos to turn them. It also sends a 

signal to the ESC to tell it how fast the run the motor. The receiver gets 

its 5 volts from gets the ESC's or battery elimination circuit. 
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  Figure 4.11: Fly sky 6 channel       Figure 4.12: 6 channel receiver 

                    transmitter 

vii. Inertial measurement unit  

The inertial measurement unit (MPU-6050) shown on Figure 4.13 is a 6 

degrees of freedom (6 DOF) sensor. The unit include three independent 

sensor: 

 3 Axis accelerometer that measure linear acceleration in all three 

axis 

 3 Axis gyroscope that measure angular velocity in all three axis 

 Temperature sensor for compensation purposes 

  The IMU uses the I2C communication protocol to send readings to the 

main controller via the interrupt pins. 

 

Figure 4.13: MPU-6050 6 DOF Inertial measurement unit (IMU) 
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Figure 4.14 shows a block diagram for the assembled electrical 

component and their corresponding electrical wiring. The figure shows 

how the component are arranged and connected to the Arduino main 

board. 

 
Figure 4.14: Quadrotor components electrical wiring diagram 

4.3 Testing and results 

Setting the quadrotor in a hover mode it was possible to acquire 

the angular velocities reading in real time using the inertial sensor 

embedded on a smart mobile phone that is attached to quadrotor body. 

 Real time data acquisition at reset mode (quadrotor on the 

ground) 

 

Figure 4.15: Real time Pitch angular velocity when the robot is on the ground 
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Figure 4.16: Real time Roll angular velocity when the robot is on the 

ground 

 

 

Figure 4.17: Real time Yaw angular velocity when the robot is on the 

ground 
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 Real time data acquisition  at hover  mode (quadrotor is 

off the ground) 

 

 

Figure 4.18: Real time Pitch angular velocity when the robot is on the 

move (off the ground) 

 

 

Figure 4.19: Real time Roll angular velocity when the robot is on the 

move (off the ground) 
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Figure 4.20: Real time Yaw angular velocity when the robot is on the 

move (off the ground) 

 

 

Figure 4.21: Real time Pitch ,Roll and Yaw angular velocity when the 

robot is on the move (off the ground) 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

A mathematical model of the quadrotor robot system was developed 

by using physical and electrical laws. A simplified mathematical model was 

derived by system parameters. The controller parameters values (Kp, Ki and 

Kd) were obtained by using manual tuning method from practical model so as 

to perform best system response. From experimental results, it is found that 

the best controller parameters which gave the best response of the system 

were: Kp=1.6, Ki=.07 and Kd=23.  

In addition to that, the construction of quadrotor's mathematical model 

has been carried out and the applied forces and torques affecting the quadrotor 

has been calculated. MATLAB development environment has been used to 

analyze the equations of motion that describes the mathematical model and 

demonstrates the results of the close loop control system of the four 

movements, which are Hover, Pitch, Roll and Yaw. The results obtained from 

the simulation were acceptable and as had been expected. 

5.2 Recommendations 

1. Use of Intelligent Control theory to control quadrotor system to obtain 

better performance. 

2. Use of Genetic Algorithm to optimize controller parameter. 

3. Use of Trajectory Algorithm to Plan a specific path for the quadrotor to 

reach a certain target. 
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APPENDIX A 

Transformation metrics in 2-dimention 

Referring to Figure 3.3 and Figure 3.4 

  =      +      

 

=          
   

  
                                                                                                   (A.1) 

Where   ,    unit-vectors parallel to the principal axes . The coordinate frame 

{B} is completely described by its two orthogonal axes which we represent by 

two unit vectors 

 

      =          +                                                                                           (A.2) 

    =-         +                                                                                            (A.3) 

 

which can be factorized into matrix form as 

 

          =          
          
         

                                                      (A.4) 

 

Point P can be expressed with respect to {B} as 

   =       +                                                                                                             

=           
   

  
                                                                                               (A.5)  

 

And substituting Eq.A.4: 

                                             

   =           
          
         

  
   

  
                                                       (A.6) 
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Now by equating the coefficients of the right-hand sides of Eq.A.6 and 

Eq.A.1:  

 

 
   

  
  =  

          
         

  
   

  
                                                                    (A.7) 

 

which describes how points are transformed from frame {B} to frame {V} 

when the frame is rotated. This type of matrix is known as a rotation matrix 

and denoted by   
 . 

 

 
   

  
     

  
   

  
                                                                       (A.8) 
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APPENDIX B 

MATLAB code for simulation and real time results 

B.1 MATLAB code for three-dimensional visualization 

% Create a controller based on it's name, using a look-up table. 

function c = controller(name, Kd, Kp, Ki) 

% Use manually tuned parameters, unless arguments provide the parameters. 

if nargin == 1 

Kd = 23.0; % 4; 

Kp = 1.6; % 3; 

Ki =0.07; % 6; 

elseif nargin == 2 || nargin > 4 

error('Incorrect number of parameters.'); 

end 

if strcmpi(name, 'pd') 

c = @(state, thetadot) pd_controller(state, thetadot, Kd, Kp); 

elseif strcmpi(name, 'pid') 

c = @(state, thetadot) pid_controller(state, thetadot, Kd, Kp, Ki); 

else 

error(sprintf('Unknown controller type "%s"', name)); 

end 

end 

% Implement a PD controller. See simulate(controller). 

function [input, state] = pd_controller(state, thetadot, Kd, Kp) 

% Initialize integral to zero when it doesn't exist. 

if ~isfield(state, 'integral') 

state.integral = zeros(3, 1); 

end 

% Compute total thrust. 

total = state.m * state.g / state.k / ... 

(cos(state.integral(1)) * cos(state.integral(2))); 

% Compute PD error and inputs. 

err = Kd * thetadot + Kp * state.integral; 

input = err2inputs(state, err, total); 

% Update controller state. 

state.integral = state.integral + state.dt .* thetadot; 

end 

% Implement a PID controller. See simulate(controller). 

function [input, state] = pid_controller(state, thetadot, Kd, Kp, Ki) 

% Initialize integrals to zero when it doesn't exist. 

if ~isfield(state, 'integral') 

state.integral = zeros(3, 1); 
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state.integral2 = zeros(3, 1); 

end 

% Prevent wind-up 

if max(abs(state.integral2)) > 0.01 

state.integral2(:) = 0; 

end 

% Compute total thrust. 

total = state.m * state.g / state.k / ... 

(cos(state.integral(1)) * cos(state.integral(2))); 

% Compute error and inputs. 

err = Kd * thetadot + Kp * state.integral - Ki * state.integral2; 

input = err2inputs(state, err, total); 

% Update controller state. 

state.integral = state.integral + state.dt .* thetadot; 

state.integral2 = state.integral2 + state.dt .* state.integral; 

end 

% Given desired torques, desired total thrust, and physical parameters, 

% solve for required system inputs. 

function inputs = err2inputs(state, err, total) 

e1 = err(1); 

e2 = err(2); 

e3 = err(3); 

Ix = state.I(1, 1); 

Iy = state.I(2, 2); 

Iz = state.I(3, 3); 

k = state.k; 

L = state.L; 

b = state.b; 

inputs = zeros(4, 1); 

inputs(1) = total/4 -(2 * b * e1 * Ix + e3 * Iz * k * L)/(4 * b * k * L); 

inputs(2) = total/4 + e3 * Iz/(4 * b) - (e2 * Iy)/(2 * k * L); 

inputs(3) = total/4 -(-2 * b * e1 * Ix + e3 * Iz * k * L)/(4 * b * k * L); 

inputs(4) = total/4 + e3 * Iz/(4 * b) + (e2 * Iy)/(2 * k * L); 

end 

 

%% 

 

function result = simulate(controller, tstart, tend, dt) 

% Physical constants. 

  

g = 9.81; 

m = 1.340; 

L = 0.165; 
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k = 3e-6; 

b = 1e-7; 

I = diag([6e-3, 6e-3, 12e-3]); 

kd = 0.25; 

% Simulation times, in seconds. 

if nargin < 4 

tstart = 0; 

tend = 10; 

dt = 0.005; 

end 

ts = tstart:dt:tend; 

% Number of points in the simulation. 

N = numel(ts); 

% Output values, recorded as the simulation runs. 

xout = zeros(3, N); 

xdotout = zeros(3, N); 

thetaout = zeros(3, N); 

thetadotout = zeros(3, N); 

inputout = zeros(4, N); 

% Struct given to the controller. Controller may store its persistent state in it. 

controller_params = struct('dt', dt, 'I', I, 'k', k, 'L', L, 'b', b, 'm', m, 'g', g); 

% Initial system state. 

x = [0; 0; 10]; 

xdot = zeros(3, 1); 

theta = zeros(3, 1); 

% If we are running without a controller, do not disturb the system. 

if nargin == 0 

thetadot = zeros(3, 1); 

else 

% With a control, give a random deviation in the angular velocity. 

% Deviation is in degrees/sec. 

deviation = 300; 

thetadot = deg2rad(2 * deviation * rand(3, 1) - deviation); 

end 

ind = 0; 

for t = ts 

ind = ind + 1; 

% Get input from built-in input or controller. 

if nargin == 0 

i =input(t); 

else 

[i, controller_params] = controller(controller_params, thetadot); 

end 

% Compute forces, torques, and accelerations. 
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omega = thetadot2omega(thetadot, theta); 

a = acceleration(i, theta, xdot, m, g, k, kd); 

omegadot = angular_acceleration(i, omega, I, L, b, k); 

% Advance system state. 

omega = omega + dt * omegadot; 

thetadot = omega2thetadot(omega, theta); 

theta = theta + dt * thetadot; 

xdot = xdot + dt * a; 

x = x + dt * xdot; 

% Store simulation state for output. 

xout(:, ind) = x; 

xdotout(:, ind) = xdot; 

thetaout(:, ind) = theta; 

thetadotout(:, ind) = thetadot; 

inputout(:, ind) = i; 

end 

% Put all simulation variables into an output struct. 

result = struct('x', xout, 'theta', thetaout, 'vel', xdotout, ... 

'angvel', thetadotout, 't', ts, 'dt', dt, 'input', inputout); 

end 

% Arbitrary test input. 

function in = input(t) 

in = zeros(4, 1); 

in(:) = 700; 

in(1) = in(1) + 350; 

in(3) = in(3) - 350; 

in = in .^ 2; 

end 

% Compute thrust given current inputs and thrust coefficient. 

function T = thrust(inputs, k) 

T = [0; 0; k * sum(inputs)]; 

end 

% Compute torques, given current inputs, length, drag coefficient, and thrust 

coefficient. 

function tau = torques(inputs, L, b, k) 

tau = [ 

L * k * (inputs(1) - inputs(3)) 

L * k * (inputs(2) - inputs(4)) 

b * (inputs(1) - inputs(2) + inputs(3) - inputs(4)) 

]; 

end 

% Compute acceleration in inertial reference frame 

% Parameters: 

% g: gravity acceleration 
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% m: mass of quadcopter 

% k: thrust coefficient 

% kd: global drag coefficient 

function a = acceleration(inputs, angles, vels, m, g, k, kd) 

gravity = [0; 0; -g]; 

R = rotation(angles); 

T = R * thrust(inputs, k); 

Fd = -kd * vels; 

a = gravity + 1 / m * T + Fd; 

end 

% Compute angular acceleration in body frame 

% Parameters: 

% I: inertia matrix 

function omegad = angular_acceleration(inputs, omega, I, L, b, k) 

tau = torques(inputs, L, b, k); 

omegad = inv(I) * (tau - cross(omega, I * omega)); 

end 

% Convert derivatives of roll, pitch, yaw to omega. 

function omega = thetadot2omega(thetadot, angles) 

phi = angles(1); 

theta = angles(2); 

psi = angles(3); 

W = [ 

1, 0, -sin(theta) 

0, cos(phi), cos(theta)*sin(phi) 

0, -sin(phi), cos(theta)*cos(phi) 

]; 

omega = W * thetadot; 

end 

% Convert omega to roll, pitch, yaw derivatives 

function thetadot = omega2thetadot(omega, angles) 

phi = angles(1); 

theta = angles(2); 

psi = angles(3); 

W = [ 

1, 0, -sin(theta) 

0, cos(phi), cos(theta)*sin(phi) 

0, -sin(phi), cos(theta)*cos(phi) 

]; 

thetadot = inv(W) * omega; 

end 

 

%% 
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function h = visualize_test(data) 

% Create a figure with three parts. One part is for a 3D visualization, 

% and the other two are for running graphs of angular velocity and 

displacement. 

figure; plots = [subplot(3, 2, 1:4), subplot(3, 2, 5), subplot(3, 2, 6)]; 

subplot(plots(1)); 

pause; 

% Create the quadcopter object. Returns a handle to 

% the quadcopter itself as well as the thrust-display cylinders. 

[t thrusts] = quadcopter; 

% Set axis scale and labels. 

axis([-10 30 -20 20 5 15]); 

zlabel('Height'); 

title('Quadcopter Flight Simulation'); 

% Animate the quadcopter with data from the simulation. 

animate(data, t, thrusts, plots); 

end 

% Animate a quadcopter in flight, using data from the simulation. 

function animate(data, model, thrusts, plots) 

% Show frames from the animation. However, in the interest of speed, 

% skip some frames to make the animation more visually appealing. 

for t = 1:2:length(data.t) 

% The first, main part, is for the 3D visualization. 

subplot(plots(1)); 

% Compute translation to correct linear position coordinates. 

dx = data.x(:, t); 

move = makehgtform('translate', dx); 

% Compute rotation to correct angles. Then, turn this rotation 

% into a 4x4 matrix represting this affine transformation. 

angles = data.theta(:, t); 

rotate = rotation(angles); 

rotate = [rotate zeros(3, 1); zeros(1, 3) 1]; 

% Move the quadcopter to the right place, after putting it in the correct 

orientation. 

set(model,'Matrix', move * rotate); 

% Compute scaling for the thrust cylinders. The lengths should represent 

relative 

% strength of the thrust at each propeller, and this is just a heuristic that seems 

% to give a good visual indication of thrusts. 

scales = exp(data.input(:, t) / min(abs(data.input(:, t))) + 5) - exp(6) + 1.5; 

for i = 1:4 

% Scale each cylinder. For negative scales, we need to flip the cylinder 

% using a rotation, because makehgtform does not understand negative 

scaling. 
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s = scales(i); 

if s < 0 

scalez = makehgtform('yrotate', pi) * makehgtform('scale', [1, 1, abs(s)]); 

elseif s > 0 

scalez = makehgtform('scale', [1, 1, s]); 

end 

% Scale the cylinder as appropriate, then move it to 

% be at the same place as the quadcopter propeller. 

set(thrusts(i), 'Matrix', move * rotate * scalez); 

end 

% Update the drawing. 

%xmin = data.x(1,t)-20; 

%xmax = data.x(1,t)+20; 

%ymin = data.x(2,t)-20; 

%ymax = data.x(2,t)+20; 

%zmin = data.x(3,t)-5; 

%zmax = data.x(3,t)+5; 

%axis([xmin xmax ymin ymax zmin zmax]); 

axis([0 65 0 35 0 13]); 

drawnow; 

% Use the bottom two parts for angular velocity and displacement. 

subplot(plots(2)); 

multiplot(data, data.angvel, t); 

xlabel('Time (s)'); 

ylabel('Angular Velocity (rad/s)'); 

title('Angular Velocity'); 

subplot(plots(3)); 

multiplot(data, data.theta, t); 

xlabel('Time (s)'); 

ylabel('Angular Displacement (rad)'); 

title('Angular Displacement'); 

end 

end 

% Plot three components of a vector in RGB. 

function multiplot(data, values, ind) 

% Select the parts of the data to plot. 

times = data.t(:, 1:ind); 

values = values(:, 1:ind); 

% Plot in RGB, with different markers for different components. 

plot(times, values(1, :), 'r-', times, values(2, :), 'g.', times, values(3, :), 'b-.'); 

% Set axes to remain constant throughout plotting. 

xmin = min(data.t); 

xmax = max(data.t); 

ymin = 1.1 * min(min(values)); 
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ymax = 1.1 * max(max(values)); 

axis([xmin xmax ymin ymax]); 

end 

% Draw a quadcopter. Return a handle to the quadcopter object 

% and an array of handles to the thrust display cylinders. 

% These will be transformed during the animation to display 

% relative thrust forces. 

function [h thrusts] = quadcopter() 

% Draw arms. 

h(1) = prism(-5, -0.25, -0.25, 10, 0.5, 0.5); 

h(2) = prism(-0.25, -5, -0.25, 0.5, 10, 0.5); 

% Draw bulbs representing propellers at the end of each arm. 

[x y z] = sphere; 

x = 0.5 * x; 

y = 0.5 * y; 

z = 0.5 * z; 

h(3) = surf(x - 5, y, z, 'EdgeColor', 'none', 'FaceColor', 'b'); 

h(4) = surf(x + 5, y, z, 'EdgeColor', 'none', 'FaceColor', 'b'); 

h(5) = surf(x, y - 5, z, 'EdgeColor', 'none', 'FaceColor', 'b'); 

h(6) = surf(x, y + 5, z, 'EdgeColor', 'none', 'FaceColor', 'b'); 

% Draw thrust cylinders. 

[x y z] = cylinder(0.1, 7); 

thrusts(1) = surf(x, y + 5, z, 'EdgeColor', 'none', 'FaceColor', 'm'); 

thrusts(2) = surf(x + 5, y, z, 'EdgeColor', 'none', 'FaceColor', 'y'); 

thrusts(3) = surf(x, y - 5, z, 'EdgeColor', 'none', 'FaceColor', 'm'); 

thrusts(4) = surf(x - 5, y, z, 'EdgeColor', 'none', 'FaceColor', 'y'); 

% Create handles for each of the thrust cylinders. 

for i = 1:4 

x = hgtransform; 

set(thrusts(i), 'Parent', x); 

thrusts(i) = x; 

end 

% Conjoin all quadcopter parts into one object. 

t = hgtransform; 

set(h, 'Parent', t); 

h = t; 

end 

% Draw a 3D prism at (x, y, z) with width w, 

% length l, and height h. Return a handle to 

% the prism object. 

function h = prism(x, y, z, w, l, h) 

[X Y Z] = prism_faces(x, y, z, w, l, h); 

faces(1, :) = [4 2 1 3]; 

faces(2, :) = [4 2 1 3] + 4; 
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faces(3, :) = [4 2 6 8]; 

faces(4, :) = [4 2 6 8] - 1; 

faces(5, :) = [1 2 6 5]; 

faces(6, :) = [1 2 6 5] + 2; 

for i = 1:size(faces, 1) 

h(i) = fill3(X(faces(i, :)), Y(faces(i, :)), Z(faces(i, :)), 'r'); hold on; 

end 

% Conjoin all prism faces into one object. 

t = hgtransform; 

set(h, 'Parent', t); 

h = t; 

end 

% Compute the points on the edge of a prism at 

% location (x, y, z) with width w, length l, and height h. 

function [X Y Z] = prism_faces(x, y, z, w, l, h) 

X = [x x x x x+w x+w x+w x+w]; 

Y = [y y y+l y+l y y y+l y+l]; 

Z = [z z+h z z+h z z+h z z+h]; 

end 

 

 

B.2 MATLAB code for real time data acquisition  

clear m 

  m = mobiledev; 

  m.AngularVelocitySensorEnabled = 1; 

  m.Logging = 1; 
  

  %// initialize data for rolling plot 

  data = zeros(1,200); 

i=1; 

  tic 

  while (toc < 30)%run for 30 secs 
  

      %// read from accel 

      a =  m.AngularVelocity 

      %// conditional prevents it from 

indexing an empty array the first couple 

      %// of times 

      if(exist('a','var')&&~isempty(a)) 
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          %get new z coordinate 

          newPoint = a(1); 

          l(i) = newPoint; 

          newPoint1 = a(2); 

          o(i) = newPoint1; 

          newPoint2 = a(3); 

          q(i) = newPoint2;           

          %// concatenate and pop oldest 

point off 

          data = [data(2:length(data)) 

newPoint]; 
  

          %draw plot with set axes 

          plot(data); 

          axis([0 200 -90 90]); 

          %t1=trotz(data(i),'deg'); 

          %t2=trotz(data(i),'deg'); 

          %wktranimate(t1,t2); 

          drawnow 

          i=i+1; 

      end 

  end 
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APPENDIX C 

Arduino microcontroller code for quadrotor 

operation 

 

#include <Wire.h>                           

#include <EEPROM.h>            

float pid_p_gain_roll = 1.6;                

float pid_i_gain_roll = 0.07;               

float pid_d_gain_roll = 23;              

int pid_max_roll = 400;                     

float pid_p_gain_pitch = pid_p_gain_roll;   

float pid_i_gain_pitch = pid_i_gain_roll;   

float pid_d_gain_pitch = pid_d_gain_roll;   

int pid_max_pitch = pid_max_roll;           

float pid_p_gain_yaw = 3;                

float pid_i_gain_yaw = 0.02;               

float pid_d_gain_yaw = 0;                / 

int pid_max_yaw = 400; 

byte last_channel_1, last_channel_2, last_channel_3, last_channel_4; 

byte eeprom_data[36]; 

byte highByte, lowByte; 

int receiver_input_channel_1, receiver_input_channel_2, 

receiver_input_channel_3, receiver_input_channel_4; 
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int counter_channel_1, counter_channel_2, counter_channel_3, 

counter_channel_4, loop_counter; 

int esc_1, esc_2, esc_3, esc_4; 

int throttle, battery_voltage; 

int cal_int, start, gyro_address; 

int receiver_input[5]; 

unsigned long timer_channel_1, timer_channel_2, timer_channel_3, 

timer_channel_4, esc_timer, esc_loop_timer; 

unsigned long timer_1, timer_2, timer_3, timer_4, current_time; 

unsigned long loop_timer; 

double gyro_pitch, gyro_roll, gyro_yaw; 

double gyro_axis[4], gyro_axis_cal[4]; 

float pid_error_temp; 

float pid_i_mem_roll, pid_roll_setpoint, gyro_roll_input, 

pid_output_roll, pid_last_roll_d_error; 

float pid_i_mem_pitch, pid_pitch_setpoint, gyro_pitch_input, 

pid_output_pitch, pid_last_pitch_d_error; 

float pid_i_mem_yaw, pid_yaw_setpoint, gyro_yaw_input, 

pid_output_yaw, pid_last_yaw_d_error; 

//Setup routine 

void setup(){ 

  for(start = 0; start <= 35; start++)eeprom_data[start] = 

EEPROM.read(start); 

  gyro_address = eeprom_data[32];                 

  Wire.begin();                                          

  DDRD |= B11110000; 

  DDRB |= B00110000;                                      



81 
 

  digitalWrite(12,HIGH);                 

  while(eeprom_data[33] != 'J' || eeprom_data[34] != 'M' || 

eeprom_data[35] != 'B')delay(10); 

  set_gyro_registers();                                     

  for (cal_int = 0; cal_int < 1250 ; cal_int ++){              

    PORTD |= B11110000;                                   

    delayMicroseconds(1000);                                    

    PORTD &= B00001111;                                      

    delayMicroseconds(3000; 

  } 

  for (cal_int = 0; cal_int < 2000 ; cal_int ++){               

    if(cal_int % 15 == 0)digitalWrite(12, !digitalRead(12));    

    gyro_signalen();                                            

    gyro_axis_cal[1] += gyro_axis[1];                           

    gyro_axis_cal[2] += gyro_axis[2. ];                           

    gyro_axis_cal[3] += gyro_axis[3];                           

        PORTD |= B11110000;                                        

    delayMicroseconds(1000);                                    

    PORTD &= B00001111;                                         

    delay(3);                                                  

  } 

    gyro_axis_cal[1] /= 2000;                                     

  gyro_axis_cal[2] /= 2000;                                   

  gyro_axis_cal[3] /= 2000;                                   

  PCICR |= (1 << PCIE0);                                        

  PCMSK0 |= (1 << PCINT0);                                      
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  PCMSK0 |= (1 << PCINT1);                                     

  PCMSK0 |= (1 << PCINT2);                                      

  PCMSK0 |= (1 << PCINT3);                                     

  while(receiver_input_channel_3 < 1000 || receiver_input_channel_3 > 

1020 || receiver_input_channel_4 < 1400){ 

    receiver_input_channel_3 = convert_receiver_channel(3);     

    receiver_input_channel_4 = convert_receiver_channel(4);     

    start ++;                                                   

    PORTD |= B11110000;                           

    delayMicroseconds(1000);                                    

    PORTD &= B00001111;                                       

    delay(3);                                                   

    if(start == 125){                                           

     digitalWrite(12, !digitalRead(12));                       

      start = 0; 

    } 

  } 

  start = 0;                                                    

  battery_voltage = (analogRead(0) + 65) * 1.2317; 

  digitalWrite(12,LOW);                                         

} 

void loop(){ 

  receiver_input_channel_1 = convert_receiver_channel(1);      //Convert 

the actual receiver signals for pitch to the standard 1000 - 2000us. 

  receiver_input_channel_2 = convert_receiver_channel(2);      //Convert 

the actual receiver signals for roll to the standard 1000 - 2000us. 
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  receiver_input_channel_3 = convert_receiver_channel(3);      //Convert 

the actual receiver signals for throttle to the standard 1000 - 2000us. 

  receiver_input_channel_4 = convert_receiver_channel(4);      //Convert 

the actual receiver signals for yaw to the standard 1000 - 2000us. 

  gyro_signalen(); 

  gyro_roll_input = (gyro_roll_input * 0.8) + ((gyro_roll / 57.14286) * 

0.2);            

  gyro_pitch_input = (gyro_pitch_input * 0.8) + ((gyro_pitch / 57.14286) * 

0.2);         

  gyro_yaw_input = (gyro_yaw_input * 0.8) + ((gyro_yaw / 57.14286) * 

0.2);                

  if(receiver_input_channel_3 < 1050 && receiver_input_channel_4 < 

1050)start = 1; 

  if(start == 1 && receiver_input_channel_3 < 1050 && 

receiver_input_channel_4 > 1450){ 

    start = 2; 

    pid_i_mem_roll = 0; 

    pid_last_roll_d_error = 0; 

    pid_i_mem_pitch = 0; 

    pid_last_pitch_d_error = 0; 

    pid_i_mem_yaw = 0; 

    pid_last_yaw_d_error = 0; 

  } 

  if(start == 2 && receiver_input_channel_3 < 1050 && 

receiver_input_channel_4 > 1950)start = 0; 

  pid_roll_setpoint = 0; 

  if(receiver_input_channel_1 > 1508)pid_roll_setpoint = 

(receiver_input_channel_1 - 1508)/3.0; 
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  else if(receiver_input_channel_1 < 1492)pid_roll_setpoint = 

(receiver_input_channel_1 - 1492)/3.0; 

  pid_pitch_setpoint = 0; 

  if(receiver_input_channel_2 > 1508)pid_pitch_setpoint = 

(receiver_input_channel_2 - 1508)/3.0; 

  else if(receiver_input_channel_2 < 1492)pid_pitch_setpoint = 

(receiver_input_channel_2 - 1492)/3.0; 

  pid_yaw_setpoint = 0; 

  if(receiver_input_channel_3 > 1050){ //Do not yaw when turning off the 

motors. 

    if(receiver_input_channel_4 > 1508)pid_yaw_setpoint = 

(receiver_input_channel_4 - 1508)/3.0; 

    else if(receiver_input_channel_4 < 1492)pid_yaw_setpoint = 

(receiver_input_channel_4 - 1492)/3.0; 

  } 

  calculate_pid(); 

  battery_voltage = battery_voltage * 0.92 + (analogRead(0) + 65) * 

0.09853; 

  if(battery_voltage < 1030 && battery_voltage > 600)digitalWrite(12, 

HIGH); 

  throttle = receiver_input_channel_3; 

 the throttle signal as a base signal. 

  if (start == 2){                                                           

    if (throttle > 1800) throttle = 1800;                       

    esc_1 = throttle - pid_output_pitch + pid_output_roll - 

pid_output_yaw;    esc_2 = throttle + pid_output_pitch + pid_output_roll 

+ pid_output_yaw;  

    esc_3 = throttle + pid_output_pitch - pid_output_roll - 

pid_output_yaw; 
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    esc_4 = throttle - pid_output_pitch - pid_output_roll + pid_output_yaw 

if (esc_1 < 1200) esc_1 = 1200; 

    if (esc_2 < 1200) esc_2 = 1200;                                          

    if (esc_3 < 1200) esc_3 = 1200;                                          

    if (esc_4 < 1200) esc_4 = 1200;                                      

    if(esc_1 > 2000)esc_1 = 2000;                                          

    if(esc_2 > 2000)esc_2 = 2000;                                        

    if(esc_3 > 2000)esc_3 = 2000;                                          

    if(esc_4 > 2000)esc_4 = 2000;   

  } 

  else{ 

    esc_1 = 1000; 

    esc_2 = 1000;                                                          

    esc_3 = 1000;                                                            

    esc_4 = 1000;                                                            

  } 

  while(micros() - loop_timer < 4000);                                       

  loop_timer = micros();     

  PORTD |= B11110000;     

  timer_channel_1 = esc_1 + loop_timer;    

  timer_channel_2 = esc_2 + loop_timer;       

  timer_channel_3 = esc_3 + loop_timer;                                   

  timer_channel_4 = esc_4 + loop_timer; 

  while(PORTD >= 16){                                                        

    esc_loop_timer = micros();                                               
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    if(timer_channel_1 <= esc_loop_timer)PORTD &= B11101111;                    

if(timer_channel_2 <= esc_loop_timer)PORTD &= B11011111;                 

    if(timer_channel_3 <= esc_loop_timer)PORTD &= B10111111;                 

    if(timer_channel_4 <= esc_loop_timer)PORTD &= B01111111;                 

  } 

} 

 

//This routine is called every time input 8, 9, 10 or 11 changed state 

ISR(PCINT0_vect){ 

  current_time = micros(); 

  //Channel 1========================================= 

  if(PINB & B00000001){                                        //Is input 8 high? 

    if(last_channel_1 == 0){                                  

      last_channel_1 = 1;                                    

      timer_1 = current_time;                                 

    } 

  } 

  else if(last_channel_1 == 1){      

    last_channel_1 = 0;                                        state 

    receiver_input[1] = current_time - timer_1;              

  } 

  //Channel 2========================================= 

  if(PINB & B00000010 ){                                        

    if(last_channel_2 == 0){                                    

      last_channel_2 = 1;                                       

      timer_2 = current_time;                               
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    } 

  } 

  else if(last_channel_2 == 1){                             

    last_channel_2 = 0;                                        / 

    receiver_input[2] = current_time - timer_2; 

  } 

  //Channel 3========================================= 

  if(PINB & B00000100 ){                                        

    if(last_channel_3 == 0){                                   

      last_channel_3 = 1;                                  

      timer_3 = current_time;                               

    } 

  } 

  else if(last_channel_3 == 1){                     

    last_channel_3 = 0;                              

    receiver_input[3] = current_time - timer_3;          

  } 

  //Channel 4========================================= 

  if(PINB & B00001000 ){                                        

    if(last_channel_4 == 0){                                   

      last_channel_4 = 1;                             

      timer_4 = current_time;                                

    } 

  } 

  else if(last_channel_4 == 1){                         
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    last_channel_4 = 0;                           

    receiver_input[4] = current_time - timer_4;           

  } 

} 

 

//Subroutine for reading the gyro   

  //Read the MPU-6050 

  if(eeprom_data[31] == 1){ 

    Wire.beginTransmission(gyro_address); 

    Wire.write(0x43);                                          

    Wire.endTransmission();                                      //End the transmission 

    Wire.requestFrom(gyro_address,6);                            

    while(Wire.available() < 6);                        

    gyro_axis[1] = Wire.read()<<8|Wire.read();                   

    gyro_axis[2] = Wire.read()<<8|Wire.read();                

    gyro_axis[3] = Wire.read()<<8|Wire.read();             

  } 

  if(cal_int == 2000){ 

    gyro_axis[1] -= gyro_axis_cal[1];                           

    gyro_axis[2] -= gyro_axis_cal[2];                    

    gyro_axis[3] -= gyro_axis_cal[3];                  

  } 

  gyro_roll = gyro_axis[eeprom_data[28] & 0b00000011]; 

  if(eeprom_data[28] & 0b10000000)gyro_roll *= -1; 

  gyro_pitch = gyro_axis[eeprom_data[29] & 0b00000011]; 
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  if(eeprom_data[29] & 0b10000000)gyro_pitch *= -1; 

  gyro_yaw = gyro_axis[eeprom_data[30] & 0b00000011]; 

  if(eeprom_data[30] & 0b10000000)gyro_yaw *= -1; 

} 

//Subroutine for calculating pid outputs 

 

void calculate_pid(){ 

  pid_error_temp = gyro_roll_input - pid_roll_setpoint; 

  pid_i_mem_roll += pid_i_gain_roll * pid_error_temp; 

  if(pid_i_mem_roll > pid_max_roll)pid_i_mem_roll = pid_max_roll; 

  else if(pid_i_mem_roll < pid_max_roll * -1)pid_i_mem_roll = 

pid_max_roll * -1; 

   

  pid_output_roll = pid_p_gain_roll * pid_error_temp + pid_i_mem_roll 

+ pid_d_gain_roll * (pid_error_temp - pid_last_roll_d_error); 

  if(pid_output_roll > pid_max_roll)pid_output_roll = pid_max_roll; 

  else if(pid_output_roll < pid_max_roll * -1)pid_output_roll = 

pid_max_roll * -1;  

  pid_last_roll_d_error = pid_error_temp; 

  //Pitch calculations 

  pid_error_temp = gyro_pitch_input - pid_pitch_setpoint; 

  pid_i_mem_pitch += pid_i_gain_pitch * pid_error_temp; 

  if(pid_i_mem_pitch > pid_max_pitch)pid_i_mem_pitch = 

pid_max_pitch; 

  else if(pid_i_mem_pitch < pid_max_pitch * -1)pid_i_mem_pitch = 

pid_max_pitch * -1; 
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  pid_output_pitch = pid_p_gain_pitch * pid_error_temp + 

pid_i_mem_pitch + pid_d_gain_pitch * (pid_error_temp - 

pid_last_pitch_d_error); 

  if(pid_output_pitch > pid_max_pitch)pid_output_pitch = 

pid_max_pitch; 

  else if(pid_output_pitch < pid_max_pitch * -1)pid_output_pitch = 

pid_max_pitch * -1; 

  pid_last_pitch_d_error = pid_error_temp; 

     

  //Yaw calculations 

  pid_error_temp = gyro_yaw_input - pid_yaw_setpoint; 

  pid_i_mem_yaw += pid_i_gain_yaw * pid_error_temp; 

  if(pid_i_mem_yaw > pid_max_yaw)pid_i_mem_yaw = pid_max_yaw; 

  else if(pid_i_mem_yaw < pid_max_yaw * -1)pid_i_mem_yaw = 

pid_max_yaw * -1; 

  pid_output_yaw = pid_p_gain_yaw * pid_error_temp +        

pid_i_mem_yaw + pid_d_gain_yaw * (pid_error_temp - 

pid_last_yaw_d_error); 

  if(pid_output_yaw > pid_max_yaw)pid_output_yaw = pid_max_yaw; 

  else if(pid_output_yaw < pid_max_yaw * -1)pid_output_yaw = 

pid_max_yaw * -1;     

  pid_last_yaw_d_error = pid_error_temp; 

} 

int convert_receiver_channel(byte function){ 

  byte channel, reverse;                                        

  int low, center, high, actual; 

  int difference; 
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  channel = eeprom_data[function + 23] & 0b00000111;                             

if(eeprom_data[function + 23] & 0b10000000)reverse = 1;                       

  else reverse = 0;                                          

  actual = receiver_input[channel];                                    

  low = (eeprom_data[channel * 2 + 15] << 8) | eeprom_data[channel * 2 + 

14];  //Store the low value for the specific receiver input channel 

  center = (eeprom_data[channel * 2 - 1] << 8) | eeprom_data[channel * 2 

- 2]; //Store the center value for the specific receiver input channel 

  high = (eeprom_data[channel * 2 + 7] << 8) | eeprom_data[channel * 2 + 

6];   //Store the high value for the specific receiver input channel 

  if(actual < center){                                                      

    if(actual < low)actual = low;                                             

  difference = ((long)(center - actual) * (long)500) / (center - low);             

if(reverse == 1)return 1500 + difference;                                 

    else return 1500 - difference;                                      

  } 

  else if(actual > center){                                                                

    if(actual > high)actual = high;                                           

    difference = ((long)(actual - center) * (long)500) / (high - center);       

    if(reverse == 1)return 1500 – difference; 

    else return 1500 + difference; 

  } 

  else return 1500; 

} 

void set_gyro_registers(){ 

  if(eeprom_data[31] == 1){ 

    Wire.beginTransmission(gyro_address);                      
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    Wire.write(0x6B);                                  

    Wire.write(0x00);                                     

    Wire.endTransmission();                          

    Wire.beginTransmission(gyro_address); 

    Wire.write(0x1B);                                         

    Wire.write(0x08);                                        

    Wire.endTransmission();                           

    Wire.beginTransmission(gyro_address); 

    Wire.write(0x1B);                                          

    Wire.endTransmission();                                      //End the transmission 

    Wire.requestFrom(gyro_address, 1);                     

    while(Wire.available() < 1);                                

    if(Wire.read() != 0x08){                                    

      digitalWrite(12,HIGH);                              

      while(1)delay(10);                                          

    }     

    Wire.beginTransmission(gyro_address);                      

    Wire.write(0x1A);                                           

    Wire.write(0x03);                                            

    Wire.endTransmission();                                

  } 

    Wire.beginTransmission(gyro_address);                    

    Wire.write(0x23);                                        

    Wire.endTransmission();                                      //End the transmission 

    Wire.requestFrom(gyro_address, 1);                    



92 
 

    while(Wire.available() < 1);                               

    if(Wire.read() != 0x90){                                     

      digitalWrite(12,HIGH);                               

      while(1)delay(10); 

    } 

  }   

    Wire.beginTransmission(gyro_address);                      

    Wire.write(0x23);                                    

    Wire.endTransmission();                                      //End the transmission 

    Wire.requestFrom(gyro_address, 1);                           

    while(Wire.available() < 1);                            

    if(Wire.read() != 0x90){ 

      digitalWrite(12,HIGH);                                      

      while(1)delay(10);                                          

    } 

  } 

} 

 

 


