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ABSTRACT  

  

The differential drive mobile robot is one of the robots which is commonly 

used in the robotics field due to it is ease of control relatively to the other type of 

the mobile robots. The system main parts are two wheels with a DC motor for 

each one, with a third Omni wheel to keep the balance of the robot, infrared 

sensors, encoders, and the controller. In this system the angular velocity of the 

system is controlled using a PID controller while the translational velocity is kept 

constant. A go to goal and avoid obstacles behaviors were used in the controller 

to navigate the around environment and reach the goal location. The infrared 

sensors mapped the area around the robot and the encoder used to update the 

system location, the updated location and the goal location are used to calculate 

an orientation vector towards the goal location. This vector changes whenever 

the current location of the robot changes the PID controller minimize the error 

between the desired angular velocity and the current angular velocity.  

In this research, a mathematical model for the system was driven. The 

system response was captured using a based robot simulator Sim.i.am. A PID 

algorithm was implemented in the avoid obstacle and go to goal behavior to 

minimize the error between the desired angular velocity and the current angular 

velocity and then the PID send the translational velocity that have been calculated 

in the controller to achieve the desired angular velocity for the robot to each 

motor of the two wheels.  

       The MATLAB Sim.i.am simulator was used to simulate the physical 

world and the response of the robot when it is applying the avoid obstacle and 

go to goal behavior and when it was tracked by another robot  
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 المستخلص 

  

الروبوت ذو العجلَت فرقية الحركة هو أحد أكثر الروبوتات شيوعا واستخداما في مجال الروبوتات 

حرة الحركة، نسبة لسهولة التحكم في حركته مقارنة مع الروبوتات الْخرى في نفس المجال .يتكون الروبوت 

هما كل على جلتين يتم التحكم فيمن هيكل بلَستيكي مثبت عليه محركي تيار مستمر لنقل الحركة الى ع

حدى مع وجود عجلة ثالثة حرة الحركة لغرض التوازن، كما يحتوي على خمس محساسات لقياس المسافة 

وعداد مسافة.في هذا النظام يتم التحكم في السرعة الزاوية عن طريق متحكم تناسبي تفاضلي تكاملي مع 

كم ستخدام نموذج للَتجاه نحو الهدف وتفادي العوائق للتحالابقاء على السرعة الخطية للروبوت ثابتة. تم ا

في الروبوت في اي بيئة فيزيائية والوصول للهدف. تساعد المحساسات وعداد المسافة على رسم البيئة 

المحيطة بالروبوت وتحديد مكانه و ترسل بيانات كل منهما الى المتحكم الذي يقوم بتحديد متجه في اتجاه 

بحساب متجه  كمحذا المتجه يتغير كلما تغير موضع الروبوت في الاحداثيات ليقوم المتاحداثيات الهدف ه

جديد. تم استخدام المتحكم التناسبي التكاملي التفاضلي لتقليل الخطأ بين السرعة الزاوية المطلوبة واللحظية 

 للروبوت. 

ا في ساسية التي تم عرضهتم ايجاد النموذج الرياضي الذي يمثل النظام ومن ثم دراسة المشكلة الا

هذا البحث وهي كيفية التحكم في الروبوت لنقله بين نقطتين في بيئة فيزيائية معينة مع دراسة تأثير التغيير 

تم استخدام برنامج محاكاة مطور خصيصا لهذا النوع من الروبوتات  الديناميكي للبيئة على اداء النظام.

  المتعقب للروبوت الاساسي . لرسم استجابة الروبوت الاساسي والروبوت
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CHAPTER ONE   

INTRODUCTION   

1.1General Concepts    

           Autonomous mobile robot represent a major example of a reactive, 

mobile, embedded control system that has received considerable 

attention during the last decade. The flurry of research activities in this 

area can be directly traced to the many exciting current and future 

applications where robotic systems are safer, cheaper, and more effective 

than their human counterparts. Examples of current applications is the 

domestic service robots, such as autonomous vacuum cleaners, lawn 

mowers, and pool cleaners.  

Notably absent from this list are the many robots employed in industrial 

settings. Such industrial robots are not considered here since they 

typically operate in highly structured environments.  

          A differential wheeled mobile robot is an example of autonomous 

mobile robot which’s movement is based on two separately driven 

wheels placed on either side of the robot body. It can thus change its 

direction by varying the relative rate of rotation of its wheels and hence 

does not require an additional steering motion. This robot could be used 

in several useful applications such as space exploration, firefighting, 

dismantling of bombs, and every environment that the human cannot deal 

with it directly [3].  
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1.2 Problem Statement   

The problem is to develop an autonomous mobile robot that is able to 

drive safety from point A to point B taking in consideration the real world 

environment.  

1.3 Objectives   

• Design behaviors to control the robot navigation.   

• Find a suitable simulator program to simulate the robot movement 

on the real environment.  

• Design proportional integral derivative (PID) controller to control 

the robot behavior and improve system response.   

1.4 Methodology   

• Study of all previous studies.    

• Mathematical modeling for robot behaviors.  

• Design MATLAB software program to control robot movement.   

• Use the sim.i.am simulator for simulation purposes.  

• Design of PID controller using manual tuning.   

1.5 Thesis Layout   

This study consist of five chapters: chapter one represent an 

introduction shows the problem statement, objectives, and the 

methodology used in the study. Chapter two discusses the theoretical 

background and literature review, DC motor, and PID controller. 

Chapter three presents the system mathematical modeling and the. 

Chapter four is meant to show the system design and simulation results 

and hardware structure. Chapter five is for the conclusions and 

recommendations.  
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CHAPTER TWO   

LITERATURE REVIEW   

2.1 Control Systems Preview   

Control engineering is based on the foundations of feedback theory 

and linear system analysis, and it integrates the concepts of network 

theory and communication theory. Therefore control engineering is not 

limited to any engineering discipline but is equally applicable to 

aeronautical, chemical, mechanical, environmental, civil, and electrical 

engineering. For example, a control system often includes electrical, 

mechanical, and chemical components. Furthermore, as the 

understanding of the dynamics of business, social, and political systems 

increases, the ability to control these systems will also increase. A control 

system is an interconnection of components forming a system 

configuration that will provide a desired system response. The basis for 

analysis of a system is the foundation provided by linear system theory, 

which assumes a cause–effect relationship for the components of a 

system .Therefore a component or process to be controlled can be 

represented by a block, as shown in Figure 2.1. The input–output 

relationship represents the cause-and-effect relationship of the process, 

which in turn represents a processing of the input signal to provide an 

output signal variable, often with a power amplification. An open-loop 

control system utilizes a controller or control actuator to obtain the 

desired response, as shown in Figure 2.2. An open-loop system is a 

system without feedback. [1]  
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An open-loop control system utilizes an actuating device to control 

the process directly without using feedback:  

  

                         Figure 2.1: Open Loop System  

  

  

                         Figure 2.2: Closed loop System   

2.2 General Overview on Robotics   

Robotics has achieved its greatest success to date in the world of 

industrial manufacturing. Robot arms, or manipulators, comprise a $ 2 

billion industry. Bolted at its shoulder to a specific position in the 

assembly line, the robot arm can move with great speed and accuracy to 

perform repetitive tasks such as spot welding and painting .In the 

electronics industry, manipulators place surface mounted components 

with superhuman precision, making the portable telephone and laptop 

computer possible. [2]  

2.2.1 Autonomous mobile robots   

An example of a reactive, mobile, embedded control system that 

has received considerable attention during the last decade is the 
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autonomous mobile robot. The flurry of research activities in this area 

can be directly traced to the many exciting current and future applications 

where robotic systems are safer/cheaper/more effective than their human 

counterparts. Examples of current applications include:  

     Domestic service robots, such as autonomous vacuum cleaners, lawn 

mowers,       and pool cleaners.  

• Planetary exploration robots, such as the NASA Mars rovers Spirit and 

Opportunity.  

• Autonomous robots for military applications, including surveillance and 

search and-destroy robots.   

• And Robots for monitoring, exploring, and securing unsafe 

environments, such as bomb sniffers, disaster site robots, and mine 

sweepers.[3]  

2.2.2 Differential wheel mobile robots  

For control engineers and researchers, there is a wealth of literature 

dealing with Wheeled Mobile Robots (WMR) control and their 

applications. However, while the subject of kinematic modeling of 

WMRs well documented and easily understood by students, the subject 

of dynamic modeling of WMR has not been addressed adequately in the 

literature. The dynamics of WMR are highly nonlinear and involve non-

holonomic constraints which makes difficult their modeling and analysis 

especially for new engineering students starting their research in this 

field. Therefore, a detailed and accurate dynamic model describing the 

WMR motion need to be developed to offer students a general framework 

for simulation analysis and model based control system design. [4]  
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2.3 IR Range Sensors  

            The orientation of 5 IR sensors (relative to the body of the 

QuickBot), is 90°, 45°, 0°, -45° and -90° degrees, respectively. IR range 

sensors are effective in the range 4 cm to 30 cm only. However, the IR 

sensors return raw values in the range of [0.4, 2.75] V instead of the 

measured distances. To complicate matters slightly, the Beagle Bone 

Black digitizes the analog output voltage using a voltage divider and a 

12-bit, 1.8V analog-to-digital converter .To use the sensor readings, you 

will have to convert them to actual distances. For that you need to convert 

from the ADC output to an analog output voltage, and then from the 

analog output voltage to a distance in meters .Converting from the analog 

output voltage to a distance is a little bit more complicated, because a) 

the relationships between analog output voltage and distance is not linear, 

and b) the look-up table provides a coarse sample of points. It is possible 

to use any way you like to convert between sensor readings and distances. 

For example you can fit the provided points with a high-degree 

polynomial and use this fit. It is important to note that the IR proximity 

sensor on the actual Quick Bot will be influenced by ambient lighting and 

other sources of interference. For example, under different ambient 

lighting conditions, the same analog output voltage may correspond to 

different distances of an object from the IR proximity sensor. The effect 

of ambient lighting (and other sources of noise) are not modelled in the 

simulator, but will be apparent on the actual hardware. [5]  

2.4 DC Motor  

         A common actuator in control systems is the DC motor. It directly 

provides rotary motion and, coupled with wheels or drums and cables, 
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can provide translational motion. The electric equivalent circuit of the 

armature and the free body diagram of the rotor are shown in the 

following figure.  

  

  

Figure 2.3: DC motor circuit  

For this example, we will assume that the input of the system is the 

voltage source (V) applied to the motor's armature, while the output is the 

rotational speed of the shaft d(theta)/dt. The rotor and shaft are assumed 

to be rigid. We further assume a viscous friction model, that is, the 

friction torque is proportional to shaft angular velocity.  

In general, the torque generated by a DC motor is proportional to the 

armature current and the strength of the magnetic field. In this example 

we will assume that the magnetic field is constant and, therefore, that the 

motor torque is proportional to only the armature current i by a constant 

factor Kt as shown in the equation below. This is referred to as an 

armature-controlled motor.  
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𝑇 = 𝐾𝑡𝑖                                                                                                (2.1)                   

  

The back emf, e, is proportional to the angular velocity of the shaft by a 

constant factor Ke.  

  

𝑒 = 𝐾𝑒𝜃̇                                                                                                  (2.2)                 

  

In SI units, the motor torque and back emf constants are equal, that is, Kt 

= Ke; therefore, we will use K to represent both the motor torque constant 

and the back emf constant. [6]  

  

2.5 Proportional Integral Derivative Controller  

A Proportional Integral Derivative (PID) controller is a control 

loop feedback mechanism (controller) widely used in industrial 

control systems. A PID controller calculates an error value as the 

difference between a measured process variable and a desired set 

point. The controller attempts to minimize the error by adjusting 

the process through use of a manipulated variable.   

The PID controller algorithm involves three separate 

constant parameters as shown is Figure 2.6 and is accordingly 

sometimes called three-term control: the proportional, the integral 

and derivative values, denoted P, I, and D. Simply put, these values 

can be interpreted in terms of time: P depends on the present error, 

I on the accumulation of past errors, and D is a prediction of future 
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errors, based on current rate of change. The weighted sum of these 

three actions is used to adjust the process via a control element such 

as the position of a control valve, a damper, or the power supplied 

to a heating element, Table 2.1 shows the effect of increasing a 

parameter independently.   

  

  

Figure 2.4: proportional integral derivative controller  

  

2.5.1 Effects of proportional, integral and derivative action   

Proportional control response for system with transfer function of 

P(s)   

=1/(s+1)³ is illustrated in Figure 2.5 with Ti =∞ and Td=0. The 

figure shows that there is always a steady state error in proportional 

control. The error will decrease with increasing gain, but the 

tendency towards oscillation will also increase.    

Figure 2.6 illustrates the effects of adding integral to system 

with transfer function of P(s) =1/(s+1)³. It follows that the strength 

of integral action increases with decreasing integral time Ti. The 
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figure shows that the steady state error disappears when integral 

action is used. The tendency for oscillation also increases with 

decreasing Ti.   

  

Figure 2.5: Response of the system with proportional control  

  

  

Figure 2.6: Response of the system with proportional and integral 

control  
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Table 2.1: Effects of increasing a parameter independently   

Parameter   Rise time   Overshoot   Settling time   Steady-state   

KP  Decrease   Increase   Small change   Decrease   

KI  Decrease   Increase   Increase   Eliminate   

KD  No change   Decrease   Decrease   Small effect   

  

2.5.2 Proportional controller   

The Proportional term produces an output value that is 

proportional to the current error value. The proportional response 

can be adjusted by multiplying the error by a constant Kp called the 

proportional gain constant.   

The proportional term is given by:   

  

  P=Kp(e(t))                                                                                                  (2.3)    

A high proportional gain results in a large change in the output for 

a given change in the error. If the proportional gain is too high, the 

system can become unstable.  In contrast, a small gain results in a 

small output response to a large input error, and a less responsive 

or less sensitive controller. If the proportional gain is too low, the 

control action may be too small when responding to system 

disturbances. Tuning theory and industrial practice indicate that the 

proportional term should contribute the bulk of the output change.   
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2.5.3 Proportional integral controller   

The main function of the integral action is to make sure that 

the process output agrees with the set point in steady state. With 

Proportional control, there is normally a control error in steady 

state. With integral action, small positive error will always lead to 

an increasing signal, and a negative error will give a decreasing 

control signal no matter how small the error is.     

  

    PI= Kp (e (t)) +Ki∫ (𝑡)                                                            (2.4)   

    

2.5.4 Proportional derivative controller   

        The purpose of the derivative action is to improve the close-

loop stability. Because of the process dynamics, it will take some 

time before a change in the control variable is noticeable in the 

progress output. Thus, the control system will be late in correction 

for an error. The action of a controller with proportional and 

derivative may be interpreted as if the control is made proportional 

to the predicted process output, where the prediction is made by 

extrapolating the error by the tangent to the error curve.    

  

  PD=Kp                                                                             (2.5)   
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2.5.5 Proportional integral derivative controller:  

The PID controller has three terms. The proportional term 

(P) corresponds to proportional control. The integral term (I) give 

a control action that is proportional to the time integral of the zero. 

The derivative term (D) is proportional to the time derivative of the 

control error. This term allows prediction of the future error. There 

are many variations of the PID algorithm that will substantially 

improve its performance and operability. Those variations are 

discussed in the next section [8].   

  

PID (t) = Kp                                           (2.6)   

  

By taking Laplace transform (PID) controller transfer function become:   

   C(S)=                                                                         (2.7)                            

  

2.5.6 Tuning of proportional integral derivative controller  

The process of selecting the controller parameters to meet given 

performance specifications is known as controller tuning.  There are 

several methods for tuning a PID loop. The most effective methods 

generally involve the development of some form of process model, and 

then choosing P, I, and D based on the dynamic model parameters 

In  particular,  when  the  mathematical  model  of  the  plant  is  unknown  

and  therefore analytical design methods cannot be used, PID controls 
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prove to be most useful. In the field  of  process  control  systems,  it  is  

well  known  that  the  basic  and  modified  PID control  schemes  have  

proved  their  usefulness  in  providing  satisfactory  control, although in 

many given situations they may not provide optimal control. 

If a mathematical model of the plant can be derived, then it is possible 

to apply various design  techniques  for  determining  parameters  of  

the controller  that  will  meet  the transient  and  steady-state  

specifications  of  the  closed loop  system.  However, if the plant is so 

complicated that its mathematical model cannot be easily obtained, then 

an analytical or computational approach to the design of a PID 

controller is not possible. Then we must resort to experimental 

approaches to the tuning of PID controllers [7]. 
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CHAPTER THREE 

SYSTEM MODELING 

3.1 System Model   

For mobile, autonomous robots the ability to function in and 

interact with a dynamic, changing environment is of key importance. 

As such, they fall under a class of reactive, mobile systems where 

environmental changes trigger changes in what objectives the control 

system must meet. The standard way of structuring the control system 

in order to deal with this problem is within a multi-modal control 

framework sometimes referred to in the robotics literature as the 

behavior-based robotics frame work. The main idea is to identify 

different controllers, responses to sensory inputs, with desired robot 

behaviors. This way of structuring the control system into separate 

behaviors, dedicated to performing certain tasks, has gain significant 

momentum within the robotics community. This momentum stems from 

the fact that a modular design both simplifies the design process and 

also makes it possible to add new behaviors to the system without 

causing any major increase in complexity.  

Once a collection of behaviors has been designed, different 

options present themselves at the supervisory level. For instance, one 

can let different behaviors run concurrently in the sense that they all can 

have an effect on the low-level motor commands according to some 

coordination rule. This construction with concurrent behaviors makes it 

relatively straightforward to stress robustness issues explicitly, since, 
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for example, an “avoidance behavior” can just be given a higher priority 

or weight than a “reach target behavior.” However, as multiple 

behaviors are allowed to affect the system simultaneously, a number of 

theoretical as well as practical issues present themselves [3].  

3.2 Dynamical Model  

          The system model is derived from the unicycle model to 

differential model since the unicycle model is easy to deal with.  

3.2.1 Differential model 

  

𝑥 =  
𝑅

2
(vr+vl)cos∅                                                                                                        (3.1) 

𝑦 =   
𝑅

2
(vr+vl)sin∅                                                                                                        (3.2) 

∅ =   
𝑅

𝑙
 (vr-vl)                                                                                                                   (3.3) 

                                                                                                   

Where ( ) the position in the x-axis, (y) the position in the y-axis, 

(R) the radius of the wheel, ( ) the distance between the two wheel, (𝑣𝑟) 

the angular velocity of the right motor, (𝑣𝑙) the angular velocity of the 

left motor and (ø) the orientation of the robot.  

3.2.2 Unicycle model  

𝑥  = 𝑣cos(ø)                                                                                                     (3.4)                 

𝑦  = 𝑣 sin(ø)                                                                                                    (3.5)                  

ø  = 𝑤                                                                                                                 (3.6)                   
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Where ( ) is the linear velocity of the robot and  is the angular velocity 

of the robot. By substituting the Unicycle model in the Differential Wheel 

Mobile Robot we get   

  

                                                                                                   (3.7)  

                                                                                                    (3.8)                  

          Thus the system model in state space for both unicycle and the 

differential wheel respectively are   

   

 

 

3.3 Behaviors   

If we let the autonomous robot be modeled at the kinematic level as a 

unicycle as stated in equations (3.4), (3.5) and (3.6). where (x,y) denotes 

the position of the robot, and φ denotes its orientation, a behavior is 

characterized by the way sensory data is mapped to the control inputs v 

and ω, corresponding to translational and angular velocities, respectively. 

Now, relative to this robot model, a straightforward way of specifying the 

effect of individual behaviors is to let the behavior define a vector  

  

                                                                                    (3.9)                       
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Where 𝑟𝐵is the magnitude of the behavior vector, and ø𝐵is its 

orientation. This vector formalism allows us to map behavior vectors to 

control values using some appropriate map (𝐵) = (v,ω)T. For example, 

one can let  

  

                                                               (3.10)                   

  

Here, the translational velocity achieves its nominal value v0 > 0 

when the magnitude of the behavior vector is small, but is reduced as 

this magnitude grows. Furthermore, the angular velocity is simply given 

by a proportional error feedback law, with C > 0 being the gain. Note 

that it is also quite standard to let the gain vary as a function of 𝑟𝐵.  

Now, if we are given b1 and b2, i.e., two vectors corresponding to two 

different behaviors, they can be combined directly using a vector addition 

operation b1 +b2in order to produce a new behavior, and this semi group 

property is why the vector notation is particularly appealing. Here the 

coordination mechanism is thus explicitly given. Moreover, the 

magnitude of the behavior vector, rb is what determines how much 

weight that particular behavior is given in the summation. As we will see 

in the next few paragraphs, avoidance behaviors should increase in 

magnitude, typically according to an inverse square law, as the robot 

draws closer to the obstacles.  

To make matters more concrete, let us in consider an obstacle-avoidance 

behavior denoted OA in what follows in some detail. Most mobile robots 

are equipped with a collection of k range sensors, such as ultrasonic 
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sonars or infrared sensors, and a standard sonar ring typically consists of 

8 or 16 sensors. Each of these sensors measures the distance to the closest 

obstacle along a particular, fixed relative orientation we let dj denote the 

distance to the closest obstacle detected by sensor j, and we let ø𝑗 be the 

corresponding angle. We can then define the obstacle avoidance 

behavior,, through the vector summation  

    𝐵𝑂𝐴 = 𝐵𝑂𝐴1+𝐵𝑂𝐴, 2+ . . . + 𝐵𝑂𝐴, 𝑘                                                                   (3.11)                  

                                                                                 (3.12)  

    ø𝐵𝑂𝐴,=𝜋 + ø𝑗                                                                                                  (3.13)                  

Where 𝐶𝑜𝑎> 0, and D is the safety distance at which the obstacle-

avoidance behavior starts affecting the system .In a similar manner, we 

can define an  

“Approach target behavior”𝑏𝑎𝑡, as  

𝑟𝐵𝐴𝑇=𝑐𝑎𝑡                                                                                                        

(3.14)                 ø𝐵𝐴𝑇=arctan((yg−y)/(xg−x))                                                                        

(3.15)                 Where 𝐶𝐴𝑇> 0 is the constant magnitude, and the goal 

is located at (xg, yg) [3].  

3.4 Regularizations  

          However, it may not always be desirable to let different behaviors 

affect the system simultaneously, even though such an approach results 

both in notational convenience as well as an intuitively appealing 

mechanism for combining multiple control objectives. Unfortunately, 

such an approach ruins the modularity that comes with a switched control 

strategy in the sense that if a new behavior is introduced, its impact on 
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the system is almost impossible to characterize analytically. This lack of 

analytical characterization tools is one of the main reasons why emergent 

behaviors, i.e., unpredictable global behaviors obtained through local 

rules, have received Considerable attention in the literature. Moreover, if 

an obstacle-avoidance behavior has been designed so that the robot is 

guaranteed not to hit static obstacles, by combining this behavior with 

other behaviors, this guarantee no longer holds.  

          A remedy to this problem is to let the control system switch 

between different behaviors. Unfortunately, such an approach may have 

a negative impact on the performance of the system since it increases the 

risk of introducing chattering into the system. Chattering is a 

phenomenon that occurs when two vector fields, corresponding to two 

different behaviors, both point in toward the switching surface that 

dictates when the robot should switch between the behaviors. In other 

words, if we switch from mode 1, where𝑥 c= f1(x), to mode 2, where 𝑥 = 

f2(x), when x leaves the region g(x) <0, where g is a smooth map from Rn 

to R, then chattering occurs if  

  

                                                       (3.16)                  

On the boundary (x) = 0.  

The standard way out of this problem is to regularize the system so that 

sliding is allowed to occur. For example, assume that we have access to 

instantaneous heading control in our control laws. When an obstacle is 

closer to the robot than D, the obstacle-avoidance behavior is active. 

Since the repulsive potential field from that behavior will be orthogonal 
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to the surface on which the behavior becomes active, the sliding solution 

is given by  

    𝐵𝑆= α𝐵𝑂𝐴+ (1 − α)                                                                       (3.17)                  

For some α [0,1] such that 𝐵𝑆⊥𝐵𝑂𝐴.  

Some results from applying this regularization approach to the chattering 

problem are shown in Fig. 2, where Figure 3.1 shows a situation when 

vector summation is used. Figure 3.2 corresponds to switches between 

the behaviors, and it is clear that a chattering-like behavior is produced. 

In Figure 3.3 the regularized solution is shown. Even though we only 

have one behavior active at a time, the performance is clearly satisfactory 

in that case.  

By incorporating this type of information about the different behaviors, 

it is possible to generate the sliding modes automatically. It furthermore 

suggests that this method would scale when more than two behaviors 

affect the motion of the robot, as long as an automatic procedure for 

designing the sliding solutions can be identified. Hence we assume 

throughout the remainder of this chapter that only one behavior affects 

the robot at each time instant, and that, when appropriate, a sliding mode 

may be induced from the system dynamics.  

 

       

 

 

Figure 3.1: Combined behaviors using vector summation 
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Figure 3.2: Switches between the different behaviors 

 

 

           

 

 

 

Figure 3.3: A regularize solution 

3.5 Wheel Encoders   

   dc=  
𝑑𝑟+𝑑𝑙

2
                                                                  (3.18)       

    𝑥 =́𝑥 + 𝑑𝑐 cos (ø)                                                   (3.19) 

       𝑦 =́𝑦 + 𝑑𝑐 sin (ø)                                                   (3.20)  

                                                                                      (3.21)  

    Δtick =𝑡𝑖𝑐𝑘′ − 𝑡𝑖𝑐𝑘                                              (3.22)  

   d=2πR 
Δtick

𝑛
                                                        (3.23)  
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Where (dc) is the arc moved by the robot, (𝑑𝑟) the arc moved by the 

right wheel, (𝑑𝑙) the arc moved by the left wheel, (𝑡𝑖𝑐𝑘′) the total 

number of encoder ticks and (𝑡𝑖𝑐𝑘) the previous number of ticks and n 

is the number of ticks per revolutions.  
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CHAPTER FOUR  

SYSTEM DESIGN AND HARDWARE 

PARTS 

4.1 The Sim.I.am Simulator  

This simulator program was developed by GORGIA INSTITUTE OF  

TECHNOLOGY to perform the following tasks  

• Understanding the robot (to process the information from the 

robot.  

• Transformation from unicycle to differential drive dynamics.  

• Odometry, such that as the robot moves around, its pose is 

estimated based on how far each of the wheels have turned.  

• Implementing the PID controller by implementing the different 

parts of a PID regulator that steers the robot successfully to 

some goal location.  

This is known as the go-to-goal behavior.  

• Ensuring the right angular velocity by tackling the first of two 

limitations of the motors on the “QuickBot”. The first limitation 

is that the robot’s motors have a maximum angular velocity, 

and the second limitation is that the motors stall at low speeds.  

• To generate Avoid Obstacles by implementing the different 

parts of a controller that steers the robot successfully away from 

obstacles to avoid a collision. This is known as the avoid-

obstacles behavior.  
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• Mixing go-to-goal and avoid-obstacle controllers and testing 

two arbitration mechanisms: blending and hard switches. 

Arbitration between the two controllers will allow the robot to 

drive to a goal, while not colliding with any obstacles on the 

way.  

• To realize wall following behavior (whether the obstacle on the 

left or right is followed).  

This simulation software with generated controllers can be efficiently 

used for controlling the real “QuickBot” to make it full autonomous. 

This dependence is not known a priori, as it depends on the motors, the 

wheels and the surface. To be able to control your robot reliably, you 

have to measure this dependence and put into code. On this way, it is 

possible by combining the go-to-goal, avoid obstacles, and follow-wall 

controllers into a full navigation system for the robot. The robot will be 

able to navigate around a cluttered, complex environment without 

colliding with any obstacles and reaching the goal location    

successfully. [5]  
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    Figure 4.1: Sim.i.am graphical user interface  

4.2 System Design 

           The system model was represented in the state space forum hence, 

the design will be carry out in the state space forum.  

Parameters design and simulation results  

          The method used for designing the PID controller for the system is 

the manual tuning at first the proportional part value increased till a first 

oscillation was observed in the response and then the derivative part is 

increased from zero till the transient response characteristic were 

optimized and finally the integral part implemented to reduce the steady 

state error.  

The adjustment of the different parts of the PID controller will be 

adjusted in the avoid obstacle and go to goal blended in one controller 

stored at the file AOandGTG.m.  
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• First attempt   

           The proportional part is set at 1 the derivative and integral both set 

at zero. In the following figures the green line indicate the desired 

response and the blue line indicates the response of the robot based on 

the simulator.  

 

 

 

 

 

 

 

 

 

 

   

 Figure 4.2: Robot response with Kp =1, Ki =0, Kd =0  

Where green line indicate to current angular velocity (w) and blue line 

indicate to estimated angular velocity (w) 

The system response is very slow and the desired angular velocity 

was not achieved accurately.  

• Second attempt  

By increasing the proportional kp=2 and set both integral derivative 

controllers at zero   
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Kp=2, ki=0, kd=0  

 

  

          Figure 4.3: Robot response with Kp =2, Ki =0, Kd =0  

• Third attempt   

          By more increasing in the proportional constant and small tunning 

in both integral and derivative constants we have found that the most 

optimal values for these parameters is as follows  

Kp = 5, Ki = 0.01, Kd = 0.01    

The following curves show the best results for the controller which were 

tested in the simulator.  
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Figure 4.4: Robot response with Kp =5, Ki =0.01, Kd=0.01  

 

4.3 System Hardware Parts 

     The system hardware structure consist of the following parts: 

4.3.1 Beagle Bone Black 

The Beaglebone Black is a low power open source hardware single board 

computer produced by (Texas Instruments) in association with (Digi-Key) and 

(Newark element14).The Beaglebone Black was also designed with open source 

software with the following features: 
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 Processor 

 AM335x 1GHz ARM® Cortex-A8. 

 512MB DDR3 RAM. 

 4GB 8-bit eMMC on-board flash storage. 

 3D graphics accelerator. 

 NEON floating-point accelerator. 

 2x PRU 32-bit microcontrollers. 

 Connectivity 

 USB client for power & communications. 

 USB host. 

 Ethernet. 

 HDMI. 

 2x 46 pin headers. 

 Software compatibility 

 Debian. 

 Android. 

 Ubuntu. 

 Cloud9 IDE on Node.js w/ BoneScript library. 

 Power supply 

 5-volt, 2-ampere power supply source. 
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             Figure 4.5: Beagle bone black 

4.3.2 IR sensor 

     An infrared sensor (PIR sensor) is an electronic sensor that measures 

infrared (IR) light radiating from objects in its field of view and it has 

measuring distance between zero and 0.2 meter. 
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                                             Figure 4.6: IR infrared sensor 

4.3.3 Wheel encoder 

      The encoder is a sensor attached to a rotating object (such as a 

wheel or motor) to measure rotation. These pulses can be used as part of 

a feedback control system to determine translation distance, rotational 

velocity, and/or angle of a moving robot or robot part. 

                                     

                                   Figure 4.7: Wheel encoder 

4.3.4 DC motor   

 Features: 

 Suggested Voltage: 4.5VDC 

 No Load Speed: 140RPM 

 No Load Current: 190mA 

 Max. Load Current: 250mA 

 Torque: 800 gf-cm 
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                                                       Figure 4.8: DC motor 

4.3.5 Motor driver 

      The (SN754410) is a quadruple high-current half-H driver designed 

to provide bidirectional drive currents up to 1 A at voltages from 4.5 V to 

36 V. 

The device is designed to drive inductive loads such as relays, solenoids, 

dc and bipolar stepping motors, as well as other high-current/high-voltage 

loads in positive-supply applications. 

 

Figure 4.9: Motor driver 
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4.3.6  Wi-Fi antenna  

     The Beagle Bone black uses a 4-inch-(2.7 x 1.3 x 1.3 cm) dimension 

compatible antenna. 

 

                                                 

                       Figure 4.10: 4-Inch antenna  

 

 

4.3.7 Mechanical parts 

 Micro Magician Robot Chassis Kit with (4) screws, brackets, and stands.  

 Two (32.5) mm Radius wheels with (99.5) mm distance between the two 

wheels. 

 One holder wheel for balancing purposes. 
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Figure 4.11: Chassis and wheels 

4.3.8 Basic requirements 

 One mini-size breadboard. 

 One half-size breadboard. 

 Two battery holders. 

 Heat sink. 

 On-off switch. 

 Jumper wires. 

 Resistors. 

 Capacitor. 

 Diodes.  

 (8) Rechargeable batteries. 

 Ld1085v50 regulator. 
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Figure 4.12: Electrical and electronic connections 

                                                  

Figure 4.13: QuickBot 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion    

          A mathematical model of the differential wheel mobile robot 

system was developed by using physical laws. A simplified 

mathematical model was derived by system parameters. The controller 

parameters values (Kp, Ki and Kd) were obtained by using manual 

tuning method from simulation model so as to perform best system 

response. From experimental results, it is found that the best controller 

parameters which gave the best response of the system are Kp= 5, 

Ki=0.01 and Kd= 0.01. The accuracy of the system is tested adjusting 

the angular velocity of the differential wheel mobile robot.  

  

5.2 Recommendations  

1- It is recommended that controlling the system using the machine 

learning method and the artificial intelligence method.  

2- Study the response of the other common used digital controller e.g 

Beaglebone Black, Raspberry pi and Arduino and compare the 

response of the system with each one of them.   

 3-Prove the Beaglebone Black code to get a real time results of the system 

and compare it to the simulation results.                         
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                              APPENDIX A  

MATLAB m.file of the AOandGTG controller  

 

 

classdefAOandGTG<simiam.controller.Controller  

  

% Copyright (C) 2013, Georgia Tech Research  

Corporation  

% see the LICENSE file included with this software  

 

prop

erti

es  

  

% memory banks  

E_k         

e_k_1  

  

% gains  

Kp  

 Ki  

Kd  

  

% plot support      

p  
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% sensor 

geometry 

calibrated 

sensor_placem

ent end  

  

properties (Constant)  

inputs = struct('x_g', 0, 'y_g', 0, 

'v', 0); outputs = struct('v', 0, 'w', 

0) end  

 

m

e

t

h

o

d

s  

  

functionobj = AOandGTG() obj = 

obj@simiam.controller.Controller('ao_and_gtg');         

obj.calibrated = false;  

 

obj.K

p = 

5; 

obj.K
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i = 

0.01; 

obj.K

d = 

0.01;  

 obj.E_k = 0;             

obj.e_k_1 = 0;  

  

%             obj.p = 

simiam.util.Plotter(); end  

  

function outputs = execute(obj, robot, 

state_estimate, inputs, dt)  

  

% Compute the placement of the 

sensors if(~obj.calibrated) 

obj.set_sensor_geometry(robot); 

end  

  

% Unpack state estimate  

            [x, y, theta] = 

state_estimate.unpack();  

  

% Poll the current IR sensor values 1-9 

ir_distances = robot.get_ir_distances(); 

nSensors = numel(ir_distances);  
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% Interpret the IR sensor measurements 

geometrically ir_distances_wf =  

obj.apply_sensor_geometry(ir_distances, 

state_estimate);              

  

% 1. Compute the heading vector for obstacle 

avoidance  

  

%             sensor_gains = [1 1 0.5 

1 1]; if (nSensors == 5) % QuickBot 

sensor_gains = [1 1 0.5 1 1]; elseif 

(nSensors == 9)  

% Khepera3  

sensor_gains = 

ones(1,nSensors); end  

  

u_i = (ir_distances_wf- 

repmat([x;y],1,nSensors))*diag(sensor_gains

); u_ao = sum(u_i,2);  

  

% 2. Compute the heading vector for go-

to-goal x_g = inputs.x_g; y_g = 

inputs.y_g; u_gtg = [x_g-x; y_g-y];  

  

% 3. Blend the two 

vectors alpha = 0.25;  

u_ao_gtg = alpha*u_gtg+(1-alpha)*u_ao;  
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% 4. Compute the heading and error for the PID 

controller  

theta_ao_gtg = atan2(u_ao_gtg(2),u_ao_gtg(1));  

  

e_k = theta_ao_gtg-theta; 

e_k = 

atan2(sin(e_k),cos(e_k));  

 e_P = e_k; e_I = 

obj.E_k + e_k*dt; 

e_D = (e_k-

obj.e_k_1)/dt;  

  

% PID control on w             

v = inputs.v;  

            w = obj.Kp*e_P + obj.Ki*e_I + 

obj.Kd*e_D;  

  

% Save errors for next 

time step obj.E_k = e_I;             

obj.e_k_1 = e_k;  

  

% plot    

            obj.p.plot_2d_ref(dt, theta, 

theta_ao_gtg, 'c');  
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%             fprintf('(v,w) = (%0.4g,%0.4g)\n', 

v,w);  

             v = 

0.25/(log(abs(w)+2)+1);  

 

outputs.

v = v; 

outputs.

w = w; 

end  

  

% Helper functions  

  

functionir_distances_wf = 

apply_sensor_geometry(obj, ir_distances, 

state_estimate)  

  

% 1. Apply the transformation to robot frame.  

nSensors = numel(ir_distances);  

  

ir_distances_rf = 

zeros(3,nSensors); 

fori=1:nSensors x_s = 

obj.sensor_placement(1,i); y_s 

= obj.sensor_placement(2,i); 

theta_s = 

obj.sensor_placement(3,i);  
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                R = 

obj.get_transformation_matrix(x_s,y_s,theta_s)

; ir_distances_rf(:,i) = R*[ir_distances(i); 0; 

1]; end  

  

% 2. Apply the transformation to world frame.  

  

            [x,y,theta] = state_estimate.unpack();  

  

            R = 

obj.get_transformation_matrix(x,y,theta); 

ir_distances_wf = R*ir_distances_rf;  

  

ir_distances_wf = 

ir_distances_wf(1:2,:); end  

  

functionset_sensor_geometry(obj, robot) 

nSensors = numel(robot.ir_array);  

  

obj.sensor_placement = zeros(3,nSensors); 

fori=1:nSensors  

                [x, y, theta] = 

robot.ir_array(i).location.unpack(); 

obj.sensor_placement(:,i) = [x; y; 

theta]; end  

obj.calibrated = 

true; end  
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function R = get_transformation_matrix(obj, x, y, 

theta)  

            R = [cos(theta) -sin(theta) x; 

sin(theta) cos(theta) y; 0 0 1]; end  

 function 

reset(obj)  

% Reset accumulated and previous 

error obj.E_k = 0;             

obj.e_k_1 = 0; end  end  end  
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APPENDIX B 

MATLAB m.file of the supervisor 

classdef Supervisor < handle  

%% SUPERVISOR switches between controllers and 

handles their inputs/outputs.  

%  

% Properties:  

%   current_controller      - Currently selected 

controller  

%   controllers             - List of available 

controllers  

%   goal_points             - Set of goal 

points %   goal_index              - Pointer to 

current goal point  

%   v                       - Robot velocity  

%  

% Methods:  

%   execute - Selects and executes the current 

controller.  

 properties     

%% 

PROPERTIES 

current_con

troller% 

Currently 
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selected 

controller 

controllers

% List of 

available 

controllers 

robot% The 

robot  

state_estimate% Current estimate of the robot's 

state end  

 methods     

%% 

METHODS  

 functionobj = 

Supervisor()  

        %% SUPERVISOR Constructor  

  

% initialize the controllers 

obj.controllers{1} =  

simiam.controller.Controller('default');  

  

% set the initial controller  

obj.current_controller = obj.controllers{1};  

  

obj.robot = []; obj.state_estimate = 

simiam.ui.Pose2D(1,2,1.54); end  
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functionattach_robot(obj, robot, pose) 

obj.robot = robot;  

            [x, y, theta] = 

pose.unpack(); 

obj.state_estimate.set_pose([x, y, 

theta]); end  

 function 

execute(obj, dt)  

        %% EXECUTE Selects and executes the 

current controller.  

%   execute(obj, dt) will select a controller from 

the list of  

%   available controllers and execute it.  

%  

%   See also 

controller/execute end 

end end  

  

  

  

   


