
Sudan University of Sciences and Technology

College of Engineering

School of Electrical and Nuclear Engineering

Control of Differential Wheel Mobile Robot

 التحكم في الروبوت ذو العجلات فرقية الحركة

A Project Submitted In Partial Fulfillment for the Requirements of the

Degree of B.Sc. (Honor) In Electrical Engineering

Prepared By:

1. Ahmed Masri Ahmed Gibriel

2. Osama Shibeka Abdin Mohammed

3. Jouher Bashir Abd Elrahman El Shaikh

Supervised By:

Dr. Awadalla Taifour Ali

October 2016

 i

 الآية

 قال تعالى:

ُول ي إ)) مَوَات وَالَْْرْض وَاخْت لََف اللَّيْل وَالنَّهَار لَََيَاتٍ لْ نَّ ف ي خَلْق السَّ

ينَ يَذْكُرُونَ اللَََّّ ق يَامًا وَقُعُودًا وَعَلَى جُنُوب ه مْ وَيَتَفَكَّ 091الَْْلْبَاب) رُونَ ف ي (الَّذ

مَوَات وَالَْْرْض رَبَّنَا مَا خَلَقْ لًَ سُبْحَانَكَ فَ خَلْق السَّ ق نَا عَذَابَ تَ هَذَا بَاط

((((090النَّار

 091-090 ات: الْيعمرانل ة آسور

 ii

DEDICATIONS

This study is dedicated with gratitude to our great lovely parents

for their endless support, believe, and devotion all along the

road.

 iii

ACKNOWLEDGEMENT

We wish to thank our supervisor Dr. Awadalla Tayfour Ali for his great

support, encouraging and precious time.

 iv

ABSTRACT

The differential drive mobile robot is one of the robots which is commonly

used in the robotics field due to it is ease of control relatively to the other type of

the mobile robots. The system main parts are two wheels with a DC motor for

each one, with a third Omni wheel to keep the balance of the robot, infrared

sensors, encoders, and the controller. In this system the angular velocity of the

system is controlled using a PID controller while the translational velocity is kept

constant. A go to goal and avoid obstacles behaviors were used in the controller

to navigate the around environment and reach the goal location. The infrared

sensors mapped the area around the robot and the encoder used to update the

system location, the updated location and the goal location are used to calculate

an orientation vector towards the goal location. This vector changes whenever

the current location of the robot changes the PID controller minimize the error

between the desired angular velocity and the current angular velocity.

In this research, a mathematical model for the system was driven. The

system response was captured using a based robot simulator Sim.i.am. A PID

algorithm was implemented in the avoid obstacle and go to goal behavior to

minimize the error between the desired angular velocity and the current angular

velocity and then the PID send the translational velocity that have been calculated

in the controller to achieve the desired angular velocity for the robot to each

motor of the two wheels.

 The MATLAB Sim.i.am simulator was used to simulate the physical

world and the response of the robot when it is applying the avoid obstacle and

go to goal behavior and when it was tracked by another robot

 v

 المستخلص

الروبوت ذو العجلَت فرقية الحركة هو أحد أكثر الروبوتات شيوعا واستخداما في مجال الروبوتات

حرة الحركة، نسبة لسهولة التحكم في حركته مقارنة مع الروبوتات الْخرى في نفس المجال .يتكون الروبوت

هما كل على جلتين يتم التحكم فيمن هيكل بلَستيكي مثبت عليه محركي تيار مستمر لنقل الحركة الى ع

حدى مع وجود عجلة ثالثة حرة الحركة لغرض التوازن، كما يحتوي على خمس محساسات لقياس المسافة

وعداد مسافة.في هذا النظام يتم التحكم في السرعة الزاوية عن طريق متحكم تناسبي تفاضلي تكاملي مع

كم ستخدام نموذج للَتجاه نحو الهدف وتفادي العوائق للتحالابقاء على السرعة الخطية للروبوت ثابتة. تم ا

في الروبوت في اي بيئة فيزيائية والوصول للهدف. تساعد المحساسات وعداد المسافة على رسم البيئة

المحيطة بالروبوت وتحديد مكانه و ترسل بيانات كل منهما الى المتحكم الذي يقوم بتحديد متجه في اتجاه

بحساب متجه كمحذا المتجه يتغير كلما تغير موضع الروبوت في الاحداثيات ليقوم المتاحداثيات الهدف ه

جديد. تم استخدام المتحكم التناسبي التكاملي التفاضلي لتقليل الخطأ بين السرعة الزاوية المطلوبة واللحظية

 للروبوت.

ا في ساسية التي تم عرضهتم ايجاد النموذج الرياضي الذي يمثل النظام ومن ثم دراسة المشكلة الا

هذا البحث وهي كيفية التحكم في الروبوت لنقله بين نقطتين في بيئة فيزيائية معينة مع دراسة تأثير التغيير

تم استخدام برنامج محاكاة مطور خصيصا لهذا النوع من الروبوتات الديناميكي للبيئة على اداء النظام.

 المتعقب للروبوت الاساسي . لرسم استجابة الروبوت الاساسي والروبوت

 vi

 TABLE OF CONTENTS

 Page

No.

 i الآية

 DEDICATION ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

 v المستخلص

 TABLE OF CONTENTS vi

 LIST OF FIGURES viii

 LIST OF ABBREVIATIONS x

 LIST OF SYMBOLS xi

CHAPTER ONE

 INTRODUCTION

 1.1 General Concepts 1

 1.2 Problem Statement 2

 1.3 Objectives 2

 1.4 Methodology 2

 1.5 Layout 2

CHAPTER TWO

THEORETICAL BACKGROUND AND LITERATURE

REVIEW

 2.1 Control Systems preview 3

 2.2 General overview on robotics 4

 vii

 2.3 IR Range Sensors 6

 2.4 DC Motor 6

 2.5 Proportional Integral Derivative Controller 8

CHAPTER THREE

 SYSTEM MODELING

3.1 System Model 15

3.2 Dynamical Model 16

3.3 Behaviors 17

3.4 Regularizations 19

3.5 Wheel Encoder 22

CHAPTER FOUR

SYSTEM DESIGN AND HARDWARE PARTS

 4.1 The Sim.I.am Simulator 24

 4.2 System Design 26

4.3 System Hardware Parts 29

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

 5.1 Conclusion 37

 5.2 Recommendations 37

 REFERENCES 38

 APPENDIX A 39

 APPENDIX B 47

 viii

 LIST OF FIGURES

Figure No. Title Page No.

2.1 Open loop system 4

2.2 Closed loop system 4

2.3 DC motor circuit 7

2.4 Proportional integral derivative 9

2.5 Response of the system with proportional control 10

2.6 Response of the system with proportional integral

control.

10

3.1 Combined behaviors using vector summation 21

3.2 Switches between the different behaviors 22

3.3 A regularize solution 22

4.1 Sim.i.am graphical user interface 26

4.2 Robot response Kp = 1, Ki = 0, Kd = 0 27

4.3 Robot response at Kp= 2, Ki = 0, Kd = 0 28

4.4 The tracker robot response at Kp =5, Ki = 0.01, Kd=0.01 29

4.5 Beagle bone black 31

4.6 IR sensor 31

4.7 Wheel encoder 32

4.8 DC motors 33

 ix

4.9 Motor driver 33

4.10 4-Inch antenna 34

4.11 Chassis and wheels 35

4.12 Electrical and electronic connections 36

4.13 QuickBot 36

 x

LIST OF ABBREVIATIONS

WMR Wheel Mobile Robot

DC Direct Current

 IR InfraRed

 emf electromotive force

 PID Proportional Integral Derivative

 AO and GTG Avoid Obstacle and Go To Goal

 RAM Random Access Memory

 eMMC Embedded Multimedia Card

 USB Universal Serial Bus

 HDMI High Definition Multimedia Interface

 PRU Programmable Real-Time Unit

 xi

 LIST OF SYMBOLS

Kp Proportional gain

 Ki Integral gain

Kd Derivative gain

 Ti Integral time

Td Derivative time

 T Motor torque in N. m

 Kt Torque constant

 ke Back emf constant

 Angular displacement

 e Electromotive force

 i Armature Current in ampere

 R Radios of the wheel in meter

 l Distance between two wheels in meter

 x Position in x-axis

 y Position in y-axis

 vr The angular velocity of the right motor in rad/s

vl The angular velocity of the left motor in rad/s

 The orientation of the robot in rad

v Linear velocity of the robot in m/s

w Angular velocity of the robot in rad/s

rB Magnitude of the behavior vector

 B Orientation of the behavior vector

dj Distance to the closest obstacle detected by sensor ,m

 xii

D Safety distance at which AO behavior start affecting the system

𝐵𝑂𝐴 Obstacle avoidance behavior

𝑟𝐵𝑂𝐴,𝑗 Magnitude of the avoid obstacle behavior

𝐶𝐴𝑇 Constant magnitude

𝐵𝐴𝑇 Approach target behavior

𝐵𝑆 Sliding mode behavior

dr The arc moved by the right wheel

dl The arc moved by the left wheel

dc The arc moved by the robot

𝑡𝑖𝑐𝑘′ The total number of encoder ticks

𝑡𝑖𝑐𝑘 The previous number of ticks

n Number of ticks per revolution

1

CHAPTER ONE

INTRODUCTION

1.1General Concepts

 Autonomous mobile robot represent a major example of a reactive,

mobile, embedded control system that has received considerable

attention during the last decade. The flurry of research activities in this

area can be directly traced to the many exciting current and future

applications where robotic systems are safer, cheaper, and more effective

than their human counterparts. Examples of current applications is the

domestic service robots, such as autonomous vacuum cleaners, lawn

mowers, and pool cleaners.

Notably absent from this list are the many robots employed in industrial

settings. Such industrial robots are not considered here since they

typically operate in highly structured environments.

 A differential wheeled mobile robot is an example of autonomous

mobile robot which’s movement is based on two separately driven

wheels placed on either side of the robot body. It can thus change its

direction by varying the relative rate of rotation of its wheels and hence

does not require an additional steering motion. This robot could be used

in several useful applications such as space exploration, firefighting,

dismantling of bombs, and every environment that the human cannot deal

with it directly [3].

2

1.2 Problem Statement

The problem is to develop an autonomous mobile robot that is able to

drive safety from point A to point B taking in consideration the real world

environment.

1.3 Objectives

• Design behaviors to control the robot navigation.

• Find a suitable simulator program to simulate the robot movement

on the real environment.

• Design proportional integral derivative (PID) controller to control

the robot behavior and improve system response.

1.4 Methodology

• Study of all previous studies.

• Mathematical modeling for robot behaviors.

• Design MATLAB software program to control robot movement.

• Use the sim.i.am simulator for simulation purposes.

• Design of PID controller using manual tuning.

1.5 Thesis Layout

This study consist of five chapters: chapter one represent an

introduction shows the problem statement, objectives, and the

methodology used in the study. Chapter two discusses the theoretical

background and literature review, DC motor, and PID controller.

Chapter three presents the system mathematical modeling and the.

Chapter four is meant to show the system design and simulation results

and hardware structure. Chapter five is for the conclusions and

recommendations.

3

CHAPTER TWO

LITERATURE REVIEW

2.1 Control Systems Preview

Control engineering is based on the foundations of feedback theory

and linear system analysis, and it integrates the concepts of network

theory and communication theory. Therefore control engineering is not

limited to any engineering discipline but is equally applicable to

aeronautical, chemical, mechanical, environmental, civil, and electrical

engineering. For example, a control system often includes electrical,

mechanical, and chemical components. Furthermore, as the

understanding of the dynamics of business, social, and political systems

increases, the ability to control these systems will also increase. A control

system is an interconnection of components forming a system

configuration that will provide a desired system response. The basis for

analysis of a system is the foundation provided by linear system theory,

which assumes a cause–effect relationship for the components of a

system .Therefore a component or process to be controlled can be

represented by a block, as shown in Figure 2.1. The input–output

relationship represents the cause-and-effect relationship of the process,

which in turn represents a processing of the input signal to provide an

output signal variable, often with a power amplification. An open-loop

control system utilizes a controller or control actuator to obtain the

desired response, as shown in Figure 2.2. An open-loop system is a

system without feedback. [1]

4

An open-loop control system utilizes an actuating device to control

the process directly without using feedback:

 Figure 2.1: Open Loop System

 Figure 2.2: Closed loop System

2.2 General Overview on Robotics

Robotics has achieved its greatest success to date in the world of

industrial manufacturing. Robot arms, or manipulators, comprise a $ 2

billion industry. Bolted at its shoulder to a specific position in the

assembly line, the robot arm can move with great speed and accuracy to

perform repetitive tasks such as spot welding and painting .In the

electronics industry, manipulators place surface mounted components

with superhuman precision, making the portable telephone and laptop

computer possible. [2]

2.2.1 Autonomous mobile robots

An example of a reactive, mobile, embedded control system that

has received considerable attention during the last decade is the

5

autonomous mobile robot. The flurry of research activities in this area

can be directly traced to the many exciting current and future applications

where robotic systems are safer/cheaper/more effective than their human

counterparts. Examples of current applications include:

 Domestic service robots, such as autonomous vacuum cleaners, lawn

mowers, and pool cleaners.

• Planetary exploration robots, such as the NASA Mars rovers Spirit and

Opportunity.

• Autonomous robots for military applications, including surveillance and

search and-destroy robots.

• And Robots for monitoring, exploring, and securing unsafe

environments, such as bomb sniffers, disaster site robots, and mine

sweepers.[3]

2.2.2 Differential wheel mobile robots

For control engineers and researchers, there is a wealth of literature

dealing with Wheeled Mobile Robots (WMR) control and their

applications. However, while the subject of kinematic modeling of

WMRs well documented and easily understood by students, the subject

of dynamic modeling of WMR has not been addressed adequately in the

literature. The dynamics of WMR are highly nonlinear and involve non-

holonomic constraints which makes difficult their modeling and analysis

especially for new engineering students starting their research in this

field. Therefore, a detailed and accurate dynamic model describing the

WMR motion need to be developed to offer students a general framework

for simulation analysis and model based control system design. [4]

6

2.3 IR Range Sensors

 The orientation of 5 IR sensors (relative to the body of the

QuickBot), is 90°, 45°, 0°, -45° and -90° degrees, respectively. IR range

sensors are effective in the range 4 cm to 30 cm only. However, the IR

sensors return raw values in the range of [0.4, 2.75] V instead of the

measured distances. To complicate matters slightly, the Beagle Bone

Black digitizes the analog output voltage using a voltage divider and a

12-bit, 1.8V analog-to-digital converter .To use the sensor readings, you

will have to convert them to actual distances. For that you need to convert

from the ADC output to an analog output voltage, and then from the

analog output voltage to a distance in meters .Converting from the analog

output voltage to a distance is a little bit more complicated, because a)

the relationships between analog output voltage and distance is not linear,

and b) the look-up table provides a coarse sample of points. It is possible

to use any way you like to convert between sensor readings and distances.

For example you can fit the provided points with a high-degree

polynomial and use this fit. It is important to note that the IR proximity

sensor on the actual Quick Bot will be influenced by ambient lighting and

other sources of interference. For example, under different ambient

lighting conditions, the same analog output voltage may correspond to

different distances of an object from the IR proximity sensor. The effect

of ambient lighting (and other sources of noise) are not modelled in the

simulator, but will be apparent on the actual hardware. [5]

2.4 DC Motor

 A common actuator in control systems is the DC motor. It directly

provides rotary motion and, coupled with wheels or drums and cables,

7

can provide translational motion. The electric equivalent circuit of the

armature and the free body diagram of the rotor are shown in the

following figure.

Figure 2.3: DC motor circuit

For this example, we will assume that the input of the system is the

voltage source (V) applied to the motor's armature, while the output is the

rotational speed of the shaft d(theta)/dt. The rotor and shaft are assumed

to be rigid. We further assume a viscous friction model, that is, the

friction torque is proportional to shaft angular velocity.

In general, the torque generated by a DC motor is proportional to the

armature current and the strength of the magnetic field. In this example

we will assume that the magnetic field is constant and, therefore, that the

motor torque is proportional to only the armature current i by a constant

factor Kt as shown in the equation below. This is referred to as an

armature-controlled motor.

8

𝑇 = 𝐾𝑡𝑖 (2.1)

The back emf, e, is proportional to the angular velocity of the shaft by a

constant factor Ke.

𝑒 = 𝐾𝑒𝜃̇ (2.2)

In SI units, the motor torque and back emf constants are equal, that is, Kt

= Ke; therefore, we will use K to represent both the motor torque constant

and the back emf constant. [6]

2.5 Proportional Integral Derivative Controller

A Proportional Integral Derivative (PID) controller is a control

loop feedback mechanism (controller) widely used in industrial

control systems. A PID controller calculates an error value as the

difference between a measured process variable and a desired set

point. The controller attempts to minimize the error by adjusting

the process through use of a manipulated variable.

The PID controller algorithm involves three separate

constant parameters as shown is Figure 2.6 and is accordingly

sometimes called three-term control: the proportional, the integral

and derivative values, denoted P, I, and D. Simply put, these values

can be interpreted in terms of time: P depends on the present error,

I on the accumulation of past errors, and D is a prediction of future

9

errors, based on current rate of change. The weighted sum of these

three actions is used to adjust the process via a control element such

as the position of a control valve, a damper, or the power supplied

to a heating element, Table 2.1 shows the effect of increasing a

parameter independently.

Figure 2.4: proportional integral derivative controller

2.5.1 Effects of proportional, integral and derivative action

Proportional control response for system with transfer function of

P(s)

=1/(s+1)³ is illustrated in Figure 2.5 with Ti =∞ and Td=0. The

figure shows that there is always a steady state error in proportional

control. The error will decrease with increasing gain, but the

tendency towards oscillation will also increase.

Figure 2.6 illustrates the effects of adding integral to system

with transfer function of P(s) =1/(s+1)³. It follows that the strength

of integral action increases with decreasing integral time Ti. The

10

figure shows that the steady state error disappears when integral

action is used. The tendency for oscillation also increases with

decreasing Ti.

Figure 2.5: Response of the system with proportional control

Figure 2.6: Response of the system with proportional and integral

control

11

Table 2.1: Effects of increasing a parameter independently

Parameter Rise time Overshoot Settling time Steady-state

KP Decrease Increase Small change Decrease

KI Decrease Increase Increase Eliminate

KD No change Decrease Decrease Small effect

2.5.2 Proportional controller

The Proportional term produces an output value that is

proportional to the current error value. The proportional response

can be adjusted by multiplying the error by a constant Kp called the

proportional gain constant.

The proportional term is given by:

 P=Kp(e(t)) (2.3)

A high proportional gain results in a large change in the output for

a given change in the error. If the proportional gain is too high, the

system can become unstable. In contrast, a small gain results in a

small output response to a large input error, and a less responsive

or less sensitive controller. If the proportional gain is too low, the

control action may be too small when responding to system

disturbances. Tuning theory and industrial practice indicate that the

proportional term should contribute the bulk of the output change.

12

2.5.3 Proportional integral controller

The main function of the integral action is to make sure that

the process output agrees with the set point in steady state. With

Proportional control, there is normally a control error in steady

state. With integral action, small positive error will always lead to

an increasing signal, and a negative error will give a decreasing

control signal no matter how small the error is.

 PI= Kp (e (t)) +Ki∫ (𝑡) (2.4)

2.5.4 Proportional derivative controller

 The purpose of the derivative action is to improve the close-

loop stability. Because of the process dynamics, it will take some

time before a change in the control variable is noticeable in the

progress output. Thus, the control system will be late in correction

for an error. The action of a controller with proportional and

derivative may be interpreted as if the control is made proportional

to the predicted process output, where the prediction is made by

extrapolating the error by the tangent to the error curve.

 PD=Kp (2.5)

13

2.5.5 Proportional integral derivative controller:

The PID controller has three terms. The proportional term

(P) corresponds to proportional control. The integral term (I) give

a control action that is proportional to the time integral of the zero.

The derivative term (D) is proportional to the time derivative of the

control error. This term allows prediction of the future error. There

are many variations of the PID algorithm that will substantially

improve its performance and operability. Those variations are

discussed in the next section [8].

PID (t) = Kp (2.6)

By taking Laplace transform (PID) controller transfer function become:

 C(S)= (2.7)

2.5.6 Tuning of proportional integral derivative controller

The process of selecting the controller parameters to meet given

performance specifications is known as controller tuning. There are

several methods for tuning a PID loop. The most effective methods

generally involve the development of some form of process model, and

then choosing P, I, and D based on the dynamic model parameters

In particular, when the mathematical model of the plant is unknown

and therefore analytical design methods cannot be used, PID controls

14

prove to be most useful. In the field of process control systems, it is

well known that the basic and modified PID control schemes have

proved their usefulness in providing satisfactory control, although in

many given situations they may not provide optimal control.

If a mathematical model of the plant can be derived, then it is possible

to apply various design techniques for determining parameters of

the controller that will meet the transient and steady-state

specifications of the closed loop system. However, if the plant is so

complicated that its mathematical model cannot be easily obtained, then

an analytical or computational approach to the design of a PID

controller is not possible. Then we must resort to experimental

approaches to the tuning of PID controllers [7].

15

CHAPTER THREE

SYSTEM MODELING

3.1 System Model

For mobile, autonomous robots the ability to function in and

interact with a dynamic, changing environment is of key importance.

As such, they fall under a class of reactive, mobile systems where

environmental changes trigger changes in what objectives the control

system must meet. The standard way of structuring the control system

in order to deal with this problem is within a multi-modal control

framework sometimes referred to in the robotics literature as the

behavior-based robotics frame work. The main idea is to identify

different controllers, responses to sensory inputs, with desired robot

behaviors. This way of structuring the control system into separate

behaviors, dedicated to performing certain tasks, has gain significant

momentum within the robotics community. This momentum stems from

the fact that a modular design both simplifies the design process and

also makes it possible to add new behaviors to the system without

causing any major increase in complexity.

Once a collection of behaviors has been designed, different

options present themselves at the supervisory level. For instance, one

can let different behaviors run concurrently in the sense that they all can

have an effect on the low-level motor commands according to some

coordination rule. This construction with concurrent behaviors makes it

relatively straightforward to stress robustness issues explicitly, since,

16

for example, an “avoidance behavior” can just be given a higher priority

or weight than a “reach target behavior.” However, as multiple

behaviors are allowed to affect the system simultaneously, a number of

theoretical as well as practical issues present themselves [3].

3.2 Dynamical Model

 The system model is derived from the unicycle model to

differential model since the unicycle model is easy to deal with.

3.2.1 Differential model

𝑥 =
𝑅

2
(vr+vl)cos∅ (3.1)

𝑦 =
𝑅

2
(vr+vl)sin∅ (3.2)

∅ =
𝑅

𝑙
 (vr-vl) (3.3)

Where () the position in the x-axis, (y) the position in the y-axis,

(R) the radius of the wheel, () the distance between the two wheel, (𝑣𝑟)

the angular velocity of the right motor, (𝑣𝑙) the angular velocity of the

left motor and (ø) the orientation of the robot.

3.2.2 Unicycle model

𝑥 = 𝑣cos(ø) (3.4)

𝑦 = 𝑣 sin(ø) (3.5)

ø = 𝑤 (3.6)

17

Where () is the linear velocity of the robot and is the angular velocity

of the robot. By substituting the Unicycle model in the Differential Wheel

Mobile Robot we get

 (3.7)

 (3.8)

 Thus the system model in state space for both unicycle and the

differential wheel respectively are

3.3 Behaviors

If we let the autonomous robot be modeled at the kinematic level as a

unicycle as stated in equations (3.4), (3.5) and (3.6). where (x,y) denotes

the position of the robot, and φ denotes its orientation, a behavior is

characterized by the way sensory data is mapped to the control inputs v

and ω, corresponding to translational and angular velocities, respectively.

Now, relative to this robot model, a straightforward way of specifying the

effect of individual behaviors is to let the behavior define a vector

 (3.9)

18

Where 𝑟𝐵is the magnitude of the behavior vector, and ø𝐵is its

orientation. This vector formalism allows us to map behavior vectors to

control values using some appropriate map (𝐵) = (v,ω)T. For example,

one can let

 (3.10)

Here, the translational velocity achieves its nominal value v0 > 0

when the magnitude of the behavior vector is small, but is reduced as

this magnitude grows. Furthermore, the angular velocity is simply given

by a proportional error feedback law, with C > 0 being the gain. Note

that it is also quite standard to let the gain vary as a function of 𝑟𝐵.

Now, if we are given b1 and b2, i.e., two vectors corresponding to two

different behaviors, they can be combined directly using a vector addition

operation b1 +b2in order to produce a new behavior, and this semi group

property is why the vector notation is particularly appealing. Here the

coordination mechanism is thus explicitly given. Moreover, the

magnitude of the behavior vector, rb is what determines how much

weight that particular behavior is given in the summation. As we will see

in the next few paragraphs, avoidance behaviors should increase in

magnitude, typically according to an inverse square law, as the robot

draws closer to the obstacles.

To make matters more concrete, let us in consider an obstacle-avoidance

behavior denoted OA in what follows in some detail. Most mobile robots

are equipped with a collection of k range sensors, such as ultrasonic

19

sonars or infrared sensors, and a standard sonar ring typically consists of

8 or 16 sensors. Each of these sensors measures the distance to the closest

obstacle along a particular, fixed relative orientation we let dj denote the

distance to the closest obstacle detected by sensor j, and we let ø𝑗 be the

corresponding angle. We can then define the obstacle avoidance

behavior,, through the vector summation

 𝐵𝑂𝐴 = 𝐵𝑂𝐴1+𝐵𝑂𝐴, 2+ . . . + 𝐵𝑂𝐴, 𝑘 (3.11)

 (3.12)

 ø𝐵𝑂𝐴,=𝜋 + ø𝑗 (3.13)

Where 𝐶𝑜𝑎> 0, and D is the safety distance at which the obstacle-

avoidance behavior starts affecting the system .In a similar manner, we

can define an

“Approach target behavior”𝑏𝑎𝑡, as

𝑟𝐵𝐴𝑇=𝑐𝑎𝑡

(3.14) ø𝐵𝐴𝑇=arctan((yg−y)/(xg−x))

(3.15) Where 𝐶𝐴𝑇> 0 is the constant magnitude, and the goal

is located at (xg, yg) [3].

3.4 Regularizations

 However, it may not always be desirable to let different behaviors

affect the system simultaneously, even though such an approach results

both in notational convenience as well as an intuitively appealing

mechanism for combining multiple control objectives. Unfortunately,

such an approach ruins the modularity that comes with a switched control

strategy in the sense that if a new behavior is introduced, its impact on

20

the system is almost impossible to characterize analytically. This lack of

analytical characterization tools is one of the main reasons why emergent

behaviors, i.e., unpredictable global behaviors obtained through local

rules, have received Considerable attention in the literature. Moreover, if

an obstacle-avoidance behavior has been designed so that the robot is

guaranteed not to hit static obstacles, by combining this behavior with

other behaviors, this guarantee no longer holds.

 A remedy to this problem is to let the control system switch

between different behaviors. Unfortunately, such an approach may have

a negative impact on the performance of the system since it increases the

risk of introducing chattering into the system. Chattering is a

phenomenon that occurs when two vector fields, corresponding to two

different behaviors, both point in toward the switching surface that

dictates when the robot should switch between the behaviors. In other

words, if we switch from mode 1, where𝑥 c= f1(x), to mode 2, where 𝑥 =

f2(x), when x leaves the region g(x) <0, where g is a smooth map from Rn

to R, then chattering occurs if

 (3.16)

On the boundary (x) = 0.

The standard way out of this problem is to regularize the system so that

sliding is allowed to occur. For example, assume that we have access to

instantaneous heading control in our control laws. When an obstacle is

closer to the robot than D, the obstacle-avoidance behavior is active.

Since the repulsive potential field from that behavior will be orthogonal

21

to the surface on which the behavior becomes active, the sliding solution

is given by

 𝐵𝑆= α𝐵𝑂𝐴+ (1 − α) (3.17)

For some α [0,1] such that 𝐵𝑆⊥𝐵𝑂𝐴.

Some results from applying this regularization approach to the chattering

problem are shown in Fig. 2, where Figure 3.1 shows a situation when

vector summation is used. Figure 3.2 corresponds to switches between

the behaviors, and it is clear that a chattering-like behavior is produced.

In Figure 3.3 the regularized solution is shown. Even though we only

have one behavior active at a time, the performance is clearly satisfactory

in that case.

By incorporating this type of information about the different behaviors,

it is possible to generate the sliding modes automatically. It furthermore

suggests that this method would scale when more than two behaviors

affect the motion of the robot, as long as an automatic procedure for

designing the sliding solutions can be identified. Hence we assume

throughout the remainder of this chapter that only one behavior affects

the robot at each time instant, and that, when appropriate, a sliding mode

may be induced from the system dynamics.

Figure 3.1: Combined behaviors using vector summation

22

Figure 3.2: Switches between the different behaviors

Figure 3.3: A regularize solution

3.5 Wheel Encoders

 dc=
𝑑𝑟+𝑑𝑙

2
 (3.18)

 𝑥 =́𝑥 + 𝑑𝑐 cos (ø) (3.19)

 𝑦 =́𝑦 + 𝑑𝑐 sin (ø) (3.20)

 (3.21)

 Δtick =𝑡𝑖𝑐𝑘′ − 𝑡𝑖𝑐𝑘 (3.22)

 d=2πR
Δtick

𝑛
 (3.23)

23

Where (dc) is the arc moved by the robot, (𝑑𝑟) the arc moved by the

right wheel, (𝑑𝑙) the arc moved by the left wheel, (𝑡𝑖𝑐𝑘′) the total

number of encoder ticks and (𝑡𝑖𝑐𝑘) the previous number of ticks and n

is the number of ticks per revolutions.

24

CHAPTER FOUR

SYSTEM DESIGN AND HARDWARE

PARTS

4.1 The Sim.I.am Simulator

This simulator program was developed by GORGIA INSTITUTE OF

TECHNOLOGY to perform the following tasks

• Understanding the robot (to process the information from the

robot.

• Transformation from unicycle to differential drive dynamics.

• Odometry, such that as the robot moves around, its pose is

estimated based on how far each of the wheels have turned.

• Implementing the PID controller by implementing the different

parts of a PID regulator that steers the robot successfully to

some goal location.

This is known as the go-to-goal behavior.

• Ensuring the right angular velocity by tackling the first of two

limitations of the motors on the “QuickBot”. The first limitation

is that the robot’s motors have a maximum angular velocity,

and the second limitation is that the motors stall at low speeds.

• To generate Avoid Obstacles by implementing the different

parts of a controller that steers the robot successfully away from

obstacles to avoid a collision. This is known as the avoid-

obstacles behavior.

25

• Mixing go-to-goal and avoid-obstacle controllers and testing

two arbitration mechanisms: blending and hard switches.

Arbitration between the two controllers will allow the robot to

drive to a goal, while not colliding with any obstacles on the

way.

• To realize wall following behavior (whether the obstacle on the

left or right is followed).

This simulation software with generated controllers can be efficiently

used for controlling the real “QuickBot” to make it full autonomous.

This dependence is not known a priori, as it depends on the motors, the

wheels and the surface. To be able to control your robot reliably, you

have to measure this dependence and put into code. On this way, it is

possible by combining the go-to-goal, avoid obstacles, and follow-wall

controllers into a full navigation system for the robot. The robot will be

able to navigate around a cluttered, complex environment without

colliding with any obstacles and reaching the goal location

successfully. [5]

26

 Figure 4.1: Sim.i.am graphical user interface

4.2 System Design

 The system model was represented in the state space forum hence,

the design will be carry out in the state space forum.

Parameters design and simulation results

 The method used for designing the PID controller for the system is

the manual tuning at first the proportional part value increased till a first

oscillation was observed in the response and then the derivative part is

increased from zero till the transient response characteristic were

optimized and finally the integral part implemented to reduce the steady

state error.

The adjustment of the different parts of the PID controller will be

adjusted in the avoid obstacle and go to goal blended in one controller

stored at the file AOandGTG.m.

27

• First attempt

 The proportional part is set at 1 the derivative and integral both set

at zero. In the following figures the green line indicate the desired

response and the blue line indicates the response of the robot based on

the simulator.

 Figure 4.2: Robot response with Kp =1, Ki =0, Kd =0

Where green line indicate to current angular velocity (w) and blue line

indicate to estimated angular velocity (w)

The system response is very slow and the desired angular velocity

was not achieved accurately.

• Second attempt

By increasing the proportional kp=2 and set both integral derivative

controllers at zero

28

Kp=2, ki=0, kd=0

 Figure 4.3: Robot response with Kp =2, Ki =0, Kd =0

• Third attempt

 By more increasing in the proportional constant and small tunning

in both integral and derivative constants we have found that the most

optimal values for these parameters is as follows

Kp = 5, Ki = 0.01, Kd = 0.01

The following curves show the best results for the controller which were

tested in the simulator.

29

Figure 4.4: Robot response with Kp =5, Ki =0.01, Kd=0.01

4.3 System Hardware Parts

 The system hardware structure consist of the following parts:

4.3.1 Beagle Bone Black

The Beaglebone Black is a low power open source hardware single board

computer produced by (Texas Instruments) in association with (Digi-Key) and

(Newark element14).The Beaglebone Black was also designed with open source

software with the following features:

30

 Processor

 AM335x 1GHz ARM® Cortex-A8.

 512MB DDR3 RAM.

 4GB 8-bit eMMC on-board flash storage.

 3D graphics accelerator.

 NEON floating-point accelerator.

 2x PRU 32-bit microcontrollers.

 Connectivity

 USB client for power & communications.

 USB host.

 Ethernet.

 HDMI.

 2x 46 pin headers.

 Software compatibility

 Debian.

 Android.

 Ubuntu.

 Cloud9 IDE on Node.js w/ BoneScript library.

 Power supply

 5-volt, 2-ampere power supply source.

31

 Figure 4.5: Beagle bone black

4.3.2 IR sensor

 An infrared sensor (PIR sensor) is an electronic sensor that measures

infrared (IR) light radiating from objects in its field of view and it has

measuring distance between zero and 0.2 meter.

32

 Figure 4.6: IR infrared sensor

4.3.3 Wheel encoder

 The encoder is a sensor attached to a rotating object (such as a

wheel or motor) to measure rotation. These pulses can be used as part of

a feedback control system to determine translation distance, rotational

velocity, and/or angle of a moving robot or robot part.

 Figure 4.7: Wheel encoder

4.3.4 DC motor

 Features:

 Suggested Voltage: 4.5VDC

 No Load Speed: 140RPM

 No Load Current: 190mA

 Max. Load Current: 250mA

 Torque: 800 gf-cm

33

 Figure 4.8: DC motor

4.3.5 Motor driver

 The (SN754410) is a quadruple high-current half-H driver designed

to provide bidirectional drive currents up to 1 A at voltages from 4.5 V to

36 V.

The device is designed to drive inductive loads such as relays, solenoids,

dc and bipolar stepping motors, as well as other high-current/high-voltage

loads in positive-supply applications.

Figure 4.9: Motor driver

34

4.3.6 Wi-Fi antenna

 The Beagle Bone black uses a 4-inch-(2.7 x 1.3 x 1.3 cm) dimension

compatible antenna.

 Figure 4.10: 4-Inch antenna

4.3.7 Mechanical parts

 Micro Magician Robot Chassis Kit with (4) screws, brackets, and stands.

 Two (32.5) mm Radius wheels with (99.5) mm distance between the two

wheels.

 One holder wheel for balancing purposes.

35

Figure 4.11: Chassis and wheels

4.3.8 Basic requirements

 One mini-size breadboard.

 One half-size breadboard.

 Two battery holders.

 Heat sink.

 On-off switch.

 Jumper wires.

 Resistors.

 Capacitor.

 Diodes.

 (8) Rechargeable batteries.

 Ld1085v50 regulator.

36

Figure 4.12: Electrical and electronic connections

Figure 4.13: QuickBot

37

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

 A mathematical model of the differential wheel mobile robot

system was developed by using physical laws. A simplified

mathematical model was derived by system parameters. The controller

parameters values (Kp, Ki and Kd) were obtained by using manual

tuning method from simulation model so as to perform best system

response. From experimental results, it is found that the best controller

parameters which gave the best response of the system are Kp= 5,

Ki=0.01 and Kd= 0.01. The accuracy of the system is tested adjusting

the angular velocity of the differential wheel mobile robot.

5.2 Recommendations

1- It is recommended that controlling the system using the machine

learning method and the artificial intelligence method.

2- Study the response of the other common used digital controller e.g

Beaglebone Black, Raspberry pi and Arduino and compare the

response of the system with each one of them.

 3-Prove the Beaglebone Black code to get a real time results of the system

and compare it to the simulation results.

38

REFERENCES

[1] Rohan Munasinghe, “Classical control systems”, ISBN 978-81-8487-

1944.

[2] Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza,

“Introduction to Autonomous Mobile Robots”,ISBN 978-0-262-01535-6

[3] Magnus Egerstedt, “Control of Autonomous Mobile Robots”, School

of Electrical Engineering, Georgia Institute of Technology, Atlanta,

GA30332, U.S.A”

[4] Dhaouadi R, Hatab AA (2013),“Dynamic Modelling of Differential-

Drive Mobile Robots using Lagrange and Newton-Euler

Methodologies: A Unified Framework”. Adv Robot Autom 2: 107.

doi: 10.4172/2168-9695.1000109.

[5] ZelijkoDespotovic, AleksanderCosic, BrankoMiloradovic,

“QuickBot as Educational and Research Platform for Multi Mobile

Robotic Systems”, 2015.

 [6] Bill Messner and Dawn Tilbury,“Control Tutorials for matlab and

Simulink”, University of Michigan By,9781491905395.

[7]K.Ogata, “Modern control engineering”. Englewood Cliffs, N.J.:

PrenticeHall, 1970.

39

 APPENDIX A

MATLAB m.file of the AOandGTG controller

classdefAOandGTG<simiam.controller.Controller

% Copyright (C) 2013, Georgia Tech Research

Corporation

% see the LICENSE file included with this software

prop

erti

es

% memory banks

E_k

e_k_1

% gains

Kp

 Ki

Kd

% plot support

p

40

% sensor

geometry

calibrated

sensor_placem

ent end

properties (Constant)

inputs = struct('x_g', 0, 'y_g', 0,

'v', 0); outputs = struct('v', 0, 'w',

0) end

m

e

t

h

o

d

s

functionobj = AOandGTG() obj =

obj@simiam.controller.Controller('ao_and_gtg');

obj.calibrated = false;

obj.K

p =

5;

obj.K

41

i =

0.01;

obj.K

d =

0.01;

 obj.E_k = 0;

obj.e_k_1 = 0;

% obj.p =

simiam.util.Plotter(); end

function outputs = execute(obj, robot,

state_estimate, inputs, dt)

% Compute the placement of the

sensors if(~obj.calibrated)

obj.set_sensor_geometry(robot);

end

% Unpack state estimate

 [x, y, theta] =

state_estimate.unpack();

% Poll the current IR sensor values 1-9

ir_distances = robot.get_ir_distances();

nSensors = numel(ir_distances);

42

% Interpret the IR sensor measurements

geometrically ir_distances_wf =

obj.apply_sensor_geometry(ir_distances,

state_estimate);

% 1. Compute the heading vector for obstacle

avoidance

% sensor_gains = [1 1 0.5

1 1]; if (nSensors == 5) % QuickBot

sensor_gains = [1 1 0.5 1 1]; elseif

(nSensors == 9)

% Khepera3

sensor_gains =

ones(1,nSensors); end

u_i = (ir_distances_wf-

repmat([x;y],1,nSensors))*diag(sensor_gains

); u_ao = sum(u_i,2);

% 2. Compute the heading vector for go-

to-goal x_g = inputs.x_g; y_g =

inputs.y_g; u_gtg = [x_g-x; y_g-y];

% 3. Blend the two

vectors alpha = 0.25;

u_ao_gtg = alpha*u_gtg+(1-alpha)*u_ao;

43

% 4. Compute the heading and error for the PID

controller

theta_ao_gtg = atan2(u_ao_gtg(2),u_ao_gtg(1));

e_k = theta_ao_gtg-theta;

e_k =

atan2(sin(e_k),cos(e_k));

 e_P = e_k; e_I =

obj.E_k + e_k*dt;

e_D = (e_k-

obj.e_k_1)/dt;

% PID control on w

v = inputs.v;

 w = obj.Kp*e_P + obj.Ki*e_I +

obj.Kd*e_D;

% Save errors for next

time step obj.E_k = e_I;

obj.e_k_1 = e_k;

% plot

 obj.p.plot_2d_ref(dt, theta,

theta_ao_gtg, 'c');

44

% fprintf('(v,w) = (%0.4g,%0.4g)\n',

v,w);

 v =

0.25/(log(abs(w)+2)+1);

outputs.

v = v;

outputs.

w = w;

end

% Helper functions

functionir_distances_wf =

apply_sensor_geometry(obj, ir_distances,

state_estimate)

% 1. Apply the transformation to robot frame.

nSensors = numel(ir_distances);

ir_distances_rf =

zeros(3,nSensors);

fori=1:nSensors x_s =

obj.sensor_placement(1,i); y_s

= obj.sensor_placement(2,i);

theta_s =

obj.sensor_placement(3,i);

45

 R =

obj.get_transformation_matrix(x_s,y_s,theta_s)

; ir_distances_rf(:,i) = R*[ir_distances(i); 0;

1]; end

% 2. Apply the transformation to world frame.

 [x,y,theta] = state_estimate.unpack();

 R =

obj.get_transformation_matrix(x,y,theta);

ir_distances_wf = R*ir_distances_rf;

ir_distances_wf =

ir_distances_wf(1:2,:); end

functionset_sensor_geometry(obj, robot)

nSensors = numel(robot.ir_array);

obj.sensor_placement = zeros(3,nSensors);

fori=1:nSensors

 [x, y, theta] =

robot.ir_array(i).location.unpack();

obj.sensor_placement(:,i) = [x; y;

theta]; end

obj.calibrated =

true; end

46

function R = get_transformation_matrix(obj, x, y,

theta)

 R = [cos(theta) -sin(theta) x;

sin(theta) cos(theta) y; 0 0 1]; end

 function

reset(obj)

% Reset accumulated and previous

error obj.E_k = 0;

obj.e_k_1 = 0; end end end

47

APPENDIX B

MATLAB m.file of the supervisor

classdef Supervisor < handle

%% SUPERVISOR switches between controllers and

handles their inputs/outputs.

%

% Properties:

% current_controller - Currently selected

controller

% controllers - List of available

controllers

% goal_points - Set of goal

points % goal_index - Pointer to

current goal point

% v - Robot velocity

%

% Methods:

% execute - Selects and executes the current

controller.

 properties

%%

PROPERTIES

current_con

troller%

Currently

48

selected

controller

controllers

% List of

available

controllers

robot% The

robot

state_estimate% Current estimate of the robot's

state end

 methods

%%

METHODS

 functionobj =

Supervisor()

 %% SUPERVISOR Constructor

% initialize the controllers

obj.controllers{1} =

simiam.controller.Controller('default');

% set the initial controller

obj.current_controller = obj.controllers{1};

obj.robot = []; obj.state_estimate =

simiam.ui.Pose2D(1,2,1.54); end

49

functionattach_robot(obj, robot, pose)

obj.robot = robot;

 [x, y, theta] =

pose.unpack();

obj.state_estimate.set_pose([x, y,

theta]); end

 function

execute(obj, dt)

 %% EXECUTE Selects and executes the

current controller.

% execute(obj, dt) will select a controller from

the list of

% available controllers and execute it.

%

% See also

controller/execute end

end end

