الآية

بسم الله الرحمن الرحيم

قال تعالى : ((قَتعلَى اللهُ الْمَلِكُ الْحَقُّ وَلا تَعْجَلْ بِ الْقُرْآن مِنْ قَبْل أَنْ يُقضى إِلْاَيْكَ وَحْيُهُ وَقُلْ رَبِّ زِدْنِي عِلْماً))

صدق الله العظيم

طه (114)

DEDICATION

To our parents, and anyone who lived his whole life as an unknown engineer.

Acknowledgement

First of all, I would like to express our gratitude and sincere thanks to our respected FacultyAssistant's.GALAL ABDU ALRAHMAN MOHAMMED for his professional guidance, advice, motivation, endurance andencouragements during his supervision period. The present work would have never beenpossible without his vital supports and valuable assistance. Then I would like to thank all my friends whose tips and views were useful indeed and thenthanks to the other faculty members and staff of the school of Electrical andNuclear Engineering for their extreme help throughout our courses of study.

ABSTRACT

The project is designed to control AC power to the load by using firing angle control of thyristor. Efficiency of such power control is very high compared to any other method.

The project uses zero crossing point of the waveform which is detected by a comparator whose output is then fed to the microcontroller.

The microcontroller provides required delayed triggering control to a pair of SCRs through opts isolator interface. Finally the power is applied to the load through SCRs in series. This project uses a microcontroller pic 16f73 which is interfaced through a push button switch for increasing or decreasing the AC power to the load.

المستخلص

يهدف هذا المشروع الى التحكم على التيار المتردد عن طريق زاوية اشعال الثايرستور حيث تعتبر هذه الطريقة من أكثر طرق التحكم كفاءة مقارنة مع الطرق الأخرى. يتم تنفيذ المشروع عبر تغذية المتحكم الدقيق الذي يوفر الاشعال لزوج من الثايروستر من خلال عوازل الخرج حيث يتم تغذية الحمل عن طريق الثايرستور بالتوالي. استخدم متحكم دقيق من النوع(pic 16f73) الذي يتم ربطه بمفاتيح تحكم لزيادة او تقليل تيار الحمل.

TABLE OF CONTENTS

TITLE	Page
الاية	i
DEDICATION	ii
ACKNOWLEDGEMENT	iii
ABASTRACT	iv
المستخلص	V
TABLE OF CONTENTS	vi
LIST OF FIGURES	viii
LIST OF SYMBOLES	X
LIST OF ABBREVATION	xi
CHAPTER ONE	1
INTRODUCTION	
1.1 Background	1
1.2 Problem Statement	1
1.3 Objectives	1
1.4 Methodology	2
1.5 Layout	2
CHAPTER TWO	
GENERAL CONCEPTS	
2.1 Introduction	3
2.2 Electric Motors	3
2.2.1Operation	4
2.2.2 Types of motor	4
2.2.3 Induction Motor	4
2.3.1Construction	5
2.3.2Principle operation of 3-Phase induction motor	8
2.3.3Equivalent Circuit	9
2.3.4Slip	11

2.4 Control	12
2.4.1 Starting and speed control methods	15
2.5 Thyristors	16
2.5.1 Basic structure and operation	16
2.5.2 Static characteristics	17
2.5.3 Dynamic switching characteristics	19
2.6 Microcontroller	19
CHAPTER THREE DESIGN OF CIRCUIT	
3.1 Introduction	24
3.2Microcontroller (16F73)	25
3.3Regulated Power Supply	27
3.4Crystal Oscillator	28
3.5Reset Button	30
3.6Ligth Emitting Diode(LED) Indicator	30
3.7Zero Crossing Detector	32
3.8TRIAC	34
CHAPTER FOUR IMPELEMENTATION OF CIRCUIT	
4.1 Introduction	40
4.2 Simulation Matlab	40
4.3 Software Program microcontroller	43
4.4 Operation	44
CHAPTER FIVE CONCLUSION AND RECOMMENDATIONS	
5.1 Conclusion	45
5.2 Recommendations	45
REFERENCES	46
APPENDIX	47

LIST OF FIGURES

Figure	Title	Page
2.1	Squirrel Cage Three Phase Induction Motor	5
2.2	Stator	6
2.3	Squirrel Cage Type Rotor	7
2.4	Per Phase Equivalent Circuit of Induction Motor	9
2.5	Approximate Per Phase Equivalent Circuit of IM	10
2.6	Simple section ofthyristor	16
2.7	Two-transistor behavioral model of a thyristor.	17
2.8	Static characteristic of thyristors	18
2.9	block diagram of microcontroller	20
2.10	the components of microcontroller	23
3.1	Micro controller (16F73)	26
3.2	block diagram of pic (16f73)	26
3.3	The basic circuit diagram of a regulated power supply	27
3.4	Block diagram of regulated power supply	28
3.5	Electronic Symbol for Piezoelectric Crystal Resonator	29
3.6	Crystal oscillator	30
3.7	Reset Button	30
3.8	Electrical symbol &polarities of LED	31
3.9	Parts of a LED	32
3.10	Zero-crossing in a waveform representing voltage vs.	33
	Time	
3.11	Diagram of zero crossing diode for project	34
3.12	Schematic symbol	35
3.13	Basic structure	36
3.14	Electrical equivalent circuit	36
3.15	Circuit diagram of TRIAC	38
3.16	The block diagram of components	39

4.1	Simulink modeling	41
4.2	The stator current	41
4.3	Rotor speed	42
4.4	The stator current	42
4.5	The rotor speed	43
4.6	Diagram of the circuit	44

LIST OF SYMBOLS

Ns	Synchronous speed
F	Frequency
P	Number of poles
Rs	Stator resistance
Rr	Rotor resistance
Lsl	Stator inductance
Lrl	Rotor inductance
Lm	Magnetic inductance
Rm	Copper losses resistance
Im	Magnetic part current
Vs	Voltage source
Is	Input current
Pg	Air gap power
P _{CUs}	Stator copper losses
Piron	Core loss
P _{lr}	Rotor copper losses
Vm	Magnetic part voltage
Po	Output power
Pin	Input power
Te	Development torque
ω_{m}	Rotor angular speed
S	Slip
ω _e	Synchronous angular speed
$\Psi_{\rm m}$	Air gap flux
ω_{sl}	Synchronous angular speed
N _r	Rotor speed

LIST OF ABBREVATION

AC	Alternating Current
DC	Direct Current
V	Volt
Ι	Ampere
HZ	Hertz
LED	Light Emitting Diode
ZCD	Zero Crossing Diode
PMDC	Permanent Magnet Direct Current
SCR	Silicon Controlled Rectifier
GTO	Gate Turn-Off thyristor