قال تعالى:

﴿ وَهُلِ اعْمَلُوا هَسَيَرَى اللَّهُ عَمَلَكُمْ وَرَسُولُهُ وَالْمُؤْمِنُونَ وَمَسُولُهُ وَالْمُؤْمِنُونَ وَسَرُرَكُ وَالشَّمَا حَةِ هَيُنَدِّبُونَ إِلَى عَالِمِ الْغَيْدِ وَالشَّمَا حَةِ هَيُنَدِّبُونَ إِلَى عَالِمِ الْغَيْدِ وَالشَّمَا حَةِ هَيُنَدِّبُونَ اللَّهُ عَمُلُونَ ﴾

تَعْمَلُونَ ﴾

صدق الله العظيم التمرية – الآية (105)

DEDICATION

To

Endless love

Our mothers

To

Man who teach me to be man

Our fathers

To

Our teacher & our colleagues

AKNOWLEDGMENT

First, we need to thank fully our god (Allah) that without his blessing this work will not complete.

Then all thank for our supervisor Ust Galal Abd alrahman to his patience with us and countless hours and valuable efforts to guide and advise us to complete the work in his fair way.

Lastly we need to thank our teachers in electrical and nuclear engineering school to their efforts in helping and support.

Abstract

The objective of this research is how to simulation connect a solar photovoltaic power plant to the grid. synchronization between photovoltaic power plant and the grid was maintaining by using three phase inverter to convert dc current produced from the solar modules to Ac current similar to grid utility in voltage and phase sequence

المستخلص

الهدفمنهذاالبحثهومحاكاةكيفيةتوصيلطاقةالخلاياالشمسيةللشبكة، يتمحفظالتز امنبينطاقة الخلاياالشمسية وال شبكة

باستخداممبد لالطاقة ثلاثيا لاطوار لتحويلالتيار المباشر الناتجمنا لخلايا الشمسية اليتيار متر ددمشا بهللشبكة فيالت رددوالجهدوز اوية الوجه.

TABLE OF CONTENTS

TITLE				
الاية				
DEDIC	DEDICATION			
ACKNOWLEDGEMENT				
ABASTRACT				
مستخلص				
TABLE OF CONTENTS				
LIST OF FIGURES				
LIST (LIST OF TABLES			
LIST (LIST OF SYMBOLES			
LIST (DFABBREVIATION	XII		
CHAPTER ONE				
INTRODUCTION				
1.1	Problem Statement	1		
1.2	Objectives	1		
1.3	Methodology	1		
1.4	Project Layout	2		
CHAPTER TWO				
BACKGROUND REVIEW				
2.1	Solar Power System	3		
2.2	Grid	7		
2.3	Control	9		
2.3.1	Frequency control	11		
2.4	DC/DC Converter	12		
2.5	DC/AC Converter	14		
	CHAPTER THREE			
PHOTOVOLTIC SOLAR POWER SYSTEM				
3.1	PV Panels	18		
3.1.1	Module and Array	20		
3.1.2	Peak Power Operation	20		

3.1.3	The Array Holder	21		
3.2	Power Inverter	21		
3.3	Charge Controller	24		
3.4	Battery Storage	29		
3.5	DC Power	31		
3.6	AC Power	32		
CHAPTER FOUR				
MODEL SIMULATION AND RESULTS				
4.1	MATLAB	33		
4.2	Model of PV Module	34		
4.3	Model DC/DC Power Converter	38		
4.4	Model DC/AC Power Inverter	39		
CHAPTER FIVE				
CONCLUSION AND RECOMMENDATIONS				
5.1	Conclusions	42		
5.2	Recommendations	42		
REFERENCES				

LIST OF FIGURES

Figure	Title	Page
2.1	Stand alone solar system	4
2.2	Grid connect solar syatem	6
2.3	Control of voltage	10
2.4	Circuit of DC/DC converter	12
2.5	Switched voltage wave form	13
2.6	Single phase bridge DC/AC inverter	15
2.7	Three phase inverter	17
3.1	Thin film mono crystalline multi crystaline	20
3.2	Three phase inverter	24
3.3	Front view of PV charge controller	26
3.4	Connect charge controller in solar system	29
4.1	Basic structure of grid connect PV system	33
4.2	Basic model of PV cell	35
4.3	SIMULINK circuit of PV cell	36
4.4	Relation between current and voltage	37
4.5	Relation between power and voltage	37
4.6	DC/DC converter	38
4.7	Output of DC/DC converter	39
4.8	DC/AC inverter	40
4.9	Output of DC/AC inverter	40