الآية يقول الله تعالى في كتابه الكريم: *(وَسَخَّرَلَكُمْ مَا فِي السَّمَاوَاتِ وَمَا فِي الْأَرْضِ جَمِيعًا مِنْهُ عَ إِنَّ فِي ذَٰلِكَ لَآيَاتٍ لِقَوْمٍ يَتَفَكَرُون) * الجاثية 13 ## **Dedication** "In response to those who say to stop dreaming and face reality, I say keep dreaming and make reality" "Every Challenging work needs self-effort as well as the guidance of those who come before you especially those who are close to you." In our humble efforts we dedicate this to our families, friends, co-worker's teachers and mentors to everyone who's involved in the making this paper appear. Thank you ## **ACKNOWLEDGEMENT** First and foremost, we praise and thank Allah for guiding us complete this work, we are also obliged to thank our research supervisors, **Dr.Awadallah Taifour Ali**, Without his assistance and dedicated involvement in every step throughout the process, this paper would have never been accomplished, we would like to thank you very much for your support and understanding over these past years. ### **ABSTRACT** This project presents a driverless metro train system, which is used in most of the developed countries. Driverless trains are equipped with a control system, which is programmed to make them follow a specific path. The metro train system door automatically opens and closes and if any obstacle appears in front of the train it will be detected. The train is programmed for a specific path between two stations. Warnings are automatically generated by a buzzer. A prototype of such metro train system implemented using Arduino Mega 2560. Simulation for the system's circuit is done with Proteus software. The hardware circuits are interfaced with sensors for automation purposes. The Language used for programming is Arduino C. #### المستخلص يقدم هذا المشروع نظام مقطورة بدون سائق ، والذي يستخدم في معظم الدول المتقدمة. تحتوي هذه المقطورة على نظام تحكم مبرمج للعمل في مسار محدد. يتم فتح وإغلاق أبواب المقطورة بصورة آلية. في حالة ظهور أي عائق في مسار العربة فإنها تتوقف بصورة آلية. تعمل هذه العربة في مسار محدد بين محطتين. يوجد صوت تنبيه في حالة وجود أي عوائق. النموذج المصغر لهذا النظام تم تطبيقه باستخدام متحكم من نوع Arduino Mega أستخدم برنامج Proteus لعمل محاكاة للدائرة الكهربية للنظام. أستخدمت أنواع مختلفة من المحسسات لأغراض التحكم. اللغة المستخدمة في البرمجة هي Arduino C. ## TABLE OF CONTENTS | | Page NO. | |--|----------| | الأية | i | | DEDICATION | ii | | ACKNOWLEDGEMENT | iii | | ABSTRACT | iv | | المستخلص | V | | TABLE OF CONTENTS | vi | | LIST OF FIGURES | viii | | LIST OF ABBREVIATIONS | xi | | CHAPTER ONE | | | INTRODUCTION | | | 1.1 General | 1 | | 1.2 Problem Statement | 1 | | 1.3 Research Objectives | 1 | | 1.4 Methodology | 2 | | 1.5 Project Layout | 2 | | CHAPTER TWO | | | THEORETICAL BACKGROUND | | | 2.1 Introduction | 3 | | 2.2 Automatic Control | 3 | | 2.3 A Brief History of Automatic Control | 4 | | 2.4 Arduino Controller | 5 | | 2.5 Railway System | 6 | | 2.5.1 History of Railway Evolution | 7 | | 2.5.2 Railway Electrification System | 7 | | | |---|-----|--|--| | 2.5.3 Railway Intelligent Transportation System | 8 | | | | CHAPTER THREE | | | | | SYSTEM'S HARDWARE AND SOFTWARE | | | | | 3.1 System Description | 10 | | | | 3.2 System Hardware 11 | | | | | 3.2.1 Arduino Mega 2560 11 | | | | | 3.2.2 Ultrasonic HC-SR04 | 12 | | | | 3.2.3 IR Sensor Module | 14 | | | | 3.2.4 L239D Motor Driver IC | 15 | | | | 3.2.5 LDR | 15 | | | | 3.2.6 5V co2 Laser Red pointer | 16 | | | | 3.2.7 Buzzer | 17 | | | | 3.3 System Software | 17 | | | | 3.3.1 System Code | 17 | | | | 3.3.2 system Simulation | 18 | | | | CHAPTER FOUR | | | | | SYSTEM IMPLEMENTATION | | | | | CHAPTER FIVE | | | | | CONCLUSION AND RECOMMENDI | ONS | | | | 5.1 Conclusion | 26 | | | | 5.2 Recommendations | 26 | | | | Appendix | 27 | | | | References | | | | ## LIST OF FIGURES | Figure NO. | | Page NO. | |------------|--|----------| | 3.1 | Automatic control of a railway system | 10 | | 3.2 | Arduino Mega 2560 | 12 | | 3.3 | HC-SR04 ultrasonic | 13 | | 3.4 | Operation of Ultrasonic | 13 | | 3.5 | IR sensor module | 14 | | 3.6 | IR indirect mode | 14 | | 3.7 | L239D Motor driver IC pins | 15 | | 3.8 | LDR Internal structure | 16 | | 3.9 | 5v co2 Laser Red Pointer | 16 | | 3.10 | Buzzer | 17 | | 3.11 | Flow chart of proposed system | 18 | | 3.12 | System Simulation | 19 | | 4.1 | The Arduino joined with the breadboard | 21 | | 4.2 | Plugging in the motor driver to the breadboard | 21 | | 4.3 | Plugging in the regulator to the breadboard | 21 | | 4.4 | connections between the motor driver and regulator | 22 | | 4.5 | the two ultrasonic connected to the Arduino Mega | 23 | | 4.6 | IR sensors connected to the Arduino | 23 | | 4.7 | Red laser pointer fabricated to the body | 24 | | 4.8 | Installation of dc motor | 24 | | 4.9 | Wires connection of dc motor | 24 | | 4.10 | Buzzer plugged to the board and the Arduino | 25 | | 4.11 | The assembled hardware system | 25 | | | | | ## LIST OF ABBREVIATIONS | CPU | Central Processing Unit | |------|------------------------------------| | IR | Infra-Red | | LCD | Liquid Cristal Display | | IC | Integrated Circuit | | USB | Universal Serial Bus | | AC | Alternating Current | | DC | Direct Current | | I/O | Input/output | | IDE | Integrated Development Environment | | R | Resistor | | GND | Ground | | VCC | 5 Volt | | LDR | light dependent resistor | | DPSS | Diode Pumped Solid State | ## LIST OF SYMBOLS | V | Volt | |-----------|----------------------| | mA | Milliampere | | kB | Kilo byte | | MHz | Mega hertz | | mm | Millimeter | | g | Gram | | cm | Centimeter | | S | Distant (meter) | | V | Speed (meter/second) | | $M\Omega$ | Mega ohm |