قال تعالى :

(إِنَّ فِي خَلْق السَّمَوَاتِ والأَرْضِ واخْتِلافِ اللَّيْلِ والنَّهَارِ لآيَاتٍ لأُوْلِي الأَلْبَابِ * الَذِينَ يَذْكُرُونَ اللَّهَ قِيَاماً

وقُعُوداً وعَلَى جُنُوبِهِمْ ويَتَفَكَّرُونَ فِي خَلْق السَّمَوَاتِ والأَرْضِ رَبَّنَا مَا خَلَقْتَ هَذَا بَاطِلاً سُبْحَانَكَ فَقِنَا عَذَابَ النَّارِ).

سورة آل عمران ، الآية (190-

(191

DEDICATION

To our parents, for their unstinting support, to our families, who always shared our failures and happiness, to our colleagues, to our friends, Last but not least our deepest gratitude goes to all the teachers.

ACKNOWLEDGEMENT

Thanks to almighty Allah, by whose grace and mercy this study is accomplished. We would like to express our deep gratitude to our supervisor Ust. Gaffar Babiker Osman for his consistently invaluable advice, encouragement and especially for our project guidance. Also we thank our teachers and the staff of our school for their helpful guidance in our period of study.

ABSTRACT

The Proportional, Integral and Derivative controllers are the most widely used controller in the industries. Simplicity, successful practical applications and near optimal performance are some of the reasons that have made PID control so popular in the academic and industry researches. Recently, it has been noticed that PID controllers are often poorly tuned (obtaining the controller parameters Kp, Ti, and Td) and some efforts have been made to systematically resolve this matter. Many tuning methods have been proposed for obtaining better PID controller parameter settings. The comparison of various tuning methods for First Order Plus Dead Time (FOPDT) process are analyzed using MATLAB simulation to determine the best method for the system.

مستخلص

المتحكم التناسبي_التكاملي_التفاضلي يستخدم بصورة واسعة في مجال الصناعة. البساطة والتطبيقات العملية الناجحة والقرب من الاداء المثالي بعض الاسباب التي جعلت المتحكم التناسبي_التكاملي_ التفاضلي أكثر شهرة في البحوث الصناعية والاكاديمية. مؤخرا لوحظ أن المتحكمات التناسبية_التكاملية _التفاضلية تضبط في أغلب الاحيان بشكل سيء(الحصول على بار اميترات المتحكم)؛ لذلك بذلت بعض الجهود لحل هذه المشكلة بإستخدام العديد من طرق الضبط التي اقترحت لضبط هذه البار اميترات. استخدم برنامج ماتلاب للمقارنة بين هذه الطرق للانظمة ذات الرتبة الاولى زائد الزمن الميت لتحديد أفضل طريقة للنظام.

TABLE OF CONTENTS

	Page
	No.
الآية	i
DEDICATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
مستخلص	V
TABLE OF CONTENTS	vi
LIST OF FIGURES	viii
LIST OF TABLES	Х
LIST OF ABBREVIATIONS	xi
LIST OF SYMBOLS	
CHAPTER ONE	
INTROUDUCTION	
1.1 General Concepts	1
1.2 Problem Statement	
1.3 Objectives	
1.4 Methodology	2
1.5 Project Layout	
CHAPTER TWO	
PROPORTIONAL INTEGRAL DERIVATIVE	
CONTROLLER	
2.1 Introduction	3
2.2 PID Representation	4
2.3 Proportional Control5	
2.4 Integral Control7	
2.5 Derivative Control10	
2.6 Proportional and Derivative Control1	
2.7 Proportional-Integral-Derivative Control	12

CHAPTER THREE	
PID CONTROLLER TUNING METHODS	
3.1 Introduction	15
3.2 Tuning Methods for PID Controller	16
3.2.1 Ziegler-Nichols tuning method	16
3.2.2 Chien-Hrones-Reswick (CHR) tuning method	21
3.2.3 The Cohen-Coon tuning method	22
3.2.4 The Wang-Juang-Chan tuning method	23
3.2.5 Optimum PID controller design	23
3.2.6 Analytical tuning methods	26
CHAPTER FOUR	
SIMULATION AND RESULTS	
4.1 Introduction	29
4.2 MATLAB Simulation	29
4.3 The Plant	30
4.4 The PID Controller Tuning Methods	31
4.4.1 Ziegler-Nichols method	31
4.4.2 Chien-Hornes-Reswick (CHR) tuning method	34
4.4.3 Cohen-Coon tuning method	36
4.4.4 Wang-Juang-chan tuning method	37
4.4.5 Optimum PID tuning method38	
4.5 Discussion	42
CHAPTER FIVE	
CONCLUSION AND RECOMMENDATIONS	
5.1 Conclusion	44
5.2 Recommendations	44
REFERENCES 45	
APPENDICES	46

LIST OF FIGURES

Figur	Title	Page
e No.		No.
2.1	Atypical PID controller structure	4
2.2	PID controller representation	5
2.3	Block diagrams of proportional controller	6
2.4	Block diagrams of Integral controller	8
2.5	Implementation of integral action as positive feedback around a lag	9
2.6	Block diagrams of derivative controller	11
2.7	Block diagrams of PD controller	12
3.1	PID controller of the plant	16
3.2	Unit step response curve showing 25% maximum overshoot	17
3.3	Unit step response of the plant	17
3.4	S-shaped response curve	18
3.5	Closed-loop system with a proportional controller	19
3.6	Sustained oscillations with period Pcr	19
4.1	PID controller of the plant	29
4.2	The open-loop step response of the plant	31
4.3	Closed-loop step response of the plant using Ziegler- Nichols method (first method)	32
4.4	The plant sustained oscillations with period Pcr	33
4.5	The close loop step response using Zeigler-Nichols method (second method)	33

4.6	.6 The close loop step response of the plant using CHR tuning	
	-method (first method)	
4.7 The close loop step response of the plant using CHR tunin		35
	method(second method)	
4.8 The close loop step response using cohn-coon tuning		36
	method	
4.9	The close loop step response of the plant using wang-juang-	37
	chan tuning method	
4.10	The close loop step response using ISE optimum tuning	39
	method	
4.11	The close loop step response using ISTE optimum tuning	40
	method	
4.12	The close loop step response using IST^2E optimum tuning	41
	method	
4.13	Close loop step response from all methods	42

Table	Title	Page
No.		No.
3.1	Ziegler-Nichols tuning method (first method)	18
3.2	Ziegler-Nichols tuning method (second method)	19
3.3	CHR tuning method for set-point regulation	21
3.4	CHR tuning method for disturbance rejection	22
3.5	Controller parameters of Cohen–Coon method	22
3.6	Set-point PI controller parameters of optimum tuning Method	24
3.7	Set-point PID controller parameters of optimum tuning method	25
3.8	Disturbance rejection PI controller parameters of optimum tuning method	27
3.9	Disturbance rejection PID controller parameters of optimum tuning method	28
4.1	The open loop step response of the plant without PID	30
4.2	The close loop step response of the plant using Zeigler- Nichols method (first method)	32
4.3	The closed loop step response using Zeigler-Nichols method (second method)	34
4.4	The close loop step response using CHR tuning method (first method)	35
4.5	The close loop step response using CHR tuning method (second method)	36
4.6	The close loop step response using cohn-coon method	37
4.7	The close loop step response using wang-juang-chan method	38
4.8	Closed loop step response using ISE optimum tuning method	38

4.9	The closed loop step response using ISTE optimum	40
	tuning method	
PIP.10	The close loop step response using (IST^2E) optimum	41
CHR	Wingn matchedes-Reswick	
4.11 FOPDT	Comparison between the difference PID tuning methods First Order Plus Dead Time	41
		LIS
Z-N	Ziegler-Nichols	Т
ISE	Integral Squared Error	L
ICTE	Internal Concerned Times and inhead France	OF
121E	Integral Squared Time weighted Error	ТА
IST ² E	Integral Squared Time-Squared weighted Error	
		BLE

S

LIST OF ABBREVIATIONS

LIST OF SYMBOLS

Кр	Proportional gain
Ki	Integral gain
Kd	Derivative gain
Td	Derivative time
Ti	Integral time
Pcr	Corresponding period
Kcr	Critical gain
Т	Time constant
L	Delay time
K	Gain