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Abstract 

We determine the eigenvalues inequalities, sums of hermitian and normal matrices, 

Schubert calculus, Wielant’s theorem with spectral sets and Banach algebra. The principal 

submatrices with noncommutative function theory and unique extensions was shown. We give 

applications of the Fuglede-Kadison determinant, Riesz and Szegö type factorizations theorem 

for noncommutative Hardy spaces and for a Helson-Szegö theorem noncommutative Hardy-

Lorentz spaces. We also give a Helson-Szegö subdiagonal subalgebras with applications to 

Toeplitz operators.  The algebraic structure of non-commutative analytic with quasi-radial 

quasi-homogeneous symbols and commutative Banach algebra of Toeplitz algebra and 

operators are presented, the structure of a commutative Banach algebra on the unit ball and 

quasi-nilpotent group action, generated by Toeplitz operators with quasi-radial quasi-

homogeneous symbols are discussed.  
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 الخلاصة

حددنا متباينات القيم الذاتية والمجاميع الهيرميتية والمصفوفات الناظمة وحسبان شيبورت ومبرهنة ويلانت 

مع الفئات الطيفية وجبر باناخ. تم ايضاح المصفوفات الجزئية الاساسية مع نظرية الدالة غير التبديلية 

سيزيقو −كادسون ومبرهنة التحليل الى عوامل نوع ريس−الوحيدة. اعطينا تطبيقات لمحددة فيقليد والتمديدات

سيزيقو مع −لورنتز. أيضا اعطينا الجبريات الجزئية القطرية جزئية هيلسون−لأجل فضاءات هاردي

المتجانسة  −شبه زالتطبيقات الى مؤثرات تبوليتز. تم احضار التشييد الجبري للتحليل غير التبديلي مع الرمو

نصف القطرية وجبر باناخ التبديلي لجبر مؤثرات تبوليتز. تم مناقشة تشييد جبرباناخ التبديلي على  −شبه

المتجانسة −متلاشية القوى والمولدة بواسطة مؤثرات تبوليتز مع الرموز شبه−كرة الوحدة وفعل زمرة شبه

 نصف القطرية.−شبه
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Introduction 

We examine, simultaneously, all of the 𝑘-square principal submatrices of an n-square 

matrix 𝐴. Usually 𝐴 has been symmetric or Hermitian, and much of our effort has centered 

around the well-known fact asserting that the eigenvalues of an (𝑛 −  𝐼)-square principal 

submatrix of Hermitian 𝐴 always interlace the eigenvalues of 𝐴.  

We generalize to the setting of Arveson’s maximal subdiagonal subalgebras of finite von 

Neumann algebras, the Szegö 𝐿𝑝-distance estimate, and classical theorems of F. and M. Riesz, 

Gleason and Whitney, and Kolmogorov. We first use properties of the Fuglede-Kadison 

determinant on 𝐿𝑝(𝑀), for a finite von Neumann algebra 𝑀, to give several useful variants of 

the noncommutative Szegö theorem of 𝐿𝑝(𝑀), including the one usually attributed to 

Kolmogorov and Krein. 

 The non-commutative analytic Toeplitz algebra is the WOT-closed algebra generated 

by the left regular representation of the free semigroup on 𝑛 generators. We develop a detailed 

picture of the algebraic structure of this algebra. In particalur, we show that there is a canonical 

homomorphism of group of the automorphism group onto the of conformal automorphisms of 

the complex 𝑛-ball. We present here a quite unexpected result: Apart from already known 

commutative 𝐶∗- algebras generated by Toeplitz operators on the unit ball, there are many other 

Banach algebras generated by Toeplitz operators which are commutative on each weighted 

Bergaman space. 

 We extend eigenvalue inequalities due of Freede-Thompson and Horn for sums of 

eignevalues of two Hermitian matrices.Let A be a complex unital Banach algebra and let 𝑎, 𝑏 ∈

𝐴. We give regions of the complex plane which contain the spectrum of 𝑎 + 𝑏 or ab using von 

Neumann spectral set theory.  

Let A be a finite subdiagonal algebra in Arveson’s sense. Let Hp(A) be the associated 

noncommutative Hardy spaces,  0 <  𝑝 ≤ ∞. We extend to the case of all positive indices 

most recent results about these spaces, which include notably the Riesz, Szegö and inner-outer 

type factorizations. We formulate and establish a noncommutative version of the well-known 

Helson- Szegö theorem about the angle between past and future for subdiagonal subalgebras. 

Studying commutative C∗-algebras generated by Toeplitz operators on the unit ball it 

was proved that, given a maximal commutative subgroup of biholomorphisms of the unit ball, 

the C∗-algebra generated by Toeplitz operators, whose symbols are invariant under the action 

of this subgroup, is commutative on each standard weighted Bergman space. There are five 

different pairwise non-conjugate model classes of such subgroups: quasi-elliptic, quasi-

parabolic, quasi-hyperbolic, nilpotent, and quasi-nilpotent. It was observed in Vasilevski that 
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there are many other, not geometrically defined, classes of symbols which generate 

commutative Toeplitz operator algebras on each weighted Bergman space. These classes of 

symbols were subordinated to the quasi-elliptic group. The corresponding commutative 

operator algebras were Banach, and being extended to 𝐶∗-algebras they became non-

commutative. These result were extended then to the classes of symbols, subordinated to the 

quasi-hyperbolic and quasi-parabolic groups. Let 𝒜λ
2 (𝔹n) denote the standard weighted 

Bergman space over the unit ball 𝔹n in ℂn. New classes of commutative Banach 

algebras 𝒯(λ) which are generated by Toeplitz operators on 𝒜λ
2 (𝔹n) have been recently 

discovered in Vasilevski. ). These algebras are induced by the action of the quasi-elliptic group 

of biholomorphisms of 𝔹n. we analyze in detail the internal structure of such an algebra in the 

lowest dimensional case 𝑛 = 2. Extending recent results to the higher dimensional setting 𝑛 ≥

3 we provide  a futher step in the structural analysis of a class of commutative Banach algebras 

generated by Toeplitz operators on the standard weighted Bergman space over the 𝑛-

dimensional complex unit ball. The algebras ℬ𝑘(ℎ) under study are subordinated to the qausi- 

elliptic group of automorphisms of 𝔹𝑛 and in term of their generators they were described. 
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Chapter 1 

Eigenvalues of Sums and Principal Submatrices   

We study the singular values of the submatrices (not necessarily principal submatrices) 

of an arbitrary matrix 𝐴. Although we study not necessarily principal submatrices, we Principal 

Submatrices series because the singular values of an arbitrary submatrix of matrix 𝐴 may be 

approached through an examination of the principal submatrices of 𝐴𝐴*.  

Section (1.1) Hermitian Matrices  

Let 𝑎 = 𝛼(𝛼1, … 𝛼𝑛) and 𝛽 = (𝛽1… , 𝛽𝑛) be arbitrary nonincreasing sequences of real 

numbers. We consider the question: for which nonincreasing sequences𝛾 = (𝛾1, … 𝛾𝑛)do there 

exist Hermitian matrices A and B such that 𝐴, 𝐵 and 𝐴 +  𝐵 have α, β and γ respectively as 

their sequences of eigenvalues. Necessary conditions have been obtained by Weyl [108], 

Lidskii [292], Wielandt [312, 263, 278, 289], and Amir-Moez [18], Besides the obvious 

condition 

                            𝛾1 +⋯+ 𝛾𝑛 = 𝛼1 +⋯+𝛼𝑛 + 𝛽1 +⋯+ 𝛽𝑛,                                       (1) 

these conditions are linear inequalities of the form 

                              𝛾𝑘𝑖 +⋯+ 𝛾𝑘𝑟 ≤ 𝛼𝑖𝑖 +⋯+𝛼𝑖𝑟 + 𝛽𝑗𝑖 +⋯+ 𝛽𝑗𝑟 ,                                   (2) 

where 𝑖, 𝑗 and k are increasing sequences of integers. As far as we  know all other known 

necessary conditions are consequences of these inequalities. It is therefore natural to conjecture 

that the set E of all possible γ forms a convex subset of the hyperplane (1). The set E has 

hitherto not been determined except in the simple cases 𝑛 = 1, 2, and will not be determined 

in general here. 

We give a method of finding conditions of the form (2) which will yield many new ones. 

We shall find all possible inequalities (2) for 𝑟 = 1, 2, and arbitrary 𝑛, and establish a large 

class of such inequalities for 𝑟=3. We use Lidskii's method to find a necessary condition on the 

boundary points of a subset 𝐸' of 𝐸. These results are used to determine the set 𝐸 for n = 3, 4. 

In addition a conjecture is given for E in general. 

If 𝑥 is a sequence, 𝓍p denotes the 𝑝𝑡ℎcomponent of 𝓍. If 𝐴 is a matrix, 𝐴∗ and 𝐴𝐴′ denote 

the conjugate transpose and transpose of 𝐴. If 𝑖 is a sequence of integers such that 1 ≦ 𝑖1 <
⋯ < 𝑖𝑟 ≦ 𝑛, by the complement of 𝑖 with respect to 𝑛 we mean the sequence obtained by 

deleting the terms of i from the sequence 1,2,… , 𝑛. If a is a sequence of numbers, diag 
(𝛼1, … 𝛼𝑛) denotes the diagonal matrix with diagonal a. If 𝑀 and 𝑁 are matrices, diag (𝑀,𝑁) 
denotes the direct sum matrix 

(
𝑀 0
0 𝑁

) 

The inner product of the vectors x and y is written (𝑥. 𝑦).𝐼𝑟 is the unit matrix of order 𝑟. 
Finally 𝑒𝑥𝑝B denotes the ∑ 𝐵𝑛/𝑛!∞

𝑏=0 . 

We are going to use methods introduced by Lidskii [292,31.1]. Lidskii gave sketchy proofs of 

his results and it is not obvious how to reconstruct his argument, see [312]. we will therefore 

derive the results of Lidskii which are needed.  

The set 𝐸 referred to in the introduction is the set of points γ such that 𝛾1 ≧ ⋯ ≧ 𝛾𝑟 and 

𝛾 is the sequence of eigenvalues of diag (𝛼1, … , 𝛼𝑛) + 𝑈
∗diag (𝛽1, … , 𝛽𝑛)𝑈, where 𝑈 ranges 

over all unitary matrices. Fix 𝛼, 𝛽, with 𝛼1 > ⋯ > 𝛼𝑛, and 𝛽1 > ⋯ > 𝛽𝑛. let 𝐸′ be the subset 
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of 𝐸 obtained by letting U range over real orthogonal matrices. To indicate the dependence of 

E' on α and β we write 𝐸′(𝛼1, … 𝛼𝑛; 𝛽1, …𝛽𝑛). Boundary points and interior points of 𝐸′ are 

always taken with respect to the relative topology of the hyperplane (1). 

Theorem (1.1.1)[10]:If 𝛾 is a boundary point of 𝐸′ with distinct coordinates then there exist a 

positive integer 𝑟 < 𝑛 and increasing sequences 𝑖, 𝑗, and 𝑘 of order r such that 

(𝛾𝑘𝑖 . … . 𝛾𝑘𝑟) ∈ 𝐸′(𝛼𝑖1 , … 𝛼𝑘𝑟; 𝛽𝑖1 , …𝛽𝑗𝑟) 

And  

(𝛾𝑘′𝑖 . … . 𝛾𝑘′𝑛−𝑟) ∈ 𝐸′(𝛼𝑖′1 , … 𝛼𝑖′𝑛−𝑟; 𝛽𝑗′1 , …𝛽𝑗′𝑟−𝑛) 

where 𝑖′, 𝑗′  and 𝑘′are the complements of i, j and k with respect to n. 

Proof: Let U0 be a real orthogonal matrix such that diag (𝛼1, … 𝛼𝑛)  + 𝑈0
′diag (𝛽1, … , 𝛽𝑛)𝑈0 

has eigenvalues 𝛾. If 𝑇 = (𝑡𝑝𝑞) is a real anti-symmetric matrix, 𝑒𝑥𝑝𝑇 is orthogonal. For 

sufficiently small values of 𝑡𝑝𝑞, the eigenvalues 𝜆1 > ⋯ > 𝜆𝑛of   

diag (𝛼1, … 𝛼𝑛) + 𝑈0
′𝑒𝑥𝑝(−𝑇)𝐵𝑒𝑥𝑝 (𝑇)𝑈0 

where 𝐵 = 𝑑𝑖𝑎𝑔(𝛽1, … 𝛽𝑛), are distinct and determine a point of 𝐸'. Let 𝐴 = 𝑈𝑜diag 

(𝛼1, … 𝛼𝑛)𝑈0
′ , and let 𝓍ι be a unit eigenvector of 𝐴 +  𝑒𝑥𝑝(−𝑇)𝐵𝑒𝑥𝑝𝑇 corresponding to the 

eigenvector λι which varies continuously with T. We have 

                                  𝐴𝓍𝑖 + 𝑒𝑥𝑝(−𝑇)𝐵 𝑒𝑥𝑝(𝑇)𝓍𝑖  =  𝜆𝑖𝓍𝑖.                                                (3) 

Using superscripts to denote derivatives with respect to 𝑡𝑝𝑞𝑝 <  𝑞, it follows that 

𝐴𝓍𝜄
𝑝𝑞
+ 𝑒𝑥𝑝(−𝑇)𝐵 𝑒𝑥𝑝(𝑇)𝓍𝜄

𝑝𝑞
+ (𝑒𝑥𝑝(−𝑇)𝐵 𝑒𝑥𝑝(𝑇))𝑝𝑞𝓍𝜄 

                            = 𝜆𝜄
𝑝𝑞
𝓍𝜄 + 𝜆𝜄𝓍𝜄

𝑝𝑞
.                                                             (4)          

It is easily seen that (𝑒𝑥𝑝𝑇) 𝑝𝑞 reduces to 𝑇𝑝𝑞 when 𝑇 =  0. Hence when 𝑇 =
0, (𝑒𝑥𝑝( −𝑇)𝐵𝑒𝑥𝑝𝑇)𝑝𝑞 = (𝛽𝑝 − 𝛽𝑞)𝑍

𝑝𝑞 where 𝑍𝑝𝑞 is the matrix whose (𝑝, 𝑞) and (𝑞, 𝑝) 

entries are 1 and whose other entries are 0. .Since 𝓍Jis a unit vector,(𝓍𝐽, 𝓍𝐽
𝐼𝑞
) = 0. Therefore 

by (3), 

                              (𝐴𝓍𝜄, 𝓍𝜄
𝐼𝑞
) + (𝑒𝑥𝑝(−𝑇)𝐵 𝑒𝑥𝑝(𝑇)𝓍𝚤, 𝓍𝜄

𝐼𝑞
= 0                                     (5) 

Taking the inner product of (4) with 𝓍𝚤we find by (5) and the symmetry of A and B, 

𝜆𝜄
𝑝𝑞
= ((𝑒𝑥𝑝(−𝑇)𝐵 𝑒𝑥𝑝 𝑇) 𝑝𝑞 𝓍𝜄, 𝓍𝜄) 

Setting T = 0, 

                             𝛾𝐽
𝑝𝑞
= 2(𝛽 − 𝛽)𝜔𝜄𝑝𝜔𝜄𝑞,                                                  (6) 

where 𝓌J and γJ
pq

 denote the values of 𝓍J and 𝓍𝜄𝜄
𝐼𝑞

 when 𝑇 =  0. If γ is not an interior point 

of 𝐸′ the rank of the 𝑛 by 𝑛(𝑛 —  𝑙)/2 matrix G =  (γι
pq
) must be less than 𝑛 − 1. Now let 

𝐷 = (𝜔𝜄𝑝𝜔𝜄𝑞) be the n by 𝑛(𝑛 −  1) matrix whose rows are indexed by J, where 1 ≦ 𝑝 ≦ 𝑛, 

and whose columns are indexed by (𝑝, 𝑞), where 𝑝 and 𝑞 vary over the range 1 ≦ 𝑝 ≦ 𝑛, and 

p ≠ q rather than p < q. Clearly D, and hence DD′ has the same rank as G. If F is the square 

matrix (ωιm
2 ) of order n, then 𝐷𝐷′ = 𝐼 − 𝐹𝐹′. Thus if rank 𝐷 < 𝑛 −  1, 𝐹𝐹' has 1 as a multiple 

eigenvalue. Since 𝐹𝐹′ is stochastic, it follows that FF′is decomposable [91,158,310,122]. That 

is to say, FF' = P diag (M, N)P', where 𝑀 and 𝑁are square matrices and 𝑃 is a permutation 

matrix. Let  

𝐹 = 𝑃 (
𝐺 𝐻
𝐽 𝐾

)𝑃′ 
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be the decomposition of 𝐹 corresponding to that of 𝐹𝐹′. Then 𝐺𝐽′ +  𝐻𝐾′ = 0. Since the entries 

of 𝐹 are nonnegative, we have 𝐺𝐽′ =  𝐻𝐾′ =  0. It follows that if a column of 𝐺 contains a 

nonzero term then all terms of the corresponding column of 𝐽 vanish, and similarly for 𝐻 and 

𝐾. Moving all nonzero columns of G and H to the left, we find 

F = P(
S1 0
0 S2

) P′ 

where 𝑅 is another permutation matrix. Since 𝐹 is doubly stochastic, 𝑆1and 𝑆2 must be square 

matrices. If  W = (ωιm) then 𝑊 = 𝑃(
𝑊1 0
0 𝑊2

)  𝑅, where 𝑊 1and 𝑊2 are square. Setting 

𝐼′ =diag(𝛾1, … , 𝛾𝑛), we have 𝐴 + 𝐵 = 𝑊′𝐼′𝑊. Therefore 𝑅𝐴𝑅′ + 𝑅𝐵𝑅′ = 𝐺, where𝐶 =

𝑑𝑖𝑎𝑔 (𝑊1
′,𝑊2

′)𝑃′𝐼′𝑃 diag(𝑊1,𝑊2) Let j and k be such that 𝑅𝐵𝑅′ = diag (𝛽𝑗1 , … , 𝛽𝐽𝑛) and 

𝑃′ 𝐼′𝑃 = 𝑑𝑖𝑎𝑔 (𝛾𝑘1 , … , 𝛾𝑘𝑛  ). If 𝑊1 is of order 𝑟, then 𝐶 =diag (𝐶1, 𝐶2) where 𝐶1 has 

eigenvalues 𝛾𝑘1 , … , 𝛾𝑘𝑛and 𝐶2 has eigenvalues 𝛾𝑘𝑟+1 , … , 𝛾𝑘𝑛 . Therefore 𝑅𝐴𝑅′ =

𝑑𝑖𝑎𝑔 (𝐴1, 𝐴2), where 𝐴1 + diag (𝛽𝑗1 , … , 𝛽𝐽𝑟) = 𝐶1 and 𝐴2 +diag (𝛽𝑗𝑟+1 , … , 𝛽𝐽𝑛) = 𝐶2. This 

completes the proof. 

 If 𝑀 =  (𝑚𝑖,𝑗) 1 ≦ 𝑖 ≦ 𝑟, 1 ≦ 𝑗 ≦ 𝑟 a matrix of order 𝑟 and 𝑁 = (𝑛𝑘𝜄), 𝑟 + 1 ≦ 𝑘 ≦

𝑛, 𝑟 + 1 ≦ 𝜄 ≦ 𝑛 is a matrix of order 𝑛 − 𝑟, we define M× N to be the matrix (𝑚𝑖𝐽, 𝑛𝑘𝐽) of 

order 𝑟(𝑛 − 𝑟) whose rows are indexed by pairs (𝑖, 𝑘)and whose columns are indexed by pairs 

(j, l). This product is left and right distributive and (𝑀 × 𝑁)′ =  𝑀′ × 𝑁′. Also (𝑀1 ×
𝑁1)(𝑀2 × 𝑁2)  =  (𝑀1𝑀2 × 𝑁1𝑁2). We set 𝑀⊝𝑁 = (𝑀 × 𝐼𝑛−𝑟)  − (𝐼𝑟 −𝑁). It follows 

from these remarks that if 𝑊1 and 𝑊2 are orthogonal then so is 𝑊1 ×𝑊2 and 

            (𝑊1
′𝑀𝑊)⊝ (𝑊1

′𝑁𝑊2) = (𝑊1 ×𝑊2)(𝑀⊝𝑁)(𝑊1 ×𝑊2)                                 (7) 

The index of a real symmetric matrix is the number of its positive eigenvalues. 

Lemma (1.1.2)[10]: If 𝑀,𝑁, and 𝑀 +  𝑁 are nonsingular real symmetric matrices then index 

M + index N = index (M + N) + index (𝑀−1 +𝑁−1). 
Proof: We have 𝑀−1 +𝑁−1 = 𝑁−1(𝑁 +𝑀)𝑀−1so that 𝑀−1 +𝑁−1 is nonsingular. Also 

(
1 1
𝑀−1 −𝑁−1

) (
𝑀 0
0 𝑁

) (1 𝑀−1

1 −𝑁−1
) (
𝑀 + 𝑁 0
0 𝑀−1 +𝑁−1

) 

The result now follows by the Law of Inertia. 

Theorem (1.1.3)[10]:Let 𝛾 be a boundary point of 𝐸' with distinct coordinates. Then there exist 

sequences 𝑖, 𝑗 and 𝑘 satisfying the conclusion of Theorem (1.1.1) and such that 

𝑖1 +⋯+ 𝑖𝑟 + 𝑗1 +⋯+ 𝑗𝑟 = 𝑘1 +⋯+ 𝑘𝑟 + 𝑟(𝑟 + 1)/2. 
Proof: Using a slight change of notation, we have seen that there exist permutations 𝑖, 𝑗 and 𝑘 

of (1,…,n)and real symmetric matrices 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶1 , 𝐶2 such that 𝐴1 has eigenvalues 

𝛼𝑖1 , … 𝛼𝑖𝑟,𝐴2 has. eigenvalues 𝛼𝑖𝑟+1 , … 𝛼𝑖𝑛 , 𝐵1 = 𝑑𝑖𝑎𝑔(𝛽𝑖1 , …𝛽𝑖𝑟), 𝐵 = 𝑑𝑖𝑎𝑔(𝛽𝑖𝑟+1 , … 𝛽𝑖𝑛), 𝐶1 

has eigenvalues 𝛾𝑘1 , … , 𝛾𝑘𝑟 , 𝐶2 has eigenvalues 𝛾𝑘𝑟+1 , … , 𝛾𝑘𝑛, and𝐴 + 𝐵 = 𝐶, where 𝐴 =

𝑑𝑖𝑎𝑔(𝐴1, 𝐴2), 𝐵 =  𝑑𝑖𝑎𝑔(𝐵1, 𝐵2) 𝐶 =  𝑑𝑖𝑎𝑔(𝐶1, 𝐶2 ) . We also assume 𝑖1 < ⋯ < 𝑖𝑟, and 

𝑖𝑟+1 < ⋯ < 𝑖𝑛 and similarly for the 𝑗′𝑠 and 𝑘′𝑠. We set 𝛼̅𝚤 = 𝛼𝑖𝚤, 𝛽̅𝚤 = 𝛽𝑖𝚤 and  𝛾̅𝚤 = 𝛾𝑘𝚤, 1 ≦
𝚤 ≦ 𝑛. Let 𝑇 =  (𝑡𝑝𝑞) be a real anti-symmetric matrix and let 𝜆1 > ⋯ > 𝜆𝑛be the eigenvalues 

of 𝐴 + 𝑒𝑥𝑝(−𝑇)𝐵𝑒𝑥𝑝𝑇. If x1 , … , xn is a real orthonormal system of corresponding 

eigenvectors, we let 𝓌𝑙 and 𝜔𝑙
𝑝𝑞

 be the values of 𝑥𝑘 and 𝑥𝑘𝑙
𝑝𝑞

 when 𝑇 = 0, where 𝑥𝑙
𝑝𝑞

 denotes 
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the derivative of 𝑥𝑙 with respect to 𝑡𝑝𝑞 , 𝑝 < 𝑞. If 𝑊 is the matrix whose rows are 𝜔1, … , 𝜔𝑛, 

then 𝑊 = 𝑑𝑖𝑎𝑔(𝑊1,𝑊2)and 𝐶1 = 𝑊1
′𝛤1 𝑊1, 𝐶2 = 𝑊2

′𝛤2 𝑊2where𝛤1 = 𝑑𝑖𝑎𝑔(𝛾𝑘1 , … , 𝛾𝑘𝑟)𝛤2 =

𝑑𝑖𝑎𝑔 (𝛾𝑘𝑟+1 , … , 𝛾𝑘𝑛). Clearly 𝜆𝑘𝑙 reduces to 𝛾̅𝑙 when T = 0, and we let 𝛾̅𝑙
𝑝𝑞

 be the value of 

𝜆𝑘
𝑝𝑞
= 𝜕𝜆𝑘𝑙/𝜕𝑡𝑝𝑞 when T = 0.  

Starting from the equation 

   𝐴𝜆𝑝𝑞 + (𝑒𝑥𝑝(−𝑡)𝐵𝑒𝑥𝑝𝑇)𝓍𝑘𝑙 = 𝜆𝑘𝑙𝓍𝑘𝑙     (8) 

We find  

A𝜆𝑘𝑙
𝑝𝑞
+ (𝑒𝑥𝑝(−𝑡)𝐵𝑒𝑥𝑝𝑇)𝓍𝑘𝑙

𝑝𝑞
+ (𝑒𝑥𝑝(−𝑇)𝐵 𝑒𝑥𝑝𝑇)𝑝𝑞𝓍𝑘𝑙 

= 𝜆𝑘𝑙
𝑝𝑞
𝓍𝑘𝑙 + 𝜆𝑘𝑙𝓍𝑘𝑙

𝑝𝑞
                                     (9) 

As in Theorem (1.1.1) is follows that  

                                    𝜆𝑙
𝑝𝑞
= ((𝑒𝑥𝑝(−𝑇)𝐵 𝑒𝑥𝑝𝑇)𝑝𝑞𝓍𝑘𝑙 , 𝓍𝑘𝑙)                                         (10) 

and therefore 

                                            𝛾̅𝑙
𝑝𝑞
= 2(𝛽̅𝑝 − 𝛽̅𝑞)𝜔𝑙𝑝𝜔𝑙𝑞                                                    (11) 

We are going to test 𝜎 = 𝜆𝑙𝑙 +⋯+ 𝜆𝑘𝑟 for a local extreme at T = 0. If p and q are ≦ r, then 

expT has the form 𝑑𝑖𝑎𝑔 (𝑒𝑥𝑝 𝑇1,, 0) when 𝑇𝑢𝑣 = 0for (𝑢, 𝑣) ≠ (𝑝, 𝑞), and hence σ remains 

constant for 𝑇𝑝𝑞 in a neighborhood of 0. Therefore all partial derivatives of σ with respect to 

tpq vanish at the origin when 𝑝 < 𝑞 ≦ 𝑟,  and similarly when r < 𝑝 < 𝑞. by (11), σpq = 0 at 

T=0 when 𝑝 ≦ 𝑟 < 𝑞, since that last 𝑛 − 𝑟 components or ωl are 0 when 1 ≦ I ≦ r. we now 

calculate λkl
pq.uv

 at T=0 when 

1 ≦ p ≦ r < 𝑞 ≦ 𝑛,          1 ≦ 𝑢 ≦ 𝑟 < 𝑣 ≦ 𝑛,        1 ≦ 𝐼 ≦ 𝑟.                  (12) 

Differentiation of (10) yields  

𝜆𝑘𝑙
𝑝𝑞.𝑢𝑣

= ((𝑒𝑥𝑝(−𝑇)𝐵 𝑒𝑥𝑝𝑇)𝑝𝑞𝓍𝑘𝑙
𝑢𝑣 , 𝓍𝑘𝑙 + 2((𝑒𝑥𝑝(−𝑇)𝐵 𝑒𝑥𝑝𝑇)

𝑝𝑞𝓍𝑘𝑙
𝑢𝑣, 𝓍𝑘𝑙)   (13) 

It is easily seen that when 𝑇 = 0 

(𝑒𝑥𝑝(−𝑇)𝐵𝑒𝑥𝑝 𝑇)𝑝𝑞.𝑢𝑣

= − (𝑇𝑝𝑞  𝐵𝑇𝑢𝜐  +  𝑇𝑢𝑣𝐵𝑇𝑝𝑞) +
1

2
𝐵(𝑇𝑝𝑞𝑇𝑢𝜐  +  𝑇𝑢𝑣𝑇𝑝𝑞)

+
1

2
(𝑇𝑝𝑞𝑇𝑢𝜐  +  𝑇𝑢𝑣𝑇𝑝𝑞)𝐵 

Considering only the cases (12), a straightforward calculation shows that 

when T = 0, 

((𝑒𝑥𝑝(−𝑇)𝐵 𝑒𝑥𝑝𝑇)𝑝𝑞𝓍𝑘𝑙
𝑢𝑣, 𝓍𝑘𝑙 = 0 for 𝑝 ≠ 𝑢, 𝑞 ≠ 𝑣 

  = (2𝛽̅𝑞 − 𝛽̅𝑝 − 𝛽̅𝑢)𝜔𝑙𝑝𝜔𝑙𝑢    for 𝑝 ≠ 𝑢, 𝑞 = 𝑣 

  = (2𝛽̅𝑝 − 𝛽̅𝑞 − 𝛽̅𝑣)𝜔𝑙𝑝𝜔𝑙𝑣 for 𝑝 = 𝑢, 𝑞 ≠ 𝑣 

                     = −2(𝛽̅𝑝 − 𝛽̅𝑝)(𝜔𝑙𝑝
2 −𝜔𝑙𝑝

2 )for 𝑝 = 𝑢, 𝑞 = 𝑣 

Recalling that 𝜔𝑡𝑞 = 0for 𝐼 ≦ 𝑟 < 𝑞, we find that when 𝛤 = 0, 

∑((𝑒𝑥𝑝(−𝑇)𝐵 𝑒𝑥𝑝 𝑇)𝑝𝑞.𝑢𝑣 𝓍𝑘𝑙 , 𝓍𝑘𝑙) = −2

𝑟

𝐽=1

(𝛽̅𝑝 − 𝛽̅𝑝) for 𝑝 = 𝑢, 𝑞 = 𝑣

= 0 otherwise.                                                                                                              (14) 
The second term on the right of (13) reduces when 𝑇 = 0 to 
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2(𝛽̅𝑝 − 𝛽̅𝑝)𝜔𝑙𝑝
𝑢𝑣𝜔𝑙𝑝                                                 (15) 

To compute 𝜔𝑙𝑝
𝑢𝑣, rewrite (9) in the form  

(𝐴 + 𝑒𝑥𝑝(−𝑇)𝐵 𝑒𝑥𝑝 𝑇 − 𝜆𝑙𝑙  𝐼𝑛)𝓍𝑘𝑙
𝑢𝑣 

                                                       =−(𝑒𝑥𝑝(−𝑇)𝐵 𝑒𝑥𝑝 𝑇)𝑢𝑣𝓍𝑘𝑙 + 𝜆𝑘𝑙
𝑢𝑣 𝓍𝑘𝑙 

Setting T = 0 and using (11), we find, since ω =  0, 

(𝑐 − 𝛾̅𝑙 𝐼𝑛)𝓍𝑙
𝑢𝑣 = −(𝛽̅𝑢 − 𝛽̅𝑣)𝑦,  

where 𝑦 is the vector such that 𝑦𝑢  =  𝜔𝑙𝜐  =  0, 𝑦𝑣 = 𝜔𝑙𝜐 and 𝑦𝑣 = 0  for 𝑚 ≠  𝑢,𝑚 ≠  𝑣. 

Therefore 

𝜔𝑙𝑝
𝑢𝑣 = (𝛽̅𝑢 − 𝛽̅𝑣)((𝛾𝑙𝑙 𝐼𝑛 − 𝐶)

−1𝑦)𝑞 

Since 𝑞 > 𝑟, and 𝐶 = 𝑑𝑖𝑎𝑔 (𝐶1, 𝐶2), we may replace C by C2 and In by 𝐼𝑛−𝑟,Thus 

𝜔𝑙𝑝
𝑢𝑣 = (𝛽̅𝑢 − 𝛽̅𝑣)𝑑𝑞𝑢𝜔𝑙𝑢                                                (16) 

where 𝑑𝑞𝑢 is the (𝑞, 𝑣) entry of ((𝛾̅𝑙 𝐼𝑛−𝑟 − 𝐶2)
−1. Now 

(𝛾̅𝑙 𝐼𝑛−𝑟 − 𝐶2)
−1 = (𝑊2

′((𝛾̅𝑙 𝐼𝑛−𝑟 − 𝛤2)
−1𝑊2)

−1 
Therefore 

𝑑𝑞𝑢 = ∑
𝜔𝑚𝑞𝜔𝑚𝑣
𝛾̅𝑙 − 𝛾̅𝑚

𝑛

𝑚=𝑟+1

                                                           (17) 

Combining (13), (14), (15), (16), and (17), we find at T = 0 

𝜎𝑝𝑞.𝑢𝑣 = 2(𝛽̅𝑝 − 𝛽̅𝑞)(𝛽̅𝑢 − 𝛽̅𝑣)∑ ∑
𝜔𝑙𝑝𝜔𝑙𝑢𝜔𝑚𝑞𝜔𝑚𝑣

𝛾̅𝑙 − 𝛾̅𝑚

𝑛

𝑚=𝑟+1

𝑟

𝐼=1

 − 2𝛿𝑢𝑣
𝑝𝑞
(𝛽̅𝑝 − 𝛽̅𝑞),            (18) 

where 𝛿𝑢𝑣
𝑝𝑞
= 1 when (𝑝, 𝑞) = (𝑢, 𝑣), and = 0 otherwise.  

We must now determine the index of the matrix 𝐺 =  (𝜎𝑝𝑞.𝑢𝜐)𝑟=0 of order 𝑟(𝑛 − 𝑟) 
whose rows and columns are indexed by pairs (𝑝, 𝑞) and (𝑢, 𝑣) satisfying (12). 

The double sum on the right of (18) is the (𝑝𝑞, 𝑢𝑣) entry of 

(𝑊1 ×𝑊2)
′(𝛤1⊝𝛤2)

−1(𝑊1 ×𝑊2) = ((𝑊1 ×𝑊2)
′(𝛤1⊝𝛤2)(𝑊1 ×𝑊2))

−1 
By (7) this reduces to 

(𝐶1⊝𝐶2)
−1 = (𝐴1 + 𝐵2)⊝ (𝐴1 + 𝐵2) = ((𝐴1⊝𝐴2) + (𝐵1⊝𝐵2) 

−1 
Therefore by (18) 

1

2
𝐺 = (𝐵1⊝𝐵2)((𝐴1⊝𝐴2) + (𝐵1⊝𝐵2))

−1 (𝐵1 − 𝐵2)⊝ (𝐵1⊝𝐵2)  

= (𝐵1⊝𝐵2(((𝐴1⊝𝐴2) + (𝐵1⊝𝐵2))
−1 − (𝐵1⊝𝐵2)

−1)(𝐵1⊝𝐵2) 
Thus 𝐺 has the same index as((𝐴1⊝𝐴2) + (𝐵1⊝𝐵2))

−1 − (𝐵1⊝𝐵2)
−1. 

Applying Lemma (1.1.2) with 

𝑀 = ((𝐴1⊝𝐴2) + (𝐵1⊝𝐵2)), 𝑁 = −(𝐵1⊝𝐵2), 

index 𝐺 = 𝑖𝑛𝑑𝑒𝑥 ((𝐶1⊝𝐶2)
−1 − (𝐵1⊝𝐵2)

−1)  
   = 𝑖𝑛𝑑𝑒𝑥(𝐶1⊝𝐶2) + 𝑖𝑛𝑑𝑒𝑥 − (𝐵1⊝𝐵2) = 𝑖𝑛𝑑𝑒𝑥 (𝐴1⊝𝐴2) 
  = 𝑟(𝑛 − 𝑟) +  𝑖𝑛𝑑𝑒𝑥(𝐶1⊝𝐶2) – 𝑖𝑛𝑑𝑒𝑥 (𝐵1⊝𝐵2) 
− 𝑖𝑛𝑑𝑒𝑥 (𝐴1⊝𝐴2). 
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Thus G is positive definite if and only if index (𝐶1⊝𝐶2) = index (𝐴1⊝𝐴2) index (𝐵1⊝𝐵2), 
and 𝐺 is negative definite if and only if neg (𝐶1⊝𝐶2)= neg (𝐴1⊝𝐴2)+ neg (𝐵1⊝𝐵2), 
where neg H is the number of negative eigenvalues of H. Next we determine 

𝑖1 +⋯+ 𝑖𝑟 + 𝑗1 +⋯+ 𝑗𝑟 = 𝑘1 +⋯+ 𝑘𝑟 + 𝑟(𝑟 + 1)/2,                  (19) 

and G is positive definite if and only if 

𝑖𝑟+1 +⋯+ 𝑖𝑛 + 𝑗𝑟+1 +⋯+ 𝑗𝑛 = 𝑘𝑟+1 +⋯+ 𝑘𝑛 + (𝑛 − 𝑟)(𝑛 − 𝑟 + 1)/2.        (20) 

By Theorem (1.1.1) the boundary points of 𝐸" lie on a finite number of hyperplanes of the form 

𝛾𝑘1 +⋯+ 𝛾𝑘𝑟 = 𝛼𝑖1 +⋯+ 𝛼𝑖𝑟 + 𝛽𝑗1 +⋯+ 𝛽𝑗𝑟                        (21) 

The hyperplane 

𝛾𝑘′1 +⋯+ 𝛾𝑘′𝑛 = 𝛼𝑘′1 +⋯+ 𝛼𝑖′𝑛−𝑟 + 𝛽𝑗′1 +⋯+ 𝛽𝑗
′
𝑛−𝑟

 

intersects the hyperplane (1) in the same set. If γ lies on only one of these hyperplanes (21) and 

does not satisfy (19) or (20), then in every small sphere about γ there exist points of 𝐸' on both 

sides of the hyperplane (21). Therefore 𝐸' must fill the sphere, for otherwise there would be 

boundary points of 𝐸' inside the sphere and off the hyperplane (21). This being impossible,𝜆 

must satisfy (19) or (20). Now suppose 𝛾 lies on several hyperplanes (21), and (19) and (20) 

both fail for each of these hyperplanes. By continuity the quadratic form G is not definite for 

all points near 𝛾 which satisfy the conclusion of Theorem (1.1.1). Therefore in a neighborhood 

of γ all points of 𝐸′ lying on only one hyperplane (21) are interior points of 𝐸'. Therefore γ 
cannot be a boundary point of 𝐸′. since E' is the closure of its interior, and a finite union of 

linear varieties of deficienc𝑦 ≧  2 cannot separate the interior of a sphere. The proof is 

complete. 

 If i, j and k are increasing sequences of integers of order r and (2) holds for the eigenvalues of 

𝐴 +  𝐵 for any Hermitian 𝐴, 𝐵 with arbitrary eigenvalues 𝛼1 ≧ ⋯ ≧ 𝛼𝑛and 𝛽1 ≧ ⋯ ≧ 𝛽𝑛we 

write (𝑖;  𝑗 ;  𝑘) ∈  𝑆𝑟
𝑛. If 

𝛾𝑘1 +⋯+ 𝛾𝑘𝑛 ≥ 𝛼𝑖1 +⋯+ 𝛼𝑖𝑛 + 𝛽𝑗1 +⋯+ 𝛽𝑗𝑛 

for any such 𝐴, 𝐵 we write(𝑖;  𝑗 ;  𝑘) ∈  𝑆̃𝑟
𝑛 

Theorem (1.1.4)[10]: The following conditions are equivalent: 

(i) (𝑖;  𝑗 ;  𝑘) ∈  𝑆̃𝑟
𝑛 

(ii) (𝑛 − 𝑖,+1,… , 𝑛 − 𝑖1 + 1; 𝑛 − 𝑗𝑟 + 1,…𝑛 − 𝑗1 + 1; 𝑛 − 𝑘𝑟 + 1,…𝑛,−𝑘1 + 1) ∈
 𝑆̃𝑟
𝑛 

(iii) (𝑘1, … , 𝑘𝑟; 𝑛 − 𝑗𝑟 + 1,… , 𝑛 − 𝑗1 + 1; 𝑖1, … 𝑖𝑟)) ∈  𝑆̃𝑟
𝑛 

(iv) (𝑖′, 𝑗′, 𝑘′)) ∈  𝑆̃𝑛−𝑟′
𝑛  where 𝑖′, 𝑗′, 𝑘′ are the compelements of 𝑖, 𝑗, 𝑘 with respect to 

𝑛. 

Proof: The equation 𝐴 + 𝐵 = 𝐶 may be written −𝐴 − 𝐵 = −𝐶 or 𝐴 = 𝐶 − 𝐵. This proves 

the equivalence of (i) with (ii) and (iii). The equivalence of (i) and (iv) is immediate by the 

trace Condition (1).  

If 𝐴 is a Hermitian matrix with eigenvalues 𝛼1 ≧ ⋯ ≧ 𝛼𝑛 and M is a linear subspace of 

dimension 𝑛 − 1, let 𝐴𝑀 be the transformation 𝑃𝐴 with domain restricted to 𝑀, where 𝑃 is the 

orthogonal projection on 𝑀. 𝐴𝑀 is a Hermitian transformation on 𝑀 to 𝑀and (𝐴 + 𝐵)𝑀 =
𝐴𝑀 + 𝐵𝑀. It is well known that the eigenvalues 𝛼𝑝

′  of 𝐴𝑀 separate those of 𝐴, that is 𝛼𝑝+1 ≦

𝛼𝑝
′ ≦ 𝛼𝑝. For 1 ≦ 𝑝 ≦ 𝑛 − 1. If (𝓍p) is an orthonormal sequence of eigenvectors 
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corresponding to (αp) and if 𝑀 contains x1, … , xm then αp
′ = αp for 1 ≦ 𝑝 ≦ 𝑚. This is an 

immediate consequence of the minimax principle, since (𝐴𝑀𝑥, 𝑥) = (𝐴𝑥, 𝑥)for 𝑥 ∈ 𝑀. Dually 

if 𝑀 contains 𝑥𝑚+1, … , 𝑥𝑛, then 𝛼𝑝
′ = 𝛼𝑝+1 for 𝑚 ≦ 𝑝 ≦  𝑛 − 1. The next theorem shows that 

S is essentially independent of 𝑛. 

Theorem (1.1.5)[10]: If (𝑖; 𝑗; 𝑘) ∈ 𝑆𝑟
𝑛 for some 𝑛 then 𝑖𝑝 ≦ 𝑘𝑝and 𝑗𝑝 ≦ 𝑘𝑝 for all p, and 

(𝑖; 𝑗; 𝑘) ∈ 𝑆𝑟
𝑛? For all  𝑛 ≥ 𝑘𝑟 

Proof: Suppose (𝑖; 𝑗; 𝑘) ∈ 𝑆𝑟
𝑛 for some 𝑛. Considering the case 𝛽 = 0, it is clear that 𝑖𝑝 ≦

𝑘𝑝and 𝑗𝑝 ≦ 𝑘𝑝 for all 𝑝. If 𝐴 and 𝐵 are of order kr, the identity 𝑑𝑖𝑎𝑔 (𝐴 − 𝜆𝐼) + 𝑑𝑖𝑎𝑔 (𝐵 −

𝜆𝐼) 𝑑𝑖𝑎𝑔 (𝐴 +  𝐵 −  2𝜆𝑙) for large λ shows that (𝑖; 𝑗; 𝑘) ∈ 𝑆𝑟
𝑘𝑟. It remains to prove (𝑖; 𝑗; 𝑘) ∈

𝑆𝑟
𝑛+1. Let 𝐴 and B be of order 𝑛 + 1 with eigenvalues (𝛼𝑝), (𝛽𝑝), and let (𝓏p) be an 

orthonormal sequence of eigenvectors of 𝐴 + 𝐵 corresponding to the eigenvalues (𝛾𝑝). Let 𝑀 

be the subspace spanned by 𝓏1, … , 𝓏𝑛. Letting (𝛼𝑝
′ ), (𝛽𝑝

′ ) and (𝛾𝑝
′) be the eigenvalues of 

𝐴𝑀, 𝐵𝑀 and (A + B)M, we have by hypothesis 

𝛾𝑗1
′ +. .+𝛾𝑗1

′ ≦ 𝛼𝑖1
′ +⋯+ 𝛼𝑖𝑟

′ +⋯+ 𝛽𝑗1
′ +⋯+ 𝛽𝑗𝑟

′ . 

But 𝛾𝑘𝑝
′ = 𝛾𝑘𝑝 , 𝛼𝑖𝑝

′ ≤ 𝛼𝑖𝑝 and βjp
′ ≤ βjp for 1 ≦ p ≦ r. Therefore (𝑖; 𝑗; 𝑘) ∈  𝑆𝑟

𝑛+1 

Theorem (1.1.6)[10]:If (𝑖; 𝑗; 𝑘) ∈ 𝑆𝑟
𝑛 and u, v and w are integers such that 𝑟 +  1 ≧ 𝑢 ≧

1, 𝑟 + 1 ≧ 𝑣 ≧ 1 and 𝑟 ≧ 𝑤 ≧ 1, and if 𝑖𝑢 + 𝑗𝑣 ≧ 𝑘𝑤−1 + 𝑘𝑟 + 2 then(𝑖1, … , 𝑖𝑢−1,, 𝑖𝑢 +

1,… , 𝑖𝑟 + 1; 𝑗1… , 𝑗𝑣−1, 𝑗𝑣 + 1,… , 𝑗𝑟 + 1; 𝑘1, … , 𝑘𝜔−1, 𝑘𝜔 + 1,… , 𝑘𝑟 + 1) ∈ 𝑆𝑟
𝑛+1. Here 𝑘0 =

0 and ir+1 = jr+1 = kr + 1 by definition. In particular, (𝑖1 + 1,… , 𝑖𝑟 + 1; 𝑗1… , 𝑗𝑟; 𝑘1 + 1) ∈
𝑆𝑟
𝑛+1. 

Proof: By Theorem (1.1.5) we may assume 𝑛 = 𝑘𝑟. Let (𝑥𝑝), (𝑦𝑝) and (𝑧𝑝), 1 ≦ 𝑃 ≦ 𝑛 + 1, 

be orthonormal sequences of eigenvectors corresponding to the eigenvalues (𝛼𝑝), (𝛽𝑝) and 

(γP) of 𝐴, 𝐵 and 𝐴 + 𝐵. Since 𝑥𝑝, 𝑖𝑣 ≧ 𝑘𝑤−1 +  𝑛 +  2, there exists an n dimensional subspace 

𝑀 containing the vectors 𝑥𝑝, 𝑖𝑢 ≧ 𝑘𝜔−1 + 𝑛 + 1, the vectors 𝑦𝑝, 𝑖𝑣 + 1 ≦ 𝑝 ≦  𝑛 + 1, and the 

vectors 𝑧𝑝, 1 ≦ 𝑝 ≦  𝑘𝜔−1 + 1. Let (𝛼𝑝
′ ), (𝛽𝑝

′ ) and (𝛾𝑝
′) be the eigenvalues of 𝐴𝑀, 𝐵𝑀, 

and(𝐴 +  𝐵). By hypothesis 

𝛾𝑘1
′ +. . . +𝛾𝑘𝑟

′ ≦ 𝛼𝑖1
′ +⋯+ 𝛼𝑖𝑟

′ +⋯𝛽𝑗1
′ +⋯+𝛽𝑗𝑟

′ . 

The theorem now follows because γ′𝑝 = γ𝑝 for 1 ≦ 𝑝 ≦ 𝑘𝑤−1, 𝛾𝑝+1 ≦ 𝛾𝑝
′  for 𝑘𝑤 ≦ 𝑝 ≦

𝑛, 𝛼𝑝
′ ≦ 𝛼𝑝 for 1 ≦ 𝑝 ≦ 𝑖𝑢−1, 𝛼𝑝

′ = 𝛼𝑝+1for 𝑖𝑢  ≦ 𝑝 ≦ 𝑛, 𝛽𝑝
′ ≦ 𝛽𝑝 for 1 ≦ 𝑝 ≦ 𝑗𝑢−1 and 𝛽𝑝

′ =

𝛽𝑝+1 for 𝑗𝑣 ≦ 𝑝 ≦ 𝑛. 

Theorem (1.1.6) yields a simple proof of the following theorem due to Lidskii. 

Theorem (1.1.7)[10]:[292]. If 1 ≦ 𝑝 < ⋯ < 𝑝𝑟 ≦ 𝑛, then (𝑝1, … , 𝑝𝑟; 1, … , 𝑟; ) ∈  𝑆𝑟
𝑛. 

Proof: Obviously (11, … , 𝑟; 1, … , 𝑟; 1, … , 𝑟) ∈  𝑆𝑟
𝑛. Using Theorem (1.1.6) 𝑝1 − 1 times with 

𝑢 = 𝜔 = 1, 𝑣 = 𝑟 + 1, we find (𝑝1, 𝑝1 + 1,… , 𝑝1 + 𝑟 − 1, ; 1, … , 𝑟: 𝑝1, 𝑝1 + 1,… , 𝑝1 + 𝑟 −
1) ∈  𝑆𝑟

𝑛. Such use of Theorem (1.1.6) is justified since 𝑖1 + 𝑗𝑟+1 = 𝑖1 + 𝑘𝑟 + 1 ≧ 𝑘𝑟 + 2 =
𝑘0 + 𝑘𝑟 + 2 at each stage. We may now apply Theorem (1.1.6) 𝑝2 − (𝑝1 + 1) times with 𝑢 =
𝜔 = 2. 𝑣 = 𝑟 + 1since at each stage 𝑖1 + 𝑗𝑟+1 = 𝑖1 + 𝑘𝑟 + 1 ≧ 𝑖1 + 𝑘𝑟 + 2 = 𝑘1 + 𝑘𝑟 + 2. 

The result is 

(𝑝1, 𝑝2, 𝑝2 + 1,… , 𝑝2 + 𝑟 − 2: 1,… , 𝑟; 𝑝1, 𝑝2, 𝑝2 
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+ 1,… , 𝑝2 + 𝑟 − 2) ∈  𝑆𝑟
𝑝2+𝑟−2 

Continuing in this way we find 

(𝑝1, … , 𝑝𝑟; 1, … , 𝑟; 𝑝1, … , 𝑝𝑟) ∈ 𝑆𝑟
𝑝𝑟 

By Theorem (1.1.5) the proof is complete. 

Theorem (1.1.8)[10]:(𝑖1; 𝑗1; 𝑘1) ∈ 𝑆1
𝑛 for 𝑛 ≧ 𝑘1 and only if 1 ≦ 𝑖1 ≦ 𝑘1, 1 ≦ 𝑗1 ≦ 𝑘1, and 

𝑖1 + 𝑗1 = 𝑘1 + 1. 

Proof: The sufficiency of the conditions, due to Weyl, is usually proved by the minimax 

principle. It can also be proved using Theorem (1.1.6) . We have already seen the necessity of 

𝑖1 ≦  𝑘1 and 𝑗1 ≦  𝑘1  in the proof of Theorem (1.1.5). Now suppose 𝑖1 + 𝑗1 ≦  𝑘1 + 2. Let 

𝐴 = diag (1, … ,1,0,… , 0) with 𝑖1 − 1 ones, and 𝐵 =  𝑑𝑖𝑎𝑔(0,… , 0,1,… , 1) with 𝑗1 −  1 ones, 

where the orders of 𝐴 and 𝐵 are k1. Since 𝑘1 − 𝑗1  +  1 ≦  𝑖1 −1, all the eigenvalues of 𝐴 + 𝐵 

are ≧  1 . Therefore 𝛾𝑘1 ≧ 1, while 𝛼𝑖1 =  𝛽𝑗1 = 0, contradicting (𝑖1, 𝑗1, 𝑘1) ∈ 𝑆1
𝑘 

Theorem (1.1.9)[10]: If i, j and k are ordered pairs of integers satisfying  

1 ≦ 𝑖1 ≦ 𝑖2 ≦ 𝑛, 1 ≦ 𝑗1 ≦ 𝑗2 ≦ 𝑛, 1 < 𝑘1 < 𝑘2 ≦ 𝑛,                        (22) 

𝑖1 + 𝑗1 ≦ 𝑘1 + 1                                                               (23) 
𝑖1 + 𝑗2
𝑖2 + 𝑗1

} ≦ 𝑘2 + 1                                                             (24) 

𝑖1 + 𝑖2 + 𝑗1 + 𝑗2 = 𝑘1 + 𝑘2 + 3                                               (25) 

then (𝑖; 𝑗; 𝑘) ∈ 𝑆2
𝑛 

Proof: By Theorem (1.1.5) we may assume 𝑛 = 𝑘2. We proceed by induction on n. If n =  2 

the theorem follows from (1). Suppose the theorem holds for all 𝑛 < 𝑁, where 𝑁 > 2. By (22), 

(23) and (24), 𝑖𝑝 ≦ 𝑘𝑝 and 𝑗𝑝 ≦ 𝑘𝑝, 𝑝 = 1,2. Suppose 𝑖1 > 1. Then the pairs (𝑖1 − 1, 𝑖2 −

1),(𝑗1, 𝑗2)and(𝑘1 − 1, 𝑘2 − 1)satisfy (22)-(25). Therefore by the induction hypothesis 

(𝑖1 − 1, 𝑖2 − 1; 𝑗1, 𝑗2; 𝑘1 − 1, 𝑘2 − 1) ∈ 𝑆2
𝑁−1If we apply Theorem (1.1.6) with 𝑢 = 𝑤 =

1, 𝑣 = 3, we find (𝑖; 𝑗; 𝑘) ∈ 𝑆2
𝑁 . A similar method takes care of the case 𝑗1 > 1. Therefore we 

may assume 

𝑖1 = 𝑗1 = 1                                                                     (26) 

If 

(𝑖1 , 𝑖2 − 1; , 𝑗1, 𝑗2 − 1; 𝑘1, 𝑘2 − 1, 𝑘2 − 1)  ∈ 𝑆2
𝑁−1                       (27) 

and if 

𝑖2 + 𝑗2 ≧ +3 + 𝑘2                                                                  (28) 

then Theorem (1.1.6) with 𝑢 = 𝑣 = 2,𝜔 = 1 allows us to conclude (𝑖; 𝑗; 𝑘) ∈ 𝑆2
𝑁. But the 

Condition (28) which is needed for the application of Theorem (1.1.6)  will also guarantee (27). 

To see this, first note that (27) can fail only when 

(i)  𝑖2 = 𝑖1 + 1 = 2 

or 

(ii) 𝑗2 = 𝑗1 + 1 = 2 
or 

(iii) 𝑘1 = 1 
or 

(iv) 𝑖1 + 𝑗1 = 𝑘1 + 1. 

If (i) holds then 𝑖1 + 𝑗2 = 2 + 𝑗2 ≦ 2 + 𝑘2, contradicting (28). Similarly 
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(ii) cannot hold. If (iii) holds, then by (26), 𝑖1 + 𝑖2 + 𝑗1 + 𝑗2 = 2 + 𝑖1 + 𝑗2 = 𝑘1 + 𝑘2 + 3 =
𝑘2 + 4, 𝑜𝑟 𝑖1 + 𝑗2 − 𝑘2 + 2, contradicting (28). Condition 

(iv) implies (iii) by (26). Therefore we may assume 

𝑖1 + 𝑗2 ≦ 2 + 𝑘2                                                                     (29) 

If 𝑖2 ≦ 𝑘1 + 2, it is easy to show by the induction hypothesis that (𝑖1, 𝑖2 − 1; 𝑗1, 𝑗2; 𝑘1 , 𝑘2 −
1) ∈ 𝑆2

𝑁−1 and Theorem (1.1.6)with 𝑢 = 𝜔 =  2, 𝑣 = 3implies (𝑖; 𝑗; 𝑘) ∈ 𝑆2
𝑁. Hence we 

assume 

𝑖2 ≦ 𝑘1 + 1  and 𝑗2 ≦ 𝑘1 + 1.                                                   (30) 

Now (25) and (26) imply 𝑖2 + 𝑗2 = 𝑘1 + 𝑘2 + 1, which with (29) implies 𝑘2 = 1. Therefore 

by (30) and (22), 𝑖2 + 𝑗2 = 2 and hence 𝑖1 + 𝑗1 = 1. Using (25) we find 𝑘2 = 2, contradicting 

𝑁 > 2.  

The proof is complete.  

If in (25) we replace the equality sign by ≦, Theorem (1.1.9) remains true. For if 𝑖,j and k 

satisfy (22)-(24) and the modified (25), there exists a pair 𝑘′ = {𝑘1
′ , 𝑘2

′ ) such that 𝑘1
′ ≦ 𝑘1, 𝑘2

′ ≤
𝑘2 and i, j , k′ satisfy (22)-(25). However Theorem (1.1.3) suggests that we consider only cases 

where (19) holds. Conditions (23) and (24) combined may be expressed as follows: 

𝑖𝑢  +  𝑗𝑣  ≦  𝑘𝜔  +  1 whenever1 ≦  𝑖 ≦  2, 1 ≦  𝑗 ≦ 2, 1 ≦ 𝜔 ≦  2, and 𝑢 +  𝑣 =  𝜔 +
 1. This suggests the following conjecture. Let us define inductively the following sequence 

of sets of triples of sequences of integers:Let (𝑖1, 𝑗1 , 𝐾1) ∈ 𝑇1
𝑛 if 1 ≦  𝑖1  ≦ 𝑛, 1 ≦  𝑗1 ≦

 𝑛, 1 ≦  𝑘1  ≦  𝑛, and i1 + j1 = K1 + 1 and let (𝑖1, … , 𝑖𝑟;  𝑗1 , … , 𝑗𝑟;  𝐾1, … , 𝑘𝑟) ∈ 𝑇𝑟
𝑛, if 1 ≦

 𝑖1 < ⋯ < 𝑖𝑟  ≦ 𝑛 ,1 ≦ 𝑗1 ≦ 𝑛, 1 ≦ 𝑘1 < ⋯ < 𝑘𝑟 ≦ 𝑛, and 

                          𝑖1 +⋯+ 𝑖𝑟 + 𝑗1 +⋯+ 𝑗𝑟 ≦ 𝑘1 +⋯+ 𝑘𝑟 +
𝑟(𝑟+1)

2
                                     (31)        

And 

                            𝑖𝑢1 +⋯+ 𝑖𝑢𝑠 + 𝑗𝑣1 +⋯+ 𝑗𝑣𝑠 ≦ 𝑘𝜔1 +⋯+ 𝑘𝜔𝑠 +
𝑠(𝑠+1)

2
                       (32) 

Whenever 

(𝑢; 𝑣; 𝜔)  ∈ 𝑇𝑠
𝑟, 1 ≤ 𝑠 ≤ 𝑟 − 1. 

Theorem (1.1.8) and (1.1.9) show that 𝑇𝑟
𝑛 ⊂ 𝑆𝑟

𝑛 for 𝑟 = 1, 2. It seems reasonable to conjecture 

𝑇𝑟
𝑛 ⊂ 𝑆𝑟

𝑛 for all 𝑟. The case 𝑟 = 3is the following. 

Theorem (1.1.10)[10]: If i, j and k are ordered triples of integers such that 

1 ≦ 𝑖1 < 𝑖2 < 𝑖2 ≦ 𝑛, 1 ≦ 𝑗1 < 𝑗2 < 𝑗2 ≦ 𝑛, 1 ≦ 𝑘1 < 𝑘2 < 𝑘3 ≦ 𝑛            (33) 

𝑖1 + 𝑗1 ≦ 𝑘1 + 1                                                             (34) 
𝑖1 + 𝑗2
𝑖2 + 𝑗1

} ≦ 𝑘2 + 1                                                             (35) 

𝑖1 + 𝑗3
𝑖2 + 𝑗2
𝑖3 + 𝑗1

} ≦ 𝑘3 + 1                                                                      (36) 

                      𝑖1 + 𝑖2 + 𝑗1 + 𝑗2 ≦ 𝑘1 + 𝑘2 + 3                                                    (37) 
𝑖1 + 𝑖2 + 𝑗1 + 𝑗3
𝑖1 + 𝑖3 + 𝑗1 + 𝑗2

} ≦ 𝑘1 + 𝑘3 + 3                                                (38) 
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𝑖1 + 𝑖2 + 𝑗2 + 𝑗3
𝑖2 + 𝑖3 + 𝑗1 + 𝑗2
𝑖1 + 𝑖3 + 𝑗1 + 𝑗3

} ≦ 𝑘2 + 𝑘3 + 3                                              (39) 

      𝑖1 + 𝑖2 + 𝑖3 + 𝑗1 + 𝑗2 + 𝑗3 = 𝑘1 + 𝑘2 + 𝑘3 + 6,                        (40) 

Then (𝑖, 𝑗, 𝑘) ⊂ 𝑆3
𝑛 

Proof: The proof begins along the same lines as the proof of Theorem (1.1.9) and will only be 

sketched. We may assume n =  k3, and proceed by induction on n. When 𝑛 = 3, 𝑖1 = 𝑗1 =
 𝑘1 = 1, 𝑖2 = 𝑗2 = 𝑘2 2, 𝑖3 = 𝑗3 = 𝑘3 = 3, and the result follows from (1). Assume the 

theorem for all 𝑛 < 𝑁, where 𝑁 > 3. As in Theorem (1.1.9), we may assume 

𝑖1 =  𝑗1 = 1                                                                       (41) 

If 
(𝑖1, 𝑖2 − 1. 𝑖3 − 1), (𝑗1, 𝑗2, 𝑗3 − 1), (𝑘1 − 1, 𝑘2 − 2, 𝑘3 − 1)                        (42) 

Satisfies (33)- (40) and if 

𝑖1 + 𝑗3 ≧ 𝑘3 + 3                                                                          (43) 

then the induction hypothesis and Theorem (1.1.6)with 𝑢 =  2, 𝑣 =  3, 𝑤 =  1 yield the 

theorem. Again the condition (43) which is needed for the application of Theorem (1.1.6) will 

guarantee (42). For example 𝑘1 —  1 ≧  1, because if 𝑘1  =  1, then by (38) and (41), 𝑖1 + 𝑗3 ≦
𝑘3 +  2, contradicting (43). The second inequality of (36) together with (43) and 𝑗3 ≦ 𝑘3 
(which follows from (36)) ensure 𝑗3 − 1 > 𝑗2. We may therefore assume 

i2 + j3
i3 + j2

} ≦ k3 + 2.                                                      (44) 

Next we show that we may assume 

𝑖2 ≦ 𝑘1 + 1 and 𝑗2 ≦ 𝑘1 + 1                                                (45) 

by showing that if 𝑖2 ≦ 𝑘1 + 2, then(𝑖1, 𝑖2 − 1, 𝑖3 − 1; 𝑗1, 𝑗2, 𝑗3, 𝑘1, 𝑘2 − 1, 𝑘3 − 1) ∈ 𝑆3
𝑁 and 

Theorem (1.1.6) with 𝑢 =  2, 𝑣 =  3,𝑤 =  2gives (𝑖;  𝑗 ;  𝑘) ∈ 𝑆3
𝑁 In a similar manner we may 

assume 

𝑖3 + 𝑗3 ≦ 𝑘1 + 𝑘3 + 2                                                   (46) 

𝑖3 ≦ 𝑘2 + 1, 𝑗3 ≦ 𝑘3 + 1                                               (47) 

Now (33)-(41) together with (44)-(47) are easily seen to imply 𝑘1 + 𝑘2 −  𝑘3, 𝑖2 =  𝑖2 = 𝑘3 +
1, 𝑖3 = 𝑖3 = 𝑘2 + 1 and 𝑘1 + 1 ≦ 𝑘2 ≦ 2𝑘1. Therefor the theorem will be proved if we can 

show that 

(1, 𝑝 + 1, 𝑝 + 𝑞 + 1; 1, 𝑝 + 1, 𝑝 + 𝑞 + 1; 𝑝, 𝑝 + 𝑞, 2𝑝 + 𝑞) ∈ 𝑆3
𝑛 

whenever1 ≦ 𝑞 ≦ 𝑝and 2𝑝 + 𝑞 = 𝑛. 

Let 𝐴, 𝐵 and 𝐴 + 𝐵 be of order n with eigenvalues (𝛼𝑝), (𝛽𝑝) and 

(𝛾𝑝). We have 𝑞 𝛾𝑝  ≦ 𝛾𝑝 + 𝛾𝑝+1 +⋯ + Ύ𝑃−𝑟+𝑖, 𝑞Ύ𝑃+𝑞 , +⋯+ Ύ𝑃+𝑞 ≤ 𝛾𝑝+𝑞 +⋯+

𝛾𝑝+1and 𝑞Ύ𝑃+𝑞 ≦ 𝛾2𝑝+𝑞 +⋯+ 𝛾2𝑝+1. Hence 

         𝑞(𝛾𝑝 +Ύ𝑃+𝑞 +Ύ2𝑃+𝑞) ≦  𝑡𝑟𝑎𝑐𝑒 (𝐴 + 𝐵) 

            − (𝛾1 +⋯+ 𝛾𝑝+𝑞 + 𝛾𝑝+𝑞+1 +⋯+ 𝛾2𝑝) . 

Similarly 

                    𝑞(𝛼1 + 𝛼𝑝+1 + 𝛼𝑝+𝑞+1) 

≧  𝑡𝑟𝑎𝑐𝑒 𝐴 − (𝛼𝑞+1 +⋯+ 𝛼𝑝  +  𝛼𝑝+2𝑞+1  + ⋯ + 𝛼2𝑝+𝑞) 
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and we have a similar statement for the 𝛽′s. Therefore we need only 

prove 

(𝑞 +  1,… , 𝑝, 𝑝 +  2𝑝 +  1,… , 2𝑝 +  𝑞;  𝑞 +  1,… , 𝑝, 𝑝 +  2𝑞 
+ 1,… ,2𝑝 +  𝑞; 1,… , 𝑝 −  𝑞, 𝑝 +  1,… , 2𝑝)  ∈ 𝑆2̅𝑝−2𝑞

𝑛  

This will follows from Theorem (1.1. 4) (ii) if we can show 

(1,… , 𝑝 −  𝑞, 𝑝 +  𝑞 +  1,… , 2𝑝;  1, , 𝑝 −  𝑞, 𝑝 +  𝑞                      
+ 1, . . . , 2 𝑝 ;  𝑞 +  𝑙, . . . , 𝑝 , 𝑝 +  2𝑞 +  𝑙, , 2𝑝 +  𝑞) ∈ 𝑆2𝑝−2𝑞

𝑛   .    (48) 

By Theorem (1.1.7) we have 

(1, . . . , 2𝑝 −  2𝑞 ;  1,… , 𝑝 − 𝑞, 𝑝 +  1,… , 2𝑝) ∈ 𝑆2𝑝−2𝑞
𝑝2

 

𝑝 + 1,… , 𝑃 −  𝑞, 𝑃 +  1,… , 2𝑝 −  𝑞) ∈ 𝑆2𝑝−2𝑞
2𝑝

 

We may apply Theorem (1.1.6) q times with 𝑢 = 𝑤 =  𝑝 − 𝑞 +  1, 𝑣 =  2𝑝 − 2𝑞 + 1 to 

obtain 

(1, , p −  q, ί >  + 1, , 2𝑝 −  𝑞;  1, , 𝑝 −  𝑞, 

𝑝 +  1, , 2𝑝 −  𝑞;  1, , 𝑝 −  𝑞, 𝑝 +  𝑞 +  1, , 2𝑝)  ∈ 𝑆2𝑝−2𝑞
𝑝2

 . 

Theorem (1.1.6) applied q times with 𝑢 = 𝑣 = 𝑝 − 𝑞 + 1,𝜔 = 1yields (48).The proof is now 

complete. 

A proof of 𝑇4
𝑛 ⊂ 𝑆4

𝑛 along the same lines runs into the following difficulty. The first half of the 

proof, that is, the application of Theorem (1.1.6) in all possible ways, carries through. However 

the cases left untouched turn out to be too numerous to handle by the methods of the second 

half of the proof of Theorem (1.1.10). We have verified 𝑇4
𝑛 ⊂ 𝑆4

𝑛 for 𝑛 ≤ 8. 

As for the statement 𝑆𝑟
𝑛 ⊂ 𝑇𝑟

𝑛, it is possible to show by a consideration of diagonal 

matrices that if (𝑖; 𝑗; 𝑘) ∈ 𝑆𝑟
𝑛 then (32) holds for 𝑠 =  1,2. This together with the remark 

following Theorem (1.1,9) determines 𝑆𝑟
𝑛. But the general statement 𝑆𝑟

𝑛 ⊂ 𝑇𝑟
𝑛 is false even if 

we weaken the definition of 𝑇𝑟
𝑛 by replacing the equality sign in (31) by≦. For example a 

consideration of the trace condition shows that (1, 5, 9, 12;  1, 5, 9, 12;  4, 8, 12, 16) ∈  𝑆4
16 

Guided by Theorem (1.1.4) (ii), the dual set 𝑇̃𝑟
𝑛 may be defined inductively as follows: 

(𝑖1, 𝑗1, 𝑘1) ∈ 𝑇̃𝑟
𝑛 if𝑖1 + 𝑗1 + 𝑘1 + 𝑛, and (𝑖, 𝑗, 𝑘) ∈ 𝑇̃𝑟

𝑛 if 𝑖1 +⋯+ 𝑖𝑟 + 𝑗1 +⋯+ 𝑗𝑟 = 𝑘1 +
⋯ .+𝑘𝑟 + 𝑛𝑟 − 𝑟(𝑟 − 1)/2 and  

𝑖𝑢1 +⋯+ 𝑖𝑢𝑠 + 𝑗𝑣1 +⋯+ 𝑗𝑣𝑠 ≦ 𝑘𝑤1 +⋯+ 𝑘𝑤𝑠 + 𝑠(𝑠 + 1)/2 

Wherever (𝑢; 𝑣; 𝑤) ∈ 𝑇̃𝑟
𝑛. It is easily seen that (𝑖, 𝑗, 𝑘) ∈ 𝑇̃𝑟

𝑛 if and only if (𝑛 − 𝑖𝑟 + 1… . , 𝑛 −
𝑖1 + 1; 𝑛 − 𝑗𝑟 + 1… . , 𝑛 − 𝑗1− + 1; 𝑛 − 𝑘𝑟 + 1,… , 𝑛 − 𝑘1 + 1) ∈ 𝑇̃𝑟

𝑛 Hence by Theorem 

(1.1,4), Tr
n ⊂ Sr

n is equivalent to 𝑇𝑟
𝑛 ⊂ 𝑆̃𝑟

𝑛 . we have been unable to prove the analogue of the 

last transformation rule of Theorem (1.1.4). However we can prove that if (𝑖; 𝑗; 𝑘) ∈ 𝑇̃𝑟
𝑛 then 

(𝑖′; 𝑗′; 𝑘′) ∈ 𝑇𝑛−1,
𝑛  where i′, j ′ , and k' are the complements with respect to n. 

    We return to the problem of determining the set E that being  defined. Let 𝐹 be the set of 

points γ defined by γ1 ≧ ⋯ ≧ γn, 

𝛾1 +⋯+ 𝛾𝑛 = 𝛼1 +⋯+ 𝛼𝑛 + 𝛽1 +⋯+ 𝛽𝑛 
And 

𝛾𝑘1 +⋯+ 𝛾𝑘𝑟 ≦ 𝛼𝑖1 +⋯+ 𝛼𝑘𝑟 + 𝛽𝑖 +⋯+ 𝛽𝑖𝑟 

Wherever  
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(𝑖; 𝑗; 𝑘) ∈ 𝑇̃𝑟
𝑛, 1 ≦ 𝑟 ≦ 𝑛 − 1. 

We have shown that 𝐸 ⊂  𝐹 for 𝑛 ≦  4. We will prove that 𝐸 = 𝐹 for 𝑛 ≦  4. 
We assuming 𝛼1 > ⋯ > 𝛼𝑛 and 𝛽1 > ⋯ > 𝛽𝑛. The set 𝐸′ defined is a closed subset of 

E. Since F is closed and convex, it will follow that 𝐸′ = 𝐹, and therefore 𝐸 = 𝐹, if the boundary 

of 𝐸′ is contained in the boundary of 𝐹. To see this, let 𝛾′ be an interior point of 𝐸′ and suppose𝛾′ 
is any point of F. If 𝛾′ is not in 𝐸′ there must be a boundary point of 𝐸′ in the open segment 

joining 𝛾 and 𝛾′. But all points of this open segment are interior points of 𝐹. 

A boundary points of 𝐸′ with at least two equal coordinates is obviously a boundary 

point of 𝐹. If 𝛾 is a boundary point of 𝐸′ with distinct coordinates, there is associated with 𝛾 a 

triple (𝑖; 𝑗; 𝑘)satisfying the conditions of Theorem (1.1.3). All that remains to prove is that 

(𝑖; 𝑗; 𝑘) ∈ 𝑇𝑟
𝑛 To this end we first prove the following theorem. 

Theorem (1.1.11)[10]:If𝛾 is a boundary point of 𝐸′ with associated sequences (𝑖; 𝑗; 𝑘) of order 

𝑟, then for any (𝑥;  𝑦;  𝑧)  ∈ 𝑆̃𝑚,
𝑟  there cannot exist a triple (𝑢; 𝑣; 𝜔) ∈ 𝑇𝑚

𝑛−𝑟 such that 𝑖𝑥𝑝 ≦

𝓍𝑝 + 𝑢𝑝 − 1, 𝑗𝑣𝑝 ≦ 𝑦𝑝 + 𝑣𝑝 − 1, and 𝑘𝑧𝑝 ≧ 𝑧𝑝 + 𝜔𝑝, for 1 ≦ 𝑝 ≦ 𝑚. 

Proof: For convenience, we write 𝛼(𝑝) instead of 𝛼𝑝. By hypothesis there exist Hermitian 

matrices 𝐴1, 𝐵1 and 𝐴1 + 𝐵1 with eigenvalues (𝛼(𝑖𝑝)) , (𝛽(𝑗𝑝)), and(𝛾(𝑘𝑝)) , 𝑝 = 1, 𝑟,and 

Hermitian matrices 𝐴2, 𝐵2 and 𝐴2 + 𝐵2 with eigenvalues (𝛼(𝑖𝑝
′ ), (𝛽(𝑗𝑃

′ )), and (𝛾(𝑘𝑝
′ )) , 𝑝 =

1,… , 𝑛 −  𝑟, where 𝑖′ is complement of 𝑖 with respect to 𝑛. If there exists a triple (𝑢;  𝑣, 𝑤)  ∈
𝑆𝑚
𝑛−𝑟such that 𝑖𝑋𝑝 < 𝑖𝑢𝑝

′ , 𝑗𝑣𝑝 < 𝑗 𝑣𝑝
′ , and 𝑘𝑧𝑝

′ > 𝑘𝑤𝑝
′ , 1 ≦ 𝑝 ≦ 𝑚, ,then we have 

∑𝛼(𝑖𝑧𝑝) +

𝑚

𝑝=1

∑𝛽(𝑗𝑣𝑝) ≦

𝑚

𝑝=1

∑𝛾(𝑘𝑧𝑝) < ∑𝛾 (𝑘𝑤𝑝
′ ) ≦ ∑𝛼(𝑖𝑢

′ ) +∑𝛽(𝑗𝑣
′)

𝑚

𝑝=1

𝑚

𝑝=1

𝑚

𝑝=1

𝑚

𝑝=1

 

This is impossible since 𝛼 (𝑖𝑧𝑝) > 𝛼 (𝑖𝑢𝑝
′ )  and 𝛽 (𝑗𝑣𝑝) < 𝛽 (𝑗𝑣𝑝

′ ). Therefore it remains only 

to show that 𝑖𝑝 < 𝑖𝑞
′  is implied by 𝑖𝑝 ≦  𝑝 +  𝑞 —1. If 𝑖𝑝 ≦  𝑝 + 𝑞 − 1, then at least 𝑝 terms 

of the sequence 𝑖 are ≦  𝑝 +  𝑞 − 1. Therefore at most 𝑞 − 1 positive integers ≦  𝑝 +  𝑞 − 1 

are not in i. Hence 𝑖𝑝
′ > 𝑝 + 𝑞 − 1 ≧ 𝑖𝑝 

Theorem (1.1.12)[10]:If 𝛾is a boundary point of 𝐸′ with associated sequences 𝑖, 𝑗 , 𝑘 of order 

r, then 𝑖𝑥 + 𝑗𝑦 ≧ 𝑘𝑧 + r whenever (𝑥, 𝑦, 𝑧) ∈ 𝑇̃1
𝑟 . More generally,if 𝓍 + 𝑦 ≧  𝑧 + 𝑟, the 𝑖𝓍 −

𝓍 + 𝑗𝑦 − 𝑦 ≧  𝑘𝑧 − 𝑧. 

Proof: We have 𝑛 ≧  𝑟 + 1 ≧  2. Since (𝓍;  𝑦;  𝓍 +  𝑦 − 𝑟)  ∈ 𝑇̃1
𝑟 ⊂ 𝑆̃1

𝑟, it follows that 

(𝑥;  𝑦;  𝑧) ∈ 𝑆̃1
𝑟. Let 𝑢 =  𝑖𝑥 − 𝑥 + 1, 𝑣 = 𝑗 𝑦 − 𝑦 +  1, and 𝜔 = 𝑘𝑧 − 𝑧. Clearly, 𝑢 ≧ 1, 𝑣 ≧

 1, and 𝑤 ≦ 𝑛 − 𝑟 since 𝑘1 − 1 ≦ 𝑘2 − 2 ≦ ⋯ ≦  𝑘𝑟 − 𝑟 ≦ 𝑛 − 𝑟. We must prove 𝑢 +  𝑣 ≦
𝜔 + 2. It 𝑢 + 𝑣 ≦  𝜔 + 1, then 𝜔 ≧ 𝑙, 𝑢 ≦ 𝜔, and 𝑣 ≦ 𝜔. Therefore (𝑢;  𝑣;  𝜔 ) ∈ 𝑇̃1

𝑛−𝑟 This 

contradicts Theorem (1.1.11) 

Theorem (1.1.13)[10]:Under the same hypothesis as Theorem (1.1.12),if n ≧ 𝑟 + 2, then 𝑖𝑧1 +

 𝑖𝑥2 + 𝑗𝑣1 + 𝑖𝑦2 ≧  𝑘𝑧1 + 𝑘𝑧2 + 2𝑟 − 1 whenever (𝑥, 𝑦, 𝑧) ∈ 𝑇̃𝑧
𝑟. 
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Proof: We are given 𝑥1 + 𝑦2 ≧ 𝑧1 + 𝑟, 𝑥2 + 𝑦1 ≧ 𝑧1 + 𝑟, 𝑥2 + 𝑦2 ≧ 𝑧2 + 𝑟. and𝑥1 + 𝑥2 +
𝑦1 + 𝑦2 + 𝑧1 + 𝑧2 + 2𝑟 − 1.Let 𝛼𝑝 = 𝑖𝑥𝑝 − 𝑥𝑝 + 1, 𝑏𝑝 = 𝑖𝑣𝑝 − 𝑦𝑝 + 1. and 𝐶𝑝 = 𝜔𝑧𝑝 −

𝑧𝑝, 𝑝 = 1.2. By Theorem (1.1.12), 𝛼1 + 𝑏2 ≧ 𝑐1 + 2, 𝛼2+≧ 𝑐1 + 𝑐2 + 3. Therefore 

𝑎1 + 𝑏2 ≧ 𝑐1 + 1                                                                     (49) 

𝑎1 + 𝑏2 ≧ 𝑐2 + 1                                                                     (50) 

𝑎2 + 𝑏1 ≧ 𝑐2 + 1.                                                                    (51) 

Also 1 ≦ 𝑎1 ≦ 𝑎2, 1 ≦ 𝑏1 ≦ 𝑏2 and 𝑐2 ≦ 𝑛 − 𝑟. By (49), c1 ≧  1. Moreover 𝑐1 + 2 ≦  𝑎1 +
 𝑏2  ≦  𝑐2 + 1, so that c1 + 1 ≦ c2. Now let 𝑢1 = 𝛼1, 𝑢2 =max (𝛼2, 𝛼1  +  1), 𝑣1 = 𝑏1, 𝑣2  = 

max (𝑏2, 𝑏1 + 1),𝜔1 = 𝑐1, and 𝑤2 = 𝑐2. It is easy to see that, and 𝑢1 + 𝑣1 ≦ 𝜔1 + 1, 𝑢1 +
𝑣2 ≦ 𝜔2 + 1, 𝑢2 + 𝑣1 ≦ 𝜔2 + 1 and 𝑢1 + 𝑣2 + 𝑣1 + 𝑣2 ≦ 𝜔1 +𝜔2 + 3. As previously 

remarked there exists a pair (𝜔1
′ , 𝜔2

′ ) such thatω1
′ ≦ ω1ω2

′ ≦ ω2, and (𝑢;  𝑣;  𝜔)) ∈ 𝑇̃𝑧
𝑛−𝑟. This 

contradicts Theorem (1.1.11). 

Using a generalized version of Theorem (1.1.13), it is possible to show that 

𝑖𝑥1 + 𝑖𝑥2 + 𝑗𝑣1 + 𝑗𝑣2 ≦ 𝑘𝑧1 + 𝑘𝑧2 + 𝑘𝑧3 + 𝑟 + 𝑟 − 1 + 𝑟 − 2 

Whenever(𝑥; 𝑦; 𝑧) ∈ 𝑇̃𝑧
𝑛−𝑟 , 𝑛 ≧ 𝑟 + 2 

Theorem (1.1.14)[10]: If 𝛾 is a boundary point of E′ with associated sequences i, j , k of order 

𝑟 = 1, 2, 3 or  n − 1, then (𝑖; 𝑗; 𝑘) ∈ 𝑇̃𝑧
𝑛. 

Proof: For𝑟 = 1this is obvious. For 𝑟 = 𝑛 − 1, the complementary  sequences with respect to 

𝑛 are of order 1 and satisfy 𝑖1
′  +  𝑗1

′  = 𝑘1
′  +  𝑛. Therefore (𝑖′; 𝑗′;  𝑘′) ∈ 𝑇̃1

𝑛. By the last 

sentence, it follows that(𝑖′𝑗;  𝑘) ∈ 𝑇̃1
𝑛. For the cases 𝑛 = 3,4 this can be easily verified by 

listing cases. Now suppose 𝑟 = 2. We must prove that (23) and (24) hold. In view of (25), this 

means we must show that 𝑖𝑥  +  𝑗𝑣 ≧ 𝑘𝑧 + 2 whenever (𝑥; 𝑦; 𝑧) ∈ 𝑇̃1
2. But this follows from 

Theorem (1.1.12). Suppose 𝑟 = 3. We may assume  𝑛 ≧  5. By (40) and Theorems(1.1.12)  

and(1.1.13) we have (34)-(39), since if (𝑥;  𝑦;  𝑧) ∈ 𝑇̃𝑝
2 then(𝑥′; 𝑦′; 𝑧′) ∈ 𝑇3−𝑞

3 , 𝑝 = 1, 2.  

Theorem (1.1.14) completes the proof that 𝐸 = 𝐹 for 𝑛 ≦ 5. It is possible to extend the proof 

to  𝑛 ≦ 8.  

Section (1.2) Interlacing Inequalities for Singular Values of Submatrices  

We give a brief summary of certain particular cases of our results that merit special 

attention. Let A bean 𝑛 ×  𝑛 real or complex matrix, and let 𝛼1  ≧ 𝛼2 ≧ ⋯ ≧ 𝛼𝑛 be the 

singular values of A. (They are defined to be the eigenvalues of the positive semidefinite matrix 

(𝐴𝐴∗)1/2. ) Let 𝐵 =  𝐴𝑖𝑗 be the (𝑛 − 1)-square submatrix of A obtained by deleting row i and 

column 𝑗, and let 𝛽1 ≧ 𝛽2 ≧ ⋯ ≧ 𝛽𝑛−1 be the singular values of 𝐵. Our first theorem yields, 

as a special case, these interlacing inequalities: 

𝛼1  ≧ 𝛽1 ≧ 𝛼3 
𝛼2  ≧ 𝛽2 ≧ 𝛼4 

… 

𝛼𝑡  ≧ 𝛽𝑡 ≧ 𝛼𝑡+2,1 ≦ 𝑡 ≦ 𝑛 − 2,                                                (52) 

… 

𝛼𝑛−2  ≧ 𝛽𝑛−2 ≧ 𝛼𝑛, 

𝛼𝑛−2  ≧ 𝛽𝑛−1. 
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That inequalities (52) are the best that can be asserted is shown by (a special case of) Theorem 

(1.2.3). It follows from Theorem (1.2.3) that, if arbitrary nonnegative numbers 𝛽1 ≧ ⋯ ≧ 𝛽𝑛−1 

are given satisfying (52), there will always exist unitary matrices 𝑈 and 𝑉such that the singular 

values of (𝑈𝐴 𝑉)𝑖𝑗 are 𝛽1, … , 𝛽𝑛−1. (Of course, 𝐴 and 𝑈𝐴 𝑉 always have the same singular 

values 𝛼1, … , 𝛼𝑛.)Thus nothing more than (52) can hold in general, when looking at a fixed 

submatrix. Further results can be obtained, however, by examining all the submatrices of 𝐴 of 

fixed degree. Now let 𝛽𝑖𝑗,1 ≧ ⋯𝛽𝑖𝑗,𝑛−1denote the singular values of 𝐴𝑖𝑗.We obtain the 

following estimates on the mean square of the tth singular value of all the(𝑛 − 1)-square 

submatrices 𝐴𝑖𝑗of 𝐴: 

(
1

2
)
2

𝛼𝑡
2 +

2(𝑛 − 1)

𝑛2
𝛼𝑡
2 + (

𝑛 − 1

2
)
2

𝛼𝑡+2
2 ≦

1

𝑛2
∑ 𝛽𝑖𝑗,𝑡

2

𝑛

𝑖,𝑗=1

≦ (
𝑛 − 1

2
)
2

𝛼𝑡
2 +

2(𝑛 − 1)

𝑛2
𝛼𝑡+1
2 + (

1

2
)
2

𝛼𝑡+2
2 , 

 1 ≦ 𝑡 ≦ 𝑛 − 2,                                                                           (53) 

(
1

2
)
2

𝛼𝑛−1
2 +

𝑛 − 1 

𝑛2
1

𝑛
𝛼𝑛
2 ≦ ∑ 𝛽𝑖𝑗,𝑛−1

2

𝑛

𝑖,𝑗=1

≦ (
𝑛 − 1

2
)
2

𝛼𝑛−1
2 +

𝑛 − 1 

𝑛2
1

𝑛
𝛼𝑛.
2              (54) 

In (53) we have displayed convex combinations of 𝛼𝑡
2, 𝛼𝑡+1

2 , 𝛼𝑡+2
2  which serve as upper and 

lower bounds for the mean square of the tth singular value (𝑡 ≦  𝑛 − 2) of the different (𝑛 −
1)-square submatrices 𝐴𝑖𝑗 of A. (By (52), this mean lies between 𝛼𝑡

2 and 𝛼𝑡+2.
2 ) In (54), we 

have similar, though not precisely the same, convex combinations of 𝛼𝑛−1,
2 , 𝛼𝑛

2, and 0 yielding 

bounds for the mean square of the 𝛽𝑖𝑗,𝑛−𝑙. These results, (53) and (54), will appear as special 

cases of Theorem (1.2.5). 

Let 

𝑓𝑖𝑗(𝜆) = (𝜆 − 𝛽𝑖𝑗,)… (𝜆 − 𝛽𝑖𝑗,𝑛−𝑙)                               (55) 

be the singular value polynomial of𝐴𝑖𝑗. This is the polynomial whose roots are the squares of 

the singular values of Aij. Let 

𝑓(𝜆) = (𝜆 − 𝛼1
2)… (𝜆 − 𝛼𝑛

2)                                         (56) 

be the corresponding polynomial for A. As a particular instance of Theorem (1.2.6), we obtain 

∑∑𝑓𝑖𝑗(𝜆) =
𝑑

𝑑𝜆
𝜆
𝜆𝑑

𝑑𝜆

𝑛

𝑗=1

𝑛

𝑖=1

𝑓(𝜆)                                              (57) 

It is interesting to contrast formula (57) with the well-known result asserting that the sum of 

the characteristic polynomials of all the principal (𝑛 − 1) − quare submatrices of 𝐴 is just the 

derivative of the characteristic polynomial of 𝐴. 

We give first the definition of the singular values of a rectangular matrix. 

Definition (1.2.1)[238]: Let 𝐴 be an m x n matrix. The singular values 

𝛼1  ≧ 𝛼2 ≧ ⋯ ≧ 𝛼𝑚𝑖𝑛 (𝑚,𝑛)                                             (58) 

of A are the common eigenvalues of the positive semidefinite matrices (𝐴𝐴∗)1/2 and (𝐴∗𝐴)1/2. 
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Since AA* is m-square and A*A is n-square, the eigenvalues of (𝐴𝐴∗)1/2and ((𝐴𝐴∗)1/2do 

not coincide in full. However, it is well known that the nonzero eigenvalues (including 

multiplicities) of these two matrices always coincide. It is frequently convenient to define 𝑥𝑡 
to be zero for 𝑚𝑖𝑛(𝑚, 𝑛)  <  𝑡 ≦  𝑚𝑎𝑥(𝑚, 𝑛). Then 𝛼1

2  ≧ ⋯ ≧  𝛼𝑚𝑎𝑥 (𝑚,𝑛)
2  and the roots of 

AA* (respectively A*A) are the first m (respectively n) of these numbers. 

We are the following 

Theorem (1.2.2)[238]:Let 𝐴 be an 𝑚× 𝑛 matrix with singular values (58). Let 𝐵 be a 𝑝 ×  𝑞 

submatrix of 𝐴, with singular values 

𝛽1  ≧ 𝛽2 ≧ ⋯ ≧ 𝛽𝑚𝑖𝑛 (𝑝,𝑞)(59) 

Then 

𝛼𝑖 ≧ 𝛽𝑖,     𝑓𝑜𝑟 𝑖 = 1, 2,… . ,𝑚𝑖𝑛(𝑝, 𝑞).                                       (60) 

𝛽𝑖, ≧ 𝛼𝑖+(𝑚−𝑝)+(𝑛−𝑞), 𝑓𝑜𝑟 𝑖 ≦ 𝑚𝑖𝑛(𝑝 + 𝑞 −𝑚, 𝑝 + 𝑞 − 𝑛).                   (61)  

Proof: For an arbitrary matrix 𝑀, let 𝑀[𝑖1, … , 𝑖𝑝: 𝑗1, … , 𝑗𝑝]denote the submatrix of 𝑀 lying at 

the intersection of rows 𝑖1, . . , 𝑖𝑝, and columns 𝑗1, … , 𝑗𝑞. 

Suppose that 𝐵 = 𝐴 [𝑖1, … , 𝑖𝑝: 𝑗1, … , 𝑗𝑞]. To simplify notation let 𝜔 = {𝑖1, … , 𝑖𝑝}and 𝜏 =

{𝑗1, … , 𝑗𝑞} denote the sets of integers giving the rows and columns of 𝐴 used to form 𝐵, and 

denote 𝐵 by 𝐵 = 𝐴 [𝜔, 𝜏]. 
Let us view 𝐵 as a submatrix of 𝑈𝐴𝑉, where 𝑈 is an 𝑚-square unitary matrix and 𝑉 is an 𝑛-

square unitary matrix. In this proof we may take 𝑈 = 𝐼𝑚, and 𝑉 = 𝐼𝑛,. (In the next theorem, 𝑈 

and 𝑉 will become variable.) Then 

 𝐵 = 𝑈[𝑖1, … , 𝑖𝑝: 1, … ,𝑚] 𝐴𝑉[1,… , 𝑛: 𝑗1, … , 𝑗𝑞].                         (62) 

Thus  

𝐵𝐵∗ = 𝑈[𝑖1, … , 𝑖𝑝: 1, … ,𝑚] 𝐴𝑉[1,… , 𝑛: 𝑗1, … , 𝑗𝑞].                       (63) 
Where  

𝑋 = 𝐴𝑉[1,… , 𝑛: 𝑗1, … , 𝑗𝑞] .                                                            (64) 

is 𝑚 × 𝑞. Thus 𝐵𝐵∗ is a principal 𝑝 −square submatrix of the m-square Hermitian matrix 

𝑈𝑋𝑋∗𝑈∗. Let 

 𝓍1
2 ≧ 𝓍2

2 ≧ ⋯ ≧ 𝓍𝑚𝑖𝑛(𝑚,𝑞)
2 ≧ 𝓍𝑚𝑖𝑛(𝑚,𝑞)+1

2 = ⋯𝓍𝑚
2 = 0,                        (65) 

denote the eigenvalues of 𝑋𝑋∗. Thus 𝓍1, … . , 𝓍min(m,q)
  are the singular values of X. From the 

well-known formulas linking the eigenvalues of a Hermitian matrix with the eigenvalues of a 

principal submatrix, we obtain 

𝓍𝑖
2 ≧ 𝛽𝑖

2 ≧  𝓍𝑖+𝑚−𝑝
2 , 𝑓𝑜𝑟 𝑖 = 1, 2,… , 𝑝.                                                (66) 

Now  𝓍i
2, … , 𝓍min(m,q)

2 , 0(q −  min(m, q) times) are the eigenvalues of  

 𝑋∗𝑋 = 𝑉∗[𝑗1, … , 𝑗𝑞: 1, … , 𝑛]𝐴𝐴
∗𝑉[1,… , 𝑛: 𝑗1, … , 𝑗𝑞]                        (67) 

Thus 𝑋∗𝑋 is a principal q-square submatrix of the 𝑛 −square Hermitian matrix V∗A∗A V. Hence 

𝛼𝑖
2 ≧ 𝓍𝑖

2 ≧ 𝛼 𝑖+𝑛−𝑞
2   for 𝑖 = 1,2,… , 𝑝.                                                   (68) 

Thus for 𝑖 ≦  𝑚𝑖𝑛(𝑝, 𝑞) we have 𝛼𝑖
2 ≧ 𝓍𝑖

2 ≧ 𝛽𝑖
2, yielding (60). And for 𝑖 ≦ 𝑚𝑖𝑛 (𝑝 + 𝑞 −

𝑚, 𝑞 + 𝑞 − 𝑛) we have 𝛽𝑖
2 ≧ 𝛽𝑖+𝑚−𝑝

2 ≧ 𝛼𝑖+(𝑛−𝑞)+(𝑚−𝑝)
2  yielding (61). 
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The proof of Theorem (1.2.1) is now complete. We shall present a second proof of 

Theorem (1.2.1) at the later. 

Theorem (1.2.3)[238]:Let 𝐴 be an 𝑚× 𝑛 matrix with singular values (58). Let arbitrary 

nonnegative numbers (59) be given, satisfying both (60) and (61). 

Then 𝑚-square unitary matrix 𝑈 and 𝑛-square unitary matrix 𝑉 exist such that the singular 

values of the 𝑝 × 𝑞 submatrix 

(𝑈𝐴𝐶)[𝑖1, … , 𝑖𝑝] 𝐴𝑉[𝑗1, … , 𝑗𝑞] 

of 𝑈𝐴𝑉 are the numbers (59). 

Proof: Define 𝛽𝑖 to be zero if 𝑖 > 𝑚𝑖𝑛(𝑝, 𝑞), and define 𝛼𝑖 to be zero if i > 𝑚𝑖𝑛(𝑚, 𝑛). Now 

define inductively nonnegative numbers 𝑥1, . . . , 𝑋𝑛𝑖𝑛(𝑚,𝑞) by 

𝑥1 = 𝑚𝑖𝑛 {
𝛼1

𝛽1−𝑚+𝑝
     if  𝑚 − 𝑝 < 1                                              (69) 

And  

𝑥𝑖 = 𝑚𝑖𝑛 {

𝛼1
𝛽𝑖−𝑚+𝑝
𝑥𝑖−1

                         if   𝑚 − 𝑝 < 𝑖 

                                                 For 2 ≤ 𝑖 ≤ 𝑚𝑖𝑛(𝑚, 𝑞).                            (70) 

(We include 𝛽𝑖−𝑚+𝑝in (69) and (70) only if i satisfies the indicated condition.) For all 𝑡 >

𝑚𝑖𝑛(𝑚, 𝑞), define 𝑥𝑡by 𝑥𝑡  =  0. 
It is plain that x1 ≧ ⋯ ≧ xmin (m,q). We claim that inequalities (68) are satisfied. Plainly, xi ≦

αifor 𝑖 ≦  𝑚𝑖𝑛(𝑚, 𝑞), and this also holds for min(𝑚, 𝑞)  <  𝑖 ≦  𝑞 since then 𝑥𝑖  =  0. We 

show by induction on 𝑖 that the lower bounds in (68) are satisfied. To show that 𝑥1 ≧ 𝛼1+𝑛−𝑞,, 
we must show that both of the quantities entering into the minimum in (68) exceed 

α1+n−q,. Plainly, by (58), 𝛼1, ≧ 𝛼1+𝑛−𝑞,. If 𝑚− 𝑝 < 𝑖 we obtain from  (thus 𝑚 = 𝑝), (61) 

tells us that 𝛽1 ≧ 𝛼1+𝑛−𝑞,, provided 𝑖 ≦  𝑚𝑖𝑛(𝑞,𝑚 + 𝑞 − 𝑛).However,if 𝑚+  𝑞 − 𝑛 ≦0, we 

have 𝑚 + 1 ≦ 1 +  𝑛 − 𝑞 and thus automatically0 = 𝛼1+𝑛−𝑞, ≦ 𝛽1.Hence 𝑚+ 1 ≦ 1 + 𝑛 −

𝑞 . Suppose (induction) 𝑥𝑖−1 ≧ 𝛼𝑖−1+𝑛−𝑞,. Let 𝑖 ≦  𝑚𝑖𝑛(𝑚, 𝑞). If we show that each of the 

three quantities entering into the minimum in (70) exceeds 𝛼𝑖+𝑛−𝑞,, it will follow that 

𝑥𝑖 ≧ 𝛼𝑖−1+𝑛−𝑞, Plainly, by (58), 𝛼𝑖 ≧ 𝛼𝑖−1+𝑛−𝑞,. If 𝑚 −  𝑝 < 𝑖, we obtain from (61) that 

𝛽𝑖−𝑚+𝑝 ≧ 𝛼𝑖−1+𝑛−𝑞, provided 𝑖 ≦  𝑚𝑖𝑛(𝑞,𝑚 + 𝑞 − 𝑛).By induction, 𝑥𝑖 ≧ 𝛼𝑖−1+𝑛−𝑞, ≧

𝛼𝑖+𝑛−𝑞,(by (58)).Thus 𝑥𝑖 ≧ 𝛼𝑖−1+𝑛−𝑞,, except perhaps if 𝑖 > 𝑚𝑖𝑛(𝑞,𝑚 +  𝑞 − 𝑛). However, 

if 𝑖 > 𝑚𝑖𝑛(𝑞,𝑚 + 𝑞 − 𝑛), then 𝑖 + 𝑛 − 𝑞 > 𝑚𝑖𝑛(𝑛,𝑚),  so that 𝛼𝑖+𝑛−𝑞, = 0 and hence 

automatically 𝑥𝑖 ≧ 𝛼𝑖−1+𝑛−𝑞,.Therefore 𝑥𝑖 ≧ 𝛼𝑖+𝑛−𝑞,is established if 𝑖 ≦  𝑚𝑖𝑛(𝑚, 𝑞).If 𝑖 >

𝑚𝑖𝑛(𝑚, 𝑞), then 𝑖 +  𝑛 − 𝑞 >  𝑚𝑖𝑛(𝑛 − 𝑞 +𝑚, 𝑛) ≧ 𝑚𝑖𝑛(𝑚, 𝑛), so that automatically 0 =
αi+n−q, ≦ xi. Therefore inequalities (68) are established. 

We now claim that inequalities (66) are satisfied. By (70), 𝑥𝑖+𝑚−𝑝  ≦  𝛽𝑖,, for 𝑖 + 𝑚 −

𝑝 ≤ 𝑚𝑖𝑛(𝑚, 𝑞). Thus the lower inequality in (66) is satisfied,  provided 𝑖 ≦  𝑚𝑖𝑛(𝑝, 𝑝 +
 𝑞 −  𝑚). If 𝑖 >  𝑚𝑖𝑛(𝑝, 𝑝 + 𝑞 −  𝑚), then 𝑖 + 𝑚 − 𝑝 > 𝑚𝑖𝑛(𝑚, 𝑞)and hence 𝑥𝑖+𝑚−𝑝 =  0, 

so that automatically 𝛽𝑖, ≧ 𝑥𝑖+𝑚−𝑝. Thus the lower inequalities in (66) are satisfied. We show 

by induction on 𝑖 that 𝑥𝑖 ≧ 𝛽𝑖,. For 𝑖 = 1 this follows immediately from (69), since α1 ≧ βi,. 
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Suppose 𝑥𝑖−1  ≧  𝛽𝑖−1. If we show that each of the three quantities entering into the minimum 

in (70) exceeds 𝛽𝑖, we may conclude that 𝑥𝑖  ≧  𝛽𝑖. We may assume also that 𝑖 ≦  𝑚𝑖𝑛(𝑝, 𝑞), 
since 𝛽𝑖 = 0  (≦  𝑥1) for 𝑖 >  𝑚𝑖𝑛(𝑝, 𝑞).Thus (by (60)) 𝛼𝑖 ≧ 𝛽𝑖 if  𝑚 − 𝑝 < 𝑖, 𝛽𝑖−𝑚+𝑝, ≧

𝛽𝑖,by (59). By induction 𝑥𝑖−1 ≧ 𝛽𝑖−1 ≧ 𝛽𝑖. Hence the inequality 𝑥𝑖 ≧ 𝛽𝑖 for all 𝑖 ≦  𝑝 is 

established. 

It is a known fact (see [231]), because 𝑥1
2 ≧ ⋯ ≧ 𝑥𝑞

2 satisfy (68), there exists an n-square 

unitary matrix V such that the eigenvalues of 

𝑋∗𝑋 = 𝑉[𝑗1, … , 𝑗𝑞|1, … , 𝑛]𝐴
∗𝐴𝑉[1,… , 𝑛|𝑗1, … , 𝑗𝑞]                        (71) 

are  

𝑥1
2, … , 𝑥𝑚𝑖𝑛 (𝑚,𝑞)

2 , … , 𝑥𝑞
2                                                       (72) 

Here  

𝑋 = 𝐴𝑉[1,… , 𝑛|𝑗1, … , 𝑗𝑞] 

Thus 𝑋𝑋∗ has 

𝑥1
2, … , 𝑥𝑚𝑖𝑛 (𝑚,𝑞)

2 , … , 𝑥𝑚
2                                                             (73) 

as eigenvalues. Because the inequalities (66) are satisfied, there exists an m-square unitary 

matrix U such that 

 𝑈𝑋𝑋∗𝑈∗[𝑖1, … , 𝑖𝑝|𝑖1, … , 𝑖𝑞] 

has eigenvalues 𝛽1
2 ≧ 𝛽𝑚𝑖𝑛 (𝑝,𝑞)

2 ≧ ⋯ = 𝛽𝑝
2. It is now immediate that the submatrix 

𝑈[𝑖1, … , 𝑖𝑝|1, … ,𝑚]𝐴𝑉[1,… , 𝑛|𝑗1, … , 𝑗𝑞] 

of 𝑈𝐴𝑉 has (59) as its singular values. The proof of Theorem (1.2.3) is now finished. 

We remark that the nonincreasing condition (59) is actually superfluous. We have Theorem 

(1.2.4). 

Theorem (1.2.4)[238]:Let arbitrary numbers β1… . βmin (p,q)be given, such that (60) and (61) 

hold. Then the conclusions of Theorem (1.2.3) aye valid. 

Proof: The proof amounts to showing that, if (60) and (61) are valid for not necessarily 

decreasing numbers 𝛽1… .𝛽𝑚𝑖𝑛 (𝑝,𝑞)then (60) and (61) remain valid if 𝛽1… .𝛽𝑚𝑖𝑛 (𝑝,𝑞)are 

rearranged into decreasing order. More precisely, let 𝜎 be a permutation of 1, 2,…, 𝑠 =
𝑚𝑖𝑛(𝑝, 𝑞) such that 𝛽𝜎(1) ≧ 𝛽𝜎(2) ≧ ⋯ ≧ 𝛽𝜎(𝑠). If 𝜎(𝑖) ≧ 𝑖we then have 𝛽𝜎(𝑖) ≦ 𝛼𝜎(𝑖) ≦ 𝛼𝑖 if 

σ(𝑖) < 𝑖 then for some j < 𝑖 we have σ(𝑗) ≧ 𝑖 and hance 𝛽𝜎(𝑖) ≦ 𝛽𝜎(𝑗) ≦ 𝛼𝜎(𝑖). thus 𝛽𝜎(𝑖) ≦

𝛼𝑖holds for all 𝑖. similarly, for 𝑖 ≦ 𝑚𝑖𝑛(𝑝 + 𝑞 −𝑚, 𝑝 + 𝑞 − 𝑛),if 𝜎(𝑖) ≦ 𝑖then 𝛽𝜎(𝑖) ≧ 𝛽𝑖 ≧

𝛼𝑖+𝑚−𝑝+𝑛−𝑞. if σ(𝑖) > 𝑖, then for some 𝑗 > 𝑖 we have  σ(𝑗) ≦ 𝑖 But then 𝛽𝜎(𝑖) ≧ 𝛽𝜎(𝑗) ≧

𝛼𝜎(𝑗)+𝑚−𝑝+𝑛−𝑞 ≧ 𝛼𝑖+𝑚−𝑝+𝑛−𝑞 thus 𝛽𝜎(𝑗) ≧ 𝛼𝑖+𝑚−𝑝+𝑛−𝑞 For all 𝑖 ≦ 𝑚𝑖𝑛(𝑝 + 𝑞 −𝑚, 𝑝 +

𝑞 − 𝑛). 

For the next theorems we let 𝑄𝑚𝑝 denote the totality of (𝑚
𝑝
)sequences 𝜔 = {𝑖1, … , 𝑖𝑝} of 

integers for which 1 ≦ 𝑖1 < ⋯ < 𝑖𝑝 ≦ 𝑚and we let Qna denote the totality of sequences𝑟 =

 {𝑗1, … , 𝑗𝑝} of integers for which 1 ≦ 𝑗1 < ⋯ < 𝑗𝑝 ≦ 𝑛. We let 

𝐴 [𝜔|𝜏] = 𝐴[𝑖1, … , 𝑖𝑝|𝑗1, … , 𝑗𝑝]                                                   (74) 

be the 𝑝 × 𝑞 submatrix of 𝐴 at the intersection of the rows w and the olumns 𝜏, and we let 

𝛽𝜔𝜏.1 ≧ 𝛽𝜔𝜏.2 ≧ ⋯ ≧ 𝛽𝜔𝜏.𝑛𝑖𝑚(𝑝,𝑞) 
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be the singular values of (74). As before, we let 𝛽𝜔𝜏.𝑡 = 0for 𝑡 >  𝑚𝑖𝑛(𝑝, 𝑞). 
Theorem (1.2.5)[238]:Define rational numbers 𝜑0, … , 𝜑𝑚−𝑝, and 𝜓0, … , 𝜓𝑛−𝑞by the 

polynomial identities 

∏(
𝜆 + 𝑖

1 + 𝑖
) = ∑ 𝜑𝑡𝜆

𝑚−𝑝−𝑡

𝑚−𝑝

𝑡=0

𝑚−1

𝑖=𝑝

                                               (75) 

∏(
𝜆 + 𝑖

1 + 𝑖
) = ∑𝜓𝑡𝜆

𝑛−𝑝−𝑡

𝑛−𝑝

𝑡=0

𝑛−1

𝑖=𝑞

                                                (76) 

For 𝑖 ≦  𝑚𝑖𝑛(𝑝, 𝑞), define rational numbers 𝑑0, … . , 𝑑𝑚𝑖𝑛(𝑚+𝑛−𝑝−𝑞,𝑛−𝑖), and 

𝑑0
′ , … . , 𝑑𝑚𝑖𝑛(𝑚+𝑛−𝑝−𝑞,𝑛−𝑖)

′  (depending on 𝑖) by the polynomial identities 

( ∑ 𝜑𝑡𝜆
𝑛−𝑝−𝑟

min(𝑚−𝑝,𝑞−𝑖)

𝑟=0

)(∑𝜓𝑠𝜆
𝑛−𝑞−𝑠

𝑛−𝑞

𝑠=0

) = ∑ 𝑑𝜌𝜆
𝑚+𝑛−𝑝−𝑞−𝜌

𝑚𝑖𝑛(𝑚+𝑛−𝑝−𝑞,𝑛−𝑖)

𝜌=0

     (77) 

and 

( ∑ 𝜑𝑚−𝑝−𝑟𝜆
𝑛−𝑝−𝑟

𝑚𝑖𝑛 (𝑚−𝑝,𝑞−𝑖)

𝑟=0

)(∑𝜓𝑛−𝑞−𝑠𝜆
𝑛−𝑞−𝑠

𝑛−𝑞

𝑠=0

) 

= ∑ 𝑑𝜌
′ 𝜆𝑚+𝑛−𝑝−𝑞−𝜌 

𝑚𝑖𝑛(𝑚+𝑛−𝑝−𝑞,𝑛−𝑖)

𝜌=0

                       (78)  

then 

∑ 𝑑𝜌𝛼𝑖+𝜌
2 ≦

1

(
𝑚
𝑝)

1

(
𝑛
𝑞)

∑ 𝛽𝜔𝜏,𝑖
2

𝜔∈𝑄𝑚𝑝𝜏∈𝑄𝑛𝑞

𝑚𝑖𝑛(𝑚+𝑛−𝑝−𝑞,𝑛−𝑖)

𝜌=0

≦ ∑ 𝑑𝜌
′𝛼𝑖+𝜌
2

𝑚𝑖𝑛(𝑚+𝑛−𝑝−𝑞,𝑛−𝑖)

𝜌=0

   (79) 

Proof: Let X𝜏 = AV[1,… , n: j1, … , jq] and let 

𝓍τ,1
2 ≧ 𝓍τ,2

2 ≧ ⋯ ≧ 𝓍τ,min(p,q)+1
2 = ⋯ = 𝓍τ,m

2 (= 0) 

be the roots of 𝑋𝜏𝑋𝜏
∗,. Then by (66) we have 

𝓍𝜏,1
2 ≧ 𝛽𝜔𝜏,𝑖

2 ≧ 𝓍𝜏,𝑖+𝑚−𝑝                  
2 1 ≦ 𝑖 ≦ 𝑝. 

Using [231], we see that, for 𝑖 ≦  𝑝 (and so for 𝑖 ≦  𝑚𝑖𝑛(𝑝, 𝑞)), 

∑ 𝜑𝜏𝑥𝑟,𝑖+𝑟
2

𝑚−𝑝

𝜏=0

≦
1

(
𝑚
𝑝)

∑ 𝛽𝜔𝜏,𝑖
2 ≦ ∑ 𝜑𝑚−𝑝−𝑟

𝑚−𝑝

𝑟=0𝜔∈𝑄𝜏∈𝑄

𝑥𝑟,𝑖+𝑟.
2  

Since 𝑥𝜏,𝑖+𝑟 whenever 𝑖 +  𝑟 >  𝑚𝑖𝑛(𝑚, 𝑞), we get 

∑𝜓𝑠𝛼𝑖+𝑠
2

𝑛−𝑝

𝑠=0

≦
1

(
𝑛
𝑝)

∑ 𝑥𝜏,𝑖
2 ≦ ∑𝜓𝑛−𝑞−𝑠

𝑛−𝑞

𝑠=0𝜔∈𝑄𝑛𝑞

𝑥𝜏,𝑖+𝑟.
2                        (80) 

By (68), 𝛼𝑖 ≧ 𝓍𝜏,𝑖
2 ≧ 𝛼𝑖+𝑛−𝑞

2  for 1 ≦  𝑖 ≦  𝑞, and hence, by [231,304], 
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∑𝜓𝑠𝛼𝑖+𝑠
2

𝑛−𝑞

𝑠=0

≦
1

(
𝑛
𝑞)

∑ 𝑥𝑟,𝑖
2 ≦ ∑𝜓𝑛−𝑞−𝑠

𝑛−𝑞

𝑠=0𝜔∈𝑄𝑛𝑞

𝑥𝑖+𝑠,
2                        (81) 

For 𝑖 ≦ 𝑞. 

Summing (80) over -c and dividing by (
𝑛
𝑞), , upon using (81) we obtain 

∑ 𝜑𝜏

𝑚𝑖𝑛 (𝑚−𝑝,𝑞−𝑖)

𝜏=0

∑𝜓𝑠𝛼𝑖+𝑟+𝑠
2

𝑛−𝑞

𝑠=0

≦
1

(
𝑚
𝑝)

1

(
𝑛
𝑞)

∑ 𝛽𝜔𝜏,𝑖
2

𝜔∈𝑄𝑚𝑝𝜏∈𝑄𝑛𝑞

                           

≦ ∑ 𝜑𝑚−𝑝−𝜏

min(𝑚−𝑝,𝑞−𝑖)

𝜏=0

∑𝜓𝑠𝑛−𝑝−𝑠𝛼𝑖+𝜏+𝑠
2

𝑛−𝑞

𝑠=0

          (82) 

For 𝑖 ≦ 𝑚𝑖𝑛(𝑝, 𝑞). 
On the left side of (82), the coefficient of 𝛼𝑖+𝑝

2 , is 

∑ ∑ 𝜑𝑟𝜓𝑠

𝑛−𝑞

𝑠=0,𝑟+𝑠=𝜌

𝑚𝑖𝑛 (𝑚−𝑝,𝑞−𝑖)

𝑟=0,𝑟+𝑠=𝜌

 

For 0 ≦ 𝜌 ≦ 𝑚𝑖𝑛(𝑚 + 𝑛 − 𝑝 − 𝑞, 𝑛 − 𝑖). 
However, 

𝑑𝜌 = ∑ ∑ 𝜑𝑟𝜓𝑠

𝑛−𝑞

𝑠=0,𝑟+𝑠=𝜌

𝑚𝑖𝑛 (𝑚−𝑝,𝑞−𝑖)

𝑟=0,𝑟+𝑠=𝜌

 

 for 0 ≦ 𝜌 ≦ 𝑚𝑖𝑛(𝑚 + 𝑛 − 𝑝 − 𝑞, 𝑛 − 𝑖). 
Thus the lower bound in (79) is established.  

On the right side of (82), the coefficient of αi+p
2 , is 

∑ ∑ φm−p−τψn−q−s

n−q

s=0,τ+s=ρ

min (m−p,q−i)

τ=0,τ+s=ρ

 

for0 ≦ 𝜌 ≦ 𝑚𝑖𝑛(𝑚 + 𝑛 − 𝑝 − 𝑞, 𝑛 − 𝑖). 
However, 

𝑑𝜌
′ = ∑ ∑ 𝜑𝑚−𝑝−𝜏𝜓𝑛−𝑞−𝑠

𝑛−𝑞

𝑠=0,𝑟+𝑠=𝜌

𝑚𝑖𝑛 (𝑚−𝑝,𝑞−𝑖)

𝜏=0,𝜏+𝑠=𝜌

 

for0 ≦ 𝜌 ≦ 𝑚𝑖𝑛(𝑚 + 𝑛 − 𝑝 − 𝑞, 𝑛 − 𝑖). 
The result is now at hand. 

If 𝑝 and 𝑞 are large and i is small, so that min(𝑚 + 𝑛 − 𝑝 − 𝑞. 𝑛 − 𝑖) =  𝑚 +  𝑛 − 𝑝 − 𝑞, 

formulas (79) provide convex combinations of 𝛼𝑖
2, … , 𝛼𝑖+𝑚−𝑝−𝑛−𝑞.

2  which serve as upper and 

lower bounds for the mean of the βωτ,i
2  Thus Theorem (1.2.5) provides a result sharper than can 

be established by applying Theorem (1.2.2), since Theorem (1.2.2) only asserts that the 
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𝛽𝜔𝜏,𝑖
2 between αi

2and 𝛼𝑖+𝑚−𝑝−𝑛−𝑞.
2 . To see that in fact we have convex combinations, notice that 

(for these values of 𝑝, 𝑞, 𝑖), 

∑ 𝑑𝜌

𝑚+𝑛−𝑝−𝑞

𝜌=0

= ∑ ∑ ∑ 𝜑𝜏𝜓𝑠 = ∑ ∑𝜓𝑠 = 1,

𝑛−𝑞

𝑠=0

𝑚−𝑝

𝑠=0

𝑛−𝑞

𝑠=0,𝑟+𝑠=𝜌

𝑚−𝑞

𝑠=0,𝜏+𝑠=𝜌

𝑚+𝑛−𝑝−𝑞

𝜌=0

 

since 

∑ 𝜑𝜏 = 1 =

𝑚−𝑝

𝜏=0

∑𝜓𝑠 .

𝑛−𝑞

𝑠=0

 

Similarly  

∑ 𝑑𝜌
′ = ∑ ∑ ∑ 𝜑𝑚−𝑝−𝑟𝜓𝑛−𝑞−𝑠

𝑛−𝑞

𝑠=0,𝑟+𝑠=𝜌

𝑚−𝑝

𝑟=0,𝑟+𝑠=𝜌

𝑚−𝑛−𝑝−𝑞

𝜌=0

𝑚−𝑛−𝑝−𝑞

𝜌=0

 

= ∑ ∑ 𝜑𝑚−𝑝−𝜏𝜓𝑛−𝑞−𝑠 = 1

𝑛−𝑞

𝑠=0,𝜏+𝑠=𝜌

𝑚−𝑝

𝜏=0,𝜏+𝑠=𝜌

 

When p and q are small and 𝑖 large, so that 𝑚𝑖𝑛(𝑚 − 𝑛 − 𝑝 − 𝑞, 𝑛 − 𝑖) =  𝑛 − 𝑖, formula (79) 

may be regarded as providing subconvex combinations of αi
2, … , αn.

2  (convex combinations of 

𝛼𝑖
2, … , 𝛼𝑛.

2 , 0) which serve as bounds for the mean of the 𝛽𝜔𝜏,𝑖
2 . 

Theroem(1.2.6)[238]:. Let 

𝑓𝜔,𝜏(𝜆) = (𝜆 − 𝛽𝜔,𝜏,𝑖)… (𝜆 − 𝛽𝜔,𝜏,𝑚𝑖𝑛 (𝑝,𝑞)), 

𝑓𝜔,𝜏(𝜆) = (𝜆 − 𝛼1.
2)… (𝜆 − 𝛼𝑚𝑖𝑛 (𝑚,𝑛).

2 ) 

Then 

∑ 𝜆𝑝−𝑚𝑖𝑛 (𝑝,𝑞)𝑓𝜔,𝜏
𝜔∈𝑄𝑚𝑝𝜏∈𝑄𝑛𝑞

(𝜆)                                                                                  

= 
1

(𝑚 − 𝑞)!

1

(𝑛 − 𝑞)!

𝑑𝑚−𝑝

𝑑𝜆𝑚−𝑞
𝜆𝑚−𝑞

𝑑𝑛−𝑞

𝑑𝜆𝑛−𝑞
𝜆𝑛−𝑚𝑖𝑛 (𝑝,𝑞)𝑓(𝜆)         (83) 

Proof: Since the matrices 𝛽𝜔,𝜏𝛽𝜔,𝜏
∗  are 𝑝 × 𝑝 principal submatrices of the 𝑚 ×𝑚 matrix 𝑋𝜏𝑋𝜏

∗, 

we find (see [ 231,33]) that 

∑ (𝜆 − 𝛽𝜔𝜏.1
∗ )… (𝜆 − 𝛽𝜔𝜏,𝑚𝑖𝑛 (𝑝,𝑞)

2 )𝜆𝑚−𝑚𝑖𝑛(𝑚,𝑞).

𝜔∈𝑄𝑚𝑝𝜏∈𝑄𝑛𝑞

 

= 
1

(𝑛 − 𝑞)!

𝑑𝑛−𝑝

𝑑𝜆𝑛−𝑞
(𝜆 − 𝛼1

2)… (𝜆 − 𝛼𝑚𝑖𝑛(𝑚,𝑞)
2 )𝜆𝑚−𝑚𝑖𝑛(𝑚,𝑛). 

Since Xτ
∗Xτ, is a principal 𝑞 × 𝑞 submatrix of the 𝑛 𝑥 𝑛 matrix 𝐴*𝐴, we have 

∑ (𝜆 − 𝑥𝜏.1
2 )… (𝜆 − 𝑥𝜏,𝑚𝑖𝑛 (𝑝,𝑞)

2 )𝜆𝜌−𝑚𝑖𝑛(𝑚,𝑞).

𝜏∈𝑄𝑛𝑞

 

=
1

(𝑛 − 𝑞)!

𝑑𝑛−𝑝

𝑑𝜆𝑛−𝑞
(𝜆 − 𝛼1

2)… (𝜆 − 𝛼𝑚𝑖𝑛(𝑚,𝑛)
2 )𝜆𝑛−𝑚𝑖𝑛(𝑚,𝑛). 

Thus  
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∑ 𝑓𝜔,𝜏(𝜆)𝜆
𝜌−𝑚𝑖𝑛(𝑝,𝑞).

𝜏∈𝑄𝑛𝑞

=
1

(𝑛 − 𝑞)!

𝑑𝑚−𝑝

𝑑𝜆𝑚−𝑞
𝜆𝑚−𝜌 ∑ (𝜆 − 𝑥𝜏.1

2 )… (𝜆 − 𝑥𝜏,𝑚𝑖𝑛(𝑚,𝑞)
2 )𝜆𝜌−𝑚𝑖𝑛(𝑚,𝑞).

𝜏∈𝑄𝑛𝑞

= 
1

(𝑚 − 𝑞)!

1

(𝑛 − 𝑞)!

𝑑𝑚−𝑝

𝑑𝜆𝑛−𝑞
𝜆𝑚−𝜌

𝑑𝑛−𝑝

𝑑𝜆𝑛−𝑞
𝜆𝑚−𝑚𝑖𝑛(𝑚,𝑛)𝑓(𝜆). 

The proof is complete. 

We now give the promised second proof of Theorem (1.2.2). For any 𝑚 ×  𝑛 matrix 𝐴 with 

singular values 𝛼1 ≧ ⋯ ≧ 𝛼𝑚𝑖𝑛 (𝑚,𝑛)the roots of the (𝑚 +  𝑛) −square Hermitian matrix 

𝑀 = [
0 𝐴
𝐴∗ 0

] 

Are ±α1, … , ±αmin (m,n),0 (with multiplicity 𝑚 +  𝑛 − 2  min (𝑚, 𝑛)). to see this, observe that 

                     d𝑒𝑡(𝜆1𝑚+𝑛 −𝑀) = 𝑑𝑒𝑡 [
1𝑚 𝜆−1𝐴
0 𝐼𝑛

] 𝑑𝑒 [
𝜆𝐼𝑛 −𝐴
−𝐴∗ 𝜆𝐼𝑛

] 

= 𝑑𝑒𝑡 [
𝜆𝐼𝑚 − 𝜆

−1𝐴𝐴∗

−𝐴∗
0
𝜆𝐼𝑛
] 

                                                    = 𝜆𝑛𝑑𝑒𝑡(𝜆1𝑚 − 𝜆
−1𝐴𝐴∗) = 𝜆𝑛−𝑚𝑑𝑒𝑡(𝜆21𝑚 − 𝐴𝐴

∗) 
The principle (𝑝 + 𝑞)square submatrix of 𝑀, obtained by deleting all rows and columns 

except rows and columns  𝑖1, . . . , 𝑖𝑝, 𝑚 + 𝑗1, … ,𝑚+𝑗𝑞, is 

[
0 A[i1, … , i𝑝: j1, … , jq]

A[i1, … , i𝑝: j1, … , jq]
∗

0
]. 

Using the inequalities connecting the eigenvalues of a (𝑝 +  𝑞) −principal submatrix of 

Hermitian matrix 𝑀 with the eigenvalues of 𝑀, we obtain the inequalities (60) and (61). 
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Chapter 2 

Interlacing Inequalities for Singular Values of Submatrices 

We provide a complete noncommutative analog of the famous cycle of theorems 

characterizing the function theoretic generalizations of 𝐻∞. A sample of our other results: we 

prove  a Kaplansky density result for a large class of these algebras, and give a necessary 

condition for when every completely contractive homomorphism on a unital subalgebra of a 

C∗-algebra possesses a unique completely positive extension. As an application, we solve the 

longstanding open problem concerning the noncommutative generalization, to Arveson’s 

noncommutative 𝐻𝑝 spaces, of the famous ‘outer factorization’ of functions f with  log |f| 
integrable. Using the Fuglede-Kadison determinant, we also generalize many other classical 

results concerning outer functions. 

Section (2.1) Unique Extensions 

Function algebras are subalgebras of 𝐶(𝐾)-spaces, or equivalently, subalgebras of 

commutative 𝐶∗ −algebras. Thus function algebras are examples of operator algebras 

(subalgebras of general 𝐶∗-algebras). Much work has been done to transfer results or 

perspectives from function theory to operator algebraic settings. One such setting, is the theory 

of noncommutative 𝐻𝑝 spaces associated with Arveson’s maximal subdiagonal subalgebras of 

finite von Neumann algebras. Many of the central results from abstract analytic function theory, 

and in particular much of the classical generalized Hp function theory, may be generalized 

almost verbatim to subdiagonal algebras. The proofs in the noncommutative case however, 

while often modeled loosely on the ‘commutative’ arguments of Helson and Lowdenslager 

[100,13,79,32] and others, usually require substantial input from the theory of von Neumann 

algebras and noncommutative 𝐿𝑝-spaces, see [300,177, 153, 176, 279, 163, 58, 56]. In fact in 

many cases like  Szegö’s theorem – completely new proofs have had to be invented. We tackle 

what appears to us to be the main ‘classical’ results which have resisted generalization to date, 

namely those referred to in the generalized function theory literature from the 1960’s as, 

respectively, the 𝐹. and 𝑀. Riesz, Gleason and Whitney, Szegö Lp, and Kolmogorov, theorems. 

We the following statement: essentially all of the generalized 𝐻𝑝 function theory as 

summarized in [282] for example, extends further to the setting of subdiagonal algebras. 

In Arveson’s setting, we have a weak*-closed unital subalgebra 𝐴 of a von Neumann 

algebra 𝑀 possessing a faithful normal tracial state τ, such that if Φ is the unique conditional 

expectation from M onto 𝒟 = 𝐴 ∩ 𝐴∗ satisfying 𝜏 = 𝜏 ∘ 𝛷, then 𝛷 is a homomorphism on 𝐴. 

Take note that here 𝐴∗ denotes the set {𝑎: 𝑎∗ ∈ 𝐴} and not the Banach dual of 𝐴. For the sake 

of clarity we will write 𝑋∗ for the Banach dual of a normed space 𝑋. We say that a subalgebra 

A of the type described above is a tracial subalgebra of 𝑀. If in addition 𝐴 + 𝐴∗ is weak* 

dense in 𝑀 then we say that A is maximal subdiagonal (see [300, 240]).  A large number of 

very interesting examples of these objects were given by Arveson [300], and others (see e.g. 

[161, 178]). If 𝒟 is one dimensional we say that 𝐴 is antisymmetric; if further 𝑀 is commutative 

then 𝐴 is called a weak* Dirichlet algebra [282]. For antisymmetric maximal subdiagonal 

algebras, many of the ‘commutative’ proofs from [282] require almost no change at all. It is 

worth saying that classical notions of ‘analyticity’ correspond in some very vague sense to the 
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case that 𝒟 is ‘small’. Indeed if 𝐴 = 𝑀 then 𝒟 = 𝑀 and 𝛷 is the identity map, so that the theory 

essentially collapses to the theory of finite von Neumann algebras, which clearly is far removed 

from classical concepts of ‘analyticity. Indeed for our 𝐹. and 𝑀. Riesz theorem to hold, we 

show that it is necessary and sufficient for 𝒟 to be finite dimensional. Because of this, in our 

several applications of this theorem we assume dim(𝒟) < ∞. 

A subsidiary theme is ‘unique extensions’ of maps on A. We begin with some results on 

this topic. Recall from [58] that a subalgebra A of M has the unique normal state extension 

property if there is a unique normal state on M extending τ|A. If, on the other hand, for every 

state ω of M with 𝜔 ∘ 𝛷 =  𝜔 on A, we always have that 𝜔 ∘ 𝛷 =  𝜔 on M, then we say that 

A has the 𝛷 -state property. The major unresolved question in [58] was whether a tracial 

subalgebra with the unique normal state extension property is maximal subdiagonal. We make 

what we feel is substantial progress on this question. In particular, we show that the question 

is equivalent to the question of whether every tracial subalgebra with the 𝛷-state property is 

maximal subdiagonal, and equivalent to whether every tracial subalgebra satisfying a certain 

variant of the well known ‘factorization’ property actually has ‘factorization’.We also give an 

interesting necessary condition for when completely contractive homomorphisms possess a 

unique completely positive extension. Our unique extension results play a role in the proof of 

our 𝐹. and 𝑀. Riesz theorem, and are the primary thrust of the Gleason-Whitney theorem. We 

prove our Szegö𝐿𝑝 formula, and generalized Kolmogorov theorem. 

The first noncommutative 𝐹. and 𝑀. Riesz theorem for subdiagonal algebras was the 

pretty theorem of Exel in [241]. This result assumes norm density of  𝐴 + 𝐴∗, and 

antisymmetry. (We are aware of the 𝐹. and 𝑀. Riesz theorem of Arveson [301,9,54] and 

Zsido’s extension there of [161,259,4,8,85,160,17,284], but this result is quite distinct from the 

ones discussed above.) Although some of the steps of our proof parallel those of 

[241,204,99,19,12], the arguments are for the most part quite different. Indeed generally the 

proofs will be modeled on the classical ones, but do however require some rather delicate 

additional machinery. 

We remark that there are other, more recent, noncommutative variants of 𝐻∞ besides the 

subdiagonal algebras see e.g. [90,5]. Here too one finds noncommutative generalizations of 

classical 𝐻𝑝-theoretic results, such as the Szegö infimum theorem, these variants are in general 

quite unrelated, with only a formal correspondence.  

For a functional 𝜔 ∈ 𝑀⋆, we will need to compare the property 𝜔  =  𝜔 ∘ 𝛷 on A, with 

the property 𝜔  =  𝜔 ∘ 𝛷 on M. On this topic we begin with the following remarks. It is easy 

to see, since 𝛷 is idempotent, that 𝜔  =  𝜔 ∘ 𝛷  on 𝐴 iff 𝐴0 ⊂ 𝐾𝑒𝑟(𝜔). Here, 𝐴0  =  𝐴 ∩
𝐾𝑒𝑟(𝜔), a closed two-sided ideal in A.  For normal functionals one can say more, although 

this will not play an important role for us. If 𝑓 ∈ 𝐿1(𝑀) let 𝜔𝑓 = 𝜏(𝑓 ·). From the last 

paragraph, 𝜔𝑓 = 𝜔𝑓 ∘ 𝛷 on A ff 𝜏(𝑓𝐴0) = (0). On the other hand, 𝜔𝑓 = 𝜔𝑓 ∘ 𝛷on 𝑀 iff 

𝜏(𝑓𝑎)  =  𝜏(𝑓𝛷(𝑎))  =  𝜏(𝛷(𝑓)𝑎) for all 𝑎 ∈ 𝑀 iff 𝑓 = 𝛷(𝑓) iff 𝑓 ∈ 𝐿1(𝒟). 
Proposition (2.1.1)[61]: If 𝐴 is a tracial subalgebra of 𝑀 then the unique normal state extension 

property is equivalent to the following property: whenever 𝜔 is a normal state of 𝑀 satisfying 

𝜔 = 𝜔 ∘ 𝛷 on 𝐴, then 𝜔 = 𝜔 ∘ 𝛷 on 𝑀. 
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Proof:Suppose that A has the unique normal state extension property, and suppose that 𝜔 is a 

normal state of 𝑀 satisfying 𝜔 = 𝜔 ∘ 𝛷 on 𝐴. If 𝜔 = 𝜏(𝑓 ·), where 𝑓 ∈ 𝐿1(𝑀)+, then by the 

remarks preceding Proposition (2.1.1) we have that 𝜏(𝑓𝐴0) = (0). Hence 𝑓 ∈ 𝐿1(𝐷) by 

[58,307,11]. Hence 𝜔 = 𝜔 ∘ 𝛷 on 𝑀.  

For the converse, note that if 𝑔 ∈ 𝐿1(𝑀)+with𝜏 = 𝜏(𝑔 · ) on 𝐴, then since 𝜏 = 𝜏 ∘ 𝛷, we 

have that 𝜏(𝑔. ) = 𝜏(𝑔 · ) ∘ 𝛷 on A, and hence that 𝜏(𝑔. ) = 𝜏(𝑔. ) ∘ 𝛷 on M. By the remarks 

above, 𝑔 ∈ 𝐿1(𝒟)+. But then the fact that 𝜏 = 𝜏(𝑔 ·) on D is enough to force 𝑔 = 𝕀. So A has 

the unique normal state extension property.  

We say that a subalgebra 𝐴 of 𝑀 has factorization if given 𝑏 ∈ 𝑀+ ∩𝑀−1 we can find 𝑎 ∈ 𝐴−1 

with 𝑏 = 𝑎∗𝑎(or equivalently 𝑏 = 𝑎𝑎∗). It is shown in [300,310,18] that any maximal 

subdiagonal algebra has factorization. Thus it is logmodular, namely any such b is a limit of 

terms of the form 𝑎∗𝑎 with 𝑎 ∈ 𝐴−1. In fact, in the category of tracial algebras factorization or 

logmodularity are equivalent to maximal subdiagonality [58]. By the next result such algebras 

satisfy a formally much stronger property than that of the last proposition: 

Theorem (2.1.2)[61]: Let 𝐴 be a logmodular subalgebra of a C∗-algebra 𝑀, and let 𝜓 be a 

positive contractive projection from 𝑀 onto a subalgebra of 𝐴 containing 𝕝𝑀, which is a 

homomorphism on 𝐴. Then for any state 𝜔 of 𝑀, we have that ω = ω ∘ 𝜓on M, whenever 𝜔 =
𝜔 ∘ 𝜓 on 𝐴.  

Proof: If 𝑎 ∈ 𝐴−1 then by hypothesis we have  

𝜔(𝜓(𝑎)𝑎−1) = 𝜔(𝜓(𝜓(𝑎)𝑎−1)) = 𝜔(𝜓(𝑎)𝜓(𝑎−1)) = 𝜔(𝕀) = 1 

By the Cauchy-Schwarz and Kadison-Schwarz inequality we deduce: 

1 ≤ 𝜔(𝜓(𝑎)𝜓(𝑎)∗) 𝜔((𝑎−1)∗𝑎−1)  ≤ 𝜔(𝜓(𝑎𝑎∗)) 𝜔((𝑎−1)∗𝑎−1)  = 𝜔((𝑎𝑎∗)) 𝜔((𝑎𝑎∗)−1). 
We can now follow the proof of [56] or [61,227]. Since A is logmodular, for any 𝑏 ∈ 𝑀−1 ∩

𝑀+ we have that 1 ≤ 𝜔(𝜓(𝑏))𝜔(𝑏−1). This leads to the equation 1 ≤ 𝜔(𝜓(𝑒𝑡𝑢)) 𝜔(𝑒−𝑡𝑢) =
𝑓(𝑡), for𝑢 ∈ 𝑀𝑠𝑎. Differentiating and noting that 𝑓′(0) = 0, yields 𝜔(𝑢) = 𝜔(𝜓(𝑢)) as 

required. 

When applied to tracial algebras and their associated canonical conditional expectations, the 

preceding result still holds under a formally weaker hypothesis. Specifically we say that a 

tracial subalgebra 𝐴 of 𝑀 with canonical conditional expectation Φ has conditional 

factorization if given any 𝑏 ∈ 𝑀+ ∩𝑀−1, we have 𝑏 = |𝑎|for some element 𝑎 ∈ 𝐴 ∩ 𝑀−1 with 

𝛷(𝑎)𝛷(𝑎−1) = 1. 

Corollary (2.1.3)[61]:. A tracial subalgebra of 𝑀 with conditional factorization has the 

𝛷 −state property. 

We say that 𝐴 has the unique state extension property if if there is a unique state on 𝑀 extending 

𝜏|𝐴. This is a formally weaker property than the 𝛷-state property: 

Proposition (2.1.4)[61]: Let A be a weak* closed unital subalgebra of 𝑀. If A has the 𝛷-

state property then it has the unique state extension property. The converse is true if A is 

antisymmetric. 

Proof: Suppose that 𝜔 is a state of 𝑀 extending τ|A. Then ω ∘ 𝛷 = 𝜏 ∘ 𝛷 = 𝜏 = 𝜔 on A. By 

the 𝛷-state property, on M we have 𝜔 = 𝜔 ∘ 𝛷 = 𝜏 ∘ 𝛷 = 𝜏. For the converse we need only 

note that if A is antisymmetric, then 𝜔 ∘ 𝛷 = 𝜔 on A forces 𝜏 = 𝜔 on 𝐴. 
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Corollary (2.1.5)[61]:  Suppose that A is a tracial subalgebra of 𝑀 with the unique normal 

state extension property. Then 𝐴∞ = 𝑀 ∩ [𝐴]2is a tracial subalgebra with the 𝛷-state property. 

Proof: First note that by [58], 𝐴∞is a tracial subalgebra of 𝑀 with respect to the same 𝛷 and 

𝜏. By [58], 𝐴∞has conditional factorization. Corollary (2.1.3) now gives the conclusion. 

Corollary (2.1.6)[61]: The open question from [58] as to whether every tracial subalgebra with 

the unique normal state extension property is maximal subdiagonal, is equivalent to the 

question of whether every tracial subalgebra with the 𝛷-state property is maximal subdiagonal. 

It is also equivalent to whether every tracial subalgebra with the unique state extension property 

is maximal subdiagonal. It is also equivalent to whether every tracial subalgebra with 

conditional factorization has factorization. 

Proof: Suppose that every tracial subalgebra with the 𝛷-state property is maximal 

subdiagonal, and suppose that A has the unique normal state extension property. By Corollary 

(2.1.5), 𝐴∞ has the 𝛷 -state property.Henceit is maximal subdiagonal, and therefore satisfies 

𝐿2-density. Consequently 𝐴 satisfies 𝐿2-density, and so 𝐴 is maximal subdiagonal by [58]. 

Similarly, suppose that every tracial subalgebra with conditional factorization has 

factorization, and suppose that A has the 𝛷 -state property. By results above, 𝐴 has the unique 

normal state extension property, and so by [58], 𝐴∞ has conditional factorization. By 

hypothesis, 𝐴∞ has factorization. Thus it is maximal subdiagonal by[4], and thus as in the last 

paragraph A is maximal subdiagonal.  

In [86], Lumer considered the property of ‘uniqueness of representing measure’, namely the 

property that every multiplicative functional on 𝐴 ⊂ 𝐶(𝐾) has a unique extension to a state on 

𝐶(𝐾), He showed how this condition could be used as another possible axiom from which all 

the generalized 𝐻𝑝 theory may be derived. The natural noncommutative generalization of 

Lumer’s property, is that every completely contractive representation of 𝐴 has a unique 

completely positive extension to𝑀. It is known that maximal subdiagonal algebras have this 

property [60, 55]. Although we have not settled the converse yet, we can say that every unital 

subalgebra of 𝑀 which has this property must in some sense be a large subalgebra of M. The 

following result represents some sort of converse to many of the preceding results which 

established various unique extension properties as a consequence of maximal subdiagonality. 

In the following result we use the 𝐶∗-envelope 𝐶𝑒
∗ (A) of an operator algebra 𝐴. See e.g. 

[56,16,85,131,160] for the definition of this, and for its universal property. 

Theorem (2.1.7)[61]: Suppose that 𝐴 is a subalgebra of a unital 𝐶∗-algebra 𝐵 such that 𝕀𝐵 ∈
𝐴, and suppose that 𝐴 has the property that for every Hilbert space 𝐻, every completely 

contractive unital homomorphism π: A → B(H) has a unique completely contractive (or equiv. 

completely positive) extension B →B(H). Then 𝐵 = 𝐶𝑒
∗ (𝐴), the C∗-envelope of 𝐴. 

Proof: (i) (The case that 𝐴 is a C∗-subalgebra of 𝐵.) In this case, since 

contractive homomorphisms on C∗-algebras are ∗-homomorphisms (see e.g. [56]), we must 

prove that if every unital ∗-homomorphism 𝜋: 𝐴 → 𝐵(𝐻) has a unique completely contractive 

extension 𝐵 → 𝐵(𝐻), then 𝐴 = 𝐵. To see this, let 𝜌: 𝐵 → 𝐵(𝐻) be the universal representation 

of 𝐵. Then𝜌 is unital, and hence so is 𝜋 = 𝜌|𝐴. Let 𝑈 be a unitary in (𝐴)′. Then since 

𝑈∗𝜌(. )𝑈 = 𝜌 on A, we have by hypothesis that 𝑈∗𝜌(·)𝑈 = 𝜌 on 𝐵, and thus 𝑈 ∈ 𝜌(𝐵)′. Thus 

𝜋(𝐴)′ = 𝜌(𝐵)′, and it follows that 𝜋(𝐴)′′ = 𝜌(𝐵)′′. If 𝜌̃ is the unique normal extension of 𝜌 
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to 𝐵∗∗, then 𝜌̃ is faithful on 𝐵∗∗ and it has range 𝜌(𝐵)′′. The restriction of 𝜌̃ to the copy 

𝐴⊥⊥of 𝐴∗∗inside 𝐵∗∗ has range 𝜋(𝐴)′′ = 𝜋(𝐴)̅̅ ̅̅ ̅̅ 𝑤∗, and is therefore surjective. This forces the 

copy of 𝐴∗∗ inside 𝐵∗∗ to be all of 𝐵∗∗. Thus 𝐴 = 𝐵 ∩ 𝐴⊥⊥ = 𝐵. 

(ii) (The general case.) Let 𝐶 = 𝐶∗(𝐴), the C∗-algebra generated by 𝐴 in 𝐵. Since 𝐴 ⊂ 𝐶, it 

follows from the hypothesis that every unital ∗-homomorphism 𝜋: 𝐶 → 𝐵(𝐻) has a unique 

completely contractive extension 𝐵 → 𝐵(𝐻). By (i),𝐶 = 𝐵. 

By virtue of this fact, we need only prove that 𝐶∗(𝐴) = 𝐶𝑒
∗ (𝐴) under the assumptions 

of the theorem. By the universal property of 𝐶𝑒
∗ (𝐴), there is a ∗-epimorphism 𝜃: 𝐵 = 𝐶∗(𝐴) →

𝐶𝑒
∗(𝐴) restricting to the ‘identity map’ on 𝐴. If 𝐵 ⊂ 𝐵(𝐻) then the canonical map from the 

copy of 𝐴 in Ce
∗(A), to 𝐴 ⊂ 𝐵(𝐻), has a completely positive extension 𝛷:𝐶𝑒

∗(𝐴) → 𝐵(𝐻). On 

𝐴, the map Φ ∘ θ is the identity map, so that by hypothesis 𝛷 ∘ 𝜃 = 𝑖𝐵. Thus 𝜃 is one-to-one, 

and hence 𝐶∗(𝐴)is a 𝐶∗-envelope of 𝐴. 

Corollary (2.1.8)[61]: Suppose that 𝐴 is a tracial subalgebra of 𝑀with the property that for 

every Hilbert space 𝐻, every completely contractive unital homomorphism 𝜋: 𝐴 → 𝐵(𝐻) has a 

unique completely contractive (or equiv. completely positive) extension 𝐵 → 𝐵(𝐻). Then 𝐴 

generates 𝑀 as a 𝐶∗-algebra. Indeed, 𝑀 is a 𝐶∗-envelope of 𝐴.  

The classical form of the 𝐹. and 𝑀. Riesz theorem (see e.g. [147]) is known to fail for weak* 

Dirichlet algebras; and hence it will fail for subdiagonal algebras too. However there is an 

equivalent version of the theorem which is true for weak* Dirichlet algebras[146, 282], and we 

will focus on this variant here. We shall say that a tracial subalgebra 𝐴 of 𝑀 has the 𝐹 &𝑀 

Riesz property if for every bounded function 𝜌 on 𝑀 which annihilates 𝐴0, the normal and 

singular parts𝜌𝑛 and 𝜌𝑠 annihilate 𝐴0 and 𝐴 respectively. During our investigation we shall 

have occasion to make use of the polar decomposition of normal functionals on a von Neumann 

algebra. We take the opportunity to point out that for our purposes we shall assume such a polar 

decomposition to be of the form 𝜔(𝑎) = |𝜔|(𝑢𝑎) for some partial isometry, rather than𝜔(𝑎) =
|𝜔|(𝑎𝑢) which seems to be more common among the proponents of noncommutative 𝐿𝑝-

spaces.  

The following result shows that to study the 𝐹 & 𝑀 Riesz property, we may restrict our 

attention to algebras for which the diagonal 𝒟 is finite dimensional: 

Proposition (2.1.9)[61]: If a tracial subalgebra 𝐴 of 𝑀 satisfies the 𝐹 & 𝑀 Riesz property then 

the diagonal 𝐷is finite dimensional. 

Proof: Let 𝜓 ∈ 𝐷⋆. Then 𝜓 ∈ 𝑀⋆ annihilates A0. By the 𝐹&𝑀 Riesz property, 𝜓 ∘ 𝛷 agrees 

with (𝜓 ∘ 𝛷) on A, and so 𝜓 = 𝜓 ∘ 𝛷|𝐷 is weak* continuous on 𝒟. Thus 𝒟 is reflexive, and 

therefore finite dimensional. 

Lemma 2.1.10)[61]: Let 𝐴 be a maximal subdiagonal subalgebra of 𝑀. Let 𝜔 be a state of  𝑀, 
and let (𝜋𝜔, 𝔥𝜔, 𝛺𝜔) be the 𝐺𝑁𝑆 representation of 𝑀. Further, let 𝜔  be the orthogonal 

projection of ω onto the closed subspace 𝜋𝜔(𝐴0)𝛺𝜔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

(a) The following holds: 

(i) There exists a central projection 𝑝0 in 𝜋𝜔(𝑀)′′such that for any 𝜉, 𝜓 ∈ 𝔥𝜔the 

functionals 𝑎 → 𝜋𝜔(𝑎)𝑝0𝜉, 𝜓 and 𝑎 → 𝜋𝜔(𝕝 − 𝑝0)𝜉, 𝜓 on 𝑀 are respectively the normal 

and singular parts of the functional 𝑎 → 𝜋𝜔(𝑎)𝑝0𝜉, 𝜓. In particular, the triples 
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(𝑝0𝜋𝜔, 𝑝0𝔥𝜔, 𝑝0𝛺𝜔) and ((𝕝 − 𝑝0) 𝜋𝜔, (𝕝 − 𝑝0)ℎ𝜔, (𝕝 − 𝑝0)𝛺𝜔) are copies of the GNS 

representations of ωn and ωs respectively. 

(ii) 𝜔0: 𝑎 → 〈𝜋𝜔(𝑎)(𝛺𝜔 − 𝛺0), 𝛺𝜔 − 𝛺0〉 defines a positive functional of M satisfying 

ω0 = ω0 ∘ Φ. 

(b) Suppose that in addition 𝑑𝑖𝑚(𝒟)  < ∞. 

(i) Then ω0 is a normal functional of the form 𝜔0 = 𝜏(𝑔
1/2 · 𝑔

1
2⁄ ) for some 𝑔 ∈ 𝐷+. 

Moreover 𝑝0(𝛺𝜔 − 𝛺0) = 𝛺𝜔 − 𝛺0, and p0Ωω is the orthogonal projection of 𝑝0𝛺𝜔 

onto 𝑝0(𝜋𝜔(𝐴0)𝛺𝜔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 
(ii) If 𝜔 is singular, then for any 𝑓 ∈ 𝐷 we have that 𝜋𝜔(𝑓)𝛺𝜔 ∈ 𝜋𝜔(𝐴0)𝛺𝜔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

(c) Suppose that dim(𝐷) < ∞ and 𝛺𝜔 ∉ 𝜋𝜔(𝐴0)𝛺𝜔. If ω0 is faithful on 𝐷, then there exists a 

sequence {𝑎𝑛} ⊂ 𝐴 such that 𝜋𝜔(𝑎𝑛)(𝛺𝜔 − 𝛺0) →  𝑝0𝛺𝜔. 

Proof: (a)(i): This is essentially the content of [180]. 

(a)(ii): Let (𝜋𝜔, 𝔥𝜔, 𝛺𝜔) and 𝛺0 be as in the hypothesis, and define a positive functional 

ω0 on 𝑀 by 

𝜔0: 𝑎 → 〈𝜋𝜔(𝑎)(𝛺𝜔 − 𝛺0), 𝛺𝜔 − 𝛺0〉. 
Let f ∈  𝐴0 be given. By construction 

𝜋𝜔(𝑓)𝛺𝜔 ⊥ (𝛺𝜔 − 𝛺0). 
Since 𝐴0 is an ideal, 𝜋𝜔(𝑓𝑎)𝛺𝜔 ∈ 𝜋𝜔(𝐴0)𝛺𝜔 for each 𝑎 ∈ 𝐴0. Since A0 belongs to 

𝜋𝜔(𝐴0)𝛺𝜔, we may of course select a sequence {𝑏𝑛} ⊂ 𝐴0 for  which 𝜋𝜔(𝑏𝑛)𝛺𝜔convergeto 

𝛺0. Hence 𝜋𝜔(𝑓𝑏0)𝛺𝜔 converges to 𝜋𝜔(𝑓)𝛺0. Thus 𝜋𝜔(𝑓𝑏0)𝛺𝜔 ∈ 𝜋𝜔(𝑓)𝛺0, which forces 

𝜋𝜔(𝑓)𝛺0 ⊥ (𝛺𝜔  −  𝛺0). 
From the previous two centered equations it is now clear that 𝐴0 ⊂  𝐾𝑒𝑟(𝜔0). Thus 𝜔0 = 𝜔0 ∘
𝛷 on A by the remarks preceding Proposition (2.1.1). Hence 𝜔0 = 𝜔0 ∘ 𝛷on 𝑀 by Corollary 

(2.1.3). 

(b) (i): Since 𝐷 is finite dimensional, we can find 𝑔 ∈ 𝐷+ so that 

𝜔0(𝑎) = 𝜏(𝑔𝑎) for all𝑎 ∈ 𝒟. 
Since 𝜔0 ∘ 𝛷 =  𝜔0, we conclude that for any 𝑎 ∈  𝑀, 

𝜔0(𝑎) = 𝜔0(𝛷(𝑎)) = 𝜏(𝑔𝛷(𝑎)) = 𝜏(𝛷(𝑔𝑎)) = 𝜏(𝑔𝑎), 
There by establishing the first part of the claim. 

For the second part, note that since 𝜔0 is clearly normal, we have by part (a)(i) that 

0 = 𝜋𝜔(𝑎)(𝕝 − 𝑝0)(𝛺𝜔 − 𝛺0), 𝛺𝜔 − 𝛺0 for all 𝑎 ∈ 𝑀. 
For 𝑎 = 𝕝 this yields 0 = ‖(𝕝 − p0)(Ωω − Ω0)‖, or equivalently 

𝑝0(𝛺𝜔 − 𝛺0) = 𝛺𝜔 − 𝛺0. 
From this fact, we may now conclude that  

〈𝑝0𝜋𝜔(𝑎)𝛺𝜔, 𝑝0(𝛺𝜔 − 𝛺0)〉 = 𝜋𝜔(𝑎)𝛺𝜔, 𝛺𝜔 − 𝛺0 = 0 for all 𝑎 ∈ 𝐴0. 
Thus 𝑝0(𝛺𝜔  − 𝛺0)  ⊥  𝑝0𝜋𝜔(𝐴0)𝛺𝜔. Now select a sequence {𝑏𝑛}  ⊂  𝐴0 so that 

𝜋𝜔(𝑏𝑛)𝛺𝜔 →0.  By continuity, 

𝑝0𝛺0 = 𝑙𝑖𝑚𝑛 𝑝0𝜋𝜔(𝑏𝑛)𝛺𝜔 ∈  𝑝0𝜋𝜔(𝐴0)𝛺𝜔. 

 From these considerations it is clear that 𝑝0𝛺0 is the orthogonal projection of 𝑝0𝛺𝜔 onto 

 𝑝0𝜋𝜔(𝐴0)𝛺𝜔. 

(b) (ii): If ω is singular, then 

0 = 𝜔𝑛(𝑎𝑏) = 〈𝜋𝜔(𝑎𝑏)𝑝0𝛺𝜔, 𝛺𝜔〉 = 〈 𝑝0𝜋𝜔(𝑏𝑛)𝛺𝜔,  𝜋𝜔 (𝑎
∗) 〉 
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for all𝑎, 𝑏 ∈ 𝑀 Since 𝛺𝜔 is cyclic, this is sufficient to force 𝑝0 = 0. But then 𝛺𝜔 = 𝛺0 =
𝑝0(𝛺𝜔 − 𝛺0) = 0by part (b)(i). As before select {𝑏𝑛}  ⊂  𝐴0 so that 𝜋𝜔(𝑏𝑛)𝛺𝜔 → 𝛺0 = 𝛺𝜔. 

For any 𝑓 ∈ 𝐷 the ideal property of A0 then ensures that 𝜋𝜔(𝑓)𝛺𝜔 =  𝑙𝑖𝑚𝑛𝜋𝜔(𝑓𝑏𝑛)𝛺𝜔 ∈
𝜋𝜔(𝐴0)𝛺𝜔. 

(c): Suppose that 𝜔𝑛, the normal part of ω, is of the form 𝜔𝑛 =  𝜏(ℎ · ) for some ℎ ∈ 𝐿1(𝑀)+. 

As noted earlier, (𝑝0𝜋𝜔 , 𝑝0𝔥𝜔, 𝑝0𝛺𝜔) is a copy of the 𝐺𝑁𝑆 representation engendered by 𝜔𝑛. 

If now we compute the representation of 𝜔𝑛 from first principles, it is clear that 

𝑝0𝔥𝜔corresponds to the weighted Hilbert space 𝐿2(𝑀, ℎ) obtained by equipping M with the 

inner product 

〈𝑎, 𝑏〉 = 𝜏(ℎ1/2𝜎𝑏∗𝑎ℎ1/2),    𝑎, 𝑏 ∈ 𝑀, 
and taking the completion. Note that 𝐿2(𝑀, ℎ)  can be identified unitarily, and as 𝑀 modules, 

with the closure of 𝑀ℎ1/2 in 𝐿2(𝑀). For any a ∈ 𝑀 considered as an element of 𝐿2(𝑀, ℎ) we 

will write a instead of 𝑎. The canonical ∗-homomorphism representing 𝑀 as an algebra of 

bounded operators on 𝐿2(𝑀, ℎ)   is of course given by defining 

𝜋𝑛(𝑏)𝜓𝑎 = 𝜓𝑎𝑏 ,         𝑎, 𝑏 ∈ 𝑀, 
and then extending this action to all of 𝐿2(𝑀, ℎ). Since 𝜔𝑛 is normal, 𝜋𝑛 (corresponding to 

𝑝0𝜋𝜔) is σ-weakly continuous and satisfies 𝜋𝑛(𝑀) =  𝜋𝑛(𝑀)′′. Thus 𝐾𝑒𝑟(𝜋𝑛) is 𝜎 -weakly 

closed two-sided ideal, and hence we can find a central projection 𝑒 ∈ 𝑀 so that (𝕝 − 𝑒)𝑀 =
𝑘𝑒𝑟(𝜋𝑛). Restrict 𝜋𝑛to 𝑎∗-isomorphism from eM onto 𝜋𝑛(𝑀). Then for any 𝑎, 𝑏, 𝑐 ∈ 𝑀 we 

have 

〈𝜋𝑛(𝑐)𝜓𝑎, 𝜓𝑏〉ℎ = 𝜏(ℎ
1/2𝑏∗(𝑒𝑐𝑒)𝑎ℎ1/2) 

Let 𝜓(0) denote the orthogonal projection of  𝜓𝕀 onto the closure of {𝜓𝑎: 𝑎 ∈ 𝐴0}. 
(Note that 𝜓𝕝 and 𝜓(0) of course correspond to 𝑝0𝛺𝜔 and 𝑝0𝛺0 in parts (a) and (b) of the proof.) 

Since 𝐿2(𝑀, ℎ) may be viewed as a subspace of 𝐿2(𝑀), let 𝐹 ∈ 𝐿2(𝑀)be the element 

corresponding to 𝜓(0). It is easy to see that 𝑒𝐹 = 𝐹. From parts (a) and (b) we now have that 

𝜔0 = 〈𝜋𝑛(·)(𝜓𝕝 − 𝜓
(0)), 𝜓𝕝 − 𝜓

(0)〉ℎ =  𝜏((ℎ
1
2𝑒 − 𝐹∗) . (ℎ1/2𝑒 − 𝐹)). 

This in turn ensures that 

|ℎ
1
2𝑒 − 𝐹∗|2 =  𝑔 

where g is as in part (b). Thus ℎ1/2𝑒 − 𝐹 ∈ 𝑀. Since by assumption ω0 is faithful on 𝒟, it 

follows that 𝑆𝑢𝑝𝑝(𝑔) = 𝕝. Since 𝒟 is finite dimensional, g must be invertible. But then ℎ1/2𝑒 −
𝐹 must also be invertible, by the previous centered equation. (Recall that if ab is invertible in 

a finite von Neumann algebra then both a and b are invertible.) The polar decomposition of 

ℎ1/2𝑒 − 𝐹∗ is of the form ℎ1/2𝑒 − 𝐹∗ = 𝑢𝑔1/2 for some unitary 𝑢 ∈ 𝑀. From this it is clear 

that 

(ℎ
1
2𝑒 − 𝐹)−1 = 𝑢𝑔−1/2. 

Clearly ℎ1/2𝑢𝑔−1/2 ∈ 𝐿2(𝑀). Hence we may select {𝑎𝑛} ⊂ 𝑀 converging in 𝐿2(𝑀) to 

ℎ1/2𝑢𝑔−1/2 = ℎ1/2(ℎ1/2𝑒 − 𝐹)−1.By the previously established correspondences we then 

have 

‖𝜓𝕝 − 𝜋𝑛(𝑎𝑛)(𝜓𝕝 − 𝜓
(0))‖

ℎ
= 𝜏(|ℎ

1
2𝑒 − (𝑎𝑛𝑒)(ℎ

1/2𝑒 − 𝐹)|2)1/2 
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→ 𝜏(|ℎ1/2𝑒 − ℎ1/2𝑒|2)1/2 = 0. 
This implies, in the notation of parts (a) and (b), that 𝜋𝜔(𝑎𝑛)(𝛺𝜔 − 𝛺0) →  𝑝0𝛺𝜔. It remains 

to show that we may select {𝑎𝑛} ⊂ 𝐴, or equivalently, that ℎ1/2𝑢𝑔−1/2 ∈ [𝐴]2. For this, it 

suffices by the L2 density of A + A∗ to show that ℎ1/2𝑢𝑔−1/2 ⊥ [𝐴0
∗ ]2.So let 𝑎 ∈ 𝐴0 be given, 

and observe that 

𝜏 (𝑎ℎ
1
2𝑢𝑔−

1
2) = 𝜏 (𝑔−1𝑎ℎ

1
2𝑢𝑔−

1
2𝑔) = 𝜏 (𝑔−1𝑎ℎ

1
2𝑢𝑔−

1
2) = 𝜏 (𝑔−1𝑎ℎ

1
2(ℎ

1
2𝑒 − 𝐹∗)

= (ℎ1/2𝑒 − 𝐹∗)( 𝑔−1𝑎ℎ1/2) = 〈𝜓𝑔−1𝑎 , 𝜓𝕝 − 𝜓
(0)〉ℎ = 0 

(The last equality follows from the ideal property of A0 and the fact that 𝜓𝕝 − 𝜓
(0) is orthogonal 

to {𝜓𝑎: 𝑎 ∈ 𝐴0}. ) The claim therefore follows. 

Corollary (2.1.11)[61]: Let A be a maximal subdiagonal algebra with 𝑑𝑖𝑚(𝒟) < ∞. The 

following are equivalent: 

(i) A satisfies the 𝐹&𝑀 Riesz property. 

(ii) Whenever ω annihilates 𝐴0, the normal and singular parts ωn and 𝜔𝑠, will separately 

annihilate 𝐴0. 

(iii) Whenever ω annihilates 𝐴, the normal and singular parts, ωn and 𝜔𝑠, will separately 

annihilate𝐴0. 

(iv) Whenever ω annihilates 𝐴, the normal and singular parts, ωn and 𝜔𝑠 will separately 

annihilate 𝐴. 

Proof: The implications (i) ⇒ (ii) ⇒ (iii) are clear. If (iii) holds, let 𝜔 be a bounded linear 

functional which annihilates 𝐴0. Since 𝛷 is a normal map onto 𝒟, and 𝒟 is finite dimensional, 

the functional defined by 

𝜔𝒟 = 𝜔|𝒟 ∘ 𝛷 

is normal. Then 𝜌 = 𝜔 − 𝜔𝒟 defines a functional which annihilates A. From (iii) we then have 

that 𝜌𝑛 and 𝜌𝑠 separately annihilate A0. The normality of ωD ensures that 

𝜌𝑛 = 𝜔𝑛 −𝜔𝒟 , 𝜌𝑠 = 𝜔𝑠. 
Since by construction 𝜌 = 𝜔 − 𝜔𝒟 annihilates A0, we conclude that 𝜔𝑛and 𝜔𝑠separately 

annihilate 𝐴0. This proves (ii). To prove the validity of (i), it remains to show that any singular 

functional 𝜔 which annihilates 𝐴0, also annihilates 𝒟. For such , the ‘modulus’ |𝜔| is still 

singular (see e.g. [174, 241], or the argument in the first part of the proof of the next theorem). 

Let (πω, 𝔥ω, Ωω) be the GNS representation of |ω|. For each 𝑎 ∈ 𝑀 we have |𝜔(𝑎)|2 ≤
‖𝜔‖|𝜔|(𝑎∗𝑎). By a standard argument this implies that there exists a vector 𝜂 ∈  𝔶𝜔 such that 

𝜔(·) = 〈𝜋𝜔(·)𝛺𝜔, 𝜂〉. 
Let 𝑑 ∈ 𝒟 be given. By part (b)(ii) of Lemma (2.1.10) we may select a sequence {𝑓𝑛} ⊂ 𝐴0 so 

that πω(d)Ωω = lim
n
πω(fn)Ωω. But then 

𝜔(𝑑) = 〈𝜋𝜔(𝑑)𝛺𝜔, 𝜂〉 = 𝑙𝑖𝑚
𝑛
〈𝜋𝜔(𝑑)𝛺𝜔, 𝜂〉 = 𝑙𝑖𝑚

𝑛
𝜔(𝑓𝑛) = 0 

as required. 

The equivalence with (iv) is now obvious. 

 

Theorem (2.1.12)[61]:Let 𝐴 be a maximal subdiagonal algebra. Then 𝐴 satisfies the 𝐹&𝑀 

Riesz property if and only if 𝑑𝑖𝑚(𝒟) < ∞. 
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Proof: We proved the one direction in Proposition (2.1.9). For the other, let 𝜔 be a bounded 

linear functional on 𝑀 which annihilates 𝐴0, and let ωnand 𝜔𝑠 be the normal and singular parts 

of 𝜔. Write 𝜔𝑛 = 𝜏(ℎ ·), for some ℎ ∈ 𝐿1(𝑀). We extend 𝜔, 𝜔𝑛, and 𝜔𝑠, uniquely to normal 

functionals on the enveloping von Neumann algebra (the double commutant in the universal 

representation) and define |𝜔|, |𝜔𝑛|and |ωs|, to be the absolute values of these extensions 

restricted to 𝑀. Then from for example ([173], cf. [240]) applied to 𝜔 and 𝜏, we have that as 

functionals on 𝑀, |𝜔𝑛| and |ωs| are respectively the normal and singular parts of |𝜔|, and that 

|𝜔| = |𝜔𝑛| + |𝜔𝑠|. We note from [134] that there is no danger of confusion as regards the 

absolute value of ωnsince the absolute value of 𝜔𝑛as a functional on 𝑀 and as a functional on 

the enveloping von Neumann algebra coincide on 𝑀. Now consider the positive functional 𝜌 

given by 

𝜌 = 𝜏 + |𝜔|. 
Let (𝜋𝜌, 𝔶𝜌, 𝛺𝜌) be the 𝐺𝑁𝑆 representation constructed from ρ, and define ρ0 by 𝜌0(𝑎) =

〈𝜋𝜌(𝑎)(𝛺𝜌 − 𝛺0), 𝛺𝜌 − 𝛺0〉, where 𝜌0 is the orthogonal projection of ρ onto the closure of 

{𝜋𝜌(𝑎)𝛺𝜌: 𝑎 ∈ 𝐴0}. For any 𝑓 ∈ 𝐴0 and any 𝑑 ∈ 𝒟+, we have by construction.That 

‖𝜋𝜌(𝑑
1/2)(𝛺𝜌 − 𝜋𝜌(𝑓)𝛺𝜌)‖

2
= 𝜌(|𝑑

1
2(𝕝 − 𝑓)|

2

) ≥ 𝜏(|𝑑
1
2(𝕝 − 𝑓)|

2

)

=  𝜏(𝑑 − 𝑑𝑓 − 𝑓∗𝑑 + |𝑑1/2𝑓|2) =  𝜏(𝑑 + |𝑑1/2𝑓|2) ≥ 𝜏(𝑑). 
On selecting a sequence {𝑓𝑛} ⊂ 𝐴0 so that 𝜋𝜌(𝑓)𝛺𝜌 → 0, it follows that ρ0(𝑑) =

‖𝜋𝜌(𝑑
1/2)(𝛺𝜌 − 𝛺0)‖

2
≥ 𝜏(𝑑). Hence 𝜌0 is faithful on 𝒟, and 𝛺𝜌 ≠ 𝛺0. Thus we may apply 

all of Lemm(2.1.10) to (𝜋0, 𝔥0, 𝛺0) . 
Next notice that for each a in the enveloping von Neumann algebra we have 

|𝜔(𝑎)|2 ≤ ‖𝜔‖|𝜔|(𝑎∗𝑎) ≤ ‖𝜔‖𝜌(𝑎∗𝑎). 
Thus on restricting to elements of 𝑀, and employing a standard argument, this implies that 

there exists a vector 𝜂 ∈  𝜋𝜌 such that 

𝜔(·) = 〈𝜋𝜌(·)𝛺𝜌, 𝜂〉. 

Now consider the related functional 

𝜔̃(·) = 〈𝜋𝜌(·)(𝛺𝜌 − 𝛺0), 𝜂〉. 

Select a sequence {𝑓𝑛 ⊂ 𝐴0 so that 𝜋𝜌(𝑓𝑛)𝛺0 → 𝛺0. Let 𝑎 ∈ 𝐴0 be given. Since 𝐴0 is an ideal, 

and since 𝜔 annihilates 𝐴0, we conclude that 

                                  ω̃(𝑎) = 〈𝜋𝜌(𝑎)(𝛺𝜌 − 𝛺0), 𝜂〉 

                                           = 𝑙𝑖𝑚
𝑛
〈𝜋𝜌(𝑎(𝕝 − 𝑓𝑛))(𝛺𝜌 , 𝜂〉 = 𝑙𝑖𝑚

𝑛
𝜔(𝑎(𝕝 − 𝑓𝑛)) = 0. 

Thus ω̃ also annihilates 𝐴0. 

By part (c) of the Lemma we can find a sequence {𝑎𝑛}  ⊂  𝐴 such that 𝜋𝜌(𝑎𝑛)((𝛺𝜌 − (𝛺0) →

𝑝0(𝛺𝜌. Let 𝑎 ∈  𝐴0 be given. Since A0 is an ideal, and since ω̃ annihilates A0, we may now 

conclude that 

𝜔𝑛(𝑎) = 〈𝜋𝜌(𝑎)𝛺𝜌, 𝜂〉 = 𝑙𝑖𝑚
𝑛
〈𝜋0(𝑎(𝕝 − 𝑓𝑛))(𝛺𝜌 , 𝜂〉 = 𝑙𝑖𝑚

𝑛
𝜔̃(𝑎(𝕝 − 𝑓𝑛)] = 0 

Thus 𝜔𝑛 annihilates A0. But then so does 𝜔𝑠 = 𝜔 −𝜔𝑛. It now follows from Corollary (2.1.11)  

that 𝐴 satisfies the 𝐹 & 𝑀 Riesz property. 
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Corollary (2.1.13)[61]: If 𝐴 is a maximal subdiagonal algebra with 𝒟 finite dimensional, and 

if 𝜔 ∈ 𝑀∗annihilates 𝐴 + 𝐴∗, then 𝜔 is singular. 

Proof: Since 𝐴 satisfies the 𝐹&𝑀 Riesz property, 𝜔𝑛. annihilates 𝐴. Similarly, since 𝐴∗. 
satisfies the 𝐹&𝑀 Riesz property, 𝜔𝑛annihilates A∗. Since 𝐴 is subdiagonal, 𝜔𝑛 = 0. 

Corollary (2.1.14)[61]: If 𝐴 has the 𝐹 & 𝑀 Riesz property, then any positive functional on 𝑀 

which annihilates 𝐴0 is normal. 

Proof:If 𝜔 is a state on 𝑀 which annihilates 𝐴0, and if 𝐴 has the 𝐹 & 𝑀 Riesz property, then 

the (positive) singular part of 𝜔 is 0 since it must annihilate 𝕝. 
We say that an extension in 𝑀⋆ of a functional in 𝐴⋆ is a Hahn-Banach extension if it has the 

same norm. If 𝐴 is a weak* closed subalgebra of 𝑀 then we say that 𝐴 has property (𝐺𝑊1) if 
every Hahn-Banach extension to 𝑀 of any normal functional on 𝐴, is normal on 𝑀. We say 

that A has property (𝐺𝑊2) if there is at most one normal Hahn-Banach extension to 𝑀 of any 

normal functional on A. We say that A has the Gleason-Whitney property (𝐺𝑊) if it possesses 

(𝐺𝑊1) and (𝐺𝑊2). This is simply saying that there is a unique Hahn-Banach extension to 𝑀 of 

any normal functional on A, and this extension is normal. Of course normal functionals on 𝐴 or 

on 𝑀 have to be of the form 𝜏(𝑔 ·) for some 𝑔 ∈  𝐿1(𝑀). 

Theorem (2.1.15)[61]: If 𝐴 is a tracial subalgebra of 𝑀 then 𝐴 is maximal subdiagonal if and 

only if it possesses property (𝐺𝑊2). If 𝒟 is finite dimensional, then A is maximal subdiagonal 

if and only if it possesses property (𝐺𝑊). 

Proof: Suppose that 𝐴 possesses property (𝐺𝑊2). To show that 𝐴 is maximal subdiagonal, it 

suffices to show that if 𝑔 ∈ 𝐿1(𝑀),with 𝜏(𝑔(𝐴 + 𝐴∗)) = 0, then 𝑔 = 0. 

By considering real and imaginary parts we may assume that 𝑔 = 𝑔∗. Then 𝜏(|𝑔| ·) and 

𝜏((|𝑔| + 𝑔) ·) are positive normal functionals on 𝑀 which agree on 𝐴. They are also Hahn-

Banach extensions, since the norm of a positive functional is achieved at 1. Thus by 

(GW2), these functionals agree on 𝑀, and so |𝑔| + 𝑔 = |𝑔|. That is, 𝑔 = 0. 

In the remainder of the proof suppose that 𝐴 is maximal subdiagonal. Suppose that 𝑓, 𝑔 ∈
𝐿1(𝑀) correspond to two normal Hahn-Banach extensions to 𝑀 of a given functional on 𝐴. 
Then ‖𝑓‖1 = ‖𝑔‖1, and this quantity equals the norm of the restriction to 𝐴. We have 𝜏((𝑓 −
𝑔)𝐴) = 0; since 𝐴 is subdiagonal it follows from [153] that h = 𝑔 − 𝑓 ∈ [𝐴0]1. In order to 

establish (𝐺𝑊2), we need to show that ℎ =  0. Since Ball (𝐴) is weak* compact, and since 

‖𝑓‖1 equals the norm of the above-mentioned restriction to A, there exists a ∈ A of norm 1 

with 𝜏(𝑓𝑎) = ‖𝑓‖1. It is evident that 

|𝑎𝑓|2 = 𝑓∗𝑎∗𝑎𝑓 ≤ 𝑓∗𝑓 = |𝑓|2 . 

Now 0 ≤ 𝑇 ≤ 𝑆 in 𝐿𝑝(𝑀) implies that 𝑇
1

2 ≤ 𝑆
1

2(see e.g. [163], and we thank David Sherman 

for this reference). It follows that |𝑎𝑓| ≤ |𝑓|. On the other hand, 𝜏(|𝑓|) = 𝜏(𝑓𝑎) = 𝜏(𝑎𝑓) ≤
𝜏(|𝑎𝑓|).Thus‖ |𝑓| − |𝑎𝑓|‖1 =  𝜏(|𝑓| − |𝑎𝑓|) = 0, and so |𝑓| = |𝑎𝑓|.The functional 𝜓 =
𝜏(𝑎𝑓. ) on 𝑀 must be positive since 𝜓(𝕝) = 𝜏(𝑎𝑓) = 𝜏(|𝑓|) = 𝜏(|𝑎𝑓|) = ‖𝜓‖. Thus 𝑎𝑓 ≥ 0, 
and 𝑎𝑓 = |𝑎𝑓| =  |𝑓|. Since ℎ ∈  [𝐴0]1 we have 

 

𝜏((𝑓 + ℎ)𝑎) = 𝜏(𝑓𝑎)‖𝑓‖1 = ‖𝑔‖1 = ‖𝑓 + ℎ‖1 

An argument similar to that of the last paragraph shows that 𝑎(𝑓 + ℎ)  =  |𝑓 + ℎ|  ≥  0.Thus 

𝑎ℎ is self-adjoint. Since ℎ ∈ [𝐴0]1 it is easy to see that 𝜏(𝑎ℎ𝐴) = 0. Therefore from the self-
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adjointness of ah one may deduce that 𝜏(𝑎ℎ(𝐴 + 𝐴∗)) = 0. Because 𝐴 is subdiagonal, it 

follows that 𝑎ℎ =  0. Thus 

|𝑓| = 𝑎𝑓 = 𝑎(𝑓 + ℎ) = |𝑓 + ℎ| 
Let e be the left support projection of a. Then 𝑒⊥ is the projection onto 𝐾𝑒𝑟(𝑎∗). We have 

|𝑓|𝑒⊥ = 𝑓∗𝑎∗𝑒⊥ =  0. It follows that 𝑓𝑒⊥ = 0. Thus  0 = 𝑒⊥𝑓∗𝑓𝑒⊥ = 𝑒⊥|𝑓 + ℎ|2𝑒⊥ =
𝑒⊥(𝑓 +  ℎ)∗(𝑓 +  ℎ)𝑒⊥ = 𝑒⊥ℎ∗ℎ𝑒⊥. 
Hence he⊥ = 0. To show that ℎ𝑒 = 0, we reproduce the ideas in the argument in the second 

paragraph of the proof. Namely, note that |(𝑓𝑎)∗|2 ≤ |𝑓∗|2, so that |(𝑓𝑎)∗| ≤ |𝑓∗|. But 

(|𝑓∗|) = ‖𝑓‖1 = 𝜏(𝑓𝑎) ≤  𝜏(|(𝑓𝑎)
∗|), and as before this shows that |(𝑓𝑎)∗| =  |𝑓∗|.  Then 

also τ(𝑓𝑎) = 𝜏(|(𝑓𝑎)∗|), and as before this shows that 𝑓𝑎 ≥  0. Similarly, (𝑓 + ℎ)𝑎 ≥ 0. So 

ha is again selfadjoint, and this implies as before that ℎ𝑎 = 0. Thus ℎ𝑒⊥ = 0, and so ℎ = ℎ𝑒 +
ℎ𝑒⊥ = 0 as required. 

Now suppose that, in addition, 𝒟 is finite dimensional, and that 𝜌 is a Hahn-Banach 

extension of a normal functional ω on 𝐴. By basic functional analysis, 𝜔is the restriction of a 

normal functional ω on M. We may write 𝜌 = 𝜌𝑛 + 𝜌𝑠, where ωn and ωs are respectively the 

normal and singular parts, and ‖𝜌‖ = ‖𝜌𝑛‖ + ‖𝜌𝑠‖.Then 𝜌 − 𝜔̃ annihilates 𝐴, and hence by 

our 𝐹. and 𝑀. Riesz theorem both the normal and singular parts, 𝜌𝑛 − 𝜔̃ and 𝜌s respectively, 

annihilate 𝐴0. Hence they annihilate 𝐴, and in particular 𝜌𝑛 = 𝜔 on 𝐴. But this implies that 

‖ρn‖ + ‖ρs‖ = ‖ρ‖ = ‖ω‖ ≤ ‖ρn‖ 

We conclude that 𝜌𝑠 = 0. Thus A also satisfies (𝐺𝑊1), and hence (𝐺𝑊).There is another 

(simpler) variant of the Gleason-Whitney theorem [149], which transfers more easily to our 

setting: 

Theorem (2.1.16)[61]:Let 𝐴 be a maximal subdiagonal subalgebra of 𝑀 with 𝒟finite 

dimensional. If 𝜔is a normal functional on 𝑀 then ω is the unique Hahn-Banach extension of 

its restriction to 𝐴 + 𝐴∗. In particular, ‖𝜔‖ = ‖𝜔𝐴+𝐴∗‖for any𝜔 ∈  𝑀∗. 
Proof: Let ρ be a Hahn-Banach extension of the restriction of ω to A + A∗. We may write 𝜌 =
𝜌𝑛  + 𝜌𝑠, where 𝜌𝑛 and 𝜌𝑠,  are respectively the normal and singular parts, and ‖𝜌‖ = ‖𝜌𝑛‖ +
‖𝜌𝑠‖. Then 𝜌 − 𝜔 annihilates A + 𝐴∗. By Corollary (2.1.14),  𝜌𝑛 −𝜔 = (𝜌 − 𝜔)𝑛 = 0. As in 

the last part of the previous proof, this implies that 𝜌𝑠 = 0. So 𝜌𝑠 = 𝜌𝑛 = 𝜔. 

Corollary (2.1.17)[61]:(Kaplan sky density theorem for subdiagonal algebras) Let 𝐴 be a 

maximal subdiagonal subalgebra of M with D finite dimensional. Then the unit ball of 𝐴 +
𝐴∗is weak* dense in Ball(𝑀). 

Proof: If C is the unit ball of 𝐴 + 𝐴∗, it follows from the last remark that thepre-polar of C is 

Ball(M⋆). By the bipolar theorem, C is weak* dense in Ball (𝑀).  
Arveson formulated the Szegö theorem for 𝐿2(𝑀) in terms of the Kadison-Fuglede determinant 

∆(·). The long-outstanding open question of whether general maximal subdiagonal algebras 

satisfy the Szego theorem for 𝐿2(𝑀), was eventually settled in the affirmative in [163]. We will 

now extend this result to 𝐿𝑝(𝑀). We refer the reader to [300, 58] for the properties of the 

Kadison-Fuglede determinant which we shall need. 

  

Lemma (2.1.18)[61]:∆(𝑏𝑝) = ∆(𝑏)𝑝 for 𝑝 ≥ 1 and 𝑏 ∈ 𝑀+. 
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Proof: By the multiplicativity property of ∆, the relation clearly holds for dyadic rationals. We 

may assume that 0 ≤ 𝑏 ≤ 1. In this case, by the functional calculus it is clear that 𝑏𝑞 ≤ 𝑏𝑝 if 

0 < 𝑝 ≤ 𝑞. If q is any dyadic rational bigger than 𝑝 then 

∆(𝑏)𝑝 = ∆(𝑏𝑝) ≤ ∆(𝑏𝑝)   

It follows that ∆(𝑏𝑝) ≤ ∆(𝑏𝑝). Replacing 𝑝 by 1/𝑝, we have ∆(bp)
1

p ≤ ∆ ((bp)
1

p) = ∆(b), 

which gives the other direction. 

Theorem (2.1.19)[61]:.(Szegö theorem for 𝐿𝑝(𝑀)) Suppose that 𝐴 is maximal subdiagonal, 

and 1 ≤ 𝑝 < ∞.  If ℎ ∈ 𝐿1(𝑀)+ then  

∆(ℎ) = 𝑖𝑛𝑓 {𝜏(ℎ|𝑎 + 𝑑|𝑝) ∶ 𝑎 ∈  𝐴0, 𝑑 ∈ 𝒟, ∆(𝑑) ≥ 1}. 
Proof: We set 

𝑆𝑝 = {|𝑎|
𝑝: 𝑎 ∈ 𝐴, (𝜙(𝑎)) ≥ 1}, 

𝑆 = {𝑎∗𝑎: 𝑎 ∈ 𝐴−1, ∆(𝑎) ≥ 1}. 
By the modification in [58] of a trick of Aversion’s from [300], it suffices to show that the 

closure of 𝑆𝑝 equals the closure of 𝑆. First we show that 𝑆 ⊂ 𝑆𝑝. Indeed, if 𝑏 ∈ 𝑆 then b is 

invertible, and therefore so is 
1

𝑝
 . Since 𝐴 has factorization, there is an 𝑎 ∈ 𝐴−1 with |a| = b

1

p . 

By Lemma (2.1.19) and Jensen’s formula [300, 163] we have 

∆(𝛷(𝑎)) = ∆(𝑎) = ∆(|𝑎|) = ∆ (𝑏
1
𝑝) = ∆(𝑏)

1
𝑝  ≥ 1. 

Hence 𝑏 = |𝑎|𝑝 ∈ 𝑆𝑝. 

Suppose that 𝑏 ∈ 𝑆𝑝 .If 𝑏 = |𝑎|𝑝 where 𝛥(𝛷(𝑎)) ≥ 1 then by Jensen’s inequality [300, 241] 

we have 𝛥(𝑎) = 𝛥(|𝑎|) ≥ 1. Hence by Lemma (2.1.18) we have 𝛥(𝑏)  ≥  1. If 𝑛 ∈ ℕ then 

since 𝐴 has factorization, there exists a c ∈ A−1with 𝑏 + 
1

𝑛
 1 =  𝑐∗𝑐. Thus 

Δ(𝑐)2 = 𝛥(𝑏 +
1

𝑛
1) ≥ 𝛥(𝑏) ≥ 1. 

Thus b + 
1

n
1 = c∗c ∈ S, and we deduce that 𝑏 ∈ 𝑆̅. Hence Sp̅̅ ̅ ⊂ S̅. 

Note that the following generalized Kolmogorov theorem is not true for all maximal 

subdiagonal algebras. For example, take 𝐴 = 𝑀 = 𝐿∞[0, 1]. 
Theorem (2.1.20)[61]:.Suppose that 𝐴 is an antisymmetric maximal subdiagonal algebra. 

Ifℎ ∈ 𝐿1(𝑀)+ then inf{𝜏(ℎ|𝕝 + 𝑓|2): 𝑓 ∈ 𝐴0 + 𝐴0 
∗ } is either 𝜏(ℎ−1)−

1

2 , if ℎ−1 exists in the 

sense of unbounded operators and is in 𝐿1(𝑀); or the infimum is 0 if h−1 ∉ L1(M). More 

generally, if 1 ≤  𝑝 < ∞ then 𝑖𝑛𝑓{𝜏(|(𝕝 + 𝑓)ℎ
1

𝑝|𝑝): 𝑓 ∈ 𝐴0 + 𝐴0
∗ } is either 0 if ℎ−1 ∉

𝐿1/(𝑝−1)(𝑀), o𝑟 𝜏(ℎ− 1/𝑝−1 )
1

𝑝 
− 1 ifℎ−1 ∈ 𝐿1/(𝑝−1)(𝑀). 

Proof: We formally follow the proof of Forelli as adapted in [282]. Let ℎ ∈ 𝐿1(𝑀)+, and  
1

𝑝
+

1

𝑞
= 1. Define 𝐿𝑝(𝑀, ℎ) to be the completion in 𝐿𝑝(𝑀) of 𝑀ℎ

1

𝑝. Note that if 𝑒 is the support 

projection of 𝑎 positive 𝑥 ∈  𝐿𝑝(𝑀) then it is well known (see e.g. [175]) that 𝐿𝑝(𝑀)𝑒 equals 

the closure in 𝐿𝑝(𝑀) of 𝑀𝑥. Hence 𝐿𝑝(𝑀, ℎ) = 𝐿𝑝(𝑀)𝑒, where e is the support projection of 
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ℎ. Now for any projection 𝑒 ∈ 𝑀 it is an easy exercise to prove that the dual of 𝐿𝑝(𝑀) is 

eLq(M) (see e.g. [175]). It follows that the dual of 𝐿𝑝(𝑀, ℎ) is 𝐿𝑞(𝑀, ℎ). 

If k ∈  𝐿𝑝(𝑀, ℎ) then 𝑘ℎ
1

𝑞 ∈  𝐿𝑝(𝑀)𝐿𝑞(𝑀)  ⊂  𝐿1(𝑀). We view 𝐴0 + 𝐴0
∗  in 𝐿𝑝(𝑀, ℎ)  as its 

image (A0 + A0
∗ )h

1

𝑝 , and let 𝑁 be the annihilator of this in Lq(M, h). That is, 𝑔 ∈  𝑁 iff 𝑔 ∈
 𝐿𝑞(𝑀, ℎ) and 

0 = 𝜏(ℎ
1
𝑝 (𝐴0 + 𝐴0

∗)𝑔) = 𝜏((𝐴0 + 𝐴0
∗  )𝑔ℎ

1
𝑝). 

Since 𝑔ℎ
1

p  ∈  𝐿1(𝑀) the last equation holds iff 𝑔ℎ
1

𝑝 = 𝑐𝕝, where 𝑐 is a constant. Since h is 

selfadjoint, if c ≠ 0 then it follows that ℎ
−
1 

𝑝  exists in the sense of unbounded operators, and its 

closure is the constant multiple 𝑑𝑔 ∈ 𝐿𝑞(𝑀), where 𝑑 = 𝑐−1. (Since we are in the finite case, 

there is no difficulty with τ-measurability here, this is automatic [183]). If 𝑐 = 0 then 𝑔ℎ 
1

𝑝 =

0 which implies that 𝑔 = 0. To see the last statement note that if ℎ 
1

𝑝 is viewed as a selfadjoint 

unbounded operator on a Hilbert space 𝐻, and if 𝑒 is its support projection, which equals the 

support projection of h
1

q , then 𝑒ℎ
1

𝑝 = ℎ
1

𝑝 , and so 𝑒ℎ
1

𝑝𝑒 = 𝑒ℎ
1

𝑝.  Since  𝑔 ∈  𝑀ℎ
1

𝑞
̅̅ ̅̅ ̅̅

 , we have 

𝑔𝑒 =  𝑔. However 𝑔𝑒 = 0 since 𝑔ℎ
1

𝑝  =  0. Thus if g has norm 1 then c ≠  0, ℎ
1

𝑝 ∈  𝐿𝑞(𝑀) 

and |𝑑| = ‖ℎ
1

𝑝‖
𝐿𝑞(𝑀)

= 𝜏(ℎ
− 
 𝑞

𝑝  )
1

𝑞 . 

The infimum in the theorem is the pth power of the norm of 𝕝 in the quotient space of 𝐿𝑝(𝑀, ℎ) 
modulo the closure of 𝐴0 + 𝐴0

∗ . Since the dual of this quotient is (𝐴0 + 𝐴0
∗  )⊥ = 𝑁, this 

infimum equals the pth power of sup{|𝜏 (𝑔ℎ
1

𝑝)| : 𝑔 ∈  𝑁, ‖𝑔‖𝐿𝑞(𝑀)  ≤  1}. This equals 0 if no 

𝑔 ∈ 𝑁 has norm 1; otherwise it equals τ(ℎ
−
𝑞

𝑝 )
−
1

𝑞  =  𝜏(ℎ
− 

1

𝑝−1 )
−
1

𝑞 by the above. Indeed, the 

infimum is 0 iff 𝜏(𝑔ℎ
1

𝑝 ) = 0 for all 𝑔 ∈ 𝑁. Since 𝑔ℎ
1

𝑝 is constant, this occurs iff 𝑔ℎ
1

𝑝 = 0, 

which as we saw above happens iff 𝑔 = 0. Thus the infimum is 0 iff 𝑁 = (0) iff (𝐴0 + 𝐴0
∗)ℎ

1

𝑝 

is dense in 𝐿𝑝(𝑀, ℎ). Since ℎ
1

𝑝 ∈ 𝐿𝑝(𝑀, ℎ), the latter condition implies that there is a sequence 

(𝑔𝑛) in 𝐴0 + 𝐴0
∗  with 𝑔𝑛ℎ

1

𝑝 → ℎ
1

𝑝 in 𝑝 −norm. If ℎ−1/𝑝 ∈ 𝐿𝑞(𝑀) then by Hölder’s inequality 

we have 𝜏(|𝑔𝑛 − 𝕝 |)  →  0, which is impossible since 1 = |𝜏(𝑔𝑛 − 𝕝)|  ≤  𝜏(|𝑔𝑛  −  𝕝|).  
Section (2.2) Szeg𝐨̈’s Theorem and Outers for Noncommutative 𝐇𝐩 

It has long been of great importance to operator theorists and operator algebraists to find 

noncommutative analogues of the classical ‘inner-outer factorization’ of analytic functions. We 

recall some classical results: If 𝑓 ∈ 𝐿1 with𝑓 ≥ 0, then ∫ 𝑙𝑜𝑔 |𝑓| >  −∞iff 𝑓 =  |ℎ| for an 

outer ℎ ∈  𝐻1 (iff 𝑓 =  |ℎ|𝑝 for an outer ℎ ∈  𝐻𝑝). We will call this the Riesz-Szegö theorem. 

If 𝑓 ∈  𝐿1 with ∫ 𝑙𝑜𝑔 |𝑓| >  −∞, then 𝑓 =  𝑢ℎ, where u is unimodular and h is outer. Outer 

functions may be defined in terms of a simple equation involving ∫ 𝑙𝑜𝑔 |𝑓|Such results are 

usually treated as consequences of the classical Szegö theorem, which is really a distance 

formula in terms of the entropy 𝑒𝑥𝑝(∫  𝑙𝑜𝑔 |𝑓|), and which in turn is intimately related to the 



35 
  

Jensen inequality (see e.g. [147]). In the noncommutative situation one wishes, for example, to 

find conditions on a positive operator 𝑇 which imply that 𝑇 = |𝑆| for an operator S which is 

in a ‘noncommutative Hardy class’, or, even better, which is ‘outer’ in some sense. There are 

too many such results to attempt a listing of them (see e.g. [88]). Central parts of this topic still 

seem to be poorly understood. As an example of this, we cite the main and now classical result 

of [6], concerning a Riesz-Szegö like factorization of a class of 𝐵(𝐻)-valued functions on the 

unit interval, which has resisted generalization in some important directions. We generalize the 

classical results above to the noncommutative 𝐻𝑝 spaces associated with Arveson’s remarkable 

subdiagonal algebras [300]. Our generalization solves an old open problem (see the discussion 

in [88], and [178]). The approach which we take has been unavailable until now (since it relies 

ultimately on the recent solution in [163] of a 40 year old open problem from [300]). Moreover, 

the approach is very faithful to the original classical function theoretic route (see e.g. [147]), 

proceeding via noncommutative  Szegö theorems. 

We have attempted to demonstrate that all the results in ([282]) the ‘generalized 𝐻𝑝-

theory’ for abstract function algebras from the 1960s, extend in an extremely complete and 

literal fashion, to the noncommutative setting of Arveson’s subdiagonal subalgebras of von 

Neumann algebras [300]. This may be viewed as a very natural merging of generalized Hardy 

space, von Neumann algebra, and noncommutative 𝐿𝑝 space, techniques. See [62]. It completes 

the noncommutative extension of the basic Hardy space theory. As posited by Arveson, one 

should use the Fuglede-Kadison determinant ∆(𝑎)  =  𝑒𝑥𝑝(𝜏(𝑙𝑜𝑔 |𝑎|)) where τ is a trace, as a 

natural replacement in the noncommutative case for the quantity ∫ 𝑙𝑜𝑔 𝑓 above. We use 

properties of the Fuglede-Kadison determinant to give several useful variants of the 

noncommutative Szegö theorem for 𝐿𝑝(𝑀), including the one usually attributed to 

Kolmogorov and Krein. As applications, we generalize the noncommutative Jensen inequality, 

and generalize many of the classical resuts concerning outer functions, to the noncommutative 

𝐻𝑝 context.  

For a set S, we write S+for the set {𝑥 ∈  𝑆 ∶  𝑥 ≥  0} see [62]. . We assume throughout 

that 𝑀 is a von Neumann algebra possessing a faithful normal tracial state τ. The existence of 

such τ implies that 𝑀 is a so-called finite von Neumann algebra, and that if 𝑥∗𝑥 = 1 in 𝑀, then 

𝑥𝑥∗ = 1 too. Indeed, for any 𝑎, 𝑏 ∈  𝑀, ab will be invertible precisely when a and b are 

separately invertible. We will also need to use a well known fact about inverses of an 

unbounded operator  , and in our case 𝑇 will be positive, selfadjoint, closed, and densely 

defined. We recall that 𝑇 is bounded below if for some 𝜆 >  0 one has 𝑘𝑇 (𝜂)𝑘 ≥  𝜆‖𝜂‖for 

all 𝜂 ∈  𝑑𝑜𝑚(𝑇 ). This is equivalent to demanding that |𝑇 |  ≥  𝜀1 for some 𝜀 >  0, and of 

course in this case, |𝑇 | has a bounded positive inverse. 

𝐴 (finite maximal) subdiagonal subalgebra of 𝑀 is a weak* closed unital subalgebra 𝐴 

of 𝑀 such that if 𝛷 is the unique conditional expectation guaranteed by [181] from 𝑀 onto 

𝐴 ∩ 𝐴∗ ≝ 𝐷 which is trace preserving (that is, 𝜏 ∘ 𝛷 =  𝜏), then: 

  𝛷(𝑎1𝑎2)  =  𝛷(𝑎1)𝛷(𝑎2), 𝑎1, 𝑎2 ∈  𝐴.                               (1) 

One also must impose one further condition on A. There is a choice of at least eight 

equivalent, but quite different looking, conditions [62]; Arveson’s original one (see also 

[240]) is that 𝐴 + 𝐴∗ is weak* dense in M. In the classical function algebra setting [288], one 
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assumes that 𝒟 = 𝐴 ∩ 𝐴∗ is one dimensional, which forces 𝛷 =  𝜏(·)1. If in our setting this 

is the case, then we say that 𝐴 is antisymmetric. 

The simplest example of a maximal subdiagonal algebra is the upper triangular matrices 

𝐴 in 𝑀𝑛. Here 𝛷 is the expectation onto the main diagonal. There are much more interesting 

examples from free group von Neumann algebras, Tomita-Takesaki theory, etc (see e.g. 

[300,161,178]). On the other end of the spectrum, 𝑀 itself is a maximal subdiagonal algebra 

(take 𝛷 =  𝐼𝑑). It is therefore remarkable that so much of the classical 𝐻𝑝 theory does extend 

to all maximal subdiagonal algebras.  

By analogy with the classical case, we set 𝐴0  =  𝐴 ∩  𝐾𝑒𝑟(𝛷) and set 𝐻𝑝 or 𝐻𝑝(𝐴) to 

be [𝐴]𝑝, the closure of 𝐴 in the noncommutative 𝐿𝑝space 𝐿𝑝(𝑀), for 𝑝 ≥  1. More generally 

we write [𝑆]𝑝 for this closure of any subset 𝑆. We will often view 𝐿𝑝(𝑀) inside 𝑀̃, the set of 

unbounded, but closed and densely defined, operators on H which are affiliated to M. This is a 

∗-algebra with respect to the ‘strong’ sum and product (see [183]). We order 𝑀̃  by its cone of 

positive (selfadjoint) elements. The trace τ extends naturally to the positive operators in 𝑀̃,. If 

1 ≤  𝑝 <  ∞, then 𝐿𝑝(𝑀, 𝜏) = {𝑎 ∈  𝑀̃ ∶ 𝜏(|𝑎|𝑝)  <  ∞}, equipped with the norm ‖ · ‖𝑝  =

 𝜏(|  ·  |𝑝)1/𝑝 (see e.g.[77]). We abbreviate 𝐿𝑝(𝑀, 𝜏) to 𝐿𝑝(𝑀). Arveson’s Szegö formula is: 

𝛥(ℎ)  =  𝑖𝑛𝑓{𝜏(ℎ|𝑎 +  𝑑|2) ∶  𝑎 ∈  𝐴0, 𝑑 ∈  𝐷, 𝛥(𝑑)  ≥  1} 
for all ℎ ∈  𝐿1(𝑀)+. Here Δ is the Fuglede-Kadison determinant, originally defined on 𝑀 by 

𝛥(𝑎)  =  𝑒𝑥𝑝 𝜏(𝑙𝑜𝑔 |𝑎|) 𝑖𝑓 |𝑎|  >  0, and otherwise, 𝛥(𝑎)  =  𝑖𝑛𝑓 𝛥(|𝑎| + ℰ1), the infimum 

taken over all scalars ℰ >  0 (see [26, 300]). We will discuss this determinant in more detail. 

Unfortunately, the just-stated noncommutative Szegö formula, and the (no doubt more 

important) associated Jensen’s inequality 

𝛥(𝛷(𝑎))  ≤  𝛥(𝑎), 𝑎 ∈ 𝐴, 
resisted proof for nearly 40 years, although Arveson did prove them in his extraordinary 

original [300] for the examples that he was most interested in. The second proved in [163] that 

all maximal subdiagonal algebras satisfy these formulae. Settling this old open problem opened 

up the theory. 

An element ℎ ∈  𝐻𝑝 is said to be outer if 1 ∈  [ℎ𝐴]𝑝. This definition is in line with e.g. 

Helson’s definition of outers in the matrix valued case he considers in [102]. We now state a 

sample of our results about outers. For example, we are able to improve on the factorization 

theorems from e.g. [58] in several ways: namely we show that if 𝑓 ∈  𝐿𝑝(𝑀) with 𝛥(𝑓)  >  0 

then 𝑓 may be essentially uniquely factored 𝑓 =  𝑢ℎ with 𝑢 unitary and ℎ outer. There is a 

much more obvious converse to this, too. We now have an explicit formula for the 𝑢 and ℎ. 

We refer to a factorization 𝑓 =  𝑢ℎ of this form as a Beurling-Nevanlinna factorization. It 

follows that in this case if 𝑓 ≥  0 then 𝑓 =  |ℎ| with h outer. This gives a solution to the 

problem posed in [88], and in [178]. If ℎ ∈  𝐻𝑝, and h is outer then 𝛥(ℎ)  =  𝛥(𝛷(ℎ)). A 

converse is true: if 𝛥(ℎ)  =  𝛥(𝛷(ℎ))  > 0 then h is outer. It follows that under some 

restrictions on 𝒟 = 𝐴 ∩ 𝐴∗, h is outer iff 𝛥(ℎ) = 𝛥(𝛷(ℎ)) > 0. 

There are many factorization theorems for subdiagonal algebras (see e.g. [300, 178, 149, 

176, 88]), but as far as we know there are no noncommutative factorization results involving 

outers or the Fuglede-Kadison determinant. We mention for example Arveson’s original 

factorization result from [300], or Marsalli and West’s Riesz factorization of any 𝑓 ∈  𝐻1 as a 
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product𝑓 = 𝑔ℎ with 𝑔 ∈  𝐻𝑝, ℎ ∈  𝐻𝑞 ,
1

𝑝
 +  

1 

𝑞
 =  1. Some also require rather stronger 

hypotheses, such as 𝑓−1  ∈  𝐿2(𝑀) (see e.g. [178]) 

The commutative case of most of the topics was settled in [281]. While certainly gave 

us motivation to persevere in our endeavor, we follow completely different lines, and indeed 

the results work out rather differently too. In particular, the quantity 𝜏(𝑒𝑥𝑝(𝛷(𝑙𝑜𝑔 |𝑓|))), 
which plays a central role in most of the results in [281], seems to us to be unrelated to outers 

or factorization in the noncommutative setting. We remark that numerical experiments do seem 

to confirm the existence of a Jensen inequality 𝜏(𝑒𝑥𝑝(𝛷(𝑙𝑜𝑔|𝑎|))) ≥ 𝜏(|𝛷(𝑎)|) for 

subdiagonal algebras.  

We remark that there are many other, more recent, generalizations of H∞, based around 

multivariable analogues of the Sz-Nagy-Foias model theory for contractions. The unilateral 

shift is replaced by left creation operators on some variant of Fock space. Many are currently 

intensively pursuing these topics, they are very important and are evolving in many directions. 

Although these theories also contain variants of Hardy space theory, they are quite far removed 

from subdiagonal algebras. For example, if one compares Popescu’s theorem of Szegö type 

from [90] with the Szegö theorem for subdiagonal algebras discussed here, one sees that they 

are only related in a very formal sense. 

The Fuglede-Kadison determinant Δ, and its amazing properties, is perhaps the main tool 

in the noncommutative 𝐻𝑝 theory. In [277], Fuglede and Kadison study the determinant as a 

function on M. We will define it for elements of 𝐿𝑞(𝑀) for any 𝑞 >  0. In fact, as was pointed 

out to us by Quanhua Xu, L. G. Brown investigated the determinant and its properties in the 

early 1980s, on a much larger class than 𝐿𝑞(𝑀) (see [163]); indeed recently Haagerup and 

Schultz have thoroughly explicated the basic theory of this determinant for a very general class 

of τ −measurable operators (see [286]) as part of Haagerup’s amazing attack onthe invariant 

subspace problem relative to a finite von Neumann algebra. 

We will define the Fuglede-Kadison determinant for an elementh ℎ ∈  𝐿𝑞(𝑀), for any 

𝑞 >  0, as follows. We set 𝛥(ℎ) =  𝑒𝑥𝑝 𝜏(𝑙𝑜𝑔 |ℎ|) if |ℎ|  >  𝜀1 for some 𝜀 >  0, and 

otherwise, 𝛥(ℎ)  =  𝑖𝑛𝑓 𝛥(|ℎ|  +  𝜖1), the infimum taken over all scalars ϵ > 0. To see that 

this is well-defined, we adapt the argument in [57], making use of the Borel functional calculus 

for unbounded operators applied to the inequality 

0 ≤ 𝑙𝑜𝑔 𝑡 ≤
1

𝑞
𝑡𝑞 ,                  𝑡 ∈ [1,∞). 

Notice that for any 0 <  𝜀 <  1, the function 𝑙𝑜𝑔 𝑡 is bounded on [ε, 1]. So given ℎ ∈
 𝐿1(𝑀)+ with ℎ ≥  𝜀𝕝, it follows that (𝑙𝑜𝑔 ℎ)𝑒[0,1] is similarly bounded. The previous centered 

equation ensures that 0 ≤ (𝑙𝑜𝑔 ℎ)𝑒[1,∞) ≤ 
1

𝑞
ℎ𝑞𝑒[1,∞) ≤

1

𝑞
ℎ𝑞. Here𝑒[0,𝜆] denotes the spectral 

resolution of ℎ. Thus if ℎ ∈  𝐿𝑞(𝑀) and ℎ ≥  𝜖 then 𝑙𝑜𝑔 ℎ ∈  𝐿1(𝑀). 

The following are the basic properties of this extended determinant which we shall need. 

Full proofs may be found in [286], which are valid for a very general class of unbounded 

operators (see also [62] for another (later) proof for the Lp(M) class).  

 

Theorem (2.2.1)[66]: If 𝑝 >  0 and ℎ ∈  𝐿𝑝(𝑀) then 
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(i) 𝛥(ℎ) = 𝛥(ℎ∗) = 𝛥(|ℎ|). 
(ii) If ℎ ≥  𝑔 𝑖𝑛 𝐿𝑝(𝑀)+ then 𝛥(ℎ)  ≥  𝛥(𝑔). 
(iii) If ℎ ≥  0 then 𝛥(ℎ𝑞) = 𝛥(ℎ)𝑞  for any q >  0. 

(iv) 𝛥(ℎ𝑏) = 𝛥(ℎ)𝛥(𝑏) = 𝛥(𝑏ℎ) for any 𝑏 ∈  𝐿𝑞(𝑀) and any 𝑞 >  0. 

Throughout, 𝐴 is a maximal subdiagonal algebra in 𝑀. We consider versions of Szegö’s 

formula valid in 𝐿𝑝(𝑀) rather than 𝐿2(𝑀). We will also prove a generalized Jensen inequality, 

and show that the classical Verblunsky-Kolmogorov- Krein strengthening of Szegö’s formula 

extends even to the noncommutative context. 

It is proved in [61] that for ℎ ∈ 𝐿1(𝑀)+ and 1 ≤ 𝑝 < ∞, we have 

𝛥(ℎ) = 𝑖𝑛𝑓{𝜏(ℎ|𝑎 + 𝑑|𝑝): 𝑎 ∈ 𝐴0, 𝑑 ∈ 𝒟, 𝛥(𝑑) ≥ 1}. 
We now prove some perhaps more useful variants of this formula 

Lemma (2.2.2)[66]:Ifℎ ∈ 𝐿𝑞(𝑀)+and 0 < 𝑝, 𝑞 < ∞, we have Δ(h) =  𝑖𝑛𝑓{𝜏(|ℎ
𝑞

𝑝 𝑏|𝑝)
1

𝑞: 𝑏 ∈

𝑀+, 𝛥(𝑏) ≥ 1} = inf{𝜏(|𝑏ℎ
𝑞

𝑝|𝑝)
1

𝑞: 𝑏 ∈  𝑀+, 𝛥(𝑏) ≥ }.The infimums are realized on the 

commutative von Neumann subalgebra 𝑀0 generated by ℎ, and are unchanged if in addition 

we also require 𝑏 to be invertible in 𝐵. 

Proof: That the two infimums in the displayed equation are equal follows from the fact that 

‖𝑥‖𝑝 = ‖𝑥
∗‖𝑝for 𝑥 ∈ 𝐿𝑝(𝑀) (see [275]). Thus we just prove the first equality in that line. 

For 𝑏 ∈ 𝑀+, 𝛥(𝑏) ≥ 1, we have by Theorem (2.2.1) (iii) that 

𝛥(|ℎ𝑞/𝑝𝑏|𝑝) = 𝛥(|ℎ𝑞/𝑝𝑏|𝑝) = 𝛥(|ℎ𝑞/𝑝𝑏|𝑝). 
Consequently, using facts from Theorem (2.2.1) again, we have 

𝜏(|ℎ𝑞/𝑝𝑏|𝑝) ≥ 𝛥(|ℎ𝑞/𝑝𝑏|𝑝) = [𝛥(ℎ𝑞/𝑝)𝛥(𝑏)]𝑝 ≥ 𝛥(ℎ𝑞/𝑝)𝑝  = 𝛥(ℎ)𝑞 . 
To complete the proof, it suffices to find, given ε > 0, an invertible b in (M0)+, the von 

Neumann algebra generated by ℎ, with 𝛥(𝑏) ≥ 1 and 𝜏(|ℎ
𝑞

𝑝 𝑏|𝑝)
1

𝑞 < 𝛥(ℎ) + 𝜀. But for any 𝑏 ∈

(𝑀0)+ we have |ℎ
𝑞

𝑝𝑏|𝑝 = ℎ𝑞𝑏𝑝by commutativity, and then the result follows from an analysis 

of Arveson’s original definition of Δ(h) (see [59]). In particular since𝛥(ℎ𝑞) =
𝑖𝑛𝑓{𝜏(ℎ𝑞𝑏𝑝): 𝑏 ∈ (𝑀0)+, 𝛥(𝑏) ≥ 1} by [59], an application of Theorem (2.2.1) (3) 

ensuresthat  𝛥(ℎ) = 𝑖𝑛𝑓{𝜏(ℎ𝑞𝑏𝑝)
1 

𝑞 : 𝑏 ∈ (𝑀0)+, 𝛥(𝑏) ≥ 1}. 
Corollary (2.2.3)[66]:If h ∈ Lq(M)+ and 0  𝑝, 𝑞 < ∞, we have 

𝛥(ℎ) = 𝑖𝑛𝑓{𝜏(|ℎ
𝑞
𝑝 𝑎|𝑝)

1
𝑞: 𝑎 ∈ 𝐴, 𝛥(𝛷(𝑎)) ≥ 1} 

=  𝑖𝑛𝑓{𝜏(|ℎ
𝑞
𝑝|𝑝)

1
𝑞: 𝑎 ∈ 𝐴, 𝛥(𝛷(𝑎)) ≥ 1}. 

The infimums are unchanged if we also require a to be invertible in 𝐴, or if we require 𝛷(𝑎)to 

be invertible in 𝒟. 

Proof:That the two infimums in the displayed equation are equal follows from the fact that 

‖𝑥‖𝑝 = ‖𝑥
∗‖ for 𝑥 ∈  𝐿𝑝(𝑀) (see [277]), and by replacing 𝐴 with 𝐴∗, which is also 

subdiagonal. Thus we just prove the first equality in that line. 

For 𝑎 ∈ 𝐴, 𝛥(𝛷(𝑎)) ≥ 1 we have 

𝜏(|ℎ
𝑞
𝑝 𝑎|𝑝)

1
𝑞 = 𝜏(|𝑎∗ℎ

𝑞
𝑝|𝑝)

1
𝑞 = 𝜏(||𝑎∗|ℎ

𝑞
𝑝|𝑝)

1
𝑞 ≥ 𝛥(ℎ), 
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by Lemma (2.2.2), since ∆(|𝑎∗|) = ∆(𝑎∗) = ∆(𝑎) ≥ ∆(𝛷(𝑎)) ≥ 1 (using Jensen’s 

inequality). Thus Δ(h) is dominated by the first infimum. On the other hand, by the previous 

result there is an invertible b ∈ M+ with 𝛥(𝑏) ≥ 1 and 𝜏(|ℎ
𝑞

𝑝 𝑎|𝑝)
1

𝑞 < 𝛥(ℎ) + 𝜀. By 

factorization, we can write b = |a∗| for an invertible a in A, and by Jensen’s formula [300, 

163] we have 𝛥(𝛷(𝑎)) = 𝛥(𝑎) = 𝛥(𝑎∗) = 𝛥(𝑏 ≥ 1. Then 

𝜏(|ℎ
𝑞

𝑝 𝑎|𝑝)
1

𝑞 = 𝜏(|𝑎∗ℎ
𝑞

𝑝|𝑝)
1

𝑞 = 𝜏(|𝑏 𝑎|𝑝)
1

𝑞 < 𝛷(ℎ) + 𝜀. 
Corollary (2.2.4)[66]: (Generalized Jensen inequality) Let A be a maximal subdiagonal 

algebra. For any ℎ ∈ 𝐻1 we have 𝛥(ℎ) ≥ 𝛥(𝛷(ℎ)). 
Proof: Using the𝐿1-contractivity of 𝛷 we get 

 𝜏(||ℎ|𝑎|) = 𝜏(|ℎ𝑎|) = 𝜏(||𝛷(ℎ)|𝛷(𝑎)|),      𝑎 ∈ 𝐴. 
Taking the infimum over such a with 𝛥(𝛷(𝑎)) ≥ 1, we obtain from Corollary (2.2.3), and 

Theorem (2.2.1) applied to 𝒟, that 𝛥(ℎ) = 𝛥(|ℎ|) ≥ 𝛥(|𝛷(ℎ)|) = 𝛥(𝛷(ℎ)). 
We recall that although 𝐿𝑝(𝑀) is not a normed space if 1 >  𝑝 > 0, it is a socalled 

vlinear metric space with metric given by ‖𝑥 − 𝑦‖𝑝
𝑝
 

for any 𝑥, 𝑦 ∈ 𝐿𝑝(see [277]). Thus although the unit ball may not be convex, continuity still 

respects all elementary linear operations. 

Corollary (2.2.5)[66]:.Let ℎ ∈ 𝐿𝑞(𝑀)+ and 0 < 𝑝, 𝑞 < ∞. If  ℎ
𝑞

𝑝 ∈  [ℎ
𝑞

𝑝𝐴0]𝑝, then𝛥(ℎ) = 0. 

Conversely, if 𝐴 is antisymmetric and Δ(ℎ) = 0, then ℎ
𝑞

𝑝 ∈ [ℎ
𝑞

𝑝𝐴0]𝑝. Indeed if 𝐴 is 

antisymmetric, then 

𝛥(ℎ) = 𝑖𝑛𝑓{𝜏(|ℎ
𝑞
𝑝 (1 − 𝑎0)|

𝑝)
1
𝑞: 𝑎0 ∈  𝐴0}. 

Proof:The first assertion follows by taking a in the infimum in Corollary (2.2.3) to be of the 

form 1 − 𝑎0 for 𝑎0 ∈  𝐴0. 

If A is antisymmetric, and if 𝑡 ≥  1 with 𝜏(|ℎ
𝑞

𝑝 (𝑡1 − 𝑎0)|
𝑝)

1

𝑞 <  𝛥(ℎ)  + 𝜀, then 𝜏(|ℎ
𝑞

𝑝 (1 −

 𝑎0)|
𝑝)

1

𝑞 <  𝛥(ℎ)  +  𝜀. From this the last assertion follows that the infimum’s in Corollary 

(2.2.3) can be taken over terms of the form 1 + 𝑎0 where 𝑎0 ∈ 𝐴0. If this infimum was 0 we 

could then find a sequence 𝑎𝑛 ∈ 𝐴0 with ℎ
𝑞

𝑝 (1 + 𝑎𝑛) →  0 with respect to ‖·‖𝑝. Thus ℎ
𝑞

𝑝  ∈

 [ℎ
𝑞

𝑝𝐴0]𝑝.  

We close with the following version of the Szegö formula valid for general positive linear 

functionals. Although the classical version of this theorem is usually attributed to Kolmogorov 

and Krein, we have been informed by Barry Simon that Verblunsky proved it first, in the mid 

1930’s (see e.g. [267]): 

Theorem (2.2.6)[66]:Noncommutative Szegö -Verblunsky- Kolmogorov- Krein theorem) Let 

ωbe a positive linear functional on 𝑀, and let 𝜔n and 𝜔𝑠 be its normal and singular parts 

respectively, with 𝜔𝑛 = 𝜏(ℎ) forℎ ∈  𝐿1(𝑀)+. If 𝑑𝑖𝑚(𝐷) < ∞, then 

𝛥(ℎ) = 𝑖𝑛𝑓{𝜔(|𝑎|2): 𝑎 ∈ 𝐴, 𝛥(𝛷(𝑎)) ≥ 1}. 
The infimum remains unchanged if we also require 𝛷(𝑎) to be invertible in 𝒟. 
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Proof: Suppose that 𝑑𝑖𝑚(𝒟) < ∞. All terminology and notation will be as [61], the preamble 

to the proof of the noncommutative 𝐹&𝑀. Riesz [61]. For the sake of clarity we pause to 

highlight the most important of these. If (𝜋𝜔, 𝐻𝜔, 𝛺𝜔) is the 𝐺𝑁𝑆 representation engendered 

by 𝜔, there exists a central projection 𝑝0 in 𝜋𝜔(𝑀)′′ such that for any 𝜉, 𝜓 ∈ 𝐻𝜔 the functionals 

𝑎 → 〈𝜋𝜔(𝑎)𝑝0𝜉, 𝜓〉 and 𝑎 → 〈𝜋𝜔(𝑎)(1 − 𝑝0)𝜉, 𝜓〉 on 𝑀 are respectively the normal and 

singular parts of the functional 𝑎 → 〈𝜋𝜔(𝑎)𝜉, 𝜓〉 [180]. In this representation 𝛺0 will denote 

the orthogonal projection of Ωω onto the closed subspace 𝜋𝜔(𝐴0)𝛺𝜔. 

Let 𝑑 ∈ 𝒟 be given. We may of course select a sequence (𝑓𝑛) ⊂ 𝐴0 so that 

𝑙𝑖𝑚𝑛→∞𝜋𝜔(𝑓𝑛)𝛺𝜔 = 0. By the ideal property of 𝐴0 and continuity, it then follows that 

𝜋𝜔(𝑑)𝛺0 = 𝑙𝑖𝑚
𝑛→∞

𝜋𝜔 (𝑑𝑓𝑛)𝛺𝜔 ∈ 𝜋𝜔(𝐴0)𝛺𝜔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Once again using the ideal property of A0, the fact that 𝛺𝜔 − 𝛺0 ⊥  𝜋𝜔(𝐴0)𝛺𝜔 now 

forces 𝜋𝜔(𝑑)𝛺0, 𝜋𝜔(𝑎)𝛺𝜔 = 〈𝛺𝜔 − 𝛺0, 𝜋𝜔(𝑑
∗𝑎)𝛺𝜔〉 =  0 for every 𝑎 ∈ 𝐴0. Therefore 

𝜋𝜔(𝑑)𝛺0(𝛺𝜔 − 𝛺0) ⊥ 𝜋𝜔(𝐴0)𝛺𝜔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 
From the facts in the previous two centered equations, it now follows that 𝜋𝜔(𝑑)𝛺0is the 

orthogonal projection of 𝜋𝜔(𝑑)𝛺𝜔 onto 𝜋𝜔(𝐴0)𝛺𝜔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Using this fact we may now repeat the 

arguments of [61] for the functional 

𝜔𝑑(·) = 〈𝜋𝜔(·)𝜋𝜔𝑑)(𝛺𝜔  − 𝛺0), 𝜋𝜔(𝑑)(𝛺𝜔  − 𝛺0)〉 
to conclude that ωd is normal, with 𝑝0(𝜋𝜔(𝑑)(𝛺𝜔 − 𝛺0)) = 𝜋𝜔(𝑑)(𝛺𝜔 − 𝛺0), where 𝑝0 is 

the central projection in 𝜋𝜔(𝑀)′′ mentioned above, and also: 𝑝0𝜋𝜔(𝑑)(𝛺𝜔  − 𝛺0)  ⊥
 𝑝0𝜋𝜔(𝐴0)𝛺𝜔 and 𝑝0(𝜋𝜔(𝑑)𝛺0) is the orthogonal projection of p0(πω(d)Ωω) onto 

𝑝0(𝜋𝜔(𝐴0)𝛺𝜔). Thus we arrive at the fact that 

𝑖𝑛𝑓
𝑎∈𝐴0

𝜔(|𝑑 +  𝑎|2)  = 𝑖𝑛𝑓
𝑎∈𝐴0

〈𝜋𝜔(𝑑)𝛺𝜔 + 𝜋𝜔(𝑎)𝛺𝜔, 𝜋𝜔(𝑑)𝛺𝜔 + 𝜋𝜔(𝑎)〉

=  𝑖𝑛𝑓
𝑎∈𝐴0

‖𝜋𝜔(𝑑)𝛺𝜔  −  𝜋𝜔(𝑎)‖
2 = 〈𝜋𝜔(𝑑)(𝛺𝜔 − 𝛺0), 𝜋𝜔(𝛺𝜔 − 𝛺0)〉

=  〈𝑝0𝜋𝜔(𝑑)(𝛺𝜔 − 𝛺0), 𝑝0𝜋𝜔(𝑑)(𝛺𝜔 − 𝛺0)〉
= 𝑖𝑛𝑓
𝑎∈𝐴0

〈𝑝0𝜋𝜔(𝑑)𝛺𝜔 + 𝑝0𝜋𝜔(𝑎)𝛺𝜔, 𝑝0𝜋𝜔(𝑑)𝛺𝜔 + 𝑝0𝜋𝜔(𝑎)〉  

=  𝑖𝑛𝑓
𝑎∈𝐴0

𝜔𝑛(|𝑑 +  𝑎|
2) =  𝑖𝑛𝑓

𝑎∈𝐴0

𝜏(ℎ|𝑑 +  𝑎|2. 

On taking the infimum over all 𝑑 ∈ 𝒟 with 𝛥(𝑑)  ≥  1, the result follows from Corollary 

(2.2.3). 

Throughout A is a maximal subdiagonal algebra. We recall that if ℎ ∈  𝐻1then h is outer if 

[ℎ𝐴]1 = 𝐻
1. An inner element is a unitary which happens to be in 𝐴. 

Lemma (2.2.7)[66]:Let 1 ≤ 𝑝 ≤ ∞. Then ℎ ∈ 𝐿𝑝(𝑀) and ℎ is outer in 𝐻1, iff [ℎ𝐴]𝑝 = 𝐻
𝑝. 

(Note that [·]∞ is the weak* closure.) 

If these hold, then ℎ ∉ [ℎ𝐴0]𝑝. 

Proof: It is obvious that if [ℎ𝐴]𝑝 = 𝐻
𝑝.  then [ℎ𝐴]1 = 𝐻

1. Conversely, if [ℎ𝐴]1 = 𝐻
1and ℎ ∈

𝐿𝑝(𝑀), then the first part of the proof of [58] applied to [ℎ𝐴]𝑝actually shows that [ℎ𝐴]𝑝 =

[ℎ𝐴]1 ∩  𝐿
𝑝(𝑀)for all 1 ≤  𝑝 ≤ ∞. Hence by [148], we have 

[ℎ𝐴]𝑝 = [ℎ𝐴]1 ∩  𝐿
𝑝(𝑀) = 𝐻1  ∩  𝐿𝑝(𝑀) =  𝐻𝑝. 
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If ℎ ∈ [ℎ𝐴0]𝑝then1 ∈  [ℎ𝐴]𝑝 ⊂ [[ℎ𝐴0]𝑝𝐴]𝑝 ⊂ [ℎ𝐴0]𝑝. Now continuously extends to a map 

which contractively maps Lp(M) onto Lp(𝒟) (see e.g. [176]). If ℎ𝑎𝑛 → 1 in 𝐿
𝑝, with 𝑎𝑛 ∈ 𝐴0, 

then 

𝛷(ℎ𝑎𝑛) = 𝛷(ℎ)𝛷(𝑎𝑛) = 0 → 𝛷(1) = 1, 
This forces  𝛷(𝕝) = 1, a contradiction.  

Lemma (2.2.8)[66]:If ℎ ∈ 𝐻1 is outer then as an unbounded operator h has dense range and 

trivial kernel. Thus ℎ = 𝑢|ℎ| for a unitary 𝑢 ∈ 𝑀. Also, 𝛷(ℎ) has dense rangeand trivial kernel. 

Proof: If ℎ is considered as an unbounded operator, and if 𝑝 is the range projection of h, then 

since there exists a sequence (𝑎𝑛)in A with ℎ𝑎𝑛 → 1in 𝐿1-norm, we have that 𝑝⊥ = 0. Thus 

the partial isometry 𝑢 in the polar decomposition of ℎ is an isometry, and hence is a unitary, in 

𝑀. It follows that |h| has dense range, and hence it, and ℎ also, have trivial kernel. 

For the last part note that 

𝐿1(𝒟) = 𝛷(𝐻1) = 𝛷([ℎ𝐴]1) = [𝛷(ℎ)𝒟]1. 
  Thus we can apply the above arguments to 𝛷(ℎ)too.  

There is a natural equivalence relation on outers: 

Proposition (2.2.9)[66]:If ℎ ∈ 𝐻𝑝 is outer, and if 𝑢 is a unitary in 𝒟, then ℎ′ = 𝑢ℎ is outer in 

Hp too. If ℎ, 𝑘 ∈ 𝐻𝑝 are outer, then |ℎ| = |𝑘| iff there is unitary 𝑢 ∈  𝒟 with ℎ =  𝑢𝑘. Such u 

is unique. 

Proof: The first part is just as in the classical case. If ℎ, 𝑘 ∈  𝐻1 and  |ℎ| = |𝑘|, then it follows, 

as in [281], that ℎ = 𝑢𝑘 for a unitary 𝑢 ∈ 𝑀 with 𝑢 , 𝑢∗ ∈ 𝐻1. Thus 𝑢 ∈ 𝐻1 ∩𝑀 = 𝐴 (see 

[148]), and similarly 𝑢∗ ∈ 𝐴, and so 𝑢 ∈ 𝒟. The uniqueness of u follows since the left support 

projection of an outer is 1 (see proof of Lemma (2.2.8)). 

As in the classical case, if ℎ ∈ 𝐻2 is outer, then h 2is outer in 𝐻1. Indeed one may follow the 

proof on [281], and the same proof shows that a product of any two outers is outer (see also the 

last lines of the proof of Theorem (2.2.13)  below). We do not know whether every outer in H1 
is the square of an outer in 𝐻2. 

The first theorem is a generalization of the classical characterization of outers in 𝐻𝑝: 
Theorem (2.2.10)[66]: Let 𝐴 be a subdiagonal algebra, let 1 ≤ 𝑝 ≤ ∞ and ℎ ∈ 𝐻𝑝. If h is outer 

then 𝛥(ℎ) = 𝛥(𝛷(ℎ)). If𝛥(ℎ) > 0, this condition is also sufficient for h to be outer. 

Note that if 𝑑𝑖𝑚(𝐷) < ∞, then 𝛷(ℎ) will be invertible for any outer h by Lemma (2.2.8). Thus 

in this case it is automatic that 𝛥(𝛷(ℎ)) > 0. 

Proof: The case for general p follows from the p = 1 case and Lemma (2.2.7). Hence we may 

suppose that 𝑝 = 1. 

First suppose that ℎis outer. Given any 𝑑 ∈ 𝐿1(𝐷) and any a0 ∈  [A0]1, we clearly have 

that 𝜏(|𝑑 − 𝑎0|) ≥ 𝜏(|𝑑| − 𝑢
∗𝑎0) = 𝜏(|𝑑|), where 𝑢is the partial isometry in the polar 

decomposition of 𝑑. In other words, for any 𝑎 ∈ [𝐴]1 we have 

‖𝛷(𝑎)‖1 = 𝑖𝑛𝑓
𝑎0∈𝐴0

‖𝑎 − 𝑎0‖1 = 𝑖𝑛𝑓
𝑎0∈|𝐴0|1

‖𝑎 − 𝑎0‖1  . 

Therefore 

𝜏(|𝛷(ℎ) 𝑑̃|) = 𝑖𝑛𝑓
𝑎0∈𝐴0

𝜏(|ℎ 𝑑̃  − 𝑎0|), 𝑑̃ ∈ 𝒟. 

Notice that [ℎ𝐴0]1 =  [[ℎ𝐴]1𝐴0]1 = [[𝐴]1𝐴0]1 = [𝐴0]1. Thus the above equality may 

alternatively be written as 
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𝜏(|𝛷(ℎ) 𝑑̃|) = 𝑖𝑛𝑓
𝑎0∈𝐴0

𝜏(|ℎ 𝑑̃  − 𝑎0|), 𝑑̃ ∈ 𝒟. 

Finally notice that |𝛷(ℎ)𝑑 ̃| = ||𝛷(ℎ)|𝑑 ̃| and |ℎ( 𝑑̃ − 𝑎0)| = ||ℎ|( 𝑑̃ −  𝑎0)|.Therefore if now 

we take the infimum over all 𝑑̃ ∈ 𝒟with𝛥( 𝑑̃) ≥  1, Szegö’s theorem will force 

𝛥(𝛷(ℎ)) = 𝛥(|𝛷(ℎ)|) = 𝛥(|ℎ|) = 𝛥(ℎ). 
Next suppose that 𝛥(ℎ) = 𝛥(𝛷(ℎ)) > 0. We will first consider the case ℎ ∈ [𝐴]2.By Lemma 

(2.2.7) we then need only show that h is outer with respect to[𝐴]2. Replace h by ℎ̃ = 𝑢∗ℎ where 

u is the partial isometry in the polar decomposition of 𝛷(ℎ). If we can show that eh is outer, it 

(and hence also 𝑢∗) will have dense range, which would force 𝑢∗ to be a unitary. Thus ℎ = 𝑢ℎ̃ 

would then also be outer. Now notice that by construction |ℎ| ≥  |ℎ̃| and 𝛷(ℎ̃) = |𝛷(ℎ)|. From 

this and the generalized Jensen inequality we have 

𝛥(ℎ) = 𝛥(|ℎ|) ≥ 𝛥(|ℎ̃|) = 𝛥(ℎ̃) ≥ 𝛥(𝛷(ℎ̃)) = 𝛥(𝛸(ℎ)) = 𝛥(ℎ). 
Thus 𝛥(ℎ̃) = 𝛥(𝛷(ℎ̃)) > 0. We may therefore safely pass to the case where 𝛷(ℎ)  ≥  0. By 

multiplying with a scaling constant, we may also clearly assume that 𝛥(ℎ) = 1. 

For any 𝑑 ∈  𝒟 and 𝑎 ∈  𝐴0 we have  

𝜏(|1 − ℎ(𝑑 + 𝑎)|2) = 𝜏(1 − 𝛷(ℎ)𝑑 − 𝑑∗𝛷(ℎ)) + 𝜏(|ℎ(𝑑 + 𝑎)|2).     (2) 

To see this, simply combine the fact that 𝜏 ∘ 𝛷 = 𝜏 with the observation that 𝛷(ℎ(𝑑 + 𝑎)) =
𝛷(ℎ)𝛷(𝑑 + 𝑎) = 𝛷(ℎ)𝑑. With 𝑑, a as above, notice that 𝜏(|ℎ(𝑑 + 𝑎)|2) = 𝜏(||ℎ|(𝑑 + 𝑎)|2). 
By Szegö’s theorem in the form of Corollary (2.2.3), we may select sequences (𝑑𝑛) ⊂ {𝑑 ∈
𝒟−1 ∶ 𝛥(𝑑) ≥  1}, (𝑎𝑛) ⊂ 𝐴0, such that 

𝑙𝑖𝑚
𝑛→∞𝜏

(|ℎ(𝑑𝑛 + 𝑎𝑛)|
2) = 𝛥(|ℎ|2) = 𝛥(ℎ)2 = 1. 

Claim: we may assume the 𝑑𝑛’s to be positive. To see this, notice that the invertibility of the 

𝑑𝑛’s means that for each 𝑛 we can find a unitary 𝑢𝑛 ∈ 𝒟 so that 𝑑𝑛𝑢𝑛  =  |𝑑
∗
𝑛|. Since for each 

𝑛 we have  

𝜏(|ℎ(𝑑𝑛 + 𝑎𝑛)|
2) = 𝜏(|ℎ(𝑑𝑛 + 𝑎𝑛)𝑢𝑛|

2) = 𝜏(|ℎ(|𝑑∗𝑛| + 𝑎𝑛𝑢𝑛)|
2), 

the claim follows. Notice that then 𝜏(𝛷(ℎ)𝑑𝑛) = 𝜏(𝑑𝑛
1/2
 𝛷(ℎ)𝑑𝑛

1/2
 ) ≥  0. Using in turn the 

𝐿2-contractivity of 𝛷, the fact that 𝛷(ℎ(𝑑𝑛 + 𝑎𝑛)) = 𝛷(ℎ)𝑑𝑛, and Hölder’s inequality, we 

conclude that 

𝜏(|ℎ(𝑑𝑛 + 𝑎𝑛)|
2) ≥ 𝜏(|𝛷(ℎ)𝑑𝑛|

2) ≥ 𝜏(|𝛷(ℎ)𝑑𝑛|)
2 

≥ 𝜏(𝛷(ℎ)𝑑𝑛)
2 ≥ 𝛥(𝛷(ℎ))2 = 1. 

Since 𝑙𝑖𝑚
𝑛→∞ 

𝜏(|ℎ(𝑑𝑛 + 𝑎𝑛)|
2) = 1, we must therefore also have 𝑙𝑖𝑚

𝑛→∞
𝜏(𝛷(ℎ)𝑑𝑛) = 1.But if this 

is the case then equation (2) assures us that ℎ(𝑑𝑛 +  𝑎𝑛) → 1 in 𝐿2-norm as𝑛 → ∞. That is, 

1 ∈ [ℎ𝐴]2. Clearly ℎ must then be outer.Now let ℎ ∈ [𝐴]1. By noncommutative Riesz 

factorization (see [181]) we may select ℎ1, ℎ2 ∈  [𝐴]2 so that ℎ =  ℎ1ℎ2. Since𝛥(ℎ1)𝛥(ℎ2) =

𝛥(ℎ) = 𝛥(𝛷(ℎ)) = 𝛥(𝛷(ℎ1))𝛥(𝛷(ℎ2)) > 0 and 𝛥(ℎ𝑖) ≥ 𝛥(𝛷(ℎ𝑖)) for each 𝑖 = 1, 2 (by the 

generalized Jensen inequality), we must have 𝛥(ℎ𝑖) = 𝛥(𝛷(ℎ𝑖)) for each 𝑖 = 1, 2. Thus both 

ℎ1 and ℎ2 must be outer elements of [A]2. Consequently 

[ℎ𝐴]1 = [ℎ1ℎ2𝐴]1 = [ℎ1[ℎ2𝐴]2]1 = [ℎ1[𝐴]2]1 = [[ℎ1[𝐴]2]2]1 =  [[𝐴]2]1 = [𝐴]1, so that h is 

outer as required.  

Note that: In the general non-antisymmetric case, one can have outers with 
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𝛥(ℎ)  =  0. Indeed in the case that 𝐴 =  𝑀 =  𝐿∞[0, 1], then outer functions in 𝐿2 are exactly 

the ones which are a.e. nonzero. One can easily find an increasing function ℎ: [0, 1] → (0, 1] 

satisfying 𝛥(ℎ)  =  0, or equivalently ∫ 𝑙𝑜𝑔 ℎ
1

0
= −∞. See also [280]. This prompts the 

following: 

Definition (2.2.11)[66]: We say that h is strongly outer if it is outer and 𝛥(ℎ) > 0.Note that if 

𝑑𝑖𝑚(𝐷) < ∞, then every outer h is strongly outer. 

Corollary (2.2.12)[66]: Let 1 ≤  𝑝, 𝑞, 𝑟 ≤ ∞ with 
1

𝑝
=
1

𝑞
 +  

1

𝑟
 and let ℎ = ℎ1ℎ2 with ℎ1 ∈

𝐻𝑞and ℎ2 ∈ 𝐻
𝑟. If 𝛥(ℎ) > 0 then ℎ is outer in 𝐻𝑟 iff both ℎ1and ℎ2 are outer. 

Corollary (2.2.13)[66]: If𝑓 ∈ 𝐿𝑝(𝐷) with 𝛥(𝑓) > 0 then f is outer. Indeed there exist 𝑑𝑛 ∈ 𝒟 

with 𝛥(𝑓𝑑𝑛) ≥ 1, and 𝑓𝑑𝑛 → 1 in 2-norm. Also, any 𝑓 ∈  𝐿𝑝(𝑀) with 𝛥(𝑓) > 0 has left and 

right support projections equal to 1. That is, as an unbounded operator it is one-to-one and has 

dense range. 

Proof: For the first assertion note that 𝛷(𝑓) = 𝑓 and so 𝛥(𝑓) = 𝛥(𝛷(𝑓)) > 0. An inspection 

of the proof of the theorem gives the dn with the asserted properties.  Thus f clearly has left 

support  projection 1, and by symmetry the right projection is 1 too. Finally note that for the 

last assertion we may assume that 𝑀 = 𝒟. 

Corollary (2.2.14)[66]: If 1 ≤ 𝑝 ≤ ∞and 𝛥(ℎ) > 0 then ℎ is outer in 𝐻𝑝 iff [𝐴ℎ]𝑝 = 𝐻
𝑝. 

Proof: Replacing 𝐴 by 𝐴∗, it is trivial to see that 𝛥(ℎ) = 𝛥(𝛷(ℎ)) > 0, is equivalent to 

𝛥(ℎ∗) = 𝛥(𝛷(ℎ∗)) > 0. The latter is equivalent to h∗ being outer in 𝐻2(𝐴∗) = (𝐻2)∗; or 

equivalently, to (𝐻2)∗ =  [ℎ∗𝐴∗]2. Taking adjoints again gives the result. 

Proposition (2.2.15)[66]: If ℎ ∈ 𝐻2, then ℎ is outer iff the wandering subspace of [ℎ𝐴]2(see 

[280, 62]) has a separating cyclic vector for the 𝒟 action, and 

‖𝛷(ℎ)‖2 = 𝑖𝑛𝑓{𝜏(|ℎ(1 − 𝑎0)|
2): 𝑎0 ∈ 𝐴0}. 

Proof: (Following [281].) For 𝑥 ∈ 𝐿1(𝑀) set 𝛿(𝑥) = 𝑖𝑛𝑓{𝜏(||𝑥|
1

2
 (1 − 𝑎0)|

2): 𝑎0 ∈ 𝐴0}. 

First suppose that ℎ ∈ 𝐻2 is outer. Then [ℎ𝐴]2⊖ [ℎ𝐴0]2 = 𝐻
2⊖ [𝐴0]2 = 𝐿

2(𝒟), 
which has a separating cyclic vector. We next prove that if ℎ ∈ 𝐻2 is outer, then ‖𝛷(ℎ)‖2 =
𝛿(|ℎ|2). To do this we view 𝛷 as the orthogonal projection from 𝐿2(𝑀) onto 𝐿2(𝒟), which 

restricts to the orthogonal projection 𝑃 from [A]2 onto L2(𝒟). For any orthogonal projection 

𝑃 from a Hilbert space onto a subspace 𝐾, we have ‖𝑃(𝜁)‖  =  𝑖𝑛𝑓{‖𝜁 − 𝜂‖: 𝜂 ∈
𝐾⊥}. Thus‖𝛷(ℎ)‖2 = 𝑖𝑛𝑓{𝜏(|ℎ − 𝑎0|

2): 𝑎0 ∈ [𝐴0]2}.Since h is outer, we have 

[[ℎ𝐴]2𝐴0]2 = [𝐻
2𝐴0]2, 𝑜𝑟 [ℎ𝐴0]2 =  [𝐴0]2. Thus 

‖𝛷(ℎ)‖2 = 𝑖𝑛𝑓{𝜏(|ℎ − ℎ𝑎0|
2: 𝑎0 ∈ 𝐴0} = 𝛿(|ℎ|

2). 
Conversely, suppose that the wandering subspace of [ℎ𝐴]2 has a separating cyclic vector. By 

[57], we have [ℎ𝐴]2 = 𝑢𝐻
2 for a unitary 𝑢 ∈ [ℎ𝐴]2 ⊂ 𝐻

2. We have ℎ = 𝑢𝑘, with 𝑘 ∈ 𝐻2, and 

[𝐴]2 = 𝑢
∗[ℎ𝐴]2 = 𝐻

2. So 𝑘 is outer. If ‖𝛷(ℎ)‖2 = 𝛿(ℎ), then using the notation in the last 

paragraph, 

‖𝛷(𝑢)𝛷(𝑘)‖2 = 𝛿(|𝑢𝑘|2) = 𝛿(|𝑘|2) = ‖𝛷(𝑘)‖2. 
That is, 𝜏(𝛷(𝑘)∗(1 − 𝛷(𝑢)∗𝛷(𝑢))𝛷(𝑘)) = 0. Since by Lemma (2.2.8) the left support 

projection of 𝛷(𝑘) is 1, the functional 𝑎 → 𝜏(𝛷(𝑘)∗𝑎𝛷(𝑘)) is faithful on 𝑀+ (indeed, 

𝜏(𝛷(𝑘)∗𝑎𝛷(𝑘) ≠ 0 for any non-zero 𝑎 ∈  𝑀+, which forces 𝛷(𝑢)∗𝛷(𝑢) = 1. A simple 
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computation shows that 𝛷(|𝑢 −  𝛷(𝑢)|2) = 1 − 𝛷(𝑢)∗𝛷(𝑢) = 0, so that 𝑢 = 𝛷(𝑢) ∈
𝒟.Thus h = uk is outer.A classical theorem of Riesz-Szegö states that if 𝑓 ∈ 𝐿1 with 𝑓 ≥ 0, 

then R log 𝑓 > −∞ iff 𝑓 = |ℎ| for an outer ℎ ∈ 𝐻1 iff 𝑓 = |ℎ|2 for an outer ℎ ∈ 𝐻2. We now 

turn to this issue in the noncommutative case. 

We are adapting ideas of Helson-Lowdenslager and Hoffman: 

Lemma (2.2.16)[66]:Suppose that A is a maximal subdiagonal algebra, and that 𝑘 ∈
𝐿2(𝑀)with 𝑘 ∉ [𝑘𝐴0]2. Let 𝑣 be the orthogonal projection of 𝑘 onto [𝑘𝐴0]2. Then |𝑘 − 𝑣|2 =
𝛷(|𝑘 − 𝑣|2) ∈ 𝐿1(𝒟). Also, 𝛥(|𝑘 − 𝑣|) ≥ 𝛥(𝑘). 
Proof:Suppose that 𝑘𝑎𝑛 → 𝑣,with 𝑎𝑛 ∈ 𝐴0.Clearly 𝑘 − 𝑣 ⊥ 𝑘(1 − 𝑎𝑛)𝑎0 ∈ 𝑘𝐴0for all 𝑎0 ∈
𝐴0. In the limit, 𝑘 − 𝑣 ⊥ (𝑘 − 𝑣)𝑎0.That is,τ(|𝑘 −  𝑣|2𝑎0)=0, which by [59] implies that 

|𝑘 − 𝑣|2 =  𝛷(|𝑘 − 𝑣|2) ∈  𝐿1(𝒟).For the last assertion, note that by Lemma (2.2.2) we have 

𝛥(|𝑘 − 𝑣|2) = 𝑖𝑛𝑓{𝜏(|(𝑘 −  𝑣)𝑑|2): 𝑑 ∈ 𝒟+with 𝛥(𝑑) ≥ 1}.But since 𝑣𝑑 ∈  [𝑘𝐴0]2 for every 

𝑑 ∈ 𝒟, we may apply Szeg𝑜̈’s theorem to conclude that this infimum majorises in𝑓{𝜏(|𝑘𝑑 −
 𝑘𝑎0|

2): 𝑑 ∈ 𝐷+with 𝛥(𝑑) ≥ 1, 𝑎0 ∈  𝐴0} = 𝛥(|𝑘|
2) = 𝛥(𝑘)2,using the fact that |𝑘𝑑 −

𝑘𝑎0| = ||𝑘|(𝑑 − 𝑎0)|.  
Theorem (2.2.17)[66]:Suppose that 𝐴 is a maximal subdiagonal algebra, and that 𝑘 ∈ 𝐿2(𝑀). 
Let 𝑣be the orthogonal projection of 𝑘 onto [𝑘𝐴0]2. If 𝛥(𝑘) > 0, then 𝑘 has an (essentially 

unique) Beurling-Nevanlinna factorization 𝑘 = 𝑢ℎ, where 𝑢 is a unitary in 𝑀, and equals the 

partial isometry in the polar decomposition of 𝑘 − 𝑣, and h is strongly outer and equals 𝑢∗𝑘. 

We also have 𝛥(𝑘) = 𝛥(𝑘 − 𝑣).If|𝑘 −  𝑣|is bounded below then (𝑘 − 𝑣)𝑑 = 𝑢 for some 𝑑 ∈
𝒟. 

Proof: By Corollary (2.2.5), 𝑘 ∉ [𝑘𝐴0]2. By the Lemma, |𝑘 − 𝑣|2 ∈ 𝐿
1(𝒟). Let 𝑢 be the 

partial isometry in the polar decomposition of 𝑘 − 𝑣. Since 𝛥(𝑘 − 𝑣) ≥ 𝛥(𝑘) > 0 by the 

Lemma, we deduce from Corollary (2.2.13)  that 𝑢 is surjective, and hence is a unitary. In the 

case that |𝑘 − 𝑣| is bounded below let 𝑑 = |𝑘 −  𝑣| − 1 ∈ 𝒟+, and then 𝑢 = (𝑘 −  𝑣)𝑑. Let 

ℎ = 𝑢∗𝑘 ∈ 𝐿2(𝑀). We claim that 𝜏(𝑢∗𝑘𝑎0) = 0 for all 𝑎 0 ∈ 𝐴0, so that ℎ = 𝑢∗𝑘 ∈ 𝐿2(𝑀)⊖
[𝐴0
∗  ]2 = 𝐻

2. To see this, let 𝑒𝑛 be the spectral projection of |𝑘 − 𝑣| corresponding to the 

interval [0, 1/𝑛]. Then by elementary spectral theory, and since 𝑘 − 𝑣 = 𝑢|𝑘 −  𝑣|, we have 

1 − 𝑒𝑛 = |𝑘 − 𝑣|𝑟 for some 𝑟 ∈ 𝒟. (Take 𝑟 = 𝑔(|𝑘 − 𝑣|) where 𝑔 is  
1

𝑡
𝜒( 

1

𝑛
, ∞)). Thus 

𝜏(𝑎0
∗𝑘∗𝑢(1 − 𝑒𝑛)) = 𝜏(𝑎0

∗𝑘∗(𝑘 −  𝑣)𝑟) = 0, 
since 𝑘𝑎0𝑟

∗ ∈ [𝑘𝐴0]2 and 𝑘 − 𝑣 ⊥ [𝑘𝐴0]2. On the other hand, by the Borel functional 

calculus it is clear that 𝑒𝑛 → 𝑒 strongly, where e is the spectral projection of |𝑘 − 𝑣| 
corresponding to {0}. Since 𝛥(|𝑘 − 𝑣|) ≥ 𝛥(𝑘) > 0 by the Lemma, it is easy to see by 

spectral theory that 𝑒 = 0 (this is essentially corresponds to the fact that a positive function f 

which is 0 on a nonnull set has ∫ 𝑙𝑜𝑔 𝑓 = −∞). We conclude that (𝑎0
∗𝑘∗𝑢𝑒𝑛) → 0, and it 

follows that 

𝜏(𝑎0
∗𝑘∗𝑢) = 𝜏(𝑎0

∗𝑘∗𝑢𝑒𝑛) + 𝜏(𝑎0
∗𝑘∗𝑢(1 − 𝑒𝑛)) =  0. 

To see that 𝑢∗𝑘 is outer, we will use the criterion in Theorem (2.2.10). We claim that 𝛷(𝑢∗𝑘) =
|𝑘 − 𝑣|. To see this, note that by the last paragraph we have τ(𝑢∗𝑥) = 0 for any 𝑥 ∈ [𝑘𝐴0]2 

and in particular for 𝑥 = 𝑣𝑐 for any 𝑐 ∈ 𝒟. We have 

𝜏(𝛷(𝑢∗𝑘)𝑐) = 𝜏(𝑢∗𝑘𝑐) = 𝜏(𝑢∗(𝑘 − 𝑣)𝑐) = 𝜏(|𝑘 − 𝑣|𝑐). 
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Since this holds for any 𝑐 ∈ 𝒟 we have 𝛷(𝑢∗𝑘) = |𝑘 − 𝑣|. Thus we have by the generalized 

Jensen inequality (2.2.4) that 

𝛥(𝑘) = 𝛥(𝑢∗𝑘) ≥ 𝛥(𝛷(𝑢∗𝑘)) = 𝛥(|𝑘 − 𝑣|) ≥ 𝛥(𝑘). 
Hence ℎ = 𝑢∗𝑘 is outer by Theorem (2.2.10). 

The uniqueness now follows.  

Corollary (2.2.18)[66]:Suppose that 𝐴 is a maximal subdiagonal algebra with 𝒟finite 

dimensional, and that 𝑘 ∈ 𝐿2(𝑀) with 𝛥(𝑘) > 0. Let 𝑣 be the orthogonal projection of k onto 

[𝑘𝐴0]2. Then |𝑘 − 𝑣| is invertible, and all the conclusions of the previous theorem hold. 

Proof: By the above, |𝑘 − 𝑣| ∈ 𝐿1(𝒟) = 𝒟, and 𝛥(|𝑘 − 𝑣|) ≥ 𝛥(𝑘) > 0. Thus |𝑘 − 𝑣|is 

invertible since 𝒟 is finite dimensional. The rest follows from the previous theorem.  

We next give a refinement of the ‘Riesz factorization’ into a product of two 𝐻2 functions: 

Corollary (2.2.19)[66]:. If 𝐴 is a maximal subdiagonal algebra with 𝒟finite dimensional, and 

if 𝑓 ∈ 𝐿1(𝑀) with 𝛥(𝑓) > 0, then there exists an outer ℎ2 ∈ 𝐻2, an invertible 𝑑 ∈ 𝒟 with 

𝛥(𝑑) =
1

√𝛥(𝑓)
, and an ℎ1 ∈ [𝑓𝐴0]1 such that 𝑓 − ℎ1 ∈ 𝐿

2(𝑀), and 𝑓 = (𝑓 − ℎ1)𝑑ℎ2. If also 

𝑓 ∈ 𝐻1, then this can be arranged with ℎ1 ∈ 𝐻
1, 𝛷(ℎ1) = 0, and 𝑓 − ℎ1 ∈ 𝐻

2. 

Proof: Let  𝑘 = |𝑓|
1

2 . By Corollary (2.2.5) we have 𝑘 ∉ [𝑘𝐴0]2. If 𝑢, 𝑣 are as in Theorem 

(2.2.16), and if 𝑓 = 𝑤|𝑓| = 𝑤𝑘2 is the polar decomposition of 𝑓, then 

𝑓 = (𝑤𝑘𝑢)(𝑢∗𝑘) = (𝑤𝑘(𝑘 − 𝑣))𝑑ℎ2 = (𝑓 − ℎ1)𝑑ℎ2 
where ℎ2 =  𝑢

∗𝑘 and ℎ1 = 𝑤𝑘𝑣. 

If 𝑘𝑎𝑛 → 𝑣 in L2 norm, with 𝑎𝑛 ∈ 𝐴0, then 𝑓𝑎𝑛 =  𝑤𝑘
2𝑎𝑛 → 𝑤𝑘𝑣 in 𝐿1 norm. Thus ℎ1 ∈

[𝑓𝐴0]1. Also, 𝑓 − ℎ1 = 𝑤𝑘𝑢𝑑
−1 ∈ 𝐿2(𝑀) (recall that since 𝒟 is finite dimensional, 𝑑 − 1 =

|𝑘 − 𝑣| ∈ 𝒟). If 𝑓 ∈ 𝐻1, then ℎ1 ∈ [𝑓𝐴0]1 ⊂ 𝐻
1, and 𝛷(ℎ1) = 0.So 𝑓 − ℎ1 ∈ 𝐻

1 ∩ 𝐿2(𝑀) ⊂
𝐿2(𝑀)⊖ [𝐴∗]2 = 𝐻

2.  

Corollary (2.2.20)[66]:.If 𝐴 is a maximal subdiagonal algebra, and if 𝑓 ∈ 𝐿1(𝑀) with 𝛥(𝑓) >
0, then there exists a strongly outer ℎ ∈ 𝐻1, and a unitary 𝑢 ∈ 𝑀 with 𝑓 = 𝑢ℎ. 

Proof: By the proof of Corollary (2.2.19), and in that notation, we have 𝑓 = 𝑤𝑘𝑢ℎ2 for an 

outer ℎ2. Note that 𝑤 is a unitary, since 𝑓 has dense range (Corollary (2.2.13)). Since 

𝛥(𝑤𝑘𝑢) = 𝛥(𝑘) > 0,  we have by the last theorem that 𝑤𝑘𝑢 = 𝑈ℎ1 for a unitary 𝑈 and 

strongly outer ℎ1  ∈  𝐻
2. Let ℎ = ℎ1ℎ2.  

Corollary (2.2.21)[66]:If 𝐴 is a maximal subdiagonal algebra, and 𝑓 ∈  𝐿𝑝(𝑀) then  𝛥(𝑓) > 0 

iff 𝑓 = 𝑢ℎ for a unitary 𝑢 and a strongly outer ℎ ∈ 𝐻𝑝. Moreover, this factorization is unique 

up to a unitary in 𝒟. 
Proof: (⇒) By Corollary (2.2.20) we obtain the factorization with outer ℎ ∈ 𝐻1. Since |𝑓| =
|ℎ| we have ℎ ∈ 𝐿𝑝(𝑀) ∩ 𝐻1 = 𝐻𝑝 (using [153]), and 𝛥(ℎ) > 0. (⇐) We have Δ(𝑓) =
𝛥(𝑢)𝛥(ℎ) > 0. 

The uniqueness of the factorization was discussed after Proposition (2.2.9).  

Note that. The 𝑢 in the last result is necessarily in [𝑓𝐴]𝑝indeed if ℎ𝑎𝑛 → 1 with 𝑎𝑛 ∈ 𝐴, then 

𝑓𝑎𝑛 = 𝑢ℎ𝑎𝑛 → 𝑢. 

Corollary (2.2.22)[66]:If 𝐴 is a maximal subdiagonal algebra, then 𝑓 ∈ 𝐻𝑝 with 𝛥(𝑓) > 0 iff 

𝑓 = 𝑢ℎ for an inner 𝑢 and a strongly outer ℎ ∈ 𝐻𝑝. Moreover, this factorization is unique up 

to a unitary in 𝒟. 
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Proof: Clearly f is also in H1. Then 𝑢 is necessarily in [𝑓𝐴]𝑝 ⊂ 𝐻
1. So 𝑢 ∈ 𝐻1 ∩𝑀 = 𝐴(see 

[149]). Thus 𝑢is ‘inner’ (i.e.is a unitary in 𝐻∞ = 𝐴). 

An obvious question is whether there are larger classes of subalgebras of 𝑀 besides 

subdiagonal algebras for which such classical factorization theorems hold. The following 

shows that, with a qualification, the answer to this is in the negative: 

Proposition (2.2.23)[66]: Suppose that 𝐴is a tracial subalgebra of 𝑀 in the sense, such that 

every 𝑓 ∈ 𝐿2(𝑀) with 𝛥(𝑓) > 0 is a product 𝑓 = 𝑢ℎ for a unitary 𝑢 and an outer h ∈ [A]2. 
Then 𝐴 is a finite maximal subdiagonal algebra. 

Proof: Suppose that 𝐴 is a tracial subalgebra of 𝑀 with this factorization property. We will 

show that 𝐴 satisfies the ‘𝐿2-density’ and the ‘unique normal state extension’ properties which 

together were shown in [59] to imply that 𝐴is subdiagonal. As in [59, 153,149], 𝐴∞ is the tracial 

algebra 𝐴∞ = 𝑀 ∩ [𝐴]2 extending 𝐴. If 𝑥 ∈ 𝑀 is strictly positive, then 𝛥(𝑥) > 0 by e.g. 

Theorem (2.2.1) (ii). So 𝑥 = 𝑢ℎ for a unitary 𝑢 and ℎ ∈ 𝐻2. Clearly ℎ is bounded, so that ℎ ∈

𝐴∞, and 𝑥 = (𝑥∗𝑥)
1

2 = |ℎ|. Also, ℎ−1 ∈  𝐴∞, since if ℎ𝑎𝑛 → 1 then 𝑎𝑛 → ℎ
−1. Thus 𝐴∞, has 

the ‘factorization’ property and so is maximal subdiagonal [59]. Hence 𝐴∞ + 𝐴∞
∗ , and therefore 

also 𝐴 + 𝐴∗, is dense in 𝐿2(𝑀). Next, suppose that 𝑔 ∈ 𝐿1(𝑀)+ satisfies 𝜏(𝑔𝐴0) = 0. We need 

to show that 𝑔 ∈ 𝐿1(𝒟)+. Since τ((g + 1)A0) = 0, we can replace g with g +  1 if necessary, 

to ensure that 𝛥(𝑔) > 0. Let 𝑓 = 𝑔
1

2 ∈ 𝐿2(𝑀). Then 𝛥(𝑓) > 0, 𝑓 ⊥ [𝑓𝐴0]2, and by hypothesis 

𝑓 = 𝑢ℎfor an outer ℎ ∈ [𝐴]2 and some unitary 𝑢 in 𝑀. Since ℎ = 𝑢∗𝑓 ⊥ 𝑢∗ ∈ [𝑓𝐴]2 =
 [ℎ𝐴]2 = [𝐴0]2, and ℎ ∈ [𝐴]2, it follows that ℎ ∈ [𝐷]2. Thus 𝑔 ∈ [𝒟]1  =  𝐿

1(𝒟). This verifies 

the ‘unique normal state extension’ property of [59]. The following generalizes [145]: 

Corollary (2.2.24)[66]:If 𝑓 ∈ 𝐿1(𝑀)+, then the following are equivalent: 

(i) 𝛥(𝑓) > 0, 

(ii) 𝑓 = |ℎ|𝑝for a strongly outer ℎ ∈  𝐻𝑝, 

(iii) 𝑓 = |𝑘|𝑝 for 𝑘 ∈ 𝐻𝑝 with 𝛥(𝛷(𝑘)) > 0. 

Proof: (i) ⇒(ii) By a previous result, 𝛥(𝑓
1

𝑝 ) > 0, and so by the last result we have𝑓
1

𝑝 = 𝑢ℎ, 

where ℎ is outer in 𝐻𝑝, and u is unitary. Thus 𝑓 =  (𝑓
1

𝑝𝑓
1

𝑝 )
𝑝

2 = (ℎ∗ℎ)
𝑝

2 = |ℎ|𝑝. 

(ii) ⇒(iii) This follows from Theorem (2.2.10) . 

(iii) ⇒(i) If 𝑓 = |𝑘|𝑝 for 𝑘 ∈ 𝐻𝑝 with 𝛥(𝛷(𝑘)) > 0, then 𝛥(𝑓) =  𝛥(𝑘)𝑝 ≥ 𝛥(𝛷(𝑘))𝑝 >
0 by Theorem (2.2.1) and the generalized Jensen inequality.  

Of course in the case that 𝒟 is finite dimensional one can drop the word ‘strongly’ in the 

last several results. In particular, in the case that the algebra 𝐴 is antisymmetric, these results 

and their proofs are much simpler and are spelled out in our survey [62]. 
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Chapter 3 

The Algebraic Structure and Quasi-Radial Quasi-Homogegeneous Symbols  

The 𝑘-dimensional representations form a generalized maximal ideal space with a 

canonical surjection onto the ball of 𝑘 × 𝑘𝑛 matrices which is a homeomorphism over the open 

ball analogous to the fibration of the maximal ideal space of 𝐻∞ over the unit disk. The algebras 

are non conjugated via biholomorphisms of the unit ball, non of them is a C∗-algebra, and for 

𝑛 = 1 all of them collapse to the algebra generated by Toeplitz operators with radial symbols. 

Section (3.1)The Non-Commutative Analytic Toeplitz Algebras 

In [68, 208, 211, 212], a good case is made that the appropriate  analogue for the analytic 

Toeplitz algebra in 𝑛 non-commuting variables is the WOT-closed algebra generated by the 

left regular representation of the free semigroupon n generators. It obtain a compelling 

analogue of Beurling's theorem and inner-outer factorization. We add further evidence. The 

result is a short exact sequence determined bya canonical homomorphism of the automorphism 

group onto this algebra onto the group of conformal automorphisms of the unit ball of ℂ𝑁. The 

kernelis the subgroup of quasi-inner automorphisms, which are trivial modulothe WOT-closed 

commutator ideal. Additional evidence of analytic properties comes from the structure of k-

dimensional (completely contractive) representations, which have a structure very similar to 

the fibration of the maximal ideal space of 𝐻∞ over the unit disk. An important tool in our 

analysis is a detailed structure theory for WOT-closed right ideals. Curiously,left ideals remain 

more obscure. 

The non-commutative analytic Toeplitz algebra 𝔏𝑛 is determined by the left regular 

representation of the free semigroup ℱ𝑛 on 𝑛 generators 𝑧1, … , 𝑧𝑛which acts on ℓ2(ℱn) by ⋋
(𝜔) 𝝃𝒗 = 𝝃𝜔𝒗 for 𝑣,𝜔 in ℱ𝑛. In particular, the algebra 𝔏𝑛 is the unital, WOT-closed algebra 

generated by the isometries 𝐿𝐼 =⋋ (𝑧𝑖) for 1 ≤ 𝑖 ≤ 𝑛. This algebra and its norm-closed version 

(the non-commutativedisk algebra) were introduced by Popescu [214] in an abstract sense in 

connection with a non-commutative von Neumann inequality and further studied in [208, 214, 

209, 212, 213]. For 𝑛 = 1, weobtain the algebra generated by the unilateral shift, the analytic 

Toeplitz algebra. The corresponding algebra for the right regular representation is denoted ℜn. 

This algebra is unitarily equivalent to 𝔏n and is also equal to the commutantof 𝔏𝑛. (see [68,98]). 

It contains the classification of the WOT-closed right and two-sided ideals of 𝔏n. These 

ideals are determined by their range, which is always a subspace in 𝐿𝑎𝑡ℜ𝑛; and this pairing is 

a complete lattice isomorphism.The ideal is two-sided when the range is also in 𝐿𝑎𝑡 𝔏𝑛. This 

is the keytool needed to establish classify the weak-* continuous multiplicative linear 

functionals on 𝔏n. We obtain some factorization results for right ideals that allow us to show 

that a WOT-closed right ideal is finitely generated algebraically precisely when the wandering 

subspace of the range space is finite dimensional; and otherwise, they require a countably 

infinite set of generators even as a WOT-closed right ideal. 

We examine the representation space of 𝔏n. The multiplicative linear functionals have a 

structure that parallels the maximal ideal space of 𝐻∞. This provides a natural homomorphism 

of 𝔏n into the space 𝐻∞(𝔹𝑛) of bounded analytic functions on the ball. Strikingly, the dilation 

theory for non-commuting 𝑛-tuples allows us to obtain an analogous structurefor 𝑘-
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dimensional representations for every 𝑘 < ∞. In particular, the open ball 𝔹𝑛,𝑘 of strict 

contractions in ℳ𝑘,𝑛𝑘 sits homeomorphically in a canonical way in this space. 

Automorphisms of 𝔏n are shown to be automatically norm and WOT continuous. We 

show that there is a natural homomorphism from 𝐴𝑢𝑡𝔏𝑛 onto 𝐴𝑢𝑡(𝔹𝑛), the group of conformal 

automorphisms of the ball of ℂ𝑛, determined by their action on the WOT −continuous linear 

functional 𝜑𝜆 forλ ∈  𝔹n. The kernel of this map is the ideal of automorphisms which are trivial 

modulo the WOT-closed commutator ideal. In order to show that this homomorphismis 

surjective, we determine all automorphisms of 𝔏n of the form 𝐴𝑑𝑊 for unitary 𝑊. Using 

certain automorphisms of the Cuntz-Toeplitz algebra found by Voiculescu [221,299], we are 

able to obtain an isomorphism of this subgroup 𝐴𝑢𝑡𝑢(𝔏𝑛) with 𝐴𝑢𝑡(𝔹𝑛). Thus the 

automorphism group of 𝔏n is a semidirect product. 

We will write 𝐿 = [𝐿1… 𝐿2] both for then-tuple of isometries and the isometric operator from 

ℋ𝑛
(𝑛)

into ℋ𝑛. By 𝐿𝑣 or 𝑣(𝐿)we will denote the corresponding word 𝜆(𝑣) in the n tuple. We 

allow 𝑛 = ∞. In this case, ℂ𝑛 is replaced by a separable Hilbert space ℋ, and the unit ball 

𝔹nbecomes the unit ball of ℋ endowed with the weak topology.  

This occasionally causes additional difficulties which will be pointed out as necessary. 

The full Fock space of a Hilbert space ℋ is the Hilbert space 

𝐹(ℋ) =∑⨁ℋ⨁𝑘

𝑘≥0

 

where ℋ⨁0 = ℂ and ℋ⨁𝑘 is the tensor product of 𝑘 copies of ℋ. When ℋ = ℂ𝑛 with 

orthonormal basis ζifor 1 < 𝑖 < 𝑛, the Fock space has anorthonormal basis 𝜁𝜔 =
𝜁𝑖1 ⨂…⨂𝜁𝑖𝑘 for all choices of 𝜔 = (𝑖1… 𝑖𝑘) in{1,… , 𝑛}

𝑘 and  𝑘 ≥ 0 (with the convention that 

𝜁∅  spans  ℋ⨁0. For each vector 𝜁in ℋ, there is a left creation operator ℓ(𝜁)𝜉 = 𝜁⨂𝜉. Clearly, 

there is a natural isomorphism of Fock space onto ℋn, where 𝑛 = 𝑑𝑖𝑚ℋgiven by sending 𝜁𝜔 

to 𝜉𝜔. This unitary equivalence sends ℓ(𝜁𝑖 ) to 𝐿𝑖. 
The following heuristic is useful when working with operators in 𝔏𝑛. If 𝐴 = ∑ 𝑎𝜔𝐿𝜔𝜔 is a finite 

linear combination of the set {𝐿𝜔: 𝜔 ∈ ℱ𝑛}, then 𝐴𝜉1 = ∑ 𝑎𝜔𝜉𝜔𝜔 ; conversely, given a finite 

linear combination of basis vectors 𝜁 = ∑ 𝑎𝜔𝜉𝜔𝜔 , the operator 𝐴 = ∑ 𝑎𝜔𝐿𝜔𝜔  belongs to 𝔏n 

and satisfies 𝐴𝜉1 = 𝜁. Sometimes this operator will be denoted by 𝐿𝜁  . This correspondence of 

course cannot be extended to infinite combinations. However, notice that for an arbitrary 

element 𝐴 of 𝔏n, 𝐴 is completely determined by its action on ξ1: indeed,𝐴𝜉𝑣 = 𝐴𝑅𝑣𝜉1 =
𝑅𝑣𝐴𝜉1. So if 𝐴𝜉1 = ∑ 𝑎𝜔𝜉𝜔𝜔 , we have 

𝐴𝜉𝑣 =∑𝑎𝜔𝜉𝜔𝑣 =∑𝑎𝜔(𝐿𝜔𝜉𝑣).

𝜔

 

It is useful to view the formal sum ∑ 𝑎𝑤𝐿𝑤𝑤  as the Fourier expansion of 𝐴. 

In particular [68], the Cesaro sums 

∑(𝐴) =  ∑ (1 −
|𝜔|

𝑛
)

|𝜔|<𝑛𝑛

𝑎𝜔𝐿𝜔 

converge in the strong-* topology to 𝐴. 
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The algebra 𝔏𝑛 contains no non-scalar normal elements. Every non-scalar element of 𝔏𝑛 is 

injective and has connected spectrum containing more than one point. So 𝔏n contains no non-

zero compact operators,quasinilpotent elements or non-scalar idempotents. In particular, 𝔏n is 

semisimple.(See [114,68].) 

If ℳ is an invariant subspace for 𝔏𝑛, the wandering subspace is 𝒲 =ℳ⊖∑ 𝐿𝑖ℳ
𝑛
𝑖=1 . 

By the analogue of the 𝒲old decomposition [210], it follows that ℳ = ∑ ⨁Lω𝒲ω∈ℱn  . The 

invariant subspaces of the analytic Toeplitz algebra are determined by Beurling's [40] as the 

subspaces 𝜔𝐻2 where 𝜔 is an inner function in 𝐻∞. These subspaces are always cyclic with 

wandering subspace 𝜔𝐻2⊖𝑧𝜔𝐻2 = ℂ𝜔. The subspace 𝜔𝐻2 is the range of  𝑇𝜔, which is an 

isometry in 𝐻∞ = 𝔏1 = ℜ1. The analogue of Beurling'stheorem is: 

Theorem (3.1.1)[156]:([208, 68]). Every invariant subspace of 𝔏𝑛 is generated by a wandering 

subspace. Thus it is the direct sum of cyclic subspaces. The cyclic invariant subspaces of 𝔏n 

are precisely the ranges of isometries in ℜ𝑛; and the choice of isometry is unique up to a scalar. 

If ℳ is a cyclic invariant subspace for 𝔏n, then its wandering subspace is 1-dimensional. If 𝜉 

is a wandering vector for ℳ, then we denote the corresponding isometry in ℜ𝑛 by ℜ𝜉. 

Explicitly, we have the formula, ℜ𝜉𝜉𝜔 = 𝐿𝜔𝜉. Conversely, any isometry in ℜ𝑛is an ℜ𝜉 for 

some 𝔏𝑛-wandering vector𝜉: Similarly, we see that any isometry in 𝔏𝑛 has the form 𝐿𝜉  for 

someℜ𝑛-wandering vector ξ. 
By analogy, the isometries of 𝔏n are called inner; and the elements with dense range are 

called outer. An element A in 𝔏n is inner if and only if ‖𝐴‖ = ‖𝐴𝜉1‖ = 1. As a corollary, one 

obtains the following analogue of inner-outer factorization: 

Corollary (3.1.2)[156]: Every 𝐴 in 𝔏n factors as 𝐴 = 𝐿𝜉𝐵 where 𝐿𝜉  is an isometry in 𝔏𝑛 and 

𝐵 belongs to 𝔏𝑛 and has dense range. This factorization is uniqueup to a scalar. The operator 

𝐵is invertible if and only if 𝐴 has closed range. 

We also need to understand the structure of the eigenvectors for the adjoint analogous to the 

point evaluations in the unit disk associated to eigen-values of the backward shift. 

Theorem (3.1.3)[156]: (cf. [21] and[68,69,196,197]). The eigenvectors for 𝔏n
∗  are the vectors 

𝑣𝜆 = (1 − ‖𝜆‖
2)1 2⁄ ∑ 𝜔(𝜆)𝜉𝜔

𝜔∈ℱ𝑛

= (1 − ‖𝜆‖2)1 2⁄ (𝐼 −∑𝜆𝑖

𝑛

𝑖=1

𝐿𝑖)
−1𝜉1 

For ⋋ in the unit ball 𝔹𝑛. They satisfy 

𝐿𝑖
∗𝑣𝜆 = 𝜆𝑖𝑣𝜆 

And (𝑝(𝐿)𝑣𝜆, 𝑣𝜆) = 𝑝(𝜆) for every polynomial 𝑝 = ∑ 𝑎𝜔𝜔𝜔  in the semigroup algebra ℂℱ𝑛. 

This extends to the map 𝜑𝜆(𝐴) = (𝐴𝑣𝜆, 𝑣𝜆), which is a WOT-continuous multiplicative linear 

functional on 𝔏n. The vector 𝑣𝜆 is cyclic for𝔏n. The subspace ℳ𝜆 = {𝑣𝜆}
⊥ is 𝔏𝑛invariant, and 

its wandering subspace𝒲⋋is n-dimensional, spanned by 

𝜉𝜆,𝑖 = 𝜆𝑖𝜉1 − (1 − ‖𝜆‖
2)1 2⁄ 𝐿𝑖𝑣𝜆for1 ≤ 𝑖 ≤ 𝑛 

These results are used in [68] to show that 𝔏𝑛 is hyper-reexive. Moreover,for every 

weak-* continuous linear functional 𝑓 on 𝔏nwith ‖𝑓‖ < 1, there are vectors 𝜉 and 𝜁 such that 

𝑓(𝐴) = (𝐴𝜉, 𝜁)for all A in 𝔏n and‖𝜉‖‖𝜁‖ < 1. 

This yields the immediate consequence which will be important on several occasions. 
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Corollary (3.1.4)[156]: ([68,199]). The weak-* and WOT topologies on 𝔏n coincide. 

We identify the WOT-closed right and two-sided ideals of 𝔏𝑛. Let 𝐼𝑑𝑟(𝔏𝑛),𝐼𝑑ℓ(𝔏𝑛) and 

𝐼𝑑(𝔏𝑛) denote the sets of all WOT-closed right, left and two-sided ideals respectively. The 

important observation is that these ideals can be identified by their ranges. If 𝔍 belongs to 

𝐼𝑑𝑟(𝔏𝑛), then the subspace 𝔍𝜉1belongs to 𝐿𝑎𝑡ℜ𝑛. To see this, note that 

ℜ𝑛𝔍𝜉1 = 𝔍ℋ𝑛𝜉1 = 𝔍ℋ𝑛 = 𝔍𝔏𝑛𝜉1 = 𝔍𝜉1 

Thus 𝔍𝜉1 = 𝔍ℋ𝑛 is the range of 𝔍 and is ℜ𝑛 invariant. 

When 𝔍 belongs to Idℓ(𝔏n); we have 𝔏n𝔍ξ1 = 𝔍ξ1; so 𝔍ξ1 is 𝔏n invariant. 

Hence when 𝔍 is a two-sided ideal, 𝔍𝜉1 belongs to 𝐿𝑎𝑡(𝔏𝑛)⋂𝐿𝑎𝑡(ℜ𝑛): 
Conversely, if ℳ belongs to 𝐿𝑎𝑡(ℜ𝑛), we shall see during the proof of Theorem (3.1.5) that 

the set {𝐴 ∈ 𝔏𝑛: 𝐴𝜉1 ∈ ℳ} belongs to 𝐼𝑑𝑟(𝔏𝑛). It will follow that when 𝔍 is a right ideal, the 

subspace 𝔍𝜉1determines 𝔍 and moreover 𝔍 is two-sided precisely when 𝔍𝜉1is also 𝔏𝑛 

invariant. 

We do not make the same claims for left ideals. One should note that when 𝔍 is a left ideal, 

𝔍𝜉1is not equal to 𝔍ℋ𝑛. The full range of the ideal is not a complete invariant. There are 

technical difficulties for left ideals that we were not able to resolve; but analogous results are 

plausible. 

We remark that 𝐼𝑑𝑟(𝔏𝑛) and 𝐼𝑑(𝔏𝑛) form complete lattices with the operations of intersection 

and WOT-closed sum. 

Theorem (3.1.5)[156]:Let 𝜇: 𝐼𝑑𝑟(𝔏𝑛) → Lat(ℜ𝑛) be given by 𝜇(𝔍) = 𝔍ξ1. Then μ a complete 

lattice isomorphism. The restriction of μ to the set Id(𝔏n) is a complete lattice isomorphism 

onto 𝐿𝑎𝑡 𝔏𝑛 ∩  𝐿𝑎𝑡ℜ𝑛. The inverse map ι sends a subspace ℳ to 

𝜄(ℳ) = {𝐽 ∈ 𝔏𝑛 ∶ 𝐽𝜉1 ∈ 𝜉} 
Proof: We have seen above that ℳ = 𝜇(𝔍) is a subspace of the appropriate type for right and 

two-sided (and even left) ideals. 

Conversely, we now check that ι sends invariant subspaces to ideals of the appropriate type. So 

fix a subspace ℳ in 𝐿𝑎𝑡(ℜ𝑛) and consider  𝜄(ℳ). It is clear that 𝜄(ℳ) is a WOT −closed 

subspace of 𝔏n. Suppose that 𝐽 is in ι(ℳ)and A belongs to 𝔏n. Then 

𝐽𝐴𝜉1 ∈ 𝐽ℋ𝑛 = 𝐽ℜ𝑛𝜉1 = ℜ𝑛 𝐽 𝜉1  ⊂ ℳ 
Whence 𝜄(ℳ) is a right ideal. And if ℳ is in Lat 𝔏𝑛, then for 𝐽 in ι(ℳ) and 𝐴 in 𝔏n, : 

𝐴 𝐽 𝜉1 ∈ 𝐴 ℳ ⊂  ℳ 

So ι(ℳ) is a left ideal. Thus 𝜄(𝐿𝑎𝑡𝔏𝑛 ∩ 𝐿𝑎𝑡ℜ𝑛) is contained in Id(𝔏𝑛). 

Next we show that μι is the identity map. Fix ℳ in Lat(ℜ𝑛). By the definitions of the maps 

involved, we have μι(ℳ) is contained in ℳ. To see the opposite inclusion, let {𝜁𝑗} be an 

orthonormal basis for the ℜn wandering subspace 𝒲 =ℳ ⊖∑ ⊕𝑅𝑖ℳ
𝑛
𝑖=1  . Then   

 

ℳ =∑⊕ℜ𝑛[𝜁𝑗]

𝑗

=∑⊕𝑅𝑎𝑛𝐿𝜁𝑗
𝑗
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Since 𝐿𝜁𝑗𝜉1 = 𝜁𝑗 belongs to 𝓜, it follows that 𝐿𝜁𝑗 lies in ι(ℳ). So 

∑⊕𝑅𝑎𝑛𝐿𝜁𝑗
𝑗

⊂ 𝜄(ℳ)ℋ𝑛 = 𝜄(ℳ)𝜉1 = 𝜇(𝜄(ℳ)) 

Therefore 𝜇 𝜄(ℳ) = ℳ. 

Now fix 𝔍 in 𝐼𝑑𝑟(𝔏𝑛). As before, the defnitions involved show that 𝔍 is contained in 𝜄 𝜇 (𝔍). 
To see that this is an equality, we first show that for every 𝔍 in ℋn, 

𝔍𝜉 =  𝜄 𝜇 (𝔍)𝜉                                                             (1) 

Since 𝔏𝑛|𝜉| is a cyclic invariant subspace for 𝔏n, it may be written as 𝔏𝑛[𝜉] = 𝑅𝑎𝑛𝑅𝜂 where 

η is a wandering vector for 𝔏𝑛[𝜉]. Thus 

𝔍𝜉 = 𝔍𝔏𝑛𝜉 = 𝔍 𝑅𝜂ℋ𝑛 = 𝑅𝜂𝔍 ℋ𝑛 = 𝑅𝜂ℳ 

evidently, the same computation for ι μ (𝔍) yields the same result; hence (1) holds. 

Suppose that 𝑓 is a WOT-continuous linear functional on 𝔏n which annihilates the ideal 𝔍. By 

[68,152], there are vectors 𝜉 and 𝜂 such that 𝑓(𝐴) = (𝐴𝜉, 𝜂) for all A in 𝔏n. Since 𝑓(𝔍)  =  0, 

it follows that η isorthogonal to 𝔍𝜉. Then by the previous paragraph, 𝜂 is also orthogonal 

to𝜄 𝜇 (𝔍)𝜉 and thus 𝑓 also annihilates 𝜄 𝜇 (𝔍). By the Hahn-Banach Theorem,we therefore have 

𝔍 = 𝜄 𝜇 (𝔍). 
Thus we have established that μ is a bijective pairing between 𝐼𝑑𝑟(𝔏𝑛)and 𝐿𝑎𝑡ℜ𝑛 which carries 

𝐼𝑑(𝔏𝑛) onto Lat𝔏𝑛  ∩ Latℜ𝑛and 𝜄 = 𝜇−1. If 𝔍1and 𝔍2 are WOT-closed right ideals, then 

𝜇(𝔍1 + 𝔍2) = (𝔍1 + 𝔍2)ℋ𝑛 = 𝔍1ℋ𝑛 + 𝔍2ℋ𝑛 =  𝜇(𝔍1) ⋁ 𝜇(𝔍2) 
and hence sums are sent to spans. Similarly, ifℳ1 and ℳ2 are subspaces in 𝐿𝑎𝑡(𝔏𝑛) ∩ 𝐿𝑎𝑡ℜ𝑛, 

then 

𝜄(ℳ1 ∩ℳ2) = {𝐽 ∈ 𝔏𝑛: 𝐽𝜉1  ∈ ℳ1 ∩ℳ2} = {𝐽 ∈ 𝔏𝑛: 𝐽𝜉1  ∈ ℳ1} ∩ {𝐽 ∈ 𝔏𝑛: 𝐽𝜉1  ∈ ℳ2}
= ι(ℳ1)  ∩  ι(ℳ2) 

It follows that 𝜇 preserves intersections. Finally, to see that μ is complete, note that if 𝔍𝑘 is an 

increasing union (or decreasing intersection) of ideals,we have 

μ(⋃𝔍𝑘
𝑘

) =⋃𝔍𝑘
𝑘

ℋ𝑛 =⋁𝜇(𝔍𝑘)

𝑘

 

and similarly for intersections. Therefore μ is a complete lattice isomorphism. 

Corollary (3.1.6)[156]:If J belongs to 𝔏𝑛, then the WOT-closed (two-sided) ideal〈𝐽〉generated 

by 𝐽 consists of all elements 𝐴 in 𝔏n such that 𝐴𝜉1 lies in𝔏𝑛𝐽ℋ𝑛. 

 

Proof: The ideal 〈𝐽〉 is determined by its range, and this must be the least element ℳ of 

𝐿𝑎𝑡(𝔏n) ∩ 𝐿𝑎𝑡ℜncontaining Jξ1. Thus 

ℳ = 𝔏𝑛ℜ𝑛𝐽𝜉1 = 𝔏𝑛 𝐽 ℜ𝑛𝜉1 = 𝔏𝑛 𝐽ℋ𝑛 

By Theorem (3.1.5), it follows tha〈𝐽〉 = 𝜄(ℳ)t. 
Theorem (3.1.5) enables us to characterize the WOT-continuous multiplicative linear 

functionals on 𝔏n. 

Theorem (3.1.7)[156]: Suppose 𝜑 is a (non-zero) WOT-continuous multiplicative linear 

functional on 𝔏n. Then there exists λ in 𝔹n such that φ = φ𝜆 
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Proof: Let 𝔍 = 𝑘𝑒𝑟 𝜑. Then 𝔍is a WOT-closed two sided maximal ideal of codimension one. 

Set ℳ = 𝜇(𝔍) and note that 𝜉1 ∉ ℳ. (If not, Theorem (3.1.5) implies I belongs to 𝜄(ℳ) =  𝔍, 

which is impossible.) In fact,ℳ has codimension one. To see this, let 𝒩 =ℳ+ℂ𝜉1. If 𝒩 ≠
ℋn, let 𝜁 be a unit vector in 𝒩⊥. Choose 𝐴 in 𝔏nso that ‖𝜁 − 𝐴𝜉1‖ < 1 and set 𝛼 = 𝜑(𝐴). 
Since 𝐴 − 𝛼𝐼 is in 𝔍, 𝐴𝜉1 − 𝛼𝜉1belongs to ℳ. Hence 

1 = |(𝜁 − 𝛼𝜉1, 𝜁)| = |(𝜁 − 𝐴𝜉1, 𝜁) + (𝐴𝜉1 − 𝛼𝜉1, 𝜁)| = |(𝜁 − 𝐴𝜉1, 𝜁)| < 1, 
which is absurd. So 𝒩 = ℋn and hence ℳ belongs to Lat(𝔏𝑛) ∩ Lat ℜ𝑛and has codimension 

one. Thus ℳ⊥ is a 1-dimensional invariant subspace for𝔏n
∗ . By Theorem (3.1.3), there is a 

point 𝜆 in 𝔹n such that ℳ = {𝑣𝜆}
⊥. ByTheorem (3.1,5), 𝑘𝑒𝑟 𝜑 = 𝜄(ℳ) = 𝑘𝑒𝑟𝜑𝜆. Therefore 

𝜑 = 𝜑𝜆. 

We present, as an example, an ideal which will be important later. Let 𝑒 denote the WOT-

closure of the commutator ideal of 𝔏n. The space ℋn
s is the symmetric Focz space spanned by 

the vectors 
1

𝑘!
∑ 𝜉𝜎(𝜔)𝜎∈𝑆𝑘 , where ω is inℱ𝑛, 𝑘 = |𝜔|, 𝑆𝑘 is the symmetric group on 𝑘 elements, 

and 𝜎(𝜔) is the word with the terms in ω permuted by σ. Also recall that for λ in 𝔹𝑛, φλis the 

multiplicative linear functional on 𝔏𝑛 given by 𝜑𝜆(𝐴) = (𝐴𝑣𝜆, 𝑣𝜆) as in Theorem (3.1.3). 

Proposition (3.1.8)[156]:The WOT-closure of the commutator ideal is 

𝑒 = 〈𝐿𝑖𝐿𝑗 − 𝐿𝑗𝐿𝑖 ∶ 𝑖 ≠ 𝑗〉 = ⋂ 𝑘𝑒𝑟𝜑𝜆
𝜆∈𝔹𝑛

 

The corresponding subspace in Lat(𝔏𝑛) ∩ Lat ℜ𝑛is 

𝜇(𝑒) = 𝑠𝑝𝑎𝑛 {𝜉𝑢𝑧𝑖𝑧𝑗𝑣 − 𝜉𝑢𝑧𝑗𝑧𝑖𝑣   ∶     𝑖 ≠ 𝑗,    𝑢, 𝑣 ∈ ℱ𝑛} 

= ℋ𝑛
𝑠⊥ = 𝑠𝑝𝑎𝑛 {𝑣𝜆: 𝜆 ∈ 𝔹𝑛}

⊥ 

Proof: Let 𝔍 be the WOT-closed ideal generated by the set of commutators   {𝐿𝑖𝐿𝑗 − 𝐿𝑗𝐿𝑖: 𝑖 ≠

𝑗}. Clearly e̅ ⊃ 𝔍. On the other hand, consider the set of operators of the form 𝐴(𝐵𝐶 − 𝐶𝐵)𝐷for 

𝐴, 𝐵, 𝐶, 𝐷 in ℒ𝑛. These elements span a WOT-dense subset of e̅. Moreover, since the 

polynomials in the Liare WOT-dense in ℒn, we may further suppose that each of 𝐴, 𝐵, 𝐶, 𝐷 is 

such a polynomial. Thus by expanding, it suffices to show that operators of the 

form𝐿𝑢(𝐿𝑣𝐿𝜔 − 𝐿𝜔𝐿𝑣)𝐿𝑥 belong to 𝔍 for all words 𝑢, 𝑣, 𝜔, 𝑥 in  ℱn. Now, every permutation 

of 𝒦 objects is the product of interchanges (𝑖, 𝑖 + 1) for some1 ≤ 𝑖 < 𝒦. Using this, it follows 

that 𝐿𝜔 − 𝐿𝜎(𝜔)belongs to 𝔍 for everyω in ℱ𝑛 and every σin𝑆|𝜔|. Therefore it follows that 

𝐿𝑢(𝐿𝑣𝐿𝜔 − 𝐿𝜔𝐿𝑣)𝐿𝑥belongs to 𝔍. Thus 𝔍 = 𝑒̅. 

The subspace 𝜇(𝑒) = 𝜇(𝔍) is the smallest ℒ𝑛ℛ𝑛invariant subspace containing {𝜉𝑧𝑖𝑧𝑗 −

𝜉𝑧𝑗𝑧𝑖: 𝑖 ≠ 𝑗} which is the subspace spanned by the vectors of the form 𝜉𝑢𝑧𝑖𝑧𝑗𝑣 − 𝜉𝑢𝑧𝑗𝑧𝑖𝑣. 

It is now clear that ℋ𝑛
𝑠 is orthogonal to 𝜇(𝑒).On the other hand, a vector 𝜁 = ∑ 𝑎𝜔𝜔 𝜉𝜔is 

orthogonal to 𝜇(𝑒) if and only if it is orthogonal to every 𝜉𝜔 − 𝜉𝜎(𝜔) for 𝜔 ∈ ℱ𝑛and 𝜎 ∈ 𝑆|𝜔|. 

Hence 𝑎𝜎(𝜔) = 𝑎𝜔; whence it follows that 𝜁 belongs to ℋ𝑛
𝑠. 

Next we show span{𝑣𝜆: 𝜆 ∈ 𝔹𝑛} = ℋ𝑛
𝑠. Evidently, each 𝑣𝜆 belongs to ℋ𝑛

𝑠. Let 𝑄𝑘denote the 

projection onto span{𝜉𝜔: |𝜔| = 𝑘}. For each λ in𝔹𝑛and 𝑧in 𝕋, 

𝑣𝑧̅𝜆 = ∑ 𝑧𝑚𝑄𝑚𝑣𝜆
𝑚≥0
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Thus by considering the ℋn-valued integrals∫ 𝑧̅𝑘𝑣𝑧̅𝜆
 

𝜋
𝑑𝑧. 

For 𝑘 ≥ 0, it follows that 𝑄𝑘𝑣𝜆 lies in span{𝑣𝜆: 𝜆 ∈ 𝔹𝑛}. Now it is an easy exercise to show 

that the set of all 𝑄𝑘𝑣𝜆
 ′s contains each 

1

𝑘!
∑ 𝜉𝜎(𝜔)𝜎∈𝑆𝑘  for |𝜔| = 𝑘. Hence span{𝑣𝜆: 𝜆 ∈ 𝔹𝑛} =

ℋ𝑛
𝑠. 

It is clear that the multiplicative linear functionals 𝜑𝜆vanish on the commutator,and hence on 

the γ closed ideal that it generates. Conversely, suppose that 𝐴 in 𝔏nis not in é. Then 𝐴 in 𝜉1 is 

not contained in𝜇(𝑒́). Therefore, since 𝜇(𝑒́) is the orthogonal complement of the 

set{𝑣𝜆: 𝜆 ∈ 𝔹𝑛}, thereis a 𝜆 in 𝔹𝑛 such that 

0 ≠ (𝐴𝜉1, 𝑣𝜆) = (𝜉1, 𝐴
∗𝑣𝜆) = 𝜑𝜆(𝐴)(𝜉1, 𝑣𝜆) = (1 − ‖𝜆‖

2)1/2𝜑𝜆(𝐴). 
Thus 𝜑𝜆(𝐴) ≠ 0; whence 𝐴 is not in 𝑘𝑒𝑟 𝜑𝜆. 

Next we develop some useful lemmas about factorization in right ideals. In particular, they will 

allow us to determine when a right ideal is finitely generated. Recall from Theorem (3.1.1) that 

each isometry in 𝔏nhas the form 𝔏ζfor some ℛn-wandering vector ζ. 

Lemma (3.1.9)[156]:Let 𝐿𝜁𝑗, for1 ≤ 𝑗 ≤ 𝑘, be a finite set of isometries in 𝔏nwith pairwise 

orthogonal ranges ℳ𝑗. Let ℳ = ∑ ℳ𝑗
𝑘
𝑗  and 𝔍 = 𝜄(ℳ). Then 𝔍 equals {𝐴 ∈ 𝔏𝑛: 𝑅𝑎𝑛(𝐴) ⊂

ℳ}and every element of 𝔍 factors uniquely as 

𝐴 =∑𝐿𝜉𝑗𝐴𝑗

𝑘

𝑗=1

         for        𝐴𝑗 ∈ 𝔏𝑛 

Thus the (algebraic) right ideal generated by {𝐿𝜁𝑗: 1 ≤ 𝑗 ≤ 𝑘} equals 𝒥. 

Proof: Clearly each ℳ𝑗 is ℛ𝑛invariant, and thus so is ℳ. Hence if 𝐴 in 𝔏nsatisfies 𝐴𝜉1 ∈ ℳ, 

then 𝐴ℋ𝑛is contained in ℳ. Thus 

𝔍 = {𝐴 ∈ ℒ𝑛: 𝑅𝑎𝑛(𝐴) ⊂ ℳ} 
So 𝔍 is a WOT-closed right ideal containing 𝐿𝜁𝑗  for 1 ≤ 𝑗 ≤ 𝑘. 

Conversely, suppose that A belongs to𝔍. Then since LζjLζj
∗ is the orthogonal 

projection onto ℳj , we obtain the factorization. 

𝐴 = (∑𝐿𝜁𝑗𝐿𝜁𝑗
∗

𝑘

𝑗=1

)𝐴 =∑𝐿𝜁𝑗

𝑘

𝑗=1

𝐴𝑗 , 

Where 𝐴𝑗 = 𝐿𝜁𝑗
∗ 𝐴. This decomposition is unique because the𝐿𝜁𝑗  , s are isometries with 

orthogonal ranges. We will show that each 𝐴𝑗belongs toℒn.As 𝜁𝑗is a ℛ𝑛-wandering vector 

forℳ, it is orthogonal to ∑ ℛ𝑖ℳ
𝑛
𝑖=1 . 

 Now𝑁 = 𝑅𝑎𝑛(𝐴)is contained in ℳ, whence ζj is also orthogonal to ∑ ℛ𝑖𝒩
𝑛
𝑖=1 . Therefore, for 

any word win ℱ𝑛, 

(𝑅𝑖
∗𝐴∗𝜁𝑗𝜉𝜔) = (𝜁𝑗 , 𝐴𝑅𝑖𝜉𝜔) = (𝜁𝑗 , 𝑅𝑖𝐴𝜉𝜔) = 0, 

and so 𝑅𝑖
∗𝐴∗𝜁𝑗 = 0 . Now compute using [68] 

𝐴𝑗𝑅𝑖 − 𝑅𝑖𝐴𝑗 = 𝐿𝜁𝑗
∗ 𝐴𝑅𝑖 − 𝑅𝑖𝐿𝜁𝑗

∗ 𝐴 = (𝐿𝜁𝑗
∗ 𝑅𝑖 − 𝑅𝑖𝐿𝜁𝑗

∗ )𝐴  

𝜉1(𝑅𝑖
∗𝐿𝜁𝑗𝜉1)

∗𝐴 = 𝜉1(𝐴
∗𝑅𝑖
∗𝜁𝑗)

∗ = 𝜉1(𝑅𝑖
∗𝐴∗𝜁𝑗)

∗ = 0 
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Therefore 𝐴𝑗belongs to ℛ𝑛
′ = 𝔏𝑛. It is now evident that 𝐴 belongs to the Algebraic right ideal 

generated by {𝐿𝜁𝑗: 1 ≤ 𝑗 ≤ 𝑘}. 

An important special case concerns the (two-sided) ideals 𝔏n
0,k

 generated by {𝐿𝜔: |𝜔| = 𝑘}, 
which yields a useful decomposition of an arbitrary element of 𝔏n. In particular, the ideal 𝔏𝑛

0 ≔

ℒ𝑛
0,1

leads us to a unique decomposition of ℒn as 𝔏𝑛 = ℂ𝐼 + ∑ 𝐿𝑖𝔏𝑛
𝑛
𝑖=1 . 

This provides a handle on the algebraic rigidity of 𝔏nthat will prove useful for analyzing 

the automorphism group. 

Corollary (3.1.10)[156]:For 1 ≤ 𝑛 < ∞  and 𝑘 ≥ 1, every 𝐴 in 𝔏n can be written uniquely as 

a sum 

𝐴 = ∑ 𝑎𝜔𝐿𝜔
|𝜔|<𝑘

+ ∑ 𝐿𝜔𝐴𝜔
|𝜔|=𝑘

 

Where 𝑎𝜔 ∈ ℂ and  𝐴𝜔 ∈ 𝔏𝑛. 

Proof: The isometries {𝐿𝜔: |𝜔| = 𝑘} have pairwise orthogonal ranges summing to ℳ =
𝑠𝑝𝑎𝑛{𝜉𝑣: 𝑣 ≥ 𝑘}. This subspace is𝔏𝑛ℛ𝑛 invariant, and thus by Theorem (3.1.5), the right ideal 

i(ℳ)is in fact two-sided. Lemma (3.1.9) shows that ι(ℳ) coincides with 𝔏n
0,k

 . 

Given 𝐴in 𝔏n, write𝐴𝜉1 = ∑𝑎𝜔𝜉𝜔. The coefficients 𝑎𝜔 for |ω| < 𝑘arethe unique constants 

such that (𝐴 − ∑ 𝑎𝜔𝐿𝜔|𝜔|<𝑘 )𝜉1lies in ℳ. Therefore by Lemma (3.1.9), this difference can be 

written uniquely as ∑ 𝐿𝜔𝐴𝜔|𝜔|=𝑘 . 

Example (3.1.11)[156]:Lemma (3.1.9) is not valid for countably many generators even with 

norm closure. Indeed, consider the isometries 𝐿1
𝑘𝐿2in  𝔏2for 𝑘 ≥ 0. Their ranges are 

orthogonal, summing to the 𝔏𝑛ℛ𝑛-invariant subspace generated by𝜉𝑧2. So the WOT-closed 

right ideal 𝔍 that they generate is the two-sided WOT-closed ideal generated by 𝐿2. Consider 

a sum of the form 

𝐴 =∑𝐿1
𝑘

𝑘≥0

𝐿2ℎ𝑘(𝐿1) 

Where ℎ𝑘 will be functions in 𝐻∞. This will lie in 𝔍 provided that 𝐴 is a bounded operator. 

However, it is a norm limit of finite sums of this type only if the series converges in norm. 

An easy computation shows that 

𝐴∗𝐴 =∑ℎ𝑘
𝑘≥0

(𝐿1)
∗ℎ𝑘(𝐿1). 

As 𝐿1is a unilateral shift of infinite multiplicity, this sums to an operator unitarily equivalent 

to the infinite implication of a Toeplitz operator with symbol ∑ |ℎ𝑘|
2

𝑘≥0 . Thus 𝐴 is bounded 

precisely when this sum is bounded. 

The sum of operators is norm convergent exactly when this sum of functionsis norm 

convergent. Constructing a sequence which is bounded but not norm convergent is easy. 

The algebra 𝐻∞ is logmodular [118,251,200], and so if f is a non-negative real function in 

𝐿∞such that 𝑙𝑜𝑔𝑓 is integrable, then there is a function ℎ in 𝐻∞ such that |ℎ| = 𝑓. Choose a 

sequence of disjoint closed intervals Jk of the unit circle, each of positive length. Let 𝑓𝑘 =
2−𝑘 + 𝜒𝑗𝑘for 𝑘 ≥ 0, and let ℎ𝑘 be analytic functions with |ℎ𝑘|

2 = 𝑓𝑘. 

 



55 
  

 Then 

∑|ℎ𝑘|
2 = 2 + 𝜒𝐽

𝑘≥0

where  𝐽 =⋃𝐽𝑘
𝑘≥0

 

This sum is bounded. However, ‖ℎ𝑘‖ > 1 for all k, and thus this sum is not norm convergent. 

Moreover, this ideal is not finitely generated as a right ideal because ℳ has an infinite 

dimensional ℛn wandering space . Any element 𝐽 in 𝔍 has 𝑅𝑎𝑛(𝐽) contained in ℳ, and its 

projection onto . is a subspace of at most one dimension. The ranges of a set of generators 

must necessarily 𝑠𝑝𝑎𝑛𝑀; and thus countably many are required. 

We need a variant of Lemma (3.1.9) which is valid for countably generated ideals. Let k(𝔏n) 
denote the order k column space of 𝔏n, which is the set of all 𝑘-tuples of the form 

𝐴 = [

𝐴1
𝐴2
⋮
𝐴𝑘

] , 𝐴𝑖 ∈ 𝔏𝑛,        1 ≤ 𝑖 ≤ 𝑘 

such that A is bounded with respect to the norm obtained by considering 𝐴 as an element of 

ℬ(ℋ𝑛,ℋ𝑛
(𝑘)
). Similarly, let ℛk(𝔏n) denote the order 𝑘 row space of 𝔏nconsisting of operators 

𝐴 = [𝐴1, 𝐴2, …𝐴𝐾], 𝐴𝑖 ∈  ℒ𝑛,        1 ≤ 𝑖 ≤ 𝑘 

such that A is bounded with respect to the norm obtained by considering 𝐴 as an element of 

ℬ(ℋ𝑛
(𝑘)
,ℋ𝑛).. For 𝑘 <  ∞, this is all 𝑘-tuples, but the bounded-ness condition is non-trivial 

for 𝑘 =  ∞. 

The following lemma shows, in particular, that the infinite row matrix, 𝐿 = [𝐿1, 𝐿2, 𝐿3, … ], 
maps 𝒞∞(𝔏∞) bijectively onto 𝔏∞

0 This result also applies to the two-sided WOT-closed ideal 

𝒥 generated by the set {𝐿2, ⋯ , 𝐿𝑛}.  
The range of this ideal is the sum of the pairwise orthogonal ranges of  

{𝐿1
𝑘𝐿𝑗: 𝑘 ≥ 0, 2 ≤ 𝑗 ≤ 𝑛}. 

Lemma (3.1.12)[156]:Let, for𝐿𝜁𝑗 , for 𝑗 ≥ 1, be a countably infinite set of isometries in 𝔏nwith 

pairwise orthogonal ranges ℳj. Let ℳ = ∑ ℳ j
∞
j=1  , and let 𝐽 be the WOT-closed right ideal 

ι(ℳ). Then every element of J factors uniquely as A = ZX, where Z is the fixed isometry in 

ℛ∞(𝔏n) given by𝑍 = [𝐿𝜁2 , 𝐿𝜁1 , … ] and X is a bounded operator in 𝒞∞(𝔏n). Hence A can be 

written uniquely as the WOT limit 

𝐴 = WOT − 𝐿𝑖𝑚
𝑘−∞

∑𝐿𝜁𝑗

𝑘

𝑗=1

𝐴𝑗 

Proof:The proof begins as in Lemma (3.1.9). There is a unique decompositionof A as a WOT-

convergent sum, 

𝐴 = WOT − ∑ 𝐿𝜁𝑗𝑋𝑗 ,𝑗≥1 where𝑋𝑗 = 𝐿𝜁𝑗
∗ 𝐴. 

The𝑋𝑗are elements of 𝔏n by the same computation. Thus defining 𝑋 to be the column operator 

with entries 𝑋𝑗, we obtain a formal factorization 𝐴 =  𝑍𝑋. To see that 𝑋 is bounded, it suffices 

to compute that X*X = A*A. 
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Corollary (3.1.13)[156]: Every element 𝐴 in 𝔏∞ decomposes uniquely as 

A = ∑ 𝑎𝜔𝐿𝜔
|𝜔|<𝑘

+𝜔𝑘𝑋𝑘 

Where (𝑎𝜔)|𝜔|<𝑘belongs to ℓ2,𝑊𝑘 = [𝐿𝜔𝑘,2 , 𝐿𝜔𝑘,1 , … ], and {ωk,i} is a listing of all words of 

length k, and Xk belongs to C∞(𝔏∞). 
Proof: The identity 𝐴𝜉1 = ∑ 𝑎𝜔𝜉𝜔𝜔∈ℱ𝑛 determines the coefficients 𝑎𝜔uniquely, and shows 

that they belong to ℓ2. For each 𝑗, the isometries 𝐿𝜔𝑗,𝑖have pairwise orthogonal ranges, and 

hence the sun ∑ 𝑎𝜔𝐿𝜔|𝜔|=𝑗 is norm convergent. Summing this over 𝑗 <  𝑘 yields the unique 

operator of this formin the same coset of 𝐴 + 𝔏∞
0,𝑘

The remainder is factored by Lemma 

(3.1.12).These lemmas allow us to determine when a right ideal is finitely generated. 

Theorem (3.1.14)[156]:Let J be a WOT-closed right ideal. If ℳ = 𝜇(𝔍)in 𝐿𝑎𝑡ℛ𝑛has a finite 

dimensional wandering space of dimension 𝑘, then 𝔍 is generated by 𝑘 isometries as an 

algebraic right ideal. When this wandering subspace is infinite dimensional, 𝔍 is not finitely 

generated even as a WOT-closed rightideal. However, it is generated by countably many 

isometries as a WOT-closed right ideal. 

Proof: When the wandering space  is finite dimensional, choose an orthonormal basis 

{𝜁𝑗: 1 ≤ 𝑗 ≤ 𝑘}. Then ℳ = ∑ ⨁𝑅𝑎𝑛𝑘
𝑗=1 𝐿𝜁𝑗. Thus by Lemma (3.1.9), the isometries 

{𝐿𝜁𝑗: 1 ≤ 𝑗 ≤ 𝑘} generate 𝔍 as an algebraic right ideal. Similarly, when  is infinite 

dimensional, Lemma (3.1.12) yields a countable set of isometries which generate 𝔍 as a WOT-

closed right ideal. 

Finally, suppose that 𝔍 is finitely generated as a WOT-closed right ideal, say by 

{𝐴𝑗: 1 ≤ 𝑗 ≤ 𝑘}. Then the operators of the form ∑ 𝐴𝑗
𝑘
𝑗=1 𝐵𝑗 for Bj in 𝔏n are WOT-dense in 𝔍. 

Therefore 

𝜇(𝔍) =∑𝐴𝑗ℋ𝑛

𝑘

𝑗=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= ℛ𝑛[{𝐴𝑗𝜉1: 1 ≤ 𝑗 ≤ 𝑘}] 

This subspace is finitely generated, and therefore has finite dimensional wandering space. 

In the category of unital operator algebras, we take the view point that the natural 

representations are the completely contractive unital representations. Given an operator algebra 

𝔄, for each 1 ≤ 𝑘 ≤ 𝒩0 we let 𝑅𝑒𝑝𝑘(𝒴) denote the set of completely contractive 

representations of 𝔄 into ℬ(ℋ), whereℋ is a fixed Hilbert space of dimension 𝑘. Put the 

topology of pointwise weak-∗ convergence on this space. When 𝑘 < ∞, this is the topology of 

point wise (norm) convergence. Since the unit ball of ℬ(ℋ) is weak-* compact(and norm 

compact when 𝑘 < ∞), Tychonoff's Theorem shows that the set of contractive maps from 𝔄 

into ℬ(ℋ) is pointwise weak-* compact. When 𝑘 < 1, the collection of representations is 

closed in this topology, and thus is also compact. Unfortunately, the collection of 

representations is not closed when 𝑘 = ∞. For an example, consider the direct sum 𝑖𝑑(𝑛) of n 

copies of the identity representation of ℬ(ℋ)for 𝑛 ≥  1. Since the direct sumof n copies of the 

unilateral shift S is unitarily equivalent to 𝑆𝑛, we may find representations σn of ℬ(ℋ) on 

ℋsuch that 𝜎𝑛(S) = 𝑆𝑛 for every 𝑛. Note that no point wise weak-* limit point of this sequence 
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of representations is multiplicative, and hence the space of representations is not closed when 

𝑘 = ∞. 

The natural equivalence relation on representations is unitary equivalence. When k < ∞, the 

unitary group 𝒰𝑘 is compact and acts on 𝑅𝑒𝑝𝑘(𝒴). Thus the quotient space is also compact 

and Hausdorff. This need not be the case for 𝑘 = 𝒩0 since unitary orbits of representations 

need not be closed in general. 

For these reasons, our standing assumption is that all representations of ℒn are on finite 

dimensional spaces. 

The familiar case of 𝑘 = 1 yields the set of multiplicative linear functionals. It is well known 

that multiplicative linear functionals are automatically completely contractive. In this case, 

unitary equivalence is the identity relation. Moreover, there is an objective pairing between the 

multiplicative linear functional and its kernel, a maximal ideal of co dimension 1. So 𝑅𝑒𝑝1(𝒴) 
is the direct analogue of the maximal space of a commutative Banach algebra. In a non-abelian 

algebra, there may be many maximal ideals of other co-dimensions. 

For 𝑘 > 1, it is clear that two similar representations will have the same kernel. In the case of 

𝔏n, similar representations which are both completely contractive need not be unitarily 

equivalent. (Indeed, when 𝑛 = 1, simply consider two similar, but non-unitarily equivalent, 

contractions.) When 𝑘 < ∞ and a representation 𝛷 in 𝑅𝑒𝑝𝑘(𝒴) is irreducible (no invariant 

subspaces),the range must be all of ℳk = ℬ(ℋ). This is shows that every proper subalgebra 

of ℳk has a proper invariant subspace. Thus the kernel will be a maximal ideal of codimension 

k2.Conversely, if 𝛭 is a maximal ideal of 𝒴 of finite codimension, then there is a finite 

dimensional representation of 𝒴 on 𝒴/𝛭 with kernel 𝛭. This quotient is simple, and thus by 

Wedderburn's Theorem, 𝒴/𝛭 is isomorphicto ℳ𝑘 for some positive integer 𝑘. In particular, 

Μ has codimension k2.Restrict this representation to a minimal invariant subspace ℳ to 

obtaina representation 𝜋 and note that ℳ must have dimension k. Now π doesnot act on a 

Hilbert space. However, it is clearly a completely contractive representation. Any Hilbert space 

norm on 𝛭 is equivalent to the quotient norm, and thus will yield a completely bounded Hilbert 

space representation. Then by Paulsen's [206], this is similar to a completely contractive 

representation. This shows that the map from irreducible representations in 𝑅𝑒𝑝𝑘(𝒴) to the set 

of maximal ideals of codimension 𝑘2 is surjective.The algebra 𝔏n has many representations of 

every dimension. This will follow from Popescu's work on dilation theory for non-commuting 

n-tuples of operators. The case of 𝑘 = 1 is special and has some extra structure. So we will 

handle these special features separately. 

Recall the situation for 𝑛 = 1 in which 𝔏1 is isomorphic to 𝐻∞. There is a natural continuous 

projection 𝜋1 of the maximal ideal space 𝛭𝐻∞ of 𝐻∞ onto the closed disk 𝔻̅ given by 

evaluation at the coordinate function 𝑧. For each point 𝜆in 𝔻, there is a unique multiplicative 

linear functional 𝜑𝜆(ℎ) = ℎ(𝜆) extending evaluation of 𝑧 at λ. But for|λ| = 1, there is a very 

large space 𝛭𝜆 of multiplicative linear functionals taking the value λ at 𝑧. (See Hoffman [118] 

or Garnett [95].) The famous corona theorem of Carles on [47] shows that the point evaluations 

in the open unit disk are dense in 𝛭𝐻∞. 

Even though 𝔏n is not commutative, the space 𝑅𝑒𝑝1(𝔏𝑛) of multiplicative linear functionals is 

very large. For representations of dimension greater than one, there are interesting parallels 
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with the case of multiplicative linear functional. The analysis is based on the extensive 

knowledge of dilation theory for non-commuting n-tuples. We reprise the results that we will 

need. 

Recall that if 𝛷 is a linear map of an operator algebra 𝒴 into ℬ(ℋ), then 𝛷(𝑘,ℓ) is the map from 

ℳk,ℓ(𝒴) into ℳk,ℓ(ℬ(ℋ)), each endowed withthe usual operator norms, given by 

𝛷(𝑘,ℓ)([𝐴𝑖𝑗]) = [𝛷(𝐴𝑖𝑗)]. When ℓ =  𝑘, we write 𝛷(𝑘) instead. The complete bound norm of 

𝛷 is defined to be ‖𝛷‖𝑐𝑏 = 𝑠𝑢𝑝𝑘,ℓ‖𝛷
(𝑘,ℓ)‖. The map 𝛷 is completely contractive if ‖𝛷‖𝑐𝑏 ≤

1.See Paulsen's book [206] for details. 

Let 𝔹𝑛,𝑘̅̅ ̅̅ ̅̅ denote the collection of all contractions in ℛ𝑛(ℬ(ℋ)) where 𝑑𝑖𝑚ℋ = 𝑘; namely all 

𝑛-tuples𝑇 = [𝑇1…𝑇𝑛] in ℬ(ℋ(n),ℋ), such that 𝑑𝑖𝑚ℋ = 𝑘 and ‖𝑇‖ = ‖∑ 𝑇𝑖𝑇𝑖
∗𝑛

𝑖=1 ‖1/2 ≤ 1. 

This is the higher dimension alanalogue of the 𝑛-ball. It is endowed with the product norm 

topology when 𝑘 < ∞ and the product weak-* topology when 𝑘 = 𝒩0. 

If 𝛷 is a (completely contractive) representation of ℒn on a Hilbert space ℋ, then the 𝑛-

tuple𝑇 = 𝛷 (1,𝑛)(𝐿) = (𝛷(𝐿1), … ,𝛷(𝐿𝑛)) is a contraction.Bunce [43], generalizing Frahzo 

[82], showed that every contraction 𝑇 has a dilation to an 𝑛-tuple of isometries 𝑆 = (𝑆1, … , 𝑆𝑛) 
with orthogonal ranges. Popescu [210] extended this to 𝑛 = ∞ and showed that there is a 

unique minimal isometric dilation of 𝑇. This yields a representation of the norm-closed algebra 

generated by 𝐿 because the map taking each 𝐿𝑖 to 𝑆𝑖 is a completely isometric isomorphism. 

Following this with the compression to the original space yields a homomorphism taking 𝐿𝑖to 

𝑇𝑖. However, this map usually does not extend naturally to a continuous map from 𝔏n into 

𝐴𝑙𝑔(𝑆). Popescu [209] determines when this has a wot-continuous extension to a representation 

of 𝔏n. Nevertheless, when 𝑘 = 𝑑𝑖𝑚ℋ < ∞, we shall see that norm-continuous extensions 

always exist.The following is a technical lemma used in the proof of Theorem (3.1.16) below. 

Recall that 𝔏𝑛
0,𝑗

 is the WOT-closed ideal of 𝔏n generated by the set {𝐿𝜔: |𝜔| = 𝑗}. 
Lemma (3.1.15)[156]:Let 𝛷 belong to 𝑅𝑒𝑝𝑘(ℒ𝑛). If 𝑇 ∶= (𝛷(𝐿1) , … , 𝛷(𝐿𝑛)) satisfies 

‖𝑇‖ = 𝑟 < 1,  then ‖𝛷(𝐴)‖ ≤ 𝑟𝑗‖𝐴‖ for every 𝐴 in ℒ𝑛
0,𝑗

. 

Proof. Let 𝜓 be the 1 × 𝑛𝑗 row matrix with entries 𝐿𝜔for |𝜔| = 𝑗. And let 𝜓(𝑇) denote the 

row matrix with entries 𝜓(𝑇) for |𝜔| = 𝑗. By Corollary (3.1.10)for 𝑛 < ∞ and Corollary 

(3.1.13) for 𝑛 =  ∞, we may factor 𝐴 =  𝜔𝑋 for some 𝑋 in 𝐶 𝑛𝑗  (𝔏𝑛). Notice that 𝜔 is an 

isometry, and therefore ‖𝐴‖ = ‖𝑋‖. By the Frahzo-Bunce dilation result [82,43] for 𝑛 < ∞ 

and Popescu [210] for𝑛 = ∞, the 𝑛-tuple𝑟−1𝑇 dilates to an n-tuple of isometries 𝑆, and 

therefore 𝜔𝑗(𝑟
−1𝑇)dilates to the isometry 𝜔𝑗(𝑆). Hence 

‖𝜔𝑗(𝑇)‖ = 𝑟
𝑗‖𝜔𝑗(𝑟

−1𝑇)‖ ≤ 𝑟𝑗‖𝜔𝑗(𝑆)‖ = 𝑟
𝑗 

Then since 𝛷 is completely contractive, 

‖𝛷(𝐴)‖ = ‖𝛷(1,𝑛
𝑗)(𝜔)𝛷(1,𝑛

𝑗)(𝑋)‖ ≤ ‖𝜔𝑗(𝑇)‖‖𝑋‖ ≤ 𝑟
𝑗‖𝐴‖. 

The first result generalizes the fact that there is a natural map of ℳ𝐻∞ . onto the closed unit 

disk. The uniqueness result appears to be new even for 𝑛 = 1 when 𝑘 > 1. Recall that for 𝑛 =
∞, 𝔹∞ denotes theunit ball of Hilbert space with the weak topology. 

Theorem (3.1.16)[156]:For 𝑘 < ∞, there is a natural continuous projection 𝜋𝑛,𝑘of 𝑅𝑒𝑝𝑘(𝔏𝑛) 

onto the closed unit ball 𝔹𝑛,𝑘̅̅ ̅̅ ̅̅  given by 
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𝜋𝑛,𝑘(𝛷) = (𝛷(𝐿1), … ,𝛷(𝐿𝑛)) 

For each 𝑇in 𝔹𝑛,𝑘, the open unit ball, there is a unique representation in𝜋𝑛,𝑘
−1 (𝑇). It is WOT-

continuous and is given by Popescu's functional calculus.The restriction of 𝜋𝑛,𝑘
−1  to 𝔹𝑛,𝑘 is a 

homeomorphism. 

Proof: Since 𝛷 in Repk(𝔏n) is completely contractive, it follows that 

𝑇 =  𝛷(1,𝑛)(𝐿)  = [𝛷(𝐿1)  …   𝛷(𝐿𝑛)] 
is a contraction. Hence 𝜋𝑛,𝑘 is a well defined map of 𝑅𝑒𝑝𝑘(𝔏𝑛)into 𝔹𝑛,𝑘̅̅ ̅̅ ̅̅ . 

Since it is determined by evaluation at the points Li, this is a continuous map from 

𝑅𝑒𝑝𝑘(𝔏𝑛)with the topology of pointwise convergence into the ball with the product topology. 

By Popescu's functional calculus, there is a representation 𝛷𝑇 for every 𝑇 in the interior 𝔹𝑛,𝑘 

(and in fact, for every completely non-coisometric contraction). Since 𝑅𝑒𝑝𝑘(𝔏𝑛) is compact, 

the image is compact and therefore maps onto 𝔹𝑛,𝑘̅̅ ̅̅ ̅̅ . 

When ‖𝑇‖ = 𝑟 < 1, the WOT-continuous representation 𝛷𝑇is defined as follows. Each 𝐴 in 

𝔏n is determined by 𝐴𝜉1 = ∑ 𝑎𝜔𝜉𝜔𝜔 as a formal sum 𝐴 = ∑ 𝑎𝜔𝐿𝜔𝜔 . The image 𝛷𝑇(𝐴) is 

determined as a norm convergent sum 

𝛷𝑇(𝐴) =∑𝑎𝜔𝜔(𝑇)

𝜔

 

To see this, apply Lemma (3.1.15) for each 𝑗 ≥ 0 to obtain 

‖ ∑ 𝑎𝜔𝜔(𝑇)

|𝜔|=𝑗

‖ ≤ 𝑟𝑗 ‖ ∑ 𝑎𝜔𝜔(𝐿)

|𝜔|=𝑗

‖ = 𝑟𝑗 (∑ |𝑎𝜔|
2

|𝜔|=𝑗

)

1/2 

 

Thus two partial sums of ∑ 𝑎𝜔𝜔(𝑇)𝜔 which both contain all words of lengthless than j will 

differ in norm by at most 

∑ 𝑟𝑘𝑘≥𝑗 (∑ |𝑎𝜔|
2

|𝜔|=𝑘 )
1/2
≤ ∑ 𝑟𝑘𝑘≥𝑗 ‖𝐴‖ = 𝑟𝑗(1 − 𝑟)−1‖𝐴‖,(2) 

which tends to zero as 𝑗 tends to infinity.Therefore this series is norm convergent.The fact that 

it is WOT-continuous was shown by Popescu in [209]. 

The proof of uniqueness follows similar lines. Let 𝛷 in 𝑅𝑒𝑝𝑘(𝔏𝑛) be a completely contractive 

representation of 𝔏n such that 𝜋𝑛,𝑘(𝛷) = 𝑇, where ‖𝑇‖ = 𝑟 < 1. We shall show that 𝛷 = 𝛷𝑇. 

So let 𝐴 be an element of 𝔏n.Then by Corollary (3.1.10)for 𝑛 < ∞ and Corollary (3.1.13) for 

𝑛 =  ∞, A can be written uniquely as 

𝐴 = ∑ 𝑎𝜔𝐿𝜔
|𝜔|<𝑗

+ ∑ 𝐿𝜔𝐴𝜔
|𝜔|=𝑗

 with 𝐴𝜔 ∈ 𝔏𝑛 

Therefore  

𝛷(𝐴) = ∑ 𝑎𝜔𝜔(𝑇) +

|𝜔|<𝑗

∑ 𝜔(𝑇)𝛷(𝐴𝜔)

|𝜔|=𝑗

 

Let ∑ (𝐴)  =𝑘 ∑ (1 −
|𝜔|

𝑘
)|𝜔|<𝑘 𝑎𝜔𝐿𝜔 denote the Cesaro sums. Recall that ‖∑ (𝐴)𝑘 ‖ ≤ ‖𝐴‖, 

and that they converge to 𝐴 in the strong-* operator topology. For each integer 𝑗, there is an 

integer k sufficiently large that 
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‖ ∑
|𝜔|

𝑘
𝑎𝜔𝐿𝜔

|𝜔|<𝑗

‖ < 𝑟𝑗‖𝐴‖ 

Then 𝐴 − ∑ (𝐴)𝑘 = 𝐴1 + ∑
|𝜔|

𝑘
𝑎𝜔𝐿𝜔‖𝜔‖<𝑗  where 𝐴1 belong to ℒn

0,j
. Clearly, ‖𝐴1‖ <

(2 + 𝑟𝑗)‖𝐴‖. Hence, using the fact that 𝛷 is contractive and Lemma (3.1.15), 

‖𝛷(𝐴) − 𝛷 (∑ (𝐴)
𝑘

)‖ ≤ ‖𝛷(𝐴) − 𝛷( ∑
|𝜔|

𝑘
𝑎𝜔𝐿𝜔

|𝜔|<𝑗

)‖ 

                                                                    +‖𝛷(𝐴1)‖ ≤ 𝑟
𝑗‖𝐴‖ + 𝑟𝑗(2 + 𝑟𝑗)‖𝐴‖ < 4𝑟𝑗‖𝐴‖ 

Since 𝛷 and 𝛷𝑇 agree on polynomials in 𝐿, it follows that 

𝛷(𝐴) = 𝑙𝑖𝑚
𝑘⟶∞

𝛷 (∑ (𝐴)
𝑘

) = 𝑙𝑖𝑚
𝑘⟶∞

𝛷𝑇 (∑ (𝐴)
𝑘

) = 𝛷𝑇(𝐴). 

Finally, we verify that the map sending 𝑇 to 𝛷𝑇 maps 𝔹𝑛,𝑘 homeomorphically onto the open 

set πn,k
−1(𝔹n,k). It is evident from the series representationof 𝛷𝑇 and estimate (2) above, that 

if‖𝑇‖ ≤ 𝑟 < 1, ‖𝑇′‖ ≤ 𝑟, and A is in 𝔏n, 

‖𝛷𝑇(𝐴) − 𝛷𝑇′(𝐴)‖ ≤ ∑ |𝑎𝜔|

|𝜔|≤𝑗

‖𝜔(𝑇) − 𝜔(𝑇′)‖ + 2𝑟𝑗(1 − 𝑟)−1‖𝐴‖ 

Thus as 𝑇′ converges to 𝑇, it follows that 𝛷𝑇′(𝐴) converges to 𝛷𝑇(𝐴). So this mapping of 

𝔹𝑛,𝑘into 𝑅𝑒𝑝𝑘(𝔏𝑛) is continuous. 

Now we specialize to 1-dimensional representations. In this case, each fibre over a point 

on the boundary of the ball is homeomorphic to every other because the gauge automorphisms 

act on the ball by the unitary group, and thus is transitive on the boundary. Moreover, this fibre 

is always very large based on the fact that it is known to be very large for 𝑛 = 1. 

Theorem (3.1.17)[156]:There is a natural continuous projection πn,1of the space 𝑅𝑒𝑝1(𝔏𝑛) 

onto the closed unit ball 𝔹𝑛̅̅ ̅̅  in ℂ𝑛 given by evaluation at the 𝑛-tuple(𝐿1 , … , 𝐿𝑛). 
For each point λ in 𝔹𝑛, there is a unique multiplicative linear functionalin 𝜋𝑛,1

−1(𝜆); and it is 

given by 𝜑𝜆(𝐴) = (𝐴𝑣𝜆, 𝑣𝜆. The set 𝜋𝑛,1
−1(𝔹𝑛)is homeomorphic to 𝔹n and the restriction of 

the Gelfand transform to this ball is a contractive homomorphism of ℒn into 𝐻∞(𝔹𝑛).The 

ball 𝔹𝑛 forms a Gleason part of 𝑅𝑒𝑝1(ℒ𝑛). These are the only weak-* continuous functionals 

on ℒn. 

For each point λ in 𝜕𝔹𝑛, 𝜋𝑛,1
−1(𝜆) is homeomorphic to 𝜋𝑛,1

−1(1,0,… 0). 

There is a canonical surjection of πn,1
−1(λ) onto the fibre 𝛭1 of 𝛭𝐻∞ given by restricting 𝜑 in 

𝜋𝑛,1
−1  to 𝐴𝑙𝑔(∑ 𝜆̅𝑖𝐿𝑖

𝑛
𝑖=1 ) ≃ 𝐻∞. This map has a continuous section. 

Proof: ByTheorem (3.1.15), the map 𝜋𝑛,1 maps 𝑅𝑒𝑝1(𝔏𝑛) onto 𝔹n̅̅ ̅̅  by evaluation at 𝐿. For each 

point 𝜆 in the open ball, there is a unique preimage 𝜋𝑛,1
−1(𝜆)which is evidently 𝜑𝜆. Also, the 

preimage of 𝔹𝑛 is homeomorphic to the open ball. By Theorem (3.1.7), these are the only 

WOT-continuous multiplicative linear functional son 𝔏n. By Corollary (3.1.4), these coincide 

with the weak-* continuous ones. 
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For each polynomial 𝑝(𝑧) = ∑𝑎𝜔𝜔 in ℂℱ𝑛, the Gelfand transform 𝑝(𝐿)̂(𝜆)  =  𝑝(𝜆)is 

evidently a contractive homomorphism of ℂℱ𝑛 into ℂ[𝑧] normed as a subset of 𝐻∞(𝔹𝑛). 
Suppose that 𝑝𝑛(𝐿) is a WOT-Cauchy sequence in 𝔏n. Since the set {𝜑𝜆: ‖𝜆‖ ≤ 𝑟} is a compact 

set of WOT-continuous linear functionals for each 0 <  𝑟 <  1, the restriction of 𝑝𝑛(𝐿)̂  to this 

set converges uniformly. Thus the limit lies in 𝐻∞(𝔹𝑛). This shows that the Gelfand map 

yields a contractive homomorphism into ℋ∞(𝔹𝑛). which carries WOT-convergent sequences 

to sequences converging uniformly on compact subsets of the ball. 

Now recall that the Gleason part containing φ0 is the equivalence class 

{𝜑 ∈ 𝑅𝑒𝑝1(𝔏𝑛): ‖𝜑 − 𝜑0‖ < 2}. 
Consider the positive linear functional 𝛿𝜉(𝑇) = (𝑇𝜉, 𝜉)on ℬ(ℋ) for a unit vector 𝜉. Let 𝜁 be 

another unit vector with |(𝜉, 𝜁)| = 𝑐𝑜𝑠 𝜃  for   0 ≤ 𝜃 ≤
𝜋

2
 it is a well known fact that 

‖𝛿𝜉 − 𝛿𝜁‖ = 𝑠𝑢𝑝
‖𝑇‖≤1

|(𝑇𝜉, 𝜉) − (𝑇𝜁, 𝜁)| = 2(1 − 𝑠𝑖𝑛 𝜃) 

Since(𝑣0, 𝑣𝜆) = (1 − ‖𝜆‖
2)1 2⁄ ≠ 0, it follows that ‖φ0 −φλ‖ < 2 for λ in 𝔹n. On the other 

hand, if ‖λ‖ = 1, then S = ∑ 𝜆𝚤̅
𝑛
𝑖=1 𝐿𝑖is a proper isometry inℒnsuch that 𝜑0(𝑆) = 0 and 

𝜑𝜆(𝑆) = 1. So the Möbius map 𝑏𝑟(𝑧) =
𝑧−𝑟

1−𝑟2
 for 0 < 𝑟 < 1 can be used to obtain 

𝜑0(𝑏𝑟(𝑆)) =-r and 𝜑𝜆(𝑏𝑟(𝑆)) = 1. 

Hence ‖𝜑0 − 𝜑𝜆‖ = 2. So the Gleason part of φ0 is precisely 𝔹n. 

Next consider the point 𝜆 = (1,0,… ,0)in ∂𝔹n. The algebra Alg(𝐿1) is isomorphic to 𝐻∞. For 

𝜑 in  𝜋𝑛,1
−1(1,0, … ,0), let 𝜌(𝜑) be the restriction of 𝜑 to Alg(𝐿1). Clearly, (𝜑) belongs to ℳ1, 

the fibre of ℳ𝐻∞  over the point 1, and 𝜌 is continuous. We now produce a right inverse for 𝜌. 

Let P be the projection onto the subspace span{𝜉𝑧1𝑘: 𝑘 ≥ 0}, and notice that 𝑃⊥ℋ𝑛 is an 𝔏n-

invariant subspace. So the map 𝜓(𝐴)  =  𝑃𝐴|𝑃ℋ𝑛 is a homomorphism of 𝔏n. In fact, 𝑃⊥ℋ𝑛 is 

also ℜ𝑛 invariant. Thus the kernel of this homomorphism is 𝔍 = {𝐴 ∈ ℒ𝑛: 𝑃𝐴𝜉1 = 0}, which 

is the WOT-closed ideal generated by {𝐿2, … , 𝐿𝑛}. 
The range of  𝜓 is contained in the WOT-closed algebra generated by the operators PLiP, which 

are all 0 except for 𝑃𝐿1𝑃 which is a unilateral shift.The map taking L1 to P𝐿1𝑃 is isometric and 

WOT −continuous, and carries 𝐴𝑙𝑔(𝐿1) onto 𝒯(𝐻∞). By composing 𝜓 with the isomorphism 

of Alg(𝐿1)onto H∞, we may regard as a surjection of ℒn onto H∞.Let 𝛼 ≔ 𝜓∗|ℳ1
 be the 

restriction of the Banach space adjoint of  𝜓 to ℳ1. Clearly α is a continuous map; and if φ =
α(ψ ), we have 

𝜋𝑛,1(𝜑) = (𝜋1,1((𝜓), 0, … ,0) 

So α maps 𝛭1into 𝜋𝑛,1
−1(1,0,… ,0)and 𝜌 ∘ 𝛼(𝜓) = 𝜌(𝜓𝛹) for in 𝛭1. 

Therefore this is a continuous section, and ρ is surjective. In particular, this yields a 

homeomorphism of 𝛭1 into πn,1
−1(1,0,… ,0). 

For any other 𝜆 with ‖λ‖ = 1, choose a unitary 𝑈 = [𝑢𝑖𝑗] in ℳ𝑛 such that 𝑢𝑖𝑗 = 𝜆𝑗 . We will 

show that the gauge automorphism 𝛩𝑈 maps 𝜋𝑛,1
−1(1,0,… ,0) onto 𝜋𝑛,1

−1(𝜆).Indeed, for any φ in 

𝜋𝑛,1
−1(1,0, … ,0). 
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𝜑𝛩𝑈(𝐿𝑗) = 𝜑(∑𝑢𝑖𝑗𝐿𝑖

𝑛

𝑖=1

) = 𝑢1𝑗 = 𝜆𝑗 

It is evident that this map is continuous with inverse obtained by sending  𝜑 to𝜑𝛩𝑈
−1. So it 

induces a homeomorphism between 𝜋𝑛,1
−1(1,0,… ,0).And𝜋𝑛,1

−1(𝜆). The role of 𝐿1 is played by 

𝛩𝑈
−1(𝐿1) = ∑ 𝜆̅𝑖𝐿𝑖

𝑛
𝑖=1 . 

Example(3.1.18)[156]:This example is to illustrate some of the possibilities on the boundary 

when 𝑘 > 1. 

It is possible that the fibre over a boundary point is a singleton. Consider 𝑅𝑒𝑝3(𝔏2), the pair 

𝑇1 = [
0 0 0
1 0 0
0 0 0

]          and         𝑇2 = [
0 0 0
0 0 0
1 0 0

] 

and a representation 𝛷 such that 𝛷(𝐿𝑖)  =  𝑇𝑖for 𝑖 = 1,2. Then since 𝑇1
2 = 𝑇2

2 = 𝑇1𝑇2 =

𝑇2𝑇1 = 0, it follows from Lemma (3.1.9) that 𝑘𝑒𝑟𝛷 contains the ideal ℒ2
0,2

. Every element 𝐴 

in ℒ2can be represented uniquely as 𝐴 = 𝑎0𝐼 + 𝑎1𝐿1 + 𝑎2𝐿2 + 𝐴
′where 𝐴′ belongs to ℒ2

0,2
. 

Therefore 𝛷(𝐴) = 𝑎0𝐼 + 𝑎1𝑇1 + 𝑎2𝑇2is uniquely determined. 

On the other hand, the fibre over 𝑇may be very large indeed. Let 

𝑇1 = [
1 0
0 0

]               and             𝑇2 = [
0 0
1 0

] 

We consider a class of homomorphisms Φ of ℒ2in 𝜋2,2
−1(𝑇). Let ζi denote the standard basis for 

ℂ2. Both Ti are lower triangular, so we will consider those representations 𝛷 which map 𝔏2into 

the algebra 𝒯2 of 2 × 2 lower triangular matrices. 

The functionals𝜑𝑖(𝐴) = (𝛷(𝐴)𝜁𝑖 , 𝜁𝑖) are multiplicative since compression to the diagonal is 

multiplicative on 𝒯2.Moreover, 𝜑1(𝐿1) = 1and 𝜑1(𝐿2) = 0, and hence 𝜑1lies in 𝜋2,2
−1(1,0). 

Likewise,𝜑2(𝐿1) = 𝜑2(𝐿2) = 0. So 𝜑2 = 𝜑0 is evaluation at 0 by Theorem (3.1.17). Recall 

from Corollary (3.1.10) that every 𝐴 in ℒ2 can be uniquely written as 𝐴 = 𝑎0𝐼 + 𝐿1𝐴1 +
𝐿2𝐴2, where 𝑎0 = 𝜑0(𝐴) and 𝐴𝑖 = 𝐿𝑖

∗(𝐴 − 𝑎0𝐼). Define δ(𝐴) = 𝜑1(𝐴2) = 𝜑1(𝐿2
∗ (𝐴 −

𝜑0(𝐴)𝐼). Then 

𝛷(𝐴) = 𝑎0𝐼 + 𝛷(𝐿1)𝛷(𝐴1) + 𝛷(𝐿2)𝛷(𝐴2)

= [
𝑎0 0
0 𝑎0

] + [
1 0
0 0

] [𝜑1
(𝐴1) 0
∗ ∗

] + [
0 0
1 0

] [𝜑1
(𝐴2) 0
∗ ∗

]

= [
𝑎0 + 𝜑1(𝐴1) 0

𝜑1(𝐴2) 𝑎0
] = [

𝜑1(𝐴) 0

𝛿(𝐴) 𝜑0(𝐴)
] 

In order to have a representation, it remains to verify complete contractivity. 

An explicit family of such representations may be obtained as follows. 

Let ℳ1 = 𝑠𝑝𝑎𝑛 {𝜉𝑧1𝑘: 𝑘 ≥ 0}and ℳ2 = 𝑠𝑝𝑎𝑛 {𝜉𝑧2𝑧1𝑘: 𝑘 ≥ 0}, and setℳ =ℳ1⨁ℳ2. Then 

ℳ⊥is invariant for 𝔏2 and ℜ2. Thus compression to ℳis a WOT-continuous homomorphism. 

The compression to ℳ1is a homomorphism onto H∞(L1), sending L1to the unilateral shift as 

we have discussed before. The compressions of both 𝐿𝑖to ℳvanish on ℳ2, and L2maps 

ℳ1isometrically onto ℳ2. Hence the compressions are 
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𝑃ℳ𝐿1| ℳ ≃ [
𝑇𝑧 0
0 0

]     and        𝑃ℳ𝐿2| ℳ ≃ [
0 0
𝐼 0

] 

Thus Ψ maps 𝔏nonto the algebra of operators of the form 

[
𝑇ℎ0 0

𝑇ℎ1 ℎ0(𝑂)
]    for  ℎ𝑖 ∈ 𝐻

∞ 

Indeed, this shows that every element of 𝔏nmay be written uniquely as 

𝐴 =  ℎ0(𝐿1)  + 𝐿2ℎ1(𝐿1)  + 𝐴
′where ℎ𝑖 ∈ 𝐻

∞and 𝑃ℳ𝐴
′ =  0. 

Now let 𝜓 be any multiplicative linear functional on H∞in the fibre𝛭1. 

Then 𝛷 = 𝜓(2)𝛹  is a completely contractive homomorphism of 𝔏2onto 𝒯2such that 𝛷(𝐿𝑖)  =
𝑇𝑖. Indeed, 

𝛷(𝐴) = [
𝑇ℎ0 0

𝑇ℎ1 ℎ0(𝑂)
] = [

𝜓(ℎ0) 0

𝜓(ℎ1) ℎ0(𝑂)
] 

Hence we have shown that the fibre 𝜋2,2
−1(𝑇) is very large. 

We analyze the automorphism group of 𝔏n. The automorphismsof the algebra 𝐿1 =
𝐻∞are precisely the maps Θ𝒯(h) = h(𝒯) where 𝒯is a conformal automorphism of the unit 

disk. So Aut(𝐿1) is isomorphic to 𝐴𝑢𝑡(𝔹1), the group of conformal automorphisms of the unit 

disk. In particular, they are all norm and wot-continuous. See [118], where two proofs are 

given, both based on factorization of analytic functions. Our main result is Theorem (3.1.19), 

which is valid even for 𝑛 =  ∞. Our original proof of Theorem (3.1.19) failed when 𝑛 =  ∞.  

   An automorphism of 𝔏nwill be called quasi-inner if it is trivial modulothe WOT-closed 

commutator ideal 𝔢̅(see Proposition (3.1.8)). Denote the set of all quasi-inner automorphisms 

by q-Inn(𝔏n). In particular, this contains the subgroup Inn(Ln𝔏n) of inner automorphisms. 

Theorem (3.1.19)[156]:There is a natural short exact sequence 

0 ⟶q-𝐼𝑛𝑛(𝔏𝑛)  ⟶Aut(𝔏𝑛)
𝒯  
→  Aut(𝔹𝑛)  ⟶ (0) 

The map𝒯takes 𝛩to𝒯𝛩(𝜆) = (𝜑𝜆𝛩
−1)1,𝑛(𝐿)for 𝜆 ∈ 𝔹𝑛.Moreover, 𝒯has a continuous section 

kwhich carries Aut(𝔹𝑛)onto the subgroup Autu(𝔏𝑛)of unitarily implemented automorphisms. 

Thus Aut(𝔏𝑛)is a semi direct product. 

The proof will be carried out in stages. First we establish an automatic continuity result for 

automorphisms. 

Lemma (3.1.20)[156]:Every automorphism 𝛩of  𝔏n, for 𝑛 ≥ 2, is continuous. 

Proof: The proof is a standard gliding bump argument. We define 𝐵𝑖 = 𝛩
−1(𝐿𝑖) and set Λ =

𝑚𝑎𝑥{1, ‖𝐵1‖, ‖𝐵2‖}. Suppose that Θ is not continuous . Then there is a sequence 𝐴𝑘 in 𝔏𝑛 

such that  

                      ‖𝐴𝑘‖ ≤ (2Λ)
−𝑘 and ‖Θ(𝐴𝑘)‖ > 𝑘. 

Let 𝐴 be defined by the norm convergent sum 

𝐴 =∑𝐵2
𝑘

𝑘≥1

𝐵1𝐴𝑘  = ∑𝐵2
𝑘

𝑚

𝑘=1

𝐵1𝐴𝑘  +  𝐵2
𝑚+1∑𝐵2

𝑘

𝑘≥1

𝐵1𝐴𝑚+1+𝑘: 

Set 𝑋𝑚  = ∑ 𝐵2
𝑘

𝑘≥0 𝐵1𝐴𝑚+1+𝑘. Then for all 𝑘 >  0, 

‖𝛩(𝐴)𝑘‖ ≥ ‖𝐿1
∗𝐿2
∗𝑚𝛩(𝐴)‖ = ‖∑𝐿1

∗𝐿2
∗𝑚

𝑚

𝑘=1

𝐿2
𝑘𝐿1(𝐴𝑘) + 𝐿1

∗𝐿2
∗𝑚𝐿2

𝑚+1𝛩(𝑋𝑚)‖ = ‖𝛩(𝐴𝑘)‖ > 𝑘. 
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This is absurd, and consequently 𝛩 must be continuous. 

We show that every automorphism determines a special point in the ball. 

Proposition (3.1.21)[156]:Let 𝛩 be an automorphism of 𝔏n. Then there is a unique point 𝜆 in 

𝔹n such that 𝛩(𝔏𝑛
0)  =  𝑘𝑒𝑟 𝜑𝜆. Indeed, 𝜑𝜆 = φ0Θ

−1. 

Proof: Let 

𝑆 = 𝛩(1;𝑛)(𝐿) ∶= [𝑆1… 𝑆𝑛]: 
By Corollaries (3.1.10) and (3.1.13), 𝔏𝑛  =  ℂ𝐼 +  𝐿𝒞𝑛(𝔏𝑛), and this decomposition is 

unique. Applying 𝛩 yields 𝔏𝑛 = ℂ𝐼 +  𝑆𝒞𝑛(𝔏𝑛), and every A in 𝔏n has a unique 

decomposition as 𝐴 = 𝛼𝐼 + 𝑆𝐵for some B in 𝒞n(𝔏n). Hence the continuous linear map 𝑇 

from ℂ⊕ 𝒞𝑛(𝔏𝑛)to𝔏n given by 

𝑇(𝛼; 𝐵) = 𝛼𝐼 + 𝑆𝐵 
is a bijection. By Banach's isomorphism Theorem, 𝑇 is invertible. So there is a constant c > 0 

so that 

𝑐−1‖|𝛼|21 + 𝐵∗𝐵 ‖1/2 ≤ ‖𝛼1 + 𝑆𝐵‖ ≤  𝑐 ‖|𝛼|21 + 𝐵∗𝐵 ‖1/2: 
Let 𝔍 = 𝑆𝐶𝑛(𝔏𝑛) = 𝛩(𝔏𝑛

0). Since 𝑇 maps a subspace of codimension one onto ℑ, it 

also has codimension one. We claim that this ideal is WOT-closed. Suppose that 𝐽𝛽 = 𝑆𝐵𝛽 is 

a bounded net in 𝔍 which converges weak-∗ to an operator 𝑋 in 𝔏n. Then the net𝐵𝛽 is 

bounded in 𝒞n(𝔏n) by the previous paragraph. Hence there is a cofinal subnet 𝐵𝛽′ which 

converges weak-* to an operator 𝐵 in 𝒞n(𝔏n). Consequently, it follows that X = SB belongs 

to 𝐽. This shows that the intersection of 𝔏 with each closed ball is weak-* closed. by the 

Krein-Smulian Theorem (c.f. [73]), 𝔏 is weak-* closed. By Corollary (3.1.4), the weak-* 

and WOT topologies coincide on 𝔏n. Hence 𝐽 is WOT− closed. 

Consider the multiplicative linear functional𝜑 = 𝜑0𝛩
−1, which yields the formula 𝜑(𝛼𝐼 +

𝑆𝐵) = 𝛼. Since 𝔏 is WOT-closed, this functional is WOT-continuous. Therefore by Theorem 

(3.1.7), there is a point λ in 𝔹n such that 𝜑 = 𝜑𝜆. 

We will show that automorphisms of 𝔏n are automatically WOT-continuous.First we establish 

a criterion for WOT-convergence in 𝔏n. Recall that Cn, 𝔏n is the ideal generated by 

{𝐿𝜔: |𝜔| = 𝑘}. 
Lemma (3.1.22)[156]:For a bounded net 𝐴𝛼 in 𝔏n, n <  1, the following are equivalent: 

(i) 𝑊𝑂𝑇-𝑙𝑖𝑚
𝛼
𝐴𝛼 =  0. 

(ii)𝑤 − 𝑙𝑖𝑚
𝛼
𝐴𝛼 𝜉1 =  0. 

(iii) 𝑙𝑖𝑚
𝛼
 𝑑𝑖𝑠𝑡(𝐴𝛼 ; 𝔏𝑛 

0,𝑘)  =  0 for all 𝑘 ≥  1. 

Proof: It is evident that (i) implies (ii). If (ii) holds, then write 

𝐴𝛼 𝜉1 =∑𝑎𝜔
𝛼𝜉𝜔

𝜔

: 

Then 𝐴𝛼,𝑘 : =  𝐴𝛼 ∑ 𝑎𝜔
𝛼𝐿𝜔|𝜔|<𝑘  belongs to 𝔏𝑛 

0,𝑘
 by Lemma (3.1.9) Condition 

(ii) Clearly implies that 𝑙𝑖𝑚
𝛼
𝑎𝜔
𝛼  =  0 for every 𝜔. Hence 

lim
𝛼
sup  dist(𝐴𝛼 , 𝔏𝑛 

0,𝑘) ≥ lim
𝛼
 sup ‖𝐴𝛼 − 𝐴𝛼,𝑘 ‖ ≤ lim

𝛼
sup ∑ |𝑎𝜔

𝛼 |2

|𝜔|<𝑘

 = 0 
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for every k ≥ 1. Now if (iii) holds, then  

0 = lim
𝛼
 dist(𝐴𝛼 , 𝔏𝑛 

0,𝑘)lim
𝛼
 sup dist(𝐴𝛼 𝜉1; 𝔏𝑛 

0,𝑘𝜉1) = ( ∑ |𝑎𝜔
𝛼 |2

|𝜔|<𝑘

)

1
2⁄

 

A fortiori, 𝑙𝑖𝑚
𝛼
𝑎𝑤
𝛼  =  0 for every w inℱn. Therefore 

𝑙𝑖𝑚
𝛼
(𝐴𝛼 𝜉𝑢;  𝜉𝑣) = 𝑙𝑖𝑚

𝛼
(𝐴𝛼 𝜉1; 𝑅𝑢

∗𝜉𝑣)  =  0 

for every pair of words 𝑢; 𝑣 in ℱ𝑛. These vectors span a dense subset of ℋn. 

As the net 𝐴𝛼  is bounded, it converges WOT to 0. 

Theorem (3.1.23)[156]:Every automorphism Θof𝔏n is WOT-continuous. 

Proof: By Lemma (3.1.22), there is a point λ in 𝔹n such that φ0Θ
−1 = φ𝜆. 

Thus 

𝔍 = 𝛩(𝔏𝑛 
0 ) = 𝑘𝑒𝑟𝜑𝜆: 

Hence 

(𝔏𝑛 
0,𝑘) = 𝛩(𝔏𝑛 

0 )𝑘 = 𝔍𝑘for all 𝑘 ≥ 1: 

Clearly ∩𝑘≤1 𝔍
𝑘 = {0} since 

𝛩−1(∩𝑘≤1 𝔍
𝑘) ⊂ 𝛩−1(𝔍𝑘) = 𝔏𝑛 

0,𝑘 for all 𝑘 ≥ 1: 
Thus by Theorem (3.1.5), we have 

   ∩𝑘≤1 𝔍
𝑘ℋ𝑛̅̅ ̅̅ ̅̅ ̅̅ = ‖0‖   (3) 

Set 𝜁𝜔 =  𝛩(𝐿𝜔)𝜉1 for𝜔 ∈ ℱ𝑛. Fix an integer𝑗 and let ℳjand 𝒩jbe the closed linear spans of 

{𝜉𝜔: |𝜔| = 𝑗} and {𝜉𝜔: |𝜔| = 𝑗} respectively. If 𝛽 = ∑ 𝑏𝜔𝜉𝜔|𝜔|=𝑗 is a finite linear combination 

of the 𝜉𝜔, put B = ∑ 𝑏𝜔𝐿𝜔|𝜔|=𝑗 .Then since 𝛩 is bounded, 

‖ ∑ 𝑏𝜔𝜁𝜔
|𝜔|=𝑗

‖ = ‖𝛩(𝐵)𝜉1‖  ≤  ‖𝛩‖‖𝐵‖  = ‖𝛩‖‖𝛽‖. 

Thus the map ∑ 𝑏𝜔𝜉𝜔|𝜔|=𝑗 ⟼∑ 𝑏𝜔𝜁𝜔|𝜔|=𝑗  extends to a bounded linear operator 𝑇𝑗 ∶ ℳ𝑗  ⟼

 𝒩𝑗  . 

Now consider a bounded net𝐵𝛼 = ∑ 𝑏𝜔
𝛼𝜉𝜔|𝜔|=𝑗  such that 𝑙𝑖𝑚

𝜔→0
𝑏𝜔
𝛼𝜉𝜔 = 0 for all 𝜔. Let 

𝛽𝛼 = ∑ 𝑏𝜔
𝛼𝜉𝜔|𝜔|=𝑗 . It follows that 

𝜔 − 𝑙𝑖𝑚
𝛼
𝛩(𝐵𝛼)𝜉1 = 𝜔 − 𝑙𝑖𝑚

𝛼
𝑇𝑗𝛽𝛼 = 𝑇𝑗𝜔 − 𝑙𝑖𝑚

𝛼
𝛽𝛼 = 0: 

Hence 𝛩(𝛽𝛼) converges WOT to 0.Again let 𝐴𝛼be a bounded net converging WOT to 0 in 

𝔏n and let Λ = 𝑠𝑢𝑝‖𝐴𝛼‖, it suffices to show that 

𝑙𝑖𝑚
𝛼
(𝛩(𝐴𝛼)𝜉1𝜁) =  0 

for 𝜁 in a dense subset of ℋ𝑛. A convenient choice is ∪𝑘≤1 (𝔍
𝑘ℋ𝑛)

⊥, which is dense by the 

equality (3). Choose ζ in (𝔍𝑘ℋ𝑛)
⊥, and set 𝑝 =  𝑘2. Decompose 𝐴𝛼 = 𝐵𝛼  +  𝐶𝛼where 

𝐵𝛼  =  ∑(𝐴𝛼)

𝑝

+ ∑
|𝜔|

𝑝
𝑎𝜔
𝛼𝐿𝜔

|𝜔|=𝑗

 and 𝐶𝛼  = 𝐴𝛼 −  𝐵𝛼 ∈  𝔏𝑛 
𝑘 . 

Since the Cesaro mean ∑ (𝐴𝛼)𝑝  is contractive, it follows that ∑ (𝐴𝛼)𝑝 ≤  Λ. 

Also the terms 𝐴𝛼,𝑗  = ∑ 𝑎𝜔
𝛼𝐿𝜔|𝜔|=𝑗  are bounded by s, and thus 
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‖𝐵𝛼‖ ≤ Λ + 𝑝
−1∑‖𝐴𝛼,𝑗‖

𝑘−1

𝑗=1

 ≤ 2Λ: 

Hence ‖𝐶𝛼‖  ≤ 3Λ. Moreover each net 𝐵𝛼 and 𝐶𝛼 converge wot to 0. 

Now since 𝐵𝛼 is supported on words of length less than 𝑝, we have seen that Θ(Bα) converges 

WOT to 0. Finally by construction, 

(𝛩(𝐶𝛼)𝜉1;  𝜁)  =  0 
since 𝛩(𝐷𝛼)𝜉1 lies in 𝔍𝑘ℋ𝑛, which is orthogonal to 𝜁. 

The weak-∗ topology on the unit ball of 𝐵(ℋ𝑛) is metrizable, and the ball is compact. Thus it 

follows readily that a linear map𝛩 is weak-∗ continuous on a bounded convex set if and only 

if it takes every weak-∗ null sequence to a weak-∗ null sequence. Hence we see that 𝛩 is weak-

∗ continuous on every closed ball of 𝔏n. Therefore by the Krein-Smulian (c.f [73]), it follows 

that 𝛩 is weak-∗ continuous. By Corollary (3.1.4), the weak-𝔏n and WOT topologies coincide 

on 𝔏n. Thus 𝛩is WOT-continuous. 

The tools are now available to define the map τ given in Theorem (3.1.19). Using Theorem 

(3.1.17), we identify 𝔹n with 𝑅𝑒𝑝1(𝔏𝑛) by associating λ in 𝔹n with the multiplicative linear 

functional φ𝜆 in 𝑅𝑒𝑝1(𝔏𝑛). 
Theorem (3.1.24)[156]: For each 𝛩 in 𝐴𝑢𝑡(𝔏𝑛), the dual map τΘ on 𝑅𝑒𝑝1(𝔏𝑛) given by 

𝜏𝛩(𝜑) ∶= 𝜑 ∘ 𝛩
−1 maps the open ball 𝔹𝑛 conformally onto itself. This determines a 

homomorphism of 𝐴𝑢𝑡(𝔏𝑛) into the group Aut(𝔹n) of conformal automorphisms. If 𝜏𝛩(𝜑0) =
𝜑0, then there is a unitary matrix 𝑈 in 𝒰n such that 𝜏𝛩(𝜑𝜆) = 𝜑𝑈𝜆. 

Proof: Since 𝛩 is WOT-continuous by Theorem (3.1.24), it follows that τΘ(φ𝜆) = φ𝜆 ∘ Θ
−1 

is a WOT-continuous multiplicative linear functional. Hence by Theorem (3.1.7), this is a 

functional φμ. Thus τΘ maps 𝔹n into itself. We obtain an explicit formula for this map using 

the fact that 𝜑𝜆
(1;𝑛)

(𝐿) = 𝜆, whence 

𝜏𝛩(𝜆) = (𝜑𝜆𝛩
−1)(1;𝑛)(𝐿) = 𝜑𝜆

(1;𝑛)
(𝑇) = 𝑇̂(𝜆); 

where 

𝑇 = (𝛩−1)(1;𝑛)(𝐿) = [𝛩−1(𝐿1)…𝛩
−1(𝐿𝑛)]. 

By Theorem (3.1.17), 𝑇 ̂is analytic and thus so is 𝜏𝛩. 

Next notice that the map τ taking Θ to τΘ is a homomorphism. It is evident that 𝜏𝐼𝑑 = 𝑖𝑑;that 

is, the identity automorphism induces the identity map on 𝔹𝑛. Suppose that Θjbelong 

to𝐴𝑢𝑡(𝐿𝑛), and 𝜏𝑗 = 𝜏(𝛩𝑗) for j = 1;  2.Then 

τ(𝛩1𝛩2)(𝜆) =  (𝜑𝜆(𝛩1𝛩2)
−1)(1;𝑛)(𝐿) =  (𝜑𝜆𝛩2

−1𝛩1
−1)(1;𝑛)(𝐿) =  (𝜑𝜏2(𝜆)(𝛩1

−1)(1;𝑛)(𝐿
=  (𝜑𝜏1(𝜏2(𝜆)))

(1;𝑛)(𝐿)  =  𝜏1(𝜏2(𝜆)): 

Hence 𝜏(𝛩1𝛩2)  =  𝜏(𝛩1) ∘  𝜏(𝛩2). 
Consequently 

𝜏𝛩𝜏𝛩−1 = 𝑖𝑑 = 𝜏𝛩−1𝜏𝛩; 
from which we deduce that 𝜏𝛩 is a bijection. Therefore 𝜏𝛩is a biholomorphic bijection (i.e. a 

conformal automorphism) of the ball. 

If 𝜏is a conformal automorphism of 𝔹𝑛. such that 𝜏 (0) = 0, then by Schwarz's Lemma, there 

is a unitary operator 𝑈 in 𝑈𝑛 such that 𝜏(𝜆) = 𝑈𝜆[256] for 𝑛 < ∞and [113] for 𝑛 = ∞. 
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The following corollary characterizes the quasi-inner automorphisms. 

Corollary (3.1.25)[156]: For 𝛩 in 𝐴𝑢𝑡(𝔏𝑛), the following are equivalent: 

(i) 𝛩 belongs to 𝑘𝑒𝑟 𝜏 . 
(ii) 𝛩(𝐿𝑖) − 𝐿𝑖 belongs to 𝔢̅for 1 ≤ 𝑖 ≤ 𝑛. 

(iii) Θ(A) − A belongs to 𝔢̅ for every A in 𝔏n. 

Proof:If 𝛩 belongs to ker 𝜏 , then so does 𝛩−1; whence 

𝜑𝜆(𝛩(𝐿𝑖) − 𝐿𝑖  =  𝜏𝛩−1(𝜆) − 𝜆 
is zero for every𝜆in 𝔹n if and only if 𝛩(𝐿𝑖) − 𝐿𝑖 belongs to ⋂𝜆∈𝔹𝑛 𝑘𝑒𝑟 𝜑𝜆 for 1 ≤ 𝑖 ≤ 𝑛. 

But this set equals 𝔢 by Proposition (3.1.8). So (i) and (ii) are equivalent. 

Suppose that (ii) holds. As 𝔢 is an ideal, it readily follows that 𝛩(𝑝(𝐿)) − 𝑝(𝐿) belongs to 𝔢 for 

every polynomial in 𝐿. Then because 𝛩 is wotcontinuous and 𝔢 is -closed, this extends to the 

WOT-closure of these polynomials, which is all of 𝔏n. This establishes (iii). Clearly (iii) implies 

(ii). 

To complete the picture, we need to construct explicit automorphisms to demonstrate that the 

map τ is surjective. In fact, much more will be established. An explicit section of τ will be 

found that maps 𝐴𝑢𝑡(𝔹𝑛) onto the subgroup 𝐴𝑢𝑡𝑢(𝔏𝑛) of unitarily implemented 

automorphisms. This will establish that 𝐴𝑢𝑡(𝔏𝑛) actually has the structure of a semidirect 

product. 

A certain class of unitarily implemented automorphisms of 𝔏n are well known from quantum 

mechanics, and are called gauge automorphisms. Think of ℋn as being identified with the Fock 

space 𝐹(𝐻) with 𝑑𝑖𝑚𝐻 =  𝑛. For any unitary 𝑈 on 𝐻, form the unitary operator 

𝑈̃ =∑⊗𝑈⊗𝑘

𝑘≥0

 

which acts on Fock space by acting as the 𝑘-fold tensor product of 𝑈 on the 𝑘-fold tensor 

product of ℋ. It is evident that 

𝑈̃ℓ(𝜁) 𝑈̃∗ = ℓ(𝑈𝜁) for 𝜁 ∈ ℋ: 
therefore 𝛩𝑈 = 𝐴𝑑 𝑈̃determines an automorphism of 𝔏n. If 𝑈 = [𝑢𝑖𝑗  ] is an 𝑛 × 𝑛 unitary 

matrix, this automorphism can also be seen to be given by 

𝛩𝑈(𝐿𝑗) =∑𝑢𝑖𝑗𝐿𝑖 

𝑛

𝑖=1

for 1 ≤ 𝑗 ≤ 𝑛. 

An easy calculation shows that 𝛩𝑈𝛩𝑉 = 𝛩𝑈𝑉; so this is a homomorphism of the unitary group 

𝑈𝑛 into the automorphism group 𝐴𝑢𝑡(𝔏𝑛). It follows from Lemma (3.1.27) below that 𝜏𝛩𝑈 =
𝑈̅, the coordinatewise conjugate of 𝑈.So τ maps the group of gauge automorphisms onto the 

unitary group. 

In [299], Voiculescu constructed a larger subgroup of automorphisms of the Cuntz-

Toeplitz algebra ℰ𝑛 which turn out to be the one we want. He starts with the group 

𝑈(1, 𝑛)consisting of those (𝑛 + 1) × (𝑛 + 1) matrices 𝑋 such that 𝑋∗𝐽𝑋 = 𝐽, where 𝐽 =

[
1 0
0 𝐼𝑛

]. One may compute that these matrices have the form 𝑋 = [
𝑥0 𝜂1

∗

𝜂2 𝑋1
] where the 

coefficients satisfy the (redundant) relations: 

(i) ‖𝜂1‖
2 = ‖𝜂2‖

2 = ‖𝑥0‖
2 − 1 
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(ii) 𝑋1𝜂1  =  𝑥0̅̅ ̅𝜂2 and 𝑋1
∗𝜂2 = 𝑥0𝜂1 

(iii) 𝑋1
∗𝑋1  =  𝐼𝑛  + 𝜂1𝜂1

∗ and 𝑋1𝑋1
∗  =  𝐼𝑛  +  𝜂2𝜂2. 

Let us write 𝐿𝜁 = ∑ 𝜁𝑖
𝑛
𝑖=1  𝐿𝑖 for 𝜁 ∈ ℂ𝑛. Voiculescu shows that there is a (unique) 

automorphism 𝛩𝑋 of  ℇn such that the restriction to the generators 

is given by 

𝛩𝑋(𝐿𝜁) = (𝑥0𝐼  𝐿𝜂2)
−1(𝐿𝑋1𝜁_  〈𝜁, 𝜂1〉𝐼): 

It is easy to verify that the kernel of this map consists of the scalar matrices 𝑥0𝐼𝑛+1 for x0 in 

the circle 𝕋. Moreover Voiculescu constructs a unitary operator 𝑈𝑋 by 

𝑈𝑋(𝐴𝜉1) = 𝛩𝑋(𝐴)(𝑥0𝐼  𝐿𝜂2)
−1𝜉1 for all 𝐴 ∈  𝔏𝑛 

so that 𝛩𝑋(𝐴) =  𝑈𝑋𝐴𝑈𝑋
∗  for 𝐴 in 𝔏n. 

It is apparent that the norm-closed (nonself-adjoint) algebra 𝔄n generated by 𝑓𝐿𝑖 ∶  1 ≤  𝑖 ≤ 𝑛 

is mapped into itself by this map. Since this is a group homomorphism, it maps 𝔄n onto itself. 

Then because 𝛩𝑋 is unitarily implemented, it is WOT-continuous and thus determines an 

automorphism of 𝔏n. We will provide discussion below to indicate another method of obtaining 

these automorphisms that fits into our framework some what better. 

There is also a natural map from 𝑈(1, 𝑛) onto 𝐴𝑢𝑡(𝔹𝑛) by fractional linear maps. This 

result must be well known. We do not have a reference, but the results of Phillips [211] on 

simplectic automorphisms of the ball of ℬ(𝐻) may be modified to apply to the ball of ℬ(ℋ;𝒦) 
for Hilbert spaces ℋand𝒦. Taking ℋ = ℂn and 𝒦 = ℂ yields our map. 

Lemma (3.1.27)[156]: For 𝑋 in 𝑈(1, 𝑛), define a map 𝜃𝑋: 𝔹𝑛 → ℂ
𝑛 by 

𝜃𝑋(𝜆) =
𝑋1𝜆 + 𝜂2
𝑥0  +  〈𝜆, 𝜂1〉

for 𝜆 ∈ 𝔹𝑛. 

Then 𝜃𝑋 belongs to 𝐴𝑢𝑡(𝔹𝑛) and the associated map 𝜃:𝑈(1, 𝑛)  →  𝐴𝑢𝑡(𝔹𝑛) is a surjective 

homomorphism with kernel equal to the scalars. 

Proof:First one computes using (i) and (ii) above: 

|𝑥0  + 〈𝜆, 𝜂1〉|
2 − ‖〈𝑋1 − 𝜆, 𝜂2〉‖

2

= |𝑥0|
2  + |〈𝜆, 𝜂1〉|

2 − ‖𝑋1𝜆‖
2 − ‖𝜂2‖

2  +  2 𝑅𝑒(〈𝜆, 𝑥0𝜂1〉 − 〈𝑋1𝜆, 𝜂2〉)
= (|𝑥0|

2 − ‖𝜂2‖
2) − (‖𝑋1𝜆‖

2 − |〈𝜆, 𝑥0𝜂1〉|
2) + 2 𝑅𝑒〈𝜆, 𝑥0𝜂1〉 − 〈𝑋1

∗𝜂2〉
=  1 − |𝜆|2. 

Thus this map carries 𝔹n onto itself, and so belongs to 𝐴𝑢𝑡(𝔹𝑛). 
A straightforward calculation shows that this map is a group homomorphism.Again the kernel 

of this map is the circle of scalar matrices in 𝑈(1, 𝑛). The unitary operator 𝑋 = [
1 0
 0 𝑈

] is sent 

to 𝑈. Now 𝜃𝑋(0) =  𝑥0
−1𝜂2 is an arbitrary point in the ball. Hence the range of 𝜃 is a transitive 

subgroup of 𝐴𝑢𝑡(𝔹𝑛) containing the unitary group. By Schwarz's lemma [256, 113], the range 

is the whole group of conformal automorphisms. 

To see the relationship between Θ and θ, we make the following computation. 

 

Lemma (3.1.27)[156]:𝜏(𝛩𝑋̅) = 𝜃(𝑋̅ ) for all 𝑋 in 𝑈(1, 𝑛). 

Proof: Compute for𝑋 = [
𝑥0 𝜂1

∗

𝜂2 𝑋1
] that 
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𝑋−1 = 𝐽𝑋∗𝐽 = [
𝑥̅0 −𝜂1

∗

−𝜂2 𝑋1
∗ ] . 

Therefore if eiform the standard basis for ℂn, then 

𝜏(𝛩𝑋)(𝜆) = [𝜑𝜆𝛩𝑋−1(𝐿𝑖]) = 𝜑𝜆 ((𝑥̅0𝐼 + 𝐿𝜂1)
−1
(𝐿𝑋1∗𝑒𝑖  +  〈𝑒𝑖 , 𝜂2〉))

= (𝑥̅0  +  〈𝜆, 𝜂̅1〉)
−1∑(〈𝜆, 𝐿𝑋1∗𝑒𝑖〉 + 〈𝑒𝑖 , 𝜂2〉)𝑒𝑖

𝑛

𝑖=1

= (𝑥̅0  +  〈𝜆, 𝜂̅1〉)
−1∑(〈𝑋̅1𝜆, 𝑒𝑖〉 + 〈𝜂2, 𝑒𝑖 , 〉)𝑒𝑖

𝑛

𝑖=1

= (𝑥̅0  +  〈𝜆, 𝜂̅1〉)
−1(𝑋̅1𝜆 + 𝜂̅2)

= 𝛩𝑋̅(𝜆): 
Theorem (3.1.28)[156]: The restriction of τ to the subgroup Autu(𝔏n) of unitarily 

implemented automorphisms is an isomorphism onto Aut(𝔹n). 
Proof: Define a map 𝒦:𝐴𝑢𝑡(𝔹𝑛) → 𝐴𝑢𝑡𝑢(𝔏𝑛) as follows: given αα in 𝐴𝑢𝑡(𝔹𝑛),pick 𝑋 ∈
𝑈(1, 𝑛) belonging to 𝜃−1(𝛼)and set 𝒦(α) =  Θ𝑋̅. This is a well defined monomorphism 

because 𝛩 and 𝜃 have the same kernel and complex conjugation is an automorphism of 

𝑈(1, 𝑛).By the previous lemma, it follows that τ𝒦 is the identity on 𝐴𝑢𝑡(𝔹𝑛). In particular, τ 
restricted to 𝐴𝑢𝑡𝑢(𝔏𝑛) is a surjective homomorphism. 

To prove that this map is injective, suppose that 𝛩 is a unitarily implemented automorphism 

such that 𝜏(𝛩) = 𝑖𝑑. A fortiori, Θ is contractive. 

But 𝛩(𝐿𝑖) = 𝐿𝑖 + 𝐶𝑖 where 𝐶𝑖 ∈ ℯ̅whence 

1 ≥ ‖𝛩‖2 ≥ (‖𝐿𝑖 + 𝐶𝑖)𝜉1‖
2 = 1 + ‖𝐶𝑖𝜉1‖

2. 
Consequently,𝐶𝑖𝜉1 = 0 which implies that 𝐶𝑖 = 0. Therefore 𝛩 = 𝐼𝑑 andour map is an 

isomorphism. 

We record an immediate consequence of the proof. 

Corollary (3.1.29)[156]: Every contractive automorphism of 𝔏n is unitarily implemented. In 

particular, it is completely isometric. 

It would be interesting to know if automorphisms of 𝔏n are automatically completely bounded. 

All the necessary parts for Theorem (3.1.19) have now been accumulated. The homomorphism 

τ is now known to be surjective, with kernel 𝑞 − 𝐼𝑛𝑛(𝔏𝑛) and a continuous section k onto 

𝐴𝑢𝑡(𝔏𝑛) as required. 

Notice that if 𝛩 is unitarily implemented, then 𝑆𝑖 = 𝛩
−1(𝐿𝑖) will be isometries with pairwise 

orthogonal ranges. They generate the ideal 

∑𝑆𝑖 𝔏𝑛

𝑛 

𝑖=1

= 𝛩−1(𝔏𝑛
0). 

This is a WOT-closed two-sided ideal of codimension one, and thus by Theorem (3.1.5) its 

range is a 𝔏n𝔎n invariant subspace of codimension one. The complement is a one-dimensional 

invariant subspace for 𝔏n
0 , and thus by Theorem (3.1.3) is spanned by νλ for some λ in 𝔹𝑛. It 

is easy to check that 𝜏𝛩(0) = 𝜆. 

Conversely, given λ, we can construct such isometries. By Theorem (3.1.3), the subspace 

{𝜈𝜆}⊥ is 𝔎n invariant and has an n-dimensional wandering space λ. Let ξi for 1 ≤ 𝑖 ≤ 𝑛 be 
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an orthonormal basis for Wλ. Then by [68], the operators Si  =  Lξi are isometries in 𝔏n with 

ranges summing to {𝜈𝜆}
⊥. We will sketch how to construct the automorphism _ which takes 𝐿𝑖 

to Si for 1 ≤ 𝑖 ≤ 𝑛. 

The first step is to show that 𝜈𝜆 is cyclic for the WOT-closed subalgebra 𝔄 generated by 

{𝑆1, … , 𝑆𝑛}. This is established by showing that 𝜁𝜔 =  (𝑆)𝜈𝜆, 𝜔 ∈  ℱ𝑛, is an orthonormal basis 

for ℋn. This immediately yields a unitary operator 𝑊 such that 𝑊𝐿𝑖𝑊
∗  =  𝑆𝑖 such that 𝐴𝑑𝑊 

is an endomorphism of 𝔏n. 

The second step is to show that 𝒴 = 𝔏n. Since it is contained in 𝔏n, we see that 𝜈0 = 𝜉1 

is an eigenvalue for 𝔄∗. Since 𝔄 is unitarily equivalent to 𝔏n, there is a non-zero μ such that 

𝑊𝜈𝜇 = 𝜉1. Apply the argument again to obtain a second unitary W′ so that A𝑑𝑊′𝑊(𝐿𝑖) = 𝑆𝑖 
′ =

𝐿𝜁𝐼′ where ζI
′ form an orthonormal basis for the wandering space of {𝜉1}

⊥. But then (when n <

 1) there is a unitary 𝑈 in 𝑈𝑛 such that 𝜁𝐼
′ = 𝑈𝑒𝑖 = 𝑈𝜉𝑧𝑖  . 

Unfortunately, this argument fails for 𝑛 = ∞. Consequently, it follows that 𝐴𝑑𝑊′𝑊 = 𝛩𝑈. 

Thus the two endomorphisms 𝐴𝑑𝑊 and 𝐴𝑑𝑊′ must have been automorphisms. 
Section (3.2) Cmmutative Banach Algebras of Teoplitz Operators  

Recall first that the C∗-algebras generated by Toeplitz operators which are commutative 

on each weighted Bergman space over the unit disk were completely classified in [262]. Under 

some technical assumption on “richness” of a class of generating symbols the result was as 

follows. A C∗-algebra generated by Toeplitz operators is commutative on each weighted 

Bergman space if and only if the corresponding symbols of Toeplitz operators are constant on 

cycles of a pencil hyperbolic geodesics on the unit disk, or if and only if the corresponding 

symbols of Toeplitz operators are invariant under the action a maximal commutative subgroup 

of the Möbius transformations of the unit disk. We note that the commutativity on each 

weighted Bergman space was crucial in the part “only if” of the above result. 

Generalizing this result to Toeplitz operators on the unit ball, it was proved in [245, 251] 

that, given a maximal commutative subgroup of biholomorphisms of the unit ball, the C∗- 
algebra generated by Toeplitz operators, whose symbols are invariant under the action of this 

subgroup, is commutative on each weighted Bergman space. The geometric description of 

corresponding symbols in terms of so-called Lagrangian foliations (which generalize the notion 

of a pencil of hyperbolic geodesics to multidimensional case) was also given. It turned out that 

for the unit ball of dimension n there are 𝑛 + 2 essentially different “model” commutative C∗-
algebras, all others are conjugated with one of them via biholomorphisms of the unit ball. It 

was firmly expected that the above algebras exhaust all possible algebras of Toeplitz operators 

on the unit ball which are commutative on each weighted Bergman space. 

We present here a quite unexpected result. There exist other Banach algebras generated 

by Toeplitz operators which are commutative on each weighted Bergman space. These algebras 

are non conjugated via biholomorphisms of the unit ball, non of them is a C∗-algebra, and for 

𝑛 =  1 all of them collapse to the C∗-algebra, which is generated by Toeplitz operators with 

radial symbols. 

Let 𝔹n be the unit ball in ℂn, that is, 

𝔹𝑛 = {𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ ℂ
𝑛: |𝑧|2 = |𝑧1|

2+. . . +|𝑧𝑛|
2 < 1}, 
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and let 𝕊n be the corresponding unit sphere, the boundary of the unit ball 𝔹𝑛. In what follows 

we will use the notation 𝜏(𝔹𝑚) for the base of the unit ball 𝔹𝑚, considered as a Reinhard 

domain, i.e., 

𝜏 (𝔹𝑚) = {(𝑟1, . . . , 𝑟𝑚) = (|𝑧1|, . . . , |𝑧𝑚|) ∶ 𝑟
2 = 𝑟1

2 + . . . + 𝑟𝑚
2 ∈ [0, 1)}. 

Given a multi-index 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑛) ∈ ℤ+
𝑛  we will use the standard notation, 

|𝛼|  =  𝛼1  +  𝛼2 + . . . + 𝛼𝑛, 
𝛼!  =  𝛼1!  𝛼2!  ··· 𝛼𝑛!, 
𝑧𝛼  =  𝑧1

𝛼1𝑧2
𝛼2 ··· 𝑧𝑛

𝛼𝑛. 
Two multi-indices α and β  are called orthogonal, 𝛼 ⊥ 𝛽, if 

𝛼. 𝛽 = 𝛼1𝛽1 + 𝛼2𝛽2+ . . . + 𝛼𝑛𝛽𝑛 = 0.                                              (4) 
Denote by d𝑉 = 𝑑𝑥1𝑑𝑦1. . . 𝑑𝑥𝑛𝑑𝑦𝑛, where 𝑧𝑙 =  𝑥𝑙 + 𝑖𝑦𝑙 , 𝑙 = 1, 2, . . . , 𝑛, the standard 

Lebesgue measure in ℂ𝑛; and let 𝑑𝑆 be the corresponding surface measure on 𝕊𝑛. We introduce 

the one-parameter family of weighted measures, 

 𝑑𝑣𝜆(𝑧) =
𝛤(𝑛 + 𝜆 + 1)

𝜋𝑛𝛤(𝜆 + 1)
(1 − |𝑧|2)𝜆 𝑑𝑉 (𝑧),   𝜆 > −1, 

which are probability ones in 𝔹𝑛; and recall two known equalities (see, for example, [150])                              

∫ 𝜉𝛼𝜉−𝛽
 

𝕊𝑛
𝑑𝑆(𝜁) =  𝛿𝛼,𝛽 ,

2𝜋𝑛𝛼!

(𝑛 –  1 + |𝛼|)!,
                                            (5) 

∫ 𝑧𝛼𝑧−𝛽
 

𝔹𝑛
𝑑𝑣𝜆(𝑧) =  𝛿𝛼,𝛽

𝛼! (𝑛 +  𝜆 +  1)

𝛤(𝑛 + |𝛼| +  𝜆 +  1).
                                (6) 

We introduce the weighted space 𝐿2(𝔹
𝑛, 𝑑𝑣𝜆) and its subspace, the weighted Bergman space 

𝐴𝜆
2 = 𝐴𝜆

2(𝔹𝑛), which consists of all functions analytic in 𝔹𝑛. The (orthogonal) Bergman 

projection 𝔹𝑛of 𝐿2(𝔹
𝑛, 𝑑𝑣𝜆)onto 𝐴𝜆

2(𝔹𝑛) is known to have the following integral form 

(𝐵𝜆𝜑)(𝑧)  = ∫
𝜑(𝜁) 𝑑𝑣𝜆(𝜁)

(1 −  𝑧 · 𝜁)̅𝑛+𝜁+1

 

𝔹𝑛
. 

Finally, given a function 𝑎(𝑧)  ∈ 𝐿∞(𝔹
n), the Toeplitz operator 𝑇𝑎 with symbol a acts on 

𝐴𝜆
2(𝔹𝑛)as follows 

𝑇𝑎: 𝜑 ∈ 𝐴𝜆
2(𝔹𝑛) → 𝐵𝜆(𝑎𝜑) ∈ 𝐴𝜆

2(𝔹𝑛). 
Let𝑘 = (𝑘1, . . . , 𝑘𝑚) be a tuple of positive integers whose sum is equal to 𝑛: 𝑘1+. . . +𝑘𝑚 = 𝑛. 

The length of such a tuple may obviously vary from 1, for 𝑘 = (𝑛),to n, for𝑘 = (1, . . . , 1). 
Given a tuple 𝑘 = (𝑘1, . . . , 𝑘𝑚), we rearrange the n coordinates of 𝑧 ∈ 𝔹𝑛 in𝑚 groups, each 

one of which has 𝑘𝑗  , 𝑗 = 1, . . . , 𝑚, entries and introduce the notation 

𝑧(1) = (𝑧1,1, . . . , 𝑧1,𝑘1), 𝑧(2) = (𝑧2,1, . . . , 𝑧2,𝑘2), . . . , 𝑧(𝑚) = (𝑧𝑚,1, . . . , 𝑧𝑚, 𝑘𝑚). 

We represent then each 𝑧(𝑗) = (𝑧𝑗,1, . . . , 𝑧𝑗 , 𝑘𝑗  ) ∈ 𝔹
𝑘𝑗 in the form 

𝑧(𝑗) = 𝑟𝑗𝜉(𝑗), where𝑟𝑗 = √|𝑧𝑗,1|
2 + . . . |𝑧𝑗 , 𝑘𝑗  |

2 and  𝜉(𝑗) ∈ 𝕊
𝑘𝑗  . 

Given a tuple 𝑘 = (𝑘1, . . . , 𝑘𝑚), a bounded measurable function 𝑎 =  𝑎(𝑧), 𝑧 ∈ 𝔹𝑛, will be 

called k-quasi-radial if it depends only on 𝑟1, . . . , 𝑟𝑚. 
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Varying 𝑘 we have a collection of the partially ordered by inclusion sets ℛk of 𝑘-quasiradial 

functions. The minimal among these sets is the set ℛ(𝑛) of radial functions and the maximal 

one is the set ℛ(1,...,1) of separately radial functions. 

There is some ambiguity in the above definition. Indeed given a tuple k there are many 

corresponding sets ℛk which differ by perturbation of coordinates. At the same time each 

perturbation of coordinates of z is a biholomorphism, say 𝑘, of the unit ball 𝔹n, which generates 

the unitary equivalence of the Toeplitz operators Ta and Ta∘k Thus it is sufficient, in fact, to 

consider only one of these perturbation different sets. 

To avoid all possible repetitions and ambiguities in what follows we will always assume first, 

that 𝑘1 ≤ 𝑘2 ≤ . . . ≤ 𝑘𝑚, and second, that 

𝑧1,1 = 𝑧1, 𝑧1,2 = 𝑧2, … ,  𝑧1, 𝑘1 = 𝑧𝑘1  , 𝑧2,1 = 𝑧𝑘1+1 , … , 𝑧2, 𝑘2 

= 𝑧𝑘1+𝑘2  , … , 𝑧𝑚, 𝑘𝑚 = 𝑧𝑛.                                                     (7) 

Given 𝑘 = (𝑘1, . . . , 𝑘𝑚)and any 𝑛-tuple 𝛼 = (𝛼1, . . . , 𝛼𝑛), we define 

α(1) = (α1, . . . , αk1), α(2) = (αk1+1, . . . , αk1+k2), . . . , α(m) = (αn−km+1, . . . , αn). 

as each set ℛkis a subset of the set ℛ(1,...,1) of separately radial functions, the Toeplitz operator 

𝑇𝑎 with symbol 𝑎 ∈ ℛ𝑘, by [245], is diagonal with respect to the standard monomial basis in 

𝒜𝜆
2(𝔹𝑛). The exact form of the corresponding spectral sequence gives the next lemma. 

Lemma (3.2.1)[193]: Given a 𝑘 −quasi-radial function 𝑎 = 𝑎(𝑟1, . . . , 𝑟𝑚), we have 

𝑇𝑎𝑧
𝛼 = 𝛾𝑎,𝑘,𝜆(𝛼) 𝑧

𝛼, 𝛼 ∈ ℤ+
𝑛 , 

Where 

𝛾𝑎,𝑘,𝜆(𝛼) =  𝛾𝑎,𝑘,𝜆(|𝛼(1)|, . . . , 𝛼(𝑚))

=
2𝑚 (𝑛 +  |_|  + _  +  1)

𝛤(𝜆 +  1)∏ (𝑘𝑗 −  1 + |𝛼(𝑗)|)
𝑚
𝑗=1 !

                                  

× ∫ 𝑎(𝑟1, . . . , 𝑟𝑚)

 

𝜏(𝔹𝑚)

(1 − |𝑟|2)𝜆∏𝑟
𝑗

2|𝛼(𝑗)|+2𝑘𝑗−1𝑗
𝑑𝑟𝑗

𝑚

𝑗=1

 

Proof: We calculate 

〈𝑇𝑎𝑧
𝛼 , 𝑧𝛼〉 = 〈𝑧𝛼 , 𝑧𝛼〉 =

𝛤(𝑛 +  𝜆 +  1)

𝜋𝑛 𝛤(𝜆 +  1)
× ∫ 𝑎(𝑟1, . . . , 𝑟𝑚)

 

𝔹𝑚
𝑧𝛼 , 𝑧−𝛼(1 − |𝑧|2)𝜆𝑑𝑉(𝑧). 

Changing the variables 𝑧(𝑗)  =  𝑟𝑗𝜉(𝑗), where 𝑟𝑗 ∈  [0, 1] and 𝜉(𝑗) ∈ 𝕊
𝑘𝑗  , 𝑗 =  1, . . . , 𝑚, we have 

〈𝑧𝛼 , 𝑧𝛼〉 =
𝛤(𝑛 +  𝜆 +  1)

𝜋𝑛 𝛤(𝜆 +  1)
∫ 𝑎(𝑟1, … , 𝑟𝑚)
 

𝔹𝑚
(1 − |𝑧|2)𝜆∏𝑟

𝑗

2|𝛼(𝑗)|+2𝑘𝑗−1𝑗𝑑𝑟𝑗

𝑚

𝑗=1

×∏∫ 𝜉
(𝑗)

𝛼(𝑗)𝜉
(𝑗)

−𝛼(𝑗)𝑑𝑆(𝜉(𝑗))
 

𝕊
𝑘𝑗

𝑚

𝑗=1

 

=
2𝑚(𝑛 +  |𝛼| +  𝛼 +  1)

𝛤(𝜆 +  1)∏ (𝑘𝑗 –  1 + |𝛼(𝑗)|)
𝑚
𝑗=1 !

∫ 𝑎(𝑟1, . . . , 𝑟𝑚)

 

𝜏(𝔹𝑚)

(1 − |𝑟|2)𝜆∏𝑟
𝑗

2|𝛼(𝑗)|+2𝑘𝑗−1𝑗
𝑑𝑟𝑗

𝑚

𝑗=1

 . 

Then the result follows by (11).  
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Given 𝑘 = (𝑘1, . . . , 𝑘𝑚) we use the representations 𝑧(𝑗) = 𝑟𝑗𝜉(𝑗), 𝑗 =  1, . . . , 𝑚,to define the 

vector 

𝜉 = (𝜉(1), 𝜉(2), … , 𝜉(𝑚)) ∈ 𝕊
𝑘1 × 𝕊𝑘2 × …× 𝕊𝑘𝑚 . 

we introduce now an extension of 𝑘 −quasi-radial functions, which may be called following 

[125, 129, 317] the quasi-homogeneous functions. A function 𝜑(𝑧) is called quasi-

homogeneous (or k −quasi-homogeneous) function if it has the form 

𝜑(𝑧) = 𝜑(𝑧(1), 𝑧(2), … , 𝑧(𝑚))  = 𝑎(𝑟1, 𝑟2, … , 𝑟𝑚)𝜉
𝑠  =  𝑎(𝑟1, 𝑟2, … , 𝑟𝑚)𝜉(2)

𝑠(1)𝜉
(2)

𝑠(2)…𝜉
(𝑚)

𝑠(𝑚)
 , 

where a(𝑟1, 𝑟2, . . . , 𝑟𝑚) ∈ ℛ𝑘and 𝑠 ∈ ℤ𝑛. 

After separating positive and negative entries in s, it admits the unique representation 𝑠 = 𝑝 −
𝑞, where 𝑝, 𝑞 ∈ ℤ+

𝑛and 𝑝 ⊥ 𝑞. Then 𝜉𝑠, for s ∈ ℤn, is always understood as 

ξs = ξpξ−q, 
where 𝑠 = 𝑝 − 𝑞, with p, q ∈ ℤ+

n  and 𝑝 ⊥ 𝑞. We will call the pair (p, q) the quasi-

homogeneous degree of the 𝑘-quasi-homogeneous function 𝑎(𝑟1, 𝑟2, . . . , 𝑟𝑚)𝜉
𝑝𝜉−𝑞. 

Lemma (3.2.2)[193]: The Toeplitz operator 𝑇𝑎𝜉
𝑝𝜉−𝑞with k-quasi-homogeneous symbol 

𝑎𝜉𝑝𝜉−𝑞acts on monomials 𝑧𝛼 , 𝛼 ∈ ℤ+
𝑛  as follows 

𝑇𝑎𝜉𝑝𝜉−𝑞𝑧
𝛼 = {

0                                   𝑖𝑓 ∃ 𝑙 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛼𝑙 < 𝑞𝑙 − 𝑝𝑙
𝛾̃𝑎,𝑘,𝑝,𝑞,𝜆(𝛼)𝑧

𝛼+𝑝−𝑞 ,                 𝑖𝑓 ∀ 𝑙 𝛼𝑙 ≥ 𝑞𝑙 − 𝑝𝑙 ,
 

where 

𝛾̃𝑎,𝑘,𝑝,𝑞,𝜆(𝛼) =
2𝑚 (𝑛 + |𝛼|  + 𝛼 +  1)

𝛤(𝜆 +  1)∏ (𝑘𝑗 −  1 + |𝛼(𝑗)|)(𝛼 + 𝑝 − 𝑞)
𝑚
𝑗=1 !

 

× ∫ 𝑎(𝑟1, . . . , 𝑟𝑚)

 

𝜏(𝔹𝑚)

(1 − |𝑟|2)𝜆∏𝑟
𝑗

2|𝛼(𝑗)+𝑝(𝑗)−𝑞(𝑗)|+2𝑘𝑗−1𝑑𝑟𝑗

𝑚

𝑗=1

 (8) 

Proof: For each two multi-indices 𝛼, 𝛽 ∈ ℤ+
𝑛 , we calculate 

〈𝑇𝑎𝜉𝑝𝜉̅𝑞𝑧
𝛼 , 𝑧𝛽〉 = 〈𝛼𝜉𝑝𝜉̅𝑞𝑧𝛼 , 𝑧𝛽〉

=
𝛤(𝑛 +  𝜆 +  1)

𝜋𝑛 𝛤(𝜆 +  1)
∫ 𝑎(𝑟1, . . . , 𝑟𝑚)
𝔹𝑛

𝜉𝑝𝜉̅𝑞𝑧𝛼, 𝑧̅𝛽(1 − |𝑧|2)𝜆𝑑𝑉(𝑧). 

Changing the variables 𝑧(𝑗) = 𝑟𝑗𝜉(𝑗), where 𝑟𝑗 ∈ [0, 1) and 𝜉(𝑗) ∈ 𝕊
𝑘𝑗  , 𝑗 =  1,… ,𝑚 we have  

〈𝜉𝑝𝜉̅𝑞𝑧𝛼 , 𝑧𝛽〉  

=
𝛤(𝑛 +  𝜆 +  1)

𝜋𝑛 𝛤(𝜆 +  1)
× ∫ 𝑎(𝑟1, . . . , 𝑟𝑚)

 

𝔹𝑛
(1 − |𝑟|2)𝜆∏𝑟

𝑗

2|𝛼(𝑗)+𝑝(𝑗)−𝑞(𝑗)|+2𝑘𝑗−1𝑑𝑟𝑗

𝑚

𝑗=1

×∏∫ 𝜉
(𝑗)

𝛼(𝑗)+𝑝(𝑗)𝜉̅
(𝑗)

𝛽(𝑗)+𝑝(𝑗)𝑑𝑆(𝜉(𝑗))
 

𝕊
𝑘𝑗

𝑚

𝑗=1
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= 𝛿𝛼+𝑝,𝛽+𝑞
2𝑚 (𝑛 + |𝛼| +  𝛼 +  𝑝)

𝛤(𝜆 +  1)∏ (𝑘𝑗 −  1 + |𝛼(𝑗)+𝑝(𝑗)|)
𝑚
𝑗=1 !

× ∫ 𝑎(𝑟1, … , 𝑟𝑚)

 

𝜏(𝔹𝑚)

(1 − |𝑟|2)𝜆∏𝑟
𝑗

|𝜆(𝑗)+𝛽(𝑗)|+2𝑘𝑗−1𝑑𝑟𝑗

𝑚

𝑗=1

 

 

The last integral is non zero if and only if 𝛼 + 𝑝 = 𝛽 + 𝑞 and 𝛼𝑙 + 𝑝𝑙 − 𝑞𝑙 ≥ 0, for each 𝑙 =
1, 2, . . . , 𝑛. Now for β = α +  p − q, with 𝛼𝑙 + pl − ql ≥ 0, for each 𝑙 = 1, 2, . . . , 𝑛, we have 

by (11), 

 

〈𝑧𝛽, 𝑧𝛽〉 = 〈𝑧𝛼+𝑝−𝑔, 𝑧𝛼+𝑝−𝑔〉  =
(𝛼 +  𝑝 −  𝑞)! 𝛤(𝑛 +  𝜆 +  1)

𝛤(𝑛 + |𝛼 +  𝑝 −  𝑞|  + 𝜆 +  1)
 , 

 

and the result follows. 

A particular case of the next theorem when 𝑘 = (𝑛) and 𝜆 =  0 was proved in [317]. 

Theorem (3.2.3)[193]: Let 𝑘 = (𝑘1, 𝑘2, . . . , 𝑘𝑚) and 𝑝, 𝑞 be a pair of orthogonal multi-indices. 

Then for each pair of non identically zero k-quasi-radial functions 𝑎1 and 𝑎2, the Toeplitz 

operators 𝑇𝑎1 and 𝑇𝑎2𝜉𝑝𝜉−𝑞 commute on each weighted Bergman space 𝒜𝜆
2(𝔹𝑛) if and only 

if |𝑝(𝑗)| = |𝑞(𝑗)| for each 𝑗 = 1, 2, . . . , 𝑚. 

Proof: For those multi-indices α with αl + pl − ql ≥ 0, for each 𝑙 =  1, 2, . . . , 𝑛, by 

Lemmas(3.2.1) and (3.2.2) we have 

 

 

𝑇𝑎2𝜉𝑝𝜉̅𝑞𝑇𝛼𝑙𝑧
𝛼

=
2𝑚(𝑛 +  |𝛼 + 𝑝 + 𝑞| + 𝜆 +  1)(𝛼 + 𝑝)!

𝛤(𝜆 +  1)∏ (𝑘𝑗 −  1 + |𝛼(𝑗)| + 𝑝(𝑗))! (𝛼 + 𝑝 − 𝑞)
𝑚
𝑗=1 !

× ∫ 𝑎2(𝑟1, … , 𝑟𝑚)

 

𝜏(𝔹𝑚)

(1 − |𝑟|2)𝜆∏𝑟
𝑗

|2𝛼(𝑗)+𝑝(𝑗)+𝑞(𝑗)|+2𝑘𝑗−1𝑑𝑟𝑗

𝑚

𝑗=1

×
2𝑚 (𝑛 + |𝛼|  +  𝜆 +  1)

𝛤(𝜆 +  1)∏ (𝑘𝑗 −  1 + |𝛼(𝑗)|)
𝑚
𝑗=1 !

× ∫ 𝑎2(𝑟1, … , 𝑟𝑚)

 

𝜏(𝔹𝑚)

(1 − |𝑟|2)𝜆∏𝑟
𝑗

2|𝛼(𝑗)|+2𝑘𝑗−1𝑑𝑟𝑗

𝑚

𝑗=1

𝑧𝛼+𝑝−𝑞 

and  
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𝑇𝑎1𝑇𝑎2𝜉
𝑝𝜉̅𝑞

 
𝑧𝛼

=
2𝑚 (𝑛 + |𝛼|  +  𝜆 +  1)

𝛤(𝜆 +  1)∏ (𝑘𝑗 −  1 + |𝛼(𝑗)|)
𝑚
𝑗=1 !

× ∫ 𝑎1(𝑟1, … , 𝑟𝑚)

 

𝜏(𝔹𝑚)

(1 − |𝑟|2)𝜆∏𝑟
𝑗

2|𝛼(𝑗)𝑝(𝑗)+𝑞(𝑗)|+2𝑘𝑗−1𝑑𝑟𝑗

𝑚

𝑗=1

×
2𝑚 𝛤(𝑛 + |𝛼 + 𝑝 − 𝑞| +  𝜆 +  1)(𝛼 + 𝑝)!

𝛤(𝜆 +  1)∏ (𝑘𝑗 −  1 + |𝛼(𝑗)𝑝(𝑗) + 𝑞(𝑗)|)
𝑚
𝑗=1 (𝛼 + 𝑝 − 𝑞)!

× ∫ 𝑎1(𝑟1, … , 𝑟𝑚)

 

𝜏(𝔹𝑚)

(1 − |𝑟|2)𝜆∏𝑟
𝑗

2|𝛼(𝑗)𝑝(𝑗)+𝑞(𝑗)|+2𝑘𝑗−1𝑑𝑟𝑗

𝑚

𝑗=1

𝑧𝛼+𝑝−𝑞 

 

That is 𝑇𝑎2𝑇𝑎1𝜉𝑝𝜉̅𝑞𝑧
𝛼 = 𝑇𝑎1𝑇𝑎2𝜉𝑝𝜉̅𝑞𝑧

𝛼if and only if |p(j)| = |q(j)| for each 𝑗 = 1, 2, . . . , 𝑚 

 

We note that under the condition 𝑝(𝑗)|  =  |𝑞(𝑗)| , for each 𝑗 =  1, 2, . . . , 𝑚, formula (13) reads 

as 

𝛾̃𝑎,𝑘,𝑝,𝑞,𝜆(𝛼) =
2𝑚 (𝑛 + |𝛼|  + 𝛼 +  1)

𝛤(𝜆 +  1)∏ (𝑘𝑗 −  1 + |𝛼(𝑗)+𝑝(𝑗)|)! (𝛼 + 𝑝 − 𝑞)
𝑚
𝑗=1 !

× ∫ 𝑎(𝑟1, … , 𝑟𝑚)

 

𝜏(𝔹𝑚)

(1 – |𝑟|2)𝜆∏𝑟
𝑗

2|𝛼(𝑗)|+2𝑘𝑗−1𝑑𝑟𝑗

𝑚

𝑗=1

.

=
∏ (𝑘𝑗 −  1 +  |𝛼(𝑗)|)! (𝛼 + 𝑝)!
𝑚
𝑗=1

∏ (𝑘𝑗 −  1 + |𝛼(𝑗)+𝑝(𝑗)|)! (𝛼 + 𝑝 − 𝑞)
𝑚
𝑗=1

𝛾𝛼,𝑘𝜆(𝛼) 

=∏ [
(𝑘𝑗 −  1 + |𝛼(𝑗)|)!

(𝑘𝑗 −  1 + |𝛼(𝑗)+𝑝(𝑗)|)!

(𝛼(𝑗)+𝑝(𝑗))!

(𝛼(𝑗)+𝑝(𝑗) − 𝑞(𝑗))!
] 𝛾𝛼,𝑘𝜆(𝛼)

𝑚

𝑗=1
 (9) 

As surprising corollaries we have: 

Corollary (3.2.4)[193]:Given 𝑘 = (𝑘1, 𝑘2, . . . , 𝑘𝑚), for each pair of orthogonal multi-indices 

p and q with |𝑝(𝑗)| = |𝑞(𝑗)|, for all 𝑗 = 1, 2, . . . , 𝑚, and each 𝑎(𝑟1, 𝑟2, . . . , 𝑟𝑚) ∈ ℛ𝑘, we have 

𝑇𝑎𝑇𝜉𝑝𝜉̅𝑞  =  𝑇𝜉𝑝𝜉̅𝑞𝑇𝑎 = 𝑇𝑎𝜉𝑝𝜉̅𝑞 . 

Given𝑘 = (𝑘1, 𝑘2, . . . , 𝑘𝑚),  and a pair of orthogonal multi-indices p and q with |𝑝(𝑗)| = |𝑞(𝑗)|,, 

for all 𝑗 = 1, 2, . . . , 𝑚, let 

𝑝̃(𝑗) = (0, . . . , 0, 𝑝(𝑗), 0, . . . , 0) and 𝑞̃(𝑗) = (0, . . . , 0, 𝑞(𝑗), 0, . . . , 0). 

Then, of course, 𝑝 = 𝑝̃(1) + 𝑝̃(2) + . . . + 𝑝̃(𝑚) and 𝑞 = 𝑝̃(1) + 𝑞̃(2)+ . . . + 𝑞̃(𝑚).  

For each j =  1, 2, . . . , m, we introduce the Toeplitz operator 𝑇𝑗  =  𝑇𝜉𝑝̃(𝑗)𝜉̅𝑝̃(𝑗)  . 

Corollary (3.2.5)[193]:The operators 𝑇𝑗 , 𝑗 =  1, 2, . . . , 𝑚, mutually commute.Given an ℎ-

tuple of indices (𝑗1, 𝑗2, . . . ,  𝑗ℎ), where 2 ≤  ℎ ≤  𝑚, let 

𝑝̃ℎ = 𝑝̃(𝑗1) + 𝑝̃(𝑗2)+ . . . + 𝑝̃( 𝑗ℎ) and𝑞̃ℎ = q̃(j1) + q̃(j2)+ . . . +q̃( jh). 
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Then 

∏𝑇𝑖𝑔 = 𝑇𝜉𝑝̅ℎ𝜉̅𝑔̅ℎ

ℎ

𝑔=1

 

In particular, 

∏𝑇𝑖

𝑚

𝑗=1

= 𝑇𝜉𝑝𝜉̅𝑞 . 

Given 𝑘 = (𝑘1, 𝑘2, . . . , 𝑘𝑚), we consider any two bounded measurable 𝑘 −quasi- 

homogeneous symbols 𝑎(𝑟1, 𝑟2, . . . , 𝑟𝑚)𝜉
𝑝𝜉̅𝑞 and 𝑏(𝑟1, 𝑟2, . . . , 𝑟𝑚)𝜉

𝑢𝜉̅𝑣, which satisfy the 

conditions of Theorem (3.2.4) , i.e., 𝑎(𝑟1, 𝑟2, . . . , 𝑟𝑚) and 𝑏(𝑟1, 𝑟2, . . . , 𝑟𝑚)are arbitrary k-quasi-

radial functions, 𝑝 ⊥ 𝑞, 𝑢 ⊥ 𝑣, and|𝑝(𝑗)| = |𝑞(𝑗)| and |𝑢(𝑗)| = |𝑣(𝑗)|, for all 𝑗 = 1, 2, . . . , 𝑚. 

Theorem (3.2.6)[193]:Let (𝑟1, 𝑟2, . . . , 𝑟𝑚)𝜉
𝑝𝜉̅𝑞and 𝑏(𝑟1, 𝑟2, . . . , 𝑟𝑚)𝜉

𝑢𝜉̅𝑣, be as above. Then the 

Toeplitz operators 𝑇𝑎𝜉𝑝𝜉̅𝑞 and 𝑇𝑏𝜉𝑢𝜉̅𝑣, commute on each weighted Bergman space 𝒜𝜆
2(𝔹𝑛) if 

and only if for each 𝑙 = 1, 2, . . . , 𝑛 one of the next conditions is fulfilled 

(i) 𝑝𝑙 = 𝑞𝑙 = 0; 
(ii) 𝑢𝑙 = 𝑣𝑙 = 0;  
(iii) 𝑝𝑙 = 𝑢𝑙 = 0; 
(iv) 𝑞𝑙 = 𝑣𝑙 = 0. 

 
Proof: We calculate and compare first 𝑇𝑎𝜉𝑝𝜉̅𝑞𝑇𝑏𝜉𝑢𝜉̅𝑣𝑧

𝛼 and 𝑇𝑏𝜉𝑢𝜉̅𝑣 𝑇𝑎𝜉𝑝𝜉̅𝑞𝑧
𝛼 for those 

multindices α when both these expressions are non zero.By (8) we have 

𝑇𝑎𝜉𝑝𝜉̅𝑞𝑇𝑏𝜉𝑢𝜉̅𝑣,

=
2𝑚𝛤(𝑛 + |𝛼| + 𝜆 +  1)(𝛼 + 𝑢 − 𝑣 + 𝑝)!

𝛤(𝜆 +  1)∏ (𝑘𝑗–  1 + |𝛼(𝑗)+𝑝(𝑗)|)! (𝛼 + 𝑢 − 𝑣 + 𝑝 − 𝑞)
𝑚
𝑗=1 !

× ∫ 𝑎(𝑟1, … , 𝑟𝑚)

 

𝜏(𝔹𝑚)

(1 − |𝑟|2)𝜆∏𝑟
𝑗

2|𝛼(𝑗)|+2𝑘𝑗−1𝑑𝑟𝑗

𝑚

𝑗=1

×
2𝑚𝛤(𝑛 + |𝛼| + 𝜆 +  1)(𝛼 + 𝑢)!

𝛤(𝜆 +  1)∏ (𝑘𝑗–  1 + |𝛼(𝑗)+𝑢(𝑗)|)! (𝛼 + 𝑢 − 𝑣)
𝑚
𝑗=1 !

× ∫ 𝑏(𝑟1, … , 𝑟𝑚)

 

𝜏(𝔹𝑚)

(1 – |𝑟|2)𝜆∏𝑟
𝑗

2|𝛼(𝑗)|+2𝑘𝑗−1𝑑𝑟𝑗

𝑚

𝑗=1

𝑧𝛼+𝑢−𝑣+𝑝−𝑞 

and  
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𝑇𝑏𝜉𝑢𝜉̅𝑣,𝑇𝑎𝜉𝑝𝜉̅𝑞𝑧
𝛼

=
2𝑚𝛤(𝑛 + |𝛼| + 𝜆 +  1)(𝛼 + 𝑢 − 𝑣 + 𝑝)!

𝛤(𝜆 +  1)∏ (𝑘𝑗–  1 + |𝛼(𝑗)+𝑢(𝑗)|)! (𝛼 + 𝑝 − 𝑞 + 𝑢 − 𝑣)
𝑚
𝑗=1 !

× ∫ 𝑏(𝑟1, … , 𝑟𝑚)

 

𝜏(𝔹𝑚)

(1 − |𝑟|2)𝜆∏𝑟
𝑗

2|𝛼(𝑗)|+2𝑘𝑗−1𝑑𝑟𝑗

𝑚

𝑗=1

×
2𝑚𝛤(𝑛 + |𝛼| + 𝜆 +  1)(𝛼 + 𝑝)!

𝛤(𝜆 +  1)∏ (𝑘𝑗–  1 + |𝛼(𝑗)+𝑝(𝑗)|)! (𝛼 + 𝑝 − 𝑞)
𝑚
𝑗=1 !

× ∫ 𝑏(𝑟1, … , 𝑟𝑚)

 

𝜏(𝔹𝑚)

(1 – |𝑟|2)𝜆∏𝑟
𝑗

2|𝛼(𝑗)|+2𝑘𝑗−1𝑑𝑟𝑗

𝑚

𝑗=1

𝑧𝛼+𝑢−𝑣+𝑝−𝑞 

That is 𝑇𝑎𝜉𝑝𝜉̅𝑞𝑇𝑏𝜉𝑢𝜉̅𝑣, = 𝑇𝑏𝜉𝑢𝜉̅𝑣,𝑇𝑎𝜉𝑝𝜉̅𝑞𝑧
𝛼 if and only if  

(𝛼 + 𝑢 − 𝑣 + 𝑝)! (𝛼 + 𝑢)!

(𝛼 + 𝑢 − 𝑣)!
=
(𝛼 + 𝑝 − 𝑞 + 𝑢)! (𝛼 + 𝑝)!

(𝛼 + 𝑝 − 𝑞)!
 

 
Varying α it is easy to see that the last equality holds if and only if for each 𝑙 =  1, 2, . . . , 𝑛 one 

of the next conditions is fulfilled 

(i) 𝑝𝑙  =  𝑞𝑙 =  0; 
(ii) 𝑢𝑙  =  𝑣𝑙  =  0; 
(iii) 𝑝𝑙 = 𝑢𝑙 =  0; 
(iv) 𝑞𝑙  =   𝑣𝑙  =  0. 

To finish the proof we mention that under either of the above conditions both quantities 

Taξp𝜉̅𝑞Tbξuξ̅𝑣z
αand 𝑇𝑏𝜉𝑢𝜉̅𝑣𝑇𝑎𝜉𝑝𝜉̅𝑞𝑧

𝛼 are zero or non zero simultaneously only.  

Example (3.2.7)[193]:Let 𝑛 =  7 and k =  (2, 5). Then by Theorem (3.2.4) the Toeplitz 

operators with symbols 𝑎(𝑟1, 𝑟2)  ∈ ℛ𝑘 and 𝑏 𝜉𝑝𝜉̅𝑞, where 𝑏(𝑟1, 𝑟2)  ∈ ℛ𝑘, 𝑝 =
 (1, 0, 0, 3, 0, 1, 0), 𝑞 = (0, 1, 1, 0, 1, 0, 2), commute. We mention that here  

𝑝(1) = (1, 0), 𝑝(2) = (0, 3, 0, 1, 0) and 𝑞(1) = (0, 1), 𝑞(2) = (1, 0, 1, 0, 2). 
As easy to see, all pairs (𝑢, 𝑣) of orthogonal multi-indices such that (by Theorem (3.2.8)) the 

Toeplitz operators with k-quasi-homogeneous symbols having that quasi-homogeneous 

degrees mutually commute, and commute with both Ta and Tbξp𝜉̅𝑞 are of the form 

𝑢 = (𝑢1, 0, 0, 𝑢4, 0, 𝑢6, 0), 𝑣 = (0, 𝑣2, 𝑣3, 0, 𝑣5, 0, 𝑣7),                  (10) 

where 𝑢1, 𝑢4, 𝑢6 ∈ ℤ+, 𝑣2, 𝑣3, 𝑣5, 𝑣7 ∈ ℤ+, and 

𝑢1 = 𝑣2, 𝑢4 + 𝑢6 = 𝑣3 + 𝑣5 + 𝑣7.                                      (11) 

that is, the Banach algebra generated by all Toeplitz operators𝑇𝑎𝜉𝑢𝜉−𝑣, where 𝑎(𝑟1, 𝑟2) ∈ ℛ𝑘, 

and the orhogonal multi-indices 𝑢 and 𝑣 of the form (10) satisfy the condition (11), is 

commutative. 

We formalize the above example as follows. First, to avoid the repetition of the unitary 

equivalent algebras and to simplify the classification of the (non unitary equivalent) algebras, 

in addition to (7), we can rearrange the variables zl and correspondingly the components of 

multi-indices in p and q so that 
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(i) for each 𝑗 with 𝑘𝑗 > 1, we have 

𝑝(𝑗) = (𝑝𝑗,1, … , 𝑝𝑗,ℎ𝑗  , 0, … , 0) and 𝑞(𝑗) = (0,… , 0, 𝑞𝑗,ℎ𝑗+1, … , 𝑞𝑗,𝑘𝑗) ;          (12) 

(ii) if 𝑘𝑗′ = 𝑘𝑗′′ with𝑗′ < 𝑗′′, then ℎ𝑗′ ≤ ℎ𝑗′′. 

Now, given 𝑘 = (𝑘1, . . . , 𝑘𝑚), we start with 𝑚-tuple ℎ = (ℎ1, . . . , ℎ𝑚), where ℎ𝑗 =  0 if kj = 1 

and 1 ≤ ℎ𝑗 ≤ 𝑘𝑗 − 1 if kj ≥ 1; in the last case, if 𝑘𝑗′ = 𝑘𝑗′′ with 𝑗′ < 𝑗′′, then ℎ𝑗′ ≤ ℎ𝑗′′. . 

We denote by ℛ𝑘(ℎ) the linear space generated by all k-quasi-homogeneous functions 

𝑎(𝑟1, 𝑟2, . . . , 𝑟𝑚) 𝜉
𝑝𝜉−𝑞 , 

where 𝑎(𝑟1, 𝑟2, . . . , 𝑟𝑚) ∈ ℛ𝑘, and the components 𝑝(𝑗) and 𝑞(𝑗), 𝑗 =  1, 2, . . . , 𝑚, of multi-

indices p and q are of the form (12) with 

𝑝𝑗,1+ . . . + 𝑝𝑗,ℎ𝑗 = 𝑞𝑗,ℎ𝑗+1+ . . . + 𝑞𝑗,𝑘𝑗  , 𝑝𝑗,1, . . . , 𝑝𝑗,ℎ𝑗  , 𝑞𝑗,ℎ𝑗+1 + 1, . . . , 𝑞𝑗,𝑘𝑗 ∈ ℤ+. 

We note that ℛk ⊂ ℛk(h) and that the identity function e(z) ≡ 1 belongstoℛ𝑘(ℎ). 
We have the following  result. 

Corollary (3.2.8)[193]:The Banach algebra generated by Toeplitz operators with symbols 

from ℛ𝑘(ℎ)is commutative. 

We would like to emphasize the following features of such algebras: 

(i) For different 𝑘 and ℎ these algebras are not conjugated via biholomorphisms of the unit ball; 

(ii)  These algebras are just Banach and not C∗-algebras; extending them to  C∗-algebras they 

become non commutative; 

(iii)  Given 𝑘 ≠ (1, 1, . . . , 1), there is a finite number of different m-tuples ℎ and thus a finite 

number of different corresponding commutative algebras; 

(iv) These algebras remain commutative for each weighted Bergman space 𝒜𝜆
2(𝔹𝑛), with 𝜆 >

−1, 

(v) For 𝑛 = 1 all of them collapse to the single C∗-algebra generated by Toeplitz operators with 

radial symbols. 

We finish presenting another application of Theorems (3.2.4) and(3.2.8),Studying 

commutativity properties of Toeplitz operators on the Bergman space on the unit disk I. 

Louhichi and N. V. Rao [124] conjectured that if two Topelitz operators commute with a third 

one, none of them being the identity, then they commute with each other. 

As next example shows, this conjecture is wrong when formulated for Toeplitz operatorson the 

unit ball (𝔹n), with n >  1. 

Example (3.2.9)[193]:Given 𝑛 >  1, let 𝑘 =  (2, 1, . . . , 1). Consider the following three 

symbols 

𝑎0 = 𝑎(𝑟1, 𝑟2, … ,  𝑟𝑛−1), 𝑎1 = 𝑏(𝑟1, 𝑟2, … ,  𝑟𝑛−1)𝜉(1)
(1,0)

𝜉̅(1)
(0,1)

 , 

𝑎2 = 𝑐(𝑟1, 𝑟2, … ,  𝑟𝑛−1)𝜉(1)
(1,0)

𝜉̅(1)
(0,1)

 

where a, b, c ∈ ℛk. 

  Then by Theorem (3.2.3) 𝑇𝑎0 commutes with both 𝑇𝑎1 and 𝑇𝑎2, while by Theorem (3.2.6) the 

operators 𝑇𝑎1 and 𝑇𝑎2 do not commute. 
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Chapter 4 

Eigenvalue Inequalities and on the Eigenvalues of Normal Matrices 

Using techniques from algebraic topology we derive linear inequalities which relate the 

spectrum of a set of Hermitian matrices 𝐴1, . . . , 𝐴𝑟 ∈ ℂ
𝑛×𝑛 with the spectrum of the sum 𝐴1 +

· · · +𝐴𝑟. There results are a direct generalization of a theorem of Wielandt on the eigenvalues 

of the sum of two normal matrices. Characterizations of eigenvalues of normal matrices using 

the lexicographical order in ℂ are presented, with some applications. 

Section (4.1) Schubert Calculus 

Consider real 𝑛 × 𝑛 diagonal matrices 𝐷1, . . . , 𝐷𝑟with diagonal elements 𝜆1(𝐷1) ≥
𝜆2(𝐷1) ≥ . . . ≥ 𝜆𝑛(𝐷1), 𝑙 = 1, . . . , 𝑟. In this section we are concerned with geometric 

properties of the set of possible spectrums of the matrices  

{∑𝑈𝑙
∗

𝑟

𝑙=1

𝑈𝑙: 𝑈𝑙     are unitary}.                                                  (1) 

Equivalently we are interested in the following question: 

Given Hermitian matrices 𝐴1, . . . , 𝐴𝑟  2 ∈ ℂ
𝑛×𝑛 each with a fixed spectrum 𝜆1(𝐴𝑙) ≥

⋯𝜆𝑛(𝐴𝑙), 𝑗 = 1,… , 𝑟 and arbitrary else. Is it possible to find then linear inequalities which 

describe the possible spectrum of the matrix 𝐴1  + ···  + 𝐴𝑟? 

For 𝑟 = 1 this question is of course trivial. For 𝑟 = 2 the question is classical and very well 

studied (compare with [139, 10, 263, 34, 239, 237, 225, 108]).  

An early example of an eigenvalue inequality for a sum of two Hermitian matrices is that of 

Weyl [108,112,158,33,78]. A generalization of the Weyl inequalities to k −fold partial sums 

of eigenvalues of Hermitian matrices 𝐴, 𝐵 and 𝐴 + 𝐵 is due to Freede and Thompson [225]. 

Still more general is the class of eigenvalue inequalities described by Horn [10,32] for sums of 

two eigenvalues.  

We will present a systematic geometric approach to obtain such eigenvalue inequalities. 

Although our main results are in the case of two matrices, where 𝑟 = 2, the approach works 

equally well in the case of r-fold sums 𝐴1 +⋯+ 𝐴𝑟 of Hermitian matrices 𝐴1, … , 𝐴𝑟. Our 

interest in this problem originates in the observation by Thompson [239, 237] who indicates 

that most of the known inequalities for the case 𝑟 = 2 can be derived using methods from 

algebraic topology, i.e. by the Schubert calculus of complex Grassmann manifolds. As this 

topological approach is described only in a rudimentary form in [239, 237,35,132] we first 

present a rigorous development of the Schubert calculus technique towards eigenvalue 

inequalities. We then show that it is also possible to derive with the same method a large set of 

inequalities for the case 𝑟 > 2 as well. 

The algebraic topology approach to solving inverse eigenvalue problems is by no means 

limited to the task of finding eigenvalue inequalities for sums of Hermitian matrices. In fact, 

the technique has been already successfully applied to solve an outstanding inverse eigenvalue 

problem arising in control theory, i.e. the pole placement problem for multivariable linear 

systems by static output feedback. See. [248, 138]. 
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The minmax principles of Wielandt and Hersch-Zwahlen are reviewed, which 

characterize in geometric terms partial sums of eigenvalues of a Hermitian matrix. We review 

the relevant results from the Schubert calculus of Grassmann manifolds. We apply the 

technique and state the main results. We show how the inequalities of Weyl [108], [34] and 

Freede-Thompson [225] follow from the main theorem. In the last section we describe a large 

set of nonzero products in the cohomology ring 𝐻∗(𝐺𝑘ℂ
𝑛), 𝒵) of the Grassmann manifold, 

leading to a new class of inequalities for sums of eigenvalues of Hermitian matrices 𝐴1,···, 𝐴𝑟. 
Let 𝐴 ∈ ℂ𝑛×𝑛 be a complex Hermitian matrix with eigenvalues 

   𝜆1(𝐴)≥𝜆2(𝐴) ≥ . . . ≥ 𝜆𝑛(𝐴).                                                       (2) 

The classical Courant-Fischer minmax principle then asserts that (compare e.g. [222]):  

Theorem (4.1.1)[289]: For 1 ≤ 𝑖 ≤  𝑛: 

   𝜆1(𝐴) =  𝑚𝑎𝑥
𝑑𝑖𝑚𝑉=𝑖

𝑚𝑖𝑛
𝑥∈𝑉

𝑡𝑟(𝐴𝑥𝑥∗)                                          (3)                 

= 𝑚𝑎𝑥
𝑑𝑖𝑚𝑊=𝑛−𝑖+1

𝑚𝑖𝑛
𝑥∈𝑊
‖𝑥‖=1

𝑡𝑟(𝐴𝑥𝑥∗)                                (4) 

Amore general version of the minmax principle is due to Wielandt [109] and Hersch- Zwahlen 

[138] and characterizes partial sums of eigenvalues via flags of subspaces of ℂ𝑛. To state their 

result we first recall some basic notions and definitions from geometry: 

The complex projective space ℂℙn is defined as the set of all one-dimensional complex 

subspaces of ℂ𝑛+1, i.e. as the set of all complex lines passing through the origin 0 𝜖 ℂ𝑛+1. More 

generally, the complex Grassmann manifold 𝐺𝑘(ℂ
𝑛) is defined as the set of all k-dimensional 

complex linear subspaces of ℂ𝑛. In particular for 𝑘 =  1 one has the complex projective space 

𝐺1(ℂ
𝑛) = ℂℙ𝑛−1. The Grassmannian is a smooth, compact manifold of real dimension 

2𝑘(𝑛 −  𝑘). 
Equivalently, the Grassmannian 𝐺𝑘(ℂ

𝑛) may be defined as the set of all Hermitian projection 

operators 𝑃: ℂ𝑛 → ℂ𝑛 of rank 𝑘. A Hermitian projection operator of ℂ𝑛 is a Hermitian matrix 

𝑃 ∈ ℂ𝑛×𝑛satisfying 

                     𝑃∗ = 𝑃, 𝑃2 = 𝑃, and rank 𝑃 = 𝑘.                                                (5) 

For any k-dimensional complex linear subspace 𝐿 ⊂ ℂ𝑛 let 𝑃𝐿:  ℂ
𝑛 →  ℂ𝑛 be the uniquely 

determined projection operator satisfying 

                     𝑖𝑚(𝑃𝐿) = 𝐿, 𝑘𝑒𝑟(𝑃𝐿) = 𝐿
⊥,                                                           (6) 

where 𝐿⊥ denotes the orthogonal complement of 𝐿 in ℂ𝑛 with respect of the standard Hermitian 

inner product. Thus 𝑃𝐿 is the orthogonal projection of ℂ𝑛 onto 𝐿 along 𝐿⊥. If 𝑋 ∈ ℂ𝑛×𝑘 is any 

full rank matrix whose columns form a basis of 𝐿, then one has 

  𝑃𝐿 = 𝑋(𝑋
∗𝑋)−1𝑋∗                                               (7) 

Conversely, for any full rank matrix 𝑋 ∈ ℂ𝑛×𝑘, the operator defined by (7) is a rank 

𝑘 Hermitian projection operator on ℂ𝑛. Thus the map 𝐿⊥ → 𝑃𝐿 is a bijection of 𝐺𝑘(ℂ
𝑛) onto 

the set 

{𝑃 ∈ ℂ𝑛×𝑛: 𝑃 ∗ = 𝑃, 𝑃2 = 𝑃, 𝑎𝑛𝑑 𝑟𝑎𝑛𝑘𝑃 = 𝑘}. 
Given any 𝑘-dimensional linear subspace 𝐿 ⊂ ℂ𝑛 let 𝑃𝐿: ℂ

𝑛 → ℂ𝑛 denote the associated 

Hermitian projection operator. We then define 

𝑡𝑟(𝐴|𝐿 ): = 𝑡𝑟(𝑃𝐿𝐴𝑃𝐿) = 𝑡𝑟(𝐴𝑃𝐿)   = 𝑡𝑟(𝐴𝑋(𝑋
∗𝑋)−1𝑋∗),                             (8) 
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where 𝑋 ∈ 𝐶𝑛×𝑘 is any full rank matrix whose columns form a basis of 𝐿. Note that 𝑡𝑟(𝐴|𝐿 )) 
is the trace of a Hermitian operator and therefore a real number. 

Definition (4.1.2)[289]: The smooth map 

RA: Gk(ℂ
n) → ℝ 

L → 𝑡𝑟(𝐴|𝐿 )                                                               (9) 

is called the Rayleigh quotient of A on 𝐺𝑘(ℂ
𝑛). 

If 𝑘 = 1 the map 𝑅𝐴 coincides with the classical Rayleigh quotient 

𝑅𝐴(𝑥) =  
< 𝐴𝑥, 𝑥 >

< 𝑥, 𝑥 >
                                                                (10) 

The extremal principles for the partial sums of eigenvalues of a Hermitian matrix 𝐴 of 

Wielandt, Hersch-Zwahlen and Riddel are now stated as follows: 

Theorem (4.1.3)[289]: (Wielandt [19]) For 1 < 𝑖1 < . . . < 𝑖𝑘 <  𝑛: 

𝜆𝑖1(𝐴) + ⋯+ 𝜆𝑖𝑘(𝐴) = 𝑚𝑎𝑥
𝑉1⊂⋯⊂𝑉𝑘
𝑑𝑖𝑚𝑉𝑗=𝑖𝑗

𝑚𝑖𝑛
𝑉1∈𝐺𝑘(ℂ

𝑛)

𝑑𝑖𝑚(𝐿∩𝑉𝑗)≥𝑖𝑗

𝑡𝑟(𝐴|𝐿 )                                             (11) 

= min
dimWj=n−ij+1
dimWj=n−ij+1

max
L∈Gk(ℂ

n)

dim(L∩Vj)≥j

𝑡𝑟(𝐴|𝐿 )                                                 (12)  

In particular, for 𝑘 = 1, Theorem (4.1.3) specializes to the Courant-Fischer minmax principle 

as formulated in Theorem (4.1.1). 

Note that ,it can be shown (see [222]) that the maximal value of (11) is assumed at a “partial 

flag of eigenspaces”, i.e. at a flag (𝑉1, . . . , 𝑉𝑘) having the property that 

𝑑𝑖𝑚(𝑉𝑗) = 𝑖𝑗 and 𝑉𝑗 ⊂ 𝑘𝑒𝑟 (𝜆1𝐼 − 𝐴)⊕…⊕ 𝑘𝑒𝑟 (𝜆𝑖𝑗𝐼 − 𝐴),for 𝑗 = 1, . . , 𝑘 

We conclude  with the following result from Hersch-Zwahlen [138]: 

Theorem (4.1.4)[289]: Let 𝐴 be a Hermitian matrix with eigenvalues 𝜆1(𝐴)  ≥ . . . ≥  𝜆1(𝐴) 
and a corresponding orthogonal set of eigenvectors 𝑣1, . . . , 𝑣𝑛. Denote with 

𝑉𝑚 ≔ 𝑠𝑝𝑎𝑛 (𝑣1, . . . , 𝑣𝑛),𝑚 = 1,… , 𝑛.                                                 (13) 

Let 1 ≤ 𝑖1 < ⋯ < 𝑖𝑘 ≤ 𝑛 then one has: 

𝜆1(𝐴) +⋯+ 𝜆𝑖𝑘(𝐴) = 𝑚𝑖𝑛
𝐿∈𝐺𝐾(ℂ

𝑛)
{𝑡𝑟(𝐴|𝐿): 𝑑𝑖𝑚(𝐿 ∩ 𝑉) ≥ 𝑗, 𝑗 = 1,… , 𝑘}.    (14)                 

Thus the result of Hersch-Zwahlen just says that the sum of eigenvalues  𝜆1(𝐴) +⋯+ 𝜆𝑖𝑘(𝐴) 
is characterized as the minimal value of the trace function 𝑡𝑟(𝐴|𝐿)when evaluated on a Schubert 

subvariety of 𝐺𝑘(ℂ
𝑛). 

Consider again the Grassmann manifold 𝐺𝑘(ℂ
𝑛)consisting of k-dimensional linear subspaces 

of the vector space Cn. Using the Plücker embedding 𝐺𝑘(ℂ
𝑛)can be embedded into the 

projective space ℂ𝑛ℙ𝑁 of dimension 𝑁 =
𝑛!

𝑘!(𝑛−𝑘)!
− 1. Under this embedding 𝐺𝑘(ℂ

𝑛) is a 

projective variety described by a famous set of quadratic relations (see e.g. [203]). 

Definition (4.1.5)[289]: A flag ℱ is a sequence of nested subspaces 
{0} ⊂ 𝑉1 ⊂ 𝑉2 ⊂ ⋯ ⊂ 𝑉3 = ℂ

𝑛                                                (15) 

where we assume that dim 𝑉𝑖 = 𝑖 for 𝑖 =  1, . . . , 𝑛. 

Let 𝑖 = (𝑖1, . . . , 𝑖𝑘) denote a sequence of numbers having the property that 

𝑖 ≤ 𝑖1 ≤ . . . ≤  𝑖𝑘 ≤ 𝑛.                                                                       (16) 

Definition (4.1.6)[289]: For each flag ℱ and each multiindex i define 
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𝐶(𝑖;ℱ) ≔ {𝑊 ∈ 𝐺𝑘(ℂ
𝑛): 𝑑𝑖𝑚(𝑤 ∩ 𝑉𝑖𝑠) = 𝑠} 

is called a Schubert cell and 

𝑆(𝑖; ℱ) ≔ {𝑊 ∈ 𝐺𝑘(ℂ
𝑛): 𝑑𝑖𝑚(𝑤 ∩ 𝑉𝑖𝑠) = 𝑠} 

is called a Schubert variety. 

We emphasize that the Schubert cell 𝐶(𝑖;ℱ)is indeed a cell, i.e. isomorphic to theaffine space 

ℂ𝑁 where 𝑁:= ∑ 𝑖𝑗
𝑘
𝑗=1 − 𝑗 is the dimension of the cell 𝐶(𝑖;ℱ). (Compare with [203].) 

Moreover the Zariski closure of the cell 𝐶(𝑖; ℱ)is the variety 𝑆(𝑖; ℱ)which is a projective 

algebraic subvariety of 𝐺𝑘(ℂ
𝑛).  

The following results are well known and we refer e.g. to [309, 203]. 

Theorem (4.1.7)[289]: For every fixed flag ℱ the Schubert cells𝐶(𝑖;ℱ) decompose the 

Grassmann variety 𝐺𝑘(ℂ
𝑛)  into a finite cellular 𝐶𝑊–complex. The integral homology 

𝐻2𝑚(𝐺𝑘(ℂ
𝑛), 𝑍) has no torsion and is freely generated by the fundamental classes of the 

Schubert varieties 𝑆(𝑖; ℱ)of real dimension 2𝑚. 

Consider a fixed Schubert variety 𝑆(𝑖; ℱ)Its homology class is independent of the choice of 

the flag ℱ and therefore depends only on the numbers 𝑖1, . . . , 𝑖𝑘 . we will use the symbol 

(𝑖1, . . . , 𝑖𝑘) to denote this homology class. The Poincar´e-dual of the class (𝑖1, . . . , 𝑖𝑘) will be 

denoted by 

{𝜇1, . . . , 𝜇𝑘} ≔ {𝑛 − 𝑘 − 𝑖1 + 1, 𝑛 − 𝑘 − 𝑖2 + 2,… , 𝑛 − 𝑖𝑘} ∈ 𝐻
∗(𝐺𝑘(ℂ

𝑛), 𝑍)           (17) 
At this point we want to mention that our notation was already used by Schubert (compare with 

the book of Fulton [309,306,258]) and is slightly different to the one used in [203, 

103,46,173,30]. The cohomology ring 

𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍) ≔ ⨁ 𝐻2𝑚(𝐺𝑘(ℂ

𝑛), 𝑍) 

𝑘(𝑛−𝑘)

𝑚=0

                                               (18) 

has in a natural way the structure of a graded ring. From Poincar´e-duality and Theorem (4.1.8) 

it follows in particular that each graded component 𝐻2𝑚(𝐺𝑘(ℂ
𝑛), 𝑍) is a free 𝑍-module with 

basis the set of Schubert cocycles {𝜇1, . . . , 𝜇𝑘} where 𝑛 ≥  𝑘 ≥ 𝜇1  ≥ . . . ≥  𝜇𝑘 ≥  0and 

∑ 𝑖𝑗
𝑘
𝑗=1 = 𝑗 = 𝑚. 

Before we describe the multiplicative structure of this ring we formulate the following 

proposition which establishes the crucial link between geometric intersection properties of 

Schubert varieties and algebraic properties of the ring 𝐻∗(𝐶𝑘(𝐶
𝑛), 𝑍). A proof of this as well 

as more general theorems can be found e.g. in [308, 202]. 

Proposition (4.1.8)[289]:Consider 𝑟 Schubert varieties 𝑆(𝑖𝑙; ℱ𝑙), 𝑙 =  1, . . . , 𝑟. I 

∏{𝑛 − 𝑘 − 𝑖𝑗𝑙 + 1,… , 𝑛 − 𝑖𝑘𝑙} ≠ 0,

𝑟+1

𝑙=1

                                                 (19) 

then the intersection 

⋂𝑆(𝑖𝑙; ℱ𝑙) ≠ 0.

𝑟

𝑙=1

                                                                     (20) 
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The multiplicative structure of 𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍) is described by the classical formulas of Pieri 

and Giambelli. For this denote with 

𝜎𝑗 ≔ {𝑘, 0,… , … ,0},   𝑗 = 1,… , 𝑛 − 𝑘.                                                     (21) 

In fact σj is the j − th Chern class of the universal (classifying) bundle over Gk(ℂ
n). 

In the following we describe the formulas of Pieri and Giambelli. Giambelli’s formula 

expresses a general Schubert cocycle {𝜇1, . . . , 𝜇𝑘} as a polynomial in the special Schubert 

cocycle 𝜎𝑗 and Pieri’s formula expresses the product of a general Schubert cocycle with a 

special Schubert cocycle. Pieri’s formula: 

{𝜇1, … , 𝜇𝑘}. 𝜎𝑗 = ∑ {𝑉1, … , 𝑉𝑘}
𝜇𝑖−1≥𝑉𝑖≥𝜇𝑖

∑ 𝑉𝑖=(∑ 𝜇𝑖
𝑘
𝑖=1 )+𝑗𝑘

𝑖=1

                                     (22) 

Giambelli’s formula: 

{𝜇1, . . . , 𝜇𝑘} = 𝑑𝑒𝑡 (𝜎𝜇𝑖+𝑗−𝑖) = 𝑑𝑒𝑡

(

 

𝜎𝜇1 𝜎𝜇1+1
… 𝜎𝜇1+𝑘−1

𝜎𝜇2−1 𝜎𝜇2  ⋮

⋮
𝜎𝜇𝑘−𝑘+1

 
⋱
…

⋮
𝜎𝜇𝑘 )

                  (23) 

Note that Giambelli’s formula implies that the Chern classes σj generate the ring 

𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍).  

There is a deep relationship between the ring 𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍)and the ring of symmetric 

functions 𝑍[𝑥1, … , 𝑥𝑘]
𝑆𝑘 , where 𝑆𝑘 denotes the group of permutations, acting on 𝑘 letters. To 

explain this relationship we consider a special set of symmetric functions called Schur 

functions. (See e.g. [123, 247,]). For this let 𝜇:= (𝜇1, … , 𝜇𝑘) and define 

𝑠𝜇 ≔
𝑑𝑒𝑡[𝓍𝜇𝑗+𝑘−𝑗]

𝑑𝑒𝑡[𝓍𝑘−𝑗]
; 𝑖, 𝑗 = 1,… , 𝑘.                                             (24) 

Note that 𝑠𝜇 is the quotient of two alternating functions and therefore a symmetric function, 

called a Schur function. As explained in detail in [123,109,29] the set of Schur functions 

{𝑠𝜇: 𝜇1 ≥ 𝜇2 ≥ ⋯ ≥ 𝜇𝑘 > 0 𝑎𝑛𝑑 ∑𝜇𝑖 = 𝑞}                                               (25) 

is an additive basis of the space of symmetric functions of degree q. As explained in [103, 136, 

247] one has a ring epimorphism 

𝜓: 𝑍[𝑥1, . . . , 𝑥𝑘]
𝑆𝑘 → 𝐻∗(𝐺𝑘(ℂ

𝑛), 𝑍) 
𝑠𝜇 → {𝜇1, . . . , 𝜇𝑘}                                                                     (26) 

The kernel of this map has as an additive basis the set of Schur functions sμ with sμ > 𝑛 − 𝑘. 

Using this epimorphism any calculation in the ring 𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍) can be formally done in the 

ring 𝑍[𝑥1, . . . , 𝑥𝑘]
𝑆𝑘 .We want to mention the rule of Littlewood and Richardson which explains 

how to additively expand a product of Schur functions in terms of Schur functions: 

Consider two Schur functions 𝑠𝜇 and 𝑠𝑣. The product 𝑠𝜇𝑠𝑣 is a symmetric functionof degree 

∑𝜇𝑖 + ∑𝑣𝑖 and has therefore an expansion in terms of Schur functions: 

𝑠𝜇𝑠𝑣 = ∑𝐶𝜇,𝑣
𝜆 𝑠𝜆

𝜆

                                                                  (27) 
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The appearing coordinates 𝐶𝜇,𝑣
𝜆  are usually called the Littlewood Richardson coefficients 

[123,107,247]. In order to give a combinatorial characterization of those coefficients let 𝜇 =
(𝜇1, . . . , 𝜇𝑘) be a partition of n representing the Schur function𝑠𝜇. In other words we assume 

that 𝑛 ≥ 𝑘 ≥ 𝜇1 ≥ 𝜇2 ≥ . . . ≥ 𝜇𝑘 ≥ 0and ∑ 𝜇𝑖 = 𝑛
𝑘
𝑖=1  If the integer μi is repeated 𝑟𝑖–times in 

the partition 𝜇, the abbreviated notation 𝜇 = (𝜇1
𝑟1 , . . . , 𝜇𝑡

𝑟𝑡) will be used. The number |𝜇| ∶=
∑ 𝜇𝑖
𝑘
𝑖=1  is sometimes called the weight of the partition μ and the numbers μi are called the parts 

of the partition. 

It is usual to present a partition by a left based array of boxes which has exactly 𝜇𝑖 boxes in the 

𝑖– 𝑡ℎ row. Such an array is sometimes called a tableau. 

Example (4.1.9)[289]: Two partitions with corresponding diagrams are illustrated: 

(3,2,1)   (32, 1) 
 

Let 𝜆 = (𝜆1, . . . , 𝜆𝑘) be a second partition. One writes𝜆 ≥ 𝜇 if 𝜆𝑖 ≥ 𝜇𝑖 , 𝑖 = 1, . . . , 𝑘. If 𝜆 ≥ 𝜇 

one defines the skew tableau 𝜆/𝜇 as the tableau obtained from the tableau 𝜆 by removing the 

first 𝜇𝑖 boxes in the row i of the tableau 𝜆. 

Example (4.1.10)[289]:𝜆 = (5, 4, 2, 2), 𝜇 = (3, 2, 1) then 𝜆/𝜇 is given  

 

 

 

 

We are now in a position to formulate the theorem of Littlewood and Richardson. The 

following formulation as well as the subsequent example can be found in the article of Stanley 

[247,228,236,249,87]. 

Theorem (4.1.11)[289]: Let 𝑠𝜇 and 𝑠𝑣be two Schur functions represented by two partitions 

𝜇, 𝑣. Then the Littlewood Richardson coefficient 𝐶𝜇,𝑣
𝜆  of 𝑠𝜆 in the expansion of the product 𝑠𝜇𝑠𝑣 

is zero unless 𝜆 ≥ 𝜇. In this case the coefficient is equal to the number of ways of inserting 

𝑣1 1’𝑠, 𝑣2 2’𝑠, 𝑣3 3’𝑠, . .. into the skew tableau 𝜆/𝜇 subject to the conditions: 

(i) The numbers are weakly increasing in each row and strictly increasing in each column. 

(ii) If 𝛼1, 𝛼2, . .. is the set of numbers obtained when reading of the numbers inserted in λ/μ 

from right to left then for any i, j the numbers of 𝑖’𝑠 among 𝛼1, 𝛼2, . . . , 𝛼𝑗  is not less than 

the number(𝑖 +  1)’𝑠 among the numbers 𝛼1, 𝛼2, . . . , 𝛼𝑗. 

The following example given in [247]: 

Example(4.1.12)[289]: Let 𝜆 = (5, 4, 2, 2), 𝜇 = (3, 2, 1) and 𝑣 = (4, 2, 1). Then the 

following skew diagrams 𝜆/𝜇 are the only ones which satisfy (i). and (ii). In particular the 

coefficient of sλ in the expansion of the product 𝑠𝜇𝑠𝑣is equal to  

 

 

 

 

 

1      1 

1      2 

2      3 

1       

1      1 

2      2 

1      3 

1       

1      1 

1      2 

1      3 

2       
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Using the Littlewood Richardson rule together with the description of the ring 𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍) 

as given in (26) we are in a position to multiply arbitrary cocycles in 𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍)The 

following example illustrates the procedure: 

 

 

Example(4.1.13)[289]:  Consider the elements {3, 2, 0} and {2, 1, 0} in 𝐻∗(𝐺3(ℂ
6), 𝑍)Then 

{3, 2, 0}{2, 1, 0}  =  {5, 3, 0}  + {5, 2, 1}  + {4, 4, 0}  +  2{4, 3, 1}  + {4, 2, 2}  + {3, 3, 2} (28) 
We conclude with the Poincar´e duality theorem of cocycles. For this consider a cocycle 

{𝜇1, . . . , 𝜇𝑘}. The dual cocycle in 𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍) is defined as the cocycle 𝜆: = {𝑛 – 𝑘 −

𝜇𝑘 , . . . , 𝑛 − 𝑘 − 𝜇1}.Using this notation one has: 

Theorem (4.1.14)[289]: 

{𝜇1, . . . , 𝜇𝑘} {𝑣1, . . . , 𝑣𝑘} = {𝑛 − 𝑘,… , 𝑛 − 𝑘} 
Proof: Apply Theorem (1.3.12)of Littlewood and Richardson together with the description of 

𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍)  induced by the representation (26). 

In order to derive result we will use the following simple lemma,. 

Lemma (4.1.15)[289]: Suppose the eigenvalues of a Hermitian 𝑛 ×  𝑛 matrix 𝐴 are ordered as 

𝜆1(𝐴) ≥ . . . ≥ 𝜆𝑛(𝐴). Then for any 1 ≤ 𝑖1 < . . . < 𝑖𝑘 ≤ 𝑛 one has: 

 𝜆𝑖1(−𝐴) +⋯+ 𝜆𝑖𝑘(−𝐴) =  −∑𝜆𝑛−𝑖𝑗+1(𝐴)

𝑘

𝑗=1

                            (29) 

In the following we will consider Hermitian matrices 𝐴1, . . . , 𝐴𝑟+1 ∈ ℂ
𝑛×𝑛with corresponding 

eigenvalues 

 𝜆𝑖1(𝐴𝑙) ≥ . . . ≥  𝜆𝑛(𝐴𝑙), 𝑙 = 1, . . . , 𝑟 + 1                              (30) 

and corresponding orthogonal sets of eigenvectors 𝑣1𝑙 , . . . , 𝑣𝑛𝑙. Assume that  

𝐴𝑟+1 = 𝐴1 + · · · + 𝐴𝑟 .                                                      (31) 
For each Hermitian operator 𝐴𝑙 , 𝑙 =  1, . . . , 𝑟 +  1 construct a flag of eigenspaces 

ℱ𝑙: {0} ⊂  𝑉1𝑙 ⊂ 𝑉2𝑙 ⊂ . . . ⊂ 𝑉𝑛𝑙 = ℂ
𝑛                                      (32) 

defined through the property: 

𝑉𝑚𝑙: = 𝑠𝑝𝑎𝑛(𝑣1𝑙 , . . . , 𝑣𝑚𝑙),𝑚 = 1, . . . , 𝑛.                                 (33) 

The following result, which has been first proved by Thompson [225] for the case 𝑟 =  2, 

establishes the crucial relationship between matrix spectral inequalities and the Schubert 

calculus. 

Lemma (4.1.16)[289]: Let 𝐴1, . . . , 𝐴𝑟be complex Hermitian n ×  n matrices and denote with 

ℱ𝑙 , . . . , ℱ𝑟+1 the corresponding flags of eigenspaces defined by (33). Assume 𝐴𝑟+1 = 𝐴1 + · ·
 ·  + 𝐴𝑟. and let 𝑖𝑙 = (𝑖1𝑙 , . . . , 𝑖𝑘𝑙) be 𝑟 + 1 sequences of integers satisfying 

1 ≤ 𝑖1𝑙 < . . . < 𝑖𝑘𝑙 ≤ 𝑛, 𝑙 = 1, . . . , 𝑟 + 1.                                       (34) 

Suppose the intersection of the 𝑟 + 1 Schubert subvarieties of Gk(ℂ
n) is nonempty, i.e.: 

𝑆 (𝑖𝑙; ℱ𝑙)⋂…⋂𝑆(𝑖𝑟+1; ℱ𝑟+1) ≠ 0                                        (35) 

Then the following matrix eigenvalue inequalities hold: 

∑𝜆𝑛−𝑖𝑗,𝑟+1(𝐴1 +⋯+ 𝐴𝑟) ≤∑∑𝜆𝑛−𝑖𝑗𝑙+1(𝐴𝑙)

𝑘

𝑗=1

𝑟

𝑙=1

𝑘

𝑗=1

                          (36) 
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∑𝜆𝑛−𝑖𝑗,𝑟+1+1(𝐴1 +⋯+ 𝐴𝑟) ≥∑∑𝜆𝑖𝑗𝑙(𝐴𝑙)

𝑘

𝑗=1

𝑟

𝑙=1

𝑘

𝑗=1

                              (37) 

 

 

Proof: Consider L ∈  Gk(C
n) with 

𝐿 ∈⋂𝑆 (𝑖𝑙; ℱ𝑙) ≠ 0.

𝑟+1

𝑙=1

                                                            (38) 

Then, by using the Hersch-Zwahlen extremal principle (Theorem (4.1.4)) one has: 

0 =  𝑡𝑟((𝐴1 + · · ·  + 𝐴𝑟 − 𝐴𝑟+1)|𝐿)                                             (39) 

   =∑𝑡𝑟(𝐴𝑙|𝐿)–  𝑡𝑟(𝐴𝑟+𝑙|𝐿)

𝑘

𝑙=1

                                                       (40) 

≥∑𝑚𝑖𝑛{𝑡𝑟(𝐴𝑙|𝐿): 𝐿 ∈ 𝑆(𝑖𝑟+1; ℱ𝑟+1)}

𝑘

𝑗=1

+𝑚𝑖𝑛{𝑡𝑟(−𝐴𝑟+1|𝐿): 𝐿 ∈ 𝑆(𝑖𝑟+1; ℱ𝑟+1)}  (41) 

=∑∑𝜆𝑖𝑗𝑙(𝐴𝑙) +

𝑘

𝑗=1

𝑟

𝑙=1

∑𝜆𝑖𝑗,𝑟+1(−𝐴𝑟+1).

𝑘

𝑗=1

                                            (42) 

Thus by Lemma (4.1.15) one has: 

∑𝜆𝑛−𝑖𝑗,𝑟+1+1(𝐴𝑟+) ≥∑∑𝜆𝑖𝑗𝑙(𝐴𝑙)

𝑘

𝑗=1

𝑟

𝑙=1

𝑘

𝑗=1

                                             (43) 

which proves (36). The inequality (37) follows from (36) by replacing the matrices 

𝐴𝑙 by −𝐴𝑙 , 𝑙 = 1, . . . , 𝑟 + 1and using Lemma (4.1.15). This completes the proof. 

In general it will be difficult to verify the intersection property (35) as it assumes the knowledge 

of the eigenspaces of 𝐴1, . . . , 𝐴𝑟 and of 𝐴𝑟+1 = 𝐴1 + · · · +𝐴𝑟. By combining Lemma (4.1.16) 

with the intersection theoretic result of Proposition (4.1.8) we obtain a result with a more easily 

verifiable hypothesis. 

Theorem (4.1.17)[289]:Let 𝑖𝑙 = (𝑖1𝑙 , . . . , 𝑖𝑘𝑙) be 𝑟 + 1 sequences of integers satisfying 

                               1 ≤ 𝑖1𝑙 < . . . < 𝑖𝑘𝑙 ≤ 𝑛, 𝑙 = 1, . . . , 𝑟 + 1.                                                  (44) 
Let {𝑛 − 𝑘 − 𝑖1𝑙 + 1, . . . , 𝑛 − 𝑖𝑘𝑙} ∈ 𝐻

∗(𝐺𝑘(ℂ
𝑛), 𝑍)denote the Schubert cocycle that is the 

Poincar´e dual of the fundamental homology class of the Schubert variety 𝑆(𝑖1; ℱ𝑙) for 𝑙 =
1, . . . , 𝑟 + 1. If the (𝑟 + 1) −fold product of the Schubert cocycles in 𝐻∗(𝐺𝑘(ℂ

𝑛), 𝑍)  ) 

∏{𝑛 − 𝑘 −  𝑖1𝑙 + 1, . . . , 𝑛 − 𝑖𝑘𝑙}  ≠  0

𝑟+1

𝑙=1

                                             (45) 

then the eigenvalue inequality (36) and (37) holds for any set of Hermitian matrices 

𝐴1, . . . , 𝐴𝑟  ∈  ℂ
𝑛×𝑛. 
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Corollary (4.1.18)[289]:Let 𝑖: = (𝑖1, . . . , 𝑖𝑘), 𝑗: = (𝑗1, . . . ,  𝑗𝑘), 𝑝:= (𝑝1, . . . , 𝑝𝑘),be sequences 

satisfying 1 ≤ 𝑖1 < . . . < 𝑖𝑘 ≤ 𝑛, 1 ≤ 𝑗1 < . . . < 𝑗𝑘 ≤  𝑛 and1 ≤  𝑝1 < . . . < 𝑝𝑘 ≤ 𝑛. If the 

triple product 

{𝑛 − 𝑘 − 𝑖1 + 1, . . . , 𝑛 − 𝑖𝑘}{𝑛 − 𝑘 − 𝑗1 + 1, . . . , 𝑛 − 𝑗𝑘} 
× {𝑛 − 𝑘 − 𝑝1 + 1, . . . , 𝑛 − 𝑝𝑘} ≠  0                                             (46) 

is nonzero then for any pair of complex Hermitian matrices 𝐴, 𝐵 ∈ ℂ𝑛×𝑛 the following 

eigenvalue inequalities hold: 

∑𝜆𝑛−𝑝𝑣+1(𝐴 + 𝐵) ≥∑𝜆𝑖𝑣(𝐴) +∑𝜆𝑗𝑣(𝐵)

𝑘

𝑣=1

𝑘

𝑣=1

𝑘

𝑣=1

                      (47) 

∑𝜆𝑝𝑣(𝐴 + 𝐵) ≤∑𝜆𝑛−𝑝𝑣+1(𝐴) +∑𝜆𝑛−𝑝𝑣+1(𝐵)

𝑘

𝑣=1

𝑘

𝑣=1

.

𝑘

𝑣=1

                          (48) 

We conclude with a simple example. 

Example (4.1.19)[289]: In 𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍)  ) the following nonzero products exist: 

{1, 0}{1, 0}{2, 0}  =  {2, 2}                                                                 (49) 

{1, 0}{1, 0}{1, 1}  =  {2, 2}                                                                 (50) 

{1, 0}{1, 0}{1, 0}{1, 0}  =  2{2, 2}.                                                             (51) 

By Theorem (4.1.16) and Corollary (4.1.17) the following eigenvalue inequalities hold for 

arbitrary 4 ×  4 Hermitian matrices: 

𝜆1(𝐴 +  𝐵) + 𝜆4(𝐴 +  𝐵)𝜆1(𝐴) + 𝜆3(𝐴) + 𝜆1(𝐵) + 𝜆3(𝐵)             (52) 

𝜆2(𝐴 +  𝐵) + 𝜆3(𝐴 +  𝐵) ≤  𝜆1(𝐴) + 𝜆3(𝐴) + 𝜆1(𝐵) + 𝜆3(𝐵),        (53) 

𝜆2(𝐴 + 𝐵 + 𝐶) + 𝜆4(𝐴 + 𝐵 + 𝐶)  
≤ 𝜆1(𝐴) + 𝜆3(𝐴) + 𝜆1(𝐵) + 𝜆3(𝐵) + 𝜆1(𝐶) + 𝜆3(𝐶).                                       (54) 

We apply the preceding results to verify some classical eigenvalue inequalities. The first 

inequality is given in [108]. 

Weyl Inequality [108]: (4.1.20)[289]: 

For any indices 1 ≤ 𝑖, 𝑗 ≤ 𝑛 with1 ≤ 𝑖 + 𝑗 − 1 ≤  𝑛 and any Hermitian matrices A, B ∈ ℂn×n 

one has: 

𝜆𝑖+𝑗−1(𝐴 +  𝐵) ≤ 𝜆𝑖(𝐴) + 𝜆𝑗(𝐵).                                               (55) 

Proof: Here 𝑘 = 1, 𝐺1(ℂ
𝑛) = ℂℙ𝑛−1and 𝐻∗(ℂℙ𝑛−1), Z) = 𝑍[𝑥]/(𝑥𝑛) is a truncated 

polynomial ring. Using this classical description of the cohomology ring of the projective 

space, the Schubert cocycles are 

{𝑖} = 𝑥𝑖 , 𝑖 = 0, . . . , 𝑛 − 1.                                                 (56) 
Let 𝑖1, 𝑗1 and 𝑝1 defined by: 

𝑖1: = 𝑛 − 𝑖 + 1, 𝑗1: = 𝑛 − 𝑗 + 1, 𝑝1 ≔ 𝑖 + 𝑗 − 1.                         (57) 
Then (46) reduces to 

{𝑖 − 1}{𝑗 − 1}{𝑛 − 𝑖 − 𝑗 + 1} = {𝑛 − 1}.                                               (58) 

But since 𝑥𝑛−1 generates 𝐻2(𝑛−1)(ℂℙ𝑛−1), 𝑍) ≡ 𝑍 one has {𝑛 − 1} ≠ 0. Thus the Weyl 

inequality follows immediately from Corollary (4.1.18). 

Lidskii Inequality: (4.1.21)[289]: 
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For 1 ≤ 𝛼1 < . . . < 𝛼𝑘 ≤ 𝑛and for any Hermitian matrices 𝐴, 𝐵 ∈ ℂ𝑛×𝑛 one has the matrix 

eigenvalue inequality: 

∑𝜆𝛼𝑗

𝑘

𝑗=1

(𝐴 + 𝐵) ≤∑𝜆𝛼𝑗

𝑘

𝑗=1

(𝐴) +∑𝜆𝑗

𝑘

𝑗=1

(𝐵)                                            (59) 

Proof:Consider 𝑖 ≔ (𝑛 − 𝛼𝑘 + 1, . . . , 𝑛 − 𝛼1 + 1), 𝑗: = (𝑛 − 𝑘 + 1, . . . , 𝑛), 𝑝 ≔ (𝛼1, . . . , 𝛼𝑘). 
Then the product in condition (46) of Corollary (4.1.18) is given by 

{𝛼𝑘 − 𝑘, . . . , 𝛼1 − 1}{0, . . . , 0}{𝑛 − 𝑘 − 𝛼1 + 1, . . . , 𝑛 − 𝛼𝑘}.                                 (60) 

Since {0, . . . , 0} = 1 ∈ 𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍)) and {n − k − α1 + 1, . . . , n − αk} is Poincarè dual to 

{𝛼𝑘 − 𝑘, . . . , 𝛼1 − 1} the above triple product is equal to {𝑛 − 𝑘, . . . , 𝑛 –  𝑘} and hence nonzero. 

This completes the proof of the Lidskii Inequality. 

Thus both the Weyl and the Lidskii inequality are direct consequences of the Poincar´e duality 

of the projective space ℂℙ𝑛−1 and of the Grassmannian 𝐺𝑘(ℂ
𝑛)respectively. A proof of the 

next inequality requires a more subtle topological argument. 

Freede-Thompson Inequality [225]: (4.1.22)[289]: 

For any 1 ≤ 𝛼1 < . . . < 𝛼𝑘 ≤ 𝑛, 1 ≤ 𝑏1 < . . . < 𝑏𝑘 ≤ 𝑛 with 𝛼𝑘 + 𝑏𝑘 − 𝑘 ≤ 𝑛 and Hermitian 

matrices 𝐴, 𝐵 ∈ ℂ𝑛×𝑛 one has: 

∑𝜆𝛼𝑣+𝑏𝑣−𝑣

𝑘

𝑣=1

(𝐴 + 𝐵)  ≤ ∑𝜆𝛼𝑣

𝑘

𝑣=1

(𝐴) +∑𝜆𝑏𝑣

𝑘

𝑗=1

(𝐵).                      (61) 

Proof: Consider 𝑖 ≔ (𝑛 − 𝛼𝑘 + 1, . . . , 𝑛 − 𝛼1 + 1), 𝑗: = (𝑛 − 𝑏𝑘 + 1, . . . , 𝑛 − 𝑏1  +  1), 𝑝 ∶=
(𝛼1 + 𝑏1 − 1, . . . , 𝛼𝑘 + 𝑏𝑘 − 𝑘). Then the product in condition (46) of Corollary (4.1.18) is 

given by 

{𝛼𝑘 − 𝑘 − 𝛼1 + 1}{𝑏𝑘 − 𝑘 − 𝑏1 − 1}{𝑛 − 𝑘 − 𝛼1 + 2, . . . , 𝑛 + 𝑘 − 𝛼𝑘 − 𝑏𝑘}.     (62) 
By assumption one has αk  +  bk − 2k ≤ n − k. From the Littlewood Richardson rule it 

follows that the product of the first two factors is of the form: 

{𝛼𝑘 − 𝑘 − 𝛼1 + 1}{𝑏𝑘 − 𝑘 − 𝑏1 − 1}{𝛼𝑘 − 𝑏𝑘 − 2𝑘, . . . , 𝛼1 + 𝑏1 − 2} +∑𝑐𝜇𝑣
𝜆

𝜆

   (63) 

where cμv
λ  are again the Littlewood Richardson coefficients and the sum is taken overall 

partitions 𝜆, 𝜆 ≠ 𝛼𝑘 − 𝑏𝑘 − 2𝑘, . . . , 𝛼1 + 𝑏1 − 2. Now the result follows from the observation 

that the cocycle 𝛼𝑘 − 𝑏𝑘 − 2𝑘, . . . , 𝛼1 + 𝑏1 − 2 is (compare with Theorem (4.1.14)) dual to the 

cocycle {𝑛 − 𝑘 − 𝛼1 − 𝑏1 + 2, . . . , 𝑛 + 𝑘 − 𝛼𝑘 − 𝑏𝑘}, i.e. the product (62) is nonzero and 

Theorem (4.1.18) applies. 

It is a consequence of Theorem (4.1.17) that any nonzero product in 𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍)implies an 

eigenvalue inequality of the form (36) and an inequality of the form (37). We describe a large 

class of nonzero products. In particular we will describe all maximal nonzero products in 

𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍) and we will describe all maximal nonzero products in  𝐻∗(𝐺𝑘(ℂ

𝑛), 𝑍)consisting 

of 3 factors. The following lemmas prepare for those results. 

Lemma (4.1.23)[289]: Assume 𝜇:= {𝜇1, . . . , 𝜇𝑘} and 𝑣:= {𝑣1, . . . , 𝑣𝑘} are two cocycles in 

𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍) which are complimentary in dimension, i.e. there weights satisfy |𝜇|  + |𝑣| =

𝑘(𝑛 −  𝑘). Then μv ≠ 0 if, and only if μ and v are dual to each other, i.e. 𝑣 = {𝑛 − 𝑘 −
𝜇𝑘 , . . . , 𝑛 − 𝑘 − 𝜇1}. 
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Proof: See also [203] for a different proof based on Poincar’e-duality. From the description of 

𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍) in (25) it is clear that 𝜇𝑣 ≠ 0 exactly when the coefficient of {(𝑛 − 𝑘)𝑘} =

{𝑛 − 𝑘, . . . , 𝑛 − 𝑘} in the expansion μv is nonzero. Applying the rule of Littlewood and 

Richardson to the skew tableau (𝑛 −  𝑘)𝑘/𝜇 one verifies that there is only one possibility to 

fill this tableau with 𝑣1 1’𝑠, 𝑣2 2’𝑠, . . . , 𝑣𝑘 𝑘’𝑠, and in this case one necessarily has 𝑣1 = 𝑛 −
𝑘 − 𝜇𝑘, . . . , 𝑣𝑘 = 𝑛 − 𝑘 −  𝜇1. 

 

Lemma (4.1.24)[289]:Assume 𝜇𝑙 = {𝜇1𝑙 , . . . , 𝜇𝑘𝑙}, 𝑙 = 1, . . . , 𝑟, are cocycles with∑ 𝜇1𝑙 
𝑟
𝑙=1 ≤

𝑛 − 𝑘. Then the following identity holds in 𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍): 

{𝑛 − 𝑘 –∑𝜇𝑘𝑙

𝑟

𝑙=1

, . . . , 𝑛 − 𝑘 −∑{𝜇1𝑙

𝑟

𝑙=1

}∏{𝜇1𝑙 , . . . , 𝜇𝑘𝑙}

𝑟

𝑙=1

 

= {𝑛 − 𝑘, . . . , 𝑛 − 𝑘}.                                    (64) 

Proof: Using inductively Littlewood Richardson’s rule it follows that 

∏{𝜇1𝑙 , . . . , 𝜇𝑘𝑙}

𝑟

𝑙=1

= {∑𝜇𝑘𝑙

𝑟

𝑙=1

, . . . ,∑𝜇𝑘𝑙

𝑟

𝑙=1

}  +∑𝐶𝜇
𝜇

{𝜇1𝑙 , . . . , 𝜇𝑘𝑙}.                 (65) 

(Compare with (63)). Because {𝑛 − 𝑘 − ∑ 𝜇𝑘𝑙
𝑟
𝑙=1 , . . . , 𝑛 − 𝑘 − ∑ 𝜇1𝑙

𝑟
𝑙=1 } is the Poincarè dual 

of the first term after the equality sign the result follows from the previous Lemma. 

In the next Lemma we will identify the Schubert symbol {𝑥1, 𝑥2} ∈ 𝐻
∗(𝐺𝑘(ℂ

𝑛), 𝑍)with zero 

for 𝑥1 > 𝑛 − 2. 

Lemma (4.1.25)[289]: If{𝛼1, 𝛼2}, {𝑏1, 𝑏2} are two cocycles in 𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍 and 

𝑚 ≔ 𝑚𝑖𝑛{(𝛼1 − 𝛼2), (𝑏1 − 𝑏2)}                                             (66) 

then one has 

 {𝛼1, 𝛼2}{𝑏1, 𝑏2} =∑{𝛼1 + 𝑏1– 𝑖, 𝛼2 + 𝑏2 𝑖}

𝑚

𝑖=0

.                           (67) 

Proof: Direct consequence of the Littlewood Richardson rule. (Compare with [107].) 

For the following Lemma let [𝑥] denote the largest integer smaller or equal to x. 

Lemma (4.1.26)[289]: If {α1l, α2l} ∈ 𝐻
∗(𝐺𝑘(ℂ

𝑛), 𝑍), l =  1, . . . , r, } are r Schubert cocycles 

with 

𝛼11 − 𝛼21  ≥ · · · ≥ 𝛼1𝑟 − 𝛼2𝑟                                             (68) 

and  

𝑚 ∶=  𝑚𝑖𝑛 {[
1

2
∑(𝑎1𝑙 – 𝑎2𝑙)

𝑚

𝑙=1

] ,∑(𝑎1𝑙 – 𝑎2𝑙)

𝑚

𝑙=2

}                       (69) 

then there are positive nonzero integers ci such that 

∏{𝑎1𝑙 , 𝑎2𝑙}

𝑟

𝑙=1

=∑𝑐𝑖

𝑚

𝑖=0

{∑𝑎1𝑙 − 𝑖,

𝑟

𝑙=2

∑𝑎2𝑙 + 𝑖

𝑚

𝑖=0

}.                      (70) 

In particular if ∑ 𝑐𝑖
𝑚
𝑖=0 𝑎1𝑙  ≤  𝑚 +  𝑛 −  2 at least one summand is nonzero and therefore the 

whole product is nonzero. 

Proof: Let 𝛼 ∈ {2, . . . , 𝑟} be the largest integer with the property that 
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(𝑎11 − 𝑎21) ≥∑(𝑎1𝑙 − 𝑎2𝑙)

𝑚

𝑙=0

.                                              (71) 

Denote with 𝑚̃: = ∑ (𝑎1𝑙  −  𝑎2𝑙)
𝑚
𝑙=2 . Using inductively Lemma (4.1.25) one sees that 

∏{𝑎1𝑙 , 𝑎2𝑙}

𝜎

𝑙=1

=∑𝑐̃𝑖

𝑚̃

𝑖=0

{∑𝑎1𝑙 − 𝑖,

𝛼

𝑙=1

∑𝑎2𝑙 + 𝑖

𝛼

𝑙=0

}.                              (72) 

with positive, nonzero constants 𝑐𝚤̃. In particular if  𝛼 = 𝑟 then 𝑚 = 𝑚̃ and the result is proven. 

If 𝛼 < 𝑟 then (𝑎1𝑙 − 𝑎2𝑙) < ∑ (𝑎1𝑙 − 𝑎2𝑙)
𝑚
𝑙=2  and therefore 𝑚 = [ 

1

2
∑ (𝑎1𝑙 − 𝑎2𝑙)]
𝑚
𝑙=1 .  

Multiplying inductively expression (71) with the factors {𝑎1𝑙  , 𝑎2𝑙}, 𝑙 = 𝛼 + 1, . . . , 𝑟 one 

deduces also in this case, using the fact that all Littlewood Richardson coefficients are positive, 

that ∏ {𝑎1𝑙 − 𝑎2𝑙}
𝜎
𝑙=1 = ∑ 𝐶𝑖

𝑚
𝑖=0 {∑ 𝐶{𝑥𝑖 , 𝑦𝑖},

𝑚
𝑙=1  where   

∑𝑎1𝑙 −𝑚 ≤ 𝑥𝑖 ≤∑𝑎1𝑙

𝑟

𝑙=1

 𝑎𝑛𝑑 ∑𝑎2𝑙 ≤ 𝑦𝑖∑𝑎2𝑙 +𝑚.

𝑟

𝑙=1

𝑟

𝑙=1

𝑟

𝑖=0

                      (73) 

In particular, if  ∑ 𝑎1𝑙 −𝑚 ≤ 𝑛 − 2
𝑟
𝑙=1 , the product is nonzero, which completes the proof. 

As a direct consequence of this Lemma we obtain a description of all maximal nonzero products 

in 𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍) 

Theorem (4.1.27)[289]: Assume {𝑎1𝑙  , 𝑎2𝑙} ∈ 𝐻
∗(𝐺𝑘(ℂ

𝑛), 𝑍), 𝑙 = 1, . . . , 𝑟, are r cocycles with 

∑(𝑎1𝑙 , 𝑎2𝑙) = 2(𝑛 − 2)

𝑟

𝑙=1

                                            (74) 

Then ∏ {a1l , a2l}  ≠  0
r
l=1  if, and only if 

(𝑎1𝑙 , 𝑎2𝑙) ≤ ∑ (𝑎1𝑙 , 𝑎2𝑙), 𝑗 = 1,… , 𝑟.

𝑙∈(1,…,𝑗−1,𝑗+1,…,𝑟

                      (75) 

Proof: After a possible reindexing we can assume that 

𝑎1𝑙 − 𝑎2𝑙 ≥ · · · ≥ 𝑎1𝑙 − 𝑎2𝑙 .                                             (76) 

 Because of assumption (74), m =  [ 
1

2
∑ (a1l − a2l)]
r
l=1 . Because of the description of 

𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍) in (25) it is clear that the product is nonzero if, and only if the coefficient of 

{𝑛 − 2, 𝑛 − 2}  ∈ 𝐻2(𝑛−2)(𝐺𝑘(ℂ
𝑛), 𝑍) in the product expansion is nonzero. By the last Lemma 

this is the case iff ∑ 𝑎1𝑙 ≤ 𝑚+ 𝑛 − 2.
𝑟
𝑙=1  Moreover because of (73) the number 

1

2
∑ (𝑎1𝑙 − 𝑎2𝑙)]
𝑟
𝑙=1  is an integer. But then ∑ 𝑎1𝑙 ≤ 𝑚 + 𝑛 − 2.

𝑟
𝑙=1  is equivalent to ∑ (𝑎1𝑙 +

𝑟
𝑙=1

 𝑎2𝑙)]  ≤  2(𝑛 −  2)which is true by assumption (74). 

Combining Theorem (4.1.27) with Theorem (4.1.17) one finally has: 

Theorem (4.1.28)[289]: Let (𝑖1𝑙 , 𝑖2𝑙) be 𝑟 +  1 pairs of integers with: 

1 ≤ 𝑖1𝑙 < 𝑖2𝑙 ≤  𝑛, 𝑙 = 1, . . . , 𝑟 + 1                                              (77) 

𝑟(2𝑛 − 1) + 3 ≤∑(𝑖1𝑙 + 𝑖2𝑙)

𝑟+1

𝑙=1

                                            (78) 

𝑖2𝑗  – 𝑖1𝑗 ≤ 1 − 𝑟 + ∑ (𝑖1𝑙 + 𝑖2𝑙)  𝑗 = 1,… , 𝑟 + 1.

𝑙∈{1,…,𝑗−1,𝑗+1,…,𝑟+1

                      (79) 
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Then for any set of Hermitian matrices 𝐴1, . . . , 𝐴𝑟+1  ∈  ℂ
𝑛×𝑛 satisfying the relation 𝐴𝑟+1 =

𝐴1 + · · · + 𝐴𝑟 the following eigenvalue inequalities hold: 

𝜆𝑛−𝑖1,𝑟+1+1(𝐴𝑟+1) + 𝜆𝑛−𝑖2,𝑟+1+1(𝐴𝑟+1) ≥∑(𝐴𝑙) + 𝜆𝑖2𝑙(𝐴𝑙))

𝑟

𝑙=1

                      (80) 

𝜆𝑖1,𝑟+1(𝐴𝑟+1) + 𝜆𝑖2,𝑟+1(𝐴𝑟+1) ≤∑(𝜆𝑛−𝑖1𝑙+1(𝐴𝑙) + 𝜆𝑛−𝑖2𝑙+1(𝐴𝑙))

𝑟

𝑙=1

                      (81)  

Proof: Denote with 𝑎1𝑙 = 𝑛 − 𝑖1𝑙 − 1and𝑎2𝑙 = 𝑛 − 𝑖2𝑙. Then condition (78) is equivalent to 

the condition ∑ (𝑎1𝑙 + 𝑎2𝑙)
𝑟+1
𝑙=1 ≤ 2(𝑛 − 2) and condition (79) is equivalent to inequality (75). 

The product ∏ {𝑛 − 𝑖1𝑙 − 1, 𝑛 − 𝑖2𝑙}
𝑟+1
𝑙=1 is nonzero and the result follows once again from 

Theorem (4.1,17) . 

In order to illustrate the theorem in the case 𝑟 = 2, let 𝐴 = 𝐴1, 𝐵 = 𝐴2 and let 

(𝑖1,1, 𝑖2,1) = (𝑛 – 𝑎2 + 1, 𝑛 – 𝑎1 + 1),                               (82) 

(𝑖1,2, 𝑖2,2) = (𝑛 –  𝑏2 + 1, 𝑛 – 𝑏1 + 1),                                (83) 

(𝑖1,3, 𝑖2,3) = (𝑐1, 𝑐2).                                                                   (84) 

Then we obtain 

Corollary (4.1.29)[289]: Let 1 ≤ 𝑎1 < 𝑎2 ≤ 𝑛, 1 ≤ 𝑏1 < 𝑏2 ≤ 𝑛 and 1 ≤ 𝑐1 < 𝑐2 ≤ 𝑛 

satisfy the system of linear inequalities 

𝑎1 + 𝑎2 + 𝑏1 +  𝑏2 ≤ 𝑐1 + 𝑐2 + 3                                            (85) 
𝑎1 + 𝑎2 + 𝑏1 +  𝑏2 ≤ 𝑐1 + 𝑐2 − 1                                            (86) 

𝑏2 −  𝑏1 ≤ 𝑎2 − 𝑎1 + 𝑐2 − 𝑐1 − 1                                            (87) 

𝑐2 − 𝑐1 ≤ 𝑎2 − 𝑎1 + 𝑏2 −  𝑏1 − 1.                                              (88) 
Then the eigenvalue inequality 

𝜆𝑐1(𝐴 + 𝐵) + 𝜆𝑐2(𝐴 + 𝐵) ≤ 𝜆𝑎1(𝐴) + 𝜆𝑎2(𝐴) + 𝜆𝑏1(𝐵) + 𝜆𝑏2(𝐵)                      (89) 

holds for any pair of Hermitian 𝑛 ×  𝑛 matrices A, B. We would like to remark that the 

assumptions in Corollary (4.1.29)  imply the assumptions in Horn [10]. It is also possible to 

derive the inequality (89) by the methods developed in [10]. 

We describe all maximal nonzero products of 𝐻∗(𝐺𝑘(ℂ
𝑛), 𝑍consisting of 3 factors. The 

results are based on a description of the Littlewood Richardson coefficients as given by 

Schlosser in [107]. 

In the following we explain his description and simultaneously adapt the notation for our 

purposes.  

Let 𝜇:= (𝜇1, . . . , 𝜇𝑘), 𝑣: = (𝑣1, . . . , 𝑣𝑘)and𝜆:= ( 𝜆1, . . ., 𝜆𝑘)be partitions. We are interested in 

conditions when the Littlewood Richardson coefficient 𝑐𝜇,𝑣
𝜆  is nonzero.We will use the 

combinatorial description of 𝑐𝜇,𝑣
𝜆  as given in Theorem (4.1.11) and the following 

parameterization by Schlosser [107]. 

Consider the tableau λ and denote with 𝑝ℎ𝑖the number of boxes in the skew tableau 𝜆/𝜇 with 

label i in the ℎ −th row. This gives us the following description forthe tableau λ: 
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 (90) 

Of course not all configurations of numbers 𝑝ℎ𝑖will result in a filling compatible with the rule 

of Littlewood and Richardson. On the other hand, as shown in [107], one can iteratively fill the 

skew tableau 𝜆 /𝜇, starting with pk1 and proceeding inductively with 

𝑝ℎ𝑖 , ℎ = 𝑘, . . . , 𝑖 + 1, 𝑖 = 1, . . . , 𝑘 − 1, 
subject to the following inequalities: 

𝑀𝑎𝑥(ℎ, 𝑖; (𝑣) ≤ 𝑝ℎ𝑖 ≤ 𝑀𝑖𝑛(ℎ, 𝑖; (𝑣), (𝜇))                               (91) 

Where 

𝑀𝑎𝑥(ℎ, 𝑖; (𝑣)) = 𝑚𝑎𝑥{0, 𝑣𝑖 − 𝑣𝑖 − 1 − ∑ 𝑝𝑗𝑖 + ∑ 𝑝𝑗 , 𝑖 + 1}

𝑘

𝑘=ℎ−1

𝑘

𝑘=ℎ+1

 

𝑀𝑖𝑛(ℎ, 𝑖; (𝑣), (𝜇)) = 𝑚𝑖𝑛{𝜇ℎ−1 − 𝜇ℎ +∑(𝑝ℎ−1,𝑗 − 𝑝ℎ,𝑗), 𝑣𝑖 − ∑ 𝑝𝑗𝑖}

𝑘

𝑗=ℎ+1

𝑖−1

𝑗=1

 

and 

𝑝𝑗𝑖 = 𝑣ℎ − ∑ 𝑝ℎ𝑖 ,     𝑖 = 1,… , 𝑘 

𝑘

𝑗=ℎ+1

                                            (92) 

we assume that 

v0 = 0, p0,j = 0,  ph,0 = 0.                                              (93) 

For our purposes, which is stated in similar form in [107], is: 

Theorem (4.1.30)[289]: Let μ, v be partitions and let phi be iteratively described through (91) 

and (92). Denote with 

 𝜆ℎ ≔ 𝜇ℎ +∑𝑝ℎ𝑖 ,         ℎ = 1,… , 𝑘.

ℎ

𝑖=1

                                            (94) 

Then 𝜆:= (𝜆1, . . . , 𝜆𝑘)describes a tableau and the Littlewood Richardson coefficient 𝑐𝜇,𝑣
𝜆  is 

nonzero 

Row   

1 

2  

⋮ 

K 

𝜇1 𝑝11 

𝜇2 𝑝21 𝑝22 

⋮   ⋮ ⋮   ⋱ 

𝜇𝑘 𝑝𝑘1 𝑝𝑘2 … 𝑝𝑘𝑘 

𝜆1 

𝜆2 

⋮ 

𝜆𝑘 

 |𝜇| 𝑣1 𝑣𝑘2 … 𝑣𝑘 Total  
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Corollary (4.1.31)[289]:Let 𝜇, 𝑣 be partitions and let 𝜆 satisfy the inequalities induced by the 

iterative scheme (91) and (92). Then 
{𝜇}{𝑣}{𝑛 − 𝑘–𝜆𝑘, . . . , 𝑛 − 𝑘 – 𝜆1} ≠  0                                               (95) 

Proof:The cocycle {𝑛 − 𝑘 − 𝜆𝑘, . . . , 𝑛 − 𝑘 − 1}is the Poincarè dual of the cocycle {𝜆} and 

because the Littlewood Richardson coefficient cμ,v
λ is non- zero the results follows from 

Lemma (4.1.23). 

Corollary (4.1.32)[289]:Let 𝐴, 𝐵 be complex Hermitian 𝑛 × 𝑛 matrices. Let 𝜇, 𝑣 be partitions 

and let 𝜆 satisfy the inequalities induced by (90) and (91). Let 

𝑎1 ∶=  𝜇𝑘 + 1, . . . , 𝑎𝑘: = 𝜇1 + 𝑘                                             (96) 

  𝑏1: = 𝑣𝑘 + 1, . . . , 𝑏𝑘: = 𝑣1 + 𝑘                                            (97) 

 𝑐1: = 𝜆𝑘 + 1, . . . , 𝑐𝑘: = 𝜆1 + 𝑘                                             (98) 

Then 

∑𝜆𝑐𝑣

𝑘

𝑣=1

(𝐴 + 𝐵) ≤∑𝜆𝑎𝑣

𝑘

𝑣=1

(𝐴) +∑𝜆𝑏𝑣

𝑘

𝑣=1

(𝐵).                                            (99) 

Section (4.2) Wielant’s Theorem with Spectral sets and Banach Algebra 

The classes of Hermitian and unitary matrices have a rich structure and much is known 

about the eigenvalues of these types of matrices. The more general class of normal (i.e. unitarily 

diagonalizable) complex matrices is less well understood. And not much is known about 

spectral problems involving normal matrices even with their eigenvalues being described in 

terms of those of their Hermitian and skew-Hermitian parts.  

The dierence between Hermitian and general normal matrices is that the latter can have as 

eigenvalues arbitrary complex numbers. ℂ, of course ℂ is not an ordered field. But it turns out 

that the simple fact that ℂ can be totally ordered as a vector space over the reals is enough to 

obtain useful information on spectra of normal matrices using Hermitian matrices as an 

inspiration.  

A total order in ℂ compatible with addition of complex numbers and multiplication by positive 

reals is the lexicographic order. It is characterized by its positive cone 𝐻 = {𝑎 + 𝑖𝑏: 𝑎 >
0 𝑜𝑟, 𝑖𝑓 𝑎 = 0, 𝑏 > 0}. 
Compatibility with addition means 𝐻 + 𝐻 ⊆  𝐻, and compatibility with multiplication by 

positive reals means𝜆𝐻 ⊆  𝐻 for𝜆 > 0 . The order being total means 𝐻 ∪ −𝐻 = ℂ ∖ {0}. 
The lexicographic order is not Archimedian and, apart from rotations of the positive cone, is 

the only total order in ℂ compatible with the above mentioned operations. We shall use the 

notation ≤lex for it, and, for real θwe use ≤θ
lex for the total order with positive cone eiθH. 

Let 𝐴 be an 𝑛 × 𝑛 complex normal matrix. Let 𝛼1, … . , 𝛼𝑛be its eigenvalues ordered so that 

𝛼1 ≥
𝑙𝑒𝑥 … ≥𝑙𝑒𝑥 𝛼𝑛and let 𝑣1, … , 𝑣𝑛 be corresponding orthonormal eigenvectors of A. For 𝑗 =

1,… , 𝑛 denote by 𝐸𝑗and 𝐸𝑗
′the subspaces of ℂn spanned by 𝑣1, … , 𝑣𝑗 and 𝑣𝑗 , … , 𝑣𝑛respectively. 

Applying the argument used to obtain the corresponding result for Hermitian matrices, we get: 

Theorem (4.2.1)[143]: For 𝑗 − 1,… , 𝑛 we have 

𝛼𝑗 = 𝑚𝑖𝑛
𝑥∈𝐸𝑗,‖𝑥‖=1

𝑥∗𝐴𝑥 = 𝑚𝑎𝑥
𝑥∈𝐸𝑗

′,‖𝑥‖=1
𝑥∗𝐴𝑥 

In addition, we have  



94 
  

𝛼𝑗 = 𝑚𝑎𝑥
𝑑𝑖𝑚𝐻=𝑗

𝑚𝑖𝑛
𝑥∈𝐸𝑗,‖𝑥‖=1

𝑥∗𝐴𝑥 = 𝑚𝑖𝑛
𝑎𝑑𝑖𝑚𝐻=𝑛−𝑗+1

𝑚𝑎𝑥
𝑥∈𝐸𝑗,‖𝑥‖=1

𝑥∗𝐴𝑥 

(Here max and min are used in the lexicographic sense). 

Analogous characterizations hold for any order of the type ≤𝜃
𝑙𝑒𝑥 either using the same 

proof or applying the theorem to the normal matrix e−iθA. Note how these results make 

immediately visible the fact that the numerical range 𝑊(𝐴) = {𝑥∗𝐴𝑥 ∶  ‖𝑥‖ = 1} of a normal 

matrix 𝐴 is the convex hull of its eigenvalues any straight line moving in the plane parallel to 

itself must touch 𝑊(𝐴) first at an eigenvalue of 𝐴. 

From the above theorem we immediately obtain, again repeating the Hermitian argument, a 

result concerning principal normal submatrices of normal matrices: 

Theorem (4.2.2)[143]:Let 𝐴 be an 𝑛 × 𝑛 normal matrix with eigenvalues 𝛼1 ≥
𝑙𝑒𝑥 … ≥𝑙𝑒𝑥 𝛼𝑛 

If B is a principal 𝑘 × 𝑘 normal submatrix of 𝐴 with eigenvalues 𝛽1 ≥
𝑙𝑒𝑥 … ≥𝑙𝑒𝑥 𝛽𝑘, we have  

𝛼𝑗 ≥
𝑙𝑒𝑥 𝛽𝑗 ≥

𝑙𝑒𝑥 𝛼𝑗 + 𝑛 − 𝑘, 𝑗 = 1,… , 𝑘. 

An analogous result holds for any order of the type ≤θ
lex. 

For other interlacing results in this setting see [154,160,126,135], [50]. 

The result in [154] shows that for a n × n normal matrix to have a principal (𝑛 − 1) × (𝑛 − 1) 
normal principal submatrix is a highly restrictive condition, essentially forcing the matrix apart 

from a rotation and a translation, to be Hermitian. It seems plausible that one can obtain this 

from Theorem (4.2.2)  above.  

In [50,139] an interlacing result is presented for the arguments of eigenvalues of a normal 

matrix and a normal principal submatrix a relation with Theorem (4.2.2) above is unclear.  

and then there is the general interlacing theorem for singular values which for normal matrix 

and submatrix yields a statement whose relation with the above result is again unclear. 

Note also that Theorem (4.2.2). does not follow directly from the interlacing theorem for 

Hermitian matrices applied to the Hermitian and skew-Hermitian parts of 𝐴 and 𝐵. 

A generalization of the first part of Theorem (4.2.1) can be obtained by mimicking the 

corresponding result for Hermitian matrices [139].  

Take a sequence 𝑉 = (𝑉1, … , 𝑉𝑛) of subspaces of ℂ𝑛 with 𝑉1 ⊂ ⋯ ⊂ 𝑉𝑛 and 𝑑𝑖𝑚(𝑉𝑖) = 𝑖 for 

𝑖 = 1,… , 𝑛_Given a sequence 𝐼 = (𝑖1, … , 𝑖𝑟), with i ≤ i1 < ⋯ < ir ≤ n, the Schubert variety 

associated to V and I is ΩI(V) = {𝐿subspace of ℂ𝑛 𝑑𝑖𝑚(𝐿) = 𝑟, 𝑑𝑖𝑚(𝐿 ∩ 𝑉𝑖𝑑 ≥ 𝑑, 𝑑 =
1,… , 𝑟} . 
Keep the notation and write 𝐸 = (𝐸1, … , 𝐸𝑛), 
𝐸′ = (𝐸𝑛

′ , … , 𝐸1
′). Put also 𝐼′ = (𝑛 − 𝑖𝑟 + 1,… , 𝑛 − 𝑖1 + 1) 

If 𝐿 is a subspace of dimension 𝑟 and 𝑥1, … , 𝑥𝑟 is an orthonormal basis of L, the Rayleigh trace 

of Awith respect to 𝐿 is 

𝑡𝑟(𝐴|𝐿) = ∑𝑑𝑑
∗𝐴𝑥𝑑 .

𝑟

𝑑=1

 

(This does not depend on the basis) 

Theorem (4.2.3)[143]:If the eigenvalues of a normal matrix 𝐴 are 𝛼1 ≥
𝑙𝑒𝑥 … ≥𝑙𝑒𝑥 𝛼𝑛 one has 

𝛼𝑖1 +⋯+ 𝛼𝑖𝑟 = 𝑚𝑖𝑛
𝐿∈𝛺1(𝐸)

𝑡𝑟(𝐴|𝐿) = 𝑚𝑎𝑥
𝐿∈𝛺1′(𝐸′)

𝑡𝑟(𝐴|𝐿) 

where again max and min are used in the lexicographic sense. 
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This characterization of course also valid for any order of the type ≤𝜃
𝑙𝑒𝑥 can be applied to 

obtaining inequalities for the eigenvalues of a sum of two normal matrices if this sum is itself 

normal. 

Let 𝐴 and 𝐵 be 𝑛 × 𝑛 normal matrices with eigenvalues 𝛼1 ≥
𝑙𝑒𝑥 … ≥𝑙𝑒𝑥 𝛼𝑛and 

𝛽1 ≥
𝑙𝑒𝑥 … ≥𝑙𝑒𝑥 𝛽𝑘, respectively. Suppose that 𝐴 +  𝐵 is normal, with eigenvalues 

𝛾1 ≥
𝑙𝑒𝑥 … ≥𝑙𝑒𝑥 𝛾𝑛. Let 𝐸, 𝐸′, 𝐹, 𝐹′ and 𝐺, 𝐺′′ be sequences of subspaces built from the 

eigenvectors of 𝐴, 𝐵 and 𝐴 +  𝐵,as before. Let 𝐼, 𝐽and 𝐾 be sequences of 𝑟 indices: 

𝐼 = (𝑖1, … , 𝑖𝑟), 1 ≤ 𝑖1 < ⋯ < 𝑖𝑟 ≤ 𝑛, 
𝐽 = (𝑗1, … , 𝑗𝑟), 1 ≤ 𝑗1 < ⋯ < 𝑗𝑟 ≤ 𝑛, 
𝐾 = (𝑘1, … , 𝑘𝑟), 1 ≤ 𝑘1 < ⋯ < 𝑘𝑟 ≤ 𝑛. 

Then, using the characterizations of Theorem (4.2.3), it is easy to see that 

Theorem (4.2.4) [143]:If 

𝛺𝐾(𝐺) ∩ 𝛺𝐼′(𝐸
′) ∩ 𝛺𝐽′(𝐹

′) ≠ 0, 
Then 

𝛾𝑘1 +⋯+ 𝛾𝑘𝑟 ≤
𝑙𝑒𝑥 𝛼𝑖1 +⋯+ 𝛼𝑖𝑟 + 𝛽𝑗1 +⋯𝛽𝑗1𝑟 . 

For the Hermitian case this appears in [263], [289] 

So a geometric condition, nonempty intersection of the three Schubert Varieties, implies 

a linear inequality between the eigenvalues of the three normal matrices 𝐴, 𝐵 and 𝐴 +  𝐵. We 

abreviate this inequality to 

∑𝛾𝑘 ≤
𝑙𝑒𝑥 𝛼𝐼 +∑𝛽𝐽. 

For the Hermitian case,by Klyachko, has shown that the inequalities arising from all such 

geometric conditions actually yield a complete list of restrictions for the eigenvalues of a sum 

of two Hermitian matrices in terms of the eigenvalues of the summands, For recent surveys on 

this see [306], [13].  

Klyachko’s results, coupled with the combinatorial work of Knutson and Tao [11] imply 

the classical Horn conjecture, on eigenvalues of Hermitian Matrices, which we now recall. 

For two real ordered spectra 𝛼 and 𝛽 denote by 𝐸(𝛼, 𝛽) the set of all possible ordered spectra 

of sums of two Hermitian matrices with spectra 𝛼 and 𝛽.  For each 𝑟-tuple 𝐼 = (𝑖1… 𝑖𝑟) with 

1 ≤ 𝑖1 < ⋯ < 𝑖𝑟 ≤ 𝑛 define  

𝜌(𝐼) = (𝑖𝑟 − 𝑟,… , 𝑖2 − 2, 𝑖1 − 1). 
Then Horn’s conjecture, now proved, can be presented as the following recursive description 

of the set E: 

𝐸(𝛼, 𝛽) = {𝛾:∑𝛾 =∑𝛼 +∑𝛽 and∑𝛾𝑘 =∑𝛼𝐼 +∑𝛽𝐽 

wherever 𝜌(𝐾) ∈ 𝐸[𝜌(𝐼), 𝜌(𝐽)], 1 ≤ 𝑟 < 𝑛}. 
By the Schubert calculus (see for example [287]), the geometric condition 𝛺𝐾(𝐺) ∩ 𝛺𝐼′(𝐸

′) ∩
𝛺𝐽′(𝐹

′) ≠ 0 is equivalent to 𝜌(𝐾) ∈ 𝐿𝑅[𝜌(𝐼), 𝜌(𝐽)], meaning that the 𝑟-tuple ρ(K) can be 

obtained from ρ(I) and ρ(J)using the combinatorial Littlewood-Richardson rule. From the 

results in [1] and [11] it turns out that it is also equivalent to 𝜌(𝐾) ∈ 𝐸[𝜌(𝐼), 𝜌(𝐽)]. 
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Return now to normal matrices 𝐴 with spectrum 𝛼, 𝛽 with spectrum β and 𝐴 + 𝐵 with spectrum 

γ with notations as above. As we have seen, the condition ΩK(G) ∩ ΩI′(E
′) ∩ ΩJ′(F

′) ≠

0  implies ρ(K) ∈ LR[ρ(I), ρ(J)]. 
Therefore, bearing in mind the results quoted, we can now state: 

Theorem (4.2.5)[143]:For 1 ≤  𝑟 <  𝑛, whenever one has 𝜌(𝐾) ∈ 𝐸[𝜌(𝐼), 𝜌(𝐽)]the inequality 

∑𝛾𝐾 ≤
𝑙𝑒𝑥∑𝛼𝐼 +∑𝛽𝐽 

holds for the eigenvalues of the normal matrices 𝐴, 𝐵 and 𝐴 +  𝐵. And the same, of course, 

for any order of the type≤𝑙𝑒𝑥. 

In [113], Helmut Wielandt proved an interesting result which gave regions in the 

complex plane which contain all the eigenvalues of the sum of two normal matrices 𝐴 and 𝐵 

in terms of the spectra of 𝐴 and 𝐵. We give a generalization of Wielandt’s result to Banach 

algebras and we also give a multiplicative version of Wielandt’s theorem. Before 

statingWielandt’s theorem, we need to review some geometric concepts in elementary complex 

function theory. 

Definition (4.2.6)[244]: A generalized circle is either a circle ({𝑧 ∈ ℂ ∶  |𝑧 − 𝜅| = 𝑟} where 

𝜅 ∈ ℂ and 𝑟 >  0) or a straight line ({𝑧 ∈ ℂ: 𝑅𝑒(𝛼𝑧) = 𝛽} where 𝛼 ∈ ℂ\{0} and𝛽 ≥ 0)in the 

complex plane. 

Definition (4.2.7) [244]:  A Mobius transformation is a function of the form 𝑓 (𝑧)  =

 
𝑎𝑧+𝑏

𝑐𝑧+𝑑
where 𝑎, 𝑏, 𝑐, 𝑑 ∈  ℂ and 𝑎𝑑 −  𝑏𝑐 ≠  0. 

We note that a Mobius transformation maps generalized circles to generalized circles. 

Definition (4.2.8) [244]: A circular region is a subset of the complex plane of the form𝑓 (𝐾) 
where 𝑓 is a Möbius transform and 𝐾 is either the open unit disk {𝑧 ∈ ℂ: |𝑧| < 1} or the closed 

unit disk {𝑧 ∈ ℂ: |𝑧| ≤ 1}. 
A subset of a complex plane is a circular region if it is either an open or closed disk, a 

complement of an open or closed disk or a half-plane. The boundary of a circular region is 

always a generalized circle. We can now state Wielandt’s theorem. We let 𝜎(𝑀) denote the 

spectrum of the matrix 𝑀. If 𝑆 and 𝑇 are non-empty subsets of the complex plane, then 𝑆 +
𝑇 = {𝑠 + 𝑡: 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇} and 𝑆 · 𝑇 = {𝑠𝑡: 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇}. 
Theorem (4.2.9)[244]: [113]. Let 𝐴 and 𝐵 be two n by n normal matrices. Let 𝐾 be a circular 

region which contains all of the eigenvalues of 𝐵, then 𝜎(𝐴 + 𝐵) ⊆ 𝜎(𝐴) + 𝐾. 

We will give a generalization of this result to Banach algebras. We will assume no knowledge 

of normed algebras and Banach algebras beyond their definitions. (See [311]. All of the normed 

algebras and Banach algebras in this section will be automatically assumed to be complex and 

unital. We denote the unit of a unital normed algebra as 1. If a is an element in a unital normed 

algebra 𝒜, then the spectrum of a is the set {λ ∈ ℂ: (λ1 − a) is not invertible}. The spectrum 

of a Banach algebra is always non-empty and compact. We note that 𝐵(ℋ), the set of all 

bounded linear operators on a Hilbert space is an example of a Banach algebra; if further ℋ is 

finite dimensional then 𝐵(ℋ)is the algebra of 𝑛 by 𝑛 complex matrices where 𝑛 = 𝑑𝑖𝑚(ℋ). 
We have the following. 
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Proposition (4.2.10)[244]:Let 𝒜 be a Banach algebra then 1 + 𝑥 is invertible whenever 𝑥 ∈
𝒜 with ‖x ‖ < 1.  

While this result may fail if𝒜 is an incomplete normed algebra, there are incomplete normed 

algebras for which the above result also holds as noted in [242]. All of our results below hold 

if we replace Banach algebra with complex unital normed algebra for which the conclusion of 

Proposition (4.2.10) holds. Since the proof that every element of a complex Banach algebra has 

compact spectrum uses Proposition (4.2.10) rather than using completeness directly, if A is a 

complex unital normed algebra for which the conclusion of Proposition (4.2.10) holds all its 

elements will have non-empty compact spectrum. 

The term spectral set has several different meanings in mathematics. We will always use the 

term in the following sense: 

Definition (4.2.11)[244]: Let 𝒜 be a complex unital Banach algebra and let 𝑎 ∈ 𝒜. A closed 

subset S of the complex plane which contains the spectrum of a is called a spectral set of a if 
‖𝑟(𝑎)‖ ≤  𝑠𝑢𝑝𝑧∈𝑆|𝑟(𝑧)|for all rational functions 𝑟 which have no poles in 𝑆. 

This concept is due to von Neumann [138] who gave the definition in the special case where 

the Banach algebra is 𝐵(ℋ),. Many different subsets of the complex plane may be the spectral 

set for the same element 𝑎 ∈ 𝒜. In general, the intersection of two spectral sets is not 

necessarily a spectral setand hence there is no minimal spectral set of a unless the spectrum of 

a is itself a spectral set of 𝑎. Any set which contains a spectral set must itself be a spectral set. 

We note that the rational functions form amonoid under composition; the invertible elements 

of thismonoid are the Mobius transformations. This observation leads to the following 

proposition: 

Proposition (4.2.12)[244]: Let 𝒜 be a Banach algebra and let 𝑎 ∈ 𝒜. Let 𝑚(𝑧) be a Mobius 

transformation whose pole lies outside the spectrum of a. If 𝑆 is a spectral set for a, then 𝑚(𝑆) 
is a spectral set for 𝑚(𝑎). 
Spectral sets play an especially important role in the special case where the Banach algebra 

𝒜 = 𝐵(ℋ) where ℋ is a Hilbert space. We note that in his original work [138], von Neumann 

gave necessary and sufficient conditions for a closed circular region in the complex plane to be 

a spectral set of a bounded linear operator. 

Proposition (4.2.13)[244]: [138]. Let ℋ be a complex Hilbert space and let 𝐴 ∈ 𝐵(ℋ). Let 

κ ∈ ℂ and 𝑟 > 0, then the circular region {𝑧 ∈ ℂ: |𝑧 − 𝜅| ≤ 𝑟} is a spectral set for 𝐴 if and only 

if ‖𝐴 − 𝜅𝐼‖ ≤ 𝑟. 
Proposition (4.2.14)[244]:[138] Let ℋbe a complex Hilbert space and let 𝐴 ∈ 𝐵(ℋ). Let 𝜅 ∈
ℂand𝑟 > 0, then the circular region {𝑧 ∈ ℂ: |𝑧 − 𝜅| ≥  𝑟} is a spectral set for 𝐴 if and only if 

‖(𝐴 − 𝜅𝐼)−1‖ ≤ 𝑟 − 1. 

We note that the forward implications of the two previous propositions follow immediately 

from the definition of a spectral set and apply to general Banach algebras. The backwards 

implications of the two previous propositions are false for general Banach algebras. 

Proposition (4.2.15)[244]: [138]. Let ℋ be a complex Hilbert space and let 𝐴 ∈ 𝐵(ℋ). Let 

𝛼 ∈ ℂ\{0} and 𝛽 ≥ 0, then the circular region {𝑧 ∈ ℂ ∶ 𝑅𝑒(𝛼𝑧) ≥  𝛽} is a spectral set for A if 

and only if α(
𝐴+𝐴∗

2
) ≥ 𝛽𝐼. 
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Since a spectral set of an operator must contain its spectrum; the smallest possible candidate to 

be a spectral set of an operator is the spectrum. The class of operators whose spectrum is itself 

a spectral set are important enough to be named (in honour of von Neumann fittingly enough). 

Definition (4.2.16)[244]: Let ℋ be a Hilbert space and let 𝐴 ∈ 𝐵(ℋ).𝐴 is said to be a von 

Neumann operator if the spectrum of 𝐴 is a spectral set of 𝐴. 

The class of von Neumann operators are an important class of operators; important subsets of 

von Neumann operators include the normal operators and the subnormal operators [140]. If ℋ 

is finite dimensional, then 𝐴 ∈  𝐵(ℋ) is a von Neumann operator if and only if it is normal. 

We now extend the definition of a von Neumann operator to Banach algebras in the obvious 

way. 

Definition (4.2.17)[244]: Let 𝒜 be a unital Banach algebra and let 𝑎 ∈ 𝒜. Then a is called a 

von Neumann element if the spectrum of 𝑎 is itself a spectral set of 𝑎. 

Theorem (4.2.18)[244]: Let 𝒜 be a unital Banach algebra and let a, b ∈ 𝒜. Let 𝑆𝑎 and Sb be 

spectral sets of 𝑎 and 𝑏 respectively. If 𝑆𝑎 and 𝑆𝑏 are separated by a generalized circle then 

𝑎 − 𝑏 is an invertible element of 𝐴. 

Proof: Let 𝐺 be a generalized circle which separates 𝑆𝑎 and Sb. If G is a circle, then 𝐺 =
{𝑧 ∈ ℂ: |𝑧 − 𝜅| = 𝑟} for some 𝜅 ∈ ℂ and 𝑟 > 0. One of Sa and Sb is contained in the set {z ∈
ℂ: |z − κ| < 𝑟} and the other is contained in the set {𝑧 ∈ ℂ: |𝑧 − 𝜅| > 𝑟}. WLOG let 𝑆𝑎 ⊆
{𝑧 ∈ ℂ: |𝑧 − 𝜅| > 𝑟} and 𝑆𝑏 ⊆ {𝑧 ∈ ℂ: |𝑧 − 𝜅| < 𝑟}. From this it follows that 𝑎 −  𝜅1 is 

invertible, ‖(𝑎 − 𝜅1)−1‖ < 𝑟−1 and ‖𝑏 −  𝜅1‖ < 𝑟.Therefore ‖(𝑎 − 𝜅1)−1(𝑏 −  𝜅1)‖ < 1 

and 𝑎 − 𝑏 = (𝑎 − 𝜅1) − (𝑏 − 𝜅1) = (𝑎 − 𝜅1)[1 − (𝑎 − 𝜅1)−1(𝑏 − 𝜅1)] is invertible. 

Now suppose 𝐺 is a line.Now choose 𝜏 ∈ ℂ such that 𝜏 ∉ 𝐺 ∪ 𝜎𝑎 ∪ 𝜎𝑏. Then 𝑎 − 𝜏 1 and 𝑏 −
𝜏 1 are two invertible elements of the Banach algebra having spectral sets 𝑆𝑎 − 𝜏and 𝑆𝑏– 𝜏 
respectively which are separated by a line 𝐺 − 𝜏 which does not contain the origin. Hence 

(𝑎 − 𝜏𝐼)−1 and (𝑏 − 𝜏𝐼)−1 have spectral sets (Sa − τ)
−1 and (Sb − τ) − 1 which are separated 

by a circle(𝐺 − 𝜏)−1. Hence (𝑎 −  𝜏 1)−1 − (𝑏 −  𝜏 1)−1 is invertible which means 𝑎 − 𝑏 =
(𝑎 − 𝜏 1) − (𝑏 − 𝜏 1) = (𝑎 −  𝜏 1)[(𝑏 − 𝜏 1)−1 − (𝑎 − 𝜏 1)−1](𝑏 − 𝜏 1) is invertible.  

Corollary (4.2.19)[244]:. Let 𝒜 be a unital Banach algebra and let 𝑎, 𝑏 ∈ 𝒜. Let 𝑆𝑎 nd 𝑆𝑏 be 

spectral sets of 𝑎 and 𝑏 respectively and let 𝐾 any circular region which contains Sb. Then 

𝜎(𝑎 + 𝑏) ⊆ 𝑆𝑎 + 𝐾. 

Proof: Suppose 𝜆 ∈ 𝜎(𝑎 + 𝑏), then 𝑏 − (𝜆1 − 𝑎) = 𝑎 + 𝑏 − 𝜆1 is not invertible. The 

intersection of 𝜆 − 𝑆𝑎and K must be non-empty by Theorem (4.2.18), since the boundary of 𝐾 

is a generalized circle. Now let 𝜇 ∈  (𝜆 − 𝑆𝑎) ∩ 𝐾. We note that since 𝜆 − 𝜇 ∈ 𝑆𝑎, 𝜇 ∈
𝐾and 𝜆 = (𝜆 − 𝜇) + 𝜇, our result follows.  

Our generalization of Wielandt’s theorem now follows immediately. 

Theorem (4.2.20)[244]:. Let 𝒜 be a unital Banach algebra and let 𝑎, 𝑏 be von Neumann 

elements in 𝒜. Let K be a circular region containing σ(b). Then 𝜎(𝑎 + 𝑏) ⊆  𝜎(𝑎) + 𝐾. 

We also have a multiplicative version of Corollary (4.2.19). 

 

 



99 
  

Theorem (4.2.21)[244]: Let 𝒜 be a unital Banach algebra and let 𝑎, 𝑏 ∈ 𝒜 with at least one 

of 𝑎 or 𝑏 being invertible. Let 𝑆𝑎 and Sb be spectral sets of a and b respectively and let 𝐾 be 

any circular region which contains Sb. Then 𝜎(𝑎𝑏) ⊆ 𝑆𝑎 · 𝐾. 

Proof: If a invertible then 𝜆1 − 𝑎𝑏 = 𝑎(𝜆𝑎−1 − 𝑏). Suppose λ cannot be expressed as a 

product of a number in 𝑆𝑎 and a number in 𝐾. Then {𝜆/𝑧 ∶  𝑧 ∈ 𝑆𝑎)}is a spectral set for 𝜆𝑎−1 

which lies entirelyoutside K. Then by Theorem (4.3.13), 𝜆𝑎−1 −  𝑏 and hence 𝜆1 − 𝑎𝑏 is 

invertible. The proof where 𝑏 is invertible is similar.  

The special case where 𝑎 and 𝑏 are von Neumann elements of the Banach algebra is a 

multiplicative version of Wielandt’s theorem. 

Theorem (4.2.22)[244]: Let 𝒜 be a unital Banach algebra and let 𝑎 and 𝑏 be von Neumann 

elements of 𝒜with at least one of 𝑎 or 𝑏 being invertible. Let 𝐾 be any circular region which 

contains the spectrum of 𝑏. Then 𝜎(𝑎𝑏) ⊆ 𝜎(𝑎) · 𝐾. 
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Chapter 5 

Riesz and Szeg𝐨̈ Type Factorizations with Helson -Szeg𝐨̈ Theorem 

We show the contractivity of the underlying conditional expectation on 𝐻𝑝(𝐴) for 𝑝 <
1.We introduce noncommutative Hardy-Lorentz spaces and give the Szegöand inner – outer 

type factorizations of these spaces.We then proceed to use Helson Szegö theorem to haracterise 

the symbols of invertible Toeplitz operators on the noncommutative Hardy spaces associated 

to subdiagonal subalgebras. 

Section (5.1) Factorizations for Noncommutative Hardy Spaces 

We deal with the Riesz and Szegö type factorizations for noncommutative Hardy spaces 

associated with a finite subdiagonal algebra in Arveson’s sense [300]. Let M be a finite von 

Neumann algebra equipped with a normal faithful tracial state τ. Let 𝐷 be a von Neumann 

subalgebra of M, and let 𝛷:𝑀 → 𝐷 be the unique normal faithful conditional expectation such 

that 𝜏 ∘ 𝛷 = 𝜏. 𝐴 finite subdiagonal algebra of M with respect to 𝛷 (or 𝐷) is a 𝜔*-closed 

subalgebra 𝐴 of 𝑀 satisfying the following conditions 

(i) 𝐴 + 𝐴∗is 𝜔∗-dense in 𝑀; 

(ii) 𝛷 is multiplicative on A, i.e., 𝛷(𝑎𝑏) = 𝛷(𝑎)𝛷(𝑏) for all a, 𝑏 ∈ 𝐴; 

(iii) 𝐴 ∩ 𝐴∗ = 𝐷. 

We should call to fact that 𝐴∗denotes the family of the adjoints of the elements of 𝐴, i.e., 𝐴∗ =
{𝑎∗: 𝑎 ∈ 𝐴}. The algebra 𝐷 is called the diagonal of 𝐴. It is proved by Exel [240] that a finite 

subdiagonal algebra 𝐴 is automatically maximal in the sense that if 𝐵 is another subdiagonal 

algebra with respect to 𝛷 containing 𝐴, then 𝐵 = 𝐴. This maximality yields the following 

useful characterization of 𝐴: 

   𝐴 = {𝑥 ∈ 𝑀: 𝜏(𝑥𝑎) = 0, ∀ 𝑎 ∈ 𝐴0},                                            (1) 
where 𝐴0 = 𝐴 ∩ 𝑘𝑒𝑟𝛷 (see [300]). 

Given 0 < 𝑝 ≤ ∞ we denote by 𝐿𝑝(𝑀) the usual noncommutative 𝐿𝑝-space associated 

with (𝑀, 𝜏). Recall that 𝐿∞(𝑀) = 𝑀, equipped with the operator norm. The norm of𝐿𝑝(𝑀) will 

be denoted by ‖・‖𝑝. For 𝑝 < ∞ we define 𝐻𝑝(𝐴) to be the closure of 𝐴 in 𝐿𝑝(𝑀), and for 

𝑝 = ∞ we simply set 𝐻∞(𝐴) = 𝐴 for convenience. These are the so-called Hardy spaces 

associated with 𝐴. They are noncommutative extensions of the classical Hardy spaces on the 

torus 𝑇. On the other hand, the theory of matrix-valued analytic functions provides an important 

noncommutative example. We see [300] and [89]for more examples. We will use the following 

standard notation in the theory: If 𝑆 is a subset of 𝐿𝑝(𝑀), [𝑆]𝑝 will denote the closure of 𝑆 in 

𝐿𝑝(𝑀)  (with respect to the 𝜔∗-topology in the case of 𝑝 = ∞). Thus 𝐻𝑝(𝐴) = [𝐴]𝑝. Formula 

(1) admits the following 𝐻𝑝(𝐴) analogue proved by Saito [153]: 

𝐻𝑝(𝐴) = {𝑥 ∈ 𝐿𝑝(𝑀): 𝜏(𝑥𝑎) = 0, ∀ 𝑎 ∈ 𝐴0}, 1 ≤  𝑝 < ∞.                               (2) 

Moreover, 

𝐻𝑝(𝐴) ∩ 𝐿𝑝(𝑀) = 𝐻𝑞(𝐴), 1 ≤ 𝑝 < 𝑞 ≤ ∞.                                  (3) 

These noncommutative Hardy spaces have received a lot of attention since Arveson’s 

pioneer work. We refer Marsalli- West [176] and Blecher-Labuschagne [66, 58, 56], whereas 

more references on previous works can be found in the survey [89]. Most results on the classical 

Hardy spaces on the torus have been established in this noncommutative setting. Here we 
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mention only two of them directly related with the objective. The first one is the Szegö 

factorization theorem. Already in the fundamental work [300], Arveson proved the following 

factorization theorem: For any invertible 𝑥 ∈ 𝑀 there exist a unitary 𝑢 ∈ 𝑀 and 𝑎 ∈ 𝐴 such 

that 𝑥 = 𝑢𝑎 and 𝑎−1 ∈ 𝐴. This theorem is a base of all subsequent works on noncommutative 

Hardy spaces. It has been largely improved and  extended. The most general form up to date 

was newly obtained by Blecher and Labuschagne [66]: Given 𝑥 ∈ 𝐿𝑝(𝑀) with 1 ≤ 𝑝 ≤ ∞ such 

that 𝛥(𝑥) > 0 there exists ℎ ∈ 𝐻𝑝(𝑀) such that |𝑥| = |ℎ|. Moreover, h is outer in the sense 

that [ℎ𝐴]𝑝 = 𝐻
𝑝(𝑀). Here 𝛥(𝑥) denotes the Fuglede-Kadison determinant of 𝑥 and |𝑥| =

(𝑥∗𝑥)1/2 denotes the absolute value of x. We should emphasize that this result is the (almost) 

perfect analogue of the classical Szeg𝑜̈ theorem which asserts that given a positive measurable 

function w on the torus there exists an outer function ' such that 𝑤 = |𝜑| iff logw is integrable. 

The second result we wish to mention concerns the Riesz factorization, which asserts that 

𝐻𝑝(𝐴) = 𝐻𝑞(𝐴).𝐻𝑟(𝐴) for any 1 ≤ 𝑝, 𝑞, 𝑟 ≤ ∞ such that 1/𝑝 = 1/𝑞 + 1/𝑟. More precisely, 

given 𝑥 ∈ 𝐻𝑝(𝐴) and 𝜀 > 0there exist 𝑦 ∈  𝐻𝑞(𝐴) and 𝑧 ∈ 𝐻𝑟(𝐴) such that 

𝑥 = 𝑦𝑧 and ‖𝑦‖𝑞‖𝑧‖𝑟 ≤ ‖𝑥‖𝑝 + 𝜀. 

This result is proved in [153] for 𝑝 = 𝑞 =2, in [176] for 𝑟 = 1and independently in [164] and 

in [89] for the general case as above. 

Recall that in the case of the classical Hardy spaces the preceding theorems hold for all positive 

indices. The problem of extending these results to the case of indices less than one was left 

unsolved in these works. (We mentioned this problem for the Riesz factorization explicitly in 

[89]). The main purpose is to solve the problem above. As a byproduct, we also extend all 

results on outer operators in [66] to indices less than one. 

A major obstacle to the solution of the previous problem is the use of duality, often in a crucial 

way, on noncommutative Hardy spaces. For instance, duality plays an important role in proving 

formulas (2) and (3), which are key ingredients for the Riesz factorization in [89]. In a similar 

fashion, we will see that their extensions to indices less than one will be essential for our proof 

of the Riesz factorization for all positive indices.  

Our key new tool is the contractivity of the conditional expectation 𝛷 on 𝐴 with respect 

to ‖. ‖𝑝for 0 < 𝑝 < 1. Consequently, Φ extends to a contractive projection from 𝐻𝑝(𝐴) onto 

𝐿𝑝(𝐷). This result is of independent interest and proved . 

We devoted to the Szegö and Riesz type factorizations. In particular, we extend to all 

positive indices Marsalli-West’s theorem quoted previously. It  contains some results on outer 

operators, notably those in 𝐻𝑝(𝐴) for 𝑝 < 1. see [66]. We devoted to a noncommutative Szegö 

formula, which wasobtained in [66] with the additional assumption that 𝑑𝑖𝑚𝐷 < ∞. 

In particular, A will always denote a finite subdiagonal algebra of (M, τ) with diagonal 𝐷. 

It is well-known that extends to a contractive projection from 𝐿𝑝(𝑀) onto 𝐿𝑝(𝐷) for every 1 ≤
𝑝 ≤ ∞. In general, 𝛷 cannot be, of course, continuously extended to 𝐻𝑝(𝐴) for 𝑝 < 1. 

Surprisingly, 𝛷 denotes extend to a contractive projection on 𝐻𝑝(𝐴).  
Theorem (5.1.1)[279]: Let 0 < 𝑝 < 1. Then 

   ∀ 𝑎 ∈ 𝐴 , ‖𝛷(𝑎)‖𝑝 ≤ ‖𝑎‖𝑝 .                                                (4)                                        

Consequently, 𝛷 extends to a contractive projection from 𝐻𝑝(𝐴).  onto 𝐿𝑝(𝐷).The 

extension will be denoted still by𝛷. 
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Inequality (4) is proved by Labuschagne [163] for 𝑝 = 2−𝑛 and for operators a in 𝐴 

which are invertible with inverses in 𝐴 too. Labuschagne’s proof is a very elegant and simple 

argument by induction. It can be adapted to our general situation. 

Proof: Since {𝑘2−𝑛: 𝑘, 𝑛 ∈ 𝑁, 𝑘 ≥ 1} is dense in (0, 1), it suffices to prove (4) for 𝑝 = 𝑘2−𝑛. 

Thus we must show 

  𝜏(|𝛷(𝑎)|𝑘2
−𝑛
) ≤ 𝜏(|𝑎|𝑘2

−𝑛
) , ∀ 𝑎 ∈ 𝐴 .                                          (5)         

This inequality holds for 𝑛 =  0 because of the contractivity of Φ on 𝐿𝑘(𝑀). Now suppose its 

validity for some 𝑘 and 𝑛. We will prove the same inequality with 𝑛 + 1 instead of 𝑛. To this 

end fix 𝑎 ∈ 𝐴 and 𝜀 > 0. Define, by induction, a sequence (𝑥𝑚) by 

𝑥1 = (|𝑎| + 𝜀)
𝑘2−𝑛and 𝑥𝑚+1 =

1

2
[𝑥𝑚 + (|𝑎| + 𝜀)

𝑘2−𝑛𝑥𝑚
−1]. 

Observe that all 𝑥𝑚 belong to the commutative C*-subalgebra generated by |𝑎|. Then it is an 

easy exercise to show that the sequence (xm) is nonincreasing and converges to (|𝑎| + 𝜀)𝑘2
−𝑛−1

 

uniformly (see [158]). We also have 

𝜏(𝑥𝑚+1) =
1

2
[𝜏(𝑥𝑚) + 𝜏(𝑥𝑚

−1/2
 (|𝑎| + 𝜀)𝑘2

−𝑛
𝑥𝑚
−1/2

)] ≥
1

2
[𝜏(𝑥𝑚) + 𝜏(𝑥𝑚

−1/2
 |𝑎|𝑘2

−𝑛
𝑥𝑚
−1/2

)]

=
1

2
[𝜏(𝑥𝑚) + 𝜏( |𝑎|

𝑘2−𝑛𝑥𝑚
−1)]. 

Now applying Arveson’s factorization theorem to each 𝑥𝑚, we find an invertible 𝑏𝑚 ∈ 𝐴 with 

𝑏𝑚
−1 ∈ 𝐴 such that 

|𝑏𝑚| = 𝑥𝑚
2𝑛/𝑘

 . 
Let p = 𝑘2−𝑛. Then 

‖𝑎𝑏𝑚
−1‖𝑝 = ‖|𝑎| 𝑏𝑚

−1‖𝑝 = ‖|𝑎| |(𝑏𝑚
−1 )∗|‖𝑝 = ‖|𝑎||𝑏𝑚|

−1‖𝑝 = (𝜏(|𝑎|
𝑝|𝑏𝑚|

−𝑝))
1
𝑝

= (𝜏(|𝑎|𝑝𝑥𝑚
−1 ))1/𝑝 

where we have used the commutation between |𝑎| and |𝑏𝑚| for the next to the last equality. 

Therefore, by the induction hypothesis and the multiplicativity of 𝛷 on 𝐴 

𝜏(𝑥𝑚+1) ≥
1

2
[𝜏(|𝑏𝑚|

𝑘2−𝑛) + 𝜏(|𝑎𝑚
𝑏−1 |𝑘2

−𝑛
)]

≥
1

2
[𝜏(𝛷|𝑏𝑚|

𝑘2−𝑛) +  𝜏(𝛷|(𝑎)𝛷(𝑏𝑚)
−1 |𝑘2

−𝑛
)]. 

However, by the Hölder inequality 

(𝜏(𝛷|(𝑎) |𝑘2
−𝑛−1

))
2
≤ 𝜏(|𝛷((𝑎)𝛷(𝑏𝑚)

−1|𝑘2−𝑛)|𝜏(𝑏𝑚)|
𝑘2−𝑛). 

It thus follows that  

𝜏(𝑥𝑚+1) ≥
1

2
[𝜏(|𝛷(𝑏𝑚)|

𝑘2−𝑛) + (𝜏(|𝛷(𝑎)𝛷 |𝑘2
−𝑛−1

))
2
𝜏(𝛷|(𝑏𝑚)|

𝑘2−𝑛)
−1
]

≥ 𝜏(|𝛷(𝑎)|𝑘2
−𝑛−1

). 
 

Recalling that 𝑥𝑚 →  (|𝑎|  +  𝜀)
𝑘2−𝑛−1as  𝑚 → ∞, we deduce 

𝜏((|𝑎|  + 𝜀)𝑘2
−𝑛−1

≥ 𝜏|𝛷(𝑎)|𝑘2
−𝑛−1

). 

Letting 𝜀 →  0 we obtain inequality (5) at the (𝑛 + 1) − 𝑡h step. 
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Corollary (5.1.2)[279]:Φis multiplicative on Hardy spaces. More precisely, 𝛷(𝑎𝑏 =
𝛷(𝑎)𝛷(𝑏)for𝑎 ∈ 𝐻𝑝(𝐴) and 𝑏 ∈ 𝐻𝑞(𝐴)with0 <  𝑝, 𝑞 ≤ ∞. 

Proof: Note that 𝑎𝑏 ∈ 𝐻𝑟(𝐴) for any 𝑎 ∈ 𝐻𝑝(𝐴) and b ∈ 𝐻𝑞(𝐴), where r is determined by 

1/𝑟 = 1/𝑝 + 1/𝑞. Thus 𝛷(𝑎𝑏) is well defined. Then the corollary follows immediately from 

the multiplicativity of 𝛷 on 𝐴 and Theorem (5.1.1).  

The following is the extension to the case 𝑝 < 1 of Arveson-Labuschagne’s Jensen inequality 

(cf. [300, 163]). Recall that the Fuglede-Kadison determinant 𝛥(𝑥) of an operator x ∈
𝐿𝑝(𝑀) (0 <  𝑝 ≤ ∞)can be defined by 

𝛥(𝑥) = 𝑒𝑥𝑝(𝜏(𝑙𝑜𝑔 |𝑥|)) =  𝑒𝑥𝑝(∫ 𝑙𝑜𝑔 𝑡 𝑑𝑣|𝑥|(𝑡)

∞

0

) , 

where 𝑑𝑣|𝑥| denotes the probability measure on ℝ+ which is obtained by composing the 

spectral measure of |𝑥| with the trace 𝜏. It is easy to check that 

𝛥(𝑥)  = 𝑙𝑖𝑚
𝑝→0
‖𝑥‖𝑝 . 

As the usual determinant of matrices, Δ is also multiplicative: 𝛥(𝑥𝑦) = 𝛥(𝑥)𝛥(𝑥). We refer 

for information on determinant to [26, 300] in the case of bounded operators, and to [157, 76] 

for unbounded operators. 

Corollary (5.1.3)[278]:For any 0 < 𝑝 ≤ ∞ and 𝑥 ∈ 𝐻𝑝(𝐴) we have 𝛥(𝛷(𝑥)) ≤ 𝛥(𝑥). 
Proof: Let𝑥 ∈ 𝐻𝑝(𝐴).Then 𝑥 ∈ 𝐻𝑞(𝐴)too for 𝑞 ≤ 𝑝. Thus by Theorem (5.1.1) 

‖𝛷(𝑥)‖𝑞 ≤ ‖ 𝑥‖𝑞 . 

Letting 𝑞 → 0 yields 𝛥(𝛷(𝑥))  ≤  𝛥(𝑥). 
The following result is a Szegö type factorization theorem. It is stated in [89]. We take this 

opportunity to provide a proof. It is an improvement of the previous factorization theorems of 

Arveson [300] and Saito [153]. As already quoted in the introduction, Blecher and 

Labuschagne newly obtained a Szegö factorization for any ω ∈ Lp(M) with 1 ≤ p ≤ ∞ such 

that Δ(ω) >  0. Note that the property that ℎ−1 ∈  𝐻𝑞(𝐴) whenever 𝜔−1 ∈ 𝐿𝑞(𝑀) will be 

important for our proof of the Riesz factorization below. Let us also point out that although not 

in full generality, this result has hitherto been strong enough for applications. See Theorem 

(5.1.13) below for an improvement. 

Theorem (5.1.4)[279]:Let 0 < 𝑝, 𝑞 ≤ ∞. Let 𝜔 ∈  𝐿𝑝(𝑀) be an invertible operator such that 

𝜔−1 ∈ 𝐿𝑞(𝑀). Then there exist a unitary 𝑢 ∈ 𝑀 and ℎ ∈ 𝐻𝑝(𝐴) such that 𝜔 = 𝑢ℎ and ℎ−1 ∈
𝐻𝑞(𝐴). 
Proof:We first consider the case 𝑝 = 𝑞 = 2. The proof of this special case is modelled on 

Arveson’s original proof of his Szeg¨o factorization theorem (see also [153]). Let 𝑥 be the 

orthogonal projection of w in [𝑤𝐴0]2; and set 𝑦 =  𝑤 −  𝑥. Thus y ⊥ [wA0]2; whence 𝑦 ⊥
[𝑦𝐴0]2. It follows that  

∀ 𝑎 ∈ 𝐴0,    𝜏(𝑦
∗𝑦𝑎)  =  0. 

Hence by (2),  𝑦∗𝑦 ∈  𝐻1(𝐴) = [𝐴]1, and 𝑦∗𝑦 ∈ [𝐴∗]1 too. On the other hand, it is easy to see 

that [𝐴]1 ∩ [𝐴
∗]1 = 𝐿

1(𝐷). Indeed, if 𝑎 ∈ [𝐴]1 ∩ [𝐴
∗]1, then τ(𝑎𝑏) = 0 for any 𝑏 ∈ 𝐴0 + 𝐴0

∗ ; 

so 𝜏(𝑎𝑏)  =  𝜏(𝛷(𝑎)𝑏) for any 𝑏 ∈ 𝐴 + 𝐴∗. It follows that 𝑎 = 𝛷(𝑎) ∈ 𝐿1(𝐷). Consequently, 

𝑦∗𝑦 ∈ 𝐿1(𝐷), so|𝑦| ∈ 𝐿2(𝐷). 
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Regarding 𝑀 as a von Neumann algebra acting on 𝐿2(𝑀) by left multiplication, we claim that 

y is cyclic for M. This is equivalent to showing that 𝑦 is separating for the commutant of 𝑀. 
However, this commutant coincides with the algebra of all right multiplications on 𝐿2(𝑀)by 

the elements of 𝑀. Thus we are reduced to prove that if 𝑧 ∈ 𝑀 is such that 𝑦𝑧 = 0, then 𝑧 = 0. 

We have: 

0 = 𝜏(𝑧∗𝑦∗𝑦𝑧) = 𝜏(|𝑦|2|𝑧∗|2) = 𝜏(|𝑦|2 𝛷(|𝑧∗|2)) = ‖𝑦𝑑‖2
2, 

where 𝑑 = 𝛷(|𝑧∗|2)1/2 ∈ 𝐷; whence 𝑦𝑑 = 0. Choose a sequence (𝑎𝑛) ⊂ 𝐴0 such that 

𝑥 =  lim 𝜔𝑎𝑛.                                                               (6) 

Then (recalling that 𝜔−1 ∈ 𝐿2(𝑀)) 
0 = 𝜏(𝜔−1𝑦𝑑) = 𝑙𝑖𝑚

𝑛
𝜏 (𝜔−1(𝜔 − 𝜔𝑎𝑛)𝑑) = 𝜏(𝑑) − 𝑙𝑖𝑚

𝑛
𝜏(𝑎𝑛𝑑) = 𝜏(𝑑) 

It follows that 𝑑 = 0, so by virtue of the faithfulness of 𝛷, 𝑧 = 0 too. This yields our claim. 

Therefore, [𝑀𝑦]2 = 𝐿
2(𝑀). It turns out that the right support of y is 1. Since 𝑀 is finite, the 

left support of y is also equal to 1, so 𝑦 is of full support. Consequently[𝑀𝑦]2 = 𝐿
2(𝑀)too. Let 

𝑦 = 𝑢|𝑦|be the polar decomposition of 𝑦. Then 𝑢 is a unitary in 𝑀. Let ℎ = 𝑢∗𝑤. We are going 

to prove that ℎ ∈ 𝐻2(𝐴). To this end we first note the following orthogonal decomposition of 

𝐿2(𝑀): 
𝐿2(𝑀) = [𝑦𝐴0]2 ⊕ [𝑦𝐷]2⊕ [𝑦𝐴0

∗  ]2                                      (7)   

Indeed, for any 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐴0 we have 

〈𝑦𝑎, 𝑦𝑏∗〉 = 𝜏(𝑏𝑦∗𝑦𝑎) = 𝜏(|𝑦|2𝑎𝑏) = 0; 
so [𝑦𝐴0]2 ⊕ [𝑦𝐷]2⊕ [𝑦𝐴0

∗  ]2 is really an orthogonal sum. On the other hand, by the previous 

paragraph, we see that 

𝐿2(𝑀) = [𝑦𝑀]2 ⊂ [𝑦𝐴0]2 ⊕ [𝑦𝐷]2⊕ [𝑦𝐴0
∗  ]2 . 

therefore, decomposition (7) follows. Applying 𝑢∗ to both sides of (7), we deduce 

𝐿2(𝑀) = [𝑢∗𝑦𝐴0]2 ⊕ [𝑢∗𝑦𝐷]2⊕ [𝑢∗𝑦𝐴0
∗  ]2 

                                                   =  [|𝑦|𝐴0]2⊕ [|𝑦|𝐷]2⊕ [|𝑦|𝐴0
∗ ]2 . 

Since |𝑦|  ∈ 𝐿2(𝐷),  [|𝑦|𝐴0]2 ⊂ [𝐴0]2, and similarly for the two other terms on the right. 

Therefore, 

𝐿2(𝑀) =  [|𝑦|𝐴0]2⊕ [|𝑦|𝐷]2⊕ [|𝑦|𝐴0
∗ ]2 ⊂ [𝐴0]2⊕ [𝐷]2⊕ [𝐴0

∗  ]2 = 𝐿
2(𝑀) . 

Hence 

 [|𝑦|𝐴0]2 = [𝐴0]2, [|𝑦|𝐷]2 = [𝐷]2, [|𝑦|𝐴0
∗ ]2 = [𝐴0

∗  ]2                       (8) 

Passing to adjoints, we also have 

 [𝐴0|𝑦|]2 = [𝐴0]2, [𝐷|𝑦|]2 = [𝐷]2, [𝐴0
∗ |𝑦|]2 = [𝐴0

∗  ]2  . 
Now it is easy to show that ℎ = 𝑢∗𝜔 ∈ 𝐻2(𝐴). Indeed, since 𝑦 ⊥  [𝜔𝐴0], 𝜏(𝑦

∗𝜔𝑎) = 0 for all 

𝑎 ∈ 𝐴0; so 𝜏(𝑎|𝑦|𝑢∗𝜔) = 0. However,  [𝐴0|𝑦|]2 = [𝐴0]2. Thus 

∀ 𝑎 ∈ 𝐻0
2(𝐴),   𝜏(𝑎ℎ) = 0. 

Hence by (1), ℎ ∈ 𝐻2(𝐴), as desired. 

It remains to show that ℎ−1 ∈ 𝐻2(𝐴).To this end we first observe that 𝛷(ℎ)𝛷(ℎ−1) = 1. 

Indeed, given 𝑑 ∈  𝐷 we have, by (6) 

𝜏((ℎ)𝛷(ℎ−1)|𝑦|𝑑) =  𝜏(ℎ−1|𝑦|𝑑𝛷(ℎ)) =  𝜏(𝜔−1𝑢|𝑦|𝑑𝛷(ℎ))
= 𝑙𝑖𝑚

𝑛
𝜏 (𝜔−1(𝜔 − 𝜔𝑎𝑛)𝑑𝛷(ℎ)) = 𝜏𝑑𝛷(ℎ)) =  𝜏(ℎ𝑑) = 𝜏(𝑢

∗𝜔𝑑) = 𝜏(𝑢∗𝑦𝑑)

= 𝜏(|𝑦|𝑑), 
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where we have used the fact that 

𝜏(𝑢∗𝑥𝑑) = 𝑙𝑖𝑚
𝑛
𝛷 (𝑢∗𝜔𝑎𝑛𝑑) = 𝑙𝑖𝑚

𝑛
𝜏 (ℎ𝑎𝑛𝑑) = 0. 

Since [|𝑦|𝐷]2 = 𝐿
2(𝐷), we deduce our observation. Therefore, 𝛷(ℎ) is invertible and its 

inverse is 𝛷(ℎ − 1). On the other hand, by (6) 

𝛷(ℎ) = 𝑙𝑖𝑚
𝑛
𝛷 (𝑢∗(𝑦 +  𝜔𝑎𝑛)) = 𝛷(|𝑦|) + 𝑙𝑖𝑚

𝑛
𝛷 (ℎ𝑎𝑛) = 𝑢

∗𝑦. 

Hence, 

𝑢 = 𝑦𝛷(ℎ)−1 = 𝑦𝛷(ℎ−1). 
Now let 𝑎 ∈ 𝐴0. Then  

𝜏(ℎ−1𝑎) = 𝜏(𝜔−1𝑢𝑎) = 𝜏(𝜔−1𝑦𝛷(ℎ − 1)𝑎) = 𝑙𝑖𝑚
𝑛
𝜏 𝜔−1(𝜔 − 𝜔𝑎𝑛)𝛷(ℎ − 1)𝑎) = 0. 

It follows that ℎ−1 ∈ 𝐻2(𝐴).Therefore, we are done in the case 𝑝 = 𝑞 =  2. 

The general case can be easily reduced to this special one. Indeed, if 𝑝 ≥ 2and 𝑞 ≥ 2, then 

given 𝜔 ∈ 𝐿𝑝(𝑀) with 𝜔−1 ∈ 𝐿𝑞(𝑀), we can apply the preceding part and then find a unitary 

𝑢 ∈  𝑀 and ℎ ∈ 𝐻2(𝐴) such that 𝜔 = 𝑢ℎ andℎ−1 ∈ 𝐻2(𝐴). Then ℎ = 𝑢∗𝜔 ∈ 𝐿𝑝(𝑀), so 𝜔 ∈
𝐻2(𝐴) ∩ 𝐿𝑝(𝑀) = 𝐻𝑝(𝐴) by (3). Similarly, ℎ−1 ∈ 𝐻𝑞(𝐴). 
Suppose 𝑚𝑖𝑛(𝑝, 𝑞) < 2. Choose an integer 𝑛 such that 𝑚𝑖𝑛(𝑛𝑝, 𝑛𝑞) ≥ 2. Let 𝜔 = 𝑣|𝜔| be the 

polar decomposition of 𝜔. Note that 𝑣 ∈ 𝑀 is a unitary. Write  

𝜔 = 𝑣|𝜔|1/𝑛 |𝜔|
1
𝑛…  |𝜔|1/𝑛 = 𝜔1𝜔2…𝜔𝑛, 

where 𝜔1 = 𝑣|𝜔|
1/𝑛 and 𝜔𝑘 = |𝜔|

1/𝑛 for2 ≤ 𝑘 ≤ 𝑛. Since 𝜔𝑘 ∈ 𝐿
𝑛𝑝(𝑀) and 𝜔𝑘

−1 ∈
𝐿𝑛𝑞(𝑀), by what is already proved we have a factorization 

𝜔𝑛 = 𝑢𝑛ℎ𝑛 
with 𝑢𝑛 ∈ 𝑀a unitary, ℎ𝑛 ∈ 𝐻

𝑛𝑝(𝐴)such that ℎ𝑛
−1 ∈ 𝐻𝑛𝑞(𝐴). Repeating this argument, we 

again get a same factorization for 𝜔𝑛−1𝑢𝑛: 

𝜔𝑛−1𝑢𝑛 = 𝑢𝑛−1ℎ𝑛−1 ; 
and then for 𝜔𝑛−2𝑢𝑛−1, and so on. In this way, we obtain a factorization: 

𝜔 =  𝑢ℎ1…ℎ𝑛, 
where 𝑢 ∈  𝑀 is a unitary, ℎ𝑘 ∈ 𝐻

𝑛𝑝(𝐴) such that ℎ𝑘
−1 ∈ 𝐻𝑛𝑞(𝐴). Setting ℎ = 𝑢ℎ1…ℎ𝑛, we 

then see that 𝜔 = 𝑢ℎ is the desired factorization. Hence the proof of the theorem is complete.  

Remark(5.1.5) [279]:Let 𝜔 ∈ 𝐿2(𝑀) be an invertible operator such that 𝜔−1 ∈ 𝐿2(𝑀). Let 

𝜔 = 𝑢ℎ be the factorization in Theorem (5.1.4). The preceding proof shows that [ℎ𝐴]2 =
𝐻2(𝐴). Indeed, it is clear that[𝑦𝐴]2 ⊂ [𝜔𝐴]2. Using decomposition (7), we get 

[𝜔𝐴]2⊖ [𝑦𝐴]2 = [𝜔𝐴]2 ∩ [𝑦𝐴0
∗  ]2 . 

Now for any 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐴0, 

〈𝜔𝑎, 𝑦𝑏∗〉 = 𝜏(𝑦∗𝜔𝑎𝑏) = 0 

since 𝑦 ⊥ [𝜔𝐴0]. It then follows that [𝜔𝐴]2⊖ [𝑦𝐴]2 = {0}, so[𝜔𝐴]2 = [𝑦𝐴]2. Hence, by (8) 

[𝑦𝐴]2 = [𝑢
∗𝜔𝐴]2 = [𝑢

∗𝑦𝐴]2 = [|𝑦|𝐴]2 = 𝐻
2(𝐴). 

 

 

We turn to the Riesz factorization. We first need to extend (3) to all indices. 

Proposition (5.1.6)[279]:  Let 0 < 𝑝 < 𝑞 ≤ ∞. Then 

𝐻𝑝(𝐴) ∩ 𝐿𝑞(𝑀) = 𝐻𝑞(𝐴) and 𝐻𝑝(𝐴) ∩ 𝐿𝑞(𝑀) = 𝐻0
𝑞
 (𝐴), 
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where 𝐻0
𝑝
(𝐴) =  [𝐴0]𝑝. 

Proof: It is obvious that 𝐻𝑞(𝐴) ⊂ 𝐻𝑝(𝐴) ∩ 𝐿𝑞(𝑀). To prove the converse inclusion, we first 

consider the case q = ∞. Thus let 𝑥 ∈ 𝐻𝑝(𝐴) ∩ 𝑀. Then by Corollary (5.1.2),  

∀ 𝑎 ∈ 𝐴0 , 𝛷(𝑥𝑎) = 𝛷(𝑥)𝛷(𝑎) = 0. 
Hence by (1), 𝑥 ∈ 𝐴. 

 

Now consider the general case. Fix an 𝑥 ∈ 𝐻𝑝(𝐴) ∩ 𝐿𝑞(𝑀). Applying Theorem (5.1.4) 

to 𝜔 = (𝑥∗𝑥 + 1)1/2, we get an invertible ℎ ∈ 𝐻𝑞(𝐴)such that 

ℎ∗ℎ = 𝑥∗𝑥 + 1 and ℎ−1 ∈ 𝐴. 
Since ℎ∗ℎ ≤ 𝑥∗𝑥 , there exists a contraction 𝑣 ∈ 𝑀 such that 𝑥 = 𝑣ℎ. Then 𝑣 = 𝑥ℎ−1 ∈
𝐻𝑝(𝐴) ∩ 𝑀, so 𝑣 ∈ 𝐴. Consequently, 𝑥 ∈ 𝐴.𝐻𝑞(𝐴) = 𝐻𝑞(𝐴). Thus we proved the first 

equality. The second is then an easy consequence. For this it suffices to note that 𝐻0
𝑝
 (𝐴) =

{𝑥 ∈ 𝐻𝑝(𝐴):𝛷(𝑥) = 0}. The later equality follows from the continuity of 𝛷 on 𝐻𝑝(𝐴).  
Theorem (5.1.7)[279]: Let 0 < 𝑝, 𝑞, 𝑟 ≤ ∞ such that 1/𝑝 = 1/𝑞 + 1/𝑟. Then for 𝑥 ∈
𝐻𝑝(𝐴) and 𝜀 >  0 there exist 𝑦 ∈ 𝐻𝑞(𝐴) and 𝑧 ∈ 𝐻𝑟(𝐴) such that 𝑥 = 𝑦𝑧 and ‖𝑦‖𝑞 ‖𝑧‖𝑟 ≤
‖𝑥‖𝑝 + 𝜀. Consequently, 

‖𝑥‖𝑝 = 𝑖𝑛𝑓{‖𝑦‖𝑞 ‖𝑧‖𝑟: 𝑥 = 𝑦𝑧, 𝑦 ∈ 𝐻
𝑞(𝐴), 𝑧 ∈ 𝐻𝑟(𝐴)} 

Proof: The case where 𝑚𝑎𝑥(𝑞, 𝑟) = ∞ is trivial. Thus we assume both 𝑞 and 𝑟 to be finite.  

Let 𝜔 = (𝑥∗𝑥 + 𝜀)1/2. Then 𝜔 ∈ 𝐿𝑝(𝑀) and 𝜔−1 ∈ 𝑀. Let 𝑣 ∈  𝑀 be a contraction such that 

𝑥 = 𝑣𝜔. Now applying Theorem (5.1.4) to 𝜔𝑝/𝑟, we have: 𝜔𝑝/𝑟 = 𝑢𝑧, where 𝑢 is a unitary in 

𝑀 and 𝑧 ∈ 𝐻𝑟(𝐴) such that 𝑧−1 ∈ 𝐴. Set 𝑦 = 𝑣𝜔𝑝/𝑞  𝑢. Then 𝑥 = 𝑦𝑧, so 𝑦 = 𝑥𝑧−1. Since 𝑥 ∈
𝐻𝑝(𝐴) and 𝑧−1 ∈ 𝐴, 𝑦 ∈ 𝐻𝑝(𝐴). On the other hand, 𝑦 belongs to 𝐿𝑞(𝑀) too. Therefore, 𝑦 ∈
𝐻𝑞(𝐴) by virtue of Proposition (5.1.6). The norm estimate is clear.  

We consider outer operators. All results below on the left and right outers are due to Blecher 

and Labuschagne [66] in the case of indices not less than one. The notion of bilaterally outer is 

new. We start with the following result. 

Proposition (5.1.8)[279]: Let 0 < 𝑝 < 𝑞 ≤ ∞ and let ℎ ∈ 𝐻𝑞(𝐴). Then 

(i) [ℎ𝐴]𝑝 = 𝐻
𝑝(𝐴) iff [ℎ𝐴]𝑞 = 𝐻

𝑞(𝐴); 

(ii) [𝐴ℎ]𝑝 = 𝐻
𝑝(𝐴) iff [𝐴ℎ]𝑞 = 𝐻

𝑞(𝐴); 

(iii) [𝐴ℎ𝐴]𝑝 = 𝐻
𝑝(𝐴) iff [𝐴ℎ𝐴]𝑞 = 𝐻

𝑞(𝐴). 
Proof: We prove only the third equivalence. The proofs of the two others are similar (and even 

simpler). It is clear that [𝐴ℎ𝐴]𝑝 = 𝐻
𝑝(𝐴) ⇒ [𝐴ℎ𝐴]𝑞 = 𝐻

𝑞(𝐴). To prove the converse 

implication we first consider the case 𝑞 ≥ 1.Let 𝑞′ be the conjugate index of 𝑞. Let 𝑥 ∈ 𝐿𝑞′(𝑀) 
be such that 

∀ 𝑎, 𝑏 ∈ 𝐴, 𝜏(𝑥𝑎ℎ𝑏) = 0. 
 

Then 𝑥𝑎ℎ ∈ 𝐻0
1 (𝐴) for any 𝑎 ∈ 𝐴by virtue of (2) (more rigorously, its Hp -analogue as in 

Proposition (5.1.6)). On the other hand, by the assumption that [𝐴ℎ𝐴]𝑝 = 𝐻
𝑝(𝐴), there exist 

two sequences (𝑎𝑛), (𝑏𝑛) ⊂ 𝐴 such that 

𝑙𝑖𝑚
𝑛
𝑎𝑛ℎ𝑏𝑛 = 1 𝑖𝑛 𝐻

𝑝(𝐴). 
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Consequently, 

𝑙𝑖𝑚
𝑛
𝑥𝑎𝑛ℎ𝑏𝑛 = 𝑥 𝑖𝑛 𝐿

𝑟(𝑀), 

where 
1

𝑟
= 1/𝑞′ + 1/𝑝.Since 𝑥𝑎𝑛ℎ𝑏𝑛 = (𝑥𝑎𝑛ℎ)𝑏𝑛 ∈ 𝐻0

1(𝐴) ⊂ 𝐻0
𝑟(𝐴), we deduce that 𝑥 ∈

𝐻0
𝑟  (𝐴). Therefore, 𝑥 ∈ 𝐻0

𝑟  (𝐴) ∩ 𝐿𝑞′(𝑀), so by Proposition (5.1.6), 𝑥 ∈ 𝐻0
𝑞′(𝐴) Hence, 

𝜏(𝑥𝑦) = 0 for all y ∈ 𝐻𝑞(𝐴). Thus [𝐴ℎ𝐴]𝑞 = 𝐻
𝑞(𝐴). 

Now assume 𝑞 < 1. Choose an integer 𝑛 such that 𝑛𝑝 ≥ 2. By the proof of Theorem 

(5.1.7) and Remark(5.1.5), we deduce a factorization: 

ℎ = ℎ1ℎ2…ℎ𝑛 , 
where ℎ𝑘 ∈ 𝐻

𝑛𝑝(𝐴) for every 1 ≤ 𝑘 ≤ 𝑛 and [ℎ𝑘𝐴]2 = 𝐻
2(𝐴)for 2 ≤ 𝑘 ≤  𝑛. By the left 

version (i.e;part i) of the previous case already proved, we also have  [ℎ𝑘𝐴]𝑛𝑞 =

𝐻𝑛𝑞(𝐴) and [ℎ𝑘𝐴]𝑛𝑞 = 𝐻
𝑛𝑞(𝐴)for 2 ≤ 𝑘 ≤ 𝑛. Let us deal with the first factor ℎ1. Using 

[𝐴ℎ𝐴]𝑝 = 𝐻
𝑝(𝐴) and [ℎ𝑘𝐴]𝑛𝑝 = 𝐻

𝑛𝑝(𝐴)for 2 ≤ 𝑘 ≤ 𝑛, we see that [𝐴ℎ1𝐴]𝑝 = 𝐻
𝑝(𝐴);so 

again  [𝐴ℎ1𝐴]𝑝 = 𝐻
𝑝(𝐴) by virtue of the first part. It is then clear that [𝐴ℎ𝐴]𝑞 = 𝐻

𝑞(𝐴). 

The previous result justifies the relative independence of the index 𝑝 in the following definition. 

Definition (5.1.9)[279]: Let 0 < 𝑝 ≤ ∞. An operator ℎ ∈ 𝐻𝑝(𝐴) is called left outer, right outer 

or bilaterally outer according to  

[hA]p = 𝐻
𝑝(𝐴), [ℎ𝐴]𝑝 = 𝐻

𝑝(𝐴)or[𝐴ℎ𝐴]𝑝 = 𝐻
𝑝(𝐴). 

Theorem (5.1.10)[278]: Let 0 < 𝑝 ≤ ∞ and ℎ ∈ 𝐻𝑝(𝐴). 
(i)  If ℎ is left or right outer, then 𝛥(ℎ) = 𝛥𝛷(ℎ)). Conversely, if 𝛥(ℎ) = 𝛥(𝛷(ℎ)) and 

𝛥(ℎ) > 0, then ℎ is left and right outer (so bilaterally outer too). 

(ii)  If 𝐴is antisymmetric (i.e; 𝑑𝑖𝑚𝐷 = 1) and h is bilaterally outer, then 𝛥(ℎ) = 𝛥(𝛷(ℎ)). 
Proof: (i) This part is proved in [66] for 𝑝 ≥ 1. Assume ℎ is left outer. Let 𝑑 ∈ 𝐷. Using 

Theorem (5.1.1), we obtain 

‖𝛷(ℎ)𝑑‖𝑝 = 𝑖𝑛𝑓{‖ℎ𝑑 + 𝑥0‖𝑝: 𝑥 ∈ 𝐻0
𝑝
(𝐴)}. 

On the other hand, 

[ℎ𝐴0]𝑝 = [[ℎ𝐴]𝑝𝐴0]𝑝 =
[[𝐴]𝑝𝐴0]𝑝 = [𝐴0]𝑝 = 𝐻0

𝑝
 (𝐴). 

Therefore, 

‖𝛷(ℎ)𝑑‖𝑝 = 𝑖𝑛𝑓{‖ℎ(𝑑 + 𝑎0)‖𝑝: 𝑎 ∈ 𝐴0}. 

Recall the following characterization of𝛥(𝑥) from [66]: 

𝛥(𝑥) = 𝑖𝑛𝑓{‖𝑥𝑎‖𝑝: 𝑎 ∈ 𝐴, 𝛥(𝛷(𝑎)) ≥ 1}.                                                  (9) 

Now using this formula twice, we obtain 

𝜏(𝛷(ℎ)) = 𝑖𝑛𝑓{‖𝛷(ℎ)𝑑‖𝑝: 𝑑 ∈ 𝐷, 𝛥(𝑑) ≥ 1}

= 𝑖𝑛𝑓{‖ℎ(𝑑 + 𝑎0)‖𝑝: 𝑑 ∈ 𝐷, 𝛥(𝑑) ≥ 1, 𝑎0 ∈ 𝐴0} =  𝛥(ℎ). 

Let us show the converse under the additional assumption that 𝛥(ℎ) > 0. We will use the case 

𝑝 ≥ 1 already proved in [66]. Thus assume 𝑝 < 1. Choose an integer 𝑛 such that 𝑛𝑝 ≥ 1. By 

Theorem (5.1.7), there exist ℎ1, . . . , ℎ𝑛 ∈ 𝐻
𝑛𝑝(𝐴) such that ℎ = ℎ1…ℎ𝑛.Then 𝛥(ℎ) =

𝛥(ℎ1)…  𝛥(ℎ𝑛); so 𝛥(ℎ𝑘) > 0 for all 1 ≤ 𝑘 ≤ 𝑛. On the other hand, by Arveson-

Labuschagne’s Jensen inequality [300,163] (or Corollary (5.1.3)), 𝛥(𝛷(ℎ𝑘)) ≤ 𝛥(ℎ𝑘). 
However, 
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𝛥(𝛷(ℎ)) = 𝛥(𝛷(ℎ1))…  𝛥(𝛷(ℎ𝑛)) ≤ 𝛥(ℎ1)…𝛥(ℎ𝑛) = 𝛥(ℎ) = 𝛥(𝛷(ℎ)). 
It then follows that 𝛥(𝛷(ℎ𝑘)) ≤ 𝛥(ℎ𝑘) for all k. Now ℎ𝑘 ∈ 𝐻

𝑛𝑝(𝐴) with 𝑛𝑝 ≥ 1, so hk is left 

and right outer. Consequently, h is left and right outer. 

(ii) This proof is similar to that of the first part of i). We will use the following variant of (9) 

𝛥(𝑥) = 𝑖𝑛𝑓{‖(𝑎𝑥𝑏)‖𝑝: 𝑎, 𝑏 ∈ 𝐴, 𝛥(𝛷(𝑎)) ≥ 1, 𝛥(𝛷(𝑏)) ≥ 1}          (10) 

for every 𝑥 ∈ 𝐿𝑝(𝑀). This formula immediately follows from (9). Indeed, by (9) and the 

multiplicativity of 𝛥 

𝑖𝑛𝑓{‖(𝑎𝑥𝑏)‖𝑝: 𝑎, 𝑏 ∈ 𝐴, 𝛥(𝛷(𝑎)) ≥ 1, 𝛥(𝛷(𝑏)) ≥ 1} =  𝑖𝑛𝑓{𝛥(𝑎𝑥): 𝑎 ∈ 𝐴, 𝛥(𝛷(𝑎)) ≥ 1}

= 𝑖𝑛𝑓{𝛥(𝑎)𝛥(𝑥): 𝑎 ∈ 𝐴, 𝛥(𝛷(𝑎)) ≥ 1} = ∆(𝑥). 
Now assume ℎ ∈ 𝐻𝑝(𝐴) is bilaterally outer and A is antisymmetric. Then 𝛷(ℎ) is a multiple 

of the unit of M. As in the proof of i), We have 

‖𝛷(ℎ)‖𝑝 = 𝑖𝑛𝑓{‖ℎ + 𝑥‖𝑝: 𝑥 ∈ 𝐻0
𝑝
(𝐴)} = 𝑖𝑛𝑓{‖ℎ + 𝑎ℎ𝑏0‖𝑝: 𝑎 ∈ 𝐴, 𝑏0 ∈ 𝐴0}.         (11) 

Using 𝑑𝑖𝑚𝐷 = 1, we easily check that  

𝑖𝑛𝑓{‖ℎ + 𝑎ℎ𝑏0‖𝑝: 𝑎 ∈ 𝐴, 𝑏0 ∈ 𝐴0} =  𝑖𝑛𝑓{‖(1 + 𝑎0)ℎ(1 +  𝑏0)‖𝑝: 𝑎0, 𝑏0 ∈ 𝐴0}.     (12) 

Indeed, it suffices to show that both sets{ℎ + 𝑎ℎ𝑏0: 𝑎 ∈ 𝐴, 𝑏0 ∈ 𝐴0}and {(1 +  𝑎0)ℎ(1 +
 𝑏0): 𝑎0, 𝑏0 ∈ 𝐴0} are dense in {𝑥 ∈ 𝐻𝑝(𝐴):𝛷(𝑥) =  𝛷(ℎ)}. The first density immediately 

follows from the density of Aℎ𝐴0 in 𝐻0
𝑝 
 (𝐴). On the other hand, let𝑥 ∈ 𝐻𝑝(𝐴)with 𝛷(𝑥) =

𝛷(ℎ) and let 𝑎𝑛, 𝑏𝑛 ∈ 𝐴 such that 𝑙𝑖𝑚
𝑛
𝑎𝑛ℎ𝑏𝑛 = 𝑥. By Theorem (5.1.1), 

𝑙𝑖𝑚
𝑛
𝛷 (𝑎𝑛)𝛷(ℎ)𝛷(𝑏𝑛) 𝛷(𝑥). 

Since 𝛷(𝑥) = 𝜏(𝑥)1 = 𝜏(ℎ)1 = 𝛷(ℎ)  ≠  0, we deduce that 𝑙𝑖𝑚
𝑛
𝜏  (𝑎𝑛)𝜏(𝑏𝑛) = 1. Thus 

replacing 𝑎𝑛 and 𝑏𝑛 by 𝑎𝑛/𝜏(𝑎𝑛) and 𝑏𝑛/𝜏(𝑏𝑛), respectively, we can assume that 𝑎𝑛 = 1 +

𝑎̃𝑛 and 𝑏𝑛 = 1 + 𝑏̃𝑛with 𝑎̃𝑛, 𝑏̃𝑛 ∈  𝐴0; whence the desired density of {(1 + 𝑎0)ℎ(1 +
𝑏0): 𝑎0, 𝑏0 ∈ 𝐴0} in {𝑥 ∈  𝐻𝑝(𝐴):𝛷(𝑥) = 𝛷(ℎ)}. Finally, combining (10), (11) and (12), we 

get 𝛥(𝛷(ℎ)) = 𝛥(ℎ).  
Note that, the assumption that A is antisymmetric in Theorem (5.1.12), ii) cannot be removed 

in general, as shown by the following example. Keep the notation introduced and consider the 

case where 𝑀 = 𝐿∞(𝑇;𝕄2) and 𝐴 = 𝐻∞(𝑇;𝕄2). Let 𝜑1 and 𝜑2 be two outer functions in 

Hp(T), and let ℎ = 𝜑1⊗𝑒11  +  𝑧𝑒22⊗𝑒22, where z denotes the identity function on 𝕋. Then 

it is easy to check that h is bilaterally outer and 

𝛥(ℎ) = 𝑒𝑥𝑝 (
1

2
∫
𝕋
𝑙𝑜𝑔 |𝜑1|  + ∫𝕋𝑙𝑜𝑔 |𝜑2|) >  0. 

However,𝛷(ℎ) = 𝜑1(0)𝑒11, 𝑠𝑜 𝛥(𝛷(ℎ)) = 0. 

The following is an immediate consequence of Theorem (5.1.12). We do not know, however, 

whether the condition 𝛥(ℎ) > 0 in i) can be removed or not. 

 

 

 

Corollary (5.1.11)[279]: Let ℎ ∈ 𝐻𝑝(𝐴), 0 < 𝑝 ≤ ∞. 
(i)  If 𝛥(ℎ) > 0, then ℎ is left outer iff ℎ is right outer. 

(ii)  Assume that 𝐴 is antisymmetric. Then the following properties are equivalent: 
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(1) ℎ is left outer; 

(2) ℎ is right outer; 

(3) ℎ is bilaterally outer; 

(4) 𝛥(𝛷(ℎ)) = 𝛥(ℎ) >0. 

We will say that h is outer if it is at the same time left and right outer. Thus if ℎ ∈ 𝐻𝑝(𝐴)with 

𝛥(ℎ) > 0, then h is outer iff 𝛥(ℎ) = 𝛥(𝛷(ℎ)). Also in the case where 𝐴 is antisymmetric, an 

ℎ with 𝛥(ℎ) > 0is outer iff it is left, right or bilaterally outer. 

Corollary (5.1.12)[279]:Let ℎ ∈ 𝐻𝑝(𝐴) such that h−1 ∈ Hq(A) with 0 < 𝑝, 𝑞 ≤ ∞. Then h is 

outer. 

Proof: By the multiplicativity of 𝛥, 𝛥(ℎ)𝛥(ℎ−1) = 1 and 𝛥(𝛷(ℎ))𝛥(𝛷(ℎ−1)) = 1. Thus by 

Jensen’s inequality (Corollary (5.1.3)), 

𝛥(ℎ)  =  𝛥(ℎ−1)−1 ≤  𝛥(𝛷(ℎ−1))−1  =  𝛥(𝛷(ℎ)); 
whence the assertion because of Theorem (5.1.10).  

The following improves Theorem (5.1.4). 

Theorem (5.1.13)[279]: Let 𝜔 ∈  𝐿𝑝(𝑀) with 0 < 𝑝 ≤ ∞ such that Δ(ω) > 0. Then there 

exist a unitary 𝑢 ∈ 𝑀 and an outer ℎ ∈ 𝐻𝑝(𝐴) such that 𝜔 = 𝑢ℎ. 

Proof: Based on the case𝑝 ≥ 1 from [67], the proof below is similar to the end of the proof of 

Theorem (5.1.4). For simplicity we consider only the case where 𝑝 ≥ 1/2. Write the polar 

decomposition of 𝜔: 𝜔 = 𝑣|𝜔|. Applying [66] to |𝜔|1/2 we get a factorization: |𝜔|1/2 =
𝑢2ℎ2with u2 unitary and ℎ2 ∈  𝐻

2𝑝(𝐴) left outer. Since 𝛥(ℎ2) > 0, ℎ2 is also right outer; so 

ℎ2 is outer. Similarly, we have: 𝑣|𝑤|1/2𝑢2 = 𝑢1ℎ1. Then 𝑢 = 𝑢1and ℎ = ℎ1ℎ2 yield the 

desired factorization of 𝜔.  

The following is the inner-outer factorization for operators in 𝐻𝑝(𝐴), which is already in [66] 

for 𝑝 ≥  1. 

Corollary (5.1.14)[279]: Let 0 < 𝑝 ≤ ∞ and 𝑥 ∈ 𝐻𝑝(𝐴) with𝛥(𝑥) > 0. Then there exist a 

unitary 𝑢 ∈ 𝐴(inner) and an outer ℎ ∈ 𝐻𝑝(𝐴) such that 𝑥 = 𝑢ℎ. 

Proof: Applying the previous theorem, we get 𝑥 = 𝑢ℎ with h outer and u a unitary in 𝑀. 

Let𝑎𝑛 ∈ 𝐴 such that 𝑙𝑖𝑚ℎ𝑎𝑛 = 1 in Hp(A). Then 𝑢 =  𝑙𝑖𝑚𝑥𝑎𝑛 in 𝐻𝑝(𝐴) too; so 𝑢 ∈ 𝐻𝑝(𝐴) ∩
𝑀. By Proposition (5.1.5), 𝑢 ∈ 𝐴.  

Corollary (5.1.15)[279]:  Let 0 < 𝑝 ≤ ∞ and ℎ ∈ 𝐻𝑝(𝐴)with 𝛥(ℎ) > 0. Then ℎ is outer iff 

for any 𝑥 ∈ 𝐻𝑝(𝐴)with |𝑥| = |ℎ| we have 𝛥(𝛷(𝑥)) ≤  𝛥(𝛷(ℎ)). 
Proof: Assume h outer. Then by Corollary (5.1.3) and Theorem (5.1.9), 

𝛥(𝛷(𝑥)) ≤ 𝛥(𝑥) = 𝛥(ℎ) = 𝛥(𝛷(ℎ)). 
Conversely, let ℎ = 𝑢𝑘 be the decomposition given by Theorem (5.1.13) with k outer. Then 

𝛥(ℎ) = 𝛥(𝑘) = 𝛥(𝛷(𝑘)) ≤ 𝛥(𝛷(ℎ)); 
so h is outer by Theorem (5.1.12). 

 

Corollary (5.1.16)[279]: Let 0 < 𝑝, 𝑞, 𝑟 ≤ ∞ such that 1/p = 1/q + 1/r. Let 𝑥 ∈ 𝐻𝑝(𝐴) be 

such that Δ(x) > 0. Then there exist 𝑦 ∈ Hq(A) and 𝑧 ∈ 𝐻𝑟(𝐴) such that 

𝑥 = 𝑦𝑧 and‖𝑥‖𝑝 = ‖𝑦‖𝑞‖𝑧‖𝑟  . 

Proof: This proof is similar to that of Theorem (5.1.7) Instead of Theorem (5.1.4), we now use 

Theorem (5.1.13). Indeed, by the later theorem, we can find a unitary u2 ∈ M and an outer ℎ2 ∈
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𝐻𝑝/𝑟(𝐴) such that |𝑥|𝑝/𝑟 = 𝑢2ℎ2. Once more applying this theorem to 𝑣|𝑥|𝑝/𝑞𝑢2, we have a 

similar factorization: 𝑣|𝑥|𝑝/𝑞𝑢2 = 𝑢1ℎ1, where 𝑣 is the unitary in the polar decomposition of 

𝑥. Since ℎ1 andh2 are outer, we deduce, as in the proof of Corollary (5.1.14), that 𝑢1 ∈ 𝐴. Then 

𝑦 = 𝑢1ℎ1 and 𝑧 = ℎ2 give the desired factorization of 𝑥. 

Let 𝜔 ∈ 𝐿1(𝑇)be a positive function and let 𝑑𝜇 = 𝜔𝑑𝑚. Then we have the following well-

known Szeg¨o formula [92]: 

𝑖𝑛𝑓{∫𝕋|1 − 𝑓|
2𝑑𝜇: 𝑓 𝑚𝑒𝑎𝑛 𝑧𝑒𝑟𝑜 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙} = 𝑒𝑥𝑝∫𝕋𝑙𝑜𝑔𝑤𝑑𝑚. 

This formula was later proved for any positive measure 𝜇 on 𝑇 independently by 

Kolmogorov/Krein [15] and Verblunsky [268]. Then the singular part of μ with respect to the 

Lebesgue measure dmdoes not contribute to the preceding infimum and w on the right hand 

side is the density of the absolute part of μ (also see [141]). This latter result was extended to 

the noncommutative setting in [66]. More precisely, let ω be a positive linear functional on 𝑀, 

and let 𝜔 = 𝜔𝑛 +𝜔𝑠be the decomposition of ω into its normal and singular parts. Let 𝜔 ∈
𝐿1(𝑀) be the density of 𝜔𝑛 with respect to 𝜏, i.e., 𝜔𝑛 = 𝜏(𝜔 ∙). Then Blecher and Labuschagne 

proved that if 𝑑𝑖𝑚𝐷 < ∞, 
∆(𝜔) = 𝑖𝑛𝑓{𝜔(|𝑎|2): 𝑎 ∈ 𝐴, ∆(𝛷(𝑎)) ≥ 1}. 

It is left open in [66] whether the condition 𝑑𝑖𝑚𝐷 < ∞ can be removed or not. We will solve 

this problem in the affirmative. At the same time, we show that the square in the above formula 

can be replaced by any power 𝑝. 

Theorem (5.1.17)[279]: Let 𝜔 = 𝜔𝑛 +𝜔𝑠be as above and 0 < 𝑝 < ∞. Then 

𝛥(𝜔) = 𝑖𝑛𝑓{(𝜔|𝑎|𝑝): 𝑎 ∈ 𝐴, ∆(𝛷(𝑎)) ≥ 1}. 
Proof: Let 

δ(𝜔) = 𝑖𝑛𝑓{𝜔(|𝑎|𝑝): 𝑎 ∈ 𝐴, ∆(𝛷(𝑎)) ≥ 1}. 
First we show that 

𝛿(𝜔) = 𝑖𝑛𝑓{𝜔(𝑥): 𝑎 ∈ 𝐴, ∆(𝛷(𝑎)) ≥ 1}, 
where 𝑀+

−1 denotes the family of invertible positive operators in 𝑀 with bounded inverses. 

Given any 𝑥 ∈ 𝑀+
−1 , by Arveson’s factorization theorem there exists 𝑎 ∈ 𝐴 such that |𝑎| =

𝑥1/𝑝 and 𝑎−1 ∈ 𝐴. Then 𝑥 = |𝑎|𝑝, so 𝛥(𝑥) = 𝛥(|𝑎|𝑝) = 𝛥(𝑎)𝑝. Since a is invertible with 

𝑎−1 ∈ 𝐴, by Jensen’s formula in [300], 𝛥(𝑎) = 𝛥(𝛷(𝑎)). It then follows that 

𝛿(𝜔) ≤ {𝜔(𝑥): 𝑥 ∈ 𝑀+
−1 , 𝛥(𝑥) ≥ 1}. 

The converse inequality is easier. Indeed, given 𝑎 ∈ 𝐴 with 𝛥(𝛷(𝑎))  ≥  1and 𝜀 > 0, set 𝑥 =
|𝑎|𝑝  + 𝜀. Then 𝑥 ∈ 𝑀+

−1and 𝛥(𝑥) ≥ 𝛥(𝑎)𝑝 ≥  𝛥(𝛷(𝑎))𝑝 by virtue of Jensen’s inequality. 

Since 𝑙𝑖𝑚
𝜀→0

𝜔 (|𝑎|𝑝 + 𝜀) =  𝜔(|𝑎|𝑝), we deduce the desired converse inequality. 

Next we show that 𝛿(𝜔) = 𝛿(𝜔𝑛). The singularity of ωsimplies that there exists an increasing 

net (𝑒𝑖) of projections in 𝑀 such that 𝑒𝑖 → 1 strongly and ωs(ei) = 0 for every i (see [181]). 

Let 𝜀 >0. Set 

𝑥𝑖 = 𝜀
𝜏(𝑒𝑖)

−1
(𝑒𝑖 + 𝜀𝑒𝑖

⊥ ),where 𝑒⊥ = 1 − 𝑒. 
Clearly, 𝑥𝑖 ∈ 𝑀+

−1 and (xi) = 1. Let 𝑥 ∈ 𝑀+
−1and 𝛥(𝑥) ≥ 1. Then 𝛥(𝑥𝑖𝑥𝑥𝑖) = 𝛥(𝑥) ≥ 1, and 

𝑥𝑖𝑥𝑥𝑖 → 𝑥 in the 𝜔∗-topology. On the other hand, note that  

𝜔𝑠(𝑥𝑖𝑥𝑥𝑖) = 𝜀
2𝜏(𝑒𝑖)𝜔𝑠(𝑒𝑖

⊥𝑥𝑒𝑖
⊥ ). 

Therefore, 
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δ(𝜔) ≤ 𝑙𝑖𝑚𝑠𝑢𝑝𝜔(𝑥𝑖𝑥𝑥𝑖) = 𝜔𝑛(𝑥) + 𝑙𝑖𝑚𝑠𝑢𝑝𝜔𝑠(𝑥𝑖𝑥𝑥𝑖)
≤ 𝜔𝑛(𝑥) + 𝑙𝑖𝑚𝑠𝑢𝑝𝜀

2𝜏(𝑒𝑖)𝜔𝑠(𝑒𝑖
⊥𝑥𝑒𝑖

⊥) ≤ 𝜔𝑛(𝑥) + 𝜀
2‖𝜔𝑠‖‖𝑥‖. 

It thus follows that 𝛿(𝜔) ≤ 𝛿(𝜔𝑛), so δ(𝜔) = 𝛿(𝜔𝑛). Now it is easy to conclude the validity 

of the result. Indeed, the preceding two parts imply 

𝛿(𝜔) = 𝑖𝑛𝑓{𝜏(𝑤𝑥): 𝑥 ∈ 𝑀+
−1 , 𝛥(𝑥) ≥ 1}. 

By a formula on determinants from [300], the last infimum is nothing but 𝛥(𝜔). Therefore, the 

theorem is proved.  

Section (5.2) Noncommutative Hardy-Lorentz Spaces 

The classical Hardy spaces 𝐻𝑝(𝐷), 1 ≤ 𝑝 ≤ ∞, are Banach spaces of analytic functions on the 

unit disk satisfying that  

𝑠𝑢𝑝
0<𝑟<1

{∫ |𝑓(𝑟𝑒𝑖𝜃)|𝑝𝑑𝜃

2𝜋

0

} < ∞ . 

by taking radial limits,𝐻𝑝(𝐷) can be identified with 𝐻𝑝(𝑇 ), the space of functions on the unit 

circle which are in 𝐿𝑝(𝑇 )with respect to Lebesgue measure and whose negative Fourier 

coefficients vanish. These spaces have played an important role in modern analysis and 

prediction theory. One of the key results in the functional analytic approach to Hardy spaces is 

Szeg𝑜̈ theorem (see [274]), which is formula for the weighted 𝐿2(𝑇 ) distance from 1 to the 

analytic polynomials which vanish at the origin. 

The theory of Hardy spaces was generalized in two directions. Masani and Wiener [186, 

185] extended Szegö theorem to the theory of multivariate stochastic processes by studying 

matrix valued functions. Concurrently, Helson and Lowdenslager [115] adapting techniques 

from functional analysis to extend the theory to the setting of a compact group with ordered 

dual, thus laying the foundation for the theory of function algebras. This eventually led to the 

definition of a weak∗-Dirichlet algebra of functions by Srinivasan and Wang [272]. Srinivasan 

and Wang were able to prove Szeg𝑜̈’s theorem and several other important results in the theory 

of function algebras. 

Arveson [25] introduced the concept of maximal subdiagonal algebras, unifying analytic 

function spaces and nonselfadjoint operator algebras. Subsequently, Arveson’s pioneer work 

was extended to different cases by several authors. In 1997, Marsalli and West [184] defined 

noncommutative Hardy spaces for finite von Neumann algebras and obtained a series of results 

including a Riesz factorization theorem, the dual relations between 𝐻𝑝(𝒜) and 𝐻𝑞(𝒜) and so 

on. Labuschagne [166] proved the universal validity of Szeg𝑜̈’s theorem for finite subdiagonal 

algebras. Blecher and Labuschagne [41] gave several useful variants of the noncommutative 

Szeg𝑜̈theorem for 𝐿𝑝(ℳ). Tt was also in [42] that the longstanding open problem concerning 

the noncommutative generalization of the famous ’outer factorization’ of functions 𝑓 with 

𝑙𝑜𝑔 |𝑓| integrable was solved. Recently, Bekjan and Xu [39] presented the more general form 

of Szegö type factorization for the noncommutative Hardy spaces defined in [184]. 

We introduce the noncommutative Hardy-Lorentz spaces. By adapting the techniques in 

[39], we establish the Szegö factorization theorem of these spaces. Section  contains some 

preliminaries and notations on the noncommutative Lp,q-spaces and noncommutative Hp,q-

spaces. The proof of the Szegö factorization of noncommutative Hardy-Lorentz spaces are 
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presented. Finally mainly devoted to the inner-outer type factorization of noncommutative 

Hardy- Lorentz spaces. 

We denote by ℳa finite von Neumann algebra on the Hilbert space ℋ, equipped with a 

normal faithful tracial state τ. The identity in ℳ is denoted by 1 and we denote by 𝐷 a von 

Neumann subalgebra of ℳ, moreover, we let 𝜀:ℳ →D be the unique normal faithful 

conditional expectation such that 𝜏 ∘ 𝜀 = 𝜏.       𝒜 is a finite subdiagonal algebra of ℳ. A finite 

subdiagonal algebra of ℳ with respect to ε (or 𝐷) is a 𝑤∗ −closed subalgebra 𝒜 of ℳ 

satisfying the following conditions: 

(i) 𝒜 + 𝒜∗ is ω∗ −dense in ℳ; 

(ii) ε is multiplicative on 𝐴, i.e.,𝜀(𝑎𝑏) = 𝜀 (𝑎) 𝜀 (𝑏) for all 𝑎, 𝑏 ∈ 𝒜; 

(iii) 𝒜 ∩𝒜∗ = 𝐷. 

We denote by ℳ𝑝𝑟𝑜𝑗the lattice of (orthogonal) projections in ℳ. A linear operator 

𝑥: 𝑑𝑜𝑚(𝑥) → ℋ, with domain 𝑑𝑜𝑚(𝑥) ⊆ ℋ, is said to be affiliated with ℳ if 𝑢𝑥 = 𝑥𝑢for all 

unitary 𝑢 in the commutant ℳ′ of ℳ. The closed densely defined linear operators 𝑥  affiliated 

with ℳis called τ −measurable if for every ε > 0 there exists an orthogonal projection P ∈
ℳproj such that 𝑃(𝐻)  ⊆  𝑑𝑜𝑚(𝑥) and 𝜏(1 − 𝑃) < 𝜀. The collection of all τ-measurable 

operators is denoted by ℳ̃. With the sum and product defined as the respective closures of the 

algebraic sum and product, ℳ̃ is a ∗-algebra. For a positive self-adjoint operator x affiliated 

with M, we set 

𝜏(𝑥) = 𝑠𝑢𝑝
𝑛
𝜏 (∫𝜆𝑑𝐸𝜆

𝑛

0

) = ∫ 𝜆𝑑𝜏(𝐸𝜆),

∞

0

 

where 𝑥 = ∫ 𝜆𝑑𝐸𝜆
∞

0
 is the spectral decomposition of 𝑥. 

Let 0 < 𝑝 < ∞, 𝐿𝑝(ℳ; 𝜏) is defined as the set of all τ-measurable operators 𝑥 affiliated with 

ℳ such that 

‖𝑥‖𝑝 = 𝜏(|𝑥|
𝑝)
1
𝑝 < ∞. 

In addition, we put 𝐿∞(ℳ;  𝜏) = ℳ and denote by ‖·‖∞ (= ‖ ·‖ ) the usual operator norm. It 

is well known that 𝐿𝑝(ℳ;  τ) is a Banach space under ‖·‖𝑝 for 1 ≤ 𝑝 < ∞. They have all the 

expected properties of classical 𝐿𝑝-spaces (see also [89]). 

Let 𝑥 be a τ-measurable operator and 𝑡 > 0. The “t-th singular number (or generalized s-

number) of 𝑥” is defined by 

𝜇𝑡(𝑥) = 𝑖𝑛𝑓{‖𝑥𝐸‖: 𝐸 ∈ ℳ𝑝𝑟𝑜𝑗 , 𝜏(1 − 𝐸) ≤ 𝑡}. 

See [81] for basic properties and detailed information on the generalized 𝑠 −numbers. 

Let 𝑥 be a τ-measurable operator in 𝐿𝑝(ℳ)with 0 < 𝑝 ≤ ∞. The Fuglede-Kadison determinant 

∆(𝑥) is defined by 

∆(𝑥) = 𝑒𝑥𝑝(𝜏(𝑙𝑜𝑔 |𝑥|)) = 𝑒𝑥𝑝∫ 𝑙𝑜𝑔

∞

0

𝑡𝑑𝜈|𝑥|(𝑡), 
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where dν|x| denotes the probability measure on ℛ+ which is obtained by composing the spectral 

measure of |𝑥| with the trace τ. We refer to [25, 84] for more information on determinant in 

the case of bounded operators, and to [42, 111] for unbounded operators. 

Definition (5.2.1)[142]:Let x be a τ-measurable operator affiliated with a finite von Neumann 

algebra ℳ and 0 < 𝑝, 𝑞 ≤∞, define 

‖𝑥‖𝐿𝑝,𝑞(ℳ) =

{
 
 

 
 
(∫ (𝑡

1

𝑝𝜇𝑡(𝑥))
𝑞 𝑑𝑡

𝑡

∞

0
)

1

𝑞

, 𝑖𝑓 𝑞 < ∞,

𝑠𝑢𝑝
𝑡>0

𝑡
1

𝑝𝜇𝑡(𝑥), 𝑖𝑓 𝑞 = ∞ .

                               (13) 

 The set of all 𝑥 ∈ ℳ̃ with ‖𝑥‖𝐿𝑝,𝑞(ℳ) < ∞ is denoted by 𝐿𝑝,𝑞(ℳ) and is called the 

noncommutative Lorentz space with indices p and q. 

Note that 

(i) If 1 < 𝑝 < ∞,1 ≤ 𝑞 < ∞, and 
1

𝑝
+

1

𝑝′
= 1,

1

𝑞
+
1

𝑞
= 1, then by  Xu [325], we obtain the 

following result 

(𝐿𝑝,𝑞(ℳ))∗ = 𝐿𝑝′,𝑞′ (ℳ). 
For more information on 𝐿𝑝,𝑞(ℳ) we refer to [81, 315]. 

(ii) Since 𝜏(1) = 1, in (13) we can write 

‖𝑥‖𝐿𝑝,𝑞(ℳ) = (∫(𝑡
1
𝑝𝜇𝑡(𝑥))

𝑞
𝑑𝑡

𝑡

∞

0

)

1
𝑞

, 𝑖𝑓 𝑞 < ∞. 

Definition (5.2.2)[142]:Let 𝒜 be a finite subdiagonal algebra of ℳ. For 0 < 𝑝, 𝑞 < ∞, we 

define the noncommutative Hardy-Lorentz spaces to be the closure of 𝒜 in 𝐿𝑝,𝑞(ℳ), denoted 

by 𝐻𝑝,𝑞(ℳ) 
Lemma (5.2.3)[142]: Let 0 < 𝑝1 < 𝑝 < ∞, 0 < 𝑞, 𝑠 < ∞, then 

𝐿𝑝,𝑞(ℳ) ⊂ 𝐿𝑝1,𝑠(ℳ). 
Consequently, 

𝐻𝑝,𝑞(𝒜) ⊂ 𝐻𝑝1,𝑠(𝒜). 
Proof: Similarly to the proof of [112] we can prove that 𝐿𝑝,𝑞(ℳ) ⊂ 𝐿𝑝,∞(ℳ) with 𝑞 < ∞, 

and 𝐿𝑝1,𝑢(ℳ) ⊂ 𝐿𝑝1,𝑠(ℳ) with 𝑢 ≤ 𝑠. Now it suffices to prove that ‖𝑥‖𝐿𝑝1,𝑢(ℳ) ≤

𝐶‖𝑥‖𝐿𝑝,∞(ℳ), ∀ 𝑥 ∈ 𝐿
𝑝,∞(ℳ)  and 0 < 𝑢 < ∞. Indeed, ∀ 𝑥 ∈ 𝐿𝑝,∞(ℳ), we have 
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‖𝑥‖𝐿𝑝1,𝑢(ℳ) = {∫(𝑡
1
𝑝1𝜇𝑡(𝑥))

𝑢
𝑑𝑡

𝑡

1

0

}

1
𝑢

= {∫𝑡
𝑢
𝑝1
−
𝑢
𝑝
−1
(𝑡
1
𝑝1𝜇𝑡(𝑥))

𝑢 𝑑𝑡 

1

0

}

1
𝑢

≤ {∫𝑡
𝑢
𝑝1
−
𝑢
𝑝
−1
( 𝑠𝑢𝑝
0<𝑠<𝜏(1)

𝑠
1
𝑝 𝜇𝑠(𝑥))

𝑢 𝑑𝑡 

1

0

}

1
𝑢

= ‖𝑥‖𝐿𝑝,∞(𝑀) {∫𝑡
𝑢
𝑝1
−
𝑢
𝑝
−1
𝑑𝑡 

1

0

}

1
𝑢

=
1

(
𝑢
𝑝1
−
𝑢
𝑝)

1
𝑢

‖𝑥‖𝐿𝑝,∞(𝑀) 

which gives the first inclusion of the lemma. Consequently, we obtain 

𝐻𝑝,𝑞(𝒜)  ⊂ 𝐻𝑝1,𝑢(𝒜)  ⊂ 𝐻𝑝1,𝑠(𝒜). 
Definition (5.2.4)[142]:Let 𝑥 be a τ-measurable operator affiliated with a finite von Neumann 

algebra ℳ and 0 <  𝑝, 𝑞 ≤ ∞, define 

 

 

‖𝑥‖
𝐿𝑟
𝑝,𝑞
(ℳ)

∗   =

{
 
 

 
 

(∫ [𝑡
1
𝑝𝑥∗∗(𝑥)]

𝑞 𝑑𝑡

𝑡

∞

0

)

1
𝑞

, 𝑖𝑓 𝑞 < ∞,

𝑠𝑢𝑝
𝑡>0

𝑡
1
𝑝𝑥∗∗(𝑥),              𝑖𝑓 𝑞 =  ∞ .

                                            (14) 

where 𝑥∗∗(𝑡) = ( 
1

𝑡
∫ (𝜇𝑠(𝑥))

𝑟𝑑𝑠)
1

𝑟
𝑡

0
 , 0 < 𝑟 ≤ 𝑚𝑖𝑛 (1, 𝑞), 𝑟 < 𝑝. The set of all 𝑥 ∈ ℳ̃ with 

‖𝑥‖
𝐿𝑟
𝑝,𝑞
(ℳ)

∗ < ∞ is denoted by 𝐿𝑟
𝑝,𝑞
(ℳ). 

Lemma (5.2.5)[142]:Let 0 < 𝑝, 𝑞 < ∞, then 

‖𝑥‖𝐿𝑝,𝑞(ℳ) ≤ ‖𝑥‖𝐿𝑟
𝑝,𝑞
(ℳ)

∗ ≤ 𝑒
1
𝑝‖𝑥‖𝐿𝑝,𝑞(ℳ), 

where r is as in Definition (5.2.4). 

Proof: The first inequality is an immediate result from the following estimate 

𝜇𝑡(𝑥))  ≤ (
1

𝑡
∫(𝜇𝑠(𝑥))

𝑟𝑑𝑠

𝑡

0

)

1
𝑟

. 

Now we turn to prove the second inequality. Hardy’s first inequality of [119] tells us that 
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‖𝑥‖
𝐿𝑟
𝑝,𝑞
(ℳ)

∗𝑞
= ∫

[
 
 
 
 

𝑡
1
𝑝
−
1
𝑟 (∫(𝜇𝑠(𝑥))

𝑟𝑑𝑠

𝑡

0

)

1
𝑟

]
 
 
 
 ∞

0

𝑑𝑡

𝑟
= ∫ 𝑡

−(
𝑞
𝑟
−
𝑞
𝑝
)−1
(∫(𝜇𝑠(𝑥))

𝑟𝑑𝑠

𝑡

0

)

𝑞
𝑟∞

0

𝑑𝑡

≤ (

𝑞
𝑟

𝑞
𝑟
−
𝑞
𝑝

)

𝑞
𝑟

∫[𝑠(𝜇𝑠(𝑥))
𝑟]
𝑠
𝑟𝑠
−(
𝑞
𝑟
−
𝑞
𝑝
)−1
𝑑𝑠

𝑡

0

= (
𝑞

𝑝 − 𝑟
)

𝑞
𝑟
∫𝑠

𝑞
𝑝(𝜇𝑠(𝑥))

𝑞
𝑑𝑠

𝑠

𝑡

0

= (
𝑞

𝑝 − 𝑟
)

𝑞
𝑟
‖𝑥‖𝐿𝑞,𝑞(ℳ)

𝑞
≤ 𝑒

𝑞
𝑝‖𝑥‖𝐿𝑞,𝑞(ℳ)

𝑞
. 

 

Lemma (5.2.6)[142]:Let 0 < 𝑝, 𝑞 < ∞, assume ℳ has no minimal projection, then 

‖𝜀(𝑎)‖
𝐿𝑟 (ℳ)
𝑝,𝑞
∗ ≤ ‖𝑎‖

𝐿𝑟 (ℳ)
𝑝,𝑞
∗ ; ‖𝜀(𝑎)‖𝐿𝑝,𝑞(ℳ) ≤ 𝑒

1
𝑝‖𝑎‖𝐿𝑝,𝑞(ℳ), 

where r is as in Definition (5.2.4). 

Proof : [81] gives that 

∫(𝜇𝑠(𝜀(𝑎))
𝑟𝑑𝑠

𝑡

0

= ∫𝜇𝑠(|𝜀(𝑎)|
𝑟)𝑑𝑠 

𝑡

0

= 𝑠𝑢𝑝
𝑡
{𝜏(𝑒|𝜀(𝑎)|𝑟𝑒) : 𝑒 ∈ 𝒩𝑝𝑟𝑜𝑗 , 𝜏(𝑒) ≤ 𝑡} , 

where 𝒩 is a von Neumann subalgebra generated by all spectral projections of|𝜀(𝑎)|. It is clear 

that 𝒩𝑝𝑟𝑜𝑗 ⊂ 𝐷 = 𝒜 ∩𝒜
∗, then we get 

∫(𝜇𝑠(𝜀(𝑎)))
𝑟
𝑑𝑠 

𝑡

0

= 𝑠𝑢𝑝
𝑡
{𝜏(|𝜀(𝑎)𝑒|𝑟) : 𝑒 ∈ 𝒩𝑝𝑟𝑜𝑗 , 𝜏(𝑒) ≤ 𝑡} 

≤ 𝑠𝑢𝑝
𝑡
{𝜏(|𝜀(𝑎)𝑒|𝑟) ∶ 𝑒 ∈ 𝐷, 𝜏(𝑒) ≤ 𝑡} 

=  𝑠𝑢𝑝
𝑡
{𝜏(|𝜀(𝑎)𝑒|𝑟) ∶ 𝑒 ∈ 𝐷, 𝜏(𝑒) ≤ 𝑡} 

≤  𝑠𝑢𝑝
𝑡
{‖𝜀(𝑎𝑒)‖𝑟

𝑟 ∶ 𝑒 ∈ 𝐷, 𝜏(𝑒) ≤ 𝑡}.   

≤ ∫(𝜇𝑠

𝑡

0

(𝑎))𝑟𝑑𝑠.                                      

It follows that 

‖𝜀(𝑎)‖𝐿𝑝,𝑞𝑟 (ℳ)
∗𝑞

 = ∫ 𝑡
𝑞
𝑝

1

0

(
1

𝑡
∫(𝜇𝑠(𝜀(𝑎)))

𝑟𝑑𝑠

1

0

)

𝑞
𝑟
𝑑𝑡

𝑡
≤ ∫ 𝑡

𝑞
𝑝

1

0

(
1

𝑡
∫(𝜇𝑠(𝑎))

𝑟
𝑑𝑠

1

0

)

𝑞
𝑟
𝑑𝑡

𝑡

= ‖(𝑎)‖
𝐿𝑟
𝑝,𝑞
(ℳ),

∗𝑞
 

i.e., 

‖𝜀(𝑎)‖𝐿𝑝,𝑞 (ℳ) ≤ ‖𝜀(𝑎)‖𝐿𝑟
𝑝,𝑞
 (ℳ)

∗ ≤ ‖𝑎‖𝐿𝑝,𝑞 (ℳ)
∗ ≤ 𝑒

1
𝑝‖𝜀(𝑎)‖𝐿𝑝,𝑞 (ℳ) 



116 
  

Lemma (5.2.7)[142]: Let 0 < 𝑟1 < 𝑟2 ≤ 1, 𝑟1 < 𝑟2 < 𝑝, 𝑟1 < 𝑟2 ≤ 𝑞, then ‖𝑥‖
𝐿𝑟1
𝑞,𝑞
 (ℳ)

∗ is 

equivalent to ‖𝑥‖
𝐿𝑟2
𝑞,𝑞
 (ℳ)

∗ . 

Proposition (5.2.8)[142]:Let 0 <  𝑝, 𝑝0, 𝑝1, 𝑞, 𝑞0, 𝑞1 < ∞such that 
1

𝑝
 =  

1

𝑝0
+

1

𝑝1
,
1

𝑞
=

1

𝑞0
+

1

𝑞1
, 

then 

‖𝑦𝑧‖𝐿𝑝,𝑞(ℳ) ≤ 𝑒
1
𝑝‖𝑦‖𝐿𝑝0,𝑞0 (ℳ)‖𝑧‖𝐿𝑝0,𝑝1  (ℳ), 

where𝑦 ∈  𝐿𝑝0,𝑞0(ℳ), 𝑧 ∈ 𝐿𝑝1,𝑞1(ℳ). 
Proof: Let 0 < 2𝑟 < 𝑚𝑖𝑛(1, 𝑝, 𝑞), we have 

 

(𝑦𝑧)∗∗(𝑡, 𝑟)  = (
1

𝑡
∫(𝜇𝑠(𝑦𝑧))

𝑟𝑑𝑠

𝑡

0

)

1
𝑟

≤ (
1

𝑡
)

1
𝑟
(∫(𝜇𝑠(𝑦𝑧))

2𝑟𝑑𝑠

𝑡

0

)

1
2𝑟

(∫(𝜇𝑠(𝑧))
2𝑟𝑑𝑠

𝑡

0

)

1
2𝑟

= 𝑦∗∗(𝑡, 2𝑟)𝑧∗∗(𝑡, 2𝑟). 
Combing the above estimate with Lemma (5. 2.5) we infer that 

‖𝑦𝑧‖𝐿𝑝,𝑞(ℳ) ≤ ‖𝑦𝑧‖𝐿𝑟
𝑝,𝑞
 (ℳ)

∗ = (∫(𝑡
1
𝑝 (𝑦𝑧)∗∗

∞

0

(𝑡, 𝑟))𝑞
𝑑𝑡

𝑡
)

1
𝑞

 

≤ (∫(𝑡
1
𝑝0  𝑦∗∗

∞

0

(𝑡, 𝑟))
1
𝑝1𝑧∗∗(𝑟, 2𝑟)𝑞

𝑑𝑡

𝑡
)

1
𝑞

 

≤ (∫(𝑡
1
𝑝0  𝑦∗∗

∞

0

(𝑟, 2𝑟)𝑞0
𝑑𝑡

𝑡
)

1
𝑞0

(∫(𝑡
1
𝑝1𝑧∗∗

∞

0

(𝑟, 2𝑟)𝑞1
𝑑𝑡

𝑡
)

1
𝑞1

 

= ‖ 𝑦‖
𝐿2𝑟
𝑝0,𝑞0 (ℳ)
∗ ‖𝑧‖

𝐿2𝑟
𝑝1,𝑞1(ℳ)
∗ ≤ (𝑒

1
𝑝0‖ 𝑦‖𝐿𝑝0,𝑞0 (ℳ))(𝑒

1
𝑝1 ‖𝑧‖𝐿𝑝1,𝑞1 (ℳ))

=  𝑒
1
𝑝‖𝑦‖𝐿𝑝0,𝑞0(ℳ)‖𝑧‖𝐿𝑝1,𝑞1  (ℳ), 

 

which gives the result.  

Lemma (5.2.9)[142]:Let 1 ≤ 𝑝, 𝑞 < ∞, then 

𝐻𝑝,𝑞(𝒜) = {𝑥 ∈ 𝐿𝑝,𝑞(ℳ): 𝜏(𝑥𝑎) = 0, ∀ 𝑎 ∈ 𝐴0} . 
Proof: From [274], we deduce that 

𝐻𝑝,𝑞(𝒜) = {𝑥 ∈ 𝐿𝑝,𝑞(ℳ): 𝜏(𝑥𝑎) = 0, ∀ 𝑎 ∈ 𝐴0} . 
Conversely, we assume that there exists some 

𝑥 ∈ {𝑧 ∈ 𝐿𝑝,𝑞(ℳ): 𝜏(𝑧𝑎) = 0, ∀ 𝑎 ∈ 𝒜0} , 
and 𝑥 ∉ 𝐻𝑝,𝑞(𝒜). Hence, there exists some y ∈ Lp′,q′(ℳ) such that 𝜏(𝑥𝑦) ≠ 0 and 𝜏(𝑦𝑎) =
0, ∀ 𝑎 ∈  𝐻𝑝,𝑞(𝒜). Putting 1 ≤ 𝑟 < 𝑚𝑖𝑛(𝑝′, 𝑞′), we have 𝑦 ∈ 𝐿𝑟(ℳ) and 𝜏(𝑦𝑎) = 0, ∀ 𝑎 ∈
𝒜. [39] implies that 𝑦 ∈ 𝐻0

𝑟  (𝒜). Let 1 ≤ 𝑠 < 𝑚𝑖𝑛(𝑝, 𝑞), then 𝑥 ∈ {𝑧 ∈ 𝐿𝑠(ℳ): 𝜏(𝑧𝑎) =
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0, ∀ 𝑎 ∈ 𝒜0} = 𝐻
𝑠(𝒜). Consequently, adapting [40] we deduce that 𝜏(𝑥𝑦) = 𝜏(𝜀(𝑥𝑦)) =

𝜏(𝜀(𝑥)𝜀(𝑦)) = 0. This is a contradiction. 

Proposition (5.2.10)[142]:Let 1 ≤ 𝑝, 𝑞 < ∞, 1 ≤ 𝑟 < 𝑚𝑖𝑛(𝑝, 𝑞), then 

𝐻𝑟(𝒜) ∩ 𝐿𝑝,𝑞(ℳ) = 𝐻𝑝,𝑞(𝒜). 
Proof: It is easy to verify that 𝐻𝑝,𝑞(𝒜) ⊂ 𝐻𝑟(𝒜) ∩ 𝐿𝑝,𝑞(ℳ). Conversely, let 𝑥 ∈ 𝐻𝑟(𝒜) ∩
𝐿𝑝,𝑞(ℳ), then 𝑥 ∈ {𝑧 ∈ 𝐿𝑟(ℳ): 𝜏(𝑧𝑎) = 0, ∀𝑎 ∈ 𝒜0}. Therefore, 𝑥 ∈ 𝐻𝑝,𝑞(𝒜) in view of 

Lemma (5.2.9) 

The following result describes the Szeg𝑜̈ type factorization theorem for noncommutative 

Hardy-Lorentz spaces, and we refer to see Theorem (5.2.18) below for an improvement.  

Theorem (5.2.11)[142]: Let 0 < 𝑝1, 𝑝2, 𝑞1, 𝑞2 < ∞. Let 𝜔 ∈ 𝐿𝑝1,𝑞1(ℳ) be an invertible 

operator such that ω−1 ∈ Lp2,q2  (ℳ), then there exist a unitary 𝑢 ∈ ℳ and ℎ ∈ 𝐻𝑝1,𝑞1(𝒜) 
such that 𝜔 = 𝑢ℎ and ℎ−1 ∈  𝐻𝑝2,𝑞2(𝒜). 
Proof: Let 𝜔 ∈ 𝐿𝑝1,𝑞1(ℳ) be an invertible operator such that 𝜔−1 ∈ 𝐿𝑝2,𝑞2  (ℳ). Take 0 <
𝑟1 < 𝑚𝑖𝑛(𝑝1, 𝑞1), 0 < 𝑟2 < 𝑚𝑖𝑛(𝑝2, 𝑞2), then 𝜔 ∈ 𝐿𝑟1(ℳ) and 𝜔−1 ∈ 𝐿𝑟2(ℳ). By [39], there 

exist a unitary 𝑢 ∈ ℳand ℎ ∈ 𝐻𝑟1(𝒜) such that 𝜔 = 𝑢ℎ and ℎ−1 ∈ 𝐻𝑟2(𝒜). 
We first consider the case 𝑚𝑖𝑛(𝑝1, 𝑝2, 𝑞1, 𝑞2) > 1. Since ℎ = 𝑢∗𝜔 ∈ 𝐿𝑝1,𝑞1  (ℳ), applying 

Proposition (5.2.10), we conclude that ℎ ∈ 𝐻𝑝1,𝑞1(𝒜). Similarly, ℎ−1 ∈ 𝐻𝑝2,𝑞2  (𝒜). 
On the other hand, if 𝑚𝑖𝑛(𝑝1, 𝑝2, 𝑞1, 𝑞2) ≤ 1, we choose an integer n such that 

𝑚𝑖𝑛(𝑛𝑝1, 𝑛𝑞1, 𝑛𝑝2, 𝑛𝑞2) > 1. Let 𝜔 = 𝑣|𝜔| be the polar decomposition of 𝜔. Note that 𝑣 ∈

𝑀 is a unitary. Write 𝜔 = 𝑣|𝜔|
1

𝑛|𝜔|
1

𝑛… | |𝜔|
1

𝑛 = 𝜔1𝜔2  · · · 𝜔𝑛, where 𝜔1 = 𝑣 |𝜔|
1

𝑛 , 𝜔𝑘 =

|𝜔|
1

𝑛 , 2 ≤ 𝑘 ≤n. Since 𝜔𝑘 ∈ 𝐿
𝑛𝑝1,𝑛𝑞1(ℳ) and 𝑤𝑘

−1 ∈ 𝐿𝑛𝑝1,𝑛𝑞1(ℳ), by what is already proved 

in the first part, we have a factorization 𝜔𝑛 = 𝑢𝑛ℎ𝑛 with 𝑢𝑛 ∈ ℳ a unitary, ℎ𝑛 ∈

𝐻𝑛𝑝1,𝑛𝑞1  (𝒜)such that h𝑛
−1 ∈ 𝐻𝑛𝑝2,𝑛𝑞2(𝒜) . Repeating this argument, we can get a similar 

factorization for 𝜔𝑛−1𝑢𝑛: 𝜔𝑛−1𝑢𝑛 = 𝑢𝑛−1ℎ𝑛−1, and then for 𝜔𝑛−2𝑢𝑛−1, and so on. In this way 

we obtain a factorization: 𝜔 =  𝑢ℎ1ℎ2… ℎ𝑛, where 𝑢 ∈ 𝑀 is a unitary, ℎ𝑘 ∈ 𝐻
𝑛𝑝1,𝑛𝑞1(𝒜)such 

that ℎ𝑘
−1 ∈ 𝐻𝑛𝑝2,𝑛𝑞2(𝒜),1 ≤ 𝑘 ≤ 𝑛. Setting ℎ = ℎ1ℎ2  · · ·  ℎ𝑛, we see 𝜔 = 𝑢ℎ is the desired 

factorization.  

Corollary (5.2.12)[142]:Let0 < 𝑝, 𝑞 < ∞, 0 < 𝑟 < 𝑚𝑖𝑛(𝑝, 𝑞), 0 <  𝑠 < ∞, then 

𝐻𝑟,𝑠(𝒜) ∩ 𝐿𝑝,𝑞(ℳ) = 𝐻𝑝,𝑞(𝒜), 
𝐻0
𝑟,𝑠 (𝒜) ∩ 𝐿𝑝,𝑞(ℳ) = 𝐻𝑝,𝑞(𝒜). 

Proof: It is clear that  

𝐻𝑝,𝑞(𝒜) ⊂ 𝐻𝑟,𝑠(𝒜) ∩ 𝐿𝑝,𝑞(ℳ). 

To prove the converse inequality, fix an 𝑥 ∈ 𝐻𝑟,𝑠(𝒜) ∩ 𝐿𝑝,𝑞(ℳ) and set 𝜔 = (𝑥∗𝑥 + 1)
1

2 , 

then we see 𝜔 ∈ 𝐿𝑝,𝑞(ℳ)and 𝜔−1 ∈ ℳ. Applying theorem (5.2.11) to ω, we get a unitary𝑢 ∈
ℳ and an invertible ℎ ∈ 𝐻𝑝,𝑞(𝒜) such that 𝜔 = 𝑢ℎ and ℎ−1 ∈ 𝒜. Then we obtain 

ℎ∗ℎ = 𝑥∗𝑥 + 1. 
Since |ℎ| ≥ |𝑥|, there is a contraction 𝑣 ∈ ℳ such that 𝑥 = 𝑣ℎ. It follows that 𝑣 = 𝑥ℎ−1 ∈
𝐻𝑟,𝑠(𝒜) ∩ℳ, therefore, we obtain that 𝑣 ∈  𝒜. Consequently, 𝑥 ∈ 𝒜 ·  𝐻𝑝,𝑞(𝒜) =
𝐻𝑝,𝑞(𝒜), and we conclude the first inequality. The later equality is immediate established by 

adapting the similar proof.  
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Proposition (5.2.13)[142]:Let 0 < 𝑝2 < 𝑝1 < ∞, 0 < 𝑞1, 𝑞2 < ∞ and ℎ ∈ 𝐻𝑝1,𝑞1(𝒜), then: 

(i) [ℎ𝒜]𝐿𝑝2,𝑞2(ℳ) = 𝐻
𝑞2,𝑞2(𝒜) if and only if [ℎ𝒜]𝐿𝑝1,𝑞1(ℳ) =  𝐻

𝑝1,𝑞1(𝒜). 
(ii) [ℎ𝒜]𝐿𝑝2,𝑞2(ℳ) = 𝐻

𝑞2,𝑞2  (𝒜) if and only if [ℎ𝒜]𝐿𝑝1,𝑞1(ℳ) =  𝐻
𝑝1,𝑞1(𝒜). 

(iii) [𝒜ℎ𝒜]𝐿𝑝2,𝑞2  (ℳ)  =  𝐻
𝑞2,𝑞2  (𝒜) if and only if [𝒜ℎ𝒜]𝐿𝑝1,𝑞1  (ℳ)  =  𝐻

𝑝1,𝑞1  (𝒜). 
Proof :We shall prove only the third equivalence. The proofs of the others are similar. 

First, if[𝒜ℎ𝒜]𝐿𝑝1,𝑞1(ℳ) = 𝐻
𝑝1,𝑞1(𝒜), from the density of 𝐻𝑝1,𝑞1(𝒜) in 𝐻𝑝1,𝑞1(𝒜), we see 

that [𝒜ℎ𝒜]𝐿𝑝2,𝑞2(ℳ) = 𝐻
𝑝2,𝑞2  (𝒜). To prove the converse implication, when 𝑝1, 𝑞1 ≥ 1, let 

𝑥 ∈ 𝐿𝑝1′,𝑝1′(ℳ) with 

𝜏(𝑥𝑎ℎ𝑏) = 0, ∀ 𝑎, 𝑏 ∈ 𝒜, 
then 𝑥𝑎ℎ ∈ 𝐻0

1 (𝒜), where 𝑝1′, 𝑝1′is respectively the conjugate index of 𝑝1, 𝑝1. On the other 

hand, by the condition that [𝒜ℎ𝒜]𝐿𝑝2,𝑞2(ℳ) =  𝐻
𝑝2,𝑞2(𝒜), there exist two sequences 

(𝑎𝑛), (𝑏𝑛) ⊂ 𝒜 such that 

‖𝑎𝑛ℎ𝑏𝑛 − 1‖𝐻𝑝2,𝑞2(𝒜) → 0, 𝑛 → ∞. 

Let 𝑟 > 0, 𝑠 > 0 be such that 
1

𝑟
=

1

𝑝1′
+

1

𝑝2
,
1

𝑠 
=

1

𝑞1′
+

1

𝑞2
. Proposition (5.2.8) gives that 

‖𝑥𝑎𝑛ℎ𝑏𝑛 − 𝑥‖𝐿𝑟,𝑠 (ℳ) ≤ 𝑐‖𝑥‖𝐿𝑝1′,𝑝1′(ℳ)‖𝑥𝑎𝑛ℎ𝑏𝑛 − 1‖𝐿𝑝2,𝑞2(ℳ) → 0, 

 𝑛 → ∞. 
 

Consequently, we get 

‖𝑥𝑎𝑛ℎ𝑏𝑛 − 𝑥‖𝐿𝑟,𝑠(ℳ) →  0, 𝑛 → ∞. 

Since 𝑥𝑎𝑛ℎ𝑏𝑛 = (𝑥𝑎𝑛ℎ)𝑏𝑛 ∈ 𝐻0
1 (𝒜) ⊂ 𝐻0 

𝑟,𝑠(𝒜), we know that 𝑥 ∈ 𝐻0 
𝑟,𝑠(𝒜) ∩

𝐿𝑝1′,𝑝1′(ℳ) = 𝐻𝑝1′,𝑝1′(𝒜) . Hence 𝜏(𝑥𝑦) = 0, ∀ 𝑦 ∈ 𝐻𝑝1,𝑞1(𝒜). It follows that  

[𝒜ℎ𝒜]𝐿𝑝1,𝑞1(ℳ) = 𝐻
𝑝1,𝑞1(𝒜). 

Now we assume 𝑚𝑖𝑛(𝑝1, 𝑞1, 𝑝2, 𝑞2) < 1. Choose an integer 𝑛 such that 

𝑚𝑖𝑛(𝑛𝑝1, 𝑛𝑞1, 𝑛𝑝2, 𝑛𝑞2) ≥ 1, then the conclusion of the previous case tells us that 

[𝒜ℎ𝒜]𝐿𝑛𝑝1,𝑛𝑞1(ℳ) = 𝐻
𝑛𝑝1,𝑛𝑞1(𝒜). Since 𝐻𝑛𝑝1,𝑛𝑞1(𝒜)is dense in 𝐻𝑝1,𝑞1,(𝒜), the proof of the 

first part implies that [𝒜ℎ𝒜]𝐿𝑝1,𝑞1(ℳ) = 𝐻
𝑝1,𝑞1,(𝒜). 

The previous result justifies the relative independence of the indices p, q in the following 

definition. 

Definition (5.2.14)[142]: Let 0 < 𝑝, 𝑞 < ∞. An operator ℎ ∈ 𝐻𝑝,𝑞(𝒜) is called left outer, 

right outer or bilaterally outer according to [ℎ𝒜]𝐿𝑝,𝑞(ℳ) = 𝐻
𝑝,𝑞(𝒜), [𝒜ℎ]𝐿𝑝,𝑞(ℳ) = 𝐻

𝑝,𝑞(𝒜) 

or [𝒜ℎ𝒜]𝐿𝑝,𝑞(ℳ) = 𝐻
𝑝,𝑞(𝒜). 

Theorem (5.2.15)[142]:Let 0 < 𝑝, 𝑞 < ∞ and ℎ ∈ 𝐻𝑝,𝑞(𝒜). 
(i) If ℎ is left or right outer, then∆(ℎ) = ∆(𝜀(ℎ)). Conversely, if ∆(ℎ) = ∆(𝜀(ℎ)) and  

∆(ℎ) > 0, then h is left and right outer (so bilaterally outer too). 

(ii) ii) If 𝒜 is antisymmetric (i.e., 𝑑𝑖𝑚𝐷 = 1) and ℎ is bilaterally outer, then ∆(ℎ) =
∆(𝜀(ℎ)). 

Proof: Let ℎ ∈ 𝐻𝑝,𝑞(𝒜). Putting 0 < 𝑟 < 𝑚𝑖𝑛(𝑝, 𝑞) < ∞ we obtain that ℎ ∈
𝐻𝑟(𝒜).Proposition (5.2.13)and [39] imply that (i) and (ii) hold. 

The following corollary is a consequence of this theorem. 

Corollary (5.2.16)[142]:Letℎ ∈ 𝐻𝑝,𝑞(𝒜) and 0 < 𝑝, 𝑞 < ∞. 
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(i) If∆(ℎ) > 0, then h is left outer if and only if h is right outer. 

(ii) Assume that A is antisymmetric (i.e. , 𝑑𝑖𝑚𝐷 = 1), then the following properties are 

equivalent: 

(a)ℎ is left outer; 

(b)ℎ is right outer; 

(c)ℎ is bilaterally outer; 

(d) ∆(𝜀(ℎ)) = ∆(ℎ) > 0. 

We will say that h is outer if it is at the same time left and right outer. If ℎ ∈ 𝐻𝑝,𝑞(𝐴)with 

∆(ℎ) > 0, then ℎ is outer if and only if∆(ℎ) =  ∆(𝜀(ℎ)). Also in the case where 𝐴 is 

antisymmetric (i.e., dim𝐷 = 1), an h with ∆(ℎ) > 0 is outer if and only if it is left, right or 

bilaterally outer. 

Corollary (5.2.17)[142]:Let ℎ ∈ 𝐻𝑝1,𝑞1  (𝒜) be such that ℎ−1 ∈ 𝐻𝑝2,𝑞2(𝒜) with 0 <
𝑝1, , 𝑝2, 𝑞1 , 𝑞2 < ∞,the 𝒜n h is outer. 

Proof: Let ℎ ∈ 𝐻𝑝1,𝑞1  (𝒜) be such that ℎ−1 ∈ 𝐻𝑝2,𝑞2(𝒜). Taking 0 < 𝑟 <  𝑚𝑖𝑛(𝑝1, 𝑞1) <
∞, 0 < 𝑠 < 𝑚𝑖𝑛(𝑝2, 𝑞2) < ∞,we get ℎ ∈ 𝐻𝑟(𝐴) and ℎ−1 ∈ 𝐻𝑠(𝒜). By virtue of Proposition 

(5.2.13) and [40], we see that ℎ is outer.  

The following theorem improves Theorem (5.2.11). 

Theorem (5.2.18)[142]: Let 𝜔 ∈ 𝐿𝑝,𝑞(ℳ) with 0 < 𝑝, 𝑞 < ∞ such that ∆(ω) > 0, then there 

exista unitary 𝑢 ∈ ℳ and an outer ℎ ∈ 𝐻𝑝,𝑞(𝒜) such that ω = uh. 

Proof: Write the polar decomposition of 𝜔: 𝜔 =  𝑣|𝜔|. For|ω|
1

2 , by virtue of Theorem 

(5.2.11) we get a factorization : |𝜔|
1

2 = 𝑢2ℎ2, with 𝑢2unitary and ℎ2 ∈ 𝐻
2𝑝,2𝑞(𝒜) left outer. 

Since ∆(ℎ2) > 0, ℎ2 is also right outer, it follows that ℎ2 is outer. Similarly we have: 𝑣|𝜔|
1

2𝑢2 =
𝑢1ℎ1. 

This tells us that 𝑢 = 𝑢1, ℎ = ℎ1ℎ2 yield the desired factorization of ω.  

We present the inner-outer factorization for operators in 𝐻𝑝,𝑞(𝒜). 
Corollary (5.2.19)[142]:Let 0 <  𝑝, 𝑞 < ∞and 𝑥 ∈ 𝐻𝑝,𝑞(𝒜) with ∆(𝑥) > 0, then there exist 

a unitary 𝑢 ∈ 𝐴(inner) and an outer ℎ ∈ 𝐻𝑝,𝑞(𝒜) such that 𝑥 = 𝑢ℎ. 

Proof: Let 𝑥 ∈ 𝐻𝑝,𝑞(𝒜)  with ∆(𝑥) > 0. Applying the previous theorem, we get 𝑥 = 𝑢ℎwith 

h outer and u unitary in ℳ. Let (𝑎𝑛) ⊂ 𝒜 such that 𝑙𝑖𝑚ℎ𝑎𝑛 = 1 inHp,q(𝒜), then 𝑢 =
𝑙𝑖𝑚𝑥𝑎𝑛in 𝐻𝑝,𝑞(𝒜), which implies that 𝑢 ∈ 𝐻𝑝,𝑞(𝒜) ∩ℳ =  𝒜.  

Corollary (5.2.20)[142]:Let 0 < 𝑝, 𝑞 < ∞ and ℎ ∈ 𝐻𝑝,𝑞(𝒜) with ∆(ℎ) > 0, then h is outer if 

and only if for any 𝑥 ∈ 𝐻𝑝,𝑞(𝒜) with |𝑥| = |ℎ|, we have ∆(𝜀(𝑥)) ≤ ∆(𝜀(ℎ)). 
Proof: Let ℎ be outer and 𝑥 ∈ 𝐻𝑝,𝑞(𝒜)  with |𝑥| = |ℎ|,. Taking 0 < 𝑟 <  𝑚𝑖𝑛(𝑝, 𝑞) < ∞ we 

obtain that 𝑥 ∈ 𝐻𝑟(𝒜). From [39], we get ∆(𝜀(𝑥)) ≤  ∆(𝜀(ℎ)). Conversely, let ℎ = 𝑢𝑘 be the 

decomposition given by Theorem (5.2.18)  with 𝑘 outer. It is easy to check that ∆(ℎ) = ∆(𝑘) =
∆(𝜀(𝑥)) ≤  ∆(𝜀(ℎ)). Putting 0 < 𝑠 <  𝑚𝑖𝑛(𝑝, 𝑞) < ∞ we get ℎ ∈ 𝐻𝑠(𝒜). Hence, [39] tells 

us that ∆(𝜀(𝑥)) ≤ ∆(𝜀(ℎ)). Consequently, ∆(𝜀(𝑥)) ≤ ∆(𝜀(ℎ)). So ℎ is outer due to Theorem 

(5.2.15). 

Lemma (5.2.21)[270]: Let  𝜀 > −1 then 

𝐿1+2𝜀,1+𝜀(ℳ)  ⊂ 𝐿1+𝜀,1+2𝜀(ℳ). 
Consequently, 
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𝐻1+2𝜀,1+𝜀(𝒜)  ⊂  𝐻1+𝜀,1+2𝜀(𝒜). 
Proof: Similarly to the proof of [112] we can prove that 𝐿1+2𝜀,1+𝜀(ℳ)  ⊂ 𝐿1+2𝜀,∞(ℳ) with 

𝜀 > −1, and 𝐿1+𝜀,1+𝜀(ℳ)  ⊂ 𝐿1+𝜀,1+2𝜀(ℳ) with 𝜀 ≥ 0. Now it suffices to prove that 

‖𝑥2‖𝐿1+𝜀,1+𝜀(ℳ) ≤ 𝐶̃‖𝑥
2‖𝐿1+2𝜀,∞(ℳ), ∀ 𝑥

2  ∈ 𝐿1+2𝜀,∞(ℳ) and 𝜀 > −1. Indeed, ∀ 𝑥2  ∈

𝐿1+2𝜀,∞(ℳ), we have 

‖𝑥2‖𝐿1+𝜀,1+𝜀(ℳ)  = {∫((1 + 𝜀)
1
1+𝜀𝜇(1+𝜀)(𝑥

2))1+𝜀
𝑑(1 + 𝜀)

1 + 𝜀

1

0

}

1
1+𝜀

= {∫(1 + 𝜀)
1+𝜀
1+2𝜀((1 + 𝜀)

1
1+𝜀𝜇(1+𝜀)(𝑥

2))1+𝜀  𝑑(1 + 𝜀) 

1

0

}

1
1+𝜀

≤ {∫(1 + 𝜀)
1+𝜀
1+2𝜀(𝑠𝑢𝑝

𝜀≥0
(1 + 2𝜀)

1
1+2𝜀 𝜇(1+𝜀)(𝑥

2))1+𝜀  𝑑(1 + 𝜀 )

1

0

}

1
1+𝜀

= ‖𝑥2‖𝐿1+2𝜀,∞(ℳ) {∫(1 + 𝜀)
1+𝜀
1+2𝜀𝑑(1 + 𝜀) 

1

0

}

1
1+𝜀

 

which gives the first inclusion of the lemma. Consequently, we obtain 

𝐻1+2𝜀,1+𝜀(𝒜)  ⊂ 𝐻1+𝜀,1+𝜀(𝒜)  ⊂ 𝐻1+𝜀,1+2𝜀(𝒜). 
Lemma (5.2.22)[270]: Let 𝜀 > −1then 

‖𝑥2‖𝐿1+2𝜀,1+𝜀(ℳ)  ≤  ‖𝑥
2‖
𝐿1+𝜀
1+2𝜀,1+𝜀
∗  (ℳ)  ≤  𝑒

1
1+𝜀‖𝑥2‖𝐿1+2𝜀,1+𝜀(ℳ), 

Where 1 + 𝜀 is as in Definition (5.2.4). 

Proof The first inequality is an immediate result from the following estimate 

𝜇(1+𝜀)(𝑥
2))  ≤ (

1

1 + 𝜀
∫ (𝜇(1+2𝜀)(𝑥

2))(1+𝜀)𝑑(1 + 2𝜀)

1+𝜀

0

)

1
1+𝜀

. 

Now we turn to prove the second inequality. Hardy’s first inequality of [119] tells us that 

‖𝑥2‖
𝐿1+𝜀
1+2𝜀,1+𝜀(ℳ)

∗(1+𝜀)
= ∫

[
 
 
 
 

(1 + 𝜀)
−𝜀

(1+2𝜀)(1+𝜀)

 

(∫ (𝜇(1+𝜀)(𝑥
2))1+𝜀𝑑(1 + 𝜀)

1+𝜀

0

)

1
1+𝜀

]
 
 
 
 ∞

0

𝑑(1 + 𝜀)

1 + 𝜀

= ∫(1 + 𝜀)
−1
1+𝜀 (∫ (𝜇(1+𝜀)(𝑥

2))1+𝜀𝑑(1 + 𝜀)

1+𝜀

0

)

 ∞

0

𝑑(1 + 𝜀) 
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≤ (
1
𝜀

1 + 2𝜀

)

 

∫ [(1 + 𝜀) (𝜇(1+𝜀)(𝑥
2))

1+𝜀

]
 

(1 + 𝜀)
−1
1+𝜀𝑑𝑠

∞

0

 

= (
1 + 2𝜀

𝜀
)
 

∫(1 + 𝜀)
1+𝜀
1+2𝜀(𝜇(1+𝜀)(𝑥

2))1+𝜀
𝑑(1 + 𝜀)

1 + 𝜀

∞

0

= (
1 + 2𝜀

𝜀
)
 

‖𝑥2‖𝐿1+2𝜀,1+𝜀(ℳ)
1+𝜀 ≤ 𝑒

1+𝜀
1+2𝜀‖𝑥2‖𝐿1+2𝜀,1+𝜀(ℳ)

1+𝜀 . 

Lemma (5.2.23)[270]: Let 𝜀 > −1 , assume ℳ has no minimal projection, then 

‖𝜀(𝑎2)‖
𝐿1+𝜀 
1+𝜀,1+𝜀(ℳ)
∗ ≤ ‖𝑎2‖

𝐿1+𝜀 
1+𝜀,1+𝜀(ℳ)
∗ ;  ‖𝜀(𝑎2)‖𝐿1+𝜀,1+𝜀(ℳ) ≤ 𝑒

1
1+𝜀 ‖𝑎2‖𝐿1+𝜀,1+𝜀(ℳ), 

where 1 + 𝜀 is as in Definition (5.2.4). 

Proof : [81] gives that 

∫ (𝜇(1+2𝜀)(𝜀(𝑎
2))1+𝜀𝑑(1 + 2𝜀)

1+𝜀

0

= ∫ 𝜇(1+2𝜀)(|𝜀(𝑎
2)|1+𝜀)𝑑(1 + 𝜀) 

1+𝜀

0

= sup
(1+𝜀)

{𝜏(𝑒|𝜀(𝑎2)|1+𝜀𝑒) : 𝑒 ∈ 𝒩𝑝𝑟𝑜𝑗 , 𝜏(𝑒): 1 + 𝜀}. 

where 𝒩 is a von Neumann subalgebra generated by all spectral projections of |𝜀(𝑎2)|. It is 

clear that 𝒩𝑝𝑟𝑜𝑗 ⊂ 𝐷 =  𝒜 ∩𝒜
∗, then we get 

∫ (𝜇(1+2𝜀)(𝜀(𝑎
2)))

1+𝜀
𝑑(1 + 𝜀) 

1+𝜀

0

= 𝑠𝑢𝑝
(1+𝜀)

{𝜏(|𝜀(𝑎2)𝑒|1+𝜀) : 𝑒 ∈ 𝒩𝑝𝑟𝑜𝑗 , 𝜏(𝑒) ≤  1 + 𝜀}

≤ 𝑠𝑢𝑝
(1+𝜀)

{𝜏(|𝜀(𝑎2)𝑒|1+𝜀) ∶ 𝑒 ∈ 𝐷, 𝜏(𝑒) ≤ 1 + 𝜀} 

= 𝑠𝑢𝑝
(1+𝜀)

{𝜏(|𝜀(𝑎2)𝑒|1+𝜀) ∶ 𝑒 ∈ 𝐷, 𝜏(𝑒) ≤ 1 + 𝜀}                            

≤ 𝑠𝑢𝑝
(1+𝜀)

{‖𝜀(𝑎2𝑒)‖1+𝜀
1+𝜀 ∶ 𝑒 ∈ 𝐷, 𝜏(𝑒) ≤ 1 + 𝜀}                             

≤ ∫ (𝜇(1+2𝜀)

1+𝜀

0

(𝑎2))1+𝜀𝑑(1 + 2𝜀).                                                 

It follows that 

‖𝜀(𝑎2)‖
𝐿1+𝜀
1+𝜀,1+𝜀  (ℳ)
∗1+𝜀  = ∫(1 + 𝜀) 

1

0

(
1

1 + 𝜀
∫(𝜇(1+2𝜀)(𝜀(𝑎

2)))1+𝜀𝑑(1 + 𝜀)

1

0

)

 

𝑑(1 + 𝜀)

1 + 𝜀

≤ ∫(1 + 𝜀) 
1

0

(
1

1 + 𝜀
∫(𝜇1+2𝜀(𝑎

2))
1+𝜀
𝑑(1 + 𝜀)

1

0

)

 

𝑑(1 + 𝜀)

1 + 𝜀
= ‖(𝑎2)‖

𝐿1+𝜀
1+𝜀,1+𝜀(ℳ),
∗1+𝜀  

i.e., 

‖𝜀(𝑎2)‖𝐿1+𝜀,1+𝜀 (ℳ) ≤ ‖𝜀(𝑎
2)‖𝐿1+𝜀,1+𝜀 (ℳ)

∗ ≤ ‖𝑎2‖𝐿1+𝜀,1+𝜀 (ℳ)
∗ ≤ 𝑒

1
1+𝜀‖𝜀(𝑎2)‖𝐿1+𝜀,1+𝜀 (ℳ) 
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Proposition (5.2.24)[270]: Let 0 < 𝜀 < ∞,  such that  1 =
(1+𝜀)(2+5𝜀)

(1+2𝜀)(1+3𝜀)
, 1 =

(1+4𝜀)(2+11𝜀)

(1+5𝜀)(1+6𝜀)
 

then 

‖𝑦2𝑧2‖𝐿1+𝜀,1+4𝜀(ℳ) ≤ 𝑒
1
1+𝜀‖𝑦2‖𝐿1+2𝜀,1+5𝜀 (ℳ)‖𝑧

2‖𝐿1+3𝜀,1+6𝜀 (ℳ), 

where  𝑦2  ∈  𝐿1+2𝜀,1+5𝜀  (ℳ), 𝑧2  ∈ 𝐿1+3𝜀,1+6𝜀  (ℳ). 
Proof:Let 0 <  2(1 + 𝜀)  <  𝑚𝑖𝑛(1, 1 + 𝜀, 1 + 4𝜀), we have 

(𝑦2𝑧2)∗∗((1 + 𝜀), 1 + 𝜀) = (
1

1 + 𝜀
∫ (𝜇1+2𝜀(𝑦

2𝑧2))
1+𝜀
𝑑(1 + 2𝜀)

1+𝜀

0

)

1
2(1+𝜀)

≤ (
1

1 + 𝜀
)

1
1+𝜀
(∫ (𝜇(1+2𝜀)(𝑦

2𝑧2))
2(1+𝜀)

𝑑(1 + 2𝜀)

1+𝜀

0

)

1
2(1+𝜀)

× (∫ (𝜇1+2𝜀(𝑧
2))

2(1+𝜀)
𝑑(1 + 2𝜀)

1+𝜀

0

)

1
2(1+𝜀)

= (𝑦2)∗∗(1 + 𝜀, 2(1 + 𝜀))(𝑧2)∗∗(1 + 𝜀, 2(1 + 𝜀)). 
Combing the above estimate with Lemma (5.2.22) we infer that 

‖𝑦2𝑧2‖𝐿1+𝜀,1+4𝜀(ℳ) ≤ ‖𝑦
2𝑧2‖

𝐿1+𝜀
1+𝜀,1+4𝜀  (ℳ)
∗

= (∫((1 + 𝜀)
1
1+𝜀  (𝑦2𝑧2)∗∗

∞

0

(1 + 𝜀, 1 + 𝜀))(1+4𝜀)
𝑑(1 + 𝜀)

1 + 𝜀
)

1
1+4𝜀

 

≤ (∫((1 + 𝜀)
1

1+2𝜀  (𝑦2)∗∗
∞

0

(1 + 𝜀, 1 + 𝜀))
1

1+3𝜀(𝑧2)∗∗(1 + 𝜀, 2(1 + 𝜀))
(1+4𝜀) 𝑑(1 + 𝜀)

1 + 𝜀
)

1
1+4𝜀

 

≤ (∫((1 + 𝜀)
1

1+2𝜀  (𝑦2)∗∗
∞

0

(1 + 𝜀, 1 + 𝜀))
1

1+2𝜀(𝑧2)∗∗(1 + 𝜀, 2(1 + 𝜀))
(1+5𝜀) 𝑑(1 + 𝜀)

1 + 𝜀
)

1
1+5𝜀

 

× (∫((1 + 𝜀)
1

1+2𝜀  (𝑦2)∗∗
∞

0

(1 + 𝜀, 2(1 + 𝜀))(1+6𝜀)
𝑑(1 + 𝜀)

1 + 𝜀
)

1
1+6𝜀

= ‖ 𝑦2‖
𝐿2(1+𝜀)
1+2𝜀,1+5𝜀  (ℳ)
∗ ‖𝑧2‖

𝐿2(1+𝜀)
1+3𝜀,1+6𝜀(ℳ)
∗

≤ (𝑒
1

1+2𝜀‖ 𝑦2‖𝐿1+2𝜀,1+5𝜀 (ℳ))(𝑒
1

1+3𝜀‖𝑧2‖𝐿1+3𝜀,1+6𝜀 (ℳ))

=  𝑒
1
1+𝜀‖𝑦2‖𝐿1+2𝜀,1+5𝜀 (ℳ)‖𝑧

2‖𝐿1+3𝜀,1+6𝜀 (ℳ), 

which gives the result. 
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Lemma (5.2.25)[270]:Let 0 ≤ 𝜀 < ∞, then 

𝐻1+𝜀,1+2𝜀(𝒜)  =  {𝑥2  ∈ 𝐿1+𝜀,1+2𝜀(ℳ) ∶  𝜏(𝑥2𝑎2)  =  0, ∀ 𝑎2  ∈ 𝒜0} . 
Proof: From [274], we deduce that 

𝐻1+𝜀,1+2𝜀(𝒜)  =  {𝑥2  ∈ 𝐿1+𝜀,1+2𝜀(ℳ) ∶  𝜏(𝑥2𝑎2)  =  0, ∀ 𝑎2  ∈ 𝒜0} . 
Conversely, we assume that there exists some 

𝑥2  ∈  {𝑧2  ∈ 𝐿1+𝜀,1+2𝜀(ℳ) ∶  𝜏(𝑧2𝑎2)  =  0, ∀ 𝑎2  ∈ 𝒜0} , 

and 𝑥2  ∉  𝐻1+𝜀,1+2𝜀(𝒜). Hence, there exists some 𝑦2  ∈ 𝐿(1+𝜀)′,(1+2𝜀)′(ℳ) such that 

𝜏(𝑥2𝑦2 ) ≠ 0 and 𝜏(𝑦2𝑎2)  =  0, ∀ 𝑎2  ∈  𝐻1+𝜀,1+2𝜀(𝒜). Putting 1 ≤  1 + 𝜀 <
 𝑚𝑖𝑛((1 + 𝜀)′, (1 + 2𝜀)′), we have 𝑦2  ∈ 𝐿1+𝜀(𝑀) and 𝜏(𝑦2𝑎2)  =  0, ∀ 𝑎2  ∈ 𝒜. [39] 

implies that 𝑦2  ∈ 𝐻0
1+𝜀  (𝒜). Let 1 ≤ 1 + 𝜀 <  𝑚𝑖𝑛(1 + 𝜀, 1 + 2𝜀), then 𝑥2  ∈ {𝑧2  ∈

𝐿1+𝜀(ℳ): 𝜏(𝑧2𝑎2) = 0, ∀ 𝑎2 ∈ 𝒜0} = 𝐻
1+𝜀(𝒜). Consequently, adapting [39] we deduce 

that. 𝜏(𝑥2𝑦2) = 𝜏(𝜀(𝑥2𝑦2)) = 𝜏(𝜀(𝑥2)𝜀(𝑦2))  =  0 This is a contradiction.  

Proposition (5.2.26)[270]:Let 𝜀 ≥ 0,1 ≤ 1 + 𝜀 < 𝑚𝑖𝑛(1 + 𝜀, 1 + 2𝜀), then 

𝐻1+𝜀(𝒜)  ∩ 𝐿1+𝜀,1+2𝜀(ℳ) = 𝐻1+𝜀,1+2𝜀(𝒜). 
Proof It is easy to verify that 𝐻1+𝜀,1+2𝜀(𝒜)  ⊂ 𝐻1+𝜀(𝒜) ∩ 𝐿1+𝜀,1+2𝜀(ℳ). Conversely, let 

𝑥2  ∈ 𝐻1+𝜀(𝒜) ∩ 𝐿1+𝜀,1+2𝜀(ℳ), then 𝑥2  ∈  {𝑧2  ∈ 𝐿1+𝜀(ℳ) ∶  𝜏(𝑧2𝑎2)  =  0, ∀𝑎2  ∈ 𝒜0}. 
Therefore, 𝑥2 ∈ 𝐻1+𝜀,1+2𝜀(𝒜) in view of Lemma (5.2.25) 

      The following result describes the Szeg𝑜̈ type factorization theorem for noncommutative 

Hardy-Lorentz spaces, (see [38]) and also see Theorem (5.2.33)  below for an improvement. 

Theorem (5.2.27)[270]:Let−1 < 𝜀 < ∞, let  𝜔 ∈ 𝐿1+𝜀,1+3𝜀(ℳ) be an invertible operatorsuch 

that 𝜔−1 ∈ 𝐿1+2𝜀,1+4𝜀  (ℳ), then there exist a unitary 𝑢 ∈ ℳ and ℎ2 ∈ 𝐻1+𝜀,1+3𝜀(𝒜) such that 

𝜔 = 𝑢ℎ2 and ℎ−2 ∈  𝐻1+2𝜀,1+4𝜀(𝒜). 
Proof: Let 𝜔 ∈ 𝐿1+𝜀,1+3𝜀(ℳ) be an invertible operator such that 𝜔−1 ∈ 𝐿1+2𝜀,1+4𝜀  (ℳ). Take 

0 < 1 + 𝜀 < 𝑚𝑖𝑛(1 + 𝜀, 1 + 3𝜀), 0 <  1 + 𝜀 <  𝑚𝑖𝑛(1 + 2𝜀, 1 + 4𝜀), then 𝜔 ∈ 𝐿1+𝜀(ℳ) 
and 𝜔−1 ∈ 𝐿1+𝜀(ℳ). By [4], there exist a unitary 𝑢 ∈ ℳ and ℎ2  ∈ 𝐻1+𝜀(𝒜) such that 𝜔 =
 𝑢ℎ2 and ℎ−2 ∈ 𝐻1+𝜀(𝒜). 
We first consider the case 𝑚𝑖𝑛(1 + 𝜀, 1 + 2𝜀, 1 + 3𝜀, 1 + 4𝜀)  >  1. Since ℎ2  =  𝑢∗𝜔 

∈ 𝐿1+𝜀,1+3𝜀  (ℳ), applying Proposition (5.2.26), we conclude that ℎ2  ∈ 𝐻1+𝜀,1+3𝜀(𝒜). 
Similarly,  ℎ−2 ∈ 𝐻1+2𝜀,1+4𝜀  (𝒜). 

On the other hand, if 𝑚𝑖𝑛(1 + 𝜀, 1 + 2𝜀, 1 + 3𝜀, 1 + 4𝜀)  ≤  1, we choose an integer 𝑛 

such that 𝑚𝑖𝑛(𝑛(1 + 𝜀), 𝑛(1 + 2𝜀), 𝑛(1 + 3𝜀), 𝑛(1 + 4𝜀))  >  1. Let 𝜔 =  𝑣|𝜔| be the polar 

decomposition of 𝜔. Note that 𝑣 ∈ ℳ is a unitary. Write 𝜔 =  𝑣|𝜔|
1

𝑛|𝜔|
1

𝑛 · · ·  | |𝜔|
1

𝑛 =

 𝜔1𝜔2  · · · 𝜔𝑛, where 𝜔1  =  𝑣 |𝜔|
1

𝑛 , 𝜔2+𝜀  =   |𝜔|
1

𝑛 , 2 ≤ 2 + 𝜀 ≤n,  𝜀 ≥ 0. Since 𝜔2+𝜀 ∈

𝐿𝑛(1+𝜀),𝑛(1+3𝜀)(ℳ) and 𝜔2+𝜀
−1 ∈ 𝐿𝑛(1+2𝜀),𝑛(1+4𝜀)(ℳ), by what is already proved in the first 

part,we have a factorization 𝜔𝑛  =  𝑢𝑛ℎ𝑛
2  with 𝑢𝑛 ∈  ℳ a unitary, ℎ𝑛

2 ∈

𝐻𝑛(1+𝜀),𝑛(1+3𝜀) (𝒜) such that ℎ𝑛
−2 ∈ 𝐻𝑛(1+2𝜀),𝑛(1+4𝜀)(𝒜). Repeating this argument, we can 

get a similar factorization for 𝜔𝑛−1𝑢𝑛: 𝜔𝑛−1𝑢𝑛  =  𝑢𝑛−1ℎ𝑛−1
2 , and then for 𝜔𝑛−2𝑢𝑛−1, and so 

on. In this way we obtain a factorization: 𝜔 = 𝑢ℎ1
2ℎ2
2… ℎ𝑛

2 , where 𝑢 ∈ ℳ is a unitary, 

ℎ2+𝜀
2

 

 
∈ 𝐻𝑛(1+𝜀),𝑛(1+3𝜀)(𝒜) such that ℎ2+𝜀

−2 ∈ 𝐻𝑛(1+2𝜀),𝑛(1+4𝜀)(𝒜), 1 ≤  1 + 𝜀 ≤  𝑛, 𝜀 ≥ 0. 

Setting ℎ2  =  ℎ1
2ℎ2
2… ℎ𝑛

2 , we see 𝜔 =  𝑢𝑛 is the desired factorization.  

Corollary (5.2.28)[270]:Let, 0 <  1 + 𝜀 <  𝑚𝑖𝑛(1 + 𝜀, 1 + 2𝜀),−1 < 𝜀 < ∞, then 
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𝐻1+𝜀,1+𝜀(𝒜) ∩ 𝐿1+𝜀,1+2𝜀(ℳ)  =  𝐻1+𝜀,1+2𝜀(𝒜), 

𝐻0
1+𝜀,1+𝜀  (𝒜) ∩ 𝐿1+𝜀,1+2𝜀(ℳ)  =  𝐻1+𝜀,1+2𝜀(𝒜). 

 

Proof: It is clear that 

𝐻1+𝜀,1+2𝜀(𝒜)  ⊂ 𝐻1+𝜀,1+𝜀(𝒜) ∩ 𝐿1+𝜀,1+2𝜀(ℳ). 
To prove the converse inequality, fix an 𝑥2  ∈ 𝐻1+𝜀,1+𝜀(𝒜) ∩ 𝐿1+𝜀,1+2𝜀(ℳ) and set =

((𝑥2)∗𝑥2  +  1)
1

2 , thenwe see 𝜔 ∈  𝐿1+𝜀,1+2𝜀(ℳ)and 𝜔−1 ∈ ℳ. Applying Theorem (5.2.27) 

to 𝜔, we get a unitary 𝑢 ∈ ℳand an invertible ℎ2  ∈ 𝐻1+𝜀,1+2𝜀(𝒜) such that 𝜔 =  𝑢ℎ2 and 

ℎ−2 ∈ 𝒜. Then we obtain 

(ℎ2)∗ℎ2  =  (𝑥2)∗(𝑥2)  +  1. 
Since |ℎ2|  ≥  |𝑥2|, there is a contraction 𝑣 ∈  ℳ such that 𝑥2  =  𝑣ℎ2. It follows that 𝑣 =
 𝑥2ℎ−2  ∈ 𝐻1+𝜀,1+𝜀(𝒜) ∩ℳ, therefore, we obtain that 𝑣 ∈  𝒜. Consequently, 𝑥2  ∈  𝒜 ·
 𝐻1+𝜀,1+2𝜀(𝒜)  =  𝐻1+𝜀,1+2𝜀(𝒜), and we conclude the first inequality. The later equality is 

immediate established by adapting the similar proof 

Proposition (5.2.29)[270]:Let−1 < 𝜀 < ∞,    and  ℎ2  ∈ 𝐻1+2𝜀,1+𝜀(𝒜), then: 

i) [ℎ2𝒜]𝐿1+𝜀,1+2𝜀(ℳ)  =  𝐻
1+𝜀,1+2𝜀  (𝒜)if and only if [ℎ2𝒜]

𝐿
1+2𝜀,1+𝜀, (ℳ)   =  𝐻

1+2𝜀,1+𝜀  (𝒜). 

ii) [ℎ2𝒜]𝐿1+𝜀,1+2𝜀(ℳ)   =  𝐻
1+𝜀,1+2𝜀  (𝒜)if and only if [ℎ2𝒜]

𝐿
1+2𝜀,1+𝜀, (ℳ)   =  𝐻

1+2𝜀,1+𝜀  (𝒜). 

iii)[𝒜ℎ2𝒜]𝐿1+𝜀,1+2𝜀(ℳ) = 𝐻
1+𝜀,1+2𝜀  (𝒜)if and only if [𝒜ℎ2𝒜]

𝐿
1+2𝜀,1+𝜀, (ℳ) =

 𝐻1+2𝜀,1+𝜀  (𝒜). 
Proof : We shall prove only the third equivalence. The proofs of the others are similar. 

First, if [𝒜ℎ2𝒜]𝐿1+2𝜀,1+𝜀(ℳ) = 𝐻
1+2𝜀,1+𝜀  (𝒜), from the density of 𝐻1+2𝜀,1+𝜀  (𝒜) in 

𝐻1+2𝜀,1+𝜀  (𝒜), we see that [𝒜ℎ2𝒜]𝐿1+𝜀,1+2𝜀(ℳ) = 𝐻
1+𝜀,1+2𝜀  (𝒜). To prove the converse 

implication, when 𝜀 ≥  0, let 𝑥2  ∈ 𝐿(1+2𝜀)′,(1+𝜀)′(ℳ) with 

𝜏(𝑥2𝑎2ℎ2(𝑎2 + 𝜀)) =  0, ∀ 𝑎2, 𝑎2 + 𝜀 ∈  𝒜, 

then 𝑥2𝑎2ℎ2  ∈ 𝐻0
1 (𝒜), where (1 + 2𝜀)′, (1 + 𝜀)′is respectively the conjugate index of 1 +

2𝜀, 1 + 𝜀. On the other hand, by the condition that [𝒜ℎ2𝒜]𝐿1+𝜀,1+2𝜀(𝑀) = 𝐻
1+𝜀,1+2𝜀(𝒜), there 

exist two sequences (𝑎𝑛
2), (𝑎𝑛

2 + 𝜀𝑛 )  ⊂  𝒜 such that 

‖𝑎𝑛
2ℎ2(𝑎𝑛

2 + 𝜀𝑛 )  −  1‖𝐻1+𝜀,1+2𝜀(𝒜)
→  0, 𝑛 → ∞. 

Let 𝜀 > −1, be such that 1 =  
(2+3𝜀 ′)

(1+2𝜀 ′)
  . Proposition (5.2.24) gives that 

 ‖𝑥2𝑎𝑛
2ℎ2(𝑎𝑛

2 + 𝜀𝑛 ) − 𝑥
2‖
𝐿1+𝜀,1+𝜀 (ℳ)

 

                    ≤ 𝑐̃‖𝑥2‖𝐿(1+2𝜀)′,(1+𝜀)′(ℳ)‖𝑥
2𝑎𝑛

2ℎ(𝑎𝑛
2 + 𝜀𝑛 ) − 1‖𝐿1+𝜀,1+2𝜀 (ℳ) 

→ 0, 𝑛 → ∞. 

Consequently, we get 

‖𝑥2𝑎𝑛
2ℎ2(𝑎𝑛

2 + 𝜀𝑛 ) − 𝑥
2‖
𝐿1+𝜀,1+𝜀 (ℳ)

→  0, 𝑛 → ∞. 

Since 𝑥2𝑎𝑛ℎ
2(𝑎𝑛

2 + 𝜀𝑛 )  =  (𝑥
2𝑎𝑛

2ℎ)(𝑎𝑛
2 + 𝜀𝑛 ) ∈ 𝐻0

1 (𝒜)  ⊂ 𝐻0 
1+𝜀,1+𝜀(𝒜), we know that 

𝑥2 ∈ 𝐻0 
1+𝜀,1+𝜀(𝒜) ∩ 𝐿(1+2𝜀)′,(1+𝜀)′(ℳ)  = 𝐻(1+2𝜀)′,(1+𝜀)′ (𝒜). Hence 𝜏(𝑥2𝑦2)  =

 0, ∀ 𝑦2  ∈ 𝐻1+2𝜀,1+𝜀  (𝒜). It follows that 

[𝒜ℎ2𝒜]𝐿1+2𝜀,1+𝜀(ℳ) = 𝐻
1+2𝜀,1+𝜀  (𝒜). 
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  Now we assume 𝑚𝑖𝑛(1 + 2𝜀, 1 + 𝜀, 1 + 𝜀, 1 + 2𝜀)  <  1. Choose an integer n such that 

𝑚𝑖𝑛(𝑛(1 + 2𝜀), 𝑛(1 + 𝜀), 𝑛(1 + 𝜀), 𝑛(1 + 2𝜀))  ≥  1, then the conclusion of the previous 

case tells us that [𝒜ℎ2𝒜]𝐿𝑛(1+2𝜀),𝑛(1+𝜀)(ℳ) = 𝐻
𝑛(1+2𝜀),𝑛(1+𝜀)(𝒜).Since 𝐻𝑛(1+2𝜀),𝑛(1+𝜀)(𝒜) is 

dense in 𝐻1+2𝜀,1+𝜀,(𝒜), the proof of the first part implies that [𝒜ℎ2𝒜]𝐿1+2𝜀,1+𝜀(ℳ)  =

𝐻1+2𝜀,1+𝜀,(𝒜). 
     The previous result justifies the relative independence of the indices 1 + 𝜀, 1 + 2𝜀 in the 

following definition (see [38]). 

Theorem (5.2.30)[270]:Let −1 < 𝜀 < ∞ and ℎ2  ∈ 𝐻1+𝜀,1+2𝜀(𝒜). 
(i) If ℎ2 is left or right outer, then ∆(ℎ2)  =  ∆(𝜀(ℎ2)). Conversely, if ∆(ℎ2)  =

 ∆(𝜀(ℎ2)) and  ∆(ℎ2)  > 0, then h is left and right outer (so bilaterally outer too). 

(ii) ii) If 𝒜 is antisymmetric (i.e., 𝑑𝑖𝑚𝐷 =  1) and ℎ2 is bilaterally outer, then ∆(ℎ2)  =
 ∆(𝜀(ℎ2)). 

Proof Let ℎ2  ∈ 𝐻1+𝜀,1+2𝜀(𝒜). Putting 0 < 1 + 𝜀 <  𝑚𝑖𝑛(1 + 𝜀, 1 + 2𝜀)  < ∞ we obtain that 

ℎ2  ∈ 𝐻1+𝜀(𝒜). 
Proposition (5.2.29)and [39] imply that (i) and (ii) hold. 

The following corollary is a consequence of this theorem. 

Corollary (5.2.31)[270]:Let ℎ2  ∈ 𝐻1+𝜀,1+2𝜀(𝒜) and −1 <  𝜀 < ∞. 

i) If ∆(ℎ2)  > 0, thenℎ2is left outer if and only if ℎ2 is right outer. 

ii) Assume that 𝒜 is antisymmetric (i.e. , 𝑑𝑖𝑚𝐷 =  1), then the following properties 

areequivalent: 

(a) ℎ2is left outer; 

(b) ℎ2 is right outer; 

(c) ℎ2 is bilaterally outer; 

(d) ∆(𝜀(ℎ2))  =  ∆(ℎ2)  > 0. 

We will say that ℎ2 is outer if it is at the same time left and right outer. If ℎ2  ∈
𝐻1+𝜀,1+2𝜀(𝒜) with ∆(ℎ2)  > 0, then ℎ2 is outer if and only if ∆(ℎ2)  =  ∆(𝜀(ℎ2)). Also in the 

case where 𝒜 is antisymmetric (i.e., 𝑑𝑖𝑚𝐷 =  1), an ℎ2 with ∆(ℎ2)  > 0 is outer if and only 

if it is left, right orbilaterally outer. 

Corollary (5.2.32)[270]: Let ℎ2  ∈ 𝐻1+𝜀,1+3𝜀  (𝒜) be such that ℎ−2  ∈ 𝐻1+2𝜀,1+4𝜀  (𝒜) with 

0 < 𝜀 < ∞,then ℎ2 is outer. 

Proof: Let ℎ2  ∈ 𝐻1+𝜀,1+3𝜀  (𝒜) be such that ℎ−2 ∈ 𝐻1+2𝜀,1+4𝜀  (𝒜). Taking 0 < 1 + 𝜀 <
 𝑚𝑖𝑛(1 + 𝜀, 1 + 3𝜀) < ∞, 0 <  1 + 𝜀 <  𝑚𝑖𝑛(1 + 2𝜀, 1 + 4𝜀)  < ∞, we get ℎ2  ∈ 𝐻1+𝜀(𝒜) 
and ℎ−2 ∈ 𝐻1+𝜀(𝒜). By virtue of Proposition (5.2.29) and [39], we see that ℎ2 is outer.  

The following theorem improves Theorem (5.2.27). 

Theorem (5.2.33)[270]:Let 𝜔 ∈ 𝐿1+𝜀,1+2𝜀(ℳ) with −1 < 𝜀 < ∞ such that ∆(𝜔)  >  0, then 

there exist a unitary 𝑢 ∈ ℳand an outer ℎ2  ∈ 𝐻1+𝜀,1+2𝜀(𝒜) such that 𝜔 =  𝑢ℎ2. 

Proof Write the polar decomposition of 𝜔: 𝜔 =  𝑣|𝜔|. For |𝜔|
1

2, by virtue of Theorem (5.2.27) 

we get a factorization: |𝜔|
1

2 = 𝑢2ℎ2
2, with 𝑢2unitary and ℎ2

2 ∈ 𝐻2(1+𝜀),2(1+2𝜀)(𝒜) left outer. 

Since ∆(ℎ2
2)  >  0, ℎ2

2
is also right outer, itfollows that ℎ2

2is outer. Similarly we have: 

𝑣|𝜔|
1

2𝑢2  =  𝑢1ℎ1
2. 
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This tells us that 𝑢 =  𝑢1, ℎ
2  =  ℎ1

2ℎ2
2 yield the desired factorization of 𝜔.  

Here we present the inner-outer factorization for operators in 𝐻1+𝜀,1+2𝜀(𝒜). 
Corollary (5.2.34)[270]:Let −1 < 𝜀 < ∞ and 𝑥2  ∈ 𝐻1+𝜀,1+2𝜀(𝒜) with ∆(𝑥2)  >  0, then 

there exist aunitary 𝑢 ∈  𝒜(inner) and an outer ℎ2  ∈ 𝐻1+𝜀,1+2𝜀(𝒜) such that 𝑥2  =  𝑢ℎ2. 

Proof Let 𝑥2 ∈ 𝐻1+𝜀,1+2𝜀(𝒜) with ∆(𝑥2)  >  0. Applying the previous theorem, we get 𝑥2  =
 𝑢ℎ2 with ℎ 2outer and 𝑢 unitary in ℳ. Let (𝑎𝑛

2)  ⊂  𝒜 such that 𝑙𝑖𝑚ℎ2𝑎𝑛 = 1 in 

𝐻1+𝜀,1+2𝜀(𝒜), then 𝑢 =  𝑙𝑖𝑚𝑥2𝑎𝑛
2 in 𝐻1+𝜀,1+2𝜀(𝒜), which implies that 𝑢 ∈

𝐻1+𝜀,1+2𝜀(𝒜) ∩ 𝒜 =  𝒜.  

Corollary (5.2.35)[270]:Let −1 < 𝜀 < ∞ and ℎ2  ∈ 𝐻1+𝜀,1+2𝜀(𝒜) with ∆(ℎ2)  > 0, then ℎ2 

is outer if and only if for any 𝑥2 ∈ 𝐻1+𝜀,1+2𝜀(𝒜) with |𝑥2|  =  |ℎ2|, we have ∆(𝜀(𝑥2))  ≤
 ∆(𝜀(ℎ2)). 
𝐏𝐫𝐨𝐨𝐟 Let ℎ2 be outer and 𝑥2  ∈ 𝐻1+𝜀,1+2𝜀(𝒜) with |𝑥2|  =  |ℎ2|,. Taking 0 <  1 + 𝜀 <
 𝑚𝑖𝑛(1 + 𝜀, 1 + 2𝜀)  < ∞ we obtain that 𝑥2 ∈ 𝐻1+𝜀(𝒜). From [39], we get ∆(𝜀(𝑥2))  ≤
 ∆(𝜀(ℎ2)). Conversely, let ℎ2  =  𝑢𝑘2 be the decomposition given by Theorem (5.2.33) with 

𝑘2 outer. It is easy to check that ∆(ℎ2)  =  ∆(𝑘2)  =  ∆(𝜀(𝑥2))  ≤  ∆(𝜀(ℎ2)). Putting 0 <  1 +
𝜀 <  𝑚𝑖𝑛(1 + 𝜀, 1 + 2𝜀)  < ∞ we get ℎ2  ∈ 𝐻1+𝜀(𝒜). Hence, [39] tells us that ∆(𝜀(𝑥2))  ≤
 ∆(𝜀(ℎ2)). Consequently, ∆(𝜀(𝑥2))  ≤  ∆(𝜀(ℎ2)). So ℎ2 is outer due to Theorem (5.2.30). 

Section (5.3) Subdiagonal Subalgebras with Applications to Toeplitz Operators 

Let 𝕋 be the unit circle of the complex plane equipped with normalised Lebesgue 

measure 𝑑𝑚. We denote by 𝐻𝑝(𝕋) the usual Hardy spaces on 𝕋. Let 𝑃+ be the orthogonal 

projection from 𝐿2(𝕋) onto 𝐻2(𝕋). The classical Helson-SzegÖ theorem [101] (see also [141]), 

characterises those positive measures 𝜇 on 𝕋 such that 𝑃+ is bounded on 𝐿2(𝕋, 𝜇). The 

condition is that 𝜇 is absolutely continuous with respect to dm and the corresponding Radon-

Nikod´ym derivative w satisfies  

𝜔 = 𝑒𝑢+𝑣̃ for two functions 𝑢, 𝑣 ∈ 𝐿∞(𝕋) with ‖𝑣̃‖∞ < 𝜋/2,                  (15) 

where 𝑣̃ denotes the conjugate function of 𝑣. 

The motivation of this theorem comes from univariate prediction theory. Let 𝒫+ denote the 

space of all polynomials in 𝑧, and 𝒫− the space of all polynomials in 𝑧̅ without constant term. 

𝒫 = 𝒫+ +𝒫− is the space of all trigonometric polynomials. Then P+ is bounded on 𝐿2(𝕋, 𝜇) if 
and only if𝒫+ and 𝒫− are at positive angle in 𝐿2(𝕋, 𝜇). Recall that the angle between𝒫+ and  

𝒫− is defined as arccos of the following quantity 

𝜌 = 𝑠𝑢𝑝{|∫𝕋 𝑓𝑔̅𝑑𝜇|: 𝑓 ∈ 𝒫+, 𝑔 ∈ 𝒫−, ‖𝑓‖𝐿2(𝕋,𝜇) = ‖𝑔‖𝐿2(𝕋,𝜇) = 1}. 

Thus P+ is bounded on 𝐿2(𝕋, 𝜇) if and only if 𝜌 <  1. 

In multivariate prediction theory one needs to consider the matrix-valued extension of the 

Helson-Szegö theorem. Let 𝕄𝑛 denote the full algebra of complex 𝑛 × 𝑛-matrices, equipped 

with the normalised trace 𝑡𝑟. Let 𝒫+(𝕄𝑛) denote the space of all polynomials in 𝑧 with 

coefficients in 𝕄𝑛. 𝒫−(𝕄n) and 𝒫(𝕄𝑛) have similar meanings. Let 𝜔 be an 𝕄𝑛-valued weight 

on 𝕋, i.e. 𝜔 is an integrable function on 𝕋 with values in the family of semidefinite nonnegative 

matrices. For any trigonometric polynomials f and g in 𝒫(𝕄n) define  

〈𝑓, 𝑔〉𝜔 = ∫𝕋𝑡𝑟(𝑔
∗𝑓𝜔)𝑑𝑚   𝑎𝑛𝑑 ‖𝑓‖𝜔 = ‖𝑓, 𝑓‖𝜔

1/2
 , 

where 𝑎∗ denotes the adjoint of a matrix 𝑎. Like in the scalar case, define 
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𝜌 = 𝑠𝑢𝑝{|∫𝕋𝑡𝑟(𝑔
∗𝑓𝜔)𝑑𝑚|: 𝑓 ∈ 𝒫+(𝕄𝑛), 𝑔 ∈ 𝒫−(𝕄𝑛), ‖𝑓‖𝜔 = ‖𝑔‖𝜔 = 1}. 

Again, 𝜌 < 1 if and only if 𝑃+⊗ 𝐼𝑑𝕄𝑛 is bounded on 𝒫(𝕄n) with respect to ‖. ‖𝑤. The 

problem here is, of course, to characterise 𝑤 such that 𝜌 < 1 in a way similar to the scalar case. 

This time the task is much harder, and it is impossible to find a characterisation as nice as (15). 

Numerous works have been devoted to this subject, see, for instance [223, 172, 171, 180, 106, 

266]. In particular, Pousson’s characterisation in [106] is the matrix-valued analogue of a key 

intermediate step to (15). It is strong enough for applications to the invertibility of Toeplitz 

operators. 

The preceding two cases can be put into the more general setting of subdiagonal algebras in 

the sense of [300]. We will provide an extension of the Helson-Szegö theorem in this general 

setting.  

We study the invertibility of Toeplitz operators. It is well known that the Helson- 

Szegö theorem is closely related to the invertibility of Toeplitz operators. This relationship was 

remarkably exploited by Devinatz [7]. Pousson [105, 106] then subsequently extended 

Devinatz’s work to the matrix-valued case. Using our extension of the Helson- Szegö theorem, 

we will characterize the symbols of invertible Toeplitz operators in the very general setting of 

subdiagonal algebras. 

We end this introduction by mentioning the link between the Helson-Szegö theorem and 

Muckenhoupt’s 𝐴2 weights. Let 𝜔 be a weight on 𝕋. Hunt, Muckenhoupt and Wheeden [243] 

proved that the Riesz projection 𝑃+ is bounded on 𝐿2(𝕋,𝑤) if and only if 

s𝑢𝑝
1

|𝐼|
∫
1
𝜔
1

|𝐼|
∫
1
𝜔−1 < ∞,                                                      (16) 

where the supremum runs over all arcs of 𝕋. Such a 𝜔 is called an 𝐴2-weight. Thus for a weight 

𝜔 the two conditions (15) and (16) are equivalent via the boundedness of the Riesz projection. 

It seems that it is still an open problem to find a direct proof of this equivalence. 

Hunt, Muckenhoupt and Wheeden’s theorem was extended to the matrix-valued case by Treil 

and Volberg [266]. Namely, let 𝑤 now be an 𝕄n-valued weight on 𝕋. Then 𝑃+⊗  𝐼𝑑𝕄𝑛 is 

bounded on 𝒫(𝕄n) with respect to ‖. ‖𝜔 if and only if 

𝑠𝑢𝑝
1
‖(
1

|𝐼|
∫
1
𝜔)

1/2

(
1

|𝐼|
∫
1
𝜔−1) (

1

|𝐼|
∫
1
𝜔)

1/2

‖
𝕄𝑛

< ∞. 

It is not clear for us how to extend Treil and Volberg’s theorem to the case of subdiagonal 

algebras. On the other hand, Hunt, Muckenhoupt and Wheeden also characterised the 

boundedness of 𝑃+ on 𝐿𝑝(𝕋,𝜔)for any 1 < 𝑝 < ∞ by the so-called 𝐴𝑝 weights. 𝐴 well known 

open problem in matrix-valued harmonic analysis is to extend this result to the matrix-valued 

case; even to the very general one of subdiagonal algebras. 

  𝑀 will be a von Neumann algebra possessing a faithful normal tracial state 𝜏. The associated 

noncommutative 𝐿𝑝-spaces are denoted by 𝐿𝑝(𝑀). We refer to [89] for noncommutative 

integration. For a subset 𝑆 of 𝐿𝑝(𝑀), we will write [𝑆]𝑝for the closure of 𝑆 in the 𝐿𝑝 −topology. 

On the other hand, 𝑆∗ will denote the set of all Hilbert-adjoints of elements of 𝑆. When an 

actual Banach dual of some Banach space is in view, we will for the sake of avoiding confusion 

prefer the superscript ⋆ . For example the dual of 𝑀 will be denoted by 𝑀⋆. Because M is finite, 
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there will for any von Neumann subalgebra 𝑁 of 𝑀, always exist a normal contractive 

projection  𝜓: 𝑀 → 𝑁 satisfying 𝜏 ∘ 𝜓 = 𝜏.This is the so-called normal faithful conditional 

expectation onto 𝑁 with respect to 𝜏. 
A finite subdiagonal algebra of 𝑀 is a weak* closed unital subalgebra 𝐴 of 𝑀 satisfying 

the following conditions 

(i) 𝐴 +  𝐴∗ is weak* dense in 𝑀; 

(ii) the trace preserving conditional expectation 𝛷:𝑀 → 𝐴 ∩ 𝐴∗ = 𝐷 is multiplicative on 

A: 

𝛷(𝑎𝑏) = 𝛷(𝑎)𝛷(𝑏), 𝑎, 𝑏 ∈ 𝐴. 
In this case, 𝐷 is called the diagonal of 𝐴. We also set 𝐴0 = 𝐴 ∩ 𝐾𝑒𝑟(𝛷). In the sequel, 𝐴 will 

always denote a finite subdiagonal algebra of 𝑀. 

Subdiagonal algebras are our noncommutative 𝐻∞’s. The most important example is, of 

course, the classical 𝐻∞(𝕋) on the unit circle. Another example important for multivariate 

prediction theory is the matrix-valued 𝐻∞(𝕋). More precisely, let 𝑀 = 𝐿∞(𝕋)  ⊗𝕄𝑛 =
𝐿∞(𝕋;𝕄𝑛) equipped with the product trace, and let 𝐴 = 𝐻∞(𝕋;𝕄𝑛) the subalgebra of 

M consisting of 𝑛 × 𝑛-matrices with entries in 𝐻∞(𝕋). Many classical results about Hardy 

spaces on 𝕋 have been transferred to the matrix-valued case. A third example is the upper 

triangle subalgebra 𝕋𝑛of 𝕄𝑛. This example is closely related to the second one, and is a finite 

dimensional nest algebra. We refer to [89] for more information and historical references on 

subdiagonal algebras, in particular, on matrix-valued analytic functions. 

For 𝑝 < ∞ the Hardy space 𝐻𝑝(𝐴) associated with a finite subdiagonal algebra 𝐴 is defined to 

be [𝐴]𝑝. The closure of 𝐴0 in 𝐿𝑝(𝑀)will be denoted by 𝐻0
𝑝
 (𝑀). By convention, we put 

𝐻∞(𝐴) = 𝐴 and 𝐻0
∞ (𝐴) = 𝐴0. These spaces exhibit many of the properties of classical Hp 

spaces (see [278, 64, 65, 175, 190, 152]). In particular for 1 < 𝑝 < ∞, 𝐿𝑝(𝑀) appears as the 

Banach space direct sum of 𝐻𝑝(𝑀) and 𝐻0 
𝑝
(𝑀)∗, with 𝐻𝑝(𝑀) appearing as the Banach space 

direct sum of 𝐻0 
𝑝
(𝑀) and 𝐿𝑝(𝐷). In the case 𝑝 = 2, these direct sums are even orthogonal 

direct sums. 

Recall that if a weight 𝜔 on 𝕋 satisfies (15), then necessarily 𝑙𝑜𝑔𝜔 ∈ 𝐿1(𝕋), or 

equivalently, 

𝑒𝑥𝑝 (∫𝕋𝑙𝑜𝑔𝜔) >  0.                                                (17) 

The integrability of logw is also equivalent to the existence of an outer function ℎ ∈ 𝐻1(𝑇) 
such that 𝜔 = |ℎ|. To state the outer-inner factorisation and prove the Helson-Szegö analogue 

for subdiagonal algebras, we need an appropriate substitute of the latter condition. This is 

achieved by the Fuglede-Kadison determinant. Recall that the Fuglede-Kadison determinant 

𝛥(𝑎) of an operator 𝑎 ∈ 𝐿𝑝(𝑀) (𝑝 > 0) can be defined by 

𝛥(𝑎) = 𝑒𝑥𝑝(𝜏(𝑙𝑜𝑔 |𝑎|)) = 𝑒𝑥𝑝 (∫  𝑙𝑜𝑔

∞

0

 𝑡 𝑑𝜈|𝑎|(𝑡)) , 

where 𝑑𝜈|𝑎|denotes the probability measure on ℝ+ which is obtained by composing the spectral 

measure of |a| with the trace 𝜏. It is easy to check that 

𝛥(𝑎) = 𝑙𝑖𝑚
𝑝→0
‖𝑎‖𝑝 𝑎𝑛𝑑 𝛥(𝑎) = 𝑖𝑛𝑓

𝜀>0
𝑒𝑥𝑝 𝜏(𝑙𝑜𝑔(|𝑎| + 𝜀𝕝)) . 
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As the usual determinant of matrices, 𝛥 is also multiplicative: 𝛥(𝑎𝑏) =  𝛥(𝑎)𝛥(𝑏). We refer 

for information on determinant to [26, 300] in the case of bounded operators, and to [157, 288] 

for unbounded operators. 

Return to our Hardy spaces. An element ℎ of 𝐻𝑝(𝑀) with 𝑝 < ∞ is said to be an outer 

element if ℎ𝐴 is dense in 𝐻𝑝(𝑀). If in addition 𝛥(ℎ) > 0, we call such an h strongly outer. See 

[63] for 𝑝 ≥ 1 and [284] for 𝑝 < 1. We will however pause to summarise the essential points 

of the theory. For any outer element h of 𝐻𝑝(𝑀), both ℎ and 𝛷(ℎ) necessarily have dense range 

and trivial kernel. Hence their inverses exist as affiliated operators. For such an outer element, 

we also necessarily have that 𝛥(ℎ) =  𝛥(𝛷(ℎ)). If indeed 𝛥(ℎ) > 0, the equality 𝛥(ℎ) =
𝛥(𝛷(ℎ))is sufficient for ℎ to be outer. Using this fact it is now an easy exercise to see that if 

𝛥(ℎ)  > 0, then ℎ is an outer element of 𝐻𝑝(𝑀) if and only if ℎ∗ is an outer element of 𝐻𝑝(𝑀)∗ 
if and only if ℎ is right outer in the sense that 𝐴ℎwill also be dense in 𝐻𝑝(𝑀). In this theory 

one also has a type of noncommutative Riesz-Szegö theorem, in that any 𝑓 ∈ 𝐿𝑝(𝑀) for which 

𝛥(𝑓) > 0, may be written in the form 𝑓 = 𝑢ℎ where 𝑢 ∈ 𝑀 is unitary and ℎ ∈ 𝐻𝑝(𝑀)an outer 

element of 𝐻𝑝(𝑀). 
Given a state 𝜔 on 𝑀, we write (𝜋𝜔, 𝐿

2(𝜔)𝛺𝜔)for the cyclic representation associated to 𝜔. 

The subspaces 𝐴∗ and A0 embed canonically into 𝐿2(𝜔) by means of the operation 𝑎 →
𝜋𝜔(𝑎)𝛺𝜔. The angle between 𝐴∗ and 𝐴0 in 𝐿2(𝜔)is defined to be that between the closed 

subspaces 𝜋𝜔(𝐴
∗)𝛺𝜔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅and 𝜋𝜔(𝐴0)𝛺𝜔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . The latter is equal to cos−1 𝜌 with 𝜌 given by 

𝜌 = 𝑠𝑢𝑝{|〈𝜋𝜔(𝑎)𝛺𝜔, 𝜋𝜔(𝑏)𝛺𝜔〉|: 𝑎 ∈ 𝐴0, 𝑏 ∈ 𝐴
∗, ‖𝜋𝜔(𝑎)𝛺𝜔‖ ≤ 1, ‖𝜋𝜔(𝑏)𝛺𝜔‖ ≤ 1}. 

In view of the fact that 𝜋𝜔(𝑎)𝛺𝜔, 𝜋𝜔(𝑏)𝛺𝜔 = 𝜔(𝑏
∗𝑎), this may be rewritten as 

𝜌 = 𝑠𝑢𝑝{|𝜔(𝑏∗𝑎)|: 𝑎 ∈ 𝐴0, 𝑏 ∈ 𝐴
∗, 𝜔(|𝑎|2) ≤ 1,𝜔(|𝑏|2) ≤ 1}. 

In general 0 ≤ 𝜌 ≤ 1. 𝐴∗ and 𝐴0 are said to be at positive angle in 𝐿2(𝜔)if 𝜌 < 1. Let 𝑃+ be 

the orthogonal projection from 𝐿2(𝑀) onto 𝐻2(𝑀). It is then clear that 𝑃+ defines a bounded 

operator on 𝐿2(𝜔) if and only if 𝜌 < 1. 

We present our noncommutative Helson-Szegö theorem. This theorem will prove to be an 

important ingredient in our onslaught on Toeplitz operators . The classical Helson-Szegö 

theorem contains the information that any finite Borel measure for which the angle between 𝐴 

and 𝐴0
∗  is positive must necessarily be absolutely continuou with respect to Lebesgue measure, 

and moreover that the Radon-Nikod´ym derivative of this measure must have a strictly positive 

geometric mean (17). Before presenting our noncommutative Helson-Szegö theorem, we first 

show that under some mild restrictions the same claims are true in the noncommutative case. 

𝐿+
𝑝
(𝑀) will denote the positive cone of 𝐿𝑝(𝑀). 

Proposition (5.3.1)[170]:Let 𝐷 = 𝐴 ∩ 𝐴∗be finite dimensional, and let ω be a state on 𝑀 for 

which𝜌 < 1. Then 𝜔 is of the form 𝜔 = 𝜏(𝑔 ∙) for some 𝑔 ∈ 𝐿+
1 (𝑀). 

Proof:We keep the notation introduced at the end of the previous section. Let 𝜔𝑛 and 𝜔𝑠 
respectively be the normal and singular parts of 𝜔. Firstly note that by [183], there exists a 

central projection 𝑒0in 𝜋𝜔(𝑀)
′′ such that for any 𝜉, 𝜓 ∈ 𝐿2(𝜔) the functionals 𝑎 →

〈𝜋𝜔(𝑎)𝑒0𝜉, 𝜓〉and 𝑎 → 〈𝜋𝜔(𝑎)ℯ0
⊥𝜉, 𝜓〉 on 𝑀 are respectively the normal and singular parts of 

the functional 𝑎 → 〈𝜋𝜔(𝑎)𝜉, 𝜓〉, where ℯ0
⊥ = 𝕝 − ℯ0. In particular, the triples 

(𝑒0𝜋𝜔, 𝑒0𝐿
2(𝜔), 𝑒0𝛺𝜔) and (ℯ0

⊥𝜋𝜔, ℯ0
⊥𝐿2(𝜔), ℯ0

⊥𝛺𝜔) are copies of the GNS representations of 

𝜔𝑛 and 𝜔𝑠respectively. Since 𝜌 < 1, we must have that 
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𝜋𝜔(𝐴0)𝜔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝜋𝜔(𝐴
∗)𝛺𝜔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = {0}. 

Now suppose that the singular part 𝜔𝑠 of 𝜔 is nonzero. By Ueda’s noncommutative peak-set 

theorem [315] there exist an orthogonal projection 𝑒 in the second dual 𝑀⋆⋆ of 𝑀 and a 

contractive element 𝑎 of 𝐴 so that 

(i) 𝑎𝑛 converges to e in the weak*-topology on 𝑀⋆⋆; 
(ii) 𝜔𝑠(𝑒) = 𝜔𝑠(1) (here 𝜔𝑠 is identified with its canonical extension to 𝑀⋆⋆); 
(iii) 𝑎𝑛 converges to 0 in the weak*-topology on 𝑀. 

Since the expectation 𝛷 is weak*-continuous on 𝑀,𝛷(𝑎𝑛)is weak* convergent to 0. But then 

the finite dimensionality of D ensures that 𝛷(𝑎𝑛)converges to 0 in norm. 

    Recall that the bidual 𝑀⋆⋆ of 𝑀 may be represented as the double commutant of 𝑀 in its 

universal representation. So when this realisation of 𝑀⋆⋆is compressed to the specific 

representation engendered by ω, it follows that 𝑒 yields a projection 𝑒̃ in 𝜋𝜔(𝑀)′′to which 

𝜋𝜔(𝑎
𝑛) converges in the weak*-topology on 𝜋𝜔(𝑀)′′. This weak* convergence in 𝜋𝜔(𝑀)′′ 

together with the second bullet above, then yield the facts that 

(i) 𝜋𝜔(𝑎𝑛)𝛺𝜔 converges to 𝑒̃𝛺𝜔 in the weak-topology on 𝐿2(𝜔); 
(ii) 〈𝑒̃𝛺𝜔, ℯ0

⊥𝛺𝜔〉 = 𝜔𝑠(𝕝). 
From the first bullet and the fact that {𝛷(𝑎𝑛)} is a norm-null sequence, it follows that 𝜋𝜔(𝑎

𝑛 −
𝛷(𝑎𝑛))𝛺𝜔 is weakly convergent to 𝑒̃𝜔, and hence that 𝑒̃𝛺𝜔 ∈ 𝜋𝜔(𝐴0)𝛺𝜔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . But if an converges 

to e in the weak*-topology on 𝑀⋆⋆, then surely so does (𝑎∗𝑛). In terms of the GNS 

representation for 𝜔, this means that 𝜋𝜔((𝑎
∗)𝑛)𝛺𝜔 also converges to𝑒̃𝜔in the weak-topology 

on 𝐿2(𝜔). But then 𝑒̃𝜔 ∈ 𝜋𝜔(𝐴
∗)𝛺𝜔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Then 𝑒̃𝜔 = 0 since 𝑒̃𝜔 ∈ 𝜋𝜔(𝐴0)𝜔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝜋𝜔(𝐴

∗)𝛺𝜔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.  But 

this cannot be, since by the second bullet this would mean that 𝜔𝑠(𝕝) = 〈𝑒̃𝜔, ℯ0
⊥𝛺𝜔〉 = 0. Thus 

our supposition that 𝜔𝑠 is nonzero, must be false. The condition that 𝜌 < 1, is therefore 

sufficient to force 𝜔 to be normal. That is𝜔 is of the form 𝜔 = 𝜏(𝑔. ) for some 𝑔 ∈ 𝐿+
1 (𝑀). 

The following lemmata present two known elementary facts. 

Lemma (5.3.2)[170]:For any 𝑔 ∈ 𝐿+
1 (𝑀) we have that 

𝑠(𝛷(𝑔)) ≥ 𝑠(𝑔), 
where 𝑠(𝑔) denotes the support projection of 𝑔. 

Proof: For simplicity of notation we respectively write 𝑠 and 𝑠𝛷for s(g) and 𝑠(𝛷(𝑔)). Since 

𝑠𝛷 ∈ 𝐷, we have that 

𝜏(𝑠𝛷
⊥𝑔𝑠𝛷

⊥ ) = 𝜏 ∘ 𝛷(𝑠𝛷
⊥𝑔𝑠𝛷

⊥ ) = 𝜏(𝑠𝛷
⊥𝛷(𝑔)𝑠𝛷

⊥ ) = 0. 
Therefore 𝑔1/2𝑠𝛷

⊥ = 𝑠𝛷
⊥𝑔1/2 = 0. This is sufficient to force 𝑠𝛷

⊥ ⊥ 𝑠, which in turn suffices to 

show that 𝑠𝛷 ≥ 𝑠.  
Lemma (5.3.3)[170]:Let 𝑒 be a nonzero projection in 𝐷. Then 𝑒𝐴𝑒 is a finite maximal 

subdiagonal subalgebra of 𝑒𝑀𝑒 (equipped with the trace 𝜏𝑒(. )  =  
1

𝜏(𝑒)
𝜏(. )) with diagonal 

𝑒𝐴𝑒 ∩ (𝑒𝐴𝑒)∗ = 𝑒𝐷𝑒. 

Proof: The expectation 𝛷 is trivially still multiplicative on the compression 𝑒𝐴𝑒. Using the 

fact that 𝑒 ∈ 𝐷, it is an exercise to see that𝛷 maps𝑒𝐴𝑒 onto 𝑒𝐷𝑒. It is also straightforward to 

see that the weak*-density of 𝐴 + 𝐴∗ in 𝑀 forces the weak*-density of 𝑒𝐴𝑒 + (𝑒𝐴𝑒)∗ in 𝑒𝑀𝑒, 

and that (𝑒𝐴𝑒)0 =  𝑒𝐴0𝑒. 
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Definition (5.3.4)[170]: Adopting the notation of the previous two lemmata, given a nonzero 

element 𝑔 ∈ 𝐿+
1 (𝑀), we define ΔΦ(g) to be the determinant of 𝑠𝛷𝑔𝑠𝛷 regarded as an element 

of (𝑠𝛷𝑀𝑠𝛷, 𝜏𝑠𝛷) 
Proposition (5.3.5)[170]: Let 𝐷 = 𝐴 ∩ 𝐴∗ be finite dimensional, and let 𝑔 ∈ 𝐿+

1 (𝑀) be a norm-

one element for which the state 𝜔 = 𝜏(𝑔・) satisfies 𝜌 < 1. Then 𝛥𝛷(𝑔) > 0. 

Proof: It is clear from the previous lemmata that we may reduce matters to the case 

where𝑠(𝛷(𝑔)) = 𝕀, and hence we will assume this to be the case. Suppose by way of 

contradiction that 𝛥(𝑔) = 0. By the Szegö formula for subdiagonal algebras [159], we then 

have that  

0 = 𝛥(𝑔) = 𝑖𝑛𝑓{𝜏(𝑔|𝑎 − 𝑑|2): 𝑎 ∈ 𝐴0, 𝑑 ∈ 𝐷, 𝛥(𝑑) ≥ 1}. 
Thus there exist sequences {𝑎𝑛} ⊂ 𝐴0and {𝑎𝑛} ⊂ 𝐷 with𝛥(𝑑𝑛) ≥ 1 for all 𝑛, so that 

𝜏(𝑔|𝑎𝑛 – 𝑑𝑛|
2) → 0 𝑎𝑠    𝑛 → ∞. 

By [60] we may assume all the 𝑎𝑛’s to be invertible. Now let 𝑢𝑛 ∈ 𝐷be the unitary in the polar 

decomposition 𝑑𝑛 = 𝑢𝑛|𝑑𝑛|. It is an exercise to see that then {𝑢𝑛
∗𝑎𝑛} ⊂  𝐴0with |𝑎𝑛 − 𝑑𝑛|

2 =
|𝑢𝑛
∗𝑎𝑛 − |𝑑𝑛||

2. Making the required replacements, we may therefore also assume that {𝑑𝑛} ⊂
𝐷+. 

Since 1 ≤ (𝑑𝑛) ≤ ‖𝑑𝑛‖∞ for all 𝑛, we will for the sequences 𝑑𝑛̃ = 
1

‖𝑑𝑛‖∞
𝑑𝑛and𝑎𝑛̃ =

1

‖𝑑𝑛‖∞
𝑎𝑛 (𝑛 ∈ ℕ), still have that 𝜏(𝑔|𝑎𝑛̃ − 𝑑𝑛̃|

2)  →  0 as 𝑛 → ∞. Now recall that 𝐷 is finite 

dimensional. So by passing to a subsequence if necessary, we may assume that {𝑑𝑛̃} converges 

uniformly to some norm one element 𝑑0of 𝐷+. But then by what we showed above, 

‖𝜋𝑔(𝑎𝑛̃) − 𝜋(𝑑0)‖2 
= 𝜏(𝑔|𝑎𝑛̃ − 𝑑0|

2)1/2 

≤ 𝜏(𝑔|𝑎𝑛̃ − 𝑑𝑛̃|
2)1/2 + 𝜏(𝑔|𝑑𝑛̃ − 𝑑0|

2)1/2 

≤ 𝜏(𝑔|𝑎𝑛̃ − 𝑑𝑛̃|
2)1/2 + ‖𝑑𝑛̃ −  𝑑0‖∞𝜏(𝑔)

1/2 

→  0. 
Thus 𝜋𝑔(𝑑0) ∈ 𝜋𝑔(𝐴0) ∩ 𝜋𝑔(𝐴∗). Since 𝛷(𝑔) is of full support, we have that 

𝛷(𝑔)1/2𝑑0𝛷(𝑔)
1/2 ≠ 0. So 

0 < 𝜏(𝛷(𝑔)1/2𝑑0𝛷(𝑔)
1/2 = 𝜏(𝛷(𝑔)𝑑0) = 𝜏(𝛷(𝑔𝑑0)) = 𝜏(𝑔𝑑0). 

Therefore 𝜋𝑔(𝑑0) ≠ 0. But this proves that the subspaces 𝜋𝑔(𝐴0) and 𝜋𝑔(𝐴
∗) have a 

nonzero intersection, and hence that 𝜌 = 1. 

The following technical lemma is a crucial step in the proof of the classical Helson-Szegö 

theorem. The challenge one faces in the noncommutative world is that the functional calculus 

at our disposal in that context is simply not strong enough to reproduce so detailed a statement 

in that framework. However in the lemma following this one, we present what we believe to 

be a reasonable noncommutative substitute of this interesting lemma. 

Lemma (5.3.6)[170]: Let 𝑢 = 𝑒−𝑖𝜓 with𝜓 a real measurable function on 𝕋. Then 

𝑖𝑛𝑓𝑔∈𝐻∞(𝑇)‖𝑒
−𝑖𝜓 − 𝑔‖

∞
< 1 if and only if there exist an 𝜀 > 0 and a 𝑘0 ∈ 𝐻

∞( 𝕋)so that 

|𝑘0| ≥ 𝜀 and |𝜓| + 𝑎𝑟𝑔(𝑘0)| ≤
𝜋

2
 – 𝜀 almost everywhere. 
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Lemma (5.3.7)[170]:Let 𝑢 be a unitary element of 𝑀. Then there exists some 𝑓 ∈ 𝐴 so that 

‖𝑢 − 𝑓‖∞ < 1 if and only if there exists ℎ ∈ 𝐴so thatℜ(𝑢∗ℎ) is strictly positive. 

Proof: Suppose first that there exists 𝑓 ∈ 𝐴 with ‖𝑢 − 𝑓‖∞ < 1. We then equivalently have 

that ‖1 − 𝑢∗𝑓‖ = ‖1 − 𝑓∗𝑢‖ < 1. On setting  

𝛼 = ‖1 − 𝑢∗𝑓‖, it follows that ‖𝕀 − ℜ(𝑢 ∗ 𝑓)‖ ≤ 𝛼 < 1, and hence that 

−𝛼𝕀 ≤ ℜ(𝑢∗𝑓) − 1 ≤ 𝛼𝕝. 
This in turn ensures that 0 < (1 − 𝛼)𝕝 ≤ ℜ(𝑢∗𝑓). 
Conversely suppose that there exists ℎ ∈ 𝐴 ∩ 𝑀−1 so that ℜ(𝑢∗ℎ) ≥ 𝛼𝕝 for some 0 < 𝛼 ≤
‖ℜ(𝑢∗ℎ)‖ ≤ ‖ℎ‖, where 𝑀−1 denotes the subset of invertible elements of 𝑀. Given 𝜀 >

0, set𝜆 =
𝜀

‖ℎ‖
 . It then follows that 

−2𝜆ℜ(𝑢∗ℎ) + 𝜆2|ℎ|2 ≤ −(
2𝛼𝜖

‖ℎ‖
− 𝜀2) 𝕝. 

(Observe that 
𝛼

‖ℎ‖
≤ 1 in the above inequality.) It is clear that if ε is small enough, we would 

have that 1 > (
2𝛼𝜀

‖ℎ‖
− 𝜀2) > 0. Thus we may assume this to be the case. For simplicity of 

notation we now set 𝛿 = (
2𝛼𝜀

‖ℎ‖
− 𝜀2). It therefore follows from the previous centered inequality 

that 

0 ≤ |1 − 𝑢∗(𝜆ℎ)|2 = 𝕝 − 2ℜ(𝑢∗(𝜆ℎ) + |𝜆ℎ|2 ≤ (1 − 𝛿)𝕝. 
Hence as required, ‖𝕝 − 𝑢∗(𝜆ℎ)‖2 ≤ (1 − 𝛿) < 1.  

We are now finally ready to present our noncommutative Helson-Szegötheorem. In view of 

Propositions (5.3.1) and(5. 3.5), it is not unreasonable to restrict attention to normal states 𝜏(𝑔. ) 
in this theorem for which ∆𝛷(𝑔 >  0. The following result is a sharpening of the result of 

Pousson [108], in that here the conditions imposed on the unitary 𝑢 are less restrictive. This 

sharpening is achieved by means of the preceding Lemma. 

Theorem (5.3.8)[170]:Let 𝑔 ∈ 𝐿+
1 (𝑀) be given with ‖𝑔‖1 = 1, and denote s(𝛷(𝑔)) by 𝑠𝛷. 

Consider the state 𝜔 = 𝜏(𝑔. ). Then 𝜌 < 1 and 𝛥𝛷(𝑔) > 0 if and only if 𝑔is of the form 𝑔 =
𝑓𝑅𝑢𝑓𝐿where  

(i) 𝑢 ∈ 𝑀 is a partial isometry with initial and final projections sΦ for which there exists 

some 𝑘 ∈ 𝑠𝛷𝐴𝑠𝛷 so that ℜ(𝑢∗𝑘) ≥ 𝛼𝑠𝛷 for some 𝛼 > 0,• 

(ii) and 𝑓𝐿 and 𝑓𝑅 are strongly outer elements of 𝐻2(𝑀) commuting with 𝑠𝛷 for which𝑔 +
(𝕀 − 𝑠𝛷) = |𝑓𝐿|

2 = |𝑓𝑅
∗|2. 

If in addition 𝑑𝑖𝑚𝐷 < ∞, we may dispense with the restrictions that 𝜔 is normal, and that 

𝛥𝛷(𝑔) > 0. 

Proof: Set 𝑠 = 𝑠𝛷for simplicity. Suppose that 𝑔 satisfies the condition 𝛥𝛷(𝑔) > 0. Using the 

fact that then 𝛥𝛷(𝑔
1/2) = 𝛥𝛷(𝑔)

1/2 > 0, it follows from the noncommutative Riesz-

Szegötheorem (see [63]) that there exist strongly outer elements ℎ𝐿, ℎ𝑅 ∈ 𝐻
2(𝑠𝑀𝑠) and 

unitaries 𝑣𝐿, 𝑣𝑅 ∈ 𝑠𝑀𝑠 for which 𝑔1/2 = 𝑣𝐿ℎ𝐿 = ℎ𝑅𝑣𝑅. (Then also 𝑔1/2 = |ℎ𝐿| = |ℎ𝑅
∗ |.) We 

set 

𝑢 = 𝑣𝑅𝑣𝐿,       𝑓𝐿 =  ℎ𝐿 + 𝑠
⊥, 𝑓𝑅 = ℎ𝑅 + 𝑠

⊥. 
It is then clear that 

𝑔 = 𝑓𝑅𝑢𝑓𝐿 and 𝑔 + 𝑠
⊥ = |𝑓𝐿|

2 = |𝑓𝑅
∗|2. 
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We proceed to show that fL and fRare strongly outer. The proofs of the two cases are identical, 

and hence we do this for 𝑓𝐿  only. Notice that 

l𝑜𝑔(|𝑓𝐿|)  =  𝑙𝑜𝑔(|ℎ𝐿|  +  𝑠
⊥)  =  𝑙𝑜𝑔(|ℎ𝐿|)𝑠. 

Since 𝛷(𝑓𝐿) = 𝛷(ℎ𝐿) +  𝑠
⊥, we similarly have that 

𝑙𝑜𝑔(|𝛷(𝑓𝐿)|) = 𝑙𝑜𝑔(|𝛷(ℎ𝐿)|)𝑠. 
It then follows that 

𝜏(𝑙𝑜𝑔 |𝑓𝐿|) = 𝜏(𝑠)𝜏𝑠(𝑙𝑜𝑔 |ℎ𝐿|)and 𝜏(𝑙𝑜𝑔 |𝛷(𝑓𝐿)|) = 𝜏(𝑠)𝜏𝑠(𝑙𝑜𝑔 |𝛷(ℎ𝐿)|). 
Thus the outerness of ℎ𝐿 yields that 

𝜏(𝑙𝑜𝑔 |𝑓𝐿|) = 𝜏(𝑙𝑜𝑔 |𝛷(𝑓𝐿)|) > −∞, so 𝛥(𝑓𝐿) = 𝛥(𝛷(𝑓𝐿)) > 0. 
Then an application of [63] now shows that 𝑓𝐿 is strongly outer. On the other hand, we have 

〈𝜋𝑔(𝑎)𝛺𝑔, 𝜋(𝑏)𝛺𝑔〉 = 𝜏(𝑔𝑏
∗𝑎) = 𝜏(𝑢𝑓𝐿𝑏

∗𝑎𝑓𝑅), 𝑎 ∈ 𝐴0, 𝑏 ∈ 𝐴
∗. 

So 

𝜌 = 𝑠𝑢𝑝{|𝜏(𝑔𝑏∗𝑎)|: 𝑎 ∈ 𝐴0, 𝑏 ∈ 𝐴
∗, 𝜏(𝑔|𝑎|2) ≤ 1, 𝜏(𝑔|𝑏|2) ≤ 1}             

= 𝑠𝑢𝑝{|𝜏((𝑢(𝑠𝑓𝐿𝑏
∗)(𝑎𝑓𝑅𝑠))| ∶ 𝑎 ∈ 𝐴0, 𝑏 ∈ 𝐴

∗, 𝜏(|𝑎𝑓𝑅𝑠|
2) ≤ 1, 𝜏(|𝑏𝑓𝐿

∗𝑠|2) ≤ 1}
=  𝑠𝑢𝑝{|𝜏(𝑢𝐹1𝐹2)|: 𝐹1 ∈ 𝑠𝐻

2(𝑀), 𝐹2 ∈ 𝐻0
2(𝑀)𝑠, ‖𝐹1‖2 ≤ 1, ‖𝐹2‖2 ≤ 1}. 

In the above computation one has used the fact thatfLand fR are strongly outer to approximate 

𝐹1 and 𝐹2 with elements of the form𝑠𝑓𝐿𝑏
∗ and 𝑎𝑓𝑅𝑠where 𝑎 ∈ 𝐴0 and 𝑏 ∈ 𝐴∗. However, it is 

easy to check that for 𝐹1 ∈ 𝑠𝐻
2(𝑀), 𝐹2 ∈ 𝐻0

2(𝑀)𝑠 
𝐹1𝐹2 ∈ 𝐻0

1 (𝑠𝑀𝑠) 𝑎𝑛𝑑 ‖𝐹1𝐹2‖1 ≤ ‖𝐹1‖2‖𝐹2‖2. 
Conversely, by the Noncommutative Riesz Factorisation theorem [176, 153], for any 𝜀 > 0 

and any 𝐹 ∈ 𝐻0
1 (𝑠𝑀𝑠) there exist 𝐹1 ∈ 𝐻

2(𝑠𝑀𝑠) ⊂  𝑠𝐻2(𝑀) and 𝐹2 ∈  𝐻0
2(𝑠𝑀𝑠) ⊂ 𝐻2(𝑀)𝑠 

such that 

𝐹 = 𝐹1𝐹2 𝑎𝑛𝑑 ‖𝐹1‖2‖𝐹2‖2 ≤ ‖𝐹1‖1 + 𝜀. 
From these discussions we conclude that  

𝜌 = 𝑠𝑢𝑝{|𝜏(𝑢𝐹)|: 𝐹 ∈ 𝐻0
1(𝑠𝑀𝑠), ‖𝐹‖1 ≤ 1} = 𝑠𝑢𝑝{|𝜏𝑠(𝑢𝐹)|: 𝐹 ∈ 𝐻0

1 (𝑠𝑀𝑠), 𝜏𝑠(|𝐹|) ≤ 1}. 
The norm of the restriction of the functional 𝐿1(𝑠𝑀𝑠) → ℂ: 𝑎 → 𝜏𝑠(𝑢𝑎) to 𝐻0

1 (𝑠𝑀𝑠) is by 

duality precisely the norm of the equivalence class [𝑢] in the quotient space 𝑠𝑀𝑠/(𝐻0
1(𝑠𝑀𝑠)). 

However, it is well known that 

s𝐴𝑠 = {𝑎 ∈ 𝑠𝑀𝑠: 𝜏𝑠(𝑎𝑏) = 0, 𝑏 ∈ 𝑠𝐴0𝑠} 
(cf. e.g., [153] ). From this fact it is now an easy exercise to see that the polar (𝐻0

1 (𝑠𝑀𝑠)) is 

nothing but 𝑠𝐴𝑠. It therefore follows that 

𝜌 = 𝑖𝑛𝑓{‖𝑢 − 𝑘‖∞: 𝑘 ∈ 𝑠𝐴𝑠}. 
The result now follows from an application of the preceding Lemma.  

We start by recalling the definition of Toeplitz operators. Given𝑎 ∈ 𝑀, the Toeplitz operator 

𝑇𝑎 with symbol a is defined to be the map 

𝑇𝑎: 𝐻
2(𝑀) → 𝐻2(𝑀): 𝑏 → 𝑃+(𝑎𝑏), 

where 𝑃+denotes the orthogonal projection from 𝐿2(𝑀) onto 𝐻2(𝑀). see [177] (see also [30]). 

We will characterise the symbols of invertible Toeplitz operators. We point out that these 

results are new even for the matrix-valued case. In achieving this characterisation, we will 

follow the same basic strategy as Devinatz [7] in his remarkable solution of this problem in the 

classic setting. Our first result essentially reduces the problem to that of characterising 

invertible Toeplitz operators with unitary symbols. 
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Theorem (5.3.9)[170]:Let 𝑎 ∈ 𝑀 be given. A necessary and sufficient condition for 𝑇𝑎 to be 

invertible is that it can be written in the form 𝑎 = 𝑢𝑘where 𝑘 ∈ 𝐴−1, and 𝑢 ∈ 𝑀 is a unitary 

for which 𝑇𝑢 is invertible. 

Suppose that 𝑎 ∈ 𝑀 is indeed of the form 𝑎 = 𝑢𝑘where 𝑘 ∈ 𝐴−1, and 𝑢 ∈ 𝑀 is a unitary. It is 

a simple exercise to see that then 𝑇𝑘 is invertible with inverse 𝑇𝑘−1 . Since 𝑇𝑎𝑇𝑘−1 = 𝑇𝑢 and 

𝑇𝑢𝑇𝑘 = 𝑇𝑎, it is now clear that 𝑇𝑎 will then be invertible if and only if 𝑇𝑢 is invertible. 

Proof: The sufficiency of the stated condition was noted in the above discussion. To see the 

necessity, assume 𝑇𝑎 to be invertible. There must therefore exist some 𝑔 ∈ 𝐻2(𝑀) so that 

𝑇𝑎𝑔 = 𝕝. This in turn can only be true if there exists some ℎ ∈ 𝐻0
2 (𝑀) so that 𝑎𝑔 = 𝕝 + ℎ∗. By 

the generalised Jensen inequality [63] we have that 

𝛥(𝑎)𝛥(𝑔) = 𝛥(𝑎𝑔) = 𝛥(𝕝 + ℎ∗) ≥ 𝛥(𝛷(𝕝 + ℎ∗)) = 𝛥(𝕝) = 1. 

Clearly we then have that 𝛥(|𝑎|1/2) = 𝛥(𝑎)1/2 > 0. So by the noncommutative Riesz-Szegö 

theorem [64], there must exist an outer element𝑓 ∈ 𝐻2(𝑀) and a unitary 𝑣 so that |𝑎|1/2 = 𝑣𝑓. 

(Note then that 𝑓 ∈ 𝑀, so 𝑓 must belong to 𝐴 too.) Let 𝜔 be the unitary in the polar 

decomposition 𝑎 = 𝜔|𝑎|, and consider 𝑏 = 𝜔|𝑎|1/2𝑣. Notice that by construction 𝑏𝑓 = 𝑎. 

Thus 𝑇𝑏𝑇𝑓 =  𝑇𝑎. We will use this formula to show that 𝑇𝑓 is invertible, from which the result 

will then follow. 

Firstly note that the injectivity of  𝑇𝑎 combined with the above equality, ensures that 𝑇𝑓is 

injective. Next notice that the equality 𝑇𝑏𝑇𝑓 =  𝑇𝑎. ensures that ( 𝑇𝑎 )
−1𝑇𝑏 is a left inverse for 

𝑇𝑓. So 𝑇𝑓 must have a closed range. However since 𝑓 is outer, we also have that [𝑓𝐴]2 =

𝐻2(𝑀). Since 𝑓𝐴 ⊂ 𝑇𝑓 (𝐻2(𝑀)), these two facts ensure that the range of 𝑇𝑓 is all of 𝐻2(𝑀). 

Hence𝑇𝑓must be invertible.  

But if Tf is invertible, then so is 𝑇 𝑓
∗ = 𝑇𝑓∗. Since 𝑇𝑓∗𝑇𝑓 = 𝑇|𝑓|2 = 𝑇|𝑎|, the operator𝑇|𝑎| must be 

invertible. Since 𝜎(|𝑎|) ⊂ 𝜎(𝑇|𝑎|) by [177], we must have that 0 ∉  𝜎(|𝑎|). In other words 

|𝑎| must be strictly positive. But if |𝑎| is strictly positive, then by Arveson’s factorization  

theorem there exists some 𝑘 ∈ 𝐴−1 with |𝑎| = |𝑘|. Finally let 𝜔0 be the unitary in the polar 

form𝑘 = 𝜔0|𝑘|. Then 𝑎 = 𝜔𝜔0
∗𝑘, which proves the theorem with 𝑢 = 𝜔𝜔0

∗ . 
Our next step in achieving the desired characterisation, is to present some necessary structural 

information regarding unitaries 𝑢 for which 𝑇𝑢is invertible. We then subsequently use this 

structural information to obtain a characterisation of invertibility in terms of positive angle. 

Lemma (5.3.10)[170]: Let 𝑢 ∈ 𝑀 be a unitary. A necessary condition for 𝑇𝑢 to be invertible is 

that it is of the form 𝑢 = (𝑔1
∗ )−1𝑑𝑔0

−1
where 𝑔0, 𝑔1are strongly outer elements of 𝐻2(𝑀) and 

d a strongly outer 

element of 𝐿2(𝐷) related by the conditions that 

𝑑 = 𝛷(𝑔0) = 𝛷(𝑔1
∗), 𝑑𝑔0

−1 , 𝑑∗𝑔1
−1 ∈ 𝐻2(𝑀) and 𝑔0

∗𝑔0 = 𝑑
∗(𝑔1

∗𝑔1)
−1𝑑. 

Proof:Let 𝑢 ∈ 𝑀 be a unitary for which 𝑇𝑢 is invertible. Since 𝑇 𝑢
∗ = 𝑇𝑢∗ is then also invertible, 

itfollows that there must exist 𝑔0, 𝑔1 ∈ 𝐻
2(𝑀) so that 𝑇𝑢𝑔0 = 𝕝 = 𝑇𝑢𝑔1. This in turn means 

that there exist ℎ0, ℎ1 ∈ 𝐻0
2 (𝑀) with 

𝑢𝑔0 = 𝕝 + ℎ0
∗  , 𝑢∗𝑔1 = 𝕝 + ℎ1

∗  . 
Notice that we may then apply the generalised Jensen inequality [64] to conclude that 

𝛥(𝑔0) = 𝛥(𝑢)𝛥(𝑔0) = 𝛥(𝑢𝑔0) ≥ 𝛥(𝕝) = 1. 
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Similarly 𝛥(𝑔1) ≥ 1. By [63] this means that both 𝑔0 and  𝑔1 are injective with dense range, 

and hence that 𝑔0
−1and 𝑔1

−1 exist as affiliated operators. On the other hand, we have that 

𝑔1
∗𝑢𝑔0 = 𝑔1

∗(𝕝 + ℎ0
∗) ∈ 𝐻1(𝑀)∗ and 𝑔1

∗𝑢𝑔1 = 𝑔1
∗(𝕝 +  ℎ1

∗  ) ∈ 𝐻1(𝑀)∗. 
Hence 

𝑔1
∗𝑢𝑔0 ∈ 𝐻

1(𝑀) ∩ 𝐻1(𝑀)∗ =  𝐿1(𝐷). 
If we denote this element by 𝑑, it follows that 𝑢 is of the form u =  (𝑔1

∗)−1𝑑 𝑔0
−1 . It is then 

clearthat 𝑑∗(𝑔0
∗𝑔1)

−1𝑑 = 𝑔1
∗𝑔0. 

It remains to show that 𝑔0 and 𝑔1 are outer and that 𝑑 = 𝛥(𝑔0) = 𝛥(𝑔1
∗). To see this notice that 

since 𝑔1
∗ ∈ 𝐻2(𝑀)∗and𝑢𝑔0 = 𝕝 + ℎ0

∗ ∈ 𝐻2(𝑀)∗, we have that 

𝑑 = 𝛷(𝑑) = 𝛷(𝑔1
∗𝑢𝑔0) = 𝛷(𝑔1

∗(𝕝 + ℎ0
∗  )) 𝛷(𝑔1

∗)𝛷(𝕝 + ℎ0
∗) = 𝛷(𝑔1

∗). 
Similarly, 𝑑 = 𝛷(𝑔0). (Since 𝛷 maps 𝐻2(𝑀) onto 𝐿2(𝐷), this equality also shows that 𝑑 is in 

fact in 𝐿2(𝐷),, and not just 𝐿1(𝐷),.) It now follows from the equality 𝑔0
∗𝑔0 = 𝑑

∗(𝑔1
∗𝑔1)

−1𝑑, 

that 

𝛥(𝑔0)
2 = 𝛥(𝑔0

∗𝑔0) = 𝛥(𝑑
∗(𝑔1

∗𝑔1)
−1𝑑) =  𝛥(𝑑∗)2𝛥(𝑔1)

−2 = 𝛥(𝛷(𝑔1))
2𝛥(𝑔1)

−2. 
Since as was shown earlier we have that 𝛥(𝑔0)  ≥  1, it therefore follows that 0 < 𝛥(𝑔1) ≤
𝛥(𝛷(𝑔1)).If we combine this with the generalised Jensen inequality [63],we obtain 0 <
𝛥(𝑔1) = 𝛥(𝛷(𝑔1).Similarly, 0 < 𝛥(𝑔0) = 𝛥(𝛷(𝑔0)). Thus by [64] both 𝑔0 and 𝑔1 are 

strongly outer.  

When combined with Theorem (5.3.9), the following lemma characterises the invertibility of 

Toeplitz operators in terms of positive angle. If we further combine this lemma with the 

noncommutative Helson-Szegö theorem obtained, we end up with the promised structural 

characterisation of invertible Toeplitz operators with unitary symbols. 

Lemma (5.3.11)[170]:Let 𝑢 ∈ 𝑀 be a unitary of the form described in the previous lemma. 

Then 𝑇𝑢is invertible if and only if𝐴∗ and 𝐴0 are at positive angle with respect to the functional 

𝜏(𝜔 ∙), where  

𝜔 = 𝑔0
∗𝑔0 = 𝑑

∗(𝑔1
∗𝑔1)

−1𝑑. 

Proof: First suppose that 𝑇𝑢 is invertible. For any 𝑎 ∈ 𝐴 the element g0a will belong to 𝐻2(𝑀). 
So the invertibility of 𝑇𝑢 ensures that we can find a constant 𝐾 > 0 so that 

‖𝑔0𝑎‖2 ≤ Κ‖𝑇𝑢(𝑔0𝑎)‖2, 𝑎 ∈ 𝐴. 
Recall that by Lemma (5.3.10) u is of the form 𝑢 = (𝑔1

∗)−1𝑑𝑔0
−1 . Thus the former inequality 

translates to 

‖𝑔0𝑎‖2 ≤ Κ‖𝑃+(𝑔1
∗)−1𝑑𝑎‖2, 𝑎 ∈ 𝐴. 

Now observe that for any𝑏 ∈ 𝐴0, the element (𝑔1
∗)−1𝑑𝑏∗ will belong to 𝐻2(𝑀)∗𝐴0

∗ ⊂ 𝐻0
2(𝑀)∗. 

Hence 

𝑃+((𝑔1
∗)−1𝑑𝑎) = 𝑃+((𝑔1

∗)−1𝑑𝑎 + (𝑔1
∗)−1𝑑𝑏∗). 

If we now write ‖𝑓‖𝜔for𝜏(𝜔𝑓∗𝑓)1/2, then for any 𝑎 ∈ 𝐴and 𝑏 ∈ 𝐴0 we have that 

‖𝑎∗‖𝜔 = 𝜏(𝑎
∗𝑤𝑎)1/2 = ‖𝑔0𝑎‖2 

≤ Κ‖𝑃+((𝑔1
∗)−1𝑑𝑎 + (𝑔1

∗)−1𝑑𝑏∗)‖2 
≤ 𝐾‖(𝑔1

∗)−1𝑑(𝑎 + 𝑏∗)‖2 
= 𝐾𝜏((𝑎∗ + 𝑏)𝜔(𝑎 + 𝑏∗)) = 𝐾‖𝑎∗ + 𝑏‖𝜔 

Thus 𝐴∗ and 𝐴0are at positive angle with respect to the functional 𝜏(𝑤. ). 
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Conversely, suppose that 𝐴∗ and 𝐴0are at positive angle with respect to the functional 𝜏(𝜔.).We 

first show that 𝑇𝑢 has dense range, and hence that it will be invertible whenever it is bounded 

below. Let 𝑎0 ∈ 𝐻
2(𝑀) be orthogonal to 𝑇𝑢(𝐻

2(𝑀)). We will show that 𝑎0 must then be the 

zero vector. Given 𝑎 ∈ 𝐴, the orthogonality of 𝑎0 to 𝑇𝑢(𝐻
2(𝑀)) together with the fact that 𝑢 =

(𝑔1
∗)−1𝑑𝑔0

−1 , ensures that 

0 = 〈𝑇𝑢(𝑔0𝑎), 𝑎0〉 = 𝜏(𝑎0
∗𝑇𝑢(𝑔0𝑎)) = 𝜏(𝑎0

∗𝑃+((𝑔1
∗)−1𝑑𝑎) = 𝜏(𝑎0

∗(𝑔1
∗)−1𝑑𝑎). 

However, as was noted in the first part of the proof, for any 𝑏 ∈ 𝐴0we have that 

𝑎0
∗(𝑔1

∗)−1𝑑𝑏∗ ∈ 𝐻0
2(𝑀)∗, 

which implies that 

𝜏(𝑎0
∗(𝑔1

∗)−1𝑑𝑏∗) = 𝜏(𝛷(𝑎0
∗(𝑔1

∗)−1𝑑𝑏∗)) = 0. 
Thus  

𝜏(𝑎0
∗(𝑔1

∗)−1𝑑(𝑎 + 𝑏∗)) = 0for all𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴0. 
Hence 𝑑∗𝑔1

−1𝑎0 = 0, so 𝑎0 = 0. 

It remains to show that 𝑇𝑢 is bounded below whenever 𝐴∗ and 𝐴0 are at positive angle with 

respect to the functional 𝜏(𝑤 ∙). Hence assume that there exists a constant 𝐵 > 0 so that 

‖𝑎∗‖𝜔 ≤ 𝐵‖𝑎
∗ + 𝑏‖𝜔 for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴0. 

Since by assumption we have that d = 𝛷(𝑔1
∗), and since both 𝑔1

∗ and ((𝑔1
∗)−1𝑑)belong to 

𝐻2(𝑀)∗,it follows that 

𝑑 = 𝛷(𝑑) = 𝛷(𝑔1
∗[(𝑔1

∗)−1𝑑]) = 𝛷(𝑔1
∗)𝛷((𝑔1

∗)−1𝑑) = 𝑑𝛷((𝑔1
∗)−1𝑑). 

This yields that 𝛷((𝑔1
∗)−1𝑑) =1. Now since 𝑔1

∗ is by assumption strongly outer, we have that 

𝛥(𝑔1) = 𝛥(𝛷(𝑔1)) > 0 by [63]. Consequently 

𝛥(𝑑) = 𝛥(𝑔1
∗ )𝛥((𝑔1

∗)−1𝑑) = 𝛥(𝛷(𝑔1
∗))𝛥((𝑔1

∗)−1𝑑) = 𝛥(𝑑)𝛥((𝑔1
∗)−1𝑑). 

Thus since Δ(d) > 0 by the strong outerness of d, we must have that 

Δ((g1
∗)−1d) = 1 = Δ(𝕝) = Δ(Φ(g1

∗)−1d)). 
Hence by [63] ((g1

∗)−1d) is a strongly outer element of 𝐻2(𝑀)∗. But this ensures that 

[((𝑔1
∗)−1𝑑)𝐴0

∗  ] = 𝐻0
2 (𝑀)∗. Hence for any fixed 𝑎 ∈ 𝐴, we may select a sequence {𝑏𝑛} ⊂ 𝐴0 

so that 

(𝑔1
∗)−1𝑑𝑏𝑛

∗ → (𝑃+ − 𝐼𝑑)[(𝑔1
∗)−1𝑑𝑎] ∈ 𝐻0

2 (𝑀)∗ 𝑖𝑛 𝐿2(𝑀). 
Finally recall that by assumption |𝑔0| = |(𝑔1

∗)−1𝑑|. So given any 𝑎 ∈A, with {𝑏𝑛} ⊂ 𝐴0 the 

sequence as constructed above, we have that 

‖𝑔0𝑎‖2 = ‖𝑎
∗‖𝜔 ≤ 𝐵‖𝑎

∗ + 𝑏𝑛‖𝜔 = 𝐵‖𝑔0(𝑎 + 𝑏𝑛
∗)‖2 = 𝐵‖|𝑔0|(𝑎 + 𝑏𝑛

∗)‖2
= 𝐵‖|(𝑔1

∗)−1|(𝑎 + 𝑏𝑛
∗)‖2 = 𝐵‖|(𝑔1

∗)−1|(𝑎 + 𝑏𝑛
∗)‖2. 

Letting 𝑛 → ∞ now yields 

‖𝑔0𝑎‖2 ≤ 𝐵‖𝑃+[(𝑔1
∗)−1𝑑𝑎]‖ = 𝐵‖𝑇𝑢(𝑔0𝑎)‖2 for any𝑎 ∈ 𝐴. 

Finally note that by assumption 𝑔0is an outer element of 𝐻2(𝑀). With 𝑔0𝐴 therefore being 

dense in 𝐻2(𝑀, the above inequality extends by continuity to the claim that 

‖𝑎‖2 ≤ 𝐵‖𝑇𝑢(𝑎)‖2for any𝑎 ∈ 𝐻2(𝑀). 
Thus 𝑇𝑢is invertible.  

Definition (5.3.12)[170]:Given 𝑓 ∈ 𝑀 we define the Hankel operator with symbol 𝑓 by means 

of the prescription 

ℋ𝑓 ∶ 𝐻
2(𝑀) → 𝐻2(𝑀)∗: 𝑥 → 𝑃−(𝑓𝑥), 

where 𝑃− is the orthogonal projection from 𝐿2(𝑀) onto𝐻2(𝑀)∗. 
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The following lemma is entirely elementary. 

Lemma (5.3.13)[170]: Let 𝑓 ∈ 𝑀 be given. Then 

‖ℋ𝑓|𝐻02‖ = 𝑠𝑢𝑝{|𝜏(𝑓𝐹)|: 𝐹 ∈ 𝐻0
1 (𝑀), 𝜏(|𝐹|) ≤ 1}. 

Proof: Since for every 𝑥 ∈ 𝐻2(𝑀) we have that(𝐼𝑑 − 𝑃−)(𝑥) ∈ 𝐻0
2 (𝑀), it is clear that such 

an (𝐼𝑑 − 𝑃−)(𝑥)will be orthogonal to any y ∈ 𝐻2(𝑀)∗. Thus 〈𝑃−(𝑓𝑎), 𝑏〉 = 〈𝑓𝑎, 𝑏〉for any 𝑎 ∈
𝐻0
2 (𝑀) and 𝑏 ∈ 𝐻2(𝑀)∗.Thus 

‖ℋ𝑓|𝐻02‖ = 𝑠𝑢𝑝{‖𝑃 − (𝑓𝑎)‖: 𝑎 ∈ 𝐻0
2 (𝑀), ‖𝑎‖2 ≤ 1} = 𝑠𝑢𝑝{|〈𝑃−(𝑓𝑎), 𝑏〉|: 𝑎 ∈ 𝐻0

2 (𝑀), 𝑏

∈ 𝐻2(𝑀)∗‖𝑎‖2 ≤ 1, ‖𝑏‖2 ≤ 1} = 𝑠𝑢𝑝{|〈𝑓𝑎, 𝑏〉|: 𝑎 ∈ 𝐻0
2 (𝑀), 𝑏 ∈ 𝐻2(𝑀)∗‖𝑎‖2

≤ 1, ‖𝑏‖2 ≤ 1} =  𝑠𝑢𝑝{|𝜏(𝑓𝑎, 𝑏
∗)|: 𝑎 ∈ 𝐻0

2 (𝑀), 𝑏 ∈ 𝐻2(𝑀)∗‖𝑎‖2 ≤ 1, ‖𝑏‖2
≤ 1} =  𝑠𝑢𝑝{|𝜏(𝑓𝐹)|: 𝐹 ∈ 𝐻0

1(𝑀), 𝜏(|𝐹|) ≤ 1}. 
Here the last equality follows from the Noncommutative Riesz Factorisation theorem from 

[153] and[176].  

When taken alongside Theorem (5.3.9), this result fully characterises invertible Toeplitz 

operators. 

Theorem (5.3.14)[170]:Let 𝑢 ∈ 𝑀 be a unitary of the form described in Lemma (5.3.10). Then 

the following are equivalent: 

(i) 𝑇𝑢is invertible; 

(ii) there exists 𝑘 ∈ 𝐴 such that ℜ(𝑢∗𝑘) is strictly positive; 

(iii) The Hankel operator 𝐻𝑢 restricted to 𝐻0
2 (𝑀) has norm less than 1. 

Proof: Our aim is to apply Theorem (5.3.8). In this regard we point out that although this 

theorem is formulated for norm one elements of 𝐿1(𝑀)+, that assumption is one of convenience 

and not necessity. Hence the value of ‖𝜔‖1 is no essential obstruction to applying this theorem. 

Next observe that the fact that 𝜔 = 𝑔0
∗𝑔0, not only ensures that 𝛥(𝜔) = 𝛥(𝑔0)

2 >0, but also 

that w is injective. Thus by Lemma (5.3.2), 𝑠(𝛷(𝜔)) = 𝕝. We showed in the proof of the 

preceding Lemmathat 𝛥((𝑔1
∗)−1𝑑) = 1 = 𝛥(𝛷((𝑔1

∗)−1𝑑)). Applying this fact to 𝑑∗𝑔1
−1 

enables us to conclude from [63] that 𝑑∗𝑔1
−1 is a strongly outer element of 𝐻2(𝑀). On setting 

ℎ𝑅  =  𝑑
∗𝑔1
−1 and ℎ𝐿  =  𝑔0, it follows that 𝜔 is of the form 

𝜔 = 𝑑∗𝑔1
−1(𝑔1

∗)−1𝑑 = 𝑑∗𝑔1
−1 [(𝑔1

∗)−1𝑑𝑔0
−1 ]𝑔0 = ℎ𝑅𝑢ℎ𝐿 

with ℎ𝑅 and ℎ𝐿 strongly outer elements of 𝐻2(𝑀) for which we have that 

|ℎ𝐿| = |𝑔0| = 𝜔
1/2and|ℎ𝑅

∗ | = |(𝑔1
∗)−1𝑑| = |𝜔|1/2. 

With all the other conditions of this theorem being satisfied, we may now conclude from 

Theorem (5.3.9) that 𝐴 and 𝐴0
∗  are at positive angle with respect to the functional 𝜏(𝜔) if and 

only if there exists a 𝑘 ∈ 𝐴 such that ℜ(𝑢∗𝑘) is strictly positive. From the proof of Theorem 

(5.3.8) we also have that 𝐴 and 𝐴0
∗  are at positive angle if and only if 𝑠𝑢𝑝{|𝜏(𝑓𝐹)|: 𝐹 ∈

𝐻0
1(𝑀), 𝜏(|𝐹|) ≤ 1} < 1. The result now follows from an application of the preceding two 

lemmata.  
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Chapter 6 

Structure of Commutative Toeplitz Banach Algebras 

.We prove the analogous commutability result for Toeplitz operators whose symbols are 

subordinated to the quasi-nilpotent group. At the same time we conjecture that apart from the 

known C∗-algebra cases there are no more new Banach algebras generated by Toeplitz 

operators whose symbols are subordinated to the nilpotent group and which are commutative 

on each weighted Bergman space.We explicitly describe the maximal ideal space and the 

Gelfand map of 𝒯(λ). Since 𝒯(𝜆)  is not invariant under the ∗-operation of ℒ(𝒜𝜆
2(𝔹𝑛)) its 

inverse closedness is not obvious and is shown. We remark that the algebra 𝒯(𝜆) is not semi-

simple and we derive its radical. Several applications of our results are given and, in particular, 

we conclude that the essential spectrum of elements in 𝒯(𝜆)  is always connected. We show 

that ℬ𝑘(ℎ)is generated in fact by an essentially smaller set of operators,i.e.,theToeplitz 

operators with k-quasi-radial symbols and a finite set of Toeplitz operators with “elementary”k-

quasi-homogeneous symbols.Then we analyze the structure of the commutative subalgebras 

corresponding to these two types of generating symbols . In particular,we describe spectra, 

joint spectra, maximal ideal spaces and the Gelfand transform. 

Section (6.1) Quasi-Nilpotent Group Action 

We finish the classification of the Banach and C∗-algebras generated by Toeplitz 

operators that are commutativeon each (commonly considered) weighted Bergman space over 

the unit ball 𝔹n in ℂn .The short history of this problem is as follows. 

The C∗-algebras generated by Toeplitz operators which are commutative on each weighted 

Bergman space over the unit disk were completely classified in [98] .Under some technical 

assumption on “richness”of a class of generating symbols the result was as follows. A C∗-
algebra generated by Toeplitz operators is commutative on each weighted Bergman space if 

and only if the corresponding symbols of Toeplitz operators are constant on cycles of a pencil 

of hyperbolic geodesicson the unit disk, or if and only if the corresponding symbols of Toeplitz 

operators areinvariant under the action of a maximal commutative subgroupof the Mobius 

transformations of the unit disk. The commutativity on each weighted Bergman spacewas 

crucial in the part"only if" of the above result. 

Generalizing this result to Toeplitz operators on the unit ball, it was proved in[219,218], that, 

given a maximal commutative subgroup of biholomorphisms of the unit ball, theC∗-algebra 

generated by Toeplitz operators, whose symbols are invariant under the action of this subgroup, 

is commutative on each weighted Bergman space. There are five different pair wise non-

conjugate model classes of such subgroups :quasi-elliptic, quasi-parabolic, quasi-hyperbolic, 

nilpotent, andquasi-nilpotent  ( the last one depends on a parameter, giving in total 𝑛 + 2 model 

classes for then-dimensional unit ball). As a consequence, for the unit ball of dimension n, there 

are 𝑛 + 2 essentially different "model" commutative -C∗-algebras, all others are conjugated 

with one of them via biholomorphisms of the unit ball. 

It was firmly expected that the above algebras exhaust all possible algebras of Toeplitz 

operators which are commutative on each weighted Bergman space. That is, the invariance 

under the action of a maximal commutative subgroup of biholomorphisms for generating 

symbols is the only reason for the appearance of Toeplitz operator algebras which are 

commutative on each weighted Bergman space. 
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Recently and quite unexpectedly it was observed in[306] that for 𝑛 −1 there are many other, 

not geometrically defined, classes of symbols which generate commutative Toeplitz operator 

algebras on each weighted Bergman space. These classes of symbols were in a sense originated 

from, or subordinated to the quasi-elliptic group, the corresponding commutative operator 

algebras were Banach ,and being extended toC∗-algebras they became non-commutative. 

Moreover, for 𝑛 = 1 all of them collapsed to the commutativeC∗-algebra generated by Toeplitz 

operators with radial symbols (one-dimensional quasi-elliptic case). These results were 

extended in [36,297] then to the classes of symbols, subordinated to the quasi-hyperbolic and 

quasi parabolic groups, which as well generate via corresponding Toeplitz operators classes of 

Banach algebras being commutative on each weighted Bergman space. That is, together 

with[193] ,cover the multi-dimensional extensions of the (only) three model cases on the unit 

disk. The study of the last two model cases of maximal commutative subgroup of 

biholomorphisms of the unit ball, the nilpotent, and quasi-nilpotent groups (which appear only 

for 𝑛 > 1and 𝑛 < 2 respectively), was left as an important and interesting open question. 

After many unsuccessful attempts to find commutative algebras generated by Toeplitz 

operators and subordinated to the nilpotent group we conjecture that a part from the known 

cases there are no more new Banach algebras generated by Toeplitz operators with symbols 

subordinated to the nilpotent group of biholomorphisms of the unit ball𝔹nand commutative on 

each weighted Bergman space. 

At the same time such commutative algebras subordinated to the quasi- nilpotent group do 

exist, is devoted to their description. According to our current understanding the only additional 

source for the appearance of (Banach) Toeplitz operator algebras which are commutative on 

each weighted Bergman space comes from a torus action on 𝔹n. The maximal commutative 

group of biholomorphisms, to which the symbols are subordinated, must contain the torus 

𝕋𝑘with 𝑘 ≥ 2, as a subgroup. In the case of the one-dimensional torus𝕋 the above commutative 

Toeplitz operator algebras collapse to known commutative C∗-algebras generated by Toeplitz 

operators whose symbols are invariant under the action of the maximal commutative group of 

biholomorphisms in question. 

We recall some notation from [218] that are used throughout Let 

𝔹𝑛 ≔ {𝑧 = (𝑧1, … , 𝑧2) ∈ ℂ
𝑛: |𝑧|2 = |𝑧1|

2 +⋯+ |𝑧𝑛|
2 < 1} 

be the unit ball in ℂn. The Siegel domain 𝐷𝑛in ℂn, which is an unbounded realization of the 

unit ball 𝔹𝑛,has the form 

𝐷𝑛 = {𝑧 = (𝑧
′, 𝑧𝑛) ∈ ℂ

𝑛−1 × ℂ: 𝐼𝑚𝑧𝑛 − |𝑧
′|2 > 0} 

Recall that the Cayley transform 𝜔:  𝔹𝑛 → 𝐷𝑛 maps biholomorphically the unit ball𝔹nonto𝐷𝑛 . 

Let𝑣be the usual Lebesgue measure on ℂ𝑛 ≅ ℝ2𝑛 and fix 𝜆 > −1. Then the standard weighted 

measure𝜇𝜆on𝔹𝑛with weight parameter𝜆is given by: 

𝒹𝜇𝜆 ≔ 𝑐𝜆(1 − |𝑧|
2)𝜆 𝒹𝜈      and     𝑐𝜆 ≔

𝛤(𝑛+𝜆+1)

𝜋𝑛𝛤(𝜆+1)
 

Here𝑐𝜆is a normalizing constant such that 𝜇𝜆(𝔹
𝑛) = 1 On𝐷𝑛we can consider the 

corresponding weighted measure 𝜇̃𝜆defined by. 𝕝 

𝒹𝜇̃𝜆(𝜉
′, 𝜉𝑛) =

𝑐𝜆
4
(𝐼𝑚𝜉𝑛 − |𝜉

′|2)𝜆𝒹𝜈(𝜉′, 𝜉𝑛). 
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Let 𝑓be a function on 𝔹𝑛, then we put (𝑢𝜆𝑓)(𝜉) ≔ 2𝑛+𝜆+1(1 − 𝑖𝜉𝑛)
−𝑛−𝜆−1𝑓 ∘ 𝜔−1(𝜉) where 

𝜉 ∈ 𝐷𝑛.A straightforward calculation shows, cf  [36,218]  

Lemma (6.1.1)[38]: Let 𝜆 > −1, then 𝑢𝜆defines a unitary transformation of 𝐿2(𝔹
𝑛, 𝜇𝜆) onto 

𝐿2(𝐷𝑛, 𝜇̃𝜆). 
In the following we write𝒜𝜆

2(𝔹𝑛) and 𝒜𝜆
2(𝐷𝑛)for the weighted Bergman spaces of all complex 

analytic functions in𝐿2(𝔹
𝑛, 𝜇𝜆)and𝐿2(𝐷𝑛, 𝜇̃𝜆), respectively. It is known that by restriction 

𝒰𝜆defines a unitary transformation of𝒜𝜆
2(𝔹𝑛) and 𝒜𝜆

2(𝐷𝑛). 

Let 𝐵𝐷𝑛,𝜆be the Bergman projection of 𝐿2(𝐷𝑛, 𝜇̃𝜆)onto 𝒜𝜆
2(𝐷𝑛). Given a bounded measurable 

function 𝑓 ∈ 𝐿∞(𝐷𝑛) we define theToeplitz operator 𝑇𝑓acting on the weighted Bergman space 

𝒜𝜆
2(𝐷𝑛)inthe usual way by  

𝑇𝑓: = 𝐵𝐷𝑛,𝜆𝑀𝑓 , 

Where𝑀𝑓denotes the multiplication by𝑓. We study a class of commutative Banach algebras 

generated by Toeplitz operators on  𝒜𝜆
2(𝐷𝑛).  

To simplify the notation we will not indicate the dependence of 𝑇𝑓 on the weight parameter𝜆 .

Note that via the unitary transformation 𝒰𝜆 the results on Toeplitz operators acting on weighted 

Bergman spaces over 𝐷𝑛can be directly translated to the corresponding setting of Toeplitz 

operators on 𝒜𝜆
2(𝔹𝑛). 

Put 𝒟 ≔ ℂ𝑛−1 × ℝ× ℝ+. Then the map: 

𝜅: 𝒟 ⟶ 𝒟𝑛: (𝑧
′, 𝑢, 𝑣) ⟼ (𝑧′, 𝑢 + 𝑖𝑣 + 𝑖|𝑧′|2) 

defines a diffeomorphism with inverse  

                                      𝜅−1(𝑧′, 𝑧𝑛) = (𝑧
′, 𝑅𝑒 𝑧𝑛, 𝐼𝑚𝑧𝑛 − |𝑧

′|2). 
Given a function 𝑓 on 𝐷𝑛, we define 𝑈0𝑓 ∶ =  𝑓 ∘ 𝜅 to obtain a function 𝑈0𝑓 on𝒟. On the 

domain 𝒟 we consider the measure 

                                    𝑑𝜂𝜆(𝑧
′, 𝑢, 𝑣) ≔

𝐶𝜆

4
𝑣𝜆𝑑𝑣(𝑧′, 𝑢, 𝑣). 

We have the following, of. [36,219] 

Lemma (6.1.2)[38]: The operator 𝑈0 is unitary from  𝐿2(𝒟𝑛, 𝜇̃𝜆) to 𝐿2(𝒟, 𝜇𝜆) with inverse 

𝑈0
−1 = 𝑈0

∗ given by 𝑈0
∗𝑓 = 𝑓 ∘ 𝜅−1. 

We occasionally omit the dependence of the weight 𝜆 > −1 and put 𝒜0(𝒟) ≔ 𝑈0𝒜𝜆
2(𝒟𝑛) 

which clearly forms a closed subspace of L2(𝒟, ηλ). 
As was explained in [219,218] the classification of maximal commutative subgroups 𝐺 of 

biholomorphisms of 𝒟𝑛 or 𝔹𝑛 yields five essentially different types. Corresponding to each 

type there are commutative Banach or C∗-algebras of Toeplitz operators acting on weighted 

Bergman spaces. The aim is to define such algebras in case of the quasi-nilpotent group G of 

biholomorphisms. We recall the definition. 

Let 1 ≤  𝑘 ≤  𝑛 − 2. We rather use the notation 𝑧 = (𝑧′, 𝜔′, 𝑧𝑛) for z ∈ Dn where 𝑧′ ∈ ℂ𝑘 and 

𝜔′ ∈ ℂ𝑛−𝑘−1. The quasi-nilpotent group 𝕋𝑘 × ℝ𝑛−𝑘−1 ×ℝ acts on 𝒟𝑛, cf. [218], as follows: 

given (𝑡, 𝑏, ℎ) ∈ 𝕋𝑘 ×ℝ𝑛−𝑘−1 ×ℝ, we have: 

𝒯(𝑡, 𝑏, ℎ): (𝑧′, 𝜔′, 𝑧𝑛) → (𝑡𝑧
′, 𝜔′ + 𝑏, 𝑧𝑛 + ℎ + 2𝑖𝜔′. 𝑏 + 𝑖|𝑏|

2). 

Note that in the case 𝑘 = 𝑛 − 1 we obtain the quasi-parabolic group, while 
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for 𝑘 = 0 the group action is called nilpotent. 

On the domain 𝒟 = ℂ𝑘 × ℂ𝑛−𝑘−1 ×ℝ ×ℝ+ we use the variables (𝑧′, 𝜔′, 𝑢, 𝑣) and we 

represent 𝐿2(𝒟, 𝜂𝜆)in the form: 

𝐿2(𝒟, 𝜂𝜆) = 𝐿2(ℂ
𝑘) ⊗ 𝐿2(ℂ

𝑛−𝑘−1) ⊗ 𝐿2(ℝ)⊗ 𝐿2(ℝ+, 𝜂𝜆)                  (1) 

Let F be the Fourier transform on 𝐿2(ℝ), and with respect to the decomposition (1) consider 

the unitary operators 𝑈1: = 𝐼 ⊗ 𝐼 ⊗ 𝐹⊗ 𝐼 acting on 𝐿2(𝒟, 𝜂𝜆). With this notation we put 

𝒜1(𝐷):= 𝑈1(𝒜0(𝒟)). 

Next, we introduce polar coordinates on ℂk and put 𝑟 = (𝑟1, … , 𝑟𝑘) = (|𝑧1
′ |, … , |𝑧𝑘

′ |). 
Moreover, in the following we write 𝑥′: = 𝑅𝑒 𝜔′ and 𝑦'∶= 𝐼𝑚 𝜔. Then one can check that 𝑟, 𝑦′ 
and 𝐼𝑚𝑧𝑛 − |𝜔

′|2 are invariant under the action of the quasi-nilpotent group. Following the 

ideas in [218] and with 𝑟𝑑𝑟 = 𝑟1𝑑𝑟1 …𝑟𝑘𝑑𝑟𝑘 we represent 𝐿2(𝒟, 𝜂𝜆) in the form  

𝐿2(ℝ+
𝑘 , 𝑟𝑑𝑟)⊗ 𝐿2(𝕋

𝑘)𝐿2(ℝ
𝑛−𝑘−1) ⊗ 𝐿2(ℝ

𝑛−𝑘−1) ⊗ 𝐿2(ℝ)⊗ 𝐿2(ℝ+, 𝜂𝜆)              (2) 

We define the unitary operator 𝑈2 on 𝐿2(𝒟, 𝜂𝜆) by 𝑈2 =  𝐼𝐹(𝑘) 𝐹(𝑛−𝑘−1) 𝐼  𝐼  𝐼. Here 

ℱ(𝑘) = ℱ ⊗…⊗ℱ is the k-dimensional discrete Fourier transform and 𝐹(𝑛−𝑘−1)  =

𝐹…   𝐹 denotes the (𝑛 − 𝑘 − 1)-dimensional Fourier transform on𝐿2(ℝ
𝑛−𝑘−1). Note that 

𝐿2(𝒟, 𝜂𝜆) is isometrically mapped by U2 onto 

ℓ2((𝕫
𝑘, 𝐿2(ℝ+

𝑘 ) ⊗ 𝐿2(ℝ
𝑛−𝑘−1) ⊗)𝐿2(ℝ

𝑛−𝑘−1) ⊗ 𝐿2(ℝ)⊗ 𝐿2(ℝ+, 𝜂𝜆))               (3) 

We put 𝒜2(𝐷) = 𝑈2(𝒜1(𝐷)) and we write elements in (3) as {𝑓𝛽(𝑟, 𝑥
′, 𝑦′, 𝜉, 𝜈)}

𝛽∈ℤ𝑘
,  

where 

(𝑟, 𝑥′, 𝑦′, 𝜉, 𝜐) ∈ ℝ+
𝑘 × ℝ𝑛−𝑘−1 ×ℝ𝑛−𝑘−1 ×ℝ ×ℝ+. 

Next we recall the definition of the unitary operator 𝑈3 which acts on (3) by: 

𝑈3: {𝑓𝛽(𝑟, 𝑥
′, 𝑦′, 𝜉, 𝜐)}

𝛽∈ℤ
⟼ {𝑓𝛽 (𝑟,√𝜉(𝑥

′, 𝑦′),
1

2√𝜉
(−𝑥′, 𝑦′), 𝜉, 𝑣)}

𝛽∈ℤ𝑘

 

One immediately checks that the inverse 𝑈3
−1 has the form 

𝑈3
−1: {𝑓𝛽(𝑟, 𝑥

′, 𝑦′, 𝜉, 𝜐)}
𝛽∈ℤ

⟼ {𝑓𝛽 (𝑟,
𝑥′

2√𝜉
− √𝜉𝒴′,

𝑥′

2√𝜉
+ √𝜉𝒴′, 𝜉, 𝑣)}

𝛽∈ℤ𝑘

 

In the following we write ℤ+ = ℕ ∪ {0} = {0,1,2,… } for the nonnegative integers. In order to 

state the main result of Section  in [218] we need to introduce the operator R0, which defines 

an isometric embedding of ℓ2 (𝕫+
𝑘 , 𝐿2(ℝ

𝑛−𝑘−1 ×ℝ+))into (3). It is explicitly given by 

𝑅0: {𝑐𝜕(𝑥
′, 𝜉)}𝛽∈ℤ+𝑘 ⟼ {𝜒ℤ+𝑘×ℝ+

(𝛽, 𝜉)𝐴𝛽(𝜉)𝑟
𝛽𝑒−𝜉(

|𝑟|2+𝑣)−
|𝑣′|

2

2 𝑐𝛽(𝑥
′, 𝜉)}

𝛽∈ℤ𝑘

= {𝑔𝛽(𝑟, 𝑥
′, 𝑦′, 𝜉, 𝑣)}

𝛽∈ℤ𝑘
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Here 𝜒ℤ+𝑘×ℝ+
(𝛽, 𝜉)denotes the characteristic function of ℤ+

𝑘 ×ℝ+ and 𝑐𝛽(𝑥
′, 𝜉) is extended by 

zero for 𝜉 ∈ (−∞, 0) and all 𝑥′ ∈ ℝ𝑛−𝑘−1. Moreover, we have used the abbreviation 

 

𝐴𝛽(𝜉):= 𝜋
−
𝑛−𝑘−1
4 √

2𝑘+2

𝐶𝜆

(2𝜉)|𝛽|+𝜆+𝑘+1

𝛽! 𝛤(𝜆 + 1)
                                          (4) 

The ad joint operator R0
∗  is given by: 

𝑅0
∗: {𝑓𝛽(𝑟, 𝑥

′, 𝑦′, 𝜉, 𝜐)}
𝛽∈ℤ𝑘

⟼ {𝐴𝛽(𝜉)                                                                                                    

×∫ 𝑟𝛽𝑒−𝜉(
|𝑟|2+𝑣)−

|𝑣′|
2

2 𝑓𝛽(𝑟, 𝑥
′, 𝑦′, 𝜉, 𝜐)𝑟𝑑𝑟𝑑𝑦′

ℝ+
𝑘×ℝ𝑛−𝑘−1×ℝ+

𝐶𝜆𝑣
𝜆

4
𝑑𝑣}𝛽∈ℤ+𝑘      (5) 

We set 𝑈 ∶=  𝑈3𝑈2𝑈1𝑈0,  which gives a unitary operator from 𝑅𝜆
2(𝒟𝑛) onto 𝒜3(𝒟) ≔

𝑈3(𝒜2(𝒟)). The following result has been proved in [218], and it provides a decomposition 

of the Bergman projection 𝐵𝒟𝑛,𝜆 in form of a certain operator product. 

Theorem (6.1.3)[38]: [218] The operator 𝑅 ∶= 𝑅0
∗𝑈  maps 𝐿2(𝒟𝑛, 𝜇̃𝜆) onto the space 

ℓ2 (𝕫+
𝑘 , 𝐿2(ℝ

𝑛−𝑘−1 ×ℝ+)), and the restriction 

𝑅|𝒜𝜆
2(𝒟)𝒜𝜆

2(𝒟) → ℓ2 (𝕫+
𝑘 , 𝐿2(ℝ

𝑛−𝑘−1 × ℝ+)) 

is an isometric isomorphism. The ad joint operator 

𝑅∗ = 𝑈∗𝑅0: 𝐿2 (𝕫+
𝑘 , 𝐿2(ℝ

𝑛−𝑘−1 × ℝ+)) → 𝒜𝜆
2(𝒟) ⊂ 𝐿2(𝒟𝑛, 𝜇̃𝜆) 

is an isometric isomorphism of 𝐿2 (𝕫+
𝑘 , 𝐿2(ℝ

𝑛−𝑘−1 ×ℝ+))onto the subspace 𝒜𝜆
2(𝒟)of  

𝐿2(𝒟𝑛, 𝜇̃𝜆). Furthermore one has: 

𝑅𝑅∗ = 𝐼: 𝐿2 (𝕫+
𝑘 , 𝐿2(ℝ

𝑛−𝑘−1 ×ℝ+)) → 𝐿2 (𝕫+
𝑘 , 𝐿2(ℝ

𝑛−𝑘−1 ×ℝ+)), 

𝑅∗𝑅 = 𝐵𝒟𝑛,𝜆: 𝐿2(𝒟𝑛, 𝜇̃𝜆) → 𝒜𝜆
2(𝒟) 

Now, we restrict our attention to bounded measurable symbols on 𝒟𝑛 that are invariant or have 

a certain homogeneity with respect to the quasi-nilpotent group action on 𝒟n. 

Definition (6.1.4)[38]: A bounded measurable function 𝛼:𝒟𝑛 → ℂ is called quasi-nilpotent if 

it has the form 𝛼(𝑧) = 𝛼(𝑟, 𝑦′, 𝐼𝑚𝑧𝑛 − |𝜔
′|2). In particular, such a is invariant under the action 

of the quasi-nilpotent group. 

The following theorem was proved in [218]. 

Theorem (6.1.5)[38]: [218] Let 𝛼(𝑧) = 𝛼(𝑟, 𝑦′, 𝐼𝑚𝑧𝑛 − |𝜔
′|2) be a bounded measurable 

quasi-nilpotent function on 𝒟𝑛. Then the Toeplitz operator Tα acting on 𝒜𝜆
2(𝒟)) is unitary 

equivalent to the multiplication operator 𝛾𝛼𝐼 = 𝑅𝑇𝛼𝑅
∗ acting on the space 

𝐿2 (𝕫+
𝑘 , 𝐿2(ℝ

𝑛−𝑘−1 ×ℝ+)). The sequence  

𝛾𝛼 = {𝛾𝛼(𝛽, 𝑥
′, 𝜉)}𝛽∈ℤ+𝑘 ∈ 𝐿2 (𝕫+

𝑘 , 𝐿2(ℝ
𝑛−𝑘−1 ×ℝ+)) 

With (𝑥′, 𝜉) ∈ ℝ𝑛−𝑘−1 × ℝ+ is given by 
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𝛾𝛼(𝛽, 𝑥
′, 𝜉) = 2𝑘𝜋−

𝑛−𝑘−1
2

(2𝜉)|𝛽|+𝜆+𝑘+1

𝛽! 𝛤(𝜆 + 1)
∫ 𝛼 (𝑟,

1

2√𝜉
(−𝑥′ + 𝑦′), 𝜐 + (|𝑟|2)

ℝ+
𝑘×ℝ𝑛−𝑘−1×ℝ+

× 𝑟𝛽𝑒−2𝜉(𝑣+(|𝑟|
2)−|𝑦′|

2

𝑣𝜆𝑟𝑑𝑟𝑑𝑦′𝑑𝑣. 
We need to prove a similar result for a class of more general symbols. 

Recall that we use the notation 𝑥′ ≔ 𝑅𝑒𝜔′ ∈ ℝ𝑛−𝑘−1where 𝜔′ ∈ ℂ𝑛−𝑘−1and let 𝛼 =
(𝛼1, … , 𝛼𝑚)be a tuple in 𝕫+

𝑚such that |𝛼| = (𝛼1, … , 𝛼𝑚) = 𝑘 Similar to [38,193] we divide the 

coordinates of 𝑧′ ∈ ℂ𝑘 into m groups as follows: 

𝑧(1)
′ = (𝑧1,1

′ , … , 𝑧1,𝛼1
′ ), 𝑧(2)

′ = (𝑧2,1
′ , … , 𝑧2,𝛼2

′ ), …,𝑧(𝑚)
′ = (𝑧𝑚,1

′ , … , 𝑧𝑚,𝛼𝑚
′ )and such that 𝑧′ =

(𝑧(1)
′ , 𝑧(2)

′ , … , 𝑧(𝑚)
′ ). In the following we will use  the same notation also in case of multi-indices 

𝛽 ∈ 𝕫𝑘instead of vectors 𝑧′ ∈ ℂ𝑘. By passing to polar coordinates, we write each tuple 𝑧(𝑗)
′ =

(𝑧𝑗,1
′ , … , 𝑧𝑗,𝛼𝑗

′ )where 𝑗 =  1, . . . , 𝑚, in the form 

𝑧(𝑗)
′  or 𝑟𝑗𝜉(𝑗)  with 𝑟𝑗 = √|𝑍𝑗,1

′ |
2
+⋯+ |𝑍𝑗,𝛼𝑗

′ |
2
  andξ(j) ∈ 𝕊

2αj−1 ⊂ ℂαj . 

Here 𝕊2αj−1denotes the real (2n − 1) -dimensional boundary of 𝔹𝑛. 

Definition (6.1.6) )[38]: Let α(r, y′Im𝕫n − |ω
′|2) be a quasi-nilpotent function and α ∈ ℤ+

mas 

above. 

(i) Then 𝛼 is called “α-quasi-nilpotent quasi-radial” if its radial dependence on r can be 

expressed as a function of 𝑟1, … , 𝑟𝑚. 

(ii) The function 𝑏 = (𝑧′, 𝜔′, 𝕫𝑛) is called “α-quasi-nilpotent quasi-homogeneous”if it is α-

quasi-nilpotent quasi-homogeneous with respect to the variable 𝑧′, i.e. 

𝑏 = (𝑧′, 𝜔′, 𝑧𝑛) = 𝑏0(𝑟1, … , 𝑟𝑚, 𝑦
′𝐼𝑚𝕫𝑛 − |𝜔

′|2)𝜉𝑝𝜉̅𝑞                       (6) 

Where 𝜉 = (𝜉1, 𝜉2, … , 𝜉𝑚) ∈ 𝕊
2𝛼1−1 × 𝕊2𝛼2−1 × …× 𝕊2𝛼𝑚−1 and 𝑝, 𝑞 ∈ 𝕫+

𝑚 are orthogonal. 

The pair (𝑝, 𝑞) is then called the “degree”of 𝑏. 

Note that there is a one-to-one correspondence between the set of tuples {(𝑝, 𝑞) ∈ ℤ+
𝑚 ×

ℤ+
𝑚: 𝑝 ⊥ 𝑞} and ℤk via (𝑝, 𝑞)  ⟼ 𝑝 − 𝑞. 

Consider an α-quasi-nilpotent quasi-homogeneous symbol 𝑏 = (𝑧′, 𝜔′, 𝕫𝑛) as in (6) and of 

degree (p, q) ∈ 𝕫+
𝑘 × 𝕫+

𝑘   with p ⊥ q. Our next aim is to calculate the operator 𝑅𝑇𝑏𝑅
∗. On the 

domain 𝒟 = ℂ𝑘 × ℂ𝑛−𝑘−1 ×ℝ ×ℝ+we use the variables (𝑧′, 𝜔′, 𝑢, 𝑣).Moreover,we express 

𝑧′in polar coordinates 𝑧′ = 𝑡1𝑟1, … , 𝑡𝑘𝑟𝑘 where 𝑟𝑠 ≥ 0 and 𝑡𝑠 ∈ 𝕤 = 𝑆
1for 𝑠 = 1,… , 𝑘. Then 

we have the relations 

𝑧𝑗,ℓ = 𝑟𝑗𝜉𝑗,ℓ = 𝑡𝑗,ℓ𝑟𝑗,ℓ 

for ℓ = {1,… , 𝛼𝑗} and 𝑗 = 1,… ,𝑚. It follows that 𝜉𝑗,ℓ = 𝑡𝑗,ℓ𝑟𝑗,ℓ𝑟𝑗
−1 in the case of𝑟𝑗 ≠ 0 and 

therefore: 

𝜉𝑝𝜉̅𝑞 = 𝑡𝑝𝑡̅𝑞𝑟𝑝+𝑞∏𝑟𝑗
−|𝑝𝑗|−|𝑞𝑗|

𝑚

𝑗=1

                                              (7) 

Note that the assignment z′⟼ ξpξ̅q depends on the initial choice of α ∈ ℤ+
m. 

Using Theorem (6.1.1) we can write: 
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𝑅𝑇𝑏𝑅
∗ = 𝑅𝐵𝒟𝑛,𝜆𝑏𝐵𝒟𝑛,𝜆𝑅

∗ = 𝑅(𝑅∗𝑅)𝑏(𝑅∗𝑅)𝑅∗ = (𝑅𝑅∗)𝑅𝑏𝑅∗(𝑅𝑅∗) = 𝑅𝑏𝑅∗

= 𝑅0
∗𝑈3𝑈2𝑈1𝑈0𝑏𝑈0

−1𝑈1
−1𝑈2

−1𝑈3
−1𝑅0

= 𝑅0
∗𝑈3𝑈2𝑈1𝑏0(𝑟1, … , 𝑟𝑚, 𝑦

′𝐼𝑚𝑧𝑛 − |𝑤
′|2)𝜉𝑝𝜉̅𝑞𝑈0

−1𝑈1
−1𝑈2

−1𝑈3
−1𝑅0 

First we calculate the operator 𝑈0𝑏𝑈0
−1. Let {𝑓𝛽(𝑟, 𝑥

′, 𝑦′, 𝜉, 𝜐)}
𝛽∈𝑍+

𝑘be an element in the space 

(3) and write 𝑟 ∶=  (𝑟1, . . . , 𝑟𝑚). Since the ymbol 

𝑏0(𝑟1, 𝑦
′, 𝑣 + |𝑟|2)𝜉𝑝𝜉̅𝑞 is independent of 𝑥′ we obtain from (7) that: 

𝑈2𝑏0(𝑟, 𝑦
′, 𝑣 + |𝑟|2)𝜉𝑝𝜉̅𝑞𝑈2

−1{𝑓𝛽(𝑟, 𝑥
′, 𝑦′, 𝜉, 𝜐)}

𝛽∈ℤ+
𝑘                              (8) 

{𝑏0(𝑟, 𝑦
′, 𝑣 + |𝑟|2)𝑟𝑝−𝑞 (∏𝑟

𝑗

−|𝑝𝑗|−|𝑞𝑗|
𝑚

𝑗=1

)𝑓𝛽−𝑝+𝑞(𝑟, 𝑥
′, 𝑦′, 𝜉, 𝜐)}

𝛽∈ℤ𝑘

 

Combining (8) and (5) gives: 

 

𝑅𝑇𝑏𝑅
∗: {𝐶𝛽(𝑥

′, 𝜉)}
𝛽∈ℤ+

𝑘 = 𝑅0
∗𝑈3𝑈2𝑏𝑈2

−1𝑈3
−1 {𝜒ℤ+×ℝ+

𝑘 (𝛽, 𝜉) 

𝐴𝛽(𝜉)𝑟
𝛽𝑒−𝜉(

|𝑟|2+𝑣)−
|𝑣′|

2

2 𝑐𝛽(𝑥
′, 𝜉)}

𝛽∈ℤ𝑘

= 𝑅0
∗𝑈3𝑈2𝑏𝑈2

−1 {𝜒ℤ+𝑘×ℝ+
(𝛽, 𝜉)𝐴𝛽(𝜉)𝑟

𝛽

× 𝑒
−𝜉(|𝑟|2+𝑣)−

1
2
−|

1

2√𝜉
𝑥′+√𝜉𝑦′|

2

𝑐𝛽 (
1

2√𝜉
𝑥′ −√𝜉𝑦′, 𝜉)}

𝛽∈ℤ𝑘

= 𝑅0
∗𝑈3 {𝜒𝕫+𝑘×ℝ+

(𝛽 − 𝑝 + 𝑞, 𝜉)𝐴𝛽−𝑝+𝑞(𝜉)𝑟
𝛽+2𝑞𝑏0 × (𝑟, 𝑦

′, 𝑣 + |𝑟|2)

× (∏𝑟
𝑗

−|𝑝𝑗|−|𝑞𝑗|
𝑚

𝑗=1

)𝑒
−𝜉(|𝑟|2+𝑣)−

1
2
−|

1

2√𝜉
𝑥′+√𝜉𝑦′|

2

× 𝐶𝛽−𝑝+𝑞 (
1

2√𝜉
𝑥′ −√𝜉𝑦′, 𝜉)}

𝛽∈ℤ𝑘

= 𝑅0
∗ {𝜒𝕫+𝑘×ℝ+

(𝛽 − 𝑝 + 𝑞, 𝜉)𝐴𝛽−𝑝+𝑞(𝜉)𝑏0 (𝑟,
−𝑥′ + 𝑦′

2√𝜉
, 𝑣 + |𝑟|2) 

× (∏𝑟
𝑗

−|𝑝𝑗|−|𝑞𝑗|
𝑚

𝑗=1

)𝑟𝛽+2𝑞𝑒−𝜉(
|𝑟|2+𝑣)−

1
2
−|𝑦′|

2

𝐶𝛽−𝑝+𝑞(𝑥
′, 𝜉)}𝛽∈ℤ𝑘  



145 
  

= {𝐴𝛽(𝜉)𝐴𝛽−𝑝+𝑞(𝜉)𝜒ℤ+𝑘×ℝ+
(𝛽 − 𝑝 + 𝑞, 𝜉)𝐶𝛽−𝑝+𝑞(𝑥

′, 𝜉)}𝛽∈𝑍𝑘

×∫ 𝑟2(𝛽+𝑞)

ℝ+
𝑘×ℝ𝑛−𝑘−1×ℝ+

(∏𝑟
𝑗

−|𝑝𝑗|−|𝑞𝑗|
𝑚

𝑗=1

)𝑒−𝜉(|𝑟|
2+𝑣)−|𝑦|2

× 𝑏0 (𝑟,
−𝑥′ + 𝑦′

2√𝜉
, 𝑣 + |𝑟|2)𝑟𝑑𝑟𝑑𝑦′

𝐶𝜆𝑣
𝜆

4
𝑑𝑣}

𝛽∈ℤ+
𝑘

 

Now put: 

𝛾𝑏,𝑝,𝑞(𝛽, 𝑥
′, 𝜉):

= 𝐴𝛽(𝜉)𝐴𝛽−𝑝+𝑞(𝜉)𝜒ℤ+𝑘×ℝ+
(𝛽 − 𝑝 + 𝑞, 𝜉)∫ ∏𝑟

𝑗

−|𝑝𝑗|−|𝑞𝑗|
𝑚

𝑗=1ℝ+
𝑘×ℝ𝑛−𝑘−1×ℝ+

× 𝑟2(𝛽+𝑞)𝑒−2𝜉(|𝑟|
2+𝑣)−|𝑦|2 × 𝑏0 (𝑟,

−𝑥′ + 𝑦′

2√𝜉
, 𝑣 + |𝑟|2)𝑟𝑑𝑟𝑑𝑦′ 

×
𝐶𝜆𝑣

𝜆

4
𝑑𝑣                                                                                                                    (9) 

Hence, we have proved: 

Theorem (6.1.7) )[38]: Let b be defined as in (6). The operator RTbR
∗ acts on the Hilbert space 

ℓ2 (ℤ+
𝑘 , 𝐿2(ℝ

𝑛−𝑘−1 × ℝ+))by the rule: 

𝑅𝑇𝑏𝑅
∗: {𝐶𝛽(𝑥

′, 𝜉)}
𝛽∈ℤ+

𝑘 = {𝛾𝑏,𝑝,𝑞(𝛽, 𝑥
′, 𝜉). 𝐶𝛽−𝑝+𝑞(𝑥

′, 𝜉)}
𝛽∈ℤ𝑘

 

Note that, in the case 𝑝 = 𝑞 = 0,Theorem (6.1.8) reduces to Theorem (6.1.5). 

Example(6.1.8)[38]: We calculate 𝑅𝑇𝑏𝑅
∗more explicitly in the special case whereb0 ≡ 1 and 

we choose 𝑘 = 𝑚, i.e. 𝛼 = (1,… ,1) ∈ 𝕫+
𝑘 . Let (𝑝, 𝑞)ℤ+

𝑘 such that 𝑝 ⊥ 𝑞 and put  

𝑏(𝑧′, 𝜔′, 𝑧𝑛) = 𝜉
𝑝𝜉̅𝑞 = 𝑡𝑝𝑡̅𝑞 

According to Theorem (6.1.7) it is sufficient to calculate the functions: 

γb,p,q(β, x
′, ξ):

= Aβ(ξ)Aβ−p+q(ξ)χℝ+(ξ)

× ∫ r2β+q−p

ℝ+
k×ℝn−k−1×ℝ+

e−2ξ(|r|
2+v)−|y|2rdrdy′

Cλv
λ

4
dv 

for all  𝛽 ∈ ℤ+
𝑘   with 𝛽 − 𝑝 + 𝑞 ∈ 𝕫+

𝑘 . We use the identity:  

∫ 𝑒−2𝜉𝑣−|𝑦|
2

ℝ+
𝑘×ℝ𝑛−𝑘−1×ℝ+

𝑑𝑦′𝑣𝜆𝑑𝑣 = 𝜋
𝑛−𝑘−1
2 𝛤(𝜆 + 1)(2𝜉)−(𝜆+1) 

(cf [97]) where 𝜉>0, which together with (4) shows that 

𝛾𝑏,𝑝,𝑞(𝛽, 𝑥
′, 𝜉) = 2𝑘(2𝜉)

|𝛽|+𝑘+
|𝑞|−|𝑝|
2

1

√𝛽! (𝛽 − 𝑝 + 𝑞)!
∫ 𝑟2𝛽+𝑞−𝑝

ℝ+
𝑘

𝑒−2𝜉−|𝑦|
2
𝑑𝑟

=
∏ 𝛤 (𝛽𝑗 +

𝑞𝑗 − 𝑝𝑗
2

+ 1)𝑘
𝑗=1

√𝛽! (𝛽 − 𝑝 + 𝑞)!
. 

In particular, in this case 𝛾𝑏,𝑝,𝑞(𝛽, 𝑥
′, 𝜉)is independent of 𝑥′ and 𝜉. 
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The goal is to study the commutatively of Toeplitz operators  with symbols having 

certain invariance properties. We will use the above notation. Fix 𝛼 ∈ 𝕫+
𝑚with |𝛼| = 𝑘 as 

before and let 𝛼 = 𝛼0(𝑟1, … , 𝑟𝑚, 𝑦
′𝐼𝑚𝑧𝑛 − |𝜔

′|2) be a bounded measurable 𝛼-quasi-nilpotent 

quasi-radial function on 𝐷𝑛. Consider the symbol: 

𝑏(𝑧′, 𝜔′, 𝑧𝑛) = 𝑏0(𝑟1, … , 𝑟𝑚, 𝑦
′𝐼𝑚𝑧𝑛 − |𝜔

′|2). 𝜉𝑝𝜉̅𝑞                                    (10) 

We calculate the operator products 𝑅𝑇𝑏𝑇𝑎𝑅
∗ and 𝑅𝑇𝑎𝑇𝑏𝑅

∗. According to Theorem (6.1.7) and 

Theorem (6.1.1) we have 

𝑅𝑇𝑏𝑇𝑎𝑅
∗{𝑐𝛽}𝛽∈ℤ+𝑘

= (𝑅𝑇𝑏𝑅
∗)(𝑅𝑇𝑎𝑅

∗){𝑐𝛽}𝛽∈ℤ+𝑘
                         

= (𝑅𝑇𝑏𝑅
∗){𝛾̅𝑏,𝑝,𝑞(𝛽, 𝑥

′, 𝜉). 𝑐𝛽(𝑥
′, 𝜉)}

𝛽∈ℤ+
𝑘                       

= {𝛾̅𝑏,𝑝,𝑞(𝛽, 𝑥
′, 𝜉)𝛾𝑎,0,0(𝛽 − 𝑝 + 𝑞, 𝑥

′, 𝜉)𝑐𝛽−𝑝+𝑞(𝑥
′, 𝜉)}

β∈ℤ+
k      (11) 

On the other hand it follows: 

𝑅𝑇𝑎𝑇𝑏𝑅
∗{𝑐𝛽}𝛽∈ℤ+𝑘

 = (𝑅𝑇𝑎𝑅
∗)(𝑅𝑇𝑏𝑅

∗){𝑐𝛽}𝛽∈ℤ+𝑘
= (𝑅𝑇𝑎𝑅

∗){𝛾̅𝑏,𝑝,𝑞(𝛽, 𝑥
′, 𝜉). 𝑐𝛽(𝑥

′, 𝜉)}
𝛽∈ℤ+

𝑘  

= {𝛾̅𝑎,0,0(𝛽, 𝑥
′, 𝜉)𝛾̅𝑏,𝑝,𝑞(𝛽, 𝑥

′, 𝜉)𝑐𝛽−𝑝+𝑞(𝑥
′, 𝜉)}

𝛽∈ℤ+
𝑘                             (12) 

Hence, we conclude from (11) and (12) that both operators 𝑇𝑎 and 𝑇𝑏 commute if and only if 

𝛾̅𝑎,0,0(𝛽, 𝑥
′, 𝜉) = 𝛾̅𝑎,0,0(𝛽 − 𝑝 + 𝑞, 𝑥

′, 𝜉) 

for all 𝛽 ∈ ℤ+
𝑘 . According to (9) this is equivalent to: 

1

𝛽!
∫ 𝑎0 (𝑟,

−𝑥′ + 𝑦′

2√𝜉
, 𝑣 + |𝑟|2)

ℝ+
𝑘×ℝ𝑛−𝑘−1×ℝ+

𝑟2𝛽𝑒−2𝜉(𝑣−|𝑟|
2)−|𝑦′|

2

𝑣𝜆𝑟𝑑𝑟𝑑𝑦′𝑑𝑣

=
(2𝜉)−|𝑝|+|𝑞|

(𝛽 − 𝑝 + 𝑞)!
∫ 𝑎0 (𝑟,

−𝑥′ + 𝑦′

2√𝜉
, 𝑣 + |𝑟|2)

ℝ+
𝑘×ℝ𝑛−𝑘−1×ℝ+

 

× 𝑟2𝛽+𝑞−𝑝𝑒−2𝜉(𝑣+|𝑟|
2)−|𝑦′|

2

𝑣𝜆𝑟𝑑𝑟𝑑𝑦′𝑑𝑣         (13) 

Since 𝑎0(𝑟, 𝑦
′, 𝐼𝑚𝑧𝑛 − |𝜔

′|2)only depends on 𝑟 = (𝑟1, … , 𝑟𝑚)we can assume that the above 

integral has the form: 

∫ 𝑎0 (𝑟,
−𝑥′ + 𝑦′

2√𝜉
, 𝑣 + |𝑟|2)𝑟2𝛽𝑒−2𝜉(𝑣+|𝑟|

2)−|𝑦′|
2

ℝ+
𝑘×ℝ𝑛−𝑘−1×ℝ+

𝑣𝜆𝑟𝑑𝑟𝑑𝑦′𝑑𝑣 =: (∗), 

Where 𝛽 ∈ ℤ+
𝑘 . With 𝑒 = (1,1,… ,1) ∈ ℤ+

𝑘  we obtain 

(∗) =
1

2𝑘
∫ 𝑎0 (𝑟,

−𝑥′ + 𝑦′

2√𝜉
, 𝑣 + |𝑟|2)

ℝ𝑘×ℝ𝑛−𝑘−1×ℝ+

|𝑟2𝛽|𝑒−2𝜉(𝑣+|𝑟|
2)−|𝑦′|

2

𝑣𝜆𝑟𝑑𝑟𝑑𝑦′𝑑𝑣

=
1

2𝑘
∫ ∫ 𝑎0 (𝑟,

−𝑥′ + 𝑦′

2√𝜉
, 𝑣 + |𝑟|2)

ℝ+
𝑚×𝕊𝑎1−1×𝕊𝑎𝑚−1ℝ𝑛−𝑘−1×ℝ+

× |𝜌2𝛽+𝑒|. (∏𝑟
𝑗

2|𝛽(𝑗)|+2𝑎𝑗−1
𝑚

𝑗=1

)𝑒−2𝜉(𝑣+|𝑟|
2)−|𝑦′|

2

𝑣𝜆𝑑𝜎(𝜌(1))…𝑑𝜎(𝜌(𝑚))𝑟𝑑𝑟𝑑𝑦
′𝑑𝑣. 

In the last integral we wrote 𝑑𝜎(𝜌(𝑗)) for the standard area measure on the sphere 𝕊𝑎𝑗−1. The 

integral over the m-fold product 𝕊𝑎1−1 ×…× 𝕊𝑎𝑚−1can be calculated explicitly by using the 

following well-known formula: 
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Lemma (6.1.9) )[38]:  Let 𝑑𝜎 denote the usual surface measure on the (𝑛 − 1) −dimensional 

sphere 𝕊𝑛 − 1and let  𝜃 ∈ ℤ+
𝑘 . Then 

∫ |𝑦𝜃|𝑑𝜎(𝑦) =
2𝛤 (

𝜃1 − 1
2 )…𝛤 (

𝜃𝑛 − 1
2 )

𝛤 (
𝑛 − |𝜃|
2 )𝕊𝑛−1

 

Using the formula in Lemma (6.1.9) we define: 

 

𝛩𝛽 ≔ ∫ |𝜌2𝛽+𝑒|𝑑𝜎(𝜌(1))…𝑑𝜎(𝜌(𝑚))
𝕊𝑎1−1×…×𝕊𝑎𝑚−1

 

= 2𝑚𝛽!∏𝑟

𝑚

𝑗=1

(
𝑎𝑗 + 1

2
+ |𝛽(𝑗)|)

−1

                                                     (14) 

This finally gives: 

(∗) =
⊖𝛽

2𝑘
≔ ∫ 𝑎0 (𝑟,

1

2√𝜉
(−𝑥′ + 𝑦′), 𝑣 + |𝑟|2)

ℝ+
𝑚×ℝ𝑛−𝑘−1×ℝ+

× 𝑟1
2|𝛽(1)|+2𝑎1−1

…𝑟𝑚
2|𝛽(𝑚)|+2𝑎1−𝑚

𝑒−2𝜉(𝑣+|𝑟|
2)−|𝑦′|

2

𝑣𝜆𝑑𝑟𝑑𝑦′𝑑𝑣. 

Note that the last integral does not depend on the full multi-index β but rather on the values 

|𝛽(1)| for 𝑗 = 1,… ,𝑚. We denote this integral by 𝐺𝑎(|𝛽(1)|, … , |𝛽(𝑚)|). Then the commutativity 

condition (13) can be written in the form: 
𝛩𝛽

𝛽!
𝐺𝑎(|𝛽(1)|, … , |𝛽(𝑚)|)

= (2𝜉)−|𝑝|+|𝑞|
𝛩𝛽−𝑝+𝑞

(𝛽 − 𝑃 − 𝑞)!
× 𝐺𝑎(|𝛽(1)| − |𝑝(1)| + |𝑞(1)|, … , |𝛽(𝑚)| − |𝑝(𝑚)| + |𝑞(𝑚)|). 

According to the definition (14) this is equivalent to: 

𝐺𝑎(|𝛽(1)|, … , |𝛽(𝑚)|)∏𝛤

𝑚

𝑗=1

(
𝑎𝑗 + 1

2
+ |𝛽(𝑗)|)

−1

= (2𝜉)−|𝑝|+|𝑞|𝐺𝑎(|𝛽(1)| − |𝑝(1)| + |𝑞(1)|, … , |𝛽(𝑚)| − |𝑝(𝑚)| + |𝑞(𝑚)|)

×∏𝛤

𝑚

𝑗=1

(
𝑎𝑗 + 1

2
+ |𝛽(𝑗)| − |𝑝(𝑗)| + |𝑞(𝑗)|)

−1

 

This equality can be only true simultaneously for all α-quasi-nilpotent quasi-radial functions 

a and all 𝛽 ∈ ℤ+
𝑘  if |𝑝(𝑗)| = |𝑞(𝑗)| for 𝑗 = 1,… , 𝑚. Hence, we obtain: 

Theorem (6.1.10) )[38]: Let 𝑎 ∈ ℤ+
𝑘be given. Then the statements (i), (ii) and (iii)below are 

equivalent: 

(i) For each α-quasi-nilpotent quasi-radial function 𝑎 = 𝑎0(𝑟1,𝑦
′𝐼𝑚𝑧𝑛 − |𝜔

′|2) ∈
𝐿∞(𝐷𝑛)and each α-quasi-nilpotent quasi-homogeneous function  

𝑏 = 𝑏0(𝑟1, … , 𝑟𝑚, 𝑦
′𝐼𝑚𝑧𝑛 − |𝜔

′|2)𝜉𝑝𝜉̅𝑞 ∈ 𝐿∞(𝐷𝑛)                                 (15) 



148 
  

of degree (𝑝, 𝑞) ∈ ℤ+
𝑘 × ℤ+

𝑘  the Toeplitz operators 𝑇𝑎 and 𝑇𝑎 commute on each weighted 

Bergman space 𝒜λ
2(Dn). 

(ii) The equality 𝛾̅𝑎,0,0(𝛽, 𝑥
′, 𝜉) = 𝛾̅𝑎,0,0(𝛽 − 𝑝 + 𝑞, 𝑥

′, 𝜉)holds for all 𝛽 ∈ ℤ+
𝑘  and for 

each α-quasi-nilpotent quasi-radial functions a. 

(iii) The equality |𝑝(𝑗)| = |𝑞(𝑗)| holds for each 𝑗 = 1, . . . , 𝑚. 

Now, let us assume that 𝑏 ∈ 𝐿∞(𝐷𝑛) is of the form (15). Under the assumption |𝑝(𝑗)| = |𝑞(𝑗)|, 

for each 𝑗 = 1,… ,𝑚, we calculate γ̅b,p,q(β, x
′, ξ) in (9) more explicitly by reducing the order 

of integration. Assume that 𝛽 − 𝑝 + 𝑞 ∈ 𝕫+
𝑘 . Then: 

𝛾̅𝑏,𝑝,𝑞(𝛽, 𝑥
′, 𝜉)

= 𝐴𝛽(𝜉)𝐴𝛽−𝑝+𝑞(𝜉)𝜒ℝ+(𝜉)∫ 𝑟2(𝛽+𝑞)
 

ℝ+
𝑘×ℝ𝑛−𝑘−1×ℝ+

×∏𝑟𝑗
−|𝑝(𝑗)|−|𝑞(𝑗)|

𝑒−2𝜉(|𝑟|
2+𝑣)−|𝑦′|

2

𝑏0

𝑚

𝑗=1

× (𝑟,
−𝑥′ + 𝑦′

2√𝜉
, 𝜈 + |𝑟|2)𝑟𝑑𝑟𝑑𝑦′

𝑐𝜆𝑣𝜆

4
𝑑𝑣

= Θβ+qAβ(ξ)Aβ−p+q(ξ)χℝ+(ξ)2
−k

×∫ ∏r
j

2|β(j)|+|q(j)|−|p(j)|+2αj−1
m

j=1ℝ+
m×ℝn−k−1×ℝ+

× 𝑒−2𝜉(|𝑟|
2+𝑣)−|𝑦′|

2

𝑏0 (𝑟,
−𝑥′ + 𝑦′

2√𝜉
, 𝜈 + |𝑟|2) 𝑟𝑑𝑟𝑑𝑦′

𝑐𝜆𝑣𝜆

4
𝑑𝑣

=
𝛩𝛽+𝑞

𝛩𝛽

𝐴𝛽−𝑝+𝑞(𝜉)

𝐴𝛽(𝜉)
. 𝐷𝑏(𝛽, 𝑥

′, 𝜉)

=
(𝛽 + 𝑞)!

√𝛽! (𝛽 − 𝑝 + 𝑞)!
∏

𝛤 (
𝛼𝑗 + 1
2

+ |𝛽(𝑗)|)

𝛤 (
𝛼𝑗 + 1
2

+ |𝛽(𝑗)| + |𝑞(𝑗)|)

𝑚

𝑗=1

. 𝐷𝑏(𝛽, 𝑥
′, 𝜉), 

where 𝐷𝑏(𝛽, 𝑥
′, 𝜉)= 𝛾̅𝑏,𝑝,𝑞(𝛽, 𝑥

′, 𝜉), which can be seen by choosing 𝑝 =  𝑞 = 0in the above 

equalities. Hence we have proved: 

Proposition (6.1.11) )[38]:  Let 𝛼 ∈ 𝕫+
𝑚 be given. Assume that 𝑏 ∈ 𝐿∞(𝐷𝑛) is of theform (15) 

and let |𝑝(𝑗)| = |𝑞(𝑗)|, for each 𝑗 = 1, . . . , 𝑚.Then in the case of𝛽 − 𝑝 + 𝑞 ∈ 𝕫+
𝑚  we have 

𝛾̃𝑏,𝑝,𝑞(𝛽, 𝑥
′, 𝜉) =

(𝛽 + 𝑞)!

√𝛽! (𝛽 − 𝑝 + 𝑞)!
∏

𝛤(
𝛼𝑗 + 1
2

+ |𝛽(𝑗)|)

𝛤 (
𝛼𝑗 + 1
2

+ |𝛽(𝑗)| + |𝑞(𝑗)|)

𝑚

𝑗=1

. 𝛾̃𝑏,0,0(𝛽, 𝑥
′, 𝜉). 

In  the  case  𝑜𝑓  𝛽 − 𝑝 + 𝑞 ∉ 𝕫+
𝑘we  have  𝛾̃𝑏,𝑝,𝑞(𝛽, 𝑥

′, 𝜉) = 0. The factor 

𝛾̃𝑏,𝑝,𝑞(𝛽, 𝑥
′, 𝜉)can be expressed int he form 
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(𝛽, 𝑥′, 𝜉) = 𝛩𝛽𝐴𝛽
2(𝜉)𝜒ℝ+(𝜉)2

−𝑘∫ ∏𝑟
𝑗

2|𝛽(𝑗)|+|𝑞(𝑗)|−|𝑝(𝑗)|+2𝛼𝑗−1
𝑚

𝑗=1

 

ℝ+
𝑚×ℝ𝑛−𝑘−1×ℝ+

 

× 𝑒−2𝜉(|𝑟|
2+𝑣)−|𝑦′|

2

𝑏0 (𝑟,
−𝑥′+𝑦′

2√𝜉
, 𝜈 + |𝑟|2) 𝑟𝑑𝑟𝑑𝑦′

𝑐𝜆𝑣𝜆

4
𝑑                   (16) 

Let 𝛼 ∈ 𝕫+
𝑚 be given and (p + q) ∈ 𝕫+

k × 𝕫+
k .  From Proposition (6.1.11) we conclude: 

Corollary (6.1.12) )[38]: Let 𝛼 = 𝛼0(𝑟, 𝑦
′, 𝐼𝑚𝑧𝑛 − |𝜔

′|2) ∈ 𝐿∞(𝐷𝑛) be an 𝛼 − quasinilpotent 

quasiradial function. Under the assumption |p(j)| for all 

𝑗 = 1, 2,… ,𝑚we have 

𝑇𝛼𝑇𝜉𝑝𝜉̅𝑞 = 𝑇𝜉𝑝𝜉̅𝑞𝑇𝛼 = 𝑇𝛼𝜉𝑝𝜉̅𝑞                                                             (17) 

on each weighted Bergman space. 

Proof: The first equality in (17) is a direct consequence of Theorem (6.1.10). If 𝑒(𝑧) ≡
1 then 𝑇𝑒  =  𝐼𝑑, and thus γ̃b,0,0(β, x

′, ξ) ≡ 1. Hence, Proposition (6.1.11) implies that in the 

case of a symbol bξpξ̅q with |p(j)| = |q(j)|, for all 𝑗 = 1,2, . . . , 𝑚, one has 

𝛾̃𝑏,𝑝,𝑞(𝛽, 𝑥
′, 𝜉) =

(𝛽 + 𝑞)!

√𝛽! (𝛽 − 𝑝 + 𝑞)!
∏

𝛤 (
𝛼𝑗 + 1
2

+ |𝛽(𝑗)|)

𝛤 (
𝛼𝑗 + 1
2

+ |𝛽(𝑗)| + |𝑞(𝑗)|)

𝑚

𝑗=1

,                (18) 

Whenever𝛽 − 𝑝 + 𝑞 ∈ 𝕫+
𝑘 (cf. Example(6.1.8) for the choice of 𝛼 = (1,… ,1) ∈ 𝕫+

𝑘  and the 

case 𝑝𝑗 = 𝑞𝑗 , 𝑗 = 1,… , 𝑘). Moreover, if 𝛽 − 𝑝 + 𝑞 ∈ 𝕫+
𝑘 , then it holds 𝛾̃𝑏,𝑝,𝑞(𝛽, 𝑥

′, 𝜉). 

Theorem (6.1.10), Proposition (6.1.11) and the assumption that |𝑝(𝑗)|  =  |𝑞(𝑗)|, for all𝑗 =

 1, 2,··· ,𝑚, imply now that 

𝛾̃𝑎𝑏,𝑝,𝑞(𝛽, 𝑥
′, 𝜉) = 𝛾̃𝑏,𝑝,𝑞(𝛽, 𝑥

′, 𝜉) . 𝛾̃𝑎,0,0(𝛽, 𝑥
′, 𝜉) 

= 𝛾̃𝑏,𝑝,𝑞(𝛽, 𝑥
′, 𝜉) . 𝛾̃𝑎,0,0(𝛽 − 𝑝 + 𝑞, 𝑥

′, 𝜉) 

This together with (11) and Theorem (6.1.7) yields the second equality in (17). 

We define commutative Banach algebras of Toeplitz operators which are induced by the 

quasi-nilpotent group action. Given a pair of multi-indices (𝑝, 𝑞) ∈ 𝕫+
𝑚 × 𝕫+

𝑚, we put 

𝑝̃(𝑗) ≔(0,… , 𝑝(𝑗), 0, … , ) and 𝑞̃(𝑗)≔(0,… , 𝑞(𝑗), 0, … , ) 

so that 𝑝 = 𝑝̃(1) + 𝑝̃(2) +⋯+ 𝑝̃(𝑚) and 𝑞 = 𝑞̃(1) + 𝑞̃(2) +⋯+ 𝑞̃(𝑚) 

Consider the Toeplitz operators: 

𝑇𝑗: = 𝑇𝜉𝑝̅(𝑗)𝜉̅𝑞̅(𝑗) 

(cf. Definition (6.1.6)). Now, we can prove that certain products of Toeplitz operators are 

Toeplitz operators again with the product symbol. 

Proposition (6.1.13) )[38]: Let us assume that |𝑝(𝑗)| = |𝑞(𝑗)| for all 𝑗 =  1, 2, . . . , 𝑚. Then the 

Toeplitz operators 𝑇𝑗 commute mutually. Moreover, 

∏𝑇𝑗: = 𝑇𝜉𝑝𝜉̅𝑞

𝑚

𝑗=1

                                                                            (19) 

on each weighted Bergman space. 
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Proof: Let  𝑏𝑗 ≔ 𝜉𝑝̃(𝑗)𝜉̅𝑞̃(𝑗), for 𝑗 = 1,… ,𝑚, We only prove the following product rule: 

𝑇𝑗𝑇𝑖: = 𝑇𝜉𝑝̃(𝑖)𝜉̅𝑞̃(𝑖)+𝑞̃(𝑗)                                                                (20) 

for 𝑖, 𝑗 ∈ {1,… ,𝑚}and 𝑖 ≠ 𝑗. According to Theorem (6.1.7) the operator 𝑅𝑇𝑗𝑇𝑖𝑅
∗ acts on the 

sequence space ℓ2 (𝕫+
𝑘 , 𝐿2(ℝ

𝑛−𝑘−1 ×ℝ+)) by the rule: 

𝑅𝑇𝑗𝑇𝑖𝑅
∗{𝑐𝛽(𝑥

′, 𝜉)}
𝛽∈𝕫+

𝑘

= 𝑅𝑇𝑗𝑅
∗ {𝛾̃𝑏𝑗,𝑝̅(𝑗),𝑞̅(𝑗)(𝛽, 𝑥

′, 𝜉). 𝛾̃𝑏𝑖,𝑝̅(𝑖),𝑞̅(𝑖)(𝛽 − 𝑝̃(𝑗), 𝑞̃(𝑗), 𝑥
′, 𝜉)

× 𝛾̃𝑐𝛽−𝑝̃(𝑖)−𝑝̃(𝑗)+𝑞̃(𝑖)+𝑞̃(𝑗)(𝑥
′, 𝜉)}

𝛽∈𝕫+
𝑘
 

Hence it is clear that (20) is equivalent to: 

 

𝛾̃𝑏𝑗,𝑝̃(𝑗),𝑞̃(𝑗)(𝛽, 𝑥
′, 𝜉). 𝛾̃𝑏𝑖,𝑝̃(𝑖),𝑞̃(𝑖)(𝛽 − 𝑝̃(𝑗), 𝑞̃(𝑗), 𝑥

′, 𝜉) = 𝛾̃𝑏𝑖,𝑏𝑗,𝑝̃(𝑖),𝑝̃(𝑗),𝑞̃(𝑖),𝑞̃(𝑗)(𝛽, 𝑥
′, 𝜉)  (21) 

By (18) we have 

𝛾̃𝑏𝑗,𝑝̃(𝑗),𝑞̃(𝑗)(𝛽, 𝑥
′, 𝜉) =

(𝛽(𝑗) + 𝑞̃(𝑗))!

√𝛽(𝑗)! (𝛽(𝑗) − 𝑝̃(𝑗) + 𝑞̃(𝑗))!

𝛤 (
𝛼𝑗 + 1
2

+ |𝛽(𝑗)|)

𝛤 (
𝛼𝑗 + 1
2

+ |𝛽(𝑗)| + |𝑞̃(𝑗)|)

, 

and similar for 𝑖 replaced by 𝑗. Moreover, the function on the right hand side of (21) has the 

explicit form: 

𝛾̃𝑏𝑖,𝑏𝑗,𝑝̃(𝑖),𝑝̃(𝑗),𝑞̃(𝑖),𝑞̃(𝑗)(𝛽, 𝑥
′, 𝜉)

=
(𝛽 + 𝑞̃(𝑖) + 𝑞̃(𝑗))!

√𝛽! (𝛽 − 𝑝̃(𝑖) − 𝑝̃(𝑗) + 𝑞̃(𝑖) + 𝑞̃(𝑗))!

∏
𝛤 (
𝛼ℓ + 1
2

+ |𝛽(ℓ)|)

𝛤 (
𝛼ℓ + 1
2

+ |𝛽(ℓ)| + |𝑞̅(ℓ)|)ℓ∈{𝑖,𝑗}

 

Now, (21) can be easily checked from these identities.  

Let 𝛼 ∈ 𝕫+
𝑚  with |𝛼| = 𝑘 as before and consider two α-quasi-nilpotent 

quasi-homogeneous functions 𝜑𝑗 ∈ 𝐿
∞(𝐷𝑛) where j = 1, 2. We express 𝜑𝑗 , for 𝑗 =  1,2 in the 

form 

𝜑1(𝑧
′, 𝜔′, 𝑧𝑛) = 𝛼1(𝑟1, … , 𝑟𝑚, 𝑦

′𝐼𝑚𝑧𝑛 − |𝜔
′|2)𝜁𝑝𝜁𝑞̅ , 

𝜑2(𝑧
′, 𝜔′, 𝑧𝑛) = 𝛼2(𝑟1, … , 𝑟𝑚, 𝑦

′𝐼𝑚𝑧𝑛 − |𝜔
′|2)𝜁𝑝𝜁𝑞̅ , 

where (𝑝, 𝑞), (𝑢, 𝑣)𝜖𝕫+
𝑘 × 𝕫+

𝑘  with 𝑝 ⊥ 𝑞 and 𝑢 ⊥ 𝑣 are the degrees of φ1 

and 𝜑2, respectively. Moreover, assume that |𝑝(𝑗)| = |𝑞(𝑗)|and |𝑢(𝑗)| =  |𝑣(𝑗)|, for 𝑗 =

1, 2, . . . , 𝑚.  

Theorem (6.1.14) )[38]: The Toeplitz operators T𝜑1 and T𝜑2 commute on each weighted 

Bergman space 𝒜𝜆
2(𝐷𝑛) if and only if for each ℓ=1,2, . . . , 𝑘 one of the conditions (i) − (iv) is 

fulfilled: 

(i) 𝑝ℓ = 𝑞ℓ = 0 

(ii) 𝑢ℓ = 𝑣ℓ = 0 

(iii) 𝑝ℓ = 𝑢ℓ = 0 

(iv) 𝑞ℓ = 𝑣ℓ = 0 
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Proof: Similar to the argument in the proof of Proposition (6.1.13) it follows that the operators 

Tφ1 and Tφ2 commute on 𝒜λ
2(Dn) if and only if for all 𝛽 ∈ 𝕫+

𝑘  : 

𝛾̃𝜑1,𝑝,𝑞(𝛽, 𝑥
′, 𝜉). 𝛾̃𝜑2𝑢,𝑣(𝛽 − 𝑝 + 𝑞, 𝑥

′, 𝜉) = 𝛾̃𝜑2𝑢,𝑣(𝛽, 𝑥
′, 𝜉). 𝛾̃𝜑1,𝑝,𝑞(𝛽 − 𝑝 + 𝑞, 𝑥

′, 𝜉) 

Since |𝑝(𝑗)| = |𝑞(𝑗)|and |𝑢(𝑗)| =  |𝑣(𝑗)|, for 𝑗 =  1, 2, . . . , 𝑚we can use the 

factorization of𝛾̃𝜑1,𝑝,𝑞(𝛽, 𝑥
′, 𝜉) and 𝛾̃𝜑2𝑢,𝑣(𝛽, 𝑥

′, 𝜉) in Proposition (6.1.11): 

𝛾̃𝜑1,𝑝,𝑞(𝛽, 𝑥
′, 𝜉) = 𝛷𝑝,𝑞(𝛽). 𝛾̃𝜑10,0(𝛽, 𝑥

′, 𝜉), 

𝛾̃𝜑2𝑢,𝑣(𝛽, 𝑥
′, 𝜉) = 𝛷𝑢,𝑣(𝛽). 𝛾̃𝜑20,0(𝛽, 𝑥

′, 𝜉), 

where we use the notation: 

𝛷𝑝,𝑞(𝛽) =
(𝛽 + 𝑞)!

√𝛽! (𝛽 − 𝑝 + 𝑞)!
∏

Γ(
𝛼𝑗 + 1
2

+ |𝛽(𝑗)|)

𝛤 (
𝛼𝑗 + 1
2

+ |𝛽(𝑗)| + |𝑞(𝑗)|)

𝑚

𝑗=1

                (22) 

Moreover, it follows from Theorem (6.1.10) and again by the conditions on (𝑝, 𝑞) and (𝑢, 𝑣) 
that 

𝛾̃𝜑10,0(𝛽, 𝑥
′, 𝜉) = 𝛾̃𝜑10,0(𝛽 − 𝑢 + 𝑣, 𝑥

′, 𝜉) 

𝛾̃𝜑20,0(𝛽, 𝑥
′, 𝜉) = 𝛾̃𝜑20,0(𝛽 − 𝑝 + 𝑞, 𝑥

′, 𝜉) 

Therefore we only need to verify that 

𝛷𝑝,𝑞(𝛽). 𝛷𝑢,𝑣(𝛽 − 𝑝 + 𝑞) = 𝛷𝑢,𝑣(𝛽).𝛷𝑝,𝑞(𝛽 − 𝑢 + 𝑣). 

By a straightforward calculation this is equivalent to: 

(𝛽 + 𝑞)!
(𝛽−𝑝+𝑞+𝑣)!

(𝛽−𝑝+𝑞)!
= (𝛽 + 𝑣)!

(𝛽−𝑢+𝑣+𝑞)!

(𝛽−𝑢+𝑣)!
. 

Varyingβ it can be seen that this equality holds if and only if for each ℓ =  1, 2, . . . , 𝑘 one of 

the conditions (i) − (iv) is fulfilled.  

Let (𝑝, 𝑞) ∈ 𝕫+
𝑘 × 𝕫+

𝑘   and 𝛼 ∈ 𝕫+
𝑚such that |α| = k. Let ℎ ∈ 𝕫+

𝑚be given with the properties: 

(i) ℎ𝑗 = 0, if 𝛼𝑗 = 1, 

(ii) 1 ≤ ℎ𝑗 ≤ 𝛼𝑗 − 1, if𝛼𝑗 > 1. In the case of 𝛼𝑗1 = 𝛼𝑗2 with 𝑗1 < 𝑗2 we assume that ℎ𝑗1 ≤

ℎ𝑗2 . 

In the following we assume that 𝑝(𝑗) and 𝑞(𝑗) for 𝑗 = 1,… ,𝑚 are of the 

particular form  

𝑝(𝑗) = (𝑝𝑗,1 , … , 𝑝𝑗,ℎ𝑗  , 0, … ,0) and 𝑞(𝑗)  = (0,… , 0, 𝑞𝑗,ℎ𝑗+1 , … , 𝑞𝑗,𝛼𝑗).                               (23) 

below we will use the data 𝛼 and ℎ to define commutative Banach algebras of Toeplitz 

operators.The second assumption in (ii) serves to avoid repetition of the unitary equivalent 

algebras. 

Define ℛ𝛼(ℎ) to be the linear space generated by all bounded measurableα-quasi-nilpotent 

quasi-homogeneous functions  

𝑏(𝑧′, 𝜔′, 𝑧𝑛) = 𝑏0(𝑟1, … , 𝑟𝑚, 𝑦
′, 𝐼𝑚𝑧𝑛 − |𝜔

′|2). 𝜁𝑝𝜁𝑞̅                     (24) 

Moreover, in (24) we assume that p(j) and q(j) are of the form (23) with: 

𝑝𝑗,1 +⋯+ 𝑝𝑗,ℎ𝑗 = 𝑞𝑗,ℎ𝑗+1 +⋯+ 𝑞𝑗,𝛼𝑗  . 

As a corollary to Theorem (6.1.14) we obtain: 

Theorem (6.1.15)[38]: The Banach algebra generated by Toeplitz operators with symbols from 

ℛ𝛼(ℎ) is commutative. 
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Finally, we remark: 

(i) For 𝑘 > 2 andα ≠ (1,1,… ,1) the commutative algebras ℛα(h) are just Banach algebras, 

while the C∗-algebras generated by them are noncommutative. 

(ii)  These algebras are commutative for each weighted Bergman space 𝒜𝜆
2(𝐷𝑛) with 𝜆 >

−1. 

(iii) For 𝑘 = 0 (nilpotent case) or 𝑘 = 1, 2 these algebras collapse to the single C∗-

algebras which are generated by Toeplitz operators with quasinilpotent symbols 

𝑏(𝑟, 𝑦′, 𝐼𝑚𝑧𝑛 − |𝑧
′|). 

Let 0 ≤ 𝜀 ≤ 𝑛 − 3, 𝜀 ≥ 0. We rather use the notation (𝑥 + 2𝜀) = ((𝑥 + 2𝜀)′, (𝑢 +
2𝜀)′, (𝑥 + 2𝜀)𝑛) for (𝑥 + 2𝜀) ∈ 𝐷𝑛+𝑠−1where (𝑥 + 2𝜀)′ ∈ ℂ𝑛−𝜀−2 and (𝑢 + 2𝜀)′ ∈ ℂ𝑛−𝜀. 
The quasi-nilpotent group 𝕋1+𝜀 ×ℝ𝑛−𝜀−2 × ℝ acts on 𝐷𝑛+𝑠−1, cf. [218], as follows: given 

(𝑡, 𝑏𝑠−2, ℎ) ∈ 𝕋
2+ε × ℝ𝑛−𝜀−2 ×ℝ, we have: 

𝒯(𝑡, 𝑏𝑠−2, ℎ): ((𝑥 + 2𝜀), (𝑢 + 2𝜀)
′(𝑥 + 2𝜀)𝑛)

→ (𝑡(𝑥 + 2𝜀)′, (𝑢 + 2𝜀)′ + 𝑏𝑠−2, (𝑥 + 2𝜀)𝑛 + ℎ + 2𝑖𝜔. 𝑏𝑠−2 + 𝑖|𝑏𝑠−2|
2). 

Note that in the case  𝜀 = 𝑛 − 2 , 𝜀 ≥ 0we obtain the quasi-parabolic group, while for 𝜀 =
−2 the group action is called nilpotent. 

On the domain 𝒟𝑠−2 = ℂ
1+ε × ℂ𝑛−𝜀−2 ×ℝ ×ℝ+we use the variables  

((𝑥 + 2𝜀)′, (𝑢 + 2𝜀)′, 𝑢, (𝑢 + 𝜀)) and we represent  𝐿2(𝒟𝑠−2, 𝜂𝜀−1)  in the form: 

  𝐿2(𝒟𝑠−2, 𝜂(𝜀−1)) = 𝐿2(ℂ
1+ε) ⊗ 𝐿2(ℂ

𝑛−𝜀−2) ⊗ 𝐿2(ℝ)⊗ 𝐿2(ℝ+, 𝜂(𝜀−1)).                 (25) 

Let F be the Fourier transform on 𝐿2(ℝ), and with respect to the decomposition (25) 

consider the unitary operators 𝑈𝑠 ∶=  𝐼 ⊗  𝐼 ⊗  𝐹 ⊗  𝐼 acting on 𝐿2(𝒟𝑠−2, 𝜂(𝜀−1)). With 

this notation we put 𝒜𝑠(𝒟𝑠−2) ∶=  𝑈𝑠(𝒜𝑠−1(𝒟𝑠−2)). 
  We introduce polar coordinates on ℂε+1 and put 𝑟 = (𝑟1, … , 𝑟ε+1) = (|(𝑥 +
2𝜀)1

′ |, … , |(𝑥 + 2𝜀)ε+1
′ |). In the following we write 𝑥′:= Re (𝑢 + 2𝜀)′ and (𝑥 + 𝜀)′ ≔

𝐼𝑚(𝑢 + 2𝜀)′. Then one can check that 𝑟 , (𝑥 + 𝜀)
′ and 𝐼𝑚(𝑥 + 2𝜀)𝑛 − |(𝑢 + 2𝜀)

′|2 are 

invariant under the action of the quasi-nilpotent group. Following the ideas in [218] and 

with 𝑟 𝑑  =  𝑟1𝑑𝑟1  · · ·  𝑟(1+𝜀)𝑑𝑟(1+𝜀) we represent 𝐿2(𝒟𝑠−2, 𝜂ε−1) in the for 

𝐿2 (ℝ+
(1+𝜀)

, 𝑟1𝑑𝑟1) ⊗ 𝐿2(𝕋
1+𝜀)⊗ 𝐿2(ℝ

𝑛−𝜀−2) 

⊗𝐿2(ℝ
𝑛−𝜀−2) ⊗ 𝐿2(ℝ)⊗ 𝐿2(ℝ+, 𝜂ε−1)               (26) 

We define the unitary operator 𝑈𝑠+1 on 𝐿2(𝒟𝑠−2, 𝜂𝜀−1) by 𝑈𝑠+1 = 𝐼 ℱ(1+𝜀)
   𝐹(𝑛−𝜀−2)

  

 𝐼  𝐼  𝐼. Here ℱ(1+𝜀) = ℱ ⊗…⊗ℱ is the (1 + 𝜀)-dimensional discrete Fourier 

transform and 𝐹(𝑛−𝜀−2)  =  𝐹…   𝐹 denotes the (𝑛 − 𝜀 − 2)-dimensional Fourier 

transform on 𝐿2(ℝ
𝑛−𝜀−2). Note that 𝐿2(𝒟𝑠−2, 𝜂(1+𝜀)) is isometrically mapped by 

𝑈𝑠+1 onto 

ℓ2 ((ℤ
(ε+1), 𝐿2(ℝ+

1+𝜀) ⊗ 𝐿2(ℝ
𝑛−𝜀−2))⊗ 𝐿2(ℝ

𝑛−𝜀−2) ⊗ 𝐿2(ℝ)

⊗ 𝐿2(ℝ+, 𝜂(𝜀−1)).  )                                                                                              (27) 
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We put 𝒜𝑠+1(𝒟𝑠−2): = 𝑈𝑠+1(𝒜𝑠(𝒟𝑠−2)) and we write elements in (27) as {𝑓𝛽(𝑟 , 𝑥
′, (𝑥 +

𝜀)′, 𝜉, 𝑢 + 𝜀)}
𝛽∈ℤ𝑘

,where (𝑟 , 𝑥
′, (𝑥 + 𝜀)′, 𝜉, 𝑢 + 𝜀) ∈ ℝ+

ε+1 ×ℝ𝑛−𝜀−2 × ℝ𝑛−𝜀−2 ×ℝ ×

ℝ+. 
Next we recall the definition of the unitary operator 𝑈𝑠+2 which acts on (27) by: 

𝑈𝑠+2: {𝑓𝛽(𝑟, 𝑥
′, (𝑥 + 𝜀)′, 𝜁, 𝑢 + 𝜀)}

𝛽∈ℤ

⟼ {𝑓𝛽 (𝑟,√𝜁(𝑥
′, (𝑥 + 𝜀)′),

1

2√𝜉
(−𝑥′, (𝑥 + 𝜀)′), 𝜁, 𝑢 + 𝜀)}

𝛽∈ℤ(1+𝜀)

 

One immediately checks that the inverse 𝑈𝑠+2
−1  has the form 

𝑈𝑠+2
−1 : {𝑓𝛽(𝑟 , 𝑥

′, (𝑥 + 𝜀)′, 𝜁, 𝑢 + 𝜀)}
𝛽∈ℤ

⟼ {𝑓𝛽 (𝑟 ,
𝑥′

2√𝜁
− √𝜁(𝑥 + 𝜀)′,

𝑥′

2√𝜁
+ √𝜁(𝑥 + 𝜀)′, 𝜁, 𝑢 + 𝜀)}

𝛽∈ℤ(1+𝜀)

 

In the following we write ℤ+ = ℕ ∪ {0} = {0,1,2,… } for the nonnegative integers. In order 

to state the main result of Section 8 in [218] we need to introduce the operator 𝑅𝑠−2 , which 

defines an isometric embedding of ℓ2 (𝕫+
(1+𝜀)

, 𝐿2(ℝ
𝑛−𝜀−2 ×ℝ+)) into (27). It is explicitly 

given by 

𝑅𝑠−2 : {𝑐𝛽(𝑥
′, 𝜁)}

𝛽∈ℤ+
(1+𝜀)

⟼ {𝜒
ℤ+
(ε+1)

×ℝ+
(𝛽, 𝜉)(𝑅𝑠−2)𝛽(𝜁)𝑟

𝛽𝑒−𝜁(
|𝑟 |

2+(𝑢+𝜀))−
|(𝑢+𝜀)′|2

2 𝑐𝛽(𝑥
′, 𝜁)}

𝛽∈ℤ(1+𝜀)

= {𝑔𝛽(𝑟 , 𝑥
′, (𝑥 + 𝜀)′, 𝜁, 𝑢 + 𝜀)}

𝛽∈ℤ(1+𝜀)
 

Here 𝜒
ℤ+
(ε+1)

×ℝ+
(𝛽, 𝜁)denotes the characteristic function of ℤ+

(ε+1)
×ℝ+ and 𝑐𝛽(𝑥

′, 𝜁) is 

extended by zero for 𝜁 ∈ (−∞, 0) and all 𝑥′ ∈ ℝ𝑛−𝜀−2. Moreover, we have used the 

abbreviation 

 

                𝐴𝛽(𝜁):= 𝜋
−
𝑛−𝜀−2

4 √
2ε+3

𝐶ε−1

(2𝜁)|𝛽|+2ε+1

𝛽!Γ(ε)
                                       (28) 

The ad joint operator 𝑅𝑠−1
∗  is given by: 

𝑅𝑠−1
∗ : {𝑓𝛽(𝑟 , 𝑥

′, (𝑥 + 𝜀)′, 𝜁, 𝑢 + 𝜀)}
𝛽∈ℤε+1

⟼ {(𝐴𝑠−2)𝛽(𝜁) 

×∫ 𝑟 
𝛽𝑒−𝜁(

|𝑟 |
2+(𝑢+𝜀))−

|(𝑢+𝜀)′|
2

2 𝑓𝛽(𝑟 , 𝑥
′, (𝑥 + 𝜀)′, 𝜁, 𝑢 + 𝜀)𝑟 𝑑𝑟 𝑑(𝑥 + 𝜀)

′

ℝ+
ε+1×ℝ𝑛−𝜀−2×ℝ+

 

            
C𝜆(𝑢+𝜀)

(ε−1)

4
𝑑(𝑢 + 𝜀)}

𝛽∈ℤ+
(1+𝜀)                                                                   (29) 

We set 𝑈 𝑠−2: =  𝑈𝑠+2𝑈𝑠+1𝑈𝑠𝑈𝑠−1,  which gives a unitary operator from 𝑅ε−1
2 (𝒟𝑛+𝑠−1) onto 

𝐴𝑠+2(𝒟𝑠−2) ≔ 𝑈𝑠+3𝐴𝑠+1(𝒟𝑠−2). The following result has been proved in [218], and it 
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provides a decomposition of the Bergman projection 𝐵𝒟𝑛+𝑠−1,ε−1 in form of a certain operator 

product. 

Theorem (6.1.16)[270]: [218] The operator 𝑅 𝑠−2 ∶=  𝑅s−1
∗ 𝑈𝑠−2   maps 𝐿2(𝒟𝑛+𝑠−1, μ̅(ε−1)) 

onto the space ℓ2(𝕫+
𝜀+1, 𝐿2(ℝ

𝑛−𝜀−2 ×ℝ+)), and the restriction 

𝑅𝑠−2|(𝒜𝑠−22 )
ε−1

 
(𝒟𝑠−2)

(𝒜𝑠−2
2 )ε−1

 (𝒟𝑠−2) → ℓ2(𝕫+
ε+1, 𝐿2(ℝ

𝑛−ε−2 ×ℝ+)) 

is an isometric isomorphism. The ad joint operator 

𝑅𝑠−2
∗

 
 = 𝑈𝑠−2

∗  
 
𝑅𝑠−1: 𝐿2(𝕫+

ε+1, 𝐿2(ℝ
𝑛−𝜀−2 × ℝ+)) → (𝒜𝑠−2

2 )ε−1
 (𝒟𝑠−2)

⊂ 𝐿2(𝒟𝑛+𝑠−1, μ̅ε−1) 

is an isometric isomorphism of 𝐿2(𝕫+
ε+1, 𝐿2(ℝ

𝑛−𝜀−2 × ℝ+)) onto the subspace 

(𝒜𝑠−2
2 )ε−1

 (𝒟𝑠−2) of  𝐿2(𝒟𝑛+𝑠−1, μ̅ε−1). Furthermore one has: 

𝑅𝑠−2 𝑅𝑠−2
∗

 
 = 𝐼: 𝐿2(𝕫+

ε+1, 𝐿2(ℝ
𝑛−𝜀−2 ×ℝ+)) → 𝐿2(𝕫+

𝜀+1, 𝐿2(ℝ
𝑛−𝜀−2 ×ℝ+)), 

𝑅𝑠−2
∗ 𝑅𝑠−2 = 𝐵𝒟𝑛+s−1,ε−1: 𝐿2(𝒟𝑛+𝑠−1, μ̅ε−1) → (𝒜𝑠−2

2 )ε−1
 (𝒟𝑠−2) 

Consider an (𝛽 + 𝜀)-quasi-nilpotent quasi-homogeneous symbol 

𝑏𝑠−2((𝑥 + 2𝜀)
′, (𝑢 + 2𝜀)′, (𝑥 + 2𝜀)𝑛) 

 as in[38] and of degree (𝑝, 𝑝 + 𝜀) ∈ 𝕫+
(1+𝜀)

× 𝕫+
(1+𝜀)

  with  𝑝 ⊥ (p + ε) . Our next aim is to 

calculate the operator 𝑅𝑠−2 𝑇𝑏𝑠−2𝑅 𝑠−2
∗ . On the domain 𝒟𝑠−2 = ℂ

(1+𝜀) × ℂ𝑛−𝜀−2 × ℝ× ℝ+ 

we use the variables ((𝑥 + 2𝜀)′, (𝑢 + 2𝜀)′, 𝑢, 𝑢 + 𝜀). Moreover, we express (𝑢 + 2𝜀)′in 

polar coordinates (𝑢 + 2𝜀)′ = 𝑡1𝑟1, … , 𝑡(1+𝜀)𝑟(1+𝜀) where 𝑟𝑠 ≥ 0 and 𝑡𝑠 ∈ 𝕊 = 𝕊 for  𝑠 =

 1,… , (1 + 𝜀). Then we have the relations 

(𝑢 + 2𝜀)𝑗,ℓ = r𝑗𝜁𝑗,ℓ = 𝑡𝑗,ℓ𝑟𝑗,ℓ 

for ℓ = {𝑠,… , (𝛽𝑗 + 𝜀)}and 𝑗 = 1,… ,𝑚. It follows that 𝜉𝑗,ℓ = 𝑡𝑗,ℓ𝑟𝑗,ℓr𝑗
−1 in the case of r𝑗 ≠

0 and therefore: 

(𝜁 + 𝜀)̅̅ ̅̅ ̅̅ ̅̅ ̅p+ε = 𝑡𝑝𝑡̅p+ε𝑟𝑝+p+ε∏r
𝑗

−|𝑝𝑗|−|(p+ε)𝑗|
𝑚

𝑗=1

                    (30) 

Note that the assignment (𝑥 + 2𝜀)′⟼ (𝜁 + 𝜀)𝑝(𝜁 + 𝜀)̅̅ ̅̅ ̅̅ ̅̅ ̅p+ε depends on the initial choice of 

(𝛽 + 𝜀) ∈ ℤ+
𝑚.Using Theorem (6.1.16) we can write: 

𝑅𝑠−2 𝑇𝑏𝑠−2𝑅𝑠−2
∗  

 
= 𝑅𝑠−2  

𝐵𝒟𝑛+𝑠−1,𝜀−1𝑏𝑠−2𝐵𝒟𝑛,𝜀−1𝑅𝑠−2
∗  

 

= 𝑅𝑠−2  
(𝑅𝑠−2

∗  
 
𝑅𝑠−2  

) 𝑏𝑠−2 (𝑅𝑠−2
∗  

 
𝑅𝑠−2  

)𝑅𝑠−2
∗  

 

= (𝑅𝑠−2  
𝑅𝑠−2
∗

 
 

 
)𝑅𝑠−2  

𝑏𝑠−2𝑅𝑠−2
∗  

 
(𝑅𝑠−2  

𝑅𝑠−2
∗  

 
) = 𝑅𝑠−2𝑏𝑠−2𝑅𝑠−2

∗  
 

= 𝑅𝑠−1
∗ 𝑈𝑠+2𝑈𝑠+1𝑈𝑠𝑈𝑠−1𝑏𝑠−2𝑈𝑠−1

−1 𝑈𝑠
−1𝑈𝑠+1

−1 𝑈𝑠+2
−1 𝑅𝑠−1

= 𝑅𝑠−2
∗  𝑈𝑠+2𝑈𝑠+1𝑈𝑠𝑏𝑠−1(𝑟1, … , 𝑟𝑚, (𝑥 + 𝜀)

′, Im(𝑥 + 2𝜀)𝑛
− |(𝑢 + 2𝜀)′|2)(𝜁 + 𝜀)𝑝(𝜁 + 𝜀)̅̅ ̅̅ ̅̅ ̅̅ ̅p+ε𝑈𝑠−1

−1 𝑈𝑠
−1𝑈𝑠+1

−1 𝑈𝑠+2
−1 𝑅𝑠−1 

First we calculate the operator 𝑈𝑠−1𝑏𝑈𝑠−1
−1 . Let {𝑓𝛽(𝑟 , 𝑥

′, (𝑥 + 𝜀)′, 𝜁, 𝑢 + 𝜀)}
𝛽∈𝑍+

(1+𝜀)be an 

element in the space (27) and write 𝑟 ∶=  (𝑟1, . . . , 𝑟𝑚). Since the ymbol 

𝑏𝑠−1(𝑟 , (𝑥 + 𝜀)
′, (𝑢 + 𝜀) + |𝑟 |

2)(𝜁 + 𝜀)𝑝(𝜁 + 𝜀)̅̅ ̅̅ ̅̅ ̅̅ ̅p+ε is independent of 𝑥′ we obtain from 

(4.2) that: 
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𝑈𝑠+1𝑏𝑠−1(𝑟 , (𝑥 + 𝜀)
′, (𝑢 + 𝜀)

+ |𝑟 |
2)(𝜁 + 𝜀)𝑝(𝜁 + 𝜀)̅̅ ̅̅ ̅̅ ̅̅ ̅p+ε𝑈𝑠+1

−1 {𝑓𝛽(𝑟 , 𝑥
′, (𝑥 + 𝜀)′, 𝜁, (𝑢 + 𝜀))}

𝛽∈ℤ+
1+ε

= {𝑏𝑠−1(𝑟 , (𝑥 + 𝜀)
′, (𝑢 + 𝜀) + |𝑟 |

2)𝑟2p+ε

× (∏r
𝑗

−|𝑝𝑗|−|p+ε𝑗|
𝑚

𝑗=1

)𝑓𝛽+ε(𝑟 , 𝑥
′, (𝑥 + 𝜀)′, 𝜁, (𝑢 + 𝜀))}

𝛽∈ℤ1+ε

                          (31) 

Combining (31) and (29) gives: 

𝑅𝑠−2 𝑇𝑏𝑠−2𝑅𝑠−2
∗  

 
: {𝐶𝛽(𝑥

′, 𝜁)}
𝛽∈ℤ+

1+𝜀 = 𝑅𝑠−2
∗ 𝑈𝑠+2𝑈𝑠+1𝑏𝑠−2𝑈𝑠+1

−1 𝑈𝑠+1
−1 {𝜒ℤ+×ℝ+

1+𝜀 (𝛽, 𝜁) 

(𝐴𝑠−2)𝛽(𝜁)𝑟
𝛽
 𝑒
−𝜁(|𝑟|2+(𝑢+𝜀))−

|(𝑢+𝜀)′|
2

2 𝑐𝛽(𝑥
′, 𝜁)}

𝛽∈ℤ1+ε

= 𝑅𝑠−2
∗

 
∗𝑈𝑠+2𝑈𝑠+1𝑏𝑠−2𝑈𝑠+1

−1 {𝜒ℤ+1+ε×ℝ+(𝛽, 𝜁)(𝐴𝑠−2)𝛽(𝜁)𝑟
𝛽
  

× 𝑒
−𝜁(|𝑟 |

2+(𝑢+𝜀))−
1
2
|
1

2√𝜁
𝑥′+√𝜁 (𝑥+𝜀)′|

2

𝑐𝛽 (
1

2√𝜁
𝑥′ −√𝜁 (𝑥 + 𝜀)′, 𝜁)}

𝛽∈ℤ1+ε

= 𝑅𝑠−2
∗ 𝑈𝑠+2{𝜒𝕫+1+𝜀×ℝ+(𝛽 + ε, 𝜁)(𝐴𝑠−2)𝛽+ε(𝜁)𝑟

𝛽+2(p+ε)𝑏𝑠−1
× (𝑟𝑠−2, (𝑥 + 𝜀)

′, (𝑢 + 𝜀) + |𝑟 |
2)

× ( ∏ r
𝑗

−|𝑝𝑗|−|(p+ε)𝑗|
𝑚+𝑠−1

𝑗=1

)𝑒
−𝜁(|𝑟 |

2+(𝑢+𝜀))−
1
2
−|

1

2√𝜁
𝑥′+√𝜁 (𝑥+𝜀)′|

2

× 𝐶𝛽+𝜀 (
1

2√𝜁
𝑥′ −√𝜁 (𝑥 + 𝜀)′, 𝜁)}

𝛽∈ℤ1+ε

= 𝑅𝑠−2
∗ {𝜒𝕫+1+𝜀×ℝ+(𝛽 + ε, 𝜁)(𝐴𝑠−2)𝛽+ε(𝜁)𝑏𝑠−1 (𝑟 ,

−𝑥′ + (𝑥 + 𝜀)′

2√𝜁
, (𝑢 + 𝜀)

+ |𝑟 |
2) × (∏r

𝑗

−|𝑝𝑗|−|(p+ε)𝑗|
𝑚

𝑗=1

)𝑟𝛽+2(𝑝+𝜀)𝑒−𝜁(
|𝑟 |

2+(𝑢+𝜀))−
1
2
| (𝑥+𝜀)′|

2

𝐶𝛽+ε 

(𝑥′, 𝜁)}𝛽∈ℤ1+𝜀

= {(𝐴𝑠−2)𝛽(𝜁)(𝐴𝑠−2)𝛽+𝜀(𝜁)𝜒ℤ+1+𝜀×ℝ+(𝛽 + 𝜀, 𝜁) 𝐶𝛽+ε(𝑥
′, 𝜁)}𝛽∈ℤ1+𝜀

×∫ 𝑟2(𝛽+p+ε)

 ℝ+
1+𝜀×ℝ𝑛−𝜀−2×ℝ+

(∏r
𝑗

−|𝑝𝑗|−|(p+ε)𝑗|
𝑚

𝑗=1

)𝑒−𝜁(|𝑟|
2+(𝑢+𝜀))−|𝑥+𝜀|2 

× 𝑏𝑠−1 (𝑟 ,
−𝑥′ + (𝑥 + 𝜀)′

2√𝜁
, (𝑢 + 𝜀) + |𝑟 |

2) 𝑟 𝑑𝑟 𝑑(𝑥 + 𝜀)
′
C𝜀−1(𝑢 + 𝜀)

𝜀−1

4
𝑑(𝑢 + 𝜀)}

𝛽∈ℤ+
1+𝜀
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Now put: 

𝛾𝑏,𝑝,𝑝+𝜀(𝛽, 𝑥
′, 𝜁):

= (𝐴𝑠−2)𝛽(𝜉)(𝐴𝑠−2)𝛽+𝜀(𝜉)𝜒ℤ+1+𝜀×ℝ+(𝛽 + 𝜀, 𝜁)

× ∫ ∏r
𝑗

−|𝑝𝑗|−|(p+ε)𝑗|𝑟 
2(𝛽+p+ε)𝑒−2𝜁(|𝑟|

2+𝑢+𝜀)−|𝑥+𝜀|2
𝑚

𝑗=1ℝ+
1+ε×ℝ𝑛−𝜀−2×ℝ+

 

× 𝑏𝑠−1 (𝑟 ,
−𝑥′+(𝑥+𝜀)′

2√𝜁
, (𝑢 + 𝜀) + |𝑟 |

2) 𝑟 𝑑𝑟 𝑑(𝑥 + 𝜀)
′ C𝜀−1(𝑢+𝜀)

𝜀−1

4
𝑑(𝑢 + 𝜀)       (32) 

Hence, we have proved: 

Theorem (6.1.17)[270]: Let 𝑏𝑠−2 be defined as in [38]. The operator 𝑅𝑠−2 𝑇𝑏𝑠−2𝑅𝑠−2
∗  

 
 acts on 

the Hilbert space ℓ2(ℤ+
1+𝜀 , 𝐿2(ℝ

𝑛−𝜀−2 ×ℝ+)) by the rule: 

𝑅𝑠−2 𝑇𝑏𝑠−2𝑅𝑠−2
∗  

 
: {𝐶𝛽(𝑥

′, 𝜁)}
𝛽∈ℤ+

1+𝜀 = {𝛾𝑏𝑠−2,𝑝,𝑝+𝜀(𝛽, 𝑥
′, 𝜁). 𝐶𝛽+𝜀(𝑥

′, 𝜁)}
𝛽∈ℤ1+𝜀

 

Note that, in the case ε =  0, Theorem 4.5 reduces to Theorem 4.2. 

Example (6.1.18)[270]:We calculate 𝑅𝑠−2 𝑇𝑏𝑠−2𝑅𝑠−2
∗  

 
more explicitly in the special case 

where 

𝑏𝑠−1`  ≡  1 and we choose 𝜀 =  𝑚 − 1 , i.e. 𝛼 = (1,… ,1) ∈ 𝕫+
1+𝜀. Let (𝑝, 𝑝 + 𝜀) ∈ ℤ+

1+𝜀   such 

that 𝑝 ⊥ ( 𝑝 + 𝜀) and put  

𝑏𝑠−2((𝑥 + 2𝜀)
′, (𝑢 + 2𝜀)′, (𝑥 + 2𝜀)𝑛) = (𝜁 + 𝜀)

𝑝(𝜁 + 𝜀)̅̅ ̅̅ ̅̅ ̅̅ ̅p+ε = 𝑡𝑝𝑡̅p+ε 
According to Theorem (6.1.17)  it is sufficient to calculate the functions: 

𝛾𝑏𝑠−2,𝑝,𝑝+𝜀(𝛽, 𝑥
′, 𝜁):

= (𝐴𝑠−2)𝛽(𝜁)(𝐴𝑠−2)𝛽+ε(𝜁)𝜒ℝ+(𝜁)

× ∫ 𝑟2𝛽+ε𝑠−2
ℝ+
1+𝜀×ℝ𝑛−𝜀−2×ℝ+

𝑒−2𝜁(|𝑟 |
2+(𝑢+𝜀))−|𝑥+𝜀|2𝑟 𝑑𝑟 𝑑(𝑥 + 𝜀)

′

×
C(𝜀−1)(𝑢 + 𝜀)

(𝜀−1)

4
𝑑(𝑢 + 𝜀) 

for all  𝛽 ∈ ℤ+
1+𝜀  with (𝛽 + ε) ∈ 𝕫+

1+𝜀. We use the identity:  

∫ 𝑒−2𝜁(𝑢+𝜀)−|𝑥+𝜀|
2

ℝ+
1+𝜀×ℝ𝑛−𝜀−2×ℝ+

𝑑(𝑥 + 𝜀)′(𝑢 + 𝜀)𝜀−1𝑑(𝑢 + 𝜀) = 𝜋
𝑛−𝜀−2
2 Γ(𝜀)(2𝜁)−(𝜆+1) 

(see [97]) where 𝜁 > 0, which together with (28) shows that 

𝛾𝑏𝑠−2,𝑝,p+ε(𝛽, 𝑥
′, 𝜁) = 2(1+𝜀)(2𝜁)

|𝛽|+𝜀+1+
|p+ε|−|𝑝|

2
1

√𝛽! (𝛽 + ε)!
∫ 𝑟2𝛽+𝜀

ℝ+
𝑘

𝑒−2𝜁−|(𝑥+𝜀)|
2
𝑑𝑟

=

∏ Γ(𝛽j +
(p + ε)j − pj

2
+ 1)1+𝜀

𝑗=1

√𝛽! (𝛽 + 𝜀)!
. 

In particular, in this case 𝛾𝑏𝑠−2,𝑝,𝑝+𝜀(𝛽, 𝑥
′, 𝜁) is independent of  𝑥′ and 𝜁 

Fix (𝛽 + 𝜀) ∈ 𝕫+
𝑚 with |𝛽 + 𝜀| = 𝜀 + 1 as before and let 𝑎𝑠−2 = 𝑎𝑠−1(𝑟1, … , 𝑟𝑚, (𝑥 +

𝜀)′Im(𝑥 + 2𝜀) 𝑛 − |(𝑢 + 2𝜀)
′|2) be a bounded measurable (𝛽 + 𝜀)-quasi-nilpotent quasi-

radial function on 𝐷𝑛+𝑠−1. Consider the symbol: 
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𝑏𝑠−2((𝑥 + 2𝜀)
′, (𝑢 + 2𝜀)′, (𝑥 + 2𝜀)𝑛) = 𝑏𝑠−1(𝑟1, … , 𝑟𝑚, (𝑥 + 𝜀)

′, Im(𝑥 + 2𝜀)𝑛
− |(𝑢 + 2𝜀)′|2). (𝜁 + 𝜀)𝑝(𝜁 + 𝜀)̅̅ ̅̅ ̅̅ ̅̅ ̅p+ε.                                                            (33) 

We calculate the operator products 𝑅𝑠−2 𝑇𝑏𝑠−2𝑇𝑎𝑠−2𝑅𝑠−2
∗  

 
  and 𝑅𝑠−2 𝑇𝑎𝑠−2𝑇𝑏𝑠−2𝑅 𝑠−2

∗ . 

According to Theorem (6.1.7) and Theorem (6.1.1) we have 

         𝑅𝑠−2 𝑇𝑏𝑠−2𝑇𝑎𝑠−2𝑅𝑠−2
∗  

 
{𝑐𝛽}𝛽∈ℤ+𝑘

= (𝑅𝑠−2 𝑇𝑏𝑠−2𝑅𝑠−2
∗  

 
) (𝑅𝑠−2 𝑇𝑎𝑠−2𝑅𝑠−2

∗  
 
) {𝑐𝛽}𝛽∈ℤ+𝜀+1

                                                                                                   

=(𝑅𝑠−2 𝑇𝑏𝑠−2𝑅𝑠−2
∗  

 
){𝛾̅𝑏𝑠−2,𝑝,𝑝+𝜀(𝛽, 𝑥

′, 𝜉). 𝑐𝛽(𝑥
′, 𝜉)}

𝛽∈ℤ+
𝜀+1 

= {𝛾̅𝑏𝑠−2,𝑝,𝑝+𝜀(𝛽, 𝑥
′, 𝜉)𝛾𝑎𝑠−2,0,0(𝛽 + ε, 𝑥

′, 𝜉)𝑐𝛽+ε(𝑥
′, 𝜉)}

𝛽∈ℤ+
𝜀+1               (34) 

On the other hand it follo 

 

𝑅𝑠−2 𝑇𝑎𝑠−2𝑇𝑏𝑠−2𝑅 𝑠−2
∗ {𝑐𝛽}𝛽∈ℤ+𝜀+1

= (𝑅𝑠−2 𝑇𝑎𝑠−2𝑅𝑠−2
∗  

 
) (𝑅𝑠−2 𝑇𝑏𝑠−2𝑅𝑠−2

∗  
 
)

= (𝑅𝑠−2 𝑇𝑎𝑠−2𝑅𝑠−2
∗  

 
){𝛾̅𝑏𝑠−2,𝑝,𝑃+𝜀(𝛽, 𝑥

′, 𝜁). 𝑐𝛽(𝑥
′, 𝜁)}

𝛽∈ℤ+
𝜀+1 

= {𝛾̅𝑎𝑠−2,0,0(𝛽, 𝑥
′, 𝜁)𝛾̅𝑏𝑠−2,𝑝,𝑝+𝜀(𝛽, 𝑥

′, 𝜁)𝑐𝛽+ε(𝑥
′, 𝜁)}

𝛽∈ℤ+
𝜀+1               (35) 

 

Hence, we conclude from (34) and (35) that both operators 𝑇𝑎𝑠−2 and 𝑇𝑏𝑠−2commute if and only 

if 

𝛾̅𝑎𝑠−2,0,0(𝛽, 𝑥
′, 𝜁) = 𝛾̅𝑎𝑠−2,0,0(𝛽 + ε, 𝑥

′, 𝜁) 

for all 𝛽 ∈ ℤ+
1+𝜀. According to (9) this is equivalent to: 

 

1

𝛽!
∫ 𝑎𝑠−1 (𝑟 ,

−𝑥′ + (𝑥 + 𝜀)′

2√𝜉
, (𝑢 + 𝜀) + |𝑟 |

2)
ℝ+
𝜀+1×ℝ𝑛−𝜀−2×ℝ+

× 𝑟 
2𝛽𝑒

−2𝜁((𝑢+𝜀)−|𝑟 |
2)−|(𝑥+𝜀)′|

2

(𝑢 + 𝜀)𝜀−1𝑟 𝑑𝑟 𝑑

=
(2𝜁)−|𝑝|+|𝑝+𝜀|

(𝛽 + 𝜀)!
∫ 𝑎𝑠−1 (𝑟 ,

−𝑥′ + (𝑥 + 𝜀)′

2√𝜁
, (𝑢 + 𝜀) + |𝑟 |

2)
ℝ+
𝜀+1×ℝ𝑛−𝜀−2×ℝ+

× 𝑟 
2𝛽+ε𝑒

−2𝜁((𝑢+𝜀)+|𝑟 |
2)−|(𝑥+𝜀)′|

2

(𝑢 + 𝜀)𝜀−1𝑟 𝑑𝑟 𝑑(𝑥 + 𝜀)
′𝑑(𝑢 + 𝜀) 

Since 𝑎𝑠−1(𝑟 , (𝑥 + 𝜀)
′, Im(𝑥 + 2𝜀)𝑛 − |(𝑢 + 2𝜀)|

2) only depends on 𝑟  = (𝑟1, … , 𝑟𝑚) we 

can assume that the above integral has the form 

 

∫ 𝑎𝑠−1 (𝑟 ,
−𝑥′ + (𝑥 + 𝜀)′

2√𝜁
, (𝑢 + 𝜀) + |𝑟 |

2)𝑟2𝛽 𝑒
−2𝜁((𝑢+𝜀)+|𝑟 |

2)−|(𝑥+𝜀)′|
2

 
ℝ+
𝜀+1×ℝ𝑛−𝜀−2×ℝ+

× (𝑢 + 𝜀)𝜀−1𝑟 𝑑𝑟 𝑑(𝑥 + 𝜀)
′𝑑(𝑢 + 𝜀) =: (∗), 

 

Where 𝛽 ∈ ℤ+
𝜀+1. With 𝑒 = (1,1,… ,1) ∈ ℤ+

𝜀+1  we obtain 
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(∗) =
1

2𝜀+1
∫ 𝑎𝑠−1 (𝑟,

−𝑥′ + (𝑥 + 𝜀)′

2√𝜁
, (𝑢 + 𝜀) + |𝑟 |

2)
ℝ𝜀+1×ℝ𝑛−𝜀−2×ℝ+

× |𝑟2𝛽|𝑒
−2𝜁((𝑢+𝜀)+|𝑟|2)−|(𝑥+𝜀)′|

2

(𝑢 + 𝜀)𝜀−1𝑟 𝑑𝑟 𝑑(𝑥 + 𝜀)
′𝑑(𝑢 + 𝜀)

=    
1

2𝜀+1
∫ ∫ 𝑎𝑠−1 (𝑟 ,

−𝑥′ + (𝑥 + 𝜀)′

2√𝜁
, (𝑢 + 𝜀)

ℝ+
𝑚×𝕊𝛽1+𝜀−1×…×𝕊𝛽𝑚+𝜀−1ℝ𝑛−𝜀−2×ℝ+

+ |𝑟 |
2) |𝜌2𝛽+𝑒|. (∏r

𝑗

2|𝛽(𝑗)|+2(𝛽+𝜀)𝑗−1
𝑚

𝑗=1

)𝑒
−2𝜁((𝑢+𝜀)+|𝑟|2)−|(𝑥+𝜀)′|

2

× (𝑢 + 𝜀)𝜀−1𝑑𝜎(𝜌(𝑚))𝑟 𝑑𝑟 𝑑(𝑥 + 𝜀)
′𝑑(𝑢 + 𝜀) 

In the last integral we wrote 𝑑𝜎(𝜌(𝑗)) for the standard area measure on the sphere  𝕊(𝛽+𝜀)𝑗−1. 

The integral over the m-fold product 𝕊(𝛽+𝜀)1−1 ×…× 𝕊(𝛽+𝜀)𝑚−1can be calculated explicitly 

by using the following well-known formula: 

Lemma (6.1.19)[270]:Let 𝑑𝜎 denote the usual surface measure on the (𝑛 − 1)-dimensional 

sphere 𝕊𝑛 − 1 and let  𝜃 ∈ ℤ+
1+𝜀. Then 

∫ |𝑦𝜃|𝑑𝜎(1 + 𝜀) =
2Γ (

𝜃1 − 1
2 )…Γ (

𝜃n − 1
2 )

Γ (
n − |𝜃|
2 )𝕊𝑛−1

 

Using the formula in Lemma (6.1.19)we define: 

⊖𝛽≔ ∫ |𝜌2𝛽+𝑒|𝑑𝜎(𝜌(1))…𝑑𝜎(𝜌(𝑚))
𝕊𝛽1+𝜀−1×…×𝕊𝛽𝑚+𝜀−1

= 2𝑚𝛽!∏𝑟

𝑚

𝑗=1

(
𝛽𝑗 + 𝜀 + 1

2
+ |𝛽(𝑗)|)

−1

                                                (36) 

This finally gives: 

(∗) =
⊖𝛽

21+𝜀
∫ 𝑎𝑠−1 (𝑟 ,

1

2√𝜁
(−𝑥′ + (𝑥 + 𝜀)′), (𝑢 + 𝜀) + |𝑟 |

2)
ℝ+
𝑚×ℝ𝑛−𝜀−2×ℝ+

 

× r1
2|𝛽(𝑠)|+2(𝛽+𝜀)1−1

…r𝑚
2|𝛽(𝑚)|+2(𝛽+𝜀)𝑚−1

𝑒
−2𝜁((𝑢+𝜀)+|𝑟 |

2)−|(𝑥+𝜀)′|
2

(𝑢 + 𝜀)𝜀−1𝑑𝑟 𝑑(𝑥 + 𝜀)
′𝑑(𝑢

+ 𝜀). 
Note that the last integral does not depend on the full multi-index 𝛽 but rather on the values 

|𝛽(1)| for 𝑗 = 1,… ,𝑚. We denote this integral by 𝐺𝑎𝑠−2(|𝛽(1)|, … , |𝛽(𝑚)|). Then the 

commutativity condition (35) can be written in the form: 
⊖𝛽

𝛽!
𝐺𝑎𝑠−2(|𝛽(1)|, … , |𝛽(𝑚)|) = (2𝜁)

−|𝑝|+|𝑝+𝜀| ⊖𝛽+𝜀

(𝛽+𝜀)!
𝐺𝑎𝑠−2(|𝛽(1)| − |𝑝(1)| + |(𝑝 +

𝜀)(1)|, … , |𝛽(𝑚)| − |𝑝(𝑚)| + |(𝑝 + 𝜀)(𝑚)|). 

According to the definition (36) this is equivalent to 
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𝐺𝑎𝑠−2(|𝛽(1)|, … , |𝛽(𝑚)|) =∏Γ

𝑚

𝑗=1

(
(𝛽 + 𝜀)𝑗 + 1

2
+ |𝛽(𝑗)|)

−1

= (2𝜁)−|𝑝|+|𝑝+𝜀|𝐺𝑎𝑠−2(|𝛽(1)| − |𝑝(1)| + |(𝑝 + 𝜀)(𝑗)|, … , |𝛽(𝑚)| − |𝑝(𝑚)|

+ |(𝑝 + 𝜀)(𝑚)|)∏Γ

𝑚

𝑗=1

(
(𝛽 + 𝜀)𝑗 + 1

2
+ |𝛽(𝑗)| − |𝑝(𝑗)| + |(𝑝 + 𝜀)(𝑗)|)

−1

 

This equality can be only true simultaneously for all 𝛽 + 𝜀 -quasi-nilpotent quasi-radial 

functions 𝑎𝑠−2 and all 𝛽 ∈ ℤ+
1+𝜀 if |𝑝(𝑗)| = |(𝑝 + 𝜀)(𝑗) | for 𝑗 = 1,… ,𝑚. Hence, we obtain 

see[38]:  
Theorem (6.1.20)[270]: Let (𝛽 + 𝜀) ∈ ℤ+

1+𝜀 be given. Then the statements (a), (b) and (c) 

below are equivalent: 

(a) For each (𝛽 + 𝜀)-quasi-nilpotent quasi-radial function 𝑎𝑠−2 = 𝑎𝑠−1(𝑟1, (𝑥 +
𝜀)′, Im(𝑥 + 2𝜀)𝑛 − |(𝑢 + 2𝜀)

′|2) ∈ 𝐿∞(𝐷𝑛+𝑠−1) and each (𝛽 + 𝜀)-quasi-nilpotent 

quasi-homogeneous function  

𝑏𝑠−2 = 𝑏𝑠−1(𝑟1, … , 𝑟𝑚, (𝑥 + 𝜀)
′, Im(𝑥 + 2𝜀)𝑛 − |(𝑥 + 2𝜀)

′|2). (𝜁 + 𝜀)𝑝(𝜁 + 𝜀)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑝+𝜀

∈ 𝐿∞(𝐷𝑛+𝑠−1)                                                                                                                (37) 
of degree (𝑝, 𝑝 + 𝜀) ∈ ℤ+

1+𝜀 × ℤ+
1+𝜀 the Toeplitz operators 𝑇𝑎𝑠−2 and 𝑇𝑏𝑠−2 commute on each 

weighted Bergman space 𝒜𝜀−1
2 (𝐷𝑛+𝑠−1). 

(b) The equality 𝛾̅𝑎𝑠−2,0,0(𝛽, 𝑥
′, 𝜉) = 𝛾̅𝑎𝑠−2,0,0(𝛽 + 𝜀, 𝑥

′, 𝜉) holds for all 𝛽 ∈ ℤ+
𝑘   and for each 

(𝛽 + 𝜀)-quasi-nilpotent quasi-radial functions 𝑎𝑠−2. 
(c) The equality |𝑝(𝑗)|  =  | (𝑝 + 𝜀)(𝑗)| holds for each 𝑗 =  1, . . . , 𝑚. 

Now, let us assume that 𝑏𝑠−2 ∈ 𝐿
∞(𝐷𝑛+𝑠−1) is of the form (37). Under the assumption |𝑝(𝑗)|  =

 |(𝑝 + 𝜀)(𝑗)|, for each 𝑗 =  1,… ,𝑚, we calculate 𝛾̅𝑏𝑠−2,𝑝,𝑝+𝜀(𝛽, 𝑥
′, 𝜁) in (32) more explicitly by 

reducing the order of integration. Assume that 𝛽 + 𝜀 ∈ 𝕫+
1+𝜀. Then: 

𝛾̅𝑏𝑠−2,𝑝,𝑝+𝜀(𝛽, 𝑥
′, 𝜁)

= (𝐴𝑠−2)𝛽(𝜁)(𝐴𝑠−2)𝛽+𝜀(𝜁)𝜒ℝ+(𝜁) ∫ 𝑟 
2(𝛽+𝑝+𝜀)

 

ℝ+
𝜀+1×ℝ𝑛−𝜀−2×ℝ+

×∏r
𝑗

−|𝑝(𝑗)|−|(𝑝+𝜀)(𝑗)|𝑒−2𝜁(|𝑟 |
2+(𝑢+𝜀))−|(𝑥+𝜀)̃ ′|

2

𝑏𝑠−1

𝑚

𝑗=1

× (𝑟 ,
−𝑥′ + (𝑥 + 𝜀)̃ ′

2√𝜁
, (𝑢 + 𝜀) + |𝑟 |

2)𝑟 𝑑𝑟 𝑑(𝑥 + 𝜀)̃ ′
𝑐𝜀−1(𝑢 + 𝜀)

𝜀−1

4
𝑑(𝑢 + 𝜀)

=⊝𝛽+𝑝+𝜀 (𝐴𝑠−2)𝛽(𝜁)(𝐴𝑠−2)𝛽+𝜀(𝜉)𝜒ℝ+(𝜁)2
−(1+𝜀)

×∫ ∏r
𝑗

2|𝛽(𝑗)|+|(𝑝+𝜀)(𝑗)|−|𝑝(𝑗)|+2𝛼𝑗−1
𝑚

𝑗=1

 

ℝ+
𝑚×ℝ𝑛−𝜀−2×ℝ+

𝑒−2𝜁(|𝑟 |
2+(𝑢+𝜀))−|(𝑥+𝜀)̃ ′|

2

𝑏𝑠−1

× (𝑟 ,
−𝑥′ + (𝑥 + 𝜀)̃ ′

2√𝜁
, (𝑢 + 𝜀) + |𝑟 |

2)𝑟 𝑑𝑟 𝑑(𝑥 + 𝜀)̃ ′
𝑐𝜀−1(𝑢 + 𝜀)

𝜀−1

4
𝑑(𝑢 + 𝜀) 
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=
⊝𝛽+𝑝+𝜀

⊝𝛽

𝐴𝛽+𝜀(𝜁)

𝐴𝛽(𝜁)
. 𝐷𝑏𝑠−2(𝛽, 𝑥

′, 𝜁)

=
(𝛽 + 𝑝 + 𝜀)!

√𝛽! (𝛽 + 𝜀)!
∏

Γ(
(𝛽 + 𝜀)𝑗 + 1

2
+ |𝛽(𝑗)|)

Γ (
𝛽𝑗 + 𝜀 + 1

2
+ |𝛽(𝑗)| + |(𝑝 + 𝜀)(𝑗)|)

𝑚

𝑗=1

. 𝐷𝑏𝑠−2(𝛽, 𝑥
′, 𝜁), 

where 𝐷𝑏𝑠−2(𝛽, 𝑥
′, 𝜁) = 𝛾̅𝑏𝑠−2,𝑝,𝑝+𝜀, which can be seen by choosing 𝜀 =0 in the above equalities. 

Hence we have proved: 

Proposition (6.1.21)[270]:. Let (𝛽 + 𝜀) ∈ 𝕫+
𝑚 be given. Assume that 𝑏𝑠−2 ∈ 𝐿

∞(𝐷𝑛+𝑠−1) is of 

the 

form (37) and let |𝑝(𝑗)| = |(𝑝 + 𝜀)(𝑗)|, for each 𝑗 =  1, . . . , 𝑚. Then in the case of 

𝛽 + 𝜀 ∈ 𝕫+
𝑚  we have 

𝛾̅𝑏𝑠−2,𝑝,𝑝+𝜀(𝛽, 𝑥
′, 𝜁)

=
(𝛽 + 𝑝 + 𝜀)!

√𝛽! (𝛽 + 𝜀)!
∏

Γ(
(𝛽 + 𝜀)𝑗 + 1

2
+ |𝛽(𝑗)|)

Γ (
(𝛽 + 𝜀)𝑗 + 1

2
+ |𝛽(𝑗)| + |𝑝 + 𝜀(𝑗)|)

𝑚

𝑗=1

. 𝛾̅𝑏𝑠−2,0,0(𝛽, 𝑥
′, 𝜉). 

In  the  case  of   (𝛽 + 𝜀) ∉ 𝕫+
1+𝜀   we  have   𝛾̅𝑏𝑠−2,𝑝,𝑝+𝜀(𝛽, 𝑥

′, 𝜁) = 0.   the factor 

𝛾̅𝑏𝑠−2,𝑝,𝑝+𝜀(𝛽, 𝑥
′, 𝜁) can be expressed in the form 

𝛾̅𝑏𝑠−2,𝑝,𝑝+𝜀(𝛽, 𝑥
′, 𝜁)

=⊝𝛽 𝐴𝛽
2(𝜁)𝜒ℝ+(𝜁)2

−(1+𝜀)∫ ∏r
𝑗

2|𝛽(𝑗)|+|𝑞(𝑗)|−|𝑝(𝑗)|+2(𝛽+𝜀)𝑗−1
𝑚

𝑗=1

 

ℝ+
𝑚×ℝ𝑛−𝜀−2×ℝ+

× 𝑒−2𝜁(|𝑟 |
2+(𝑢+𝜀))−|(𝑥+𝜀)′|

2

𝑏𝑠−1 (𝑟 ,
−𝑥′ + (𝑥 + 𝜀)′

2√𝜁
, (𝑢 + 𝜀) + |𝑟 |

2)

× 𝑟 𝑑𝑟 𝑑(𝑥 + 𝜀)
′
𝑐𝜀−1(𝑢 + 𝜀)

𝜀−1

4
𝑑(𝑢 + 𝜀)                                                              (38) 

Let 𝛽 + 𝜀 ∈ 𝕫+
𝑚 be given and (𝑝, 𝑝 + 𝜀) ∈ 𝕫+

1+𝜀 × 𝕫+
1+𝜀.  From Proposition (6.1.21) we 

conclude: 

Corollary (6.1.22)[270]: Let 𝑎𝑠−2 = 𝑎𝑠−1(𝑟 , (𝑥 + 𝜀)
′, 𝐼𝑚(𝑥 + 2𝜀)𝑛 − |(𝑢 + 2𝜀)

′|2) ∈
𝐿∞(𝐷𝑛+𝑠−1) be an (𝛽 + 𝜀) − quasi-nilpotent quasi-radial function. Under the assumption 
|𝑝(𝑗)| for all 𝑗 =  1, 2, … ,𝑚 we have 

    𝑇𝑎𝑠−2𝑇(𝜁+𝜀)𝑝(𝜁+𝜀)̅̅ ̅̅ ̅̅ ̅̅ 𝑝+𝜀 = 𝑇(𝜁+𝜀)𝑝(𝜁+𝜀)̅̅ ̅̅ ̅̅ ̅̅ 𝑝+𝜀𝑇𝑎𝑠−2 = 𝑇𝑎𝑠−2(𝜁+𝜀)𝑝(𝜁+𝜀)̅̅ ̅̅ ̅̅ ̅̅ 𝑝+𝜀                    (39) 

on each weighted Bergman space. 

Proof: The first equality in (39) is a direct consequence of Theorem (6.1.20). If 𝑒(𝑥 + 2𝜀) ≡
1 then Te = Id, and thus 𝛾̅𝑒,0,0(𝛽, 𝑥

′, 𝜉) ≡ 1. Hence, Proposition (6.1.21)implies that in the case 

of a symbol 𝑏𝑠−2 = (𝜁 + 𝜀)
𝑝(𝜁 + 𝜀)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑝+𝜀 with |𝑝(𝑗)| = |(𝑝 + 𝜀)(𝑗)|, for all j= 1,2, . . . , 𝑚, one 

has 
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𝛾̅𝑏𝑠−2,𝑝,𝑝+𝜀(𝛽, 𝑥
′, 𝜁)

=
(𝛽 + 𝑝 + 𝜀)!

√𝛽! (𝛽 + 𝜀)!
∏

Γ(
 (𝛽 + 𝜀)𝑗 + 1

2
+ |𝛽(𝑗)|)

Γ (
(𝛽 + 𝜀)𝑗 + 1

2
+ |𝛽(𝑗) + (𝑝 + 𝜀)(𝑗)|)

𝑚

𝑗=1

,                                       (40) 

Whenever (𝛽 + 𝜀) ∈ 𝕫+
1+𝜀 (cf. Example (6.1.18) for the choice of  (𝛽 + 𝜀) = (1,… ,1) ∈ 𝕫+

1+𝜀 

and the case 𝑝𝑗  =  (𝑝 + 𝜀)𝑗,for 1, … , 1 + 𝜀) Moreover, if 𝛽 + 𝜀 ∈ 𝕫+
1+𝜀, then it holds 

𝛾̅𝑏𝑠−2,𝑝,𝑝+𝜀(𝛽, 𝑥
′, 𝜁). Theorem (6.1.20), Proposition (6.1.21) and the assumption that|𝑝(𝑗)|  =

 |(𝑝 + 𝜀)(𝑗)|, for all 𝑗 = 1,2, . . . , 𝑚, imply now that 

𝛾̅𝑎𝑠−2𝑏𝑠−2,𝑝,𝑝+𝜀(𝛽, 𝑥
′, 𝜁) = 𝛾̅𝑏𝑠−2,𝑝,𝑝+𝜀(𝛽, 𝑥

′, 𝜁) . 𝛾̅𝑎𝑠−2,0,0(𝛽, 𝑥
′, 𝜁)

= 𝛾̅𝑏𝑠−2,𝑝,𝑝+𝜀(𝛽, 𝑥
′, 𝜁) . 𝛾̅𝑎𝑠−2,0,0(𝛽 + 𝜀, 𝑥

′, 𝜁) 

This together with (33) and Theorem 4.5 yields the second equality in (39). 

Proposition (6.1.23)[270]:Let us assume that |𝑝(𝑗)|  =  |(𝑝 + 𝜀)(𝑗)| for all j= 1,2, . . . , 𝑚,. Then 

the Toeplitz operators 𝑇𝑗 commute mutually. Moreover, 

∏𝑇𝑗: = 𝑇(𝜁+𝜀)𝑝(𝜁+𝜀)̅̅ ̅̅ ̅̅ ̅̅ 𝑝+𝜀

𝑚

𝑗=1

                                                           (41) 

on each weighted Bergman space. 

Proof: Let  𝑏𝑗 ≔ (𝜁 + 𝜀)𝑝̅(𝑗)(𝜁 + 𝜀)̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑝+𝜀)̅̅ ̅̅ ̅̅ ̅̅
(𝑗) , for 𝑗 = 1,2, . . . , 𝑚, We only prove the following 

product rule: 

                  𝑇𝑗𝑇𝑖: = 𝑇
(𝜁+𝜀)

𝑝̅(𝑖)+𝑝̅(𝑗)(𝜁+𝜀̅̅ ̅̅ ̅̅ )
(𝑝+𝜀)̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑖)+(𝑝+𝜀)
̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑗)       
                                       (42) 

for 𝑖, 𝑗 ∈ {𝑗 = 1,2, . . . , 𝑚, } and 𝑖 ≠ 𝑗. According to Theorem (6.1.17)the operator 

𝑅𝑠−2 𝑇𝑗𝑇𝑖𝑅𝑠−2
∗  

 
 acts on the sequence space ℓ2(𝕫+

𝜀+1, 𝐿2(ℝ
𝑛−𝜀−2 ×ℝ+)) by the rule: 

𝑅𝑠−2 𝑇𝑗𝑇𝑖𝑅𝑠−2
∗  

 
{𝑐𝛽(𝑥

′, 𝜁)}
𝛽∈𝕫+

𝜀+1

= 𝑅 𝑠−2𝑇𝑗𝑅𝑠−2
∗  

 
{𝛾̃𝑏𝑗,𝑝̅(𝑗),(𝑝+𝜀)̅̅ ̅̅ ̅̅ ̅̅

(𝑗)
(𝛽, 𝑥′, 𝜁). 𝛾̃𝑏𝑖,𝑝̅(𝑖),(𝑝+𝜀)̅̅ ̅̅ ̅̅ ̅̅

(𝑖)
(𝛽 − 𝑝̅(𝑗)(𝑝 + 𝜀)̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑗), 𝑥
′, 𝜁)

× 𝑐𝛽−𝑝̅(𝑖)−𝑝̅(𝑗)+(𝑝+𝜀)̅̅ ̅̅ ̅̅ ̅̅
(𝑖)+(𝑝+𝜀)̅̅ ̅̅ ̅̅ ̅̅

(𝑗)
(𝑥′, 𝜁)}

𝛽∈𝕫+
𝜀+1

 

Hence it is clear that (42) is equivalent to: 

  𝛾̃𝑏𝑗,𝑝̅(𝑗),(𝑝+𝜀)̅̅ ̅̅ ̅̅ ̅̅
(𝑗)
(𝛽, 𝑥′, 𝜁). 𝛾̃𝑏𝑖,𝑝̅(𝑖),(𝑝+𝜀)̅̅ ̅̅ ̅̅ ̅̅

(𝑖)
(𝛽 − 𝑝̅(𝑗), (𝑝 + 𝜀)̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑗), 𝑥
′, 𝜁) 

                        = 𝛾̃𝑏𝑖,𝑏𝑗,𝑝̅(𝑖),𝑝̅(𝑗),(𝑝+𝜀)̅̅ ̅̅ ̅̅ ̅̅
(𝑖),(𝑝+𝜀)̅̅ ̅̅ ̅̅ ̅̅

(𝑗)
(𝛽, 𝑥′, 𝜁).                             (43) 

By (40) we have 

𝛾̃𝑏𝑗,𝑝̅(𝑗),(𝑝+𝜀)(𝑗)(𝛽, 𝑥
′, 𝜁)

=
(𝛽(𝑗) + (𝑝 + 𝜀)̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑗))!

√𝛽(𝑗)! (𝛽(𝑗) − 𝑝̅(𝑗) + (𝑝 + 𝜀)̅̅ ̅̅ ̅̅ ̅̅ ̅
(𝑗))!

Γ (
(𝛽 + 𝜀)𝑗 + 1

2
+ |𝛽(𝑗)|)

Γ (
(𝛽 + 𝜀)𝑗 + 1

2
+ |𝛽(𝑗) + (𝑝 + 𝜀)̅̅ ̅̅ ̅̅ ̅̅ ̅

(𝑗)|)

, 

and similar for 𝑖 replaced by 𝑗. Moreover, the function on the right hand side of (43) has the 

explicit form: 
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𝛾̃𝑏𝑖,𝑏𝑗,𝑝̃(𝑖),𝑝̃(𝑗),(𝑝+𝜀)̃
(𝑖),(𝑝+𝜀)̃

(𝑗)
(𝛽, 𝑥′, 𝜁)

=
(𝛽 + (𝑝 + 𝜀)̃

(𝑖) + (𝑝 + 𝜀)̃
(𝑗))!

√𝛽! (𝛽 − 𝑝̃(𝑖) − 𝑝̃(𝑗) + (𝑝 + 𝜀)̃
(𝑖) + (𝑝 + 𝜀)̃

(𝑗))!

× ∏
Γ(
(𝛽 + 𝜀)ℓ + 1

2
+ |𝛽(ℓ)|)

Γ (
(𝛽 + 𝜀)ℓ + 1

2 + |𝛽(ℓ) + (𝑝 + 𝜀)̃
(ℓ)|)ℓ∈{𝑖,𝑗}

 

Now, (43) can be easily checked from these identities.  

Theorem (6.1.24)[270]: The Toeplitz operators T𝜑𝑠 and T𝜑𝑠+1 commute on each weighted 

Bergman space (𝒜𝑠−2
2 )𝜀−1

 (𝐷𝑛+𝑠−1) if and only if for each ℓ = 1,2, . . . , 𝜀 + 1 one of the 

conditions (a) − (d) is fulfilled: 

(a) 𝑝ℓ = (𝑝 + 𝜀)ℓ = 0  

(b) 𝑢ℓ = (𝑢 + 𝜀)ℓ = 0  

(c) 𝑝ℓ = 𝑢ℓ = 0 

 (d) (𝑝 + 𝜀)ℓ = (𝑢 + 𝜀)ℓ = 0 

Proof: Similar hat the operators T𝜑 𝑠 and T𝜑𝑠+1 commute on (𝒜𝑠−2
2 )𝜀−1

 (𝐷𝑛+𝑠−1) if and only 

if for all ∈ 𝕫+
𝜀+1 : 

𝛾̃𝜑𝑠,𝑝,𝑝+𝜀(𝛽, 𝑥
′, 𝜁). 𝛾̃𝜑𝑠+1𝑢,𝑢+𝜀(𝛽 + 𝜀, 𝑥

′, 𝜁) = 𝛾̃𝜑𝑠+1𝑢,𝑢+𝜀(𝛽, 𝑥
′, 𝜁). 𝛾̃𝜑𝑠,𝑝,𝑝+𝜀(𝛽 + 𝜀, 𝑥

′, 𝜁) 

Since |𝑝(𝑗)| = |(𝑝 + 𝜀)(𝑗)| and |𝑢(𝑗)| = | (𝑢 + 𝜀)(𝑗)| for 𝑗 =  1, 2, . . . , 𝑚we can use the 

factorization of 𝛾̃𝜑𝑠,𝑝,𝑝+𝜀(𝛽, 𝑥
′, 𝜁) and 𝛾̃𝜑𝑠+1𝑢,𝑢+𝜀(𝛽, 𝑥

′, 𝜁) in Proposition (6.1.21): 

𝛾̃𝜑𝑠,𝑝,𝑝+𝜀(𝛽, 𝑥
′, 𝜁) = Φ𝑝,𝑝+𝜀(𝛽). 𝛾̃𝜑𝑠0,0(𝛽, 𝑥

′, 𝜁), 

𝛾̃𝜑𝑠+1𝑢,𝑢+𝜀(𝛽, 𝑥
′, 𝜁) = Φ𝑢,𝑢+𝜀(𝛽). 𝛾̃𝜑𝑠+10,0(𝛽, 𝑥

′, 𝜁), 

where we use the notation: 

(𝛽) =
(𝛽 + 𝑝 + 𝜀)!

√𝛽! (𝛽 + 𝜀)!
∏

Γ(
(𝛽 + 𝜀)𝑗 + 1

2
+ |𝛽(𝑗)|)

Γ (
(𝛽 + 𝜀)𝑗 + 1

2
+ |𝛽(𝑗) + (𝑝 + 𝜀)(𝑗)|)

𝑚

𝑗=1

                         (44) 

Moreover, it follows from Theorem (6.1.20) and again by the conditions on (𝑝, 𝑝 + 𝜀)    
and (𝑢, 𝑢 + 𝜀) that 

𝛾̃𝜑𝑠0,0(𝛽, 𝑥
′, 𝜁) = 𝛾̃𝜑𝑠0,0(𝛽 + 𝜀, 𝑥

′, 𝜁) 

𝛾̃𝜑𝑠+10,0(𝛽, 𝑥
′, 𝜁) = 𝛾̃𝜑𝑠+10,0(𝛽 + 𝜀, 𝑥

′, 𝜁) 

Therefore we only need to verify that 

Φ𝑝,𝑝+𝜀(𝛽).Φ𝑢,𝑢+𝜀(𝛽 + 𝜀) = Φ𝑢,𝑢+𝜀(𝛽).Φ𝑝,𝑝+𝜀(𝛽 + 𝜀). 

By a straightforward calculation this is equivalent to: 

(𝛽 + 𝑝 + 𝜀)!
(𝛽+𝑢+2𝜀)!

(𝛽+𝜀)!
= (𝛽 + 𝑢 + 𝜀)!

(𝛽+𝑝+2𝜀)!

(𝛽+𝜀)!
. 

Varying 𝛽 it can be seen that this equality holds if and only if for each  

 ℓ = 1,2, . . . , 𝜀 + 1 one of the conditions (a)-(d) is fulfilled.  
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Section (6.2) Toeplitz Operators with Quasi-Radial Quasi-Homogeneous Symbols  

  We study of commutative algebras generated by Toeplitz operators acting on the 

Bergman spaces over the unit ball. The fact of just an existence of such algebras was quite 

unexpected and its exploration for the unit disk case was started in [294, 296, 295]. The final 

result on classification and description of the C∗-algebras generated by Toeplitz operators being 

commutative on all weighted Bergman spaces 𝒜𝜆
2(𝔻𝑛) on the unit disk was obtained in [98]. 

In an equivalent reformulation it states that, under some technical assumption on the “richness” 

of a class of generating symbols, a C∗-algebra generated by Toeplitz operators is commutative 

on each weighted Bergman space if and only if the corresponding symbols of Toeplitz operators 

are constant on the orbits of a maximal commutative subgroup of the M̈obius transformations 

of the unit disk. 

This result was extended then to the case of the unit ball. As proved in [218, 219], given a 

maximal commutative subgroup of biholomorphisms of the unit ball, the C∗-algebra generated 

by Toeplitz operators, whose symbols are constant on the orbits of this subgroup, is 

commutative on each weighted Bergman space. 

There are five different pairwise non-conjugate model classes of such subgroups: quasi-elliptic, 

quasi-parabolic, quasi-hyperbolic, nilpotent, and quasi-nilpotent (the last one depends on a 

parameter, giving in total 𝑛 + 2 model classes for the n-dimensional unit ball). As a 

consequence, for the unit ball of dimension 𝑛, there are 𝑛 + 2 essentially different “model” 

commutative C∗-algebras, all others are conjugated with one of them via biholomorphisms of 

the unit ball.The next surprise came first in [193] and was developed then in [37,38,195]. 

As it turned out, for n > 1 there exist many other, not geometrically defined, classes of symbols 

which generate commutative Toeplitz operator algebras on each weighted Bergman space. 

These classes of symbols were always subordinated to one of the above model classes of the 

maximal commutative subgroup (with the exception of the nilpotent subgroup). The 

corresponding commutative operator algebras were Banach, and being extended to C∗-algebras 

they became non-commutative. 

We note that in all above cases of the commutative C∗-algebras generated by Toeplitz operators 

these algebras always come with an unitary operator (specific for each algebra) that reduces 

each operator from the algebra to a multiplication operator, giving thus, among other results, a 

complete spectral picture of the operators under study. 

As for the commutative Banach algebras generated by Toeplitz operators, the results obtained 

so far give just the description of these algebras in terms of their generators. The next 

challenging task is to develop their Gelfand theory, obtaining thus more detailed information 

on the operators forming the algebra. 

We study the case of a commutative Banach algebra generated by Toeplitz operators 

with quasi-radial quasi-homogeneous symbols (i.e. an algebra subordinated to the quasi-elliptic 

group). To simplify the considerations we restrict our attention to the lowest dimensional case 

𝑛 = 2.The corresponding (unique) commutative Toeplitz operator algebra 𝒯(𝜆) is Banach (not 

C∗), and can be described as follows: 

Let 𝐻:= 𝒜𝜆
2(𝔹𝑛)  be the weighted Bergman space over 𝔹2 with parameter 𝜆 > −1, and write 

𝒯𝑟𝑎𝑑(𝜆) for the commutative C∗-subalgebra of ℒ(𝐻) generated by all Toeplitz operators 𝑇𝑎 
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with radial bounded measurable symbols a on 𝔹2 (i.e.𝛼(𝑧) = 𝛼(|𝑧|)). Further, we denote by 

𝑇𝜑 the unital Banach Structure of A Commutative Banach Algebra algebra with a single 

generator 𝑇𝜑, where φ is the “simplest” quasi-homogeneous symbol on 𝔹2 .It is easy to see 

that operators in 𝒯rad(λ) and 𝒯𝜑 commute and, as an important observation, we remark that 

𝒯(𝜆)is generated by these two algebras (cf. Corollary (6.2.5)). 

Our results on the structure of𝒯(𝜆)already reveal some important features which we 

expect to be useful under a further study of the higher dimensional case 𝑛 > 2, and in a situation 

where the quasi-elliptic group of automorphisms of 𝔹𝑛 is replaced by another group among the 

above model classes. 

The main theorem explicitly expresses the maximal ideals of 𝒯(𝜆) and the Gelfand map. 

Theorem (Theorem (6.2.28)) The compact set 𝑀 (𝒯(𝜆)) of maximal ideals of the algebra 

𝒯(𝜆) has the form 

𝑀(𝒯(𝜆)  ) = ℤ+ × {0} ∪ 𝑀∞(𝜆) × 𝐷̅ (0,
1

2
) 

where 𝑀∞(𝜆) can be identified with the subset of all multiplicative functional of 𝒯rad(λ) that 

map compact operators to zero. The Gelfand transform is generated by the following 

mapping of the elements of a dense (non-closed) subalgebra of 𝒯(𝜆): 

∑𝐷𝛾𝑗𝑇𝛷
𝑗

𝑛

𝑗=0

⟼ {

𝛾0(𝑘) (𝑘, 0) ∈ ℤ+ × {0}

∑ 𝜇(𝐷𝛾𝑗)𝜉𝑗
𝑛

𝑗=0
(𝜇, 𝜉) ∈ 𝑀∞(𝜆) × 𝐷̅ (0,

1

2
)
 

Here Dγj ∈ 𝒯rad(λ) is a diagonal operator with respect to the standard orthonormal basis 

[𝑒𝑎: 𝛼 ∈ ℤ+
2 ] of 𝐻 with the sequence 𝛾𝑗 = {𝛾𝑗(|𝛼|)}𝛼of the corresponding eigenvalues. 

As an important ingredient of the proof we carefully analyze the structure of the algebras 

𝒯𝑟𝑎𝑑(𝜆), 𝒯𝜑, and of C∗-algebras that are generated by just a finite number of Toeplitz operators 

with radial symbols. In order to identify the multiplicative functionals of the previous algebras 

we essentially employ the concept of the “joint spectrum” and the “joint approximate 

spectrum“of finite tuples of operators together with the Berezin transform on functions with 

respect to suitable subspaces of 𝐻. It is important to note that the arguments are not purely 

algebraic but heavily rely on the analytic structure of the generating Toeplitz operators and the 

underlying Bergman space. 

Some important properties of 𝒯(𝜆) can be deduced by the help of the previous theorem. Since 

𝒯(𝜆)is not invariant under the ∗ −operation of ℒ(𝐻) the inverse closedness of this algebra is 

not obvious, and usually such a feature is hard to show. Here we can prove the inverse 

closedness of 𝒯(𝜆) from the explicit description of the maximal ideal space and by extending 

multiplicative functionals (in a multiplicative way) from commutative Banach algebras to an 

enveloping (non-commutative) C∗ −algebra. 

We show that 𝒯(𝜆) is not semi-simple, and in Lemma (6.2.7) we describe some of the 

elements in its radical 𝑅𝑎𝑑𝒯(𝜆). However, to calculate the radical precisely we again need 

Theorem (6.2.28) together with additional arguments (see Lemma (6.2.38) and Theorem 

(6.2.43)). 
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Finally we wish to point out that the derivation of the maximal ideal space has important 

consequences for the operator theory of the elements in 𝒯(𝜆)We give some remarks on the 

essential spectrum and the Fredholm property of (certain) operators 𝐴 ∈ 𝒯(𝜆) (cf. Theorem 

(6.2.32) and Corollary (6.2.36)) and solve a“zero-product-problem”for Toeplitz operators (cf. 

Corollary (6.2.10)), which holds true despite of a certain ambiguity in the representation of 

operators as a finite sum of products of elements in𝒯𝑟𝑎𝑑(𝜆) and  𝒯𝜑(see Lemma (6.2.8)). 

We recall the construction of commutative Banach Toeplitz algebras that are subordinate 

to the quasielliptic group.We obtain a set of generators for this algebra 𝒯(𝜆)in the lowest 

dimensional case and we study some of its subalgebras. contains preliminary results on the 

maximal ideals for certain finitely generated subalgebras of 𝒯(𝜆). Our main result (Theorem 

(6.2.28)) on the Gelfand theory of 𝒯(𝜆)is proved and we give some applications. 

Among them we prove the inverse closedness of 𝒯(𝜆)and calculate its radical. 

We write 𝔹n, (𝑛 ∈ ℕ) for the open Euclidean unit ball in ℂ𝑛, i.e. 

𝔹𝑛 ≔ {𝑧 = (𝑧1, … , 𝑧2) ∈ ℂ
𝑛: |𝑧|2 = |𝑧1|

2 +⋯+ |𝑧𝑛|
2 < 1} 

Let 𝑑𝑣 denote the standard volume form on 𝔹𝑛. With 𝜆 > −1 we consider the one-parameter 

family of the standard weighted measures 

𝒹𝜇𝜆(𝑧) = 𝑐𝜆(1 − |𝑧|
2)𝜆 𝒹𝜈 

where 𝑐𝜆> 0 is a normalizing constant such that 𝑣𝜆(𝔹
𝑛). More precisely, cλ is explicitly given 

by the formula: 

𝑐𝜆 ≔
𝛤(𝑛 + 𝜆 + 1)

𝜋𝑛𝛤(𝜆 + 1)
 

The weighted Bergman space 𝒜𝜆
2(𝔹𝑛) is the closed subspace in 𝐿2(𝔹

𝑛, 𝑑𝑣𝜆) consisting of all 

functions analytic in 𝔹𝑛. We write 𝔹𝜆 for the orthogonal Bergman projection from 𝐿2(𝔹
𝑛, 𝑑𝑣𝜆) 

onto 𝒜𝜆
2(𝔹𝑛). It is well-known that 𝐵𝜆 can be expressed as the following integral operator: 

[𝐵𝜆𝜑](𝑧) = ∫
𝜑(𝜉)

(1 − 〈𝑧, 𝜉〉𝑛+𝜆+1)
𝔹𝑛

, 𝑑𝑣𝜆(𝜉). 

where 𝜑 ∈ 𝐿2(𝔹
𝑛, 𝑑𝑣𝜆) and 〈𝑧, 𝜉〉 ≔ 𝑧1𝜉1̅ +⋯+ 𝑧𝑛𝜉𝑛̅ .Given a function 𝑔 ∈ 𝐿∞(𝔹𝑛) the 

Toeplitz operator 𝑇𝑔 with symbol g acting on 𝒜𝜆
2(𝔹𝑛) is defined by: 

𝑇𝑔𝜑 ≔ 𝐵𝜆(𝑔𝜑)                 𝜑 ∈ 𝒜𝜆
2(𝔹𝑛) 

For 𝑛 > 1, new classes of commutative Banach algebras generated by Toeplitz operators with 

specific bounded symbols on 𝔹𝑛 have been constructed in [37,38,193,195]. As we have 

remarked already these algebras remain commutative on each weighted Bergman spaces 

𝒜𝜆
2(𝔹𝑛) with 𝜆 > −1, and are induced by the maximal commutative subgroups of the 

biholomorphisms of the unit ball: quasi-elliptic, quasi-parabolic, quasi-hyperbolic and quasi-

nilpotent. 

These Toeplitz Banach algebras are not invariant under the ∗-operation of ℒ(𝒜λ
2(𝔹n)), 

and being extended to C∗-algebras they become non-commutative. 

We shortly recall now the definition of the commutative algebras that  are subordinated 

to the quasi-elliptic group of biholomorphisms (for further  details see [217, 192]). Let 𝑘 =
 (𝑘1, 𝑘2,· · ·, 𝑘𝑚) be a tuple of positive integers with |𝑘| = 𝑘1 + 𝑘2 +· · · +𝑘𝑚 = 𝑛. We divide 
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the coordinates of 𝑧 ∈ 𝔹𝑛 into m groups of kj entries, respectively by using the notation 𝑧 =

𝑧(1), … , 𝑧(𝑚) ∈ ℂ
𝑛 with 

𝑧(𝑗) = (𝑧𝑗,1, … , 𝑧𝑗,𝑘𝑗) ∈ ℂ
𝑘𝑗 

where 𝑗 =  1, . . . , 𝑚. Let 𝕊2𝑘𝑗−1 ⊂ ℂ𝑘𝑗 denote the (real) (2𝑘𝑗 − 1) –dimensionalunit sphere in 

ℂ𝑘𝑗. We express 𝑧(𝑗) = 0 in polar-coordinates 𝑧(𝑗) = 𝑟𝑗𝑧(𝑗)𝜉(𝑗) with 

𝜉(𝑗) =
𝑧(𝑗)

‖𝑧(𝑗)‖
∈ 𝕊2𝑘𝑗−1     and      𝑟𝑗 = ‖𝑧(𝑗)‖ ∈ ℝ+                             (45) 

A bounded function 𝜑(𝑧) on 𝔹𝑛a  3 is called k-quasi-homogeneous if it has the form: 

𝜑(𝑧) = 𝑎(𝑟1, … , 𝑟𝑚)𝜉(1)
𝑝(1)
𝜉(2)
𝑝(2)

…𝜉(𝑚)
𝑝(𝑚)

𝜉(1)
−𝑞(1)

𝜉(2)
−𝑞(2)

…𝜉(𝑚)
−𝑞(𝑚)

                     (46) 

and 𝑎is a function of the m non-negative real variables 𝑟1, … , 𝑟𝑚.The tuple (𝑝, 𝑞) ∈ ℤ+
𝑛 × ℤ+

𝑛  

with 𝑝 ⊥ 𝑞is called the quasi-homogeneous degree of 𝜑(z). 

Fix a tuple ℎ = (ℎ1, … , ℎ𝑚) ∈ ℤ+
𝑚,with ℎ𝑗 = 0 if 𝑘𝑗 = 1 and 1 ≤ ℎ𝑗 ≤ 𝑘𝑗 − 1 if 𝑘𝑗 > 1. 

We denote by ℛ𝑘(ℎ) the linear space generated by all k-quasi-homogeneous functions of the 

form (46) such that 

(i)  For 𝑗 with 𝑘𝑗 > 1: 𝑝(𝑗) = (𝑝𝑗,1, … , 𝑝𝑗,ℎ𝑗  , 0, … , 0) and 𝑞(𝑗) = (0,… , 0, 𝑞𝑗,ℎ𝑗+1  , … , 𝑞𝑗,𝑘𝑗  ), 

with 𝑝𝑗,1, … , 𝑝𝑗,ℎ𝑗 , 𝑞𝑗,ℎ𝑗+1 , . . . ,  𝑞𝑗,𝑘𝑗 ∈ ℤ+, and𝑝𝑗,1  + ⋯+  𝑝𝑗,ℎ𝑗  =  𝑞𝑗,ℎ𝑗+1 , . . . ,  𝑞𝑗,𝑘𝑗  . 

(ii) If 𝑘𝑗′ = 𝑘𝑗" with  𝑗′ < 𝑗′′ thenℎ𝑗′ ≤ ℎ𝑗′′ . 

Recall that the quasi-elliptic group of biholomorphisms of 𝔹n is isomorphic with the n-torus 

(𝕋𝑛 (here 𝕋 = 𝕊1) and acts on 𝔹n as follows 

𝕋𝑛 ∋ 𝑡 = (𝑡1, … , 𝑡𝑛) ∶  𝑧 = (𝑧1, … , 𝑧𝑛) ⟼ 𝑡𝑧 = (𝑡1𝑧1, … , 𝑡𝑛𝑧𝑛). 
Note that the functions from ℛ𝑘(ℎ) are invariant under the subgroup 𝕋𝑚 of the quasi-elliptic 

group 𝕋𝑛, which acts on𝔹𝑛 as follows 

𝕋𝑚 ∋ 𝑡 = (𝑡1, … , 𝑡𝑚) ∶  𝑧 = (𝑧1, … , 𝑧𝑚) ⟼ (𝑡1𝑧(1), … , 𝑡𝑚𝑧(𝑚)). 

The main result in [193] states the following: 

Theorem (6.2.1)[303]: The Banach algebra ℬ𝑘(ℎ) generated by Toeplitz operators with 

symbols from ℛ𝑘(ℎ) is commutative. 

In the case of n >1 the algebras ℬ𝑘(ℎ) do not extend to commutative C∗-algebras. This effect 

arise from the multidimensional setting and has no counterpart in the case of 𝑛 = 1. 

Our next global plan is to study the internal structure of ℬ𝑘(ℎ) more precisely and, in particular, 

we wish to determine their maximal ideal spaces. 

We consider the simplest model case where 

𝑛 = 2, and 𝑘 = 2 

that is, we fix the dimension 𝑛 = 2 and we choose 𝑚 = 1. As a consequence we need to put 

ℎ = (1) = 1, and our main object to study, the commutative Banach algebra 𝒯(𝜆):= ℬ2(1) , 
is generated by the operators of the form 𝑇𝑎(𝑟)𝜉(𝑝,0)𝜉(0,𝑝), where 𝑎 ∈ 𝐿∞[0,1) and 𝑝 ∈ ℤ+. 

By [192], for any bounded measurable function a(r) we have  

𝑇𝛼𝑧
𝛼 = 𝛾𝛼,𝜆(|𝛼|)𝑧

𝛼 ,       𝛼 ∈ ℤ+
2  

Where  
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𝛾𝛼,𝜆(|𝛼|) =
𝛤(|𝛼| + 𝜆 + 3)

𝛤(𝜆 + 1)𝛤(|𝛼| + 2)
∫𝛼(√𝑟 )(1 − 𝑟)𝜆𝑟|𝛼|+1𝑑𝑟.

1

0

                         (47) 

According to [192], for |𝑝| = |𝑞| we have 

𝑇𝜉(𝑝,0)𝜉̅(𝑜,𝑝)𝑧
𝛼 = 𝛾̅𝑝,𝜆(𝛼)𝑧1

𝛼1+𝑝𝑧2
𝛼2−𝑝, 𝛼 ∈ ℤ+

2 , 

Where 

𝛾̅𝑝,𝜆(𝛼) =
𝛼2(𝛼2 − 1)…𝛼2(𝛼2 − 𝑝 + 1)

(𝑝 + 1 + |𝛼|)(𝑝 + |𝛼|)… (2 + |𝛼|)
                                    (48) 

We mention that 𝛾̅𝑝,𝜆 does not depend on the weight parameter 𝜆. By [193], for any bounded 

measurable 𝛼 = 𝛼(𝑟) and 𝑝 ∈ ℤ+ we have 

           𝑇𝛼𝑇𝜉(𝑝,0)𝜉̅(𝑜,𝑝) = 𝑇𝜉(𝑝,0)𝜉̅(𝑜,𝑝)𝑇𝛼 = 𝑇𝛼𝜉(𝑝,0)𝜉̅(𝑜,𝑝)                                 (49) 

As a consequence the algebra 𝒯(𝜆) is generated by the operators 𝑇𝛼, with 𝑎 ∈ 𝐿∞[0,1), and 

𝑇𝜉(𝑝,0)𝜉̅(𝑜,𝑝), where 𝑝 ∈ ℤ+ (see Corollary (6.2.3) for an even“smaller”set of generators). 

We start our analysis by studying separately the different types of Toeplitz operators 

that, according to generate 𝒯(𝜆). First we consider operators with radial and then with quasi-

homogeneous symbols. 

Let 𝛾 = {𝛾(|𝛼|)} |𝛼| ∈ ℤ+ be a bounded sequence. Denote by 𝐷𝛾 the (bounded linear) 

diagonal operator which acts on the weighted Bergman space  𝒜𝜆
2(𝔹2), by the rule  

𝒟𝛼𝑧
𝛼 = 𝛾(|𝛼|) 𝑧𝛼  ,       𝛼 ∈ ℤ+

2  

Of course each Toeplitz operator with bounded measurable radial symbol α(r) is diagonal, and 

𝑇𝛼 = 𝐷𝛾𝛼,𝜆. However, as the next lemma states, not all bounded diagonal operators 𝐷𝛾  can be 

represented in such a form since the eigenvalue sequence 𝛾𝛼,𝝀  of 𝑇𝛼 is always slowly 

oscillating. 

Lemma (6.2.2)[303]:Let 𝛼(𝑟) ∈ 𝐿∞[0,1)and 𝑘 = |𝛼|.Then 

𝑙𝑖𝑚
𝑘→∞

(𝛾𝛼,𝝀(𝑘) − 𝛾𝛼,𝝀 (𝑘 + 1)) = 0. 

Proof: Let 𝑀 = 𝑒𝑠𝑠 − 𝑠𝑢𝑝 |𝛼(𝑟)|. By (27), we have 

|𝛾𝛼,𝜆(𝑘) − 𝛾𝛼,𝜆(𝑘 + 1)|

= |
𝛤(𝑘 + 𝜆 + 3)

𝛤(𝜆 + 1)𝛤(𝑘 + 2)
∫𝛼(√𝑟)(1 − 𝑟)𝜆𝑟𝑘+1𝑑𝑟

1

0

−
𝛤(𝑘 + 𝜆 + 4)

𝛤(𝜆 + 1)𝛤(𝑘 + 3)
∫𝛼(√𝑟)(1 − 𝑟)𝜆𝑟𝑘+2𝑑𝑟

1

0

|

= |
𝛤(𝑘 + 𝜆 + 3)

𝛤(𝜆 + 1)𝛤(𝑘 + 2)
∫𝛼(√𝑟)(1 − 𝑟)𝜆+1𝑟𝑘+1𝑑𝑟

1

0

−
𝜆 + 1

𝑘 + 𝜆 + 3

𝛤(𝑘 + 𝜆 + 4)

𝛤(𝜆 + 1)𝛤(𝑘 + 3)
∫𝛼(√𝑟)(1 − 𝑟)𝜆𝑟𝑘+2𝑑𝑟

1

0

| 
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=
𝜆 + 1

𝑘 + 𝜆 + 3
𝛾𝛼,𝜆+1(𝑘) − 𝛾𝛼,𝜆(𝑘 + 1)| 

≤ 2𝑀
𝜆 + 1

𝑘 + 𝜆 + 3
                                         

The last expression tends to 0 when 𝑘 → ∞. 

It follows from the lemma that the set of (partial) limit points of the sequence 𝛾𝛼,𝜆 is connected 

and compact. 

According to the results in [194] and for the unweighted case (𝜆 =  0) the algebra 𝒯𝑟𝑎𝑑(𝜆)is 

isomorphic and isometric to the C∗-algebra SO(0) which consists of all slowly oscillating 

sequences satisfying the condition 

𝑙𝑖𝑚
𝑚
𝑛
 →1
|𝛾(𝑚) − 𝛾(𝑛)| = 0. 

We denote by 𝑀(𝒯𝑟𝑎𝑑(𝜆))the compact set of maximal ideals of the algebra 𝒯𝑟𝑎𝑑(𝜆) (or, which 

is the same, of the algebra 𝑆𝑂(𝜆)). Let  𝑀∞(𝜆) be the fiber of𝑀(𝒯𝑟𝑎𝑑(𝜆)) consisting of all 

multiplicative functionals 𝜓 such that 𝜓(𝐷𝛾) = 0whenever 𝐷𝛾 is compact (or whenever 𝛾 ∈

𝑐0, where c0 denotes set of all sequences converging to zero). 

Each point 𝑘 ∈ ℤ+ defines a multiplicative functional 𝜓(𝑘) on 𝒯𝑟𝑎𝑑(𝜆): 
𝜓(𝑘): 𝐷𝛾⟼ 𝛾(𝑘), 

and thus the set ℤ+ can be considered as a part of M(𝒯𝑟𝑎𝑑(𝜆)). Moreover, 

𝑀(𝒯𝑟𝑎𝑑(𝜆)) = ℤ+ ∪𝑀∞(𝜆)                                                 (50) 

and by [95], the set ℤ+ is densely and homeomorphically  embedded into 𝑀(𝒯𝑟𝑎𝑑(𝜆)) with 

respect to the Gelfand topology on 𝑀(𝒯𝑟𝑎𝑑(𝜆))  Furthermore, by [250], the set 𝑀∞(𝜆) is 

connected. 

We mention for completeness that none of the points of 𝑀∞(𝜆) can be reached by 

subsequences of ℤ+; its topological nature requires to use nets (subnets of ℤ+). That is, for each 

point 𝜇 ∈ 𝑀∞(𝜆) there is a net {𝑛𝛽}𝛽∈𝛽
 , valued in ℤ+, which tends to 𝜇 in the Gelfand topology 

of 𝑀(𝒯𝑟𝑎𝑑(𝜆)). Or, in other words, for each 𝛾 = {𝛾(𝑛)}𝑛∈ℤ+ ∈ 𝑆𝑂(𝜆), we have that 

𝑙𝑖𝑚
𝛽∈𝛽

𝛾(𝑛𝛽) = 𝛾(𝜇)                                                                   (51) 

where we identify 𝛾(𝜇) with 𝜇(𝛾), the value of the functional 𝜇 ∈ 𝑀∞(𝜆) on the element𝛾 ∈
𝑆𝑂(𝜆). 

Consider now the special case of a radial symbol: (𝑟) = 𝑟2 . By (47) we have 

𝛾𝑟2 , 𝜆(|𝛼|) =
𝛤(|𝛼| + 𝜆 + 3)

𝛤(𝜆 + 1)𝛤(|𝛼| + 2)
∫𝛼(√𝑟)(1 − 𝑟)𝜆𝑟|𝛼|+1𝑑𝑟

1

0

=
𝛤(|𝛼| + 𝜆 + 3)

𝛤(𝜆 + 1)𝛤(|𝛼| + 2)
∫𝛼(1 − 𝑟)𝜆+1𝑟|𝛼|+2𝑑𝑟

1

0

=
𝛤(|𝛼| + 𝜆 + 3)

𝛤(𝜆 + 1)𝛤(|𝛼| + 2)
𝐵(𝜆 + 1, |𝛼| + 3) =

|𝛼| + 2

|𝛼| + 𝜆 + 3
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The sequence 𝛾𝑟2,𝜆(𝑛), 𝑛 ∈ ℤ+, is real valued, strictly monotone (thus separatingpoints of ℤ+), 

and convergent when 𝑛 → ∞. Hence, by the Stone-Weierstrass theorem, the unital C∗-algebra 

generated by a single Toeplitz operator 𝑇𝑟2 coincides with the algebra of all diagonal operators 

𝐷𝛾 with 𝛾 ∈ 𝑐, where 𝑐 denotes the set of all convergent sequences. 

Corollary (6.2.3)[303]: Let 𝛾 ∈ 𝑐 , then Dγ ∈ 𝒯(λ). In particular, for all 𝑛 ∈ ℤ+ the orthogonal 

projection 𝑃𝑛 of 𝒜𝜆
2(𝔹2) onto span{𝑧𝛼: |𝛼| = 𝑛} belongs to the algebra 𝒯(λ). 

In order to simplify formulas, and with the coordinates in (45) we will use the notation 

𝜙𝑝 = 𝜙𝑝(𝜉) = 𝜉
(𝑝,0)𝜉̅(𝑜,𝑝), where 𝜉 = (𝜉1, 𝜉2) ∈ 𝕊

3 ⊂ ℂ2and 𝑝 ∈ ℕ; for 𝑝 = 1 we simply 

write 𝜙 = 𝜙1. 

We start with some calculations based on (48): 

𝑇𝜙𝑧1
𝛼1𝑧2

𝛼2 =
𝛼2

2 + |𝛼|
𝑧1
𝛼1+1𝑧2

𝛼2−1,   𝛼2 ≥ 1 

𝑇𝜙
2𝑧1
𝛼1𝑧2

𝛼2 =
𝛼2(𝛼2 − 1)

(2 + |𝛼|)2
𝑧1
𝛼1+2𝑧2

𝛼2−2,   𝛼2 ≥ 2 

𝑇𝜙2𝑧1
𝛼1𝑧2

𝛼2 =
𝛼2(𝛼2 − 1)

(3 + |𝛼|)(2 + |𝛼|)
𝑧1
𝛼1+2𝑧2

𝛼2−2,   𝛼2 ≥ 2 

Thus 

(𝑇𝜙
2 − 𝑇𝜙2)𝑧1

𝛼1𝑧2
𝛼2 = (

1

2 + |𝛼|
−

1

3 + |𝛼|
)
𝛼2(𝛼2 − 1)

2 + |𝛼|
𝑧1
𝛼1+2𝑧2

𝛼2−2 =
1

3 + |𝛼|
𝑇𝜙
2𝑧1
𝛼1𝑧2

𝛼2 , 

or 

𝑇𝜙2 = 𝐷𝑑2𝑇𝜙
2, 

where 

𝑑2(|𝛼|) =
2 + |𝛼|

3 + |𝛼|
 ,         𝛼 ∈ ℤ+

2 . 

Due to the remark before Corollary (6.2.3)  we conclude that the Toeplitz operator 𝑇𝜙2  belongs 

to the unital algebra generated by 𝑇𝑟2 and 𝑇𝜙. Similarly, for any 𝑝 ∈ ℕ, and 𝛼2 > 𝑝 we have 

𝑇𝜙𝑝𝑧1
𝛼1𝑧2

𝛼2 =
𝛼2(𝛼2 − 1)… (𝛼2 − 𝑝 + 1)

(𝑝 + 1 + |𝛼|)… (2 + |𝛼|)
𝑧1
𝛼1+𝑝𝑧2

𝛼2−𝑝 

(𝑇𝜙 𝑇𝜙𝑝) 𝑧1
𝛼1𝑧2

𝛼2 =
𝛼2(𝛼2 − 1)… (𝛼2 − 𝑝 + 1)(𝛼2 − 𝑝)

(𝑝 + 1 + |𝛼|)   … (2 + |𝛼|)(2 + |𝛼|)
𝑧1
𝛼1+𝑝+1𝑧2

𝛼2−𝑝−1 

𝑇𝜙𝑝+1𝑧1
𝛼1𝑧2

𝛼2 =
𝛼2(𝛼2 − 1)… (𝛼2 − 𝑝)

(𝑝 + 1 + |𝛼|) … (2 + |𝛼|)
𝑧1
𝛼1+𝑝+1𝑧2

𝛼2−𝑝−1 

By comparing these relations we obtain: 

𝑇𝜙 𝑇𝜙𝑝 − 𝑇𝜙𝑝+1𝑧1
𝛼1𝑧2

𝛼2 =
𝑝

𝑝+2+|𝛼|
𝑇𝜙 𝑇𝜙𝑝𝑧1

𝛼1𝑧2
𝛼2. 

Note that the last equality is also valid in the case of 0 ≤ 𝛼2 ≤ 𝑝 and hence 

𝑇𝜙𝑝+1 = 𝐷𝑑𝑝+1𝑇𝜙 𝑇𝜙𝑝 

where 

𝑑𝑝+1(|𝛼|) =
2 + |𝛼|

𝑝 + 1 + |𝛼|
=

2 + |𝛼|

(𝑝 + 1) + 1 + |𝛼|
,    𝛼 ∈ ℤ+

2  
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By induction we finally have 

𝑇𝜙𝑝 = (∏𝐷𝑑𝑘

𝑝

𝑘=1

)𝑇𝜙
𝑝
,                                                                    (52) 

where the eigenvalue sequence 𝑑𝑘 = {𝑑𝑘 (|𝛼|)}|𝛼|∈ℤ+ is given by 

𝑑𝑘 (|𝛼|) =
2 + |𝛼|

𝑘 + 1 + |𝛼|
 

Note that 𝑑1 (|𝛼|) ≡ 1, as it should be. 

An alternative form of (52) is 

𝑇𝜙𝑝 = 𝐷𝑑̅𝑝𝑇𝜙
𝑝
                                                                          (53) 

where the eigenvalue sequence 𝑑̃𝑝 = {𝑑̃𝑝|𝛼|}|𝛼|∈ℤ+
 is given by 

𝑑̃𝑝|𝛼| =
(2 + |𝛼|)𝑝

(𝑝 + 1 + |𝛼|)(𝑝)
,                                                      (54) 

and(𝑥)(𝑝) = 𝑥(𝑥 − 1) · · ·  (𝑥 −  𝑝 + 1) is a kind of Pochhammer symbol. 

We note that, for each 𝑝 ∈ ℕ , both sequences 𝑑𝑝 and 𝑑̃𝑝 tend to 1 when |𝛼| → ∞. Thus we 

have according to the remark before Corollary (6.2.3): 

Theorem (6.2.4)[303]:For each 𝑝 ∈ ℕ, the Toeplitz operator 𝑇𝜙𝑝 belongs to the unital algebra 

generated by 𝑇𝑟2 and𝑇𝜙. 

Corollary (6.2.5)[303]:The Banach algebra 𝒯(𝜆) is generated, in fact, just by Toeplitz 

operators 𝑇𝑎 with bounded measurable radial symbols 𝑎(𝑟) and the single Toeplitz operator 𝑇𝜙 

(with the simplest quasi-homogeneous symbol 𝜙(𝜉)). 
We normalize the monomials𝑧𝛼to the standard orthonormal basis [𝑒𝛼: 𝛼 ∈ ℤ+

2 ]of the 

Bergman space 𝒜λ
2(𝔹2), i.e. 

𝑒𝛼 = √
𝛤(|𝛼| + 𝜆 + 3)

𝛼! 𝛤(𝜆 + 3)
𝑧𝛼 ,   𝛼 ∈ ℤ+

2 .                                                (55) 

Then we have in the case of 𝛼 ∈ ℤ+
2  with 𝛼2 ≥ 𝑝: 

𝑇𝜙𝑒𝛼 =
√(𝛼1 + 1)𝛼2
2 + |𝛼|

𝑒(𝛼1+1,𝛼2−1),                                                  (56) 

𝑇𝜙
𝑝
𝑒𝛼 =

√(𝛼1 + 𝑝)… (𝛼1 + 1)𝛼2…(𝛼2 − 𝑝 + 1)

(2 + |𝛼|)𝑝
𝑒(𝛼1+𝑝,𝛼2−𝑝),                        (57)  

which implies that ‖𝑇𝜙
𝑝
‖ = 2−𝑝 for all 𝑝 ∈ ℕ, and thus the spectral radius of 𝑇𝜙is equal to 

1

2
 . 

Note that (48) and (56) imply that the action of Tϕ does not depend on the weight parameter 𝜆. 

Thus the structure of the unital Banach algebra 𝒯𝜙 generated by 𝑇𝜙 does not depend on the 

weight parameterλ as well, and thus the spectrum of 𝑇𝜙 is independent of 𝜆. 

Consider now the case 𝜆 =  0. Since φ extends continuously to the boundary ∂𝔹2 of 𝔹2 it 
follows from the results in [298] that the essential spectrum of the operator Tϕ is given by  
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𝑒𝑠𝑠 − 𝑠𝑝𝑇𝜙 = 𝐼𝑚𝑇𝜙(𝜉)|𝜕𝔹2 = 𝐼𝑚(
𝑟1𝑟2

𝑟1
2 + 𝑟2

2 𝑡1𝑡2̅)|
𝑟1
2+𝑟2

2=1,𝑡1,𝑡2∈𝕊
1

= 𝐷̅ (0,
1

2
) 

where 𝐷̅ (0,
1

2
) is the closed disk centered at origin and with the radius 

1

2
 . 

Finally, 

𝐷̅ (0,
1

2
) = 𝑒𝑠𝑠 − 𝑠𝑝 𝑇𝜙 ⊂ 𝑠𝑝  𝑇𝜙 ⊂ 𝐷̅ (0,

1

2
) 

implies that 𝑠𝑝 𝑇𝜙 = 𝐷̅ (0,
1

2
). 

By [75], the maximal ideal space 𝑀( 𝑇𝜙) of the commutative Banach algebra  𝑇𝜙 coincides 

with the spectrum of the operator  𝑇𝜙,i.e. 𝑀( 𝒯𝜙) = 𝐷̅ (0,
1

2
). 

Theorem (6.2.6)[303]: The Banach algebra  𝒯𝜙 is isomorphic via the Gelfand transform to the 

algebra 𝐶𝑎𝐷̅ (0,
1

2
), which consists of all functions analytic in 𝐷 (0,

1

2
) and continuous on 

𝐷̅ (0,
1

2
) . 

Proof: Consider two unital algebras: the Banach algebra  𝒯𝜙 and the C∗-algebra 𝒯ϕ
∗, both are 

generated by  Tϕ. The operator  Tϕ commutes with its adjoint 𝑇𝜙
∗ = 𝑇𝜙̅ modulo a compact 

operator, thus the quotient algebra 𝒯ϕ
∗̂ = 𝒯ϕ

∗/(𝒯ϕ
∗ ∩𝒦). where 𝒦 denotes the ideal of all 

compact operators, is a commutativeC∗-algebra which is isomorphic and isometric to 

𝐶(𝑒𝑠𝑠 − 𝑠𝑝 𝑇𝜙) = 𝐶(𝐷 (0,
1

2
)). As the spectrum of any compact operator is at most countable 

and having at most one limit point 0, which is not the case for any non-zero operator from  𝒯𝜙 

, we have  𝒯𝜙 ∩𝒦 = {0}. Thus 

 𝒯𝜙 =  𝒯𝜙/( 𝒯𝜙 ∩𝒦)  ≅ ( 𝒯𝜙 + 𝒯𝜙
∗ ∩𝒦)/(𝒯𝜙

∗ ∩𝒦) ⊂ 𝒯𝜙
∗/(𝒯𝜙

∗ ∩𝒦) ≅ 𝐶(𝐷̅ (0,
1

2
) 

That is, the algebra  𝒯𝜙, being isomorphic to the uniform closure of all polynomials of ζ defined 

on (𝐷̅ (0,
1

2
), is isomorphic to 𝐶𝑎 (𝐷̅ (0,

1

2
)) . 

For each  𝑘 ∈ ℤ+
2 , we denote by 𝐻𝑘 the following subspace of 𝒜𝜆

2(𝔹2): 
𝐻𝑘 = 𝑠𝑝𝑎𝑛 {𝑒𝑎: 𝛼 ∈ ℤ+

2 ,   |𝛼| = 𝑘}, (38)                    

and, of course, we have an orthogonal decomposition of 𝒜λ
2(𝔹2) into finite dimensional 

Hilbert spaces 

𝒜λ
2(𝔹2) =⨁𝐻𝑘

∞

𝑘=0

 

each space 𝐻𝑘 is obviously invariant for all operators from 𝒯(𝜆). The diagonal operator 𝐷𝜆, 

restricted to Hk, is just the scalar operator 𝛾(𝑘)𝐼, while the operator  𝑇𝜙 acts on 𝐻𝑘 as a weighted 

shift operator. Moreover, the operator  𝑇𝜙, restricted to 𝐻𝑘, is nilpotent, 

( 𝑇𝜙|𝐻𝑘)
𝑘+1

= 0. 

In particular, this implies that, for all 𝑝 ∈ ℕ, 
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⨁𝐻𝑘

𝑝−1

𝑘=0

⊂ 𝑘𝑒𝑟  𝑇𝜙                                                          (59) 

Recall as well that each orthogonal projection 𝑃𝑘 of 𝒜𝜆
2(𝔹2) onto 𝐻𝑘 is a diagonal operator, 

which belongs to the unital subalgebra of 𝒯(𝜆)generated by 𝑇𝑟2. 
An important information on the structure of 𝒯(𝜆) gives the next lemma. 

A much stronger result can be found at the end of the section (cf. Lemma (6.2.38) and Theorem 

(6.2.43)): 

Lemma (6.2.7)[303]: The algebra 𝒯(𝜆)is not semi-simple. Its radical 𝑅𝑎𝑑𝒯(𝜆)contains, in 

particular, all operators of the form 𝑇𝜙𝑝 = 𝐷𝜸 where 𝛾 ∈ 𝑐0 and p ∈ ℕ. 

Proof: In virtue of (53) it is sufficient to prove that 𝐷𝛾 𝑇𝜙 ∈ 𝑅𝑎𝑑𝒯(𝜆) , or (see, for example, 

[75]) that the operator 𝐴 = 𝐷𝛾 𝑇𝜙 is topologically nilpotent, i.e., 

𝑙𝑖𝑚
𝑘⟶∞

‖𝐴𝑘‖
1
𝑘 = 0 . 

we have 

𝐴𝑘 = 𝐷𝛾
𝑘𝑇𝜙

𝑘 = 𝐷𝛾
𝑘𝑇𝜙

𝑘(𝐼 − (𝑃0 +⋯+ 𝑃𝑘−1)) = [𝐷𝛾(𝐼 − (𝑃0 +⋯+ 𝑃𝑘−1))]
𝑘
𝑇𝜙
𝑘 

Thus  

‖𝐴𝑘‖
1

k ≤ ‖𝐷𝛾(𝐼 − (𝑃0 +⋯+ 𝑃𝑘−1))‖. ‖𝑇𝜙
𝑘‖ = ‖𝑇𝜙

𝑘‖. 𝑠𝑢𝑝
1>𝑘
|𝛾(𝑙)|. 

As γ ∈ c0, the last expression tends to 0 when 𝑘 ⟶ ∞. 

We denote by 𝐷(𝜆) the dense (non-closed) subalgebra of 𝒯(𝜆) formed by finite sums of finite 

products of its generators: 𝑇𝑎 with bounded measurable radial symbols 𝑎(𝑟) and 𝑇𝜙𝑝 with𝑝 ∈

ℕ.  

An operator 𝐴 from 𝐷(𝜆) has the form 

𝐴 =∑𝐷𝛾𝑝𝑇𝜙
𝑝

𝑚

𝑝=0

 

We mention that for arbitrary diagonal operators 𝐷𝛾𝑝 the above representation is not unique. 

To describe this ambiguity we will use the notation 𝐾𝛾(𝑝), with 𝑝 ∈ ℤ+, for a finite dimensional 

diagonal operator, whose eigenvalue sequence has the form 

𝛾 = {𝛾(0), 𝛾(1), … , 𝛾(𝑝 − 1), 0,0,… }, 
of course, for 𝑝 = 0, it is just the zero operator. 

Lemma (6.2.8)[303]:We have 

∑ 𝐷𝛾𝑝𝑇𝜙
𝑝
= 0𝑚

𝑝=0 (60) 

if and only if 𝐷𝛾𝑝= 𝑘𝛾𝑝(𝑝) , for each 𝑝 = 0,1,… ,𝑚. 

Proof: The part “if” follows from (59). 

To prove the “only if” part, consider any n ≥ m and note that each 𝐷𝛾𝑝is diagonal with respect 

to the basis (55) with 

𝐷𝛾𝑝𝑒𝛼 = 𝛾𝑝(|𝑎|)𝑒𝛼 . 

Moreover, by (57), the operator  𝑇𝜙
𝑝
 acts on (55) as 𝑇𝜙

𝑝
𝑒(𝛼1,𝑎2) = 𝜏𝑝(𝛼). 
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𝑒(𝛼1+𝑝,𝛼2−𝑝), where 0 ≠ 𝜏𝑝(𝛼) ∈ ℝif𝛼2 ≥ 𝑝. Then, by (60), we have 

0 = ∑𝐷𝛾𝑝𝑇𝜙
𝑝
𝑒(0,𝑛)

𝑚

𝑝=0

=∑𝛾𝑝(𝑛)

𝑚

𝑝=0

𝜏𝑝(0, 𝑛)𝑒(𝑝,𝑛−𝑝). 

Since{e(p,n−p): p= 0, 1,…,m}forms a system of orthogonal vectors and 𝜏𝑝(0, 𝑛)=0 we conclude 

that 𝛾𝑝(𝑛) = 0  for 𝑝 =  0, 1, … ,𝑚 and 𝑛 ≥ 𝑚. 

Therefore 𝐷𝛾𝑝 is finite dimensional for 𝑝 =  0, 1, … ,𝑚, and, in particular, 𝐷𝛾𝑚 = 𝐾𝛾𝑚(𝑚). 

It follows that 𝐷𝛾𝑚𝑇𝜙
𝑚 = 𝐾𝛾𝑚(𝑚)𝑇𝜙

𝑚 = 0, and thus we have 

∑ 𝐷𝛾𝑝𝑇𝜙
𝑝
= 0

𝑚−1

𝑝=0

 

Repeating the above arguments m times (each time lowering the sum upperlimit), we have 

consequently 

𝐷𝛾𝑚−1 = 𝐾𝛾𝑚−1(𝑚 − 1), 𝐷𝛾𝑚−2 = 𝐾𝛾𝑚−2(𝑚 − 2),… , 𝐷𝛾0 = 𝐾𝛾0(0) = 0 

At the same time the situation is quite different for special finite sums of finite products of 

generators from 𝐷(𝜆). 
To proceed with the result we define the“grade”for some operators by: 

𝑔𝑟𝑎𝑑𝑒 (𝐷𝛾):= 0, and 𝑔𝑟𝑎𝑑𝑒 (𝑇𝜙𝑝) ≔ 𝑝. 

Moreover, if ∏ 𝐴𝑘
𝑚
𝑘=1  is the product of the above operators, then we put 

𝑔𝑟𝑎𝑑𝑒 (∏𝐴𝑘

𝑚

𝑘=1

) ≔∑𝑔𝑟𝑎𝑑𝑒(𝐴𝑘)

𝑚

𝑘=1

 

Theorem (6.2.9)[303]: Let us assume that all summands of the operator 

𝐴 = ∑(∏𝑇𝑎𝑘,𝑞

𝑚𝑘

𝑞=1

∏𝑇𝜙𝑝𝑘,𝑠

𝑛𝑘

𝑠=1

) = 0

𝑚

𝑘=1

 

have different grades. Then it follows that for each k at least one radial symbol 𝑎𝑘,𝑞 is 

identically zero. 

Proof: By (53) and (54), we have 

𝐴 =∑(∏𝑇𝑎𝑘,𝑞

𝑚𝑘

𝑞=1

𝐷𝛾𝑘𝑇𝜙
𝑝𝑘,1+⋯+𝑝𝑘,𝑛𝑘) = 0,

𝑚

𝑘=1

 

where each 𝐷𝛾𝑘  is invertible and its eigenvalue sequence tends to 1. Thus, by Lemma (6.2.8), 

we obtain that each diagonal operator ∏ 𝑇𝑎𝑘,𝑞
𝑚𝑘
𝑞=1  is finite dimensional. 

Then the result follows by [319], Theorem (6.2.1), and Theorem (6.2.6).  

As a corollary to the previous theorem we give a result on the so-called zero-product problem 

(see, for example, [168,169,319]). 
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Corollary (6.2.10)[303]:For the operator 

𝐴 =∏𝑇𝑎𝑞

𝑚

𝑞=1

∏𝑇𝜙𝑝𝑠

𝑛

𝑠=1

 

the following statements are equivalent: 

(i) 𝐴 =  0, 

(ii) 𝐴 is finite dimensional, 

(iii) At least one radial symbol 𝑎𝑞 is identically zero. 

   We start from recalling some known facts and definitions: Let 𝒜 = 𝒜(𝑥1, … 𝑥𝑛) be a unital 

commutative Banach algebra generated by the elements 𝑥1, … 𝑥𝑛, and let 𝑀(𝒜) denote the 

compact set of its maximal ideals. Then (cf. [167]) the joint spectrum 𝜎(𝑥1, … 𝑥𝑛) of 𝑥1, … , 𝑥𝑛 

is the subset of ℂ𝑛 defined by 

𝜎(𝑥1, … 𝑥𝑛) = {𝑚(𝑥1),𝑚(𝑥2), … .𝑚(𝑥𝑛):𝑚 ∈ 𝑀(𝒜)}.                           (61) 

In (61)we identify maximal ideals in 𝒜 and multiplicative functional on 𝒜in the usual way. 

As is well known, the mapping  

𝑚 ∈ 𝑀(𝒜) → (𝑚(𝑥1),𝑚(𝑥2),… .𝑚(𝑥𝑛)) ∈ 𝜎(𝑥1, … 𝑥𝑛)  

defines a homeomorphism between 𝑀(𝒜) and 𝜎(𝑥1, … 𝑥𝑛)  

If𝑒 ∈ 𝒜 denotes the unit element then we can also write (cf.[318])       

𝜎(𝑥1, … , 𝑥𝑛) = {(𝜇1, … 𝜇𝑛) ∈ ℂ
𝑛: 𝐽(𝑥1 − 𝜇1𝑒,… , 𝑥𝑛 − 𝜇𝑛𝑒) ≠ 𝒜}           (62) 

where 𝐽(𝑥1 − 𝜇1𝑒,… , 𝑥𝑛 − 𝜇𝑛𝑒) denotes the smallest ideal in the algebra 𝒜 which contains 

the elements 𝑥𝑗 − 𝜇𝑗𝑒, with 𝑗 = 1,… , 𝑛. 

Let 𝐻 be a complex Hilbert space and (𝐴1, 𝐴2) be a tuple of (bounded) commuting operators 

on 𝐻. 

We say (cf. [67]) that (𝜇1 , 𝜇2) ∈ ℂ
2 is in the joint approximate point spectrum 𝜎𝜋(𝐴1, 𝐴2) of 

(𝐴1, 𝐴2) if and only if, for all 𝐵1, 𝐵2 ∈ ℒ(𝐻), 
𝐵1(𝐴1 − 𝜇1𝐼) + 𝐵2(𝐴2 − 𝜇2𝐼) ≠ 𝐼 

Now, let 𝒜 = 𝒜(𝐴1, 𝐴2) be the Banach algebra in ℒ(𝐻) generated by the commuting operators 

A1, A2 and the identity element. The next statement is well-known and quite standard. 

Lemma (6.2.11)[303]:The following inclusions hold: 

𝜎𝜋(𝐴1, 𝐴2) ⊂ 𝜎(𝐴1, 𝐴2) ≅ 𝑀(𝒜) ⊂ 𝑀(𝒜1) × 𝑀(𝒜2) 
where 𝒜1 and 𝒜2 denote the unital Banach algebras generated by 𝒜1 and 𝒜2, respectively. 

Proof:Note that, by restriction, each element 𝜑 ∈ 𝑀(𝒜) defines a functional in 𝑀(𝒜𝑗), 𝑗 =

1,2 which proves the second inclusion. The first inclusion directly follows from the 

characterization (62).  

Below we need a more concrete characterization of the joint approximate point spectrum 

which has been given by A.T. Dash: 

Proposition (6.2.12)[303]: [67] A tuple (μ1 , μ2) ∈ ℂ
2 is in σπ(A1, A2) if and only if there is 

a sequence {fn}n ⊂ H of unit vectors such that 

‖(𝐴1 − 𝜇1𝐼)𝑓𝑛‖ → 0       and‖(𝐴2 − 𝜇2𝐼)𝑓𝑛‖ → 0 

as n tends to infinity. 

It is instructive to consider first the unital algebra with just two generators: 
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a diagonal operator 𝐷𝛾 and 𝑇𝜙. The result will already give a good approximation to what one 

can expect for the algebra 𝒯(𝜆). 
We fix 𝜆 ∈ (−1,∞) and a diagonal operator 𝐴1 = 𝐷𝛾 ∈  𝒯𝑟𝑎𝑑(𝜆), whose eigenvalue sequence 

𝛾 = {𝛾(𝑘)} ∈  ℤ+ satisfies the conditions: 

(i)𝛾(𝑘1) ≠ 𝛾(𝑘2), for all 𝑘1 ≠ 𝑘2, 
(ii) none of the eigenvalues 𝛾(𝑘) belongs to the set of limit points of 𝛾. 

We note that the aim of these conditions is to separate“as much as possible” the points of the 

compact set of maximal ideals of the unital algebra generated by 𝐷𝛾. Furthermore they will be 

important in the proof of Lemma (6.2.14). 

Let 𝐴2 = 𝑇𝜙. We consider the unital Banach algebra 𝒜 = 𝒜(𝐴1, 𝐴2) generated by two 

commuting elements 𝐴1 and 𝐴2. 

If we denote by𝐿𝑖𝑚(𝛾) the set of all limit points of the sequenceγ, then the spectrum of the 

operator 𝐷𝛾 is given by 

𝜎(𝐷𝛾) = 𝑐𝑙𝑜𝑠 𝐼𝑚(𝛾) = {𝛾(𝑘): 𝑘 ∈  ℤ+} ∪ 𝐿𝑖𝑚 (𝛾) 

Recall that the operators A1 and A2 act on the basis elements (55) as follows 

𝐴1𝑒𝛼 = 𝐷𝛾𝑒𝛼 = 𝛾|𝛼|𝑒𝛼  , 

𝐴2𝑒𝛼 = 𝑇𝜙𝑒𝛼 =
√(𝛼1 + 1)𝛼2
2 + |𝛼|

𝑒(𝛼1+1,𝛼2−1). 

Lemma (6.2.13)[303]: We have (𝐷𝛾) × {0} ⊂ 𝜎𝜋(𝐴1, 𝐴2) . 

Proof: Fix first(𝑘) ∈ 𝛾 , and observe that 𝑒(𝑘,0) ∈ 𝑘𝑒𝑟 𝑇𝜉(1,0)𝜉̅(0,1). If we put 𝑓𝑛 ≡ 𝑒(𝑘,0) , for 

𝑛 ∈ ℕ, then we have 

‖(𝐷𝛾 − 𝛾(𝑘)𝐼)𝑓𝑛‖ = 0   and   ‖(𝑇𝜉(1,0)𝜉̅(0,1) − 0𝐼)𝑓𝑛‖ = 0. 

That is, 𝐿𝑖𝑚(𝛾) × {0} ⊂ 𝜎𝜋(𝐴1, 𝐴2). 

Lemma (6.2.14)[303]:None of the points (𝛾(𝑘), 𝜁),where k ∈  ℤ+ and 𝑘 ∈  ℤ+ (𝜁 ∈

𝐷(0,
1

2
)\{0}belong to the joint spectrum 𝜎(𝐴1, 𝐴2) . 

Proof: We fix a pair(𝛾(𝑘), 𝜁), with 𝜁 = 0, and show that the ideal in 𝒜(𝐴1, 𝐴2), which is 

generated by the operators 𝐴1 − 𝛾(𝑘0)𝐼 = 𝐷𝛾 − 𝛾(𝑘0)𝐼, and 𝐴2 − 𝜁𝐼 = 𝑇𝜙 − 𝜁𝐼, coincides 

with the whole algebra 𝒜(𝐴1, 𝐴2). 
Consider the finite dimensional space 𝐻𝑘0 in (58). Then it can be easily seen that 𝐻𝑘0 

and its orthogonal complement 𝐻𝑘0
⊥ = 𝒜𝜆

2(𝔹2)⊝ 𝐻𝑘0are invariant under the operators 

𝐷𝛾 and 𝑇𝜙. Moreover, the restriction of 𝒜2 = 𝑇𝜙 to 𝐻𝑘0 is nilpotent,  

((𝒜2|𝐻𝑘0)
𝑘0+1

= 0. 

The operator 𝒜1 − 𝛾(𝑘0)𝐼 is diagonal, and its eigenvalue sequence is of the form 𝛾̅ =
{𝛾(𝑘) − 𝛾(𝑘0)}𝑘∈ ℤ+ .The above conditions (i) and (ii) guarantee that 

𝑖𝑛𝑓
𝑘≠𝑘0

|𝛾(𝑘) − 𝛾(𝑘0)| > 0 

for each 𝑘0 ∈  ℤ+. Thus the diagonal operator 𝐷𝛾̅(−1) with the eigenvalue sequence 
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𝛾̅−1 = {(1 − 𝛿𝑘,𝑘0)
1

(𝑘) − 𝛾(𝑘0)
}
𝑘∈ ℤ+

 

is well defined, it obviously belongs to 𝒜(𝐴1) ⊂ 𝒜(𝐴1, 𝐴2), and 

𝐷𝛾̅(−1)(𝐴1 − 𝛾(𝑘0)𝐼 ) = 𝐼 − 𝑃𝑘0 , 

where 𝑃𝑘0 is the orthogonal projection of 𝒜𝜆
2(𝔹2) onto 𝐻𝑘0. From this relation we also 

conclude that 𝛾(𝑘0) defines an element in 𝒜(𝐴1, 𝐴2). The operator 

𝐷𝛾̅(−1)(𝐴1 − 𝛾(𝑘0)𝐼 ) + (𝐴2 − 𝜁𝐼)𝑃𝑘0 

belongs to 𝒜(𝐴1, 𝐴2) and is invertible. Its inverse belongs to 𝒜(𝐴1, 𝐴2)  as well and has the 

form 

𝐷𝛾̅(−1)(𝐴1 − 𝛾(𝑘0)𝐼 ) − 𝜁
−1(𝜉−1𝐴2 + 𝜁

−2𝐴2
2 +⋯+ 𝜁−𝑘0𝐴2

𝑘0)𝑃𝑘0 

which implies that the ideal generated by the operators 𝐴1 − 𝛾(𝑘0)𝐼 = 𝐷𝛾 − 𝛾(𝑘0)𝐼 and 𝐴2 −

𝜁𝐼 = 𝑇𝜙 − 𝜁𝐼 coincides with the whole algebra 𝒜(𝐴1, 𝐴2). 

To finish the description of the joint spectrum 𝜎(𝐴1, 𝐴2) we need first some preliminary 

facts on the Berezin transform corresponding to certain subspaces of 𝒜𝜆
2(𝔹2). 

Let 𝑆 ⊂  ℤ+ be infinite. We introduce the Hilbert space 

𝐻𝑆 ≔ 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑒𝛼: |𝛼| ∈ 𝑆} ⊂ 𝒜𝜆
2(𝔹2). 

Its reproducing kernel function 𝐾𝑆(𝑧, 𝜔) has the form of a power series converging uniformly 

on compacts of 𝔹2 × 𝔹2: 

𝐾𝑆(𝑧, 𝜔) = ∑ 𝑒𝛼(𝑧)

|𝛼|∈𝑆

𝑒𝛼(𝜔)̅̅ ̅̅ ̅̅ ̅̅ . 

Lemma (6.2.15)[303]:Let {𝜔𝑛}𝑛 ⊂ 𝔹
2 be such that the sequence (‖𝜔𝑛‖)𝑛of real numbers is 

increasing and 𝑙𝑖𝑚
𝑛→∞

𝜔𝑛 = 𝑣 𝑘 ∈ 𝜕𝔹
2. Then 

‖𝐾𝑆(. , 𝜔𝑛)‖
2 = ∑ |𝑒𝛼(𝜔𝑛)|

2

|𝛼|∈𝑆

→ ∞,   as   𝑛 → ∞. 

Moreover, for all 𝑧, 𝜔 ∈ 𝔹2 the following estimate holds: 

|𝐾𝑆(𝑧, 𝜔)| ≤
1

(1 − |〈𝑧, 𝑤〉|)3+𝜆
.                                                    (63) 

Proof: According to the multinomial theorem we have for 𝑗 ∈ ℤ+: 

∑|𝑒𝛼(𝜔)|
2

|𝛼|∈𝑆

=
𝛤(𝑗 + 𝜆 + 3)

𝛤(𝜆 + 3)𝑗!
∑

𝑗!

𝛼!
|(𝜔1)|

2𝛼1|(𝜔2)|
2𝛼2 =

|𝛼|∈𝑆

𝛤(𝑗 + 𝜆 + 3)

𝛤(𝜆 + 3)𝑗!
‖𝜔‖2𝑗 . 

Since𝜆 > −1 it follows with |𝛼| = 𝑗 → ∞ that 
𝛤(𝑗 + 𝜆 + 3)

𝑗!
>
𝛤(𝑗 + 2)

𝑗!
= 𝑗 + 1 → ∞. 

As {𝜔𝑛}𝑛 is increasing and 𝑆 is infinite, the first assertion follows from 

‖𝐾𝑆(. , 𝜔𝑛)‖
2 =

1

𝛤(𝜆 + 3)
∑
𝛤(𝑗 + 𝜆 + 3)

𝑗!
𝑗∈𝑆

‖𝜔𝑛‖
2𝑗 
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and the monotone convergence theorem. The inequality(63) is a consequence of: 

𝐾𝑆(𝑧, 𝜔) ≥
1

𝛤(𝜆 + 3)
∑
𝛤(𝑗 + 𝜆 + 3)

𝑗!
𝑗∈𝑆

|〈𝑧, 𝜔〉|𝑗 ≥
1

𝛤(𝜆 + 3)
∑

𝛤(𝑗 + 𝜆 + 3)

𝑗!
𝑗∈ℤ+

|〈𝑧, 𝜔〉|𝑗

=
1

(1 − |〈𝑧, 𝜔〉|)3+𝜆
 

and the lemma is proved.  

Let 𝔹2̅̅ ̅̅  be the closed unit ball in ℂ2. Given a function 𝜓 ∈ 𝐶𝔹2̅̅ ̅̅ , we define its Berezin transform 

with respect to 𝐻𝑆 as 

𝐵𝑆[𝜓](𝑧) ≔
1

‖𝐾𝑆(. , 𝜔𝑛)‖
2
〈𝜓𝐾𝑆(. , 𝑧), 𝐾𝑆(. , 𝑧)〉,    𝑧 ∈ 𝔹

2. 

Now, we can prove: 

Proposition (6.2.16)[303]:Let 𝜓 ∈ 𝐶𝔹2̅̅ ̅̅  be invariant under the componentwise 𝕊1-action on 

𝔹2̅̅ ̅̅ , i.e. for all (𝜆, 𝑧)  ∈ 𝕊1 × 𝔹2̅̅ ̅̅  we have: 

𝜓(𝜆𝑧) = 𝜓(𝑧)                                                                        (64) 

Let 𝑣 ∈ 𝜕𝔹2 and put 𝜔𝑛 =
𝑛−1

𝑛
𝑣 such that lim

𝑛→∞
𝜔𝑛  =  𝑣. Then, we have: 

𝑙𝑖𝑚
𝑛→∞

𝐵𝑆[𝜓](𝜔𝑛) = 𝜓(𝑣). 

Proof: Let 𝜀 > 0 and consider the orbit 𝑂𝑣 ≔ {𝜆𝑣: 𝜆 ∈ 𝕊1} ⊂ 𝜕𝔹2̅̅ ̅̅ .Let𝛿 >  0 and define a 𝛿-

neighborhood of 𝑂𝑣 by 

𝑂𝑣
𝛿 ≔ {𝑧 ∈ 𝔹2̅̅ ̅̅ ∶ 𝑑𝑖𝑠(𝑧, 𝑂𝑣) < 𝛿}. 

Let 𝑧 ∈ 𝑂𝑣
𝛿, then there is 𝜆0 ∈ 𝕊

1such that |𝑧 − 𝜆0𝑣| < 𝛿.Since 𝜓 is continuous up to the 

boundary of 𝔹2̅̅ ̅̅  and due to the invariance (64) it follows that one can choose 𝛿 > 0 sufficiently 

small with 

𝜀 > |𝜓(𝑧) − 𝜓(𝜆0𝑣)| = |𝜓(𝑧) − 𝜓(𝑣)|.                                                  (65) 

Fix 𝛿 > 0 with (65). Then there is 𝛾 ∈ (0,1) such that for all 𝑧 ∈ 𝔹2̅̅ ̅̅ \𝑂𝑣
𝛿 and 𝑛 ∈ ℕ one has 

|〈𝑧, 𝜔𝑛〉| ≤ 𝛾 < 1. 
Hence it follows that: 

|𝐾𝑆(𝑧, 𝜔𝑛)|
2 ≤

1

𝛤(𝜆 + 3)
∑
𝛤(𝑗 + 𝜆 + 3)

𝑗!
𝑗∈𝑆

|〈𝑧, 𝜔〉|𝑗 ≤
1

𝛤(𝜆 + 3)
∑

𝛤(𝑗 + 𝜆 + 3)

𝑗!
𝑗∈ℤ+

|〈𝑧, 𝜔〉|𝑗𝛾𝑗

= 𝑐𝛿 . 
Now we calculate 

|𝜓(𝑣) − 𝐵𝑆[𝜓](𝜔𝑛)|

≤
1

‖𝐾𝑆(. , 𝜔𝑛)‖
2
∫|𝜓(𝑣)

𝑂𝑣
𝛿

− 𝜓(𝑧)| |𝐾𝑆(𝑧, 𝜔𝑛)|
2 𝑑𝑣𝜆(𝑧). +

1

‖𝐾𝑆(. , 𝜔𝑛)‖
2
∫ |𝜓(𝑣)

𝔹2\𝑂𝑣
𝛿

− 𝜓(𝑧)| |𝐾𝑆(𝑧, 𝜔𝑛)|
2 𝑑𝑣𝜆(𝑧) ≤ 𝜀 + 2𝑐𝛿

||𝜓||ℒ∞𝔹2̅̅ ̅̅

‖𝐾𝑆(. , 𝜔𝑛)‖
2
. 
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The last term on the right tends to zero as 𝑛 → ∞ (by Lemma (6.2.15)), and hence the 

proposition is proved.  

Lemma (6.2.17)[303]:We have 𝐿𝑖𝑚(𝛾)  × 𝐷̅ (0,
1

2
) ⊂ 𝜎𝜋(𝐴1, 𝐴2). 

Proof: Let (𝜇, 𝜁) ∈  𝐿𝑖𝑚 (𝛾) × 𝐷̅ (0,
1

2
).  Recall that 𝐷̅ (0,

1

2
) = 𝐼𝑚𝜙|𝜕𝔹2 . Then we choose 

𝑣 ∈ 𝜕𝔹2 such that 𝜉 = 𝜙(𝑣)and fix a sequence{𝑚𝑒}𝑒 ⊂ ℤ+such that  

𝑙𝑖𝑚
𝑒→∞

𝛾(𝑚𝑒) = 𝜇. 

Consider the set 𝑆𝜇 ≔ {𝑚ℓ: ℓ ∈ 𝑁} ⊂ ℤ+ and define the Hilbert space 𝐻𝑆𝜇. 

𝐻𝑆𝜇𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑒𝛼: |𝛼| = 𝑚ℓ,   ℓ ∈ ℕ}. 

Let {𝜔𝑛}𝑛 ⊂ 𝔹
2 be a sequence as in Lemma (6.2.15)with 𝑙𝑖𝑚

𝑛→∞
𝜔𝑛 = 𝑣 . We define a 

corresponding sequence {𝑓𝑛}𝑛 of unit vectors by  

𝑓𝑛 =
𝐾𝑆(. , 𝜔𝑛)

‖𝐾𝑆(. , 𝜔𝑛)‖
                                                                (66) 

Then, we have 

‖(𝐷𝛾 − 𝜇𝐼)𝑓𝑛‖
2
=

1

‖𝐾𝑆(. , 𝜔𝑛)‖
2
∑ ∑ |𝛾(𝑚ℓ − 𝜇)|

2|𝑒𝛼(𝜔𝑛)|
2

|𝛼|=𝑚ℓ

.

ℓ∈ℕ

 

Given 𝜀 > 0 we choose ℓ0 ∈ ℕ such that |γ(mℓ − μ)|
2 < 𝜀 for ℓ ≥ ℓ0. Then, 

‖(𝐷𝛾 − 𝜇𝐼)𝑓𝑛‖
2
≤

1

‖𝐾𝑆(. , 𝜔𝑛)‖
2
∑ ∑ |𝛾(𝑚ℓ − 𝜇)|

2|𝑒𝛼(𝜔𝑛)|
2

|𝛼|=𝑚ℓ

+ 𝜀.

ℓ0

ℓ=1

 

by Lemma (6.2.15) the first term on the right hand side tends to zero as 𝑛 → ∞, and therefore 

                  𝐿𝑖𝑚
𝑒→∞

‖(𝐷𝛾 − 𝜇𝐼)𝑓𝑛‖ = 0                                                  (67) 

Using 0 ≤ 𝑇𝜙̅𝑇𝜙 ≤ 𝑇|𝜙|2 together with Proposition (6.2.16) we have 

‖(𝑇𝜙 − 𝜉𝐼)𝑓𝑛‖
2
= 〈𝑇𝜙̅𝑇𝜙𝑓𝑛, 𝑓𝑛〉 − 𝜉̅𝐵𝑆𝜇[𝜙](𝜔𝑛) − 𝜉𝐵𝑆𝜇[𝜙]

̅̅ ̅̅ (𝜔𝑛) + |𝜉|
2

≤ 𝐵𝑆𝜇[|𝜙 − 𝜉|
2](𝜔𝑛)                                                                                                   (68) 

→ |𝜙 − 𝜉|2(𝑣) = 0,            as    𝑛 → ∞ 

Finally, (67), (68) and Proposition (6.2.12)imply that (𝜇, 𝜉) ∈ 𝜎𝜋(𝐷𝛾, 𝑇𝜙). 

Theorem (6.2.18)[303]: We have 

𝑀(𝒜(𝐴1, 𝐴2)) = 𝜎(𝐷𝛾) × {0}⋃𝐿𝑖𝑚(𝛾) × 𝐷̅ (0,
1

2
). 

= {𝛾(𝑘): 𝑘 ∈ ℤ+} × {0}⋃𝐿𝑖𝑚(𝛾) × 𝐷̅ (0,
1

2
) 

To uniform the result and make it independent of a concrete choice of the diagonal operator 

𝐴1 = 𝐷𝛾  we proceed as follows. Given the operator 𝐷𝛾, the compact set of maximal ideals of 

the C∗-algebra 𝒜(A1) was identified with 

𝜎(𝐷𝛾) = {𝛾(𝑘): 𝑘 ∈ ℤ+} × ⋃ 𝐿𝑖𝑚(𝛾). 
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The last set is homeomorphic to a certain compactification of ℤ+, and this homeomorphism is 

given by 

𝛾(𝑘) ∈ 𝛾 ⟼ 𝑘, 
𝛾∗ = 𝑙𝑖𝑚

𝑒→∞
𝛾(𝑘𝑛) ∈ 𝐿𝑖𝑚(𝛾) ⟼ class of equivalence containing {𝑘𝑛}𝑛∈𝑘. 

We say that two subsequences {𝑘𝑛} and {𝑘𝑚} are equivalent if and only if the following 

limits exist and coincide: 

𝑙𝑖𝑚
𝑒→∞

𝛾(𝑘𝑛) = 𝑙𝑖𝑚
𝑒→∞

𝛾(𝑘𝑚) 

We denote by  𝑀∞(𝛾) the part of the maximal ideals of 𝒜(𝐴1) which is homeomorphic 

to𝐿𝑖𝑚(𝛾). Now Theorem (6.2.18) reads as follows. 

Theorem (6.2.19)[303]:We have 

𝑀(𝒜(𝐴1, 𝐴2)) = ℤ+ × {0} ⋃ 𝑀∞(𝛾) × 𝐷̅ (0,
1

2
). 

The difference among different choices of the generating operator 𝐷𝛾 is reflected now in the 

different corresponding compactifications of  ℤ+, i.e. in different sets 𝑀∞(𝛾). 
We describe first multiplicative functionals of the 𝐶∗-algebra generated by a finite number of 

diagonal operators: Let 𝐷𝛾1 , … , 𝐷𝛾𝑛 be bounded diagonal operators on 𝐻 = 𝒜𝜆
2(𝔹2) acting on 

elements of the basis (55) as 

𝐷𝛾𝑗𝑒𝛼 = 𝛾𝑗(|𝛼|)𝑒𝛼 ,           for       𝛼 ∈ ℤ+
2  

and whose eigenvalue sequence 𝛾𝑗 belongs to 𝑆𝑂(𝜆). Consider then the unital  C∗ −algebra 

𝒜𝐷
∗ ≔𝒜(𝐷𝛾1 , … , 𝐷𝛾𝑛) ⊂ ℒ(𝐻)                                                   (69) 

which is generated by elements of 𝑫 = (𝐷𝛾1 , … , 𝐷𝛾𝑛). 

Recall that the joint spectrum 𝜎(𝐷𝛾1 , … , 𝐷𝛾𝑛) of the operators 𝐷𝛾1 , … , 𝐷𝛾𝑛, which is identified 

with the maximal ideal space 𝑀(𝒜𝐷
∗ ) of 𝒜D

∗ , has the form: 

𝜎(𝐷𝛾1 , … , 𝐷𝛾𝑛) = {(𝜇1, … , 𝜇𝑛) ∈ ℂ
𝑛: 𝐽(𝐷𝛾1 − 𝜇1𝐼, … , 𝐷𝛾𝑛 − 𝜇𝑛𝐼) ≠ 𝒜𝐷

∗ } 

where𝐽(𝐷𝛾1 − 𝜇1𝐼, … , 𝐷𝛾𝑛 − 𝜇𝑛𝐼)denotes the smallest ideal in the algebra 𝒜D
∗  containing the 

elements 𝐷𝛾𝑗 − 𝜇𝑗𝐼 , for 𝑗 = 1,… , 𝑛. (𝜇1, … , 𝜇𝑛) ∈ 𝜎(𝐷𝛾1 , … , 𝐷𝛾𝑛). Then 

𝐷 = (𝐷𝛾1
∗ − 𝜇1̅̅ ̅𝐼)(𝐷𝛾11 − 𝜇1𝐼) + ⋯+ (𝐷𝛾𝑛

∗ − 𝜇𝑛̅̅ ̅𝐼)(𝐷𝛾𝑛 − 𝜇𝑛𝐼) 

is an element of this ideal, and hence 𝐷 is not invertible in 𝒜D
∗ . Since 𝒜D

∗  (as a C∗-algebra) is 

inverse closed, the operator 𝐷 is not invertible in ℒ(H) either. Note that 𝐷 is diagonal with the 

eigenvalues 

𝛾(|𝛼|) = |𝛾1(|𝛼|) − 𝜇1|
2 +⋯+ |𝛾𝑛(|𝛼|) − 𝜇𝑛|

𝑛 ≥ 0. 
Corollary (6.2.20)[303]: Either there is  𝑘 ∈ ℤ+ such that 𝛾𝑗(𝑘) = 𝜇𝑗 for all 𝑗 = 1,… , 𝑛, or 

there is a sequence {𝑚ℓ} ⊂ ℤ+ such that for all𝑗 = 1,… , 𝑛: 

𝑙𝑖𝑚
𝑒→∞

𝛾𝑗(𝑚ℓ) = 𝜇𝑗 .                                                                         (70) 

Let (𝜇1, … , 𝜇𝑛) ∈ σ(𝐷𝛾1 , … , 𝐷𝛾𝑛). According to Corollary (6.2.20), we assume first that there 

is 𝑘 ∈ ℤ+ such that for all𝑗 = 1,… , 𝑛: 
𝛾𝑗(𝑘) = 𝜇𝑗 

Then we define a multiplicative functional 𝜑(𝑘)on𝒜𝐷
∗  by: 

              𝜑(𝑘)(𝐷) ≔ 〈𝐷𝑒(𝑘,0), 𝑒(𝑘,0)〉                                                 (71) 
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for all 𝐷 ∈ 𝒜𝐷
∗ . Note that 𝜓(𝑘)(𝐷𝛾𝑗) = 𝜇𝑗 for all j = 1,… , n. 

If such  k ∈ ℤ+ does not exists, then, by the second option of Corollary (6.2.21), there is a 

sequence  {𝑚ℓ: ℓ ∈ 𝑁} ⊂ ℤ+ having the property (70). Define the functional on 𝒜𝐷
∗  by: 

𝜓{𝑚ℓ}(𝐷):= 〈𝐷𝑒(𝑘,0), 𝑒(𝑘,0)〉                                                  (72) 

Lemma (6.2.21)[303]: The limit (72) exists for all𝐷 ∈ 𝒜𝐷
∗ , and the functional  𝜓{𝑚ℓ}is 

multiplicative with  𝜓{𝑚ℓ}(𝐷𝛾𝑗) = 𝜇𝑗, for all 𝑗 = 1,… , 𝑛 . 

Proof: Similar to the proof of Lemma (6.2.22) below.  

Now we modify the definition (72) so that the right hand side extends to a larger algebra (see 

Lemma (6.2.23) below). Consider the infinite set 𝑆 = {𝑚ℓ: ℓ ∈ ℕ} ⊂ ℤ+ and define the Hilbert 

space 

𝐻𝑆 = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑒𝛼: 𝛼 ∈ ℤ+, |𝛼| ∈ 𝑆} 
Let 𝐾𝑆 be the reproducing kernel of 𝐻𝑆, i.e. for all  𝑧, 𝜔 ∈ 𝔹2  we have 

𝐾𝑆 = (𝑧, 𝜔) ≔ ∑ 𝑒𝛼(𝑧)𝑒𝛼(𝜔)̅̅ ̅̅ ̅̅ ̅̅

|𝛼|∈𝑆

.                                                 (73) 

Let 𝜉 ∈ 𝐷̅ (0,
1

2
)  and 𝑣 ∈  𝜕𝔹2 such that 𝜙(𝑣) = 𝜉. Let {𝜔𝑘}𝑘 ⊂ 𝔹

2 be a sequence with 

𝜔𝑘 ⟶ 𝑣 ∈ 𝜕𝔹2 as 𝑘 ⟶ ∞, and assume that {ωk}k is increasing. Define a sequence {𝑓𝑘}𝑘 of 

unit vectors in 𝐻 by 

𝑓𝑘 =
𝐾𝑆(. , 𝜔𝑘)

‖𝐾𝑆(. , 𝜔𝑘)‖
∈ 𝐻.                                                                (74) 

Lemma (6.2.22)[303]:. The multiplicative functional 𝜓{𝑚ℓ} in (72) can be also defined as 

𝜓{𝑚ℓ}(𝐷𝛾) = 𝐿𝑖𝑚𝑒→∞
〈𝐷𝛾𝑓𝑘, 𝑓𝑘〉 ,     where  𝐷𝛾 ∈ 𝒜𝐷

∗                               (75) 

Proof: Since the functional 𝜓{𝑚ℓ} is continuous and due to Lemma (6.2.21) it is sufficient to 

show that for all (𝑖1, … , 𝑖𝑛) ∈ ℤ+
𝑛 : 

𝐿𝑖𝑚
𝑒→∞

〈𝐷γ1
𝑖1𝐷γ2

𝑖2 …𝐷γ𝑛
𝑖𝑛𝑓𝑘, 𝑓𝑘〉 = 𝜇γ1

𝑖1 𝜇γ2
𝑖2 …𝜇γ𝑛

𝑖𝑛 . 

A simple argument using the Cauchy-Schwarz and triangle inequality together with‖𝑓𝑘‖ = 1 

shows that it is sufficient to prove for𝑗 = 1, . . , 𝑛that 

𝐿𝑖𝑚
𝑘→∞

‖(𝐷𝛾𝑗
𝑖𝑗 − 𝜇𝛾𝑗

𝑖𝑗 𝐼) 𝑓𝑘‖ = 0.                                                  (76) 

But this has been already shown for the above choice of {𝑓𝑘}𝑘 in the proof of Lemma (6.2.17) 

by using the convergence (70). 

Further, for each operator 𝐷𝛾 ∈ 𝒜𝐷
∗ , the limit along the subsequence {𝑚ℓ} of its eigenvalue 

sequence γ exists and is equal to the value of the functional 𝜓{𝑚ℓ} on the diagonal operator 𝐷𝛾: 

𝑙𝑖𝑚
𝑒→∞

𝛾(𝑚ℓ) = 𝜓{𝑚ℓ}(𝐷𝛾). 

Let 𝜉 ∈ 𝐷̅ (0,
1

2
) be as above, with corresponding sequences 𝑤𝑘 ⟶ 𝑣 ∈ 𝜕𝔹2 such that 𝜙(𝑣) =

𝜉and {𝑓𝑘} is of the form (74). 

Lemma (6.2.23)[303]:The functional 𝜓{𝑚ℓ} extends to the functional 𝜓 = (𝜓{𝑚ℓ}, 𝜉) on the 

algebra generated by elements of 𝒜𝐷
∗  and 𝑇𝜙 via 

𝜓(𝐷𝑇𝜙
𝑗
) = 𝑙𝑖𝑚

𝑘→∞
〈𝐷𝑇𝜙

𝑗
𝑓𝑘, 𝑓𝑘〉 
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with 𝑗 ∈ ℤ+ and 𝐷 ∈ 𝒜𝐷
∗ . Moreover, for elements of the form ∑ 𝐷𝑗𝑇𝜙

𝑗𝑚
𝑗=0 we have 

𝜓(∑ 𝐷𝑗𝑇𝜙
𝑗

𝑚

𝑗=0
) =∑ 𝜓{𝑚ℓ}, (𝐷𝑗)𝜉

𝑗.
𝑚

𝑗=0
 

Proof: Similar to the proof of Lemma (6.2.22) and using the convergence 𝑙𝑖𝑚
𝑒→∞

‖(𝑇𝜙 −

𝜉𝐼)𝑓𝑘‖ = 0 (see (68)). 

Let 𝒜 be a unital commutative Banach algebra which is generated by two of its unital 

subalgebras 𝒜1 and 𝒜2 sharing the same identity, and let 𝑀(𝒜), 𝑀(𝒜1), and 𝑀(𝒜2) be their 

respective sets of maximal ideals (≡multiplicative functionals). Recall that, since the 

restrictions of a multiplicative functional 𝜓 ∈ 𝑀(𝒜)  onto subalgebras 𝒜1 and 𝒜2 are 

multiplicative functional  𝜓1 ∈ 𝑀(𝒜1) and  𝜓2 ∈ 𝑀(𝒜2), correspondingly, we have a natural 

continuous mapping 

𝜅:𝜓 ∈ 𝑀(𝒜) ⟼ (𝜓1, 𝜓2) ∈ 𝑀(𝒜1) × 𝑀(𝒜2) 
As 𝒜 is generated by 𝒜1 and 𝒜2, the mapping 𝜅 is obviously injective, and thus its range can 

be identified with 𝑀(𝒜). 
The unital Banach algebra 𝒯(𝜆), we are interested in, is generated by two algebras sharing the 

same identity: the C∗-algebra 𝒯𝑟𝑎𝑑(𝜆), which is generated by all Toeplitz operators Ta with 

radial symbols a ∈ L∞[0,1), and the Banach algebra 𝒯ϕ, which is generated by a single Toeplitz 

operator Tϕ, where 𝜙(𝜉) = 𝜉(1,0)𝜉(0,1). Thus, by (50) and the last paragraph of the section, 

the mapping κ identifies 𝑀(𝒯(𝜆)) with a subset of (ℤ+ ×⋃𝑀∞(𝜆)) × 𝐷̅ (0,
1

2
). 

Lemma (6.2.24)[303]:None of the points of the set ℤ+ × (𝐷̅ (0,
1

2
) \{0}) belongs to 𝑀(𝒯(𝜆)). 

Proof: Let us assume that a point (𝑘, 𝜉) ∈ ℤ+ × (𝐷̅ (0,
1

2
) \{0}) belongs to 𝑀(𝒯(𝜆)). Then, 

for the operator 𝐴 = 𝑃𝑘𝑇𝜙 ∈ 𝒯(𝜆), where 𝑃𝑘is the orthogonal projection onto Hk (see (58)), 

we have𝜓(𝐴) = 1,    𝜉 = 0. At the same time, by Lemma (6.2.7), the operator 𝐴 belongs to the 

radical of the algebra 𝒯(𝜆), and thus 𝜓(𝐴) = 0. Contradiction. 

Lemma (6.2.25)[303]:The set ℤ+ × {0} belongs to 𝑀(𝒯(𝜆)). 
Proof: Let 𝜓 = (𝑘, 0) ∈ ℤ+ × {0}. Denote by 𝜓(𝑘) the multiplicative functional on 𝒯𝑟𝑎𝑑(𝜆) 
(see (71)) given by: 

𝜓(𝑘)(𝐷𝛾) ≔ 〈𝐷𝛾𝑒𝑘,𝑜, 𝑒𝑘,𝑜〉 = 𝛾(𝑘),      where  𝐷𝛾 ∈ 𝒯𝑟𝑎𝑑(𝜆). 

Then the functional 𝜓 = (𝑘, 0) = (𝜓(𝑘), 0) is defined on a dense subalgebra 𝐷𝛾 of 𝒯(𝜆) as 

follows: for any 𝐴 = ∑ 𝐷𝑝𝑇𝜙
𝑝
∈ 𝐷(𝛾)𝑚

𝑗=0  where 𝐷𝑝 ∈ 𝒯𝑟𝑎𝑑(𝜆) we put: 

ψ(A) ≔ 〈Ae(k,0), e(k,0)〉 = ψ(k)(D0) = γD0(k).                                              (77) 

Note that the functional ψ is well-defined, since ∑ DpTϕ
p
= 0m

j=0  implies D0 = 0, according to 

Lemma (6.2.8). Moreover, we have 

|𝜓 (∑ 𝐷𝑝𝑇𝜙
𝑝

𝑚

𝑝=0
)| = |〈∑ 𝐷𝑝𝑇𝜙

𝑝
𝑒(𝑘,0), 𝑒(𝑘,0)

𝑚

𝑝=0
〉| ≤ ‖∑ 𝐷𝑝𝑇𝜙

𝑝
𝑚

𝑝=0
‖ 

Hence 𝜓 is continuous and extents to a multiplicative functional on 𝒯(𝜆). 
Recall that 𝑀∞(𝜆) denotes the multiplicative functionals on 𝒯𝑟𝑎𝑑(𝜆) that map compact 

operators to zero. 
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Lemma (6.2.26)[303]:The set 𝑀∞(𝜆) × 𝐷̅ (0,
1

2
) belongs to M(𝒯(𝜆)). 

Proof: We define the functional 𝜓 = (𝜇, 𝜉) ∈ 𝑀∞(𝜆) × 𝐷̅ (0,
1

2
) on a dense subalgebra 𝒟𝛾 of 

𝒯(𝜆) as follows: for any 𝐴 = ∑ 𝐷𝑝𝑇𝜙
𝑝𝑚

𝑝=0 ∈ 𝒟(𝜆) , where 𝐷𝑝(𝜆) ∈ 𝒯𝑟𝑎𝑑(𝜆), we put: 

𝜓(∑ 𝐷𝑝𝑇𝜙
𝑝

𝑚

𝑝=0
) :=∑ 𝜇(𝐷𝑝)𝜉

𝑝
𝑚

𝑝=0
=∑ 𝛾𝐷𝑝(𝜇)𝜉

𝑝
𝑚

𝑝=0
 

First we need to show that 𝜓 is well-defined. Indeed, according to Lemma (6.2.8), the equality 

𝐴 = ∑ 𝐷𝑝𝑇𝜙
𝑝
= 0𝑚

𝑝=0  implies that Dp is compact for all 𝑝 = 0,… ,𝑚. But  𝜇 ∈ 𝑀∞(𝜆), and thus 

𝜇(𝐷𝑝) = 0 for all 𝑝 = 0,… ,𝑚,which implies that 𝜓(𝐴) = 0. The functional 𝜓is obviously 

multiplicative on 𝐷(𝛾), and thus it remains to show that it is continuous and therefore extents 

to a multiplicative functional on 𝒯(𝜆). 
Fix now any 𝐴 = ∑ 𝐷𝑝𝑇𝜙

𝑝𝑚
𝑝=0 ∈ 𝐷(𝜆) and consider the unital C∗-algebra 𝒜D

∗ generated by 

𝐷0, … , 𝐷𝑚. Clearly, the restriction 𝜓̂ of 𝜓 to 𝒜𝐷
∗  defines a multiplicative functional on 𝒜D

∗ . 

Note that 

( 𝜇0, … ,  𝜇𝑚) = (𝜓(𝐷0),… , 𝜓(𝐷𝑚))  ∈ 𝜎(𝐷0, … , 𝐷𝑚). 

Since ψ̂ maps compact operators in 𝒜D
∗ to zero and because of Lemma (6.2.23), we have 

𝜓̂has the form (75): 

𝜓̂(𝐷𝛾) = 𝑙𝑖𝑚
𝑘→∞

〈𝐷𝛾𝑓𝑘 , 𝑓𝑘〉 , 𝐷𝛾 ∈ 𝒜𝐷
∗  

where {𝑚ℓ: ℓ ∈ 𝑁} ⊂ ℤ+ is a suitable sequence which is induced by ( 𝜇0, … ,  𝜇𝑚) as was 

explained, and 𝑓𝑘, with 𝑘 ∈ ℕ, are given by (74) with 𝜉 = 𝜙(𝑣). 
Now from Lemma (6.2.23) it follows that 

|𝜓 (∑ 𝐷𝑝𝑇𝜙
𝑝

𝑚

𝑝=0
)| = |𝜓 〈∑ 𝐷𝑝𝑇𝜙

𝑝
𝑚

𝑝=0
𝑓𝑘 , 𝑓𝑘〉| ≤ ‖∑ 𝐷𝑝𝑇𝜙

𝑝
𝑚

𝑝=0
‖, 

and thus 𝜙 is continuous on 𝐷𝛾 and extends to a multiplicative functional on 𝐷(𝜆).  

Theorem (6.2.27)[303]:The compact set 𝑀(𝒯(𝜆)) of maximal ideals of the algebra 𝒯(𝜆) has 

the form 

𝑀(𝒯(𝜆)) = ℤ+ × {0} ∪ 𝑀∞(𝜆) × 𝐷̅ (0,
1

2
), 

(i) The Gelfand image of the algebra 𝒯(λ) is isomorphic to 𝒯(𝜆)/𝑅𝑎𝑑 𝒯(𝜆) and coincides with 

the algebra 

𝑆𝑂(𝜆) ∪ [𝐶(𝑀∞(𝜆)) ⊗̂𝜀 𝐶𝑎 (𝐷̅ (0,
1

2
))], 

which is identified with the set of all pairs 

(𝛾, 𝑓) ∈ 𝑆𝑂(𝜆) × [𝐶(𝑀∞(𝜆)) ⊗̂𝜀 𝐶𝑎 (𝐷̅ (0,
1

2
))] 

satisfying the following compatibility condition 𝛾(𝜇) = 𝑓(𝜇, 0), for all 𝜇 ∈ 𝑀∞(𝜆). 

Here ⊗̂𝜀 denotes the injective tensor product, and we identify γ(μ) with the value of the 

functional 𝜇 ∈ 𝑀∞(𝜆) on the element  𝛾 ∈ 𝑆𝑂(𝜆). 
(ii) The Gelfand transform is generated by the following mapping of elements of 𝑆𝑂(𝜆): 
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∑𝐷𝛾𝑗

𝑛

𝑗=0

𝑇𝜙
𝑝
↦ {

𝛾0(𝑘) 𝑖𝑓 (𝑘, 0) ∈ ℤ+ × {0}

∑ 𝛾𝑗(𝜇)𝜉
𝑗

𝑛

𝑗=0
, 𝑖𝑓 (𝜇, 𝜉) ∈ 𝑀∞(𝜆) × 𝐷̅ (0,

1

2
)
. 

Proof: Follows directly from Lemmas (6.2.24), (6.2.25), and(6.2.26), Theorem (6.2.6) and the 

injective tensor product description (see [256]). 

Our next aim is to show that the algebra 𝒯(λ) is inverse closed, that is: each operator 𝐴 ∈ 𝒯(𝜆) 
which is invertible in ℒ(𝒜λ

2(𝔹2)) is invertible in 𝒯(𝜆), i.e., 𝐴−1 ∈ 𝒯(𝜆). The proof of this fact 

essentially relies on Theorem (6.2.27). 

Lemma (6.2.28)[303]:Let 𝜑 = (𝑘, 0) ∈ ℤ+ × {0} ⊂ 𝑀(𝒯(𝜆)), and assume that 𝐴 ∈ 𝒯(𝜆) is 

invertible in ℒ(𝒜λ
2(𝔹2)). Then 𝜓(𝐴) = 0. 

Proof: Recall that the functional𝜓 = (𝑘, 0) on 𝒯(𝜆) is defined on the dense subalgebra D(λ) 
by (77). Clearly, it extents by the same formula (77) to a continuous (not necessarily 

multiplicative) functional on 𝒜λ
2(𝔹2). 

Let ∑ 𝐷𝛾𝑗𝑇𝜙
𝑗𝑚

𝑝=0 ∈ 𝐷(𝜆), and let 𝐵 ∈ ℒ(𝒜𝜆
2(𝔹2))be arbitrary.Then: 

𝜓(𝐵𝐴) = 〈𝐵𝐴𝑒(𝑘,0), 𝑒(𝑘,0)〉 = 〈𝐵𝐷𝛾0𝑒(𝑘,0), 𝑒(𝑘,0)〉 = 𝛾0(𝑘)〈𝐵𝑒(𝑘,0), 𝑒(𝑘,0)〉 = 𝜓(𝐴)𝜓(𝐵)

= 𝜓(𝐵)𝜓(𝐴) 
By continuity it follows that 𝜓(𝐵𝐴) = 𝜓(𝐵)𝜓(𝐴) for all 𝐴 ∈ 𝒯(𝜆). In particular, if 𝐴 is 

invertible in 𝒜λ
2(𝔹2) , then 

1 = 𝜓(𝐼) = 𝜓(𝐴−1𝐴) = 𝜓(𝐴−1)𝜓(𝐴), 
and we conclude that 𝜓(𝐴) ≠ 0.  

Given 𝐷 = (𝐷𝛾1 , … , 𝐷𝛾𝑛) ⊂ 𝒯𝑟𝑎𝑑(𝜆), we consider the unital C∗-algebra 𝒜D
∗  generated by 

𝐷𝛾1 , … , 𝐷𝛾𝑛 (see (69)). Let 𝒜̃𝐷 and 𝒜̃𝐷
∗  be the Banach algebra and the C∗-algebra which are 

generated by elements of 𝒜𝐷⋃𝑇𝜙 and of 𝒜𝐷
∗⋃𝑇𝜙, respectively. Clearly we have 𝒜̃𝐷 ⊂ 𝒜̃𝐷

∗ .  

Consider now the functional 𝜓 = (𝜇, 𝜉) ∈ 𝑀∞(𝜆) × 𝐷̅ (0,
1

2
) ⊂ 𝑀(𝒯(𝜆)).  Its restriction to the 

algebra 𝒜𝐷
∗  maps compact operators to zero. Thus, according to Lemmas(6.2.23) and(6.2.24), 

we can construct the sequence of unit vectors {𝑓𝑘}𝑘 by (54) with 𝜉 = 𝜙(𝑣) such that 

𝜓(𝐷𝛾𝑇𝜙
𝑗
) = 𝑙𝑖𝑚

𝑘→∞
〈𝐷𝛾𝑇𝜙

𝑗
𝑓𝑘, 𝑓𝑘〉 , 𝐷𝛾  ∈ 𝒜𝐷

∗                                           (78) 

Moreover, by continuous extension the right hand side of (78) defines a multiplicative 

continuous functional on 𝒜̃𝐷  (which coincides with the restriction of  𝜓 ∈ 𝑀∞(𝜆) × 𝐷̅ (0,
1

2
)to 

the algebra 𝒜̃𝐷.  

We show now that the restriction of 𝜓to 𝒜̃𝐷 extends further to a multiplicative and continuous 

functional on the (non-commutative) C∗-algebra 𝒜̃𝐷
∗ . The nature of such an extension is very 

simple. Let 𝒦 be the ideal of all compact operators on 𝒜𝜆
2(𝔹2). Two quotient algebras 

𝒜̂𝐷 = 𝒜̃𝐷(𝒜̃𝐷 ∩𝒦)      𝑎𝑛𝑑       𝒜̂𝐷
∗ = 𝒜̃𝐷

∗ /(𝒜̃𝐷
∗ ∩𝒦) 

will be involved. For an algebra 𝒜 ⊂ ℒ(𝒜𝜆
2(𝔹𝑛)), we denote by 𝑝𝑟 the natural projection 

𝑝𝑟: 𝒜 →  𝒜̂ = 𝒜̃/ (𝒜̃ ∩ 𝒦)  

As [𝑇𝜙, 𝑇𝜙̅] ∈ 𝒦  and both operators 𝑇𝜙and 𝑇𝜙̅ commute with diagonal operators 𝐷𝛾, the C∗-

algebra𝒜̃𝐷
∗  is commutative, and furthermore 𝒜̂𝐷 ⊂ 𝒜̃𝐷

∗ . 
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The functional 𝜓, restricted to 𝒜̂𝐷, maps compact operators from 𝒜̂D to zero, and thus it admits 

the natural decomposition. 

𝜓: 𝒜̃𝐷

𝑝𝑟
→ 𝒜̂𝐷

𝜓̂
→ ℂ 

for a suitable multiplicative functional ψ̂ on 𝒜̂D. 

We extend now the functional 𝜓̂ from 𝒜̂𝐷 to the functional (one-dimensional representation) 

𝜓∗̂ on 𝒜̂𝐷
∗  on the C∗-algebra 𝒜̂𝐷

∗  defining it on the extra generator [𝑇𝜙̅] =  𝑇𝜙̅ + 𝒜̂𝐷
∗  ∩ 𝒦 as 

it should be: 

𝜓̂∗([𝑇𝜙̅]) = 𝜓([𝑇𝜙̅])
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

The extension 𝜓∗ of the functional 𝜓 from 𝒜̂D onto 𝒜̂D
∗  is thus given by 

𝜓∗: 𝒜̃𝐷

𝑝𝑟
→ 𝒜̂𝐷

𝜓∗̂

→ ℂ 

As the next lemma shows the functional 𝜓∗has the same form as in (78): 

𝜓∗ (𝐷𝛾𝑇𝜙
𝑗1𝑇𝜙

𝑗2) = 𝑙𝑖𝑚
𝑘→∞

〈𝐷𝛾𝑇𝜙
𝑗1𝑇𝜙

𝑗2𝑓𝑘, 𝑓𝑘〉                                             (79) 

Lemma (6.2.29)[303]:The limit on the right hand side of (79) exists for all Dγ ∈ 𝒜D
∗  and 

j1, j2 ∈ ℤ+. Moreover, it has the value: 

𝑙𝑖𝑚
𝑘→∞

〈𝐷𝛾𝑇𝜙
𝑗1𝑇𝜙

𝑗2𝑓𝑘, 𝑓𝑘〉 = 𝜓(𝐷𝛾)𝜓(𝑇𝜙)
𝑗1
𝜓([𝑇𝜙̅])
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑗2 

In particular, by linearity and continuity it induces a multiplicative functional 𝜓∗ on 𝒜̃D
∗  which 

extends 𝜓. 

Proof: Similar to the proof of Lemma (6.2.22) or Lemma (6.2.23) and by using the convergence 

𝑙𝑖𝑚
𝑘→∞

‖(𝑇𝜙̅ − 𝜉̅𝐼)𝑓𝑘‖ = 0,  where  𝜉 = 𝜓(𝑇𝜙). 

Corollary (6.2.30)[303]:let𝜓 = (𝜇, 𝜉) ∈ 𝑀∞(𝜆) × 𝐷̅ (0,
1

2
) ⊂ 𝑀(𝒯(𝜆)), and let  𝒜 ∈ 𝒜̃𝐷 be 

invertible as an element in ℒ (𝒜𝜆
2(𝔹𝑛)). Then  𝜓(𝒜) ≠ 0. 

Proof. As each C∗-subalgebra of ℒ(𝒜λ
2(𝔹n)) , the algebra 𝒜̃D is inverse closed and thus we 

have 𝒜−1 + 𝒜̃𝐷
∗ . According to the previous lemma the functional ψextends to a multiplicative 

functional 𝜓∗ on 𝒜̃D
∗  , and therefore 

1 = 𝜓∗(𝐴𝐴−1) = 𝜓(𝐴)𝜓(𝐴−1), 
which shows that 𝜓(𝐴) ≠ 0. 

Now, we deal with the general case: Let 𝐴 ∈ 𝒯(𝜆) be invertible as an element in ℒ(𝒜𝜆
2(𝔹𝑛)), 

then we wish to show that 𝐴∗ ∈ 𝒯(𝜆). Choose a sequence {𝐴𝑘}𝑘  ⊂ 𝐷(𝜆) such that 

𝑙𝑖𝑚
𝑘→∞

𝐴𝑘 = 𝐴 

Since the group of invertible elements is open, we can assume that 𝐴𝑘 is invertible for all 𝑘 ∈
ℕ. Moreover, by the continuity of inversion we have 

𝐴−1 = 𝑙𝑖𝑚
𝑘→∞

𝐴𝑘
−1 

and hence it is sufficient to show that 𝐴𝑘
−1 ∈ 𝒯(𝜆) for each 𝑘. Fix 𝐷 = (𝐷𝛾1 , … , 𝐷𝛾𝑛) ⊂

𝒯𝑟𝑎𝑑(𝜆), such that (with our notation above) 

𝐴𝑘 ∈ 𝒜̃𝐷 
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From Theorem (6.2.27), Lemma (6.2.28) and Corollary (6.2.30), together with the fact that 𝐴𝑘 

is invertible, we have 

𝜓(𝐴𝑘) ≠ 0 

 For all multiplicative functionals on  𝒜̃𝐷 , and thus 𝐴𝑘
−1 ∈ 𝒜̃𝐷 ⊂ 𝒯(𝜆). 

Hence we have shown: 

Theorem (6.2.31)[303]:The commutative Banach algebra 𝒯(λ) is inverse closed, and, in 

particular, for each 𝐴 ∈ 𝒯(𝜆) ,  
𝑠𝑝𝒯(𝜆)𝐴 = 𝑠𝑝ℒ(𝒜𝜆

2(𝔹𝑛)),𝐴 

The next assertions give, in particular, some information on the spectra of elements of the 

algebra 𝒯(𝜆). 
Lemma (6.2.32)[303]: The difference 𝑇𝜙𝑝 − 𝑇𝜙

𝑝
, where p ∈ ℕ, belongs to the radical of the 

algebra 𝒯(λ). 
Proof: By (53) we have 𝑇𝜙𝑝 − 𝑇𝜙

𝑝
= 𝐷𝑑̃𝑝−1𝑇𝜙

𝑝
, and the assertion follows from Lemma (6.2.7) 

and the convergence 𝑙𝑖𝑚
𝑘→∞

𝑑𝑝 (𝑘) = 1 (see (54)). 

Corollary (6.2.33)[303]:The operators 

∑(∏𝑇𝑎𝑘,𝑝

𝑚𝑘

𝑞=1

∏𝑇𝜙𝑝𝑘,𝑠

𝑛𝑘

𝑠=1

)and 

𝑚

𝑘=1

∑(∏𝑇𝑎𝑘,𝑝

𝑚𝑘

𝑞=1

𝑇
𝜙

𝑝𝑘,1+⋯+𝑝𝑘,𝑛𝑘)

𝑚

𝑘=1

 

differ by an element in the radical and thus have the same Gelfand images and the same spectra. 

Theorem (6.2.35)[303]: With our previous notation we have: 

(i) The Calkin algebra 𝒯̂(𝜆) = 𝒯(𝜆) / (𝒯(𝜆) ∩ 𝒦) is semi-simple and isomorphic to the 

injective tensor product (𝑀∞(𝜆)) ×⊗̂𝜀 𝐶𝑎𝐷̅ (0,
1

2
). 

(ii) The Calkin algebra 𝒯 ∗̂(𝜆) = 𝒯∗(𝜆)/(𝒯∗(𝜆) ∩ 𝒦) of the C∗-extension 𝒯∗(𝜆) of the Banach 

algebra 𝒯(λ) is isomorphic and isometric to 𝐶(𝑀∞(𝜆)) × 𝐷̅ (0,
1

2
). 

 (iii) Both natural homomorphisms 

𝒯(𝜆) → 𝒯̂(𝜆) ≅ 𝐶(𝑀∞(𝜆)) ×⊗̂𝜀 𝐶𝑎 (𝐷̅ (0,
1

2
)), 

𝒯∗(𝜆) → 𝒯̂(𝜆) ≅ 𝐶(𝑀∞(𝜆)) × (𝐷̅ (0,
1

2
)). 

are generated by the following mapping: 

∑𝐷𝛾𝑗

𝑛

𝑗=0

𝑇𝜙
𝑗
↦∑ 𝛾𝑗(𝜇)𝜉

𝑗
𝑛

𝑗=0
, (𝜇, 𝜉) ∈ 𝑀∞(𝜆) × 𝐷̅ (0,

1

2
) 

(iv) The essential spectrum of all elements of both algebras 𝒯(λ) and 𝒯∗(λ) is connected. 

Proof: Follows from Theorem (6.2.27) and by arguments similar to the ones used in the proof 

of Theorem (6.2.31) The last assertion is a consequence of the connectedness of both sets 

𝑀∞(𝜆) and 𝐷̅ (0,
1

2
) . 
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Corollary (6.2.35)[303]:For all elements of the form 𝐼 + ∑ 𝐷𝛾𝑗
𝑛
𝑗=1 𝑇𝜙

𝑗
 , where 𝜂 ∈ ℂ, and, in 

particular, for finite sums of finite product of generators of the algebra 𝒯(𝜆). 

𝜂𝐼 +∑(∏𝑇𝑎𝑘,𝑝

𝑚𝑘

𝑞=1

∏𝑇𝜙𝑝𝑘,𝑠

𝑛𝑘

𝑠=1

)

𝑛

𝑘=1

, 

where η ∈ ℂ and none of nk is equal to zero, their spectrum and essential spectrum coincide. 

In particular, for such operators the spectrum is connected, and being Fredholm this operator 

is invertible. 

Corollary (6.2.36)[303]:An element ∑ 𝐷𝛾𝑗
𝑛
𝑗=1 𝑇𝜙

𝑗
 from the dense subalgebra D(λ) is compact 

if and only if each diagonal operator 𝐷𝛾𝑗 is compact, or if and only if each eigenvalue sequence 

𝛾𝑗 belongs to 𝑐0. 

Our last aim is to describe explicitely the radical of the algebra 𝒯(λ). 

Consider the multiplicative functional 𝜓(𝑘, 0) ∈ ℤ+ × {0} ⊂ 𝑀(𝒯(𝜆)). 
First we would like to analyze the structure of operators A ∈ 𝒯(λ) satisfying the following 

property 

𝜓(𝑘,0)(𝐴) = 0 for all  𝑘 ∈ ℤ+.                                                     (80) 

For an element 𝐴 = ∑ 𝐷𝛾𝑗𝑇𝜙
𝑗𝑝

𝑗=0  from the dense subalgebra 𝐷(𝜆) of 𝒯(𝜆), we have 

𝜓(𝑘,0)(𝐴) = 𝜓(𝑘,0) (∑𝐷𝛾𝑗𝑇𝜙
𝑗

𝑝

𝑗=0

) = 𝛾0(𝑘)  

That is, the operator A = ∑ D𝛾𝑗Tϕ
jp

j=0  satisfies property (80) if and only if 𝛾0 ≡ 0, i.e. 𝐴 has to 

be of the form 

𝐴 =∑𝐷𝛾𝑗𝑇𝜙
𝑗

𝑝

𝑗=0

= 𝑇𝜙𝐶,                                                                  (81) 

where 𝐶 = ∑ 𝐷𝛾𝑗𝑇𝜙
𝑗−1𝑝

𝑗=0 ∈ 𝒯(𝜆). The description of 𝑅𝑎𝑑 𝒯(𝜆)  ∩ 𝐷(𝜆) is straightforward: 

Lemma (6.2.37)[303]:We have  

𝑅𝑎𝑑 𝒯(𝜆) ∩ 𝐷(𝜆) = {𝑇𝜙𝐶: 𝐶 ∈ 𝐷(𝜆) ∩ 𝐾} 

Proof: Observe first that 𝐴 ∈ 𝑅𝑎𝑑 𝑇(𝜆) ∩ 𝐷(𝜆) if and only if 𝐴 satisfies property (80) and 𝐴 

is compact. That is 𝐴 is of the form 𝐴 = 𝑇𝜙𝐶 in (81) with 𝐶 ∈ 𝐷(𝜆); and by Corollary (6.2.36) 

compactness of 𝐴 is equivalent to compactness of 𝐶. 

The description of 𝑅𝑎𝑑 𝒯(𝜆)  ∩ (𝒯(𝜆)\𝐷(𝜆)) is more elaborated. We start with an easy 

lemma. 

Lemma (6.2.38)[303]:Each operator 𝐴 ∈ 𝒯(𝜆)\𝐷(𝜆) satisfying the property (80) can be 

approximated in norm by the operators of the form (81). 

Proof: Given 𝐴 ∈ 𝒯(𝜆)\𝐷(𝜆), there is a sequence of operators 

𝐴̃𝑛 =∑𝐷𝛾𝑗(𝑛)𝑇𝜙
𝑗

𝑝𝑛

𝑗=0

∈ 𝐷(𝜆)                                                  (82) 
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such that ‖𝐴 − 𝐴̃𝑛‖ <
1

𝑛
. Then, for each k ∈ ℤ+, we have 

|𝛾0
(𝑛)(𝑘)| = |𝜓(𝑘,0)(𝐴̃𝑛)| = |𝜓(𝑘,0)(𝐴̃𝑛 − 𝐴)| ≤ ‖𝐴 − 𝐴̃𝑛‖ <

1

𝑛
 

That is, ‖𝐷𝛾0(𝑛)‖ ≤
1

𝑛
 for all𝑛 ∈ ℕ. Then for the operators 

𝐴̃𝑛 =∑𝐷𝛾𝑗(𝑛)𝑇𝜙
𝑗

𝑝𝑛

𝑗=1

= 𝑇𝜙𝐶𝑛 

we have ‖𝐴̃𝑛 − 𝐴𝑛‖ = ‖𝐷𝛾0(𝑛)‖ ≤
1

𝑛
. 

Finally, the inequality ‖𝐴 − 𝐴𝑛‖ ≤ ‖𝐴 − 𝐴̃𝑛‖ + ‖𝐴̃𝑛 − 𝐴𝑛‖ ≤
2

𝑛
 implies that the sequence 

{An} converges to the operator A. 

Let 𝐻 ≔ 𝒜𝜆
2(𝔹2). We consider two of its subspaces 𝑉 and 𝑊 defined by: 

𝑉 = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑒(𝑘,0): 𝑘 ∈ ℤ+}   and   𝑊 = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑒(0,𝑘): 𝑘 ∈ ℤ+} 

It is easy to see that 𝑉 = 𝑘𝑒𝑟 𝑇𝜙 and  𝑊 = 𝑐𝑜𝑘𝑒𝑟 𝑇𝜙 = (𝐼𝑚𝑇𝜙)
⊥

. We introduce as well the 

orthogonal projections 𝑃 ∶  𝐻 →  𝑉 and 𝑄 ∶  𝐻 →  𝑊. 

Corollary (6.2.39)[303]: For each operator 𝐴 ∈ 𝒯(𝜆) satisfying the property (80), 𝐼𝑚𝐴 ⊥ 𝑊. 

Proof: For operators 𝐴 ∈ 𝒯(𝜆) it follows from (81). Then, by Lemma (6.2.38), each operator 

𝐴 ∈ 𝒯(𝜆)\𝐷(𝜆) with (80) can be uniformly approximated by operators whose range is 

orthogonal to W. Thus the limit operator A obeys the same property.  

The following result is known (see, for example, [48,253]). 

Lemma (6.2.40)[303]:Let 𝐻 be a Hilbert space and 𝒜 α C∗-algebra in ℒ(H). Let A ∈ 𝒜 have 

a closed range. Then: 

(1)The orthogonal projection 𝑃 onto  𝑘𝑒𝑟𝐴 = 𝑘𝑒𝑟𝐴∗𝐴 belongs to the algebra 𝒜. 

(2) There exists 𝐵 ∈ 𝒜 , namely 𝐵 = (𝑃 + 𝐴∗𝐴)−1, 𝐴∗ ∈ 𝒜, such that 

(i)𝑃 = 𝐼 −  𝐵𝐴 is the orthogonal projection onto ker 𝒜, 

(ii) 𝑄 =  𝐼 −  𝐴𝐵 is the orthogonal projection onto (𝐼𝑚 𝒜)⊥, 

(iii) 𝐴𝐵𝐴 =  𝐴 and 𝐵𝐴𝐵 =  𝐵, i.e. B is a relative inverse of A. 

With 𝑛 ∈ ℤ+ we recall the definition 𝐻𝑛 = 𝑠𝑝𝑎𝑛{𝑒𝛼: 𝛼 ∈ ℤ+
2 , |𝛼| = 𝑛}, and let: 

𝑃̃𝑛: 𝐻 →⨁𝐻𝑗

𝑛

𝑗=0

= 𝐻̃𝑛 

denote the orthogonal projection. Recall that the finite dimensional spaces H̃n and hence H̃n 

are invariant for all elements of 𝒯∗(λ). 
Consider the sequence of C∗-algebras  

𝒯𝑛
∗(𝜆) = {𝐴𝑃̃𝑛 ∶ 𝐴 ∈ 𝒯

∗(𝜆)} ⊂ 𝒯∗(𝜆), 
where we have used that 𝑃̃𝑛  ∈ 𝒯𝑟𝑎𝑑(𝜆) ⊂ 𝒯

∗(𝜆). Then the restriction of 𝑇𝜙 to 𝐻̃𝑛 defines an 

element in 𝒯𝑛
∗(𝜆) for all 𝑛 ∈ ℤ+ (we keep denoting the restriction by 𝑇𝜙 and do not indicate the 

𝑛-dependence). Since 𝑑𝑖𝑚𝐻̃𝑛 < ∞ , the range of 𝑇𝜙 in 𝐻̃𝑛 is closed. 

Let ∏ 𝐻̃𝑛𝑛 → 𝑘𝑒𝑟 𝑇𝜙 = 𝑉 ∩ 𝐻̃𝑛 ⊂ 𝐻̃𝑛 denote the orthogonal projection. 
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Letting ∏ ≡ 0𝑛  on 𝐻⊖ 𝐻̃𝑛, we can consider ∏ 𝑎𝑠𝑛  a (finite dimensional) orthogonal 

projection on 𝐻. 

By Lemma (6.2.40)applied to 𝑇𝜙 ∈ 𝒯𝑛
∗(𝜆) ⊂ ℒ(𝐻̃𝑛), we have ∏ ∈𝑛 𝒯𝑛

∗(𝜆). 

As 𝐻̃𝑛 and 𝐻⊖ 𝐻̃𝑛 are invariant under 𝑃 we remark that the projections 𝑃 and 𝑃̃𝑛 commute, 

and, in particular, ∏ =𝑛 𝑃̃𝑛𝑃𝑃̃𝑛. 

Now we give a generalization of (a slightly weaker version of) Lemma (6.2.37). 

Lemma (6.2.41)[303]:Let 𝐴 ∈ 𝑅𝑎𝑑 𝒯(𝜆), then there is 𝐶 ∈ 𝒯∗(𝜆) ∩ 𝒦 such that 𝐴 = 𝑇𝜙𝐶. 

Proof: Recall that if 𝐴 ∈ 𝑅𝑎𝑑 𝒯(𝜆) then A is compact and satisfies property (80). According 

to Corollary (6.2.39), we have (𝐼𝑚 𝐴 ∩ 𝐻̃𝑛) ⊥ (𝑊 ∩ 𝐻̃𝑛), for all 𝑛 ∈ ℕ, According to Lemma 

(6.2.40) (1) the operator Bn = (𝑃 + 𝑇𝜙̅𝑇𝜙)
−1
𝑇𝜙̅𝑃̃𝑛 belongs to 𝒯𝑛

∗(𝜆), and Lemma (6.2.40), (ii) 

gives 

𝐴𝑃̃𝑛 = 𝐼𝑛𝑃̃𝑛 = (𝑄𝑛 + 𝑇𝜙𝐵𝑛)𝐴𝑃̃𝑛 = 𝑇𝜙𝐵𝑛𝐴𝑃̃𝑛                               (83) 

where In is the identity element in ℒ(𝐻̃𝑛) and 𝑄𝑛 = 𝐼𝑛 − 𝑇𝜙𝐵𝑛 ∈ 𝒯𝑛
∗(𝜆)is the orthogonal 

projection onto 𝑊 ∩ 𝐻̃𝑛. 

Since 𝑃̃𝑛 → 𝐼 as 𝑛 → ∞ in the strong topology, it immediately follows that 

𝐵𝑛 → 𝐵 = (𝑃 + 𝑇𝜙̅𝑇𝜙)
−1
𝑇𝜙̅ 

in the strong sense as 𝑛 → ∞. Since 𝐴 is compact it follows that 𝐵𝑛𝐴 → 𝐵𝐴 and 𝐴𝑃̃𝑛 → 𝐴 as 

n → ∞ with respect to the norm topology. The inequality 

0 ≤ ‖𝐵𝑛𝐴𝑃̃𝑛 − 𝐵𝐴‖ ≤ ‖𝐵𝑛𝐴𝑃̃𝑛 − 𝐵𝐴𝑃̃𝑛‖ + ‖𝐵𝐴𝑃̃𝑛 − 𝐵𝐴‖ ≤ ‖𝐵𝑛𝐴 − 𝐵𝐴‖ + ‖𝐵‖‖𝐴𝑃̃𝑛 − 𝐴‖ 

implies that ‖𝐵𝑛𝐴𝑃̃𝑛 − 𝐵𝐴‖ → 0 as 𝑛 → ∞. If n on both sides of (83) tends to infinity then we 

conclude from 𝐵𝑛𝐴𝑃̃𝑛 ⊂ 𝒯𝑛
∗(𝜆) ⊂ 𝒯∗(𝜆) for all n ∈ ℕ that 𝐵𝐴 ∈ 𝑇∗(𝜆), and, in addition, 𝐴 =

𝑇𝜙𝐵𝐴 = 𝑇𝜙𝐶 with 𝐶 = 𝐵𝐴 ∈ 𝒯∗(𝜆). 

Finally the simple arguments based on results of Theorem (6.2.34) show that the operator 𝐴 =
𝑇𝜙𝐶 ∈ 𝒯

∗(𝜆) is compact if and only if the operator 𝐶 ∈ 𝒯∗(𝜆) is compact. 

Summarizing our previous results we obtain the following description  of 𝑅𝑎𝑑 𝒯(𝜆): 
Theorem (6.2.42)[303]:We have 

Rad 𝒯(λ) = {TϕC: C ∈ T∗(λ) ∩ K} ∩ 𝒯(λ)                                          (84) 

If 𝐴 ∈ 𝑅𝑎𝑑 𝒯(𝜆) ∩ 𝒟(𝜆), then 𝐴 can be even expressed in the form 𝐴 = 𝑇𝜙𝐶, where 𝐶 is 

chosen in 𝒟(𝜆) ∩ 𝒦. 

Proof: The first assertion follows directly from Lemma (6.2.41) and the simple observation 

that the elements on the right hand side of (84) do belong to the radical. The last statement has 

been shown in Lemma (6.2.37).  

Remark(6.2.43)[303]:Lemma (6.2.41) says that 𝐴 ∈ 𝑅𝑎𝑑 𝒯(𝜆) has the form 𝐴 = 𝑇𝜙𝐶, where 

𝐶 ∈ 𝒯∗(𝜆) ∩ 𝒦, while Lemma (6.2.37) gives a more precise information in case of  𝐴 ∈ 𝒟(𝜆) ∶
𝐶 can be taken from 𝒟(𝜆) ∩ 𝒦. Let us comment this ambiguity for  𝐴 ∈ 𝑅𝑎𝑑 𝒯(𝜆) ∩ 𝒟(𝜆). 
We start from the representation 𝐴 = 𝑇𝜙𝐶1, with 𝐶1 ∈ 𝒟(𝜆) ∩𝒦given by Lemma (6.2.37). In 

turn, Lemma (6.2.41) gives a different representation 𝐴 = 𝑇𝜙𝐶2 of 𝐴, where 𝐶2 ∈ 𝒯
∗(𝜆) ∩ 𝒦. 

In particular, from 0 = 𝑇𝜙(𝐶1 − 𝐶2) it follows that 𝐼𝑚(𝐶1 − 𝐶2) ⊂ 𝐾𝑒𝑟𝑇𝜙. More precisely, the 

operators 𝐶1 and 𝐶2 are related in the following way: 
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𝐶2 = 𝐵𝐴 = (𝑃 + 𝑇𝜙̅𝑇𝜙)
−1
𝑇𝜙̅𝐴 = (𝑃 + 𝑇𝜙̅𝑇𝜙)

−1
𝑇𝜙̅𝑇𝜙𝐶1 = (1 − (𝑃 + 𝑇𝜙̅𝑇𝜙)

−1
𝑃)𝐶1. 

The operator 𝑃 obviously commutes with (𝑃 + 𝑇𝜙̅𝑇𝜙)
−1

, and (we recall that) 𝑃 is the 

orthogonal projection onto 𝐾𝑒𝑟𝑇𝜙. Thus 𝐶2 = 𝐶1 − 𝑃(𝑃 + 𝑇𝜙̅𝑇𝜙)
−1
𝐶1, and we arrive again to 

the previous two different representations of the same operator 𝐴: 

 𝐴 = 𝑇𝜙𝐶2 = 𝑇𝜙𝐶1 

We mention as well that the projection 𝑃 does not belong to the algebra 𝒯∗(𝜆), while the 

operator𝑃(𝑃 + 𝑇𝜙̅𝑇𝜙)
−1
𝐶1 does. 

Section (6.3) Toeplitz Operators on the Unit Ball  

Let 𝔹𝑛 denote the complex 𝑛-dimensional open unit ball in ℂ𝑛. We introduce the standard 

weighted 𝐿2 −spaces 𝐿2(𝔹𝑛, 𝑑𝑣𝜆), where the family of probability measures  

𝑑𝑣𝜆(𝑧) = 𝑐𝜆(1 − |𝑧|
2𝜆𝑑𝑣(𝑧) 

is parameterized by 𝜆 ∈ (−1,∞). The normalizing constant 𝜆 is given in (85) below and by dv 
we denote the usual volume form on 𝔹n. We write 𝒜𝜆

2(𝔹𝑛) for the classical weighted Bergman 

space, being the closed subspace of 𝐿2(𝔹𝑛, 𝑑𝑣𝜆) that consists of all complex-valued analytic 

functions. The Toeplitz operator 𝑇𝑎 with symbol 𝑎 ∈ 𝐿∞(𝔹
𝑛) acting on 𝒜𝜆

2(𝔹𝑛) is defined as 

the compression of a multiplication operator on L2(𝔹n, dvλ) on to the Bergman space, i.e., 

𝑇𝑎𝑓 = 𝐵𝜆(𝑎𝑓), where 𝐵𝜆 is the Bergman (orthogonal) projection of 𝐿2(𝔹𝑛, 𝑑𝑣𝜆)  on to 

𝒜𝜆
2(𝔹𝑛). 

For a generic subclass 𝑆 ⊂ 𝐿∞(𝔹
𝑛) of symbols the algebra 𝒯(𝑆) generated by Toeplitz 

operators 𝑇𝑎 with 𝑎 ∈ 𝑆 is non-commutative and practically nothing can be said on its 

properties .However, if 𝑆 ⊂ 𝐿∞(𝔹
𝑛) has a more specific structure (e.g. induced by the 

geometry of 𝔹𝑛, or with a certain smoothness properties) the study of operator algebras 𝒯(𝑆) 
is quite important and has attracted lots of interest during the last decades. The reason of such 

an interest is caused, in particular, by the fact that such algebras provide rather simple but 

tractable examples of non-commutative algebras and play an important role in the applications. 

At the turn of this century it was observed (see [192] that, unexpectedly and contrary to the 

case of Toeplitz operators acting on the Hardy space over the circle, there exist many non-

trivial algebras 𝒯(𝑆)  that are commutative on each standard weighted Bergman space. The 

detailed structural analysis of such commutative algebras became then an important task sit 

provides an explicit information on many essential properties of Toeplitz operators such as 

compactness, boundedness, invariant subspaces, spectral properties, etc. 

    We continue a project on the classification and structural analysis of commutative Banach 

algebras that are generated by Toeplitz operators with a specific class of the so-called quasi-

homogeneous symbols acting on the weighted Bergman space 𝒜𝜆
2(𝔹𝑛). The classification of 

these algebras has been given earlier in [193]. Subsequently in [303], and as a model case, we 

have analyzed the examples example 𝒯(𝑆) of such type. More precisely, 𝒯(𝑆) is the unique 

commutative Banach algebra in the above classification geverated by Toeplitz operators over 

the two- dimensional unit ball 𝔹2. As it turned out 𝒯(𝜆) is generated,  in fact, by all Toeplitz 

operator with bounded measurable complex-valued radial symbols a on𝔹2 (i.e. 𝑎(𝑧) =
𝑎(|(𝑧)|)togather with a single Toeplitz operator 𝑇𝜙 having a certain quasi-homogeneous 



190 
  

symbol 𝜙. Among other results we explicitly described the space of maximal ideals of 𝒯(λ), 
results we were able to prove the inverse closeness of 𝒯(𝜆) and state some spectral properties 

of the elements in 𝒯(𝜆).  
Our next plan is to extend the results in [303] to the case of all commutative Toeplitz Banach 

algebras in [193] that are induced by the quasi-elliptic group of biholomorphisms of the unit 

ball 𝔹n. In [193] these algebras have been described in terms of their generators. Thus 

developing the Gelf and theory for these algebras will permit us to obtain more detailed (and, 

in particular, spectral) information on their elements. As it turned out, the algebra 𝒯(λ). studied 

in [303] indeed was the simplest in many respects. 

Let us single out some of the principal difficulties that bring the general multi-dimensional case 

studied here compared to the analysis of 𝒯(𝜆). We mention first that in all cases the algebra 

under study is generated by two mutually commuting commutative subalgebras: the C∗-algebra 

generated by Toeplitz operators with bounded (quasi-) radial symbols and the Banach algebra 

generated by Toeplitz operators with quasi-homogeneous symbols. In the case of [303] this last 

Banach algebra was generated by a single operator Tϕ with the simplest quasi-homogeneous 

symbol 𝜙. 

In the general case we can as well essentially reduce the number of generators having quasi-

homogeneous symbols. However, still a finite number 𝑁 ≥ 1 of them remains. Due to this 

reduction some (bounded) Toeplitz operators with unbounded quasi-radial symbols come into 

play, and therefore immediately: realize whether these Toeplitz operators with unbounded 

symbols belong or do not belong to the C∗-algebra generated by Toeplitz operators with 

bounded quasi-radial symbols. Fortunately we manage to prove that the answer is positive, and 

so we do not need any further extension of the generator set. 

In order to describe the compact set of maximal ideals of the Banach algebra generated 

by Toeplitz operators with quasi-homogeneous symbols we need to calculate the joint spectrum 

of its generators (not just the spectrum of the unique generator, as in [303]). In addition this 

task be-comes more difficult as, contrary to the case of [303], the quasi-homogeneous functions 

in general do not extend continuously to the boundary 𝜕𝔹𝑛 of the unit ball. As a consequence 

our previous approach in [303] does not apply anymore in its full power. Finally we mention 

that C∗-algebra generated by Toeplitz operators with bounded quasi-radial symbols has a more 

complicated structure and involves a new class of slowly oscillating sequences which is 

defined. 

We recall the construction in [193] of a class of commutative Banach algebras ℬ𝑘(ℎ) 
that are generated by Toeplitz operators on the weighted Bergman space 𝒜𝜆

2(𝔹𝑛) and have 

k −quasi-radialquasi-homogeneous symbols. These algebras are indexed by pair (𝑘, ℎ) of 

multi-indexes that fulfill certain relations. We point out that this class of Banach algebras is 

subordinated to the group of quasi-elliptic automorphisms of the unit ball since the k-radial 

part of the symbols of the generating operator is invariant under the action of this quasi-elliptic 

group, defined by the n-torus action on the ball 𝔹𝑛 (see [245,192]). 

We devoted to the analysis of the subalgebra 𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ) of ℬ𝑘(ℎ), which is generated 

byToeplitz operators withbounded k-quasi-radial symbols .All elements 𝑇 ∈ 𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ) are 

operators that are diagonal with respect to the standard monomial basis in 𝒜𝜆
2(𝔹𝑛)). Therefore 
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we can identify 𝑇 with its eigenvalue sequence and interpret 𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ) as a C∗-subalgebra of 

all bounded complex-valued sequences on ℤ+
𝑚 (here 𝑚 ∈ ℕ is the length of the multi-indexk). 

As for bounded Toeplitz operators with k-quasi-radial symbols we give an explicit integral 

form for their eigenvalues, and show that the eigenvalue sequences for all operators from 

𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ) slowly oscillate in a specific sense.Quite a delicate task in this section is the proof 

that some Toeplitz operators with unbounded quasi-radial symbols belong to the algebra 

𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ). We prove as well that 𝒯𝜆(𝐿𝑘−𝑞𝑟

∞ ) contains the orthogonal projections onto certain 

types of closed subspaces of 𝒜𝜆
2(𝔹𝑛). These two assertions are crucial for reducing the set of 

generators of ℬ𝑘(ℎ)in Theorem (6.3.20). With an analysis of the maximal ideal space 

𝑀(𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ )) of the algebra 𝒯𝜆(𝐿𝑘−𝑞𝑟

∞ ). In particular, we give a useful stratification of 

𝑀(𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ))in Lemma (6.3.15).This stratification will be important in the description of the 

maximal ideals of the full algebra ℬ𝑘(ℎ). 
We define a second subalgebra 𝒯𝜆(𝜀𝑘(ℎ)) of ℬ𝑘(ℎ), which is generated by a finite set of 

Toeplitz operators with so-called elementary k-quasi-homogeneous symbols. Contrary to the 

case, the generators of 𝒯𝜆(𝜀𝑘(ℎ)) are not anymore diagonal with respect to the standard 

monomial basis and their action on the elements of this basis is independent of the weight 

parameter λ > −1. We show that the union of generators of both above sub algebras gives in 

fact a reduced set of generators for ℬ𝑘(ℎ). 
As was already mentioned, a special care has to be taken since the elementary k-quasi-

homogeneous functions do not admit continuous extensions to the boundary 𝜕𝔹𝑛, unless 𝑚 =
1. The main result is description of the maximal ideal space of 𝒯λ(εk(h)) and the corresponding 

Gelf and transform. First we treat the case where 𝑚 = 1 and in the final part we generalize the 

result to the case m > 1 by using an appropriate tensor product description. 

We list several open problems closely related to the results.Finally we wish to remark that in 

the case of dimension n ≥ 3 adscription of the maximal ideal space of the full commutative 

algebra ℬ𝑘(ℎ), the Gelf and map, a characterization of the radical, and a spectral analysis of its 

elements can be achieved. 

Consider the open complex unit ball 𝔹𝑛: = {𝑧 ∈ ℂ𝑛: |𝑧|2 = |𝑧1|
2 +··· +|𝑧𝑛|

2 < 1} in ℂn 

equipped with the standard weighted measure. 

𝑑𝑣𝜆(𝑧)  =  𝑐𝜆(1 −  |𝑧|
2)𝜆 𝑑𝑣(𝑧), 

Where 𝜆 > −1 is fixed. Here we write dv for the usual volume form on Bn. Recall that due to 

the assumption 𝜆 > −1 the measure vλ(𝔹
n) of the unit ball is finite and we chose  𝑐𝜆 > 0 such 

that 𝑣𝜆(𝔹
𝑛) = 1. In fact this is realized by defining  

 𝑐𝜆: =
𝛤 (𝑛 + 𝜆 +  1)

𝜋𝑛𝛤 (𝜆 +  1)
  .                                                          (85) 

We write 𝐿2(𝔹𝑛, 𝑑𝑣𝜆) for the Hilbert space of all squareintegrable functions with respect to 𝑣𝜆. 

The corresponding norm and inner product are denoted by‖·‖𝜆 and 〈·,·〉λ, respectively. 

The weighted Bergman space 𝒜𝜆
2(𝔹𝑛) over 𝔹n consists of all complex-valued analytic 

functions that are squareintegrable with respect to the measured 𝑣𝜆. It is a standard fact that 

𝒜𝜆
2(𝔹𝑛) is a closed sub space of 𝐿2(𝔹𝑛, 𝑑𝑣𝜆) and that the orthogonal projection (Bergman 

projection) Bλ from 𝐿2(𝔹𝑛, 𝑑𝑣𝜆) on to 𝒜𝜆
2(𝔹𝑛) has the following explicit form 
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[𝐵𝜆𝜑](𝑧) = ∫
𝜑(𝜔)

(1 − 〈𝑧, 𝑤〉)𝑛+𝜆+1

 

𝔹𝑛

𝑑𝑣𝜆(𝜔),where 𝜑 ∈ 𝐿2(𝔹𝑛, 𝑑𝑣𝜆). 

In the following we write 〈𝑧, 𝜔〉:= 𝑧1𝜔̅1 +··· +𝑧𝑛𝜔̅𝑛 for the usual Euclidean inner product. Let 

ℤ+ be the set of all non-negative integers. Recall as well that the standard orthonormal basis 

[𝑒𝛼: 𝛼 ∈ ℤ+
𝑛] of 𝒜λ

2(𝔹n)is given by the monomials  

 𝑒𝛼(𝑧):= √
𝛤 (𝑛 + |𝛼| +  𝜆 + 1)

𝛼! 𝛤 (𝑛 + 𝜆 +  1)
𝑧𝛼 .                                        (86) 

Although the functions 𝑒𝛼 depend on the particular choice of the weight 𝜆 we do not indicate 

this dependence in our notation and we assume that 𝜆 ∈ (−1,∞) is arbitrary but fixed. 

Given 𝑔 ∈ 𝐿∞(𝔹
𝑛), the Toeplitz operator𝑇𝑔 with symbol g on 𝒜𝜆

2(𝔹𝑛) is defined by:  

[𝑇𝑔𝑓 ](𝑧):= [𝐵𝜆(𝑔𝑓)](𝑧) = ∫
𝑔(𝑤)𝑓(𝜔)

(1 − 〈 𝑧, 𝜔〉)𝑛+𝜆+1

 

𝔹𝑛

𝑑𝑣𝜆(𝜔). 

Recall that the algebra generated by the set of all Toeplitz operators with bounded measurable 

symbols is non-commutative. However, after a restriction of the symbol class to a certain type 

of functions it turns out that the induced Toeplitz algebra becomes commutative. In sense, com-

mutative Banach algebras generated by Toeplitz operators of such type are subordinate to 

(some of) the maximal abeliansub groups of the automorphism group 𝐴𝑢𝑡 (𝔹𝑛) of 𝔹𝑛. The 

classification of commutative algebras interms of the generating symbols has been given in 

[37,38,193,195]. Here we are interested in a class of commutative Toeplitz Banach algebras 

that is induced by the quasi-elliptic group of biholomorphisms of 𝔹𝑛, cf.[193].For 

completeness were call some notation and results from [193]: 

Let 𝑚 ∈ {1, . . . , 𝑛}, and fix a tuple 𝑘 = (𝑘1, . . . , 𝑘𝑚) ∈ ℤ+
𝑚 with |𝑘| = 𝑘1 +··· +𝑘𝑚 =n. Then 

we can interpret ℂ𝑛 as a product space ℂ𝑛 = ℂ𝑘1 × ℂ𝑘2 ×···× ℂ𝑘𝑚, and we use the notation  

𝑧 = (𝑧(1), . . . , 𝑧(𝑚)) ∈ ℂ
𝑛, where  𝑧(𝑗 ) = (𝑧𝑗,1, . . . , 𝑧𝑗 , 𝑘𝑗  ) ∈ ℂ

𝑘𝑗  .  

We will frequently employ polar coordinates. Let us write 𝑆2𝑘𝑗−11 ⊂ ℂ𝑘𝑗 for the (real) (2𝑘𝑗 −

1)-dimensional units herein ℂkj. We express non-zero vectors 𝑧(𝑗) ∈ ℂ
𝑘𝑗 in the form𝑧(𝑗) =

𝑟𝑗𝜉(𝑗),where  

𝜉(𝑗) =
𝑧(𝑗)

|𝑧(𝑗)|
 ∈ 𝑆2𝑘𝑗−1  and 𝑟𝑗 = |𝑧(𝑗)| ∈ ℝ+.  

Let us recall now the notion of 𝑘-quasi-homogeneous functions on the unit ball 𝔹𝑛 in 

[303,193]: 

Definition (6.3.1)[302]: Fix (𝑝, 𝑞) ∈ ℤ+
𝑛 × ℤ+

𝑛  with 𝑝 ⊥ 𝑞(i. e. 〈𝑝, 𝑞〉 = 0). Abounded function 

𝜑(𝑧)on 𝔹n is called “k-quasi-radialquasi-homogeneous” with the quasi-homogeneous degree 

(p, q) if it has the form  

𝜑(𝑧) = 𝑎(𝑟1, … , 𝑟𝑚)𝜉(1)
𝑝(1)𝜉

(2)

𝑝(2)…𝜉
(𝑚)

𝑝(𝑚)  𝜉
(1)

𝑞(1) 𝜉
(2)

𝑞(2) …𝜉 
(𝑚)

𝑞(𝑚)                           (87) 

and 𝑎 = 𝑎(𝑟1, … , 𝑟𝑚) is a function of them non-negative real variables 𝑟1, … , 𝑟𝑚. A function 

that can be expressed in the form 𝑎 = 𝑎(𝑟1, … , 𝑟𝑚) is called “k-quasi-radial”. 
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In what follows we denote by 𝐿𝑘−𝑞𝑟
∞  the Banach space of all bounded measurable 𝑘-quasi-radial 

functions on  𝔹n. 

In order to define a class of c commutative Toepliz Banach algebras we choose a second tuple 

ℎ ∈ ℤ+
𝑛  which is subordinate of 𝑘 in the sense that it fulfills the following conditions: ℎ𝑗 = 0 

if𝑘𝑗 = 1 and 1 ≤ ℎ𝑗 ≤ 𝑘𝑗 − 1 if 𝑘𝑗 > 1. 

We denote by ℛ𝑘(ℎ) the linear space generated by all k-quasi-radialquasi-homogeneous 

functions (87) which satisfy (i) and (ii): 

(i) For j with 𝑘𝑗 > 1 the tuples 𝑝(𝑗), 𝑞(𝑗) ∈ ℤ+
𝑘𝑗

 have the form: 

𝑝(𝑗) = (𝑝𝑗 , 1, … , 𝑝𝑗,ℎ𝑗  , 0, … , 0) and 𝑞(𝑗 ) = (0,… , 0, 𝑞𝑗,ℎ𝑗+1 , … , 𝑞𝑗,𝑘𝑗)              (88) 

and, in addition, |𝑝(𝑗)| = |𝑞(𝑗)|. 

(ii)If 𝑘𝑗′ = 𝑘𝑗′′ with 𝑗′ < 𝑗′′, thenℎ𝑗′ ≤ ℎ𝑗′′. 

For a given set ℱ of bounded measurable complex-valued functions on 𝔹n we denote by 𝒯𝜆(𝐹) 
the unital Banach algebra in ℒ(𝐴𝜆

2(𝔹𝑛)) which is generated by all Toeplitz operators with 

symbols in ℱ. Note that 𝒯𝜆(𝐹) has the structure of a C∗-algebra in the case when ℱ = ℱ̅, i.e. ℱ 

is invariant under complex conjugation.[22] states: 

Theorem (6.3.2)[302]:The Banach subalgebra ℬ𝑘(ℎ):= 𝒯𝜆(ℛ𝑘(ℎ)) of ℒ(𝐴𝜆
2(𝔹𝑛)) which is 

generated by Toeplitz operators with symbols from ℛ𝑘(ℎ) is commutative for all 𝜆 > −1. 

We study separately two commutative subalgebras of ℬ𝑘(ℎ)which together generate ℬ𝑘(ℎ)The 

first one has the structure of a commutativeC∗ −algebra and is generated by Toeplitz operators 

with k −quasi-radial symbols. The second one is a commutative Banach algebra generated by 

a finite number of Toeplitz operators with certain quasi-homogeneous symbols. The analysis 

of these subalgebras serves as an important tool for studying the complete Banach algebra 

structure of ℬ𝑘(ℎ) in an upcoming work. 

As is shown [192], a Toeplitz operator with a bounded measurable k-quasi-radial symbol 𝑎 =
𝑎(𝑟1, … , 𝑟𝑚) has the monomials𝑧𝛼 (or the normalizedmonomials eα(z) (66)), where 𝛼 ∈ ℤ+

𝑛 , 

as eigenfunctions. In what follows, for each multi-indexα = (𝛼1, … , 𝛼𝑛) = (𝛼(1), … , 𝛼(𝑚)) ∈

ℤ+
𝑛 , 

we denote by 𝜅 = 𝜅(𝛼) = (𝜅1, … , 𝜅𝑚) ∈ ℤ+
𝑚 the multi-index with the entries 𝜅𝑗 = |𝛼(𝑗)|, for 

all 𝑗 = 1,… ,𝑚. In particular, |𝛼| = |𝜅| and the eigenvalue γa,k,λ(κ) of Ta with respect to zα 

depends only on κ = κ(α), i.e.,  

 𝑇𝑎𝑧
𝛼 = 𝛾𝑎,𝑘,𝜆(𝜅)𝑧

𝛼 . (89) 

Moreover, we have the following explicit expression of 𝛾𝑎,𝑘,𝜆(𝜅) 

𝛾𝑎,𝑘,𝜆(𝜅) =
2𝑚𝛤(𝑛 + |𝜅| + 𝜆 + 1)

𝛤(𝜆 + 1)∏ (𝑘𝑗–  1 + 𝑘𝑗)
𝑚
𝑗=1 !

∫ 𝑎(𝑟)

 

𝜏(𝔹𝑚)

(1 − |𝑟|2)𝜆∏𝑟
𝑗

2𝑘𝑗−1𝑑𝑟

𝑚

𝑗=1

       (90) 

The integration is taken over the base 𝜏(𝔹𝑚) = {𝑟 = (𝑟1, … , 𝑟𝑚) ∈ ℝ+
𝑚: 0 ≤ |𝑟| < 1}of the 

unit ball 𝔹m considered as a Reinhardt domain. 
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Corollary (6.3.3)[302]: Let 𝛼 ∈ ℤ+
𝑛 , and κ = (|𝛼(1)|, … , |𝛼(𝑚)|) ∈ ℤ+

𝑚as above. Then we have 

∫ 𝑎(𝑟)

 

𝜏(𝔹𝑚)

(1 − |𝑟|2)𝜆∏𝑟
𝑗

2𝑘𝑗+2𝑘𝑗−1𝑑𝑟𝑗 =
𝛤(𝜆 + 1)∏ (𝑘𝑗–  1 + 𝑘𝑗)

𝑚
𝑗=1 !

2𝑚𝛤(𝑛 + |𝜅| + 𝜆 + 1)

𝑚

𝑗=1

          (91) 

Proof: Put 𝑎(𝑟) ≡ 1, then Ta is the identity operator. Thus𝛾𝑎,𝑘,𝜆(𝜅) = 1 for all κ ∈ ℤ+
m, and 

the assertion follows from the expression (90) of 𝛾𝑎,𝑘,𝜆(𝜅). 

Let 𝛾 = {𝛾(𝜅)}𝜅∈ℤ+𝑚bean arbitrary bounded sequence of complex numbers. Denoteby 𝐷𝛾 the 

diagonal operator which acts on the weighted Bergman space 𝒜λ
2(𝔹n) by the rule 

𝐷𝛾𝑒𝛼(𝑧) = 𝛾 (𝜅)𝑒𝛼(𝑧), 𝛼 ∈  ℤ+
𝑛 .                                                   (92) 

According to the above remarks each Toeplitz operator with bounded measurable k-quasi-

radial symbol 𝑎(𝑟1, . . . , 𝑟𝑚) is diagonal, and 𝑇𝑎 = 𝐷𝛾𝑎,𝑘,𝜆. However, as we will show later on, 

not all bounded diagonal operators 𝐷𝛾 can be represented in such a form since the eigenvalue 

sequence 𝛾𝑎,𝑘,𝜆 of Ta possesses certain specific features (cf.Lemma (6.3.6)). Now consider a 

particular case of k-quasi-radial symbols: 

 

γr12,k,λ(κ) =
2mΓ(n + |κ| + λ + 1)

Γ(λ + 1)∏ (kj–1 + kj)
m
j=1 !

∫ a(r)

 

τ(𝔹m)

(1 − |r|2)λ∏r
j

2(kj+δj,1)+2kj−1dr

m

j=1

=
2𝑚𝛤(𝑛 + |𝜅| + 𝜆 + 1)

𝛤(𝜆 + 1)∏ (𝑘𝑗– 1 + 𝑘𝑗)
𝑚
𝑗=1 !

.
𝛤(𝜆 + 1)∏ (𝑘𝑗– 1 + 𝑘𝑗 + 𝛿𝑗,1)!

𝑚
𝑗=1

2𝑚𝛤(𝑛 + |𝜅| + 𝜆 + 1)

=
𝑘𝑙  + 𝜅𝑙

𝑛 + |𝜅|  +  𝜆 + 1
 , 

 

Where 𝛿𝑗,1 is the standard Kronecker delta. 

We mention that neither of the sequences {𝛾𝑟12,𝑘,𝜆(𝑘)}𝜅, where 𝑙 = 1, . . . , 𝑚, has a limit 

when𝜅 → ∞ (or, which is the same, |𝑘| → ∞), though all of them possess many partial limit 

values. In particular, given any m-tuples = (s1, . . . , sm) ∈ ℤ+
m, we introduce the subsequence 

{𝑘𝑠(𝑛)}𝑛∈ℤ+ofℤ+
m, where 𝑘𝑠(𝑛) = (𝑠1𝑛, 𝑠2𝑛, . . . , 𝑠𝑚𝑛). Then, for each 𝑙 = 1, . . . , 𝑚, 

𝑙𝑖𝑚
𝑛→∞

𝛾𝑟12,𝑘,𝜆 (𝜅𝑠(𝑛))  =
𝑠𝑙
|𝑠|
   .  

In general, let {𝑘(𝑛)}𝑛∈ℤ+, where 𝑘(𝑛) = (𝑘1(𝑛), 𝑘2(𝑛), . . . , 𝑘𝑚(𝑛))be subsequence of ℤ+
𝑚. 

Then the limit of the sequence 𝛾𝑟12,𝑘,𝜆 along the subsequence {𝑘(𝑛)}𝑛∈ℤ+ exists if and only if 

the sequence {
𝑘𝑙(𝑛)

|𝑘(𝑛)|
}𝑛∈ℤ+has a limit, and in the last case both limits coincide. 

At the same time, regardless of the way how κ tend so infinity, we always have  

𝑙𝑖𝑚
|𝜅|→∞

𝛾𝑟12,𝑘,𝜆(𝑘) +··· +𝛾𝑟𝑚2 ,𝑘,𝜆(𝑘) =  1.  

We denote by ∆𝑚−1 the standard (𝑚 − 1)- dimensional simplex with the vertices 

(1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0, . . . ,0,1) ∈ ℝ+
𝑚. Summarizing the above results to: 
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Lemma (6.3.4)[302]:For any subsequence {𝑘(𝑛)}𝑛∈ℤ+of ℤ+
𝑚, all limits  

𝑙𝑖𝑚
|𝜅(𝑛)|→∞

𝛾𝑟𝐼2,𝑘,𝜆 (𝑘(𝑛))  =  𝛽𝑙 , 𝑙 =  1, . . . , 𝑚, 

Exist if and only if (𝛽1, . . . , 𝛽𝑚) ∈ ∆
𝑚−1and 

𝑙𝑖𝑚
|𝜅(𝑛)|→∞

𝑘𝑙(𝑛)

|𝑘(𝑛)|
= 𝛽𝑙 , 𝑙 = 1, . . . , 𝑚. 

Moreover, for each point(𝛽1, . . . , 𝛽𝑚) ∈ ∆
𝑚−1, there is a subsequence {𝑘(𝑛)}𝑛∈ℤ+ with the 

above properties. 

In order to make our considerations geometrically more transparent we proceed as follows. 

Denote by ℝ1
𝑚 = (ℝ𝑚, ‖·‖1) the Banach space ℝ𝑚equipped with the norm‖𝑥‖1 = ∑ |𝑥𝑗|

𝑚
𝑗=1 , 

where 𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ ℝ
𝑚. Let 𝑆1

𝑚−1(0, 𝑅) be the sphere in ℝ1
𝑚 of radius 𝑅 centered at the 

origin. We interpret ℤ+
𝑚 = ℤ+

𝑚 ∩ ℤ1
𝑚 as a metric space with the metric 𝜌1(𝜅′, 𝜅′′) = ‖𝑘′ − 𝑘′′‖1 

in herited from ℝ1
m. Then |𝑘| = 𝜌1(0, 𝜅), and ∆𝑚−1= 𝑆1

𝑚−1(0,1) ∩ ℝ+
𝑚 is nothing but the 

corresponding part of the unit sphere 𝑆1
𝑚−1(0,1). 

We denote by ℝ̅1
𝑚 the compactification of ℝ1

𝑚 by the “infinitely far” sphere𝑆1
𝑚−1(0,∞) 

consisting of rays through the origin. Each such ray and its intersection with the unit sphere 

𝑆1
𝑚−1(0,1) are identified. This yields a parametrization of the points of the “infinitely far” 

sphere 𝑆1
𝑚−1(0,∞) by elements of the unit sphere 𝑆1

𝑚−1(0,1), identifying these two objects. 

Let now ℤ̅+
𝑚 be the closure of ℤ+

𝑚 inℝ̅1
𝑚, being the compactification of ℤ+

𝑚 by the corresponding 

part ∆𝑚−1(∞) of the “infinitely far” sphere 𝑆1
𝑚−1(0,∞). That is ℤ̅+

𝑚 = ℤ+
𝑚 ∪ ∆𝑚−1(∞), where 

we also parameterize the points of ∆𝑚−1(∞) by the points of ∆𝑚−1, identifying them.  

Lemma (6.3.4) states that each sequence 𝛾𝑟𝑙
2,𝑘,𝜆, 𝑙 = 1, . . . , 𝑚, admits continuous extension to 

∆𝑚−1(∞). 
We denote by 𝑐(ℤ̅+

𝑚) the unital C∗-algebra which consists of all bounded sequences {𝛾(𝑘)}𝜅∈ℤ+𝑚 

that admit a continuous extension to ∆𝑚−1(∞). 
The elements of them- tuple (𝛾𝑟12,𝑘,𝜆, … , 𝛾𝑟𝑚2 ,𝑘,𝜆) are real-valued sequences and separate the 

points of ℤ+
𝑚. Then, by the above discussion and the Stone–Weierstrass theorem, the unital 

C∗-algebra𝒯𝜆({𝑟1
2, 𝑟2

2, … , 𝑟𝑚
2})coincides with the algebra of all diagonal operators 𝐷𝛾 with 𝛾 ∈

𝑐(ℤ̅+
𝑚). Furthermore, its maximal ideal space coincides with ℤ+

𝑚. 

For each 𝑘 = (𝑘1, … , 𝑘𝑚) ∈ ℤ+
𝑚 introduce the finite dimensional space𝐻𝑘 defined by  

𝐻𝑘 ≔ 𝑠𝑝𝑎𝑛{𝑒𝛼: 𝛼 ∈ ℤ+
𝑛 , |𝛼(𝑗 )| = 𝑘𝑗 , 𝑗 = 1,… ,𝑚}(93) 

And let 

𝑃𝑘: 𝐴𝜆
2(𝔹𝑛) → 𝐻𝑘                                                                         (94) 

Be the orthogonal projection onto 𝐻𝑘. Then we have: 

Corollary (6.3.5)[302]: Let 𝛾 ∈ 𝑐(ℤ̅+
𝑚), then 𝐷𝛾 ∈ 𝒯𝜆(𝐿𝑘−𝑞𝑟

∞ ). In particular, for all κ ∈ ℤ+
m: 

𝑃𝑘 ∈ 𝒯𝜆({𝑟1
2 , 𝑟2

2 , … , 𝑟𝑚
2}) ⊂ 𝒯𝜆(𝐿𝑘−𝑞𝑟

∞ ⊂ 𝐵𝑘(ℎ). 

For each𝑗 = 1,2, . . . , 𝑚,introducethestandardunit vector𝒆𝑗: = (0,… ,0, 𝑗 ↓ 1,0, . . . ,0) ∈ ℤ+
𝑚, 

being also the 𝑗-th vertex of ∆𝑚−1. We denote by 𝑑1(𝑚) these to fall bounded sequences 𝛾 =
{𝛾(𝜅)}𝜅∈ℤ+𝑚that satisfy the following condition  
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𝑠𝑢𝑝
𝜅≠0

|𝑘| |𝛾 (𝑘) −∑
𝜅𝑠

|𝜅|

𝑚

𝑠=1 

  𝛾 (𝑘 + 𝒆𝑠 )| < +∞.                                      (95) 

Note that the point (
𝜅1

|𝑘|
, … ,

𝜅𝑚

|𝑘|
) ∈ ∆𝑚−1corresponds to the point of ∆𝑚−1(∞)defined by the 

ray passing through κ ∈ ℤ+
m. 

Lemma (6.3.6)[302]: For each 𝑎 = 𝑎(𝑟1, … , 𝑟𝑚) ∈ 𝐿∞(𝜏(𝔹
𝑚)),the eigenvalues equence 

𝛾𝑎,𝑘,𝜆of the Toeplitz operator 𝑇𝑎 belongs to 𝑑1(𝑚). 
Proof: For all𝑘 ≠ 0 we have by (90)  

𝛾𝑎,𝑘,𝜆 =
2𝑚𝛤(𝑛 + |𝜅| + 𝜆 + 1)

𝛤(𝜆 + 1)∏ (𝑘𝑗–  1 + 𝑘𝑗)
𝑚
𝑗=1 !

∫ 𝑎(𝑟)

 

𝜏(𝔹𝑚)

(1 − |𝑟|2)𝜆+1∏𝑟
𝑗

2𝑘𝑗−2𝑘𝑗−1𝑑𝑟

𝑚

𝑗=1

=
2𝑚𝛤(`|𝜅| + 𝜆 + 2)

𝛤(𝜆 + 1)∏ (𝑘𝑗–  1 + 𝑘𝑗)
𝑚
𝑗=1 !

[ ∫ 𝑎(𝑟)

 

𝜏(𝔹𝑚)

(1 − |𝑟|2)𝜆∏𝑟
𝑗

2𝑘𝑗−2𝑘𝑗−1𝑑𝑟

𝑚

𝑗=1

−∑ ∫ 𝑎(𝑟)

 

𝜏(𝔹𝑚)

(1 − |𝑟|2)𝜆∏𝑟
𝑗

2𝑘𝑗−2𝑘𝑗−1+2𝛿𝑗,𝑠𝑑𝑟

𝑚

𝑗=1

]

𝑚

𝑠=1

=
𝑛 + |𝜅| + 𝜆 + 1

𝜆 + 1
𝛾𝑎,𝑘,𝜆(𝑘) −∑

𝑘𝑠 + 𝜅𝑠
𝜆 + 1

𝑚

𝑠=1

𝛾𝑎,𝑘,𝜆(𝑘 + 𝒆𝑠) 

Or, 

𝑁(𝑎, 𝜆, 𝑘):= (𝜆 + 1)[𝛾𝑎,𝑘,𝜆+1(𝑘) − 𝛾𝑎,𝑘,𝜆(𝑘)] +∑𝑘𝑠𝛾𝑎,𝑘,𝜆(𝑘 + 𝒆𝑠)

𝑚

𝑠=1

− 𝑛𝛾𝑎,𝑘,𝜆(𝑘)

=  |𝑘| [𝛾𝑎, 𝑘, 𝜆(𝜅)  −∑
𝑘𝑠

|𝑘|

𝑚 

𝑠=1 

𝛾𝑎,𝑘,𝜆(𝑘 + 𝒆𝑠)]. 

But  

|𝑁(𝑎, 𝜆, 𝑘)| ≤  2(𝑛 + 𝜆 +  1)‖𝑎‖∞, 
And the result follows.  

Some important comments to the definition of d1(m) and Lemma (6.3.6) have to be added. 

First of all we mention that the condition (95) pacifies the form in which the sequences 𝛾 ∈
𝑑1(𝑚) may oscillate at infinity. In particular, (95) implies that  

𝑙𝑖𝑚
𝑘→∞

[𝛾𝑎,𝑘,𝜆(𝑘) −∑
𝑘𝑠

|𝑘|

𝑚 

𝑠=1 

𝛾𝑎,𝑘,𝜆(𝑘 + 𝒆𝑠)]   =  0. 

Then, for 𝑚 = 1, the class 𝑑1(1) coincides with the class which in the work of Suárez [290] 

was denoted by 𝑑1 and is commonly used in Tauberian theory. For each 𝑚 ≠ 1, 𝑑1(𝑚) Is just 

a (non-closed) linear space, and only for 𝑚 = 1 it is an algebra 

Further, for 𝑚 = 1 ,i.e., in the case of radial symbols, and the un weighted Bergman spaces, it 

is known [271] (see as well [76,290] for the one-dimensional case 𝑛 = 1) that the set of 

Toeplitz operators with bounded radial symbolsis dense in the C∗-algebra generated by these 
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operators, and that the 𝑙∞-closure of the set of corresponding eigenvalue sequences 𝛾𝑎 coincides 

with the 𝑙∞- closure of 𝑑1. Moreover, by [271] this closure coincides with the C∗-algebra 

𝑆𝑂1(ℤ+) of all slowly oscillating sequences introduced by Schmidt [246], i.e., of all bounded 

sequences 𝛾 = 𝛾(𝑝)𝑝=0
∞ such that 

𝑙𝑖𝑚
𝑝+1
𝑞+1

→1

|𝛾 (𝑝) − 𝛾 (𝑞)| = 0. 

This gives the exact characterization of the algebra  

According to [194] the set SO1(ℤ+)  is apropersubset of the standard SO(ℤ+) Recall in this 

connection (see, for example, [293]) that the algebra SO(ℤ+
m) consists of all sequence 𝛾 =

{𝛾(𝑘)}𝜅∈ℤ+𝑚 such that 

𝑙𝑖𝑚
𝜅→∞

(𝛾 (𝑘)  − 𝛾 (𝑘 + 𝜌))  =  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜌 ∈  ℤ+
𝑚. 

For 𝑚 = 1and anarbitrary weight parameter 𝜆 ∈ (−1,∞) Lemma (6.3.6) just ensures that the 

algebra 𝒯λ(Lrad
∞ ). is isomorphic to a subalgebra of 𝑆𝑂1(ℤ+) . 

It is clear that for 𝑚 > 1 the C∗-algebra 𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ) is isomorphic to a certain subalgebra of the 

C∗-algebra generated by sequences in 𝑑1(𝑚).But the exact description of this subalgebra is 

unknown. As partial information we mention that the algebra 𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ) intersects 𝑆𝑂(ℤ+

𝑚), for 

example, by diagonal operators whose eigenvalue sequences have a limit as 𝑘 =
(𝑘1, . . . , 𝑘𝑚) → ∞. At the sametime, contrary to the case 𝑚 = 1,𝒯𝜆(𝐿𝑘−𝑞𝑟

∞ )is not a subalgebra 

of 𝑆𝑂(ℤ+
𝑚),, as will be shown in Lemma (6.3.13). 

It is unclear whether the set of all Toeplitz operators with bounded k-quasi-radial symbols is 

dense in 𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ), as it is the case for 𝑚 = 1 and 𝜆 = 0. The fact that 𝑑1(𝑚)(contrarytod1) 

is not an algebra suggests that the answer might be negative. 

We list the above open questions among others.Then extcorollaries to Lemma (6.3.6) give a 

further characterization of the eigenvalue sequences 𝛾𝑎,𝑘,𝜆 of Toeplitz operators 𝑇𝑎 ∈

𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ). 

Corollary (6.3.7)[302]:We have that  

𝛾𝑎,𝑘,𝜆(𝜅)  −∑
𝜅𝑠

|𝜅|

𝑚 

𝑠=1 

𝛾𝑎,𝑘,𝜆(𝜅 + 𝒆𝑠) =  𝒪(1/|𝜅|)   𝑎𝑠 𝜅 → ∞. 

For each 𝑗 = 1,… ,𝑚 let us fix the values of 𝜅𝑆 for all 𝑠 ≠ 𝑗arbitrarily, and define the “𝑗 − 𝑡ℎ 

coordinate” sequence κ̂j = {κ̂j(n)}n∈ℤ+, where 𝜅̂𝑗(𝑛) = (𝜅1(𝑛), … , 𝜅𝑚(𝑛)) has the entries 

𝜅̂𝑗(𝑛):= 𝑛 and 𝜅𝑠(𝑛):= 𝜅𝑠. By considering 𝒆𝑗 as the j-th vertex of ∆𝑚−1(∞) it is clear that 

𝑙𝑖𝑚
𝑛→∞

𝜅̂𝑗(𝑛) = 𝑒𝑗 ∈ ∆
𝑚−1(∞). 

Corollary (6.3.8)[302]:For each𝑗 = 1,… ,𝑚 the sequence {𝛾𝑎,𝑘,𝜆(𝜅̂𝑗(𝑛))}𝑛∈ℤ+ be longs to 𝑑1, 

and thus to 𝑆𝑂1(ℤ+). 
Proof: Follows from Lemma (6.3.6) together with the observation that  

𝑙𝑖𝑚
𝑛→∞

𝜅̂𝑗  (𝑛)

|𝜅̂𝑗  (𝑛)|
= 1,  

And that the sum ∑ |𝜅𝑠(𝑛)| 𝑠≠𝑗 does not depend on 𝑛 and is bounded.  
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The nextimportant particular case of 𝑘-quasi-radial symbols is as follows: for each 𝑗 =
1, . . . , 𝑚, we introduce the unbounded k-quasi-radial function  

𝑎(𝑗 )(𝑧):=
1 − |𝑧|2

|𝑧(𝑗 )|2
=
1 − |𝑟|2

𝑟𝑗 
2 ∈ 𝑅+ ∪ {+∞}.  

Although this symbol is unbounded, it generates a bounded Toeplitz operator. Moreover, 

Corollary (6.3.3) yields the explicit formula for its eigenvalue sequence (see the notation in 

(89)):  

𝛾𝑎(𝑗 ), 𝑘, 𝜆(𝜅(𝛼)) =
𝜆 +  1

𝜅𝑗 + 𝑘𝑗 − 1
  , 𝛼 ∈ ℤ+

𝑛 .  

In particular, since𝑘𝑗 > 1 we have that 𝑎(𝑗) ∈  𝐿1(𝔹
𝑛, 𝑑𝜈𝜆) for 𝑗 = 1, . . . , 𝑚 with norm  

‖𝑎(𝑗 )‖
𝐿1(𝔹

𝑛𝑑𝑣𝜆)
= 〈𝑎(𝑗 ), 1〉𝜆 = 〈𝑇𝑎(𝑗 )1, 1〉𝜆 = 𝛾𝑎(𝑗 ),𝑘,𝜆(0) =

𝜆 + 1

 𝑘𝑗  −  1
. 

The last formula implies an interesting characterization of the first (i.e., for 𝜅 = 0) eigenvalue 

of a Toeplitz operator with quasi-radial symbol. 

Lemma (6.3.9)[302]:Let 𝑎(𝑟) ∈ 𝐿1(𝔹
𝑛, 𝑑𝑣𝜆) be aquasi-radial symbol. Then the first 

eigenvalue (ground state) of a bounded, or densely defined unbounded Toeplitz operator Ta is 

given by 

𝛾𝑎,𝑘,𝜆(0)  =  ∫𝑎(𝑟)

 

𝔹𝑛

𝑑𝑣𝜆. 

In the case of a non-negative symbol a it coincides with  ‖𝑎(𝑟)‖𝐿1(𝔹𝑛,𝑑𝑣𝜆). 

Recall that a finite positive measure ν on 𝔹n is called a Carleson measure with respect to 

𝒜𝜆
2(𝔹𝑛)  (shortly: Carleson measure) if the Toeplitz operator Tν with measure symbol ν 

defined by  

𝑇𝜈𝑓:= ∫
𝑓 (𝜔)

(1 − 〈𝑧, 𝜔〉)𝑛+1+𝜆

 

𝔹𝑛

𝑑𝜈(𝜔),   𝑤ℎ𝑒𝑟𝑒 𝑓 ∈ 𝐻∞(𝔹𝑛),  

has a bounded extension from the space 𝐻∞(𝔹𝑛) of all bounded analytic functions on 𝔹𝑛 to 

the Bergman space 𝒜𝜆
2(𝔹𝑛) (e.g. see [179], [65]). From the above discussion it follows that 

𝜈𝑗: = 𝑎
(𝑗)𝑑𝑣𝜆 for 𝑗 = 1,… ,𝑚 is a Carleson measure. 

Let us recall the notion of the (ℓ, 𝜆)-Berezin-transform whereℓ ≥ λ (for the unweighted 

case 𝜆 = 0 see [148, 65], and for an arbitrary weight 𝜆 > −1 see [179]). If μ is a complex-

valued, Bore regular measure on 𝔹𝑛 and 𝑧 ∈ 𝔹𝑛 then we set  

𝐵ℓ(𝜇)(𝑧):=
𝑐ℓ
𝑐𝜆
∫
(1 − |𝜙𝑧(𝜔)|2)

𝑛+1+ℓ

(1 − |𝜔|2)𝑛+1+ℓ
𝑑𝜇(𝜔)

 

𝔹𝑛

   .                          (96) 

Here the constants 𝑐𝜆 and 𝑐ℓ were defined in (85) and 𝜑𝑧 denotes the (unique up to unitary 

multiples) automorphism of 𝔹n with 𝜑𝑧 ∘ 𝜑𝑧 = 𝑖𝑑 and 𝜑𝑧(0) = 𝑧. When 𝜇 = 𝑎𝑑𝑣𝜆 with 𝑎 ∈
𝐿1(𝔹

𝑛, 𝑑𝑣𝜆) then a change of variables shows that (76) takes the form  
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𝐵ℓ(𝑎 𝑑𝑣𝜆)(𝑧)  =  ∫ 𝑎

𝔹𝑛

∘ 𝜑𝑧(𝜔)𝑑𝑣ℓ(𝜔). 

Note that the right hand side of this equation is independent of λ > −1. On the other hand, by 

inserting the well-known relation 

1 − |𝜙𝑧(𝜔)| =
(1 − |𝑧|2)(1 −  |𝜔|2)

  |1 − 〈 𝑧, 𝜔〉|2
 

Into (96) we obtain the following expression for the (ℓ, 𝜆) − Berezin-transform, which will be 

most suitable for the considerations below, 

𝐵ℓ(𝑎 𝑑𝜈𝜆)(𝑧) = (1 − |𝑧|
2)𝑛+1+ℓ ∫

𝑎(𝜔)

(1 – 〈𝑧. 𝜔〉)2(𝑛+1+ℓ)
𝑑𝜈𝜆(𝜔)

𝔹𝑛

.              (97) 

The following result has been proved in the unweighted situation 𝜆 =0 in [66], and in the 

general weighted case 𝜆 > −1 in [179]: 

Proposition (6.3.10)[302]: (See [65,179].) Let the positive measure ν be Carleson with respect 

to the weighted measured 𝑣𝜆 on 𝔹n where 𝜆 > −1. Then: 

(i)The functions 𝐵ℓ(𝜈)  are bounded and continuous on 𝔹𝑛 for allℓ ≥ 𝜆. 

(ii)The convergence 𝑇𝐵ℓ(𝜈) → 𝑇𝜈 holds, as ℓ → ∞, in the uniform topology of ℒ(𝒜𝜆
2(𝔹𝑛)). 

Corollary (6.3.11)[302]: The Toeplitz operators 𝑇𝑎(𝑗) with 𝐿1-symbol a(j), where 𝑗 ∈
{1, . . . , 𝑚}, belong to the algebra 𝒯𝜆(𝐿𝑘−𝑞𝑟

∞ ). 

Proof: Since the measures 𝜈𝑗: = 𝑎
(𝑗)𝑑𝑣𝜆, for j= 1, . . . , 𝑚, are Carleson we conclude from 

Proposition (6.3.10) that the  functions 𝜈𝑗 , ℓ: = 𝐵ℓ(𝜈𝑗) are bounded and as ℓ → ∞ the norm 

convergence 𝑇𝜈𝑗,ℓ → 𝑇𝑎(𝑗) holds. Hence it remains to show that 𝜈𝑗,ℓ(𝑧) for all j andℓ are k-quasi-

radial. 

For any given 𝑟 ∈ ℕ let us denote by 𝑈(𝑟) the group of unitary 𝑟 × 𝑟-matrices. Then we have 

the natural embedding 𝐺 ≔ 𝑈(𝑘1) ×···× 𝑈(𝑘𝑚) ⊂ 𝑈(𝑛) of groups. It can be easily seen from 

the expression (97) of the (ℓ, 𝜆) −Berezin transform and the transformation rule of the integral 

that in the case of a k-quasi-radial symbols 𝑎(𝑤) the integral transform 𝐵ℓ(𝑎)(𝑧) is invariant 

under the action of 𝐺. Hence 𝐵ℓ(𝑎)(𝑧) defines a k-quasi-radial function, as well for all ℓ ≥ 𝜆. 

Since 𝑎(𝑗) is 𝑘-quasi-radial this observation finishes the proof. 

The eigenvalues of the Toeplitz operator 𝑇𝑎(𝑗) are real-valued and monotonically decreasing 

when 𝜅𝑗 = |𝑎
(𝑗)| tends to infinity. By c we denoe the set of all converging sequences. The 

Stone– Weierstrass the ore directly leads to the following lemma. 

Lemma (6.3.12)[302]:  The unital C∗-subalgebra in 𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ) which is generated by the 

operators 𝑇𝑎(𝑗), where 𝑗 = 1,… ,𝑚, coincides with the set of all diagonal operators 𝐷γ(j) whose 

eigenvalue sequences γ(j) = {𝛾(𝑗)(𝜅)}𝜅∈ℤ+𝑚 depend on 𝜅𝑗 only; more over being considered 

with respect to their dependence on 𝜅𝑗 , i. e. , 𝛾
(𝑗) = {𝛾(𝑗)(𝜅𝑗)}𝜅𝑗∈ℤ+, they belong to c. 
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We mention that the operators 𝑇𝑎(𝑗) ∈ 𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ) where 𝑗 = 1, . . . , 𝑚, commute among them-

selves. Moreover, they commute with each Toeplitz operator 𝑇𝜑 having a k-quasi-radialquasi-

homogeneous symbol 𝜑 ∈ 𝑅𝑘(ℎ). 
The next lemma shows that 𝒯𝜆(𝐿𝑘−𝑞𝑟

∞ ) is not a subalgebra of SO(ℤ+
m). 

Lemma (6.3.13)[302]:For 𝑗 = 1,… . ,𝑚, the eigenvalue sequence 𝛾𝑎(𝑗),𝑘,𝜆of the Toeplitz 

operator 𝑇𝑎(𝑗) is not slowly oscillating when 𝜅 = (𝜅1, … , 𝜅𝑚) → ∞. 
Proof: The assumption that the sequence 𝛾𝑎(𝑗),𝑘,𝜆 belongs to 𝑆𝑂(ℤ+

𝑚). Implies that the set of 

its partial limits is connected (see, [293]). At the same time this set has the form 

{
𝜆 + 1 

𝜅𝑗  + 𝑘𝑗  −  1
}
𝜅𝑗∈ℤ+

∪ {0} 

 and hence is discrete, which leads to a contradiction. 

Let 𝑗 ∈ {1, . . . , 𝑚} be fixed and for each 𝑑 ∈ ℤ+ consider the closed subspace: 

𝐻𝑑
(𝑗 )
: = 𝑠𝑝𝑎𝑛{𝑒𝛼: |𝛼

(𝑗 )| = 𝜅𝑗 = 𝑑} ⊂ 𝒜𝜆
2(𝔹𝑛). (98) 

By 𝑄𝑑
(𝑗)
:𝒜𝜆

2(𝔹𝑛).→ 𝐻𝑑
(𝑗 )

 we denote the orthogonal projection of 𝒜λ
2(𝔹n) on to 𝐻𝑑

(𝑗 )
. 

Moreover, given (𝑎, 𝑏) ∈ ℝ+
2 , we define family of diagonal operators  

𝐷𝑎,𝑏
(𝑗 )
𝑒𝛼: =

𝑎 + 𝜅𝑗
𝑎 + 𝑏 + 𝜅𝑗

𝑒𝛼 ,                                                               (99) 

where 𝛼 ∈ ℤ+
𝑛 , 𝜅𝑗 = |𝛼

(𝑗)|. These operators will appear in (107) below. Then Lemma (6.3.12) 

yields 

Corollary (6.3.14)[302]:The operators 𝑄𝑑
(𝑗 )

 and  𝐷𝑎,𝑏
(𝑗 )

 belong to the algebra 𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ). 

Next we describe a fibration of the compact set 𝑀(𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ )) of maximal ideals of the 

commutative C∗-algebra 𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ). We identify a maximal ideal with a corresponding 

multiplicative functional in the standard way. First we introduce some notation: 

Let 𝜃 = (𝜃1, . . . , 𝜃𝑚) ∈ {0,1}
𝑚 =:𝛩, and with 𝟏 = (1,1, . . . ,1) we write 𝜃𝑐 = 1 − 𝜃 for the 

“complementary” m-tuple. In particular, we have 𝟏𝑐 = 𝟎 = (0,0, . . . ,0). Using the 

notation𝐽𝜃 = {𝑗: 𝜃𝑗 = 1}, we introduce 

ℤ+
𝜃 = ⊕

𝑗∈𝐽𝜃

ℤ+(𝑗 )   𝑎𝑛𝑑 𝜅𝜃 = {(𝜅𝑗1 , . . . , 𝜅𝑗|𝜃|  ): 𝑗𝑝 ∈ 𝐽𝜃} . 

Given 𝜃 ∈ 𝛩, let  

𝑀𝜃 = {𝜇 ∈ 𝑀(𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ )): 𝜇 (𝑄𝑑 

(𝑗 )
) = {

0 for all 𝑑 ∈  ℤ+,       𝑖𝑓 𝜃𝑗 = 0

1 for some 𝑑 ∈  ℤ+, 𝑖𝑓 𝜃𝑗 = 1
} . 

Lemma (6.3.15)[302]:The following decomposition onto mutually disjoint sets holds  

𝑀(𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ )) =⋃𝑀𝜃

𝜃∈𝛩

 . 

Proof: From the definition of the sets𝑀𝜃 it follows that the union is disjoint and varying 𝜃 ∈ 𝛩 

we cover all possible cases.  

We note that the set 𝑀1 admits a simple alternative description. For each 𝜇 ∈ 𝑀1 there is a κ ∈
ℤ+
m such that  
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𝜇(𝑃𝜅) =  𝜇 (∏𝑄𝜅𝑗
(𝑗 )

𝑚

𝑗=1

) =∏𝜇

𝑚

𝑗=1

(𝑄𝜅𝑗
(𝑗 )
) =  1, 

 

Where 𝑃𝜅 is the orthogonal projection defined in (94). Thus, given any operator 𝐷𝛾 =
∑ (𝜌)𝑃𝜌𝜌∈ℤ+

𝑚𝛾 ∈ 𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ), we have 

𝜇(𝐷𝛾) = 𝜇(𝑃𝜅)𝜇(𝐷𝛾) = 𝜇(𝑃𝜅𝐷𝛾) = 𝛾 (𝜅)𝜇(𝑃𝜅) = 𝛾 (𝜅). 

Identifying the functional μ with κ ∈ ℤ+
m, we have that M1 = ℤ+

m. Moreover, each functional 

𝜇 ∈ 𝑀1 can be defined by the formula  

𝜇(𝐷):= 〈𝐷𝑒𝛼𝜅  , 𝑒𝛼𝜅〉𝜆, 

Where 𝛼𝜅: = ((𝜅1, 0, … ,0),… . , (𝜅𝑚, 0, … ,0)) ∈ ℤ+
𝑘1 ×···× ℤ+

𝑘𝑚 = ℤ+
𝑛 . 

We note as well that all functional from 𝑀(𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ))\𝑀1 map compact operators of the 

algebra 𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ) to zero. 

In order to analyze the sets 𝑀𝜃, with 𝜃 ≠ 1, we mention first that for each 𝜇 ∈ 𝑀𝜃 there is 

auniquetuple 𝜅𝜃 ∈ ℤ+
𝜃  such that 𝜇(𝑄𝜅𝑗

(𝑗)
) = 1 for all 𝑗 ∈ 𝐽𝜃. Therefore, we have the following 

decomposition of Mθ in to disjoint sets 

𝑀𝜃 = ⋃ 𝑀𝜃
𝜅𝜃∈ℤ+

𝜃

(𝜅𝜃 ),  

Where 𝑀𝜃(𝜅𝜃) = {𝜇 ∈ 𝑀𝜃: 𝜇(𝑄𝜅𝑗
(𝑗)
) = 1forall      𝑗 ∈ 𝐽𝜃}. 

Note that,we mention for the completeness that none of the points of 𝑀𝜃(𝜅𝜃) can be reached 

by subsequences; its topological nature requires to use nets (subnets of ℤ+
|𝜃𝑐|

). That is, for each 

point 𝜇 ∈ 𝑀𝜃(𝜅𝜃) there is a net {𝜅𝜃𝑐(𝛽)}𝛽∈𝐵, valued in ℤ+
|𝜃𝑐|

, such that 𝜅 = 𝜎(𝜅𝜃 , 𝜅𝜃𝑐(𝛽)) 

tends to 𝜇 in the Gelfand topology of 𝑀(𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ )). Here σ is the permutation of 𝑚- tuples 

such that (𝜅𝜃 , 𝜅𝜃𝑐(𝛽)) = 𝜎 − 1(𝜅1, … , 𝜅𝑚). In other words, for each 𝛾 = {𝛾(𝜅)}𝜅∈ℤ+𝑚 ∈

𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ), we have that 

             𝑙𝑖𝑚
𝛽∈𝐵 

𝛾 (𝜅) = 𝛾 (𝜇),                                                                   (100) 

Where 𝜅 = 𝜎(𝜅𝜃 , 𝜅𝜃𝑐(𝛽)) with (𝜅𝜃 , 𝜅𝜃𝑐(𝛽)) ∈ ℤ+
𝜃 × 𝑍𝜃𝑐+= ℤ+

𝑚, and where we identify 𝛾(𝜇) 
with 𝜇(𝛾), the value of the functional 𝜇 on the element 𝛾 ∈ 𝒯𝜆(𝐿𝑘−𝑞𝑟

∞ ). 

We consider a second intrinsic commutative subalgebra 𝒯λ(εk(h)) of Bk(h), which is 

generated by a finite set of elementary k-quasi-homogeneous symbols (see the definition in 

(105)). The structure of this algebra is independent of the weight parameter 𝜆 and different from 

𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ). its elements are not diagonal operators with respect to the standard orthonormal 

basis of𝒜𝜆
2(𝔹𝑛). 

We start by recalling some notation and results from [193]: 

Let (𝑝, 𝑞) ∈ ℤ+
𝑛 × ℤ+

𝑛  be a pair of orthogonal multi-indices with |𝑝(𝑗)| = |𝑞(𝑗)| for all 𝑗 =

1,2,… ,𝑚. We use the notation in [293] and write 

𝑝̃(𝑗 ): = (0,… , 0, 𝑝(𝑗 ), 0, … , 0) and 𝑞̃(𝑗 ) = (0,… , 0, 𝑞(𝑗 ), 0, … , 0), 
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Where the entries 𝑝(𝑗) and 𝑞(𝑗)  are at the𝑗-th position, respectively. For each 𝑗 = 1,… ,𝑚 with 

𝑘𝑗 > 1consider the Toeplitz operator 𝑇𝜉𝑝̅(𝑗)𝜉𝑝̅(𝑗).Aswas shown in [293],we have  

𝑇𝜉𝑝𝜉̅𝑞 =∏𝑇
𝜉
𝑝̃(𝑗)𝜉

𝑞̃(𝑗)

𝑚

𝑗=1

                                                        (101) 

Let us recall the action of T
𝜉
𝑝̃(𝑗)𝜉

𝑞̃(𝑗)  on the monomials 𝑧𝛼 , 𝛼 ∈ ℤ+
𝑛 . According to [293] we have  

𝑇
𝜉
𝑝̃(𝑗)𝜉

𝑞̃(𝑗)𝑧
𝛼 = {

0,    if ∃ℓ ∈  {1,… , 𝑘𝑗  } such that𝛼𝑗,ℓ < 𝑞𝑗,ℓ  − 𝑝𝑗,ℓ,

𝛾̃𝑘,𝑝(j ),𝑞(j ),𝜆(𝛼)𝑧
𝛼+𝑝̃(𝑗 )−𝑞̃(𝑗 ) ,                       otherwise

  ,        (102) 

Where the numbers 𝛾̃𝑘,𝑝(𝑗 ),𝑞(𝑗 ),𝜆(𝛼) ∈ ℤ+
𝑛  explicitly are given by  

𝛾̃𝑘,𝑝(𝑗 ),𝑞(𝑗 ),𝜆(𝛼)

=
2𝑚𝛤(𝑛 + |𝛼| + 𝜆 +  1)(𝛼 + 𝑢 − 𝑣 + 𝑝̃(𝑗))!

𝛤(𝜆 +  1)(𝑘𝑗–1 + |𝛼(𝑗) + 𝑝(𝑗)|)!∏ (𝑘ℓ − 1 + |𝛼(𝑗)|)! (𝛼(𝑗) + 𝑝̃(𝑗 ) − 𝑞̃(𝑗 ))ℓ≠𝑗 !

× ∫ (1 − |𝑟|2)𝜆

𝜏(𝔹𝑚)

∏𝑟
ℓ

2|𝛼(𝑗)|+2𝑘𝑗−1𝑑𝑟.

𝑚

ℓ=1

 

The integral on the right hand side can be calculated by using Corollary (6.3.3) 

𝛾̃𝑘,𝑝(𝑗 ),𝑞(𝑗 ),𝜆(𝛼) =
(𝛼 + 𝑝̃(𝑗))! (𝑘𝑗 − 1 + |𝛼(𝑗)|)!

(𝑘𝑗– 1 + |𝛼(𝑗) + 𝑝(𝑗)|)! (𝛼(𝑗) + 𝑝̃(𝑗 ) − 𝑞̃(𝑗 ))!

=
(𝛼(𝑗) + 𝑝(𝑗))! (𝑘𝑗–1 + |𝛼(𝑗) + 𝑝(𝑗)|)!

(𝑘𝑗–1 + |𝛼(𝑗) + 𝑝(𝑗)|)! (𝛼(𝑗) + 𝑝(𝑗) − 𝑞(𝑗))
 . 

Note that this expression only depends on the portion 𝛼(𝑗)of α. For simplicity   

𝛷𝑝,𝑞(𝑧):=  𝜉(1)
𝑝(1) …𝜉

(𝑚)

𝑝(𝑚)𝜉
(1)

𝑞(1) …𝜉
 (𝑚)

𝑞(𝑚)
                                                  (103) 

For a 𝑘-quasi-homogeneous function of degree (𝑝, 𝑞). Replacing 𝑧𝛼 by the normalized 

monomial 𝑒𝛼(𝑧) in (86) gives: 

Lemma (6.3.16)[302]: For 𝑗 = 1,… ,𝑚 with 𝑘𝑗 > 1the Toeplitz operator 𝑇𝛷𝑝̃(𝑗),𝑞̃(𝑗)
acts on the 

or honor-mal basis [eα: α ∈ ℤ+
n ] by the rule 

𝑇𝛷𝑝̃(𝑗),𝑞̃(𝑗)
𝑒𝛼 = {

0,     if ∃ℓ ∈  {1,… , 𝑘𝑗}   such  that 𝛼𝑗,ℓ < 𝑞𝑗,ℓ  − 𝑝𝑗,ℓ,

𝜌𝑘,𝑝(𝑗 ),𝑞(𝑗 ),𝜆(𝛼)𝑧
𝛼+ 𝑝̃(𝑗 )–𝑞̃(𝑗 ) ,                                otherwise

 

The factor 𝜌𝑘,𝑝(𝑗 ),𝑞(𝑗 ),𝜆(𝛼) is independent of the weight parameter 𝜆 and given by 

𝜌𝑘,𝑝(𝑗),𝑞(𝑗)(𝛼) =
(𝛼(𝑗)  + 𝑝(𝑗))! (𝑘𝑗  –  1 + |𝛼(𝑗)|)!

√(𝛼(𝑗)! (𝛼(𝑗) + 𝑝(𝑗) − 𝑞(𝑗))! (𝑘𝑗 − 1 + |𝛼(𝑗) + 𝑝(𝑗)|)!
 .            (104) 

In particular, (104) only depends on 𝛼(𝑗). 

Now assume in addition that the tuples 𝑝(𝑗) and 𝑞(𝑗) are of the form (88), for 𝑗 = 1, . . . , 𝑚, and 

such that (by definition) 𝛷𝑝̃(𝑗),𝑞̃(𝑗) ∈ 𝑅𝑘(ℎ). Then we have 

𝛷𝑝̃(𝑗),𝑞̃(𝑗)(𝑧):=  𝜉1,𝑗
𝑝𝑗,1 …𝜉

𝑗,ℎ𝑗

𝑝𝑗,ℎ𝑗
  𝜉
 𝑗,ℎ𝑗+1

𝑞𝑗,ℎ𝑗+1
…𝜉𝑞𝑗,𝑘𝑗

−𝑞𝑗,𝑘𝑗
. 
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Let 𝑘𝑗 > 1 and (ℓ𝑗 , 𝑟𝑗) ∈ {1,… , ℎ𝑗} × {ℎ𝑗 + 1,… , 𝑘𝑗} =: 𝐽ℎ,𝑗 be arbitrary. We define set 

of so-called elementary k-quasi-homogeneous functions by 

𝛹ℓ𝑗,𝑟𝑗(𝑧):=  𝜉𝑗,ℓ𝑗𝜉𝑗̅,𝑟𝑗                                                   (105) 

Since |𝑝(𝑗)| = |𝑞(𝑗)| we can express 𝑝(𝑗) + 𝑞(𝑗) (non-uniquely) in the form 

P(j) + q(j) = ∑ βℓj,rj
(ℓj ,rj)∈Jh,j

𝐞ℓj,rj , 

 where 𝐞ℓj,rj = (0,… , 1↑
ℓj

, 0, … , 1
↑
ℓj

, 0, … , 0) ∈ ℤ+
kj ,and 𝛽ℓ𝑗,𝑟𝑗 ∈ ℤ+. We also write et for the t-th 

standard unit vector in ℝ𝑘𝑗. For each 𝑗 = 1,… ,𝑚we now can decompose 𝛷𝑝̃(𝑗),𝑞̃(𝑗)(z) (non-

uniquely) in the form of a product 

𝛷𝑝̃(𝑗),𝑞̃(𝑗)(𝑧) = ∏ 𝜓ℓ𝑗,𝑟𝑗(𝑧)
𝛽ℓ𝑗,𝑟𝑗

(ℓ𝑗 ,𝑟𝑗)∈𝐽ℎ,𝑗

                        (106) 

After a straight forward computation using Lemma (6.3.17) we have 

𝑇𝛹ℓ𝑗,𝑟𝑗
𝑇𝑝̃(𝑗),𝑞̃(𝑗)𝑒𝛼

=

{
  
 

  
 
0,                                                                       𝑖𝑓 ∃𝑡 ∈ 1, … , 𝑘𝑗 𝑤𝑖𝑡ℎ  𝛼𝑗,𝑡 < (−𝑒ℓ𝑗– 𝑝(𝑗) + 𝑒𝑟𝑗  + 𝑞(𝑗 ))𝑡

,

 

(𝛼 + 𝑝̃(𝑗 ) + 𝒆̃ℓ𝑗)! [(𝑘𝑗 − 1 + |𝛼(𝑗)|!)]
2

√𝛼! (𝛼 + 𝒆̃ℓ𝑗 + 𝑝̃(𝑗 )– 𝒆̃𝑟𝑗− , 𝑞̃(𝑗 ))(𝑘𝑗 − 1 + |𝛼(𝑗) + 𝑝(𝑗)|)! (𝑘𝑗 − 1 + |𝛼(𝑗)|)!

𝑒𝛼+𝒆̅ℓ𝑗+𝑝̃(𝑗 )–𝒆̃𝑟𝑗–𝑞̃(𝑗 )

otherwise.

, 

 

 

On the other hand it is easy to verify that 

𝑇𝛹ℓ𝑗,𝑟𝑗
𝑇𝑝̃(𝑗),𝑞̃(𝑗)𝑒𝛼 = 𝑇𝛷𝑝̃(𝑗),+𝒆̃ℓ𝑗𝑞̃(𝑗)+𝒆̃𝑟𝑗

𝑒𝛼

=

{
  
 

  
 0. ,                       if∃𝑡 ∈  1, … , 𝑘𝑗  with𝛼𝑗,𝑡 < (−𝑒ℓ𝑗– 𝑝(𝑗) + 𝑒𝑟𝑗  + 𝑞(𝑗 ))𝑡                                                         ,

(𝛼 + 𝑝̃(𝑗 ) + 𝒆̃ℓ𝑗) ! (𝑘𝑗 − 1 + |𝛼(𝑗)|)!

√𝛼! (𝛼 + 𝑝̃(𝑗 )– 𝒆̃ℓ𝑗− , 𝑞̃(𝑗 ) − 𝑒𝑟𝑗) (𝑘𝑗 + |𝛼(𝑗) + 𝑝(𝑗)|)!

𝑒𝛼+𝒆̃ℓ𝑗+𝑝̅(𝑗 )–𝒆̃𝑟𝑗−𝑞̅(𝑗 )

 otherwise.

 

by comparing the action of the above operators on [𝑒𝛼: 𝛼 ∈ ℤ+
𝑛] we conclude that 

𝑇𝜓ℓ𝑗,𝑟𝑗
𝑇𝛷𝑝̃(𝑗),𝑞̃(𝑗)

− 𝑇𝜓ℓ𝑗,𝑟𝑗
𝑇𝛷𝑝̃(𝑗),𝑞̃(𝑗)

=
|𝑝(𝑗)|

𝑘𝑗 + |𝛼(𝑗) + 𝑝(𝑗)|
𝑇𝜓ℓ𝑗,𝑟𝑗

𝑇𝛷𝑝̃(𝑗),𝑞̃(𝑗)
. 

Or equivalently 
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𝑇𝜓ℓ𝑗,𝑟𝑗𝛷𝑝̃(𝑗),𝑞̃(𝑗)
=

𝑘𝑗+|𝛼(𝑗)|

𝑘𝑗+|𝛼(𝑗)+𝑝(𝑗)|
𝑇𝜓ℓ𝑗,𝑟𝑗

𝑇𝛷𝑝̃(𝑗),𝑞̃(𝑗)𝑒𝛼
                                (107) 

using the notation in (99) we can rewrite (107) in the form 

𝑇𝜓ℓ𝑗,𝑟𝑗
𝑇𝛷𝑝̃(𝑗),𝑞̃(𝑗)

= 𝐷𝑘𝑗 ,|𝑝(𝑗)|
(𝑗)

𝑇𝜓ℓ𝑗,𝑟𝑗
𝑇𝛷𝑝̃(𝑗),𝑞̃(𝑗)

 

Note that according to Corollary (6.3.14) one has 𝐷𝑘𝑗 ,|𝑝(𝑗)|
(𝑗)

∈ 𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ). 

Now, we return to symbols Φ𝑝̃(𝑗),𝑞̃(𝑗)of the form (106). With j ∈ {1,… ,m} consider the 

sequences {𝛾̃𝑗(𝑟)}𝑟∈ℤ+defined by 

𝛾̃𝑗(𝑟) ≔ ∏
𝑘𝑗 + 𝑟

𝑘𝑗 + 𝑟 +  ℓ

|𝑝(𝑗 )|−1

ℓ=1

=
(𝑘𝑗  +  𝑟)|𝑝(𝑗)|(𝑘𝑗  − 1 +  𝑟)!

(𝑘𝑗 − 1 +  𝑟 + |𝑝(𝑗)|)!
 ,                     (108) 

and note that 𝑙𝑖𝑚𝑟→∞𝛾̃𝑗(𝑟) = 1. Let 𝐷𝛾𝑗be the diagonal operator acting one α, for all α ∈ ℤ+
n , 

by 

𝐷𝛾𝑗𝑒𝛼 = 𝛾̃𝑗(𝛼(𝑗))𝑒𝛼 . 

then it follows from Lemma (6.3.12) that Dγj ∈ 𝒯λ(Lk−qr
∞ ). Moreover, by induction it is clear 

from (87) that 

𝑇
𝜉
𝑝̃(𝑗)𝜉

𝑞̃(𝑗) = 𝑇𝛷𝑝̃(𝑗),𝑞̃(𝑗)
= 𝐷𝛾𝑗 ∏ 𝑇𝑇𝛹ℓ𝑗,𝑟𝑗

𝛽ℓ𝑗,𝑟𝑗

|𝑝(𝑗 )|−1

ℓ=1

.                                   (109) 

We also need the exact action of a product of Toeplitz operators with elementary k-quasi-

homogeneous symbols. 

Lemma (6.3.17)[302]:Let 𝛷𝑝̃(𝑗),𝑞̃(𝑗) be given by (106) and define the operator A appearing in 

(89) by 

𝐴 ≔ ∏ 𝑇𝑇𝛹ℓ𝑗,𝑟𝑗

𝛽ℓ𝑗,𝑟𝑗
.    

(ℓ𝑗 ,𝑟𝑗)∈𝐽ℎ,𝑗

                                                     (110) 

Then A acts on the basis [𝑒𝛼: 𝛼 ∈ ℤ+
𝑛]by the rule 

𝐴 𝑒𝛼 = 𝐷𝛾𝑗
−1𝛷𝑝̃(𝑗),𝑞̃(𝑗)𝑒𝛼 = 

{
 
 

 
 

0,                          if∃ℓ ∈ {ℎ𝑗  + 1,… , 𝑘𝑗}: 𝛼𝑗,ℓ < 𝑞𝑗,ℓ,
 

1

(𝑘𝑗 + |𝛼(𝑗)|)
|𝑝(𝑗)|

√
(𝛼(𝑗)+𝑝(𝑗))!

(𝛼(𝑗)+𝑞(𝑗))!
. 𝑒𝛼+𝑝̃(𝑗)−𝑞̃(𝑗) .  otherwise.

 

In particular, the operator A acts on [eα: α ∈ ℤ+
n ].in the form  

𝐴𝑒𝛼  =  𝑚(𝛼(𝑗))𝑒𝛼+𝑝̃(𝑗)−𝑞̃(𝑗) ,                                                     (111) 

Where the scalar factors𝑚(𝛼(𝑗))only depend on the j-th portion α(j)of [𝑒𝛼: 𝛼 ∈ ℤ+
𝑛]. 

Proof: The first assertion follows from Lemma (6.3.16), (109), and the relation  

(𝛼 + 𝑝̃(𝑗 ))!

√𝛼! (𝛼 + 𝑝̃(𝑗) − 𝑞̃(𝑗))!

=  
(𝛼(𝑗) + 𝑝(𝑗))

√𝛼(𝑗)! (𝛼(𝑗) + 𝑝(𝑗) − 𝑞(𝑗))!

 

The second statement is an immediate consequence of the first.  
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Remark(6.3.18)[302]:Recall that the decomposition (106) of 𝑇𝛷𝑝̃(𝑗),𝑞̃(𝑗)
 is not unique. However, 

Lemma (6.3.18) shows that the map 

𝛷𝑝̃(𝑗),𝑞̃(𝑗) → ∏ 𝑇𝑇𝛹ℓ𝑗,𝑟𝑗

𝛽ℓ𝑗,𝑟𝑗
. = 𝐴  

(ℓ𝑗 ,𝑟𝑗)∈𝐽ℎ,𝑗

 

Is well-defined, i.e. the operator A is independent of there presentation (106) of 𝑇𝛷𝑝̃(𝑗),𝑞̃(𝑗)
. 

We associate to the space 𝑅𝑘(ℎ) the following set ℇ𝑘(ℎ) of elementary 𝑘-quasi-homogeneous 

functions of quasi-homogeneous degree (1,1) 

ℇ𝑘(ℎ) ≔ ⋃ℇ𝑘,𝑗(ℎ).  

𝑚

𝑗=1

                                                             (112) 

Where for each 𝑗 ∈ {1,… ,𝑚} with 𝑘𝑗 = 1 we putℇ𝑘,𝑗(ℎ) = ∅, and in the case where 𝑘𝑗 >

1wedefine  

ℇ𝑘,𝑗(ℎ) ∶= {𝜓ℓ𝑗,𝑟𝑗(𝑧) = 𝜉𝑗ℓ𝑗
, 𝜉 ̅𝑗𝑟𝑗

, ∶ (ℓ𝑗 , 𝑟𝑗)∈ {1,… , ℎ𝑗} × {ℎ𝑗 + 1,… ,  𝑘𝑗} =  𝐽ℎ,𝑗}.     (113) 

Clearly, ℇ𝑘,𝑗(ℎ)contains ∑ ℎ𝑗(𝑘𝑗 − ℎ𝑗)
𝑚
𝑗=1  elements. These symbols ets define the 

corresponding commutative Toeplitz Banach algebras 𝒯𝜆(ℇ𝑘,𝑗(ℎ))and 𝒯𝜆(ℇ𝑘(ℎ)). The 

following result has been proved in [193]. 

Proposition (6.3.19)[302]:Let k = (k1, … , k𝑚) ∈ ℤ+
𝑚. For each pair of orthogonal multi-

indices 𝑝 and 𝑞 with |𝑝(𝑗)| = |𝑞(𝑗)| for all 𝑗 = 1,… ,𝑚 and each 𝑎 = 𝑎(𝑟1, … , 𝑟𝑚) ∈ 𝐿𝑘−𝑞𝑟
∞  we 

have  

𝑇𝑎𝑇𝛷𝑝,𝑞 = 𝑇𝛷𝑝,𝑞𝑇𝑎 = 𝑇𝑎𝛷𝑝,𝑞 . 

Now formula (101), Proposition (6.3.19), the decomposition (109) with 𝐷𝛾𝑗 ∈ 𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ), and 

the notation in Theorem (6.3.2) permit us to essentially reduce the set of generators of the 

algebra ℬ𝑘(ℎ).Namely, we have: 

Theorem (6.3.20)[302]:The following commutative Banach algebras coincide 

       𝒯𝜆 (𝐿𝑘−𝑞𝑟
∞ ∪ ℇ𝑘(ℎ)) =  𝐵𝑘(ℎ)                                                (114) 

The algebra on the left hand side of (114) is clearly generated by its two commutative 

subalgebras 𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ) and 𝒯𝜆(ℇ𝑘(ℎ)). Whereas the first one is a commutative C∗-algebra, the 

second algebra is just a commutative Banach algebra and is not in variant under the ∗-
operationof ℒ(𝒜𝜆

2(𝔹𝑛)). Recall that 𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ )was analyzed. Our next aim is to analyze the 

structure of the finitely generated algebra 𝒯𝜆(ℇ𝑘(ℎ)). 
As was already mentioned, the structure of the algebra𝒯𝜆(ℇ𝑘(ℎ))does not depend on the weight 

parameter 𝜆. Thus in what follows we will always assume that 𝜆 = 0, i.e., the operators will 

act on the unweighted Bergman space 𝒜2(𝔹𝑛):= 𝒜0
2(𝔹𝑛) and clarify the structure of the 

algebra 𝒯(ℇ𝑘(ℎ):= 𝒯0(ℇ𝑘(ℎ). 
By Lemma (6.3.16)the Toeplitz operator with symbol 𝜓ℓ𝑗,𝑟𝑗(𝑧) = 𝜉𝑗,ℓ𝑗𝜉𝑗,𝑟𝑗 , defined in (105), 

acts on the orthonormal basis [𝑒𝛼: 𝛼 ∈ ℤ+
𝑛]as follows  
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𝑇𝜓ℓ𝑗,𝑟𝑗
𝑒𝛼 = 

{
 
 

 
 

0,                           if 𝛼𝑗𝑟𝑗
= 0,

√(𝑎𝑗ℓ𝑗
+ 1)𝑎𝑗𝑟𝑗

𝑘𝑗 + |𝛼(𝑗)|
. 𝑒𝛼 + 𝑒̃ℓ𝑗 − 𝑒̃𝑟𝑗otherwise.

                      (115) 

Let 𝐻 bean abstract Hilbert space whose orthonormal basis is enumerated by ℤ+
𝑛 . If we consider 

set of operators 𝑇ℓ𝑗,𝑟𝑗on 𝐻 which act on the basis elements according to (115), then the unital 

Banach algebra generated by such operators would be isomorphic and isometric to the algebra 

𝑇(ℇ𝑘(ℎ)Now, we will choose a particular realization of 𝐻 which is different from our present 

setting of weighted Bergman spaces over the unit ball together with a set of operators 𝑇ℓ𝑗,𝑟𝑗. 

We introduce the Segal–Bargmann space and certain Toeplitz operators acting on it. 

The main simplification we achieve in this way lies in the additional tensor product structure 

of the multi-dimensional Segal–Bargmann space. This feature will allow us tore present the 

corresponding Toeplitz operator algebra(and hence the algebra 𝒯 (ℇ𝑘(ℎ)))in the form of a 

tensor product, cf. (130). 

Westar with ℂn equipped with the standard Gaussian measure 

𝑑𝜇𝑛(𝑧):= 𝜋
−𝑛𝑒−|𝑧|

2
 𝑑𝑣(𝑧), 

where dv denotes the Lebesgue measure on ℂ𝑛 ≃ ℝ2𝑛. Denote by 𝐻(ℂ𝑛) the space of entire 

functions on ℂ𝑛. The Segal–Bargmann space (or Fock space) ℱ2(ℂ𝑛) is defined as  

ℱ2(ℂ𝑛) ∶= 𝐻(ℂ𝑛) ∩ 𝐿2(ℂ
𝑛, 𝑑𝜇𝑛). 

Denote by 𝑷 the orthogonal projection from 𝐿2(ℂ
𝑛, 𝑑𝜇𝑛)ontoℱ2(ℂ𝑛). with 𝑔 ∈ 𝐿∞(ℂ

𝑛) the 

Toeplitz operator 𝑻𝑔 with symbol g acts on ℱ2(ℂ𝑛)  in standard way  

𝑻𝑔: 𝑓 ∈ ℱ
2(ℂ𝑛) →  𝑷(𝑔𝑓)  ∈ ℱ2(ℂ𝑛).  

Given 𝑘 = (𝑘1, … , 𝑘𝑚) ∈ ℤ+
𝑚 with |𝑘| = 𝑛, we interpret ℂ𝑛 as a product space  

ℂ𝑛 = ℂ𝑘1 × …× ℂ𝑘𝑚 
and we write 𝑧 = (𝑧(1), … , 𝑧(𝑚)) ∈ ℂ

𝑛, where 𝑧(𝑗): = (𝑧𝑗 , 1, … , 𝑧𝑗 , 𝑘𝑗) ∈ ℂ
𝑘𝑗. With respect to 

polar coordinates we express 𝑧(𝑗) ≠ 0 in the form 𝑧(𝑗) = 𝑟𝑗𝜉(𝑗), where 

𝜉(𝑗) = 
𝑧(𝑗)

|𝑧(𝑗)|
∈ 𝑆2𝑘𝑗−1          and 𝑟𝑖 ≔ |𝑧(𝑗)| ∈ ℝ+ 

Let (ℓ𝑗 , 𝑟𝑗) ∈ {1,… , ℎ𝑗} × {ℎ𝑗+1, … , 𝑘𝑗}. We interpret the elementary 𝑘-quasi-homogeneous 

functions 𝛹ℓ𝑗,𝑟𝑗: = 𝜉ℓ𝑗,𝑟𝑗𝜉ℓ̅𝑗,𝑟𝑗 as elements in L∞(ℂn). It can be checked by an easy calculation 

(see [104]) that 

𝑇𝜓ℓ𝑗,𝑟𝑗
𝑓𝛼 == 

{
 
 

 
 
0,                                                         if𝛼𝑗𝑟𝑗

= 0,

√(𝑎𝑗ℓ𝑗
+ 1)𝑎𝑗𝑟𝑗

𝑘𝑗 + |𝛼(𝑗)|
. 𝑓𝛼 + 𝑒̃ℓ𝑗 + 𝑒̃𝑟𝑗  otherwise.

 

Here the monomials 

𝑓𝛼 = (𝑧)
1

√𝛼!
𝑧𝛼with 𝛼 ∈ ℤ+

𝑛  

form the standard orthonormal basis in ℱ2(ℂ𝑛). 
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That is the set of Toeplitz operators 𝑇𝜓ℓ𝑗,𝑟𝑗
, where 𝑇𝜓ℓ𝑗,𝑟𝑗

∈ ℇ𝑘(ℎ), obeys the relations (115). 

Denote by 𝔗(ℇ𝑘(ℎ)) the unital Banach algebra generated by 𝑇𝜓ℓ𝑗,𝑟𝑗
 with 𝑇𝜓ℓ𝑗,𝑟𝑗

∈ ℇ𝑘(ℎ). 

According to the above remarks we have 

Lemma (6.3.21)[302]:The assignment 𝑇𝜓ℓ𝑗,𝑟𝑗
→ 𝑇𝜓ℓ𝑗,𝑟𝑗

 extends to an isometric isomorphism 

between the Banach algebras 𝒯 (ℇ𝑘 (ℎ)) and 𝔗(ℇ𝑘(ℎ)). 
We start with a classical result on Toeplitz operators with continuous symbols, see 

[162,291]. Denote by 𝐶(𝔹̅𝑛) the algebra of all functions continuous on the closed unit ball 𝔹̅𝑛, 

and let 𝒯(𝐶(𝔹̅𝑛))be the C∗-algebra generated by all Toeplitz operators Ta act in g on the 

Bergman space 𝒜2(𝔹̅𝑛)and having symbols𝑎 ∈ 𝐶(𝔹̅𝑛). 
Theorem (6.3.22)[302]:(See [162,291].) The algebra 𝒯(𝐶(𝔹̅𝑛)) is irreducible and contains the 

ideal 𝐾 of all compact operators on 𝒜2(𝔹𝑛). Each operator 𝒯 ∈ 𝒯(𝐶(𝔹̅𝑛)) has the form 

𝑇 = 𝑇𝑎 + 𝐾, where 𝑎 ∈ 𝐶(𝔹
𝑛) and 𝐾 ∈ 𝒦.                              (116) 

The quotient algebra 𝒯̂(𝐶(𝔹̅𝑛)) = 𝒯(𝐶(𝔹̅𝑛))/𝒦 is isomorphic and isometric to 𝐶(𝑆2𝑛−1), and 

under their identification the homomorphism  

𝜋: 𝒯(𝐶(𝔹̅𝑛)) → 𝒯̂(𝐶(𝔹̅𝑛)) ≅ 𝐶(𝑆2𝑛−1)                               (117) 

is given by 

𝜋: 𝑇 = 𝑇𝑎 + 𝐾 → 𝑎|𝑆2𝑛−1  .  
we note that the representation (116) is not unique. An ambiguity comes from the fact that for 

any two functions 𝑎, 𝑎1 ∈ 𝐶(𝔹
𝑛) with (𝑎 − 𝑎1)|𝑆2𝑛−1 ≡ 0 the difference 𝑇𝑎 − 𝑇𝑎1 is compact, 

and thus 𝑇𝑎 + K = 𝑇𝑎1 + 𝐾1, for 𝐾1 = 𝐾 + (𝑇𝑎 − 𝑇𝑎1) ∈ 𝒦. 

In order to make the representation (116) unique (and in a sense canonical) we proceed as 

follows. We introduce the C∗-algebra 𝐻(𝐶(𝑆2𝑛−1)) consisting of all functions that are 

homogeneous of order zero on 𝔹n and continuous on 𝑆2𝑛−1 ≅ 𝜕𝔹𝑛.Let 𝒯(𝐻(𝐶(𝑆2𝑛−1))) be 

the C∗-algebra generated by all Toeplitz operators acting on the Bergman space 𝒜2(𝔹𝑛) having 

symbols in 𝐻(𝐶(𝑆2𝑛−1)). With any pair of functions 𝑎 ∈ 𝐶(𝔹̅𝑛) and 𝑎̂ ∈ 𝐻(𝐶(𝑆2𝑛−1)) such 

that (𝑎 − 𝑎̂)|𝑆2𝑛−1 ≡ 0 we have 𝑇𝑎 − 𝑇𝑎̂ ∈ 𝒦. Moreover, the algebras 𝒯(𝐶(𝔹𝑛)) and 

𝒯(𝐻(𝐶(𝑆2𝑛−1)))consist of the same operators, in spite of the fact that they have different 

systems of generators. 

Each operator 𝑇 ∈ 𝒯(𝐶(𝔹𝑛)) = 𝒯(𝐻(𝐶(𝑆2𝑛−1))) admits the (unique) canonical 

representation  

𝑇 = 𝑇𝑎̂  + 𝐾,where  𝑎̂ ∈ 𝐻(𝐶(𝑆
2𝑛−1)) and 𝐾 ∈ 𝒦.                       (118) 

we note that none of the above operator 𝑇𝑎̂is compact (unless 𝑇𝑎̂ ≡ 0 and thus 𝑇𝑎̂ = 0), and the 

essential spectrum of 𝑇â is given by  

𝑒𝑠𝑠 − 𝑠𝑝 𝑇𝑎̂ = 𝑎̂(𝑆
2𝑛−1) = 𝑎̂(𝔹𝑛).   

This implies the estimate 𝑟(𝑇𝑎̂)  ≥ ‖𝑎̂‖𝐿∞  for the spectral radius r(Tâ) of Tâ which, together 

with ‖𝑇𝑎̂‖ ≤ ‖𝑎̂‖𝐿∞ , shows that  

‖𝑇𝑎̂‖ = 𝑟(𝑇𝑎̂) = ‖𝑎̂‖𝐿∞       for all 𝑎̂ ∈ (𝐻(𝐶(𝑆
2𝑛−1)).                             (119) 

the above observations permit us to give another equivalent description of the quotient algebra 

𝒯̂(𝐶(𝔹̅𝑛)) = 𝒯̂(𝐻(𝐶(𝑆2𝑛−1))) ≅ 𝐶(𝑆2𝑛−1). Indeed, the assignment  

𝑇̂ = 𝑇𝑎̂ + 𝑘̂ ↦ 𝑇𝑎̂ 
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gives a Banach space isometric isomorphism  

𝒯̂(𝐶(𝔹̅𝑛)) → 𝑇𝐻(𝐶(𝑆
2𝑛−1)):= {𝑇𝑎̂: 𝑎̂ ∈ (𝐻(𝐶(𝑆

2𝑛−1))}.                    (120) 

This isomorphism becomes algebraic after introducing the multiplication law in 𝑇𝐻(𝐶(𝑆
2𝑛−1)) 

as 𝑇𝑎̂1⊙𝑇𝑎̂2 = 𝑇𝑎̂1𝑎̂2. 

With our previous notation let 𝜆 = 0, 𝑛 ∈ ℕ and 𝑚 = 1, so that 𝑘 = (𝑛), and ℎ = (ℎ), with 

1 < ℎ < 𝑛 − 1. Let the tuple 

𝜓 = (𝜓1, . . . , 𝜓𝛾)                                                             (121) 

be the (somehow) ordered set of 𝛾:= ℎ(𝑛 − ℎ) elementary quasi-homogeneous symbols in 

ℇ𝑘(ℎ) = {𝜓𝑗,𝑙(𝑧): =
𝑧𝑗𝑧𝑙̅
|𝑧|2

 ∶  𝑗 =  1, . . . , ℎ, 𝑙 =  ℎ + 1, . . . , 𝑛}, 

And let 𝑇(𝜓) = (𝑇𝜓1 , . . . , 𝑇𝜓𝛾) be the ordered set of the corresponding Toeplitz operators. We 

introduce the Banach algebra ℬ(ℇ𝑘(ℎ)), asubalgebra of 𝐻(𝐶(𝑆2𝑛−1)), being the unital algebra 

enerated by all elementary quasi-homogeneous functions from ℇ𝑘(ℎ), as well as the unital 

Banach algebra 𝒯(ℇ𝑘(ℎ)), a subalgebra of 𝒯(𝐻(𝐶(𝑆2𝑛−1))), which is generated by the 

Toeplitz operators in 𝑇(𝜓). 
Note that in our particular case (𝑚 = 1) the functions 𝜓𝑗 ∈ 𝜓 continuously extend to the sphere 

𝑆2𝑛−1 ≅ 𝜕𝔹𝑛, and thus we are in the framework of the previous subsection. The general case 

of 𝑚 > 1 where such a continuity on the boundary is not fulfilled will be treated in the section. 

We define the following tuples of multi-indexes  

𝑃:= {(𝑝, 𝑞) ∈ ℤ+
𝑛  × ℤ+

𝑛 : 𝑝 = (𝑝1, . . . , 𝑝ℎ , 0, . . . , 0), 𝑞 = (0, . . . ,0, 𝑞ℎ+1  , . . . , 𝑞𝑛), |𝑝| = |𝑞|}.  
If (𝑝, 𝑞) ∈ 𝑷, then there is 𝛼 = 𝛼(𝑝, 𝑞) ∈ ℤ+

𝛾
 such that 

𝑧𝑝𝑧̅𝑞

|𝑧|2|𝑝|
= 𝜓1

𝛼1 …𝜓𝛾
𝛼𝛾  .                                                             (122) 

Consider the space of polynomials ℱ𝑷: = {𝜑(𝑝,𝑞)(𝑧):= 𝑧
𝑝𝑧̅𝑞: (𝑝, 𝑞) ∈ 𝑷}. It is easy to see that 

all the elements of ℱ𝑷 are harmonic polynomials on ℝ2𝑛 ≅ ℂ𝑛. Moreover, we have: 

Lemma (6.3.23)[302]: The functions in ℱ𝑷 are orthogonal in L2(𝔹
n). If were strict them to a 

sphere 𝑟𝑆2𝑛−1 of radius 𝑟 ∈ (0,1), then they define orthogonal functions in 𝐿2(𝑟𝑆
2𝑛−1, 𝜎) 

where 𝜎 denotes the usual surface measure on 𝑟𝑆2𝑛−1. 

Proof: With (𝑝, 𝑞), (𝑟, 𝑠) ∈ 𝑃and suitable numbers 𝐶(𝑝, 𝑞) > 0 it holds  

∫𝑧𝑝𝑧̃𝑞
 

𝔹𝑛

𝑧𝑟𝑧̃𝑠̅̅ ̅̅ ̅̅  𝑑𝑣(𝑧) = ∫𝑧𝑝+𝑠𝑧̃𝑞+𝑟
 

𝔹𝑛

𝑑𝑣(𝑧)  

= ∫𝑧1
𝑝1

 

𝔹𝑛

…𝑧ℎ
𝑝ℎ𝑧ℎ+1

𝑠ℎ+1…𝑧𝑛
𝑠𝑛𝑧̃1

𝑟1… 𝑧̃ℎ
𝑟ℎ𝑧ℎ+1

𝑞ℎ+1 … 𝑧̃𝑛
𝑞𝑛𝑑𝑣(𝑧) = C(𝑝, 𝑞)𝛿𝑝,𝑟𝛿𝑠,𝑞 . 

The second assertion follows by the same argument. 

Let 𝐴 ∈ ℒ(𝐴2(𝔹𝑛)), then we write 𝐵[𝐴](𝑧) ∈ 𝐿∞(𝔹
𝑛) for the Berezin transform of A. More 

precisely, 𝐵[𝐴](𝑧) is defined by 

𝐵[𝐴](𝑧) ≔ 
1

‖𝐾(·, 𝑧)‖0
2 𝐴〈𝐾(·, 𝑧), 𝐾(·, 𝑧)〉0,                                 (123) 

Where K:𝔹n × 𝔹n → C is the reproducing kernel of the unweighted Bergman space 𝐴2(𝔹𝑛) 
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𝐾(𝑢, 𝑧) =
 1

(1 − 〈𝑢, 𝑧〉)𝑛+1
  .  

Recall that 𝐵: ℒ(𝐴2(𝔹𝑛)) → 𝐶𝑏
𝜔(𝔹𝑛) is linear and injective. Here we write 𝐶𝑏

𝜔(𝔹𝑛) for the 

space of bounded real analytic functions on 𝔹n. 

Lemma (6.3.24)[302]: Let 𝛼 ∈ ℤ+
𝛾

 and (𝑝, 𝑞) ∈ 𝑷 be related to 𝛼 via (122), then  

𝐵 [𝑇 𝜓1
𝛼1 …𝑇

𝜓𝛾

𝛼𝛾] (𝑧) = 𝑧𝑝𝑧̃𝑞𝐻|𝑝|(|𝑧|),                                           (124) 

Where the function H|p| fulfills lim
ρ↑1
H|p| (ρ) = 1 and it has the explicit form 

𝐻|𝑝|(|𝑧|) =
2

(|𝑝| − 1)!
(1 − |𝑧|2)𝑛+1 

(𝑛 + |𝑝|)!

𝑛!
. 

×∫
𝑒 − (𝑛 + |𝑝|)𝑠2

(1 − |𝑧|2𝑒−𝑠
2
)
𝑛+|𝑝|+1

𝑠2|𝑝|−1
∞

0

𝑑𝑠                     (125) 

Proof: According to Lemma (6.3.17) the operator product 𝑇 𝜓1
𝛼1 …  𝑇

𝜓𝛾

𝛼𝛾
 acts on the orthonormal 

basis [eβ: β ∈ ℤ+
n ] of A2(𝔹n) in the form 

𝑇 𝜓1
𝛼1 …  𝑇

𝜓𝛾

𝛼𝛾eβ = 𝑚(𝛽)𝑒𝛽+𝑝−𝑞, 

Where m(β) is defined by  

𝑚(𝛽):= {
1

(𝑛 + |𝛽|)|𝑝|!
√
(𝛽 + 𝑝)! 

(𝛽 − 𝑞)!
,     𝑖𝑓 𝛽 −  𝑞 ≥  0 (componentwise),

0,                                                                               otherwise

 

Hence it follows  

〈𝑇 𝜓1
𝛼1 …  𝑇

𝜓𝛾

𝛼𝛾𝑒𝛽  𝐾(·, 𝑧), 𝐾(·, 𝑧)〉0 =  ∑ 〈𝑇 𝜓1
𝛼1 …  𝑇

𝜓𝛾

𝛼𝛾𝑒𝛽𝑒𝛽, 𝑒𝜂〉0
𝛽,𝜂∈ℤ+

𝑛

𝑒𝛽(𝑧)̅̅ ̅̅ ̅̅ ̅𝑒𝜂(𝑧)

=  ∑ 𝑚(𝛽)𝑒𝛽(𝑧)̅̅ ̅̅ ̅̅ ̅𝑒𝛽+𝑝−𝑞  (𝑧)

𝛽𝑗 ≥𝑞𝑗

= ∑ 𝑚(𝛽 + 𝑞)𝑒𝛽(𝑧)̅̅ ̅̅ ̅̅ ̅𝑒𝛽+𝑝(𝑧)

𝛽∈ℤ+
𝑛

 =  (∗). 

Using the explicit form of 𝑚(𝛽 + 𝑞) above and the expression for eβ(z) in (86) together 

with|𝑝| = |𝑞|we obtain 

(∗) =
𝑧𝑝𝑧̃𝑞

𝑛!
∑

𝛤(𝑛 + |𝛽| + |𝑝| + 1)  

(𝑛 + |𝛽| + |𝑝|)|𝑝|
𝛽∈ℤ+

𝑛

|𝑧𝛽|2

𝛽!
=
𝑧𝑝𝑧̃𝑞

𝑛!
∑
𝛤(𝑛 + ℓ + |𝑝| + 1)

(𝑛 + ℓ + |𝑝|)|𝑝|

∞

ℓ=0

|𝑧|2ℓ

ℓ!
. 

In the last equation we have applied the multinomial theorem. In order to obtain an integral 

representation of (∗) we use the well-known relations  

1

(𝑛 + ℓ + |𝑝|)|𝑝|
 =

 1

𝜋|𝑝|
∫ 𝑒−(𝑛+ℓ+|𝑝|)|𝑥|

2

 

𝔹2|𝑝|

𝑑𝑥, 

∑ 𝛤(𝑡 + ℓ)

∞

ℓ=0 

𝑢ℓ

ℓ!
 =

𝛤 (𝑡)

(1 − 𝑢)𝑡
,  

Which hold true for 𝑢 ∈ [0.1]and 𝑡 ≥ 0. Interchanging summation and integration implies  
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(∗) =
𝑧𝑝𝑧̃𝑞

𝑛!

1

𝜋|𝑝|
∫ 𝑒−(𝑛+|𝑝|)|𝑥|

2
 

ℝ2|𝑝|
∑Γ(𝑛 + ℓ + |𝑝| + 1)

(𝑒−|𝑥|
2
|𝑧|2)

ℓ

ℓ!
𝑑𝑥

∞

ℓ=0

=
𝑧𝑝𝑧̃𝑞

𝑛!

(𝑛 + |𝑝|)!

𝜋|𝑝|
∫

𝑒−(𝑛+|𝑝|)|𝑥|
2

(1 − 𝑒−|𝑥|
2|𝑧|2)

𝑛+|𝑝|+1

 

ℝ2|𝑝|
𝑑𝑥 

Finally, by changing to polar coordinates in the last integral, we obtain the expression (125). 

The limit behavior 𝑙𝑖𝑚
𝜌↑1
𝐻|𝑝| (𝜌) = 1 can be directly checked from (125). However, we can also 

give a more abstract argument. By (118) we can write the product of Toeplitz operators in the 

form  

𝑇 𝜓1
𝛼1 …  𝑇

𝜓𝛾

𝛼𝛾 = 𝑇 𝑧𝑝𝑧̃𝑞

|𝑧|2|𝑝|

+ 𝐾,                                                         (126) 

Where 𝐾 is a compact operator. If 𝑓 is a continuous function in a neighborhood of 𝑆2𝑛−1 and 

bounded on 𝔹𝑛 then it is well-known that 𝑙𝑖𝑚
𝜌↑1
𝐵[𝑇𝑓](𝜌𝑧) = 𝑓(𝑧) for all 𝑧 ∈ 𝑆2𝑛−1 (cf.[21]). 

Moreover, it holds 𝑙𝑖𝑚
|𝑧|↑1

𝐵[𝐾](𝑧) = 0. From (126) we obtain 

𝑙𝑖𝑚
𝜌↑1
𝐵 [𝑇 𝜓1

𝛼1 …  𝑇
𝜓𝛾

𝛼𝛾] (𝜌𝑧)  = 𝑧𝑝𝑧̃𝑞 

For all𝑧 ∈ 𝑆2𝑛−1.Together with (124) it follows that 𝑙𝑖𝑚
𝜌↑1
𝐻|𝑝| (𝜌) = 1.  

Recall (see (117)) that the Banach algebra homomorphism π: T(C(𝔹n)) → 𝐶(𝑆2𝑛−1) is given 

by  

𝜋(𝑇𝑎 +  𝐾) = 𝑎|𝑆2𝑛−1  . 
Here 𝐾 is compact and a ∈ C(𝔹̅n) is continuous up to the boundary. 

Proposition (6.3.25)[302]:The restriction of 𝜋 to the algebra 𝒯(ℰ𝑘(ℎ)) is injective. 

Proof: Let 𝑇 ∈ 𝒯(ℰ𝑘(ℎ)) with 𝜋(𝑇) = 0, then we want to show that 𝑇 = 0. Choose sequence  

𝑇ℓ = ∑ 𝑎𝛼(ℓ)𝑇 𝜓1
𝛼1 …  𝑇

𝜓𝛾

𝛼𝛾

 

𝛼∈ℤ+
𝑛

∈ 𝒯(ℰ𝑘(ℎ))  

Such that 𝑙𝑖𝑚
ℓ→∞

𝑇ℓ = 𝑇 in the norm topology. Here for each ℓ ∈ ℤ+only finitely many 

coefficients𝑎𝛼(ℓ)are non-zero. As was already mentioned the operator product 𝑇 𝜓1
𝛼1 …  𝑇

𝜓𝛾

𝛼𝛾
 

admits the decomposition 

𝑇 𝜓1
𝛼1 …  𝑇

𝜓𝛾

𝛼𝛾 = 𝑇 𝜓1
𝛼1 …  𝑇

𝜓𝛾

𝛼𝛾 + 𝐾𝛼 , 𝐾𝛼 ∈ 𝒦,  

And we have 𝜋(𝑇 𝜓1
𝛼1 …  𝑇

𝜓𝛾

𝛼𝛾) = 𝑧𝑝𝑧̃𝑞|𝑧|−2|𝑝| = 𝑧𝑝𝑧̃𝑞, where (p, q) and α are related sin (122). 

Since π is continuous we have 

0 =  𝜋(𝑇)  = 𝑙𝑖𝑚
ℓ→∞

𝜋(𝑇ℓ)   = 𝑙𝑖𝑚
ℓ→∞

∑𝑎𝛼(𝑝, 𝑞)(ℓ)𝑧
𝑝𝑧̃𝑞

𝑝,𝑞

   , 

Where the convergence on the right hand side is in 𝐶(𝑆2𝑛−1). In particular, the convergence 

takes place in 𝐿2(𝑆
2𝑛−1, 𝜎). Due to the orthogonality result in Lemma (6.3.23) it follows 



211 
  

‖∑𝑎𝛼(𝑝, 𝑞)(ℓ)𝑧
𝑝𝑧̃𝑞

𝑃,𝑞

‖

𝐿2(𝑆
2𝑛−1,𝜎 )

2

=∑|𝑎𝛼(𝑝, 𝑞)(ℓ)|
2

𝑝,𝑞

‖𝑧𝑝𝑧̃𝑞‖𝐿2(𝑆2𝑛−1,𝜎 )
2 → 0(ℓ → ∞). 

as a consequence we have that 𝑙𝑖𝑚
ℓ→∞

𝑎𝛼(𝑝, 𝑞)(ℓ) = 0. 

Now we consider the sequence of Berezin transforms 𝐵[𝑇ℓ]. According to Lemma (6.3.24) we 

have for all ℓ ∈ ℤ+ 

𝐵[𝑇ℓ](𝑧) =∑𝑎𝛼(𝑝, 𝑞)(ℓ)𝑧
𝑝𝑧̃𝑞

𝑝,𝑞

𝐻|𝑝|(|𝑧|) =∑𝐻𝑙(|𝑧|)

∞

𝑙=1

∑ 𝑎𝛼(𝑝, 𝑞)
(𝑝,𝑞)

|𝑝|=|𝑞|=𝑙

(ℓ)𝑧𝑝𝑧̃𝑞 . 

by continuity of the Berezin transform, it follows that 𝑙𝑖𝑚
ℓ→∞

𝐵[𝑇ℓ] (𝑧) = 𝐵[𝑇](𝑧)uniformly for 

𝑧 ∈ 𝔹𝑛. In particular, if we fix 𝑟 ∈ (0,1) and restrict 𝐵[𝑇ℓ] to 𝑟𝑆2𝑛−1, then we obtain a 

convergent sequence in 𝐿2(𝑟𝑆
2𝑛−1) Since zpz̃q are orthogonal in 𝐿2(𝑟𝑆

2𝑛−1) and by applying 

𝑙𝑖𝑚
ℓ→∞

𝑎𝛼(𝑝, 𝑞)(ℓ) = 0, we obtain 

𝑙𝑖𝑚
ℓ→∞

𝐻|𝑝|(|𝑧|) 𝑎𝛼(𝑝,𝑞)(ℓ)  =  0 

for all (𝑝, 𝑞) and therefore 𝐵[𝑇ℓ](𝑧) converges to zero in 𝐿2(𝑟𝑆
2𝑛−1). Since r was arbitrary it 

follows that 𝑙𝑖𝑚
ℓ→∞

𝐵 [𝑇ℓ](𝑧) = 𝐵[𝑇](𝑧) = 0 a.e. on Bnand from the continuity of 𝐵[𝑇] we see 

that 𝐵[𝑇] identically vanishes on 𝔹𝑛. Since the Berezin transform B is injective on bounded 

operators we have 𝑇 = 0. 

Corollary (6.3.26)[302]:The algebra 𝒯(ℰk(h)) does not contain any non-zero compact 

operator. Each element 𝑇 ∈ 𝒯(𝒯(ℰ𝑘(ℎ))) admits a unique representation  

𝑇 =  𝑇𝜓 + 𝐾𝜓,                                                            (127) 

Where 𝜓 ∈ 𝐵(ℰ𝑘(ℎ)) and 𝐾𝜓is the compact operator from 𝐾 ∩ 𝒯0(𝐿𝑘−𝑞𝑟
∞ ∪ ℰ𝑘(ℎ)) uniquely 

determined by𝜓;i.e.,if both operators T1 = Tψ + K1 and 𝑇2 = 𝑇𝜓 + 𝐾2 belong to 𝑇(ℰ𝑘(ℎ)), 

then 𝐾1 = 𝐾2,and thus 𝑇1 = 𝑇2. 

Proof: According to Proposition (6.3.24)we know that the homomorphism π is injective on 

𝒯(ℰ𝑘(ℎ)); as it vanishes on compact operators, we have that 𝐾 ∩ 𝒯(ℰ𝑘(ℎ)) = {0}. 
Representation (127) follows from(118). Assuming that both 𝑇1 = 𝑇𝜓 + 𝐾1 and𝑇2 = 𝑇𝜓 + 𝐾2 

belong to 𝒯(ℰ𝑘(ℎ)), we have 𝑇1 − 𝑇2 = 𝐾1 − 𝐾2 ∈ 𝐾 ∩ 𝒯(ℰ𝑘(ℎ)) = {0}. Thus 𝐾1 = 𝐾2 is 

uniquely determined by 𝜓. 

We mention that the latter result remains true for the algebras 𝒯𝜆(ℰ𝑘(ℎ))with the only 

difference that 𝐾𝜓 ∈ 𝐾 ∩ 𝒯𝜆(𝐿𝑘−𝑞𝑟
∞ ∪ ℰ𝑘(ℎ)). 

We mention that the exact form of the compact operator in (127) can be easily figured 

out. Indeed, let ℱ be a dense subset of 𝒯(ℰ𝑘(ℎ))consisting of finite sums of finite products of 

its generators. For elements of ℱ the concrete form of the compact operator in (127) can be 

obtained using (108) and (109). Let now {𝑇𝑝}𝑝∈ℕ, where 𝑇𝑝 = 𝑇𝜓𝑝 + 𝐾𝜓𝑝 ∈ ℱbe a sequence 

that uniformly converges to 𝑇 = 𝑇𝜓 + 𝐾 ∈ 𝒯(ℰ𝑘(ℎ))\ℱ. Then the sequence {𝑇𝑝}𝑝∈ℕ 

converges to 𝒯̂ in the quotient algebra 𝒯̂(𝐻(𝐶(𝑆2𝑛−1))). The isomorphism (120) implies that 

𝑇𝜓𝑝 → 𝑇𝜓 uniformly, and thus 𝐾 = 𝑙𝑖𝑚
𝑝→∞

𝐾𝜓𝑝 . 
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We have then 

𝒯(ℰ𝑘(ℎ))  =  𝒯(ℰ𝑘(ℎ))/(𝒯(ℰ𝑘(ℎ)) ∩  𝒦) ≅ (𝒯(ℰ𝑘(ℎ))  + 𝒦)/𝒦  
⊂  𝒯 (𝐻(𝐶(𝑆2𝑛−1)))/𝒦 ≅ 𝐶(𝑆2𝑛−1).               (128) 

Lemma (6.3.27)[302]: For each𝜓𝑗,𝑙 ∈ ℰk(h), the spectrum of 𝑇𝜓𝑗,𝑙, is given by sp𝑇𝜓𝑗,𝑙 =

𝔻̅ (0,
1

2
). 

Proof:Follows from two facts: 𝑒𝑠𝑠 − 𝑠𝑝 𝑇𝜓𝑗,𝑙 =Range 𝜓𝑗,𝑙|𝑆2𝑛−1 = 𝔻̅ (0,
1

2
), and the spectral 

radius of 𝑇𝜓𝑗,𝑙 is equal to
1

2
 which follows from (119).  

We recall the notion of the joint spectrum (see [285] or [27]). Let A be commutative Banach 

algebra with identity and let 𝑥1, … , 𝑥𝑛 ∈ 𝐴. The joint spectrum of𝑥1, … , 𝑥𝑛 is the subset 

𝜎𝐴(𝑥1, … , 𝑥𝑛)of ℂ𝑛 defined by  

𝜎𝐴(𝑥1, . . . , 𝑥𝑛) = {(𝜑(𝑥1), . . . , 𝜑(𝑥𝑛)): 𝜑 ∈  𝑀(𝐴)}, 
Where 𝑀(𝐴) is the compact set of maximal ideals (≡multiplicative functionals) of 𝐴. 

By (128), the algebra 𝒯(ℰ𝑘(ℎ)) is isomorphic to the unital subalgebra of C(S2n−1) generated 

by the elements of 𝜓 in (101), with the following assignment: 𝑇𝜓𝑗 ⟼𝜓𝑗|𝑆2𝑛−1. Identifying 

them we calculate the joint spectrum of elements of 𝑇(𝜓), relative to 𝐶(𝑆2𝑛−1), as the joint 

spectrum of 𝜓 in the algebra  𝐶(𝑆2𝑛−1). 
Lemma (6.3.28)[302]: The joint spectrum of the Toeplitz operators with symbols in 𝜓 is given 

by 

𝜎(𝑇 (𝜓)) = 𝜓(𝑆2𝑛−1)  ⊂ ℂℎ(𝑛−ℎ).  
Proof: As 𝑆2𝑛−1 is the compact set of maximal ideals of 𝐶(𝑆2𝑛−1),we have  

𝜎(𝑇 (𝜓)) = 𝜎𝐶(𝑆2𝑛−1)(𝜓 ) = 𝜓(𝑆
2𝑛−1). 

At the same time the unital Banach algebra 𝒯(ℰ𝑘(ℎ))it self, considered as a finitely generated 

algebra by elements of 𝑇(𝜓) is isomorphic to the “polynomial” algebra 𝑃(𝜎(𝑇(𝜓))), and, by 

[285], its compact set of maximal ideals coincides with the poly nominally convex hull𝜎̂(𝑇(𝜓)) 
of σ(𝑇(𝜓)), i. e.  

𝑀(𝒯(ℰ𝑘(ℎ)) = 𝜎̂(𝑇(𝜓)).  
 From [285] yields 

Theorem (6.3.29)[302]:The Banach algebra 𝒯(ℰ𝑘(ℎ)) is isomorphic to the algebra 

𝑃(𝜎̂(𝑇(𝜓))). 
We proceed now with the description of the set 𝜎(𝑇(𝜓)).With 𝑟 ∈ ℕ and 𝑠 > 0 let 𝔹̅𝑟(0, 𝑠) be 

the closed ball in ℝr of radius s centered at the origin. 

Example(6.3.30)[302]:Given 𝑛 > 1, consider 𝑚 = 1, so that 𝑘 = (𝑛), and ℎ = (1). In this 

case we have with our former notation  

ℰ𝑘(ℎ) = {𝜓1,2(𝑧) =
𝑧1𝑧2̅
|𝑧|2

 , 𝜓1,3(𝑧) =
𝑧1𝑧3̅
|𝑧|2

 , … , 𝜓1,𝑛(𝑧) =
𝑧1𝑧𝑛̅
|𝑧|2

} .  

By changing to polar coordinates 𝑧𝑗 = 𝑟𝑗𝑒
𝑖𝜃𝑗, with r𝑗 ∈ ℝ+ for 𝑗 = 1,… , 𝑛 and writing 𝑟 =

(𝑟1, 𝑟2, … , 𝑟𝑛) we obtain:  
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𝜓(𝑆2𝑛−1) = {(𝑟1𝑟2𝑒
𝑖(𝜃1−𝜃2), . . . , 𝑟1𝑟𝑛𝑒

𝑖(𝜃1−𝜃𝑛)): |𝑟| = 1, 𝜃𝑗 ∈ [0, 2𝜋), 𝑗 = 1,… , 𝑛}

⊂ 𝔻̅ (0,
1

2
)
𝑛−1

. 

Setting 𝜔𝑗 = |𝜔𝑗|𝑡𝑗 = 𝑟1𝑟𝑗+1𝑒
𝑖(𝜃1−𝜃𝑗+1)for𝑗 = 1,2, . . . , 𝑛 − 1gives 

|𝜔|2 = ∑ |𝜔𝑗  |
2

𝑛−1

𝑗=1

= 𝑟1
2 (1 − 𝑟1

2) ≤
1

4
, 

Which implies that 

𝜓(𝑆2𝑛−1) = {(𝜔1, … , 𝜔𝑛−1) ∈ ℂ
𝑛−1: |𝑤|  ≤

1

2
} = 𝔹̅𝑛−1 (0,

1

2
). 

Notethatthecase𝑛 > 1,𝑚 = 1, 𝑘 = (𝑛),andℎ = (𝑛 − 1)givesthesame result:for 

𝜓 = (𝜓1,𝑛(𝑧) =
𝑧1𝑧𝑛̅
|𝑧|2,

𝜓2,𝑛(𝑧) =
𝑧2𝑧𝑛̅
|𝑧|2,

 . . . , 𝜓𝑛−1,𝑛(𝑧) =
𝑧𝑛−1𝑧𝑛̅
|𝑧|2

),  

We have that 

𝜓(𝑆2𝑛−1) = {(𝜔1, . . . , 𝜔𝑛−1)  ∈  ℂ
𝑛−1: |𝜔|  ≤  

1

2
} =  𝔹̅𝑛−1 (0,

1

2
). 

Example(6.3.31)[302]:Consider now the case: 𝑛 > 3,𝑚 = 1, 𝑘 = (𝑛), and ℎ = (ℎ), with 1 <
ℎ < 𝑛 − 1. In this case we have ℎ(𝑛 − ℎ) elementary quasi-homogeneous symbols,  

ℰ𝑘(ℎ) = {𝜓𝑗,𝑙(𝑧) =
𝑧𝑗𝑧𝑙̅
|𝑧|2,

: 𝑗 = 1, . . . , ℎ, 𝑙 =  ℎ +  1, . . . , 𝑛}.  

Passing to the polar coordinates zj = rje
iθj, for j = 1, . . . , n, and with |z| = 1 we have 

𝜓𝑗,𝑙 = 𝑟𝑗𝑟𝑙𝑒
𝑖(𝜃𝑗−𝜃𝑙 ), where 𝑗 = 1, . . . , ℎ, 𝑙 = ℎ + 1, . . . , 𝑛. 

The range of 𝜓 = (𝜓1,ℎ+1, . . . , 𝜓1,𝑛, . . . , 𝜓ℎ,ℎ+1, . . . , 𝜓ℎ,𝑛) on 𝑆2𝑛−1 is calculated as  

𝜓(𝑆2𝑛−1) = {(𝑟1𝑟ℎ+1𝑒
𝑖(𝜃𝑗−𝜃𝑙 ), … , 𝑟𝑗𝑟𝑙𝑒

𝑖(𝜃𝑗−𝜃𝑙 ), … , 𝑟ℎ𝑟𝑛𝑒
𝑖(𝜃ℎ−𝜃𝑛 )) 

|𝑟|  = 1, 𝜃𝑗 − 𝜃𝑙 ∈ [0, 2𝜋), 𝑗 = 1, . . . , ℎ,  

𝑙 = ℎ + 1, . . . , 𝑛 ⊂  𝔻̅ (0.
1

2
)
(𝑛−ℎ)

. 

Let  

𝑟1𝑟ℎ+1𝑒
𝑖(𝜃𝑗−𝜃𝑙 ) = 𝜔1,ℎ+1 = 𝑎1,ℎ+1𝑡1,ℎ+1, . . . , 

𝑟𝑗𝑟𝑙𝑒
𝑖(𝜃𝑗−𝜃𝑙 ) =  𝜔𝑗,𝑙 = 𝑎𝑗,𝑙 𝑡𝑗,𝑙 , . . . , 

𝑟ℎ𝑟𝑛𝑒
𝑖(𝜃ℎ−𝜃𝑛) = 𝜔ℎ,𝑛 =  𝑎ℎ,𝑛𝑡ℎ,𝑛, 

here 𝑎𝑗,𝑙 ∈ ℝ+, 𝑡𝑗,𝑙 ∈ 𝑆
1, 𝑗 = 1, . . . , ℎand 𝑙 = ℎ + 1, . . . , 𝑛. Moreover, the above components tj,l 

obey the relations  
𝑇 = {𝑡𝑗1,𝑙1𝑡𝑗1,𝑙2𝑡𝑗2,𝑙1𝑡𝑗2,𝑙2 = 1: forall 𝑗1, 𝑗2 ∈ 1, . . . , ℎ and 𝑙1, 𝑙2 ∈ ℎ + 1, . . . , 𝑛}. 

note that not all relations in T are independent. An equivalent reformulation of the relations 

Tisa follows. The equation 𝑡𝑗1,𝑙1𝑡𝑗1,𝑙2̅̅ ̅̅ ̅̅ 𝑡𝑗2,𝑙1̅̅ ̅̅ ̅̅ 𝑡𝑗2,𝑙2 = 1 is equivalent to 𝑡𝑗2,𝑙2 =

𝑡𝑗1,𝑙1̅̅ ̅̅ ̅̅ 𝑡𝑗1,𝑙2𝑡𝑗2,𝑙1showing that only 𝑛 − 1 of the ℎ(𝑛 − ℎ) variables t𝑗.1 are actually independent 

(e.g. taket1,h+1, . . . , t1,n,t2,h+1, . . . , th,h+1) which yields  
𝑇 = {𝑡𝑗,𝑙 = 𝑡1,ℎ+1̅̅ ̅̅ ̅̅ ̅𝑡1,𝑙𝑡𝑗,ℎ+1: 𝑗 = 2, . . . , ℎ, 𝑙 = ℎ + 2, . . . , 𝑛}. 

Then we have 
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|𝜔|2 =∑ ∑ |𝜔𝑗,𝑙 |
2

𝑛

𝑙=ℎ+1

ℎ

𝑗=1

= (𝑟1
2 +··· +𝑟ℎ

2)[1 − (𝑟1
2  +··· +𝑟ℎ

2)] ≤
1

4
, 

Which implies that 

𝜓(𝑆2𝑛−1) = {(𝜔1,ℎ+1, . . . , 𝜔ℎ,𝑛) ∈ ℂ
ℎ(𝑛−ℎ): |𝜔| ≤

1

2
 subject to T} ⊂ 𝔹̅ℎ(𝑛−ℎ) (0,

1

2
), 

Where 𝜔𝑗,𝑙 = 𝑎𝑗,𝑙𝑡𝑗,𝑙, with 𝑗 = 1, . . . , ℎand 𝑙 = ℎ + 1, . . . , 𝑛, as above. 

We unify the results of the above examples in the next lemma. 

Lemma (6.3.32)[302]:Let 𝑛 > 1, 𝑘 = (𝑛), and ℎ = (ℎ), with1 ≤ h ≤ n − 1.Then the vector 

𝜓 in (4.21) has h(n − h) components, and 

𝜓(𝑆2𝑛−1) = 𝛬(𝑛, ℎ)  ⊆  𝔹̅ℎ(𝑛−ℎ) (0,
1

2
), 

Where  

𝛬(𝑛, ℎ) =

{
 

 𝔹̅
𝑛−1(0,

1

2
 ),                              if ℎ = 1, 𝑜𝑟 ℎ =  𝑛 −  1,

{𝜔 = (𝜔1,ℎ+1, . . . , 𝜔ℎ,𝑛)  ∈  𝔹̅
ℎ(𝑛−ℎ) (0,

1

2
):               

𝜔 subject to 𝑇 },                                          otherwise.

                    (129) 

Corollary (6.3.33)[302]:The Banach algebra 𝒯(ℰ𝑘(ℎ)) is isomorphic to the polynomial 

algebra 𝑃(𝛬̂(𝑛, ℎ)), where 𝛬̂(𝑛, ℎ)is the polynomially convex hull of 𝛬(𝑛, ℎ). 
Proof: Follows from the above lemma and Theorem (6.3.29)  

Note that, if ℎ = 1 or ℎ = 𝑛 − 1, then the set 𝛬(𝑛, ℎ) = 𝔹̅ℎ(𝑛−ℎ) (0,
1

2
) is convex and thus 

coincides with its polynomially convex hull. At the same time, in the case 𝑛 > 3 and 1 < ℎ <
𝑛 − 1, an explicit description of the polynomially convex hull 𝛬̂(𝑛, ℎ): of 𝛬(𝑛, ℎ) seems to be 

quite anon-trivial task. We do not know the answer, and leave it as a problem (v) in the section. 

The following discussion provides a (rough) upper bound for 𝛬̂(𝑛, ℎ): 

It is easy to see that 𝛬̂(𝑛, ℎ): is a subset of 𝔹̅h(n−h) (0,
1

2
). We will show here that it is 

even proper subset. With𝑟 ∈ (0,
1

2
) consider the sets  

𝛬𝑟  (𝑛, ℎ):= {𝜔 ∈ 𝛬(𝑛, ℎ): |𝜔| = 𝑟} 
And for each fixed 𝑧 ∈ ℂℎ(𝑛−ℎ) define the holomorphic polynomial 𝑃𝑧(𝜔) ≔ 𝑟−2〈𝜔, 𝑧〉. Let 

𝛬𝑟
𝑐(𝑛, ℎ) be the (open) complement of 𝛬𝑟(𝑛, ℎ) in the 𝑟-sphere  𝑆𝑟

2ℎ(𝑛−ℎ)−1
. For any 𝑧 ∈

𝛬𝑟
𝑐(𝑛, ℎ) there is 0 < 𝛾 < 1 such that 

|〈𝜔, 𝑧〉| ≤ 𝛾 𝑟2, for all 𝜔 ∈ 𝛬𝑟(𝑛, ℎ). 
Hence it follows for 𝜔 ∈ 𝛬𝑟(𝑛, ℎ) and by using the maximum principle in the last equality:  

1 = |𝑃𝑧(𝑧)| ≥ 𝛾
−1 𝑠𝑢𝑝

𝜔∈𝛬𝑟 (𝑛,ℎ)
|𝑃𝑧(𝜔)| ≥  𝛾

−1 𝑠𝑢𝑝
𝜔∈𝛬1

2⁄
 (𝑛,ℎ)

|𝑃𝑧(2𝑟𝜔)|  =  
2𝑟

𝛾
𝑠𝑢𝑝

𝜔∈𝛬(𝑛,ℎ)
𝑃𝑧(𝜔) . 

Thus, no point in 𝛬𝑟
𝑐(𝑛, ℎ) with 𝛾 ≤ 2𝑟 be longs to the polynomial convex hull of 𝛬𝑟

𝑐(𝑛, ℎ). 

In particular this holds for all points in 𝛬1/2
𝑐 (𝑛, ℎ) = 𝜕𝔹̅ℎ(𝑛−ℎ) (0,

1

2
) \𝛬(𝑛, ℎ) ≠ ∅. 

Now we list several properties of 𝛬(𝑛, ℎ) f or the case 𝑛 ≥ 3and 1 < ℎ < 𝑛 − 1. 
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(i) 𝛬̂(𝑛, ℎ) is a compact subset of 𝔹̅ℎ(𝑛−ℎ) (0,
1

2
). 

(ii) None of the points of 𝛬(𝑛, ℎ) is interior, i.e., this set has an empty interior. 

(iii)The set 𝛬(𝑛, ℎ) is a contractible star-like set, i.e., together with each of its point the set 

𝛬(𝑛, ℎ) contains the radius of 𝔹̅ℎ(𝑛−ℎ) (0,
1

2
) passing through this point. 

(iv).Both 𝛬(𝑛, ℎ) and its complement ℂℎ(𝑛−ℎ)\𝛬(𝑛, ℎ) are connected sets. 

(v)The set 𝛬(𝑛, ℎ) is invariant under the following action of the (𝑛 − 1)-dimensional torus 

𝕋𝑛−1. For 𝜏 = (𝜏1,ℎ+1, . . . , 𝜏1,𝑛, 𝜏2,ℎ+1, . . . , 𝜏ℎ,ℎ+1) ∈ 𝕋
𝑛−1 and each point 𝜔 =

(𝜔1,ℎ+1, . . . , 𝜔ℎ,𝑛) ∈ 𝛬(𝑛, ℎ) the coordinates of 𝑢 = 𝜏 · 𝜔 ∈ 𝛬(𝑛, ℎ) are of the form  

𝑢𝑗,𝑙  =  {
𝜏𝑗,𝑙𝜔𝑗,𝑙 ,   if 𝑗 = 1 and 𝑙 = ℎ + 1, . . . , 𝑛, . 𝑜𝑟 𝑗 = 2, . . . , ℎ 𝑎𝑛𝑑 𝑙 = ℎ +  1,

𝜏1,ℎ+1̅̅ ̅̅ ̅̅ ̅̅ 𝜏1,𝑙𝜏𝑗,ℎ+1𝜔𝑗,𝑙 ,                                                                            otherwise.
 

Consider now the general case of 𝑛 > 1, with 𝑚 > 1, that islet 𝑘 = (𝑘1, . . . , 𝑘𝑚) and ℎ =
(ℎ1, . . . , ℎ𝑚). In this case, by (112), 

ℰ𝑘(ℎ) ∶=⋃ℰ𝑘,𝑗(ℎ

𝑚

𝑗=1

 ), 

Where for each j ∈ {1, . . . , m} we have used the notation in (113). 

We consider as well the ordered sets 𝜓 and 𝜓[𝑗] formed by elements of ℰk(h) and ℰ𝑘,𝑗(ℎ), 𝑗 =

1, . . . , 𝑚, respectively, together with the corresponding unital Banach Toeplitz operator 

algebras: 𝒯(ℰ𝑘(ℎ)), generated by operators acting on 𝒜2(𝔹
n), and 𝒯(ℰk,j(h)), generated by 

operators acting on 𝒜2(𝔹
𝑘𝑗), where 𝑗 = 1, . . . , 𝑚. 

With the above multi- index 𝑘 = (𝑘1, . . . , 𝑘𝑚) ∈ ℤ+
𝑚, we interpret ℂ𝑛as a product space 

ℂ𝑛  =  ℂ𝑘1  ×···× ℂ𝑘𝑚 . 
As is well known, in this situation the standard Hilbert space tensor product decomposition 

holds  

ℱ2(ℂ𝑛)  = ℱ2(ℂ𝑘1)⊗···⊗ ℱ2(ℂ𝑘𝑚). 
Similarly we have 

𝒜𝑘 ∶= 𝒜2(𝔹
𝑘1) ×···× (𝔹𝑘𝑛) = 𝒜2(𝔹

𝑘1)⊗···⊗𝒜2(𝔹
𝑘𝑚).  

We introduce as well the unital Banach algebras: 𝔗(ℰk(h)), generated by Toeplitz operators 

on ℱ2(ℂ𝑛) with symbols in ℰ𝑘(ℎ), and 𝒯(ℰ𝑘,𝑗(ℎ)), generated by Toeplitz operators onℱ2(ℂkj) 

with symbols in ℰk,j(h), where 𝑗 = 1, . . . , 𝑚. By Lemma (6.3.21) we have  

𝒯(ℰ𝑘,𝑗(ℎ) ≅ 𝔗(ℰ𝑘(ℎ)) =

𝑚
⊗
𝑗 = 1

𝔗ℰ𝑘,𝑗(ℎ) ≅

𝑚
⊗
𝑗 = 1

𝒯(ℰ𝑘,𝑗(ℎ)).                       (130) 

since the choice of the tensor product norm is somehow tricky, some comments to the above 

formula have to be added. In the setting of C∗-algebras the task is simpler and therefore we first 

extend the algebras 𝒯(ℰ𝑘,𝑗(ℎ))and 𝒯(ℰ𝑘,𝑗(ℎ)) to the corresponding C∗-algebras 𝒯∗(ℰ𝑘,𝑗(ℎ)) 

and 𝒯∗(ℰ𝑘,𝑗(ℎ)) where 𝑗 = 1, . . . , 𝑚. Note that all these C∗-algebras are of type I. A simple 

method of proving that 𝒯∗(ℰ𝑘,𝑗(ℎ)) is of type I uses the observation that it is asubalgebra of 

𝒯(𝐶(𝔹̅𝑘𝑚𝑗𝑘)),which by its description in Theorem (6.3.23) is a 𝐺𝐶𝑅-algebra. Thus these C∗-
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algebras are nuclear (see, for example, [44,182]). This in turn implies that the C∗-cross-norms 

on the tensor products  
𝑚
⊗
𝑗 = 1

𝔗∗(ℰ𝑘,𝑗(ℎ)) and 

𝑚
⊗
𝑗 = 1

𝒯∗(ℰ𝑘,𝑗(ℎ)) 

are uniquely defined and coincide, in particular, with the spatial cross-norm [80,44], being the 

standard norm of operators acting on the Hilbert spaces ℱ2(ℂ𝑛)) and Ak, respectively. Finally 

the tensor products of Banach algebras  
𝑚
⊗
𝑗 = 1

𝔗(ℰ𝑘,𝑗(ℎ)) and

𝑚
⊗
𝑗 = 1

𝒯(ℰ𝑘,𝑗(ℎ)) 

In her it the operator norm from their C∗-algebra extensions. 

Theorem (6.3.34)[302]:The compact set 𝑀(𝒯𝜆(ℰ𝑘(ℎ))) of maximal ideals of the algebra 

𝒯𝜆(ℰ𝑘(ℎ))is given by 

𝑀𝒯𝜆(ℰ𝑘(ℎ)) =  𝛬̂(𝑘1, ℎ1) ×···× 𝛬̂(𝑘𝑚, ℎ𝑚).   (131) 

Proof: As was stated before, the description of the algebra 𝒯λ(ℰk(h))  does not depend on the 

weight parameter λ. That is all algebras 𝒯𝜆(ℰ𝑘(ℎ))  , where 𝜆 ∈ (−1,∞), are isomorphic and 

thus have the same compact set of maximal ideals. By (110) the compact set of maximal ideals 

of the algebra 𝒯(ℰ𝑘(ℎ)) (the unweighted case𝜆 = 0) coincides with the one of the algebra' 

⊗𝑗=1
𝑚 𝒯(ℰ𝑘,𝑗(ℎ)). Then by the terminology of [136], the norm on 𝐴𝑘 is uniform, and the 

corresponding operator (spatial) norm is ordinary. By [136], 

𝑀(

𝑚
⊗
𝑗 = 1

  𝒯(ℰ𝑘,𝑗(ℎ))) = 𝑀  (𝒯(ℰ𝑘(ℎ)) ×···× 𝑀(𝒯(ℰ𝑘,𝑚(ℎ)), 

which, together with Corollary (6.3.34) and there marks after Lemma (6.3.29) finishes the 

proof.  

We now describe the space of maximal ideals in (131) in a different form. As before let 𝑘 =
(𝑘1, . . . , 𝑘𝑚)and consider the following compact subset of the boundary ∂𝔹n 

𝐷𝑐𝑜𝑚𝑝: = {(𝑧(1), . . . , 𝑧(𝑚)) ∈ ℂ
𝑛: |𝑧(𝑗 )| =

 1

√𝑚
   𝑓𝑜𝑟 𝑗 = 1, . . . , 𝑚} 

≅ 𝑆  1
√𝑚

2𝑘1−1 ×···× 𝑆  1
√𝑚

2𝑘𝑚−1 .  

We interpret the tuple 𝜓 = (𝜓[1], . . . , 𝜓[𝑚]) of ordered elementary k-quasi-homogeneous 

symbols on ℂn as a vector valued function 

𝜓 ∶  𝐷𝑐𝑜𝑚𝑝 → ℂ
𝛾,  

Here 𝛾 = ∑ ℎ𝑗(𝑘𝑗 − ℎ𝑗)
𝑚
𝑗=1 . As a consequence of Theorem (6.3.35) we have: 

Corollary (6.3.35)[302]: The compact set 𝑀(𝑇𝜆(𝐸𝑘(ℎ)))in(131) coincides with the 

polynomial convex hull 𝜓̂ (𝐷𝑐𝑜𝑚𝑝) of the range 𝜓(𝐷𝑐𝑜𝑚𝑝). 

Proof: It is easy to check that 𝜓(𝐷𝑐𝑜𝑚𝑝) = 𝛬(𝑘1, ℎ1) ×···× 𝛬(𝑘𝑚, ℎ𝑚). Note that the relation 

𝑋̂ × 𝑌̂ = 𝑋 × 𝑌 ̂ holds for compact subsets 𝑋 ⊂ ℂ𝑛1 and 𝑌 ⊂ ℂ𝑛2 . Hence we have  

𝜓̂ (𝐷𝑐𝑜𝑚𝑝)  =  [𝛬(𝑘1, ℎ1) ×···× 𝛬(𝑘𝑚, ℎ𝑚)]
 = 𝛬̂(𝑘1, ℎ1) ×···× (𝑘𝑚, ℎ𝑚). 

Now, the assertion follows from Theorem (6.3.35). 
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We recall some standard notation (see [285]). Given acompact (polynomially convex) set 𝑀 ⊂
ℂ𝑞, we denote by 𝑃(𝑀) the closed subalgebra of 𝐶(𝑀) consisting of all functions that 

uniformly on M can be approximated by analytic polynomials. The algebra 𝐴(𝑀) is the 

subalgebra of C(M) consisting of all functions that are analytic on the interior int(M) of 𝑀. 

Note that 𝐴(𝑀) = 𝐶(𝑀) in the case where 𝑖𝑛𝑡(𝑀) = ∅. 
Recall as well that the inclusion 𝑃(𝑀) ⊂ 𝐴(𝑀) holds. Although many partial results (both 

positive andcounterexamples)areknown,thequestionwhetherthe algebras 𝑃(𝑀)and 𝐴(𝑀) 
coincide still remains open for general subsets 𝑀 ⊂ ℂ𝑞. 

Theorem (6.3.36)[302]: The Gelf and trans form is generated by the following mapping of 

generators of the algebra 𝒯(ℰ𝑘(ℎ)) 

 𝑇𝜓ℓ𝑗 ,𝑟𝑗
⟼ 𝜔𝑗,ℓ𝑗 ,𝑟𝑗                                                               (132) 

Where 𝜓ℓ𝑗 ,𝑟𝑗 is given in (93) and 𝜔 = (𝜔1,1,ℎ1+1, . . . , 𝜔𝑗,ℓ𝑗,𝑟𝑗 , . . . , 𝜔𝑚, ℎ𝑚, 𝑘𝑚) ∈

𝑀(𝒯𝜆(ℰ𝑘(ℎ))). 
(i)The Gelf and image of the algebra 𝒯λ(ℰk(h)) coincides with P(M),where 

𝑀 = 𝑀(𝒯𝜆(ℰ𝑘(ℎ))) =  𝛬̂(𝑘1, ℎ1) ×···× 𝛬̂(𝑘𝑚, ℎ𝑚). 
(ii)The isomorphism 𝒯λ(ℰk(h))) → P(M) is generated by the mapping (132) of generators of 

the algebra (𝒯λ(ℰk(h))). 
(iii)In the case where either ℎ𝑗 = 1orℎ𝑗 = 𝑘𝑗 − 1 for all 𝑗 = 1, . . . , 𝑚 we have that  

𝑀 = 𝔹̅𝑘1−1 (0,
1

2
) ×···× 𝔹̅𝑘𝑚−1 (0,

1

2
)  and 𝑃(𝑀) = 𝐴(𝑀). 
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List of Symbols 

Symbol  Page  

𝑑𝑖𝑎𝑔 diagonal  1 

⊝ Direct difference  3 

𝑚𝑖𝑛 minimum  14 

𝑚𝑎𝑥 maximum 15 

𝑑𝑒𝑡 Determinant  21 

𝐻∞ essential Hardy space 22 

𝐻𝑝 Hardy space  22 

𝑑𝑖𝑚 dimension  23 

Ker kernel  23 

𝐿1 Lebesgue space of the real line  24 

𝐿2 Hibert space 25 

𝑠𝑢𝑝𝑝 support  28 

𝐺𝑊 Gleason – Whitny  31 

𝑖𝑛𝑓 infimum  33 

𝐿𝑞  Dual Lebesgue space  34 

sup supremum 34 

𝐻1 Hardy space  34 

dom domain 35 

𝐻2 Hardy space 41 

𝐿∞ essential Lebesgue space 43` 

WOT weak operator topology  47 

𝐴𝑢𝑡 Automorphism  48 

⊕ orthogonal sum 48 
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⊗ tensor product  48 

𝑙𝑎𝑡 lattice  50 

𝑅𝑎𝑛 range  53 

ℓ2 Hilbert space of sequences  56 

𝑅𝑒𝑝 representation 56 

𝐴𝑙𝑔 Algebra 60 

𝑞 − 𝐼𝑛𝑛 quasi-inner 63 

𝑑𝑖𝑠𝑡 distance  65 

𝑖𝑚 imaginary  80 

𝑡𝑟 trace  86 

𝑙𝑒𝑥 lexicographic  93 

𝑅𝑒 real 96 

𝑝𝑟𝑜𝑗 projection  112 

𝑎𝑟𝑔 argument 131 

𝐻𝑢 Hankel operator 137 

𝒜𝜆
2 Bergman spaces 163 

𝑟𝑎𝑑 radial 163 

𝑐𝑙𝑜𝑠 closure  175 

⨂̂𝜀 Injective tensor product  182 

𝑠𝑝 spectrum  185 

𝑒𝑠𝑠 essential 207 

⨀ multiplication law  208 

𝑐𝑜𝑚𝑝 compact 216 
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