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Abstract

We determine the eigenvalues inequalities, sums of hermitian and normal matrices,
Schubert calculus, Wielant’s theorem with spectral sets and Banach algebra. The principal
submatrices with noncommutative function theory and unique extensions was shown. We give
applications of the Fuglede-Kadison determinant, Riesz and Szego type factorizations theorem
for noncommutative Hardy spaces and for a Helson-Szego theorem noncommutative Hardy-
Lorentz spaces. We also give a Helson-Szego subdiagonal subalgebras with applications to
Toeplitz operators. The algebraic structure of non-commutative analytic with quasi-radial
quasi-homogeneous symbols and commutative Banach algebra of Toeplitz algebra and
operators are presented, the structure of a commutative Banach algebra on the unit ball and
quasi-nilpotent group action, generated by Toeplitz operators with quasi-radial quasi-
homogeneous symbols are discussed.
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Introduction

We examine, simultaneously, all of the k-square principal submatrices of an n-square
matrix A. Usually A has been symmetric or Hermitian, and much of our effort has centered
around the well-known fact asserting that the eigenvalues of an (n — I)-square principal
submatrix of Hermitian A always interlace the eigenvalues of A.

We generalize to the setting of Arveson’s maximal subdiagonal subalgebras of finite von
Neumann algebras, the Szego LP-distance estimate, and classical theorems of F. and M. Riesz,
Gleason and Whitney, and Kolmogorov. We first use properties of the Fuglede-Kadison
determinant on LP (M), for a finite von Neumann algebra M, to give several useful variants of
the noncommutative Szegoé theorem of LP(M), including the one usually attributed to
Kolmogorov and Krein.

The non-commutative analytic Toeplitz algebra is the WOT-closed algebra generated
by the left regular representation of the free semigroup on n generators. We develop a detailed
picture of the algebraic structure of this algebra. In particalur, we show that there is a canonical
homomorphism of group of the automorphism group onto the of conformal automorphisms of
the complex n-ball. We present here a quite unexpected result: Apart from already known
commutative C*- algebras generated by Toeplitz operators on the unit ball, there are many other
Banach algebras generated by Toeplitz operators which are commutative on each weighted
Bergaman space.

We extend eigenvalue inequalities due of Freede-Thompson and Horn for sums of
eignevalues of two Hermitian matrices.Let A be a complex unital Banach algebraand leta, b €
A. We give regions of the complex plane which contain the spectrum of a + b or ab using von
Neumann spectral set theory.

Let A be a finite subdiagonal algebra in Arveson’s sense. Let HP(A) be the associated
noncommutative Hardy spaces, 0 < p < oo. We extend to the case of all positive indices
most recent results about these spaces, which include notably the Riesz, Szego and inner-outer
type factorizations. We formulate and establish a noncommutative version of the well-known
Helson- Szego theorem about the angle between past and future for subdiagonal subalgebras.

Studying commutative C*-algebras generated by Toeplitz operators on the unit ball it
was proved that, given a maximal commutative subgroup of biholomorphisms of the unit ball,
the C*-algebra generated by Toeplitz operators, whose symbols are invariant under the action
of this subgroup, is commutative on each standard weighted Bergman space. There are five
different pairwise non-conjugate model classes of such subgroups: quasi-elliptic, quasi-
parabolic, quasi-hyperbolic, nilpotent, and quasi-nilpotent. It was observed in Vasilevski that
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there are many other, not geometrically defined, classes of symbols which generate
commutative Toeplitz operator algebras on each weighted Bergman space. These classes of
symbols were subordinated to the quasi-elliptic group. The corresponding commutative
operator algebras were Banach, and being extended to C*-algebras they became non-
commutative. These result were extended then to the classes of symbols, subordinated to the
quasi-hyperbolic and quasi-parabolic groups. Let A (B™) denote the standard weighted
Bergman space over the unit ball B"™ in C". New classes of commutative Banach
algebras 7°(A) which are generated by Toeplitz operators on A% (B™) have been recently
discovered in Vasilevski. ). These algebras are induced by the action of the quasi-elliptic group
of biholomorphisms of B". we analyze in detail the internal structure of such an algebra in the
lowest dimensional case n = 2. Extending recent results to the higher dimensional setting n >
3 we provide a futher step in the structural analysis of a class of commutative Banach algebras
generated by Toeplitz operators on the standard weighted Bergman space over the n-
dimensional complex unit ball. The algebras By, (h) under study are subordinated to the gausi-
elliptic group of automorphisms of B™ and in term of their generators they were described.

Vi
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Chapter 1
Eigenvalues of Sums and Principal Submatrices

We study the singular values of the submatrices (not necessarily principal submatrices)
of an arbitrary matrix A. Although we study not necessarily principal submatrices, we Principal
Submatrices series because the singular values of an arbitrary submatrix of matrix A may be
approached through an examination of the principal submatrices of AA™.
Section (1.1) Hermitian Matrices

Leta = a(aq, ...a,,) and B = (B, ... , B,,) be arbitrary nonincreasing sequences of real
numbers. We consider the question: for which nonincreasing sequencesy = (y4, ... ¥, )do there
exist Hermitian matrices A and B such that 4, B and A + B have o, 3 and y respectively as
their sequences of eigenvalues. Necessary conditions have been obtained by Weyl [108],
Lidskii [292], Wielandt [312, 263, 278, 289], and Amir-Moez [18], Besides the obvious
condition

N _ yl_i_'"'—l'y_n_:al+"'+an+ﬁl+"'+,8nr 1)
these conditions are linear inequalities of the form
]/kl.+°"+]/kr Saii+---+air+ﬁji+---+ﬁjr, (2)

where i,j and k are increasing sequences of integers. As far as we know all other known
necessary conditions are consequences of these inequalities. It is therefore natural to conjecture
that the set E of all possible y forms a convex subset of the hyperplane (1). The set E has
hitherto not been determined except in the simple cases n = 1, 2, and will not be determined
in general here.

We give a method of finding conditions of the form (2) which will yield many new ones.
We shall find all possible inequalities (2) for » = 1, 2, and arbitrary n, and establish a large
class of such inequalities for r=3. We use Lidskii's method to find a necessary condition on the
boundary points of a subset E' of E. These results are used to determine the set E forn = 3, 4.
In addition a conjecture is given for E in general.

If x is a sequence, x,, denotes the pt"component of x. If A is a matrix, A* and AA’ denote
the conjugate transpose and transpose of A. If i is a sequence of integers such that 1 = i; <
-+ < I,. = n, by the complement of i with respect to n we mean the sequence obtained by
deleting the terms of i from the sequence 1,2,...,n. If a is a sequence of numbers, diag
(ay, ... a,) denotes the diagonal matrix with diagonal a. If M and N are matrices, diag (M, N)
denotes the direct sum matrix

(o w)
0 N

The inner product of the vectors x and y is written (x. y).1,. is the unit matrix of order r.
Finally expB denotes the Y.;_, B™/n!.
We are going to use methods introduced by Lidskii [292,31.1]. Lidskii gave sketchy proofs of
his results and it is not obvious how to reconstruct his argument, see [312]. we will therefore
derive the results of Lidskii which are needed.

The set E referred to in the introduction is the set of points y such thaty, = --- 2 y,. and
y is the sequence of eigenvalues of diag (a4, ..., @) + U*diag (B4, ..., Bn)U, where U ranges
over all unitary matrices. Fix a, B, with a; > -+ > a,,, and p; > --- > B,,. let E’ be the subset
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of E obtained by letting U range over real orthogonal matrices. To indicate the dependence of
E' on a and B we write E'(ay, ... ay; By, .-- B5,). Boundary points and interior points of E’ are
always taken with respect to the relative topology of the hyperplane (1).
Theorem (1.1.1)[10]:1f y is a boundary point of E’ with distinct coordinates then there exist a
positive integer r < n and increasing sequences i, j, and k of order r such that
(yki. .ykr) € E’(al-l, e Qe s Bis "'ﬁjr)
And
(yk’i' ']/k’n—r) € E'(ai,l, a’l-,n_r; ﬁj’l’ "'ﬁj’r—n)

where i’,j' and k'are the complements of i, j and k with respect to n.
Proof: Let U, be a real orthogonal matrix such that diag (a4, ... a,) + Ugdiag (B4, -.-, Bn) Uy
has eigenvalues y. If T = (t,,) is a real anti-symmetric matrix, expT is orthogonal. For
sufficiently small values of t,,,, the eigenvalues 4; > --- > 4, 0f
diag (a4, ...a,) + Ujexp(=T)Bexp (T)U,
where B = diag(B,, ... B,), are distinct and determine a point of E'. Let A = U,diag
(aq, ...an)Uy, and let x, be a unit eigenvector of A + exp(—T)BexpT corresponding to the
eigenvector A, which varies continuously with T. We have

Ax; + exp(—=T)Bexp(T)x; = A;x;. (3)

Using superscripts to denote derivatives with respect to t,,,p < g, it follows that
AxP? + exp(—T)B exp(T)x'? + (exp(=T) B exp(T))Pix,
= Az, + 2,x07, (4)

It is easily seen that (expT)P? reduces to TP? when T = 0. Hence when T =
0, (exp( —T)BexpT)P? = (B, — B,)ZP? where ZP1 is the matrix whose (p,q) and (q,p)

entries are 1 and whose other entries are 0. .Since x;is a unit vector,(x],x]’q) = 0. Therefore
by (3).
(Axt, qu) + (exp(=T)B exp(T)xl,qu =0 (5)
Taking the inner product of (4) with x,we find by (5) and the symmetry of A and B,
A = ((exp(~T) BexpT) P x,, x,)
Setting T =0,
y]pq =208 — IB)wprLqi (6)

where 1w and y}'® denote the values of x; and x/% when T = 0. If y is not an interior point

of E’ the rank of the n by n(n — [1)/2 matrix G = (yP?) must be less than n — 1. Now let
D = (wyw,q) be the n by n(n — 1) matrix whose rows are indexed by ], where 1 = p = n,
and whose columns are indexed by (p, q), where p and g vary over the range 1 = p = n, and
p # q rather than p < q. Clearly D, and hence DD’ has the same rank as G. If F is the square
matrix (w?,) of order n,then DD' = I — FF'. Thus ifrank D < n — 1, FF"' has 1 as a multiple
eigenvalue. Since FF' is stochastic, it follows that FF'is decomposable [91,158,310,122]. That
is to say, FF' = P diag (M, N)P', where M and Nare square matrices and P is a permutation

matrix. Let
G H\ _,
F=P (] K) P
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be the decomposition of F corresponding to that of FF'. Then GJ' + HK' = 0. Since the entries
of F are nonnegative, we have GJ' = HK' = 0. It follows that if a column of G contains a
nonzero term then all terms of the corresponding column of J vanish, and similarly for H and
K. Moving all nonzero columns of G and H to the left, we find
Sl 0 l
F=P ( 0 Sz) P
where R is another permutation matrix. Since F is doubly stochastic, S;and S, must be square

matrices. If W= (w,,) then W =P (Vgl Vg ) R, where W ;and W, are square. Setting
2

I' =diag(yy, ..., ¥n), We have A+ B =W'I'W. Therefore RAR' + RBR' = G, whereC =
diag (W{,W;)P'I'P diag(W,, W,) Let jand k be such that RBR' = diag (B;,, ..., B),) and
P'I'P = diag (Yi,» - Yk, ). |f W is of order r, then C =diag (C;,C;) where C; has
eigenvalues ¥y ,...,vx,and C, has eigenvalues yy . ,..,¥k,. Therefore RAR' =
diag (A1, A;), where A, + diag (B;,, ... B;,) = C; and A, +diag (B, ,, ., B;,) = C,. This
completes the proof.

fM = (m;)1Sisr,1<j<ramatrixof orderrand N = (ny),r+ 1=k <
n,7+ 1= ¢S nisamatrix of order n — r, we define M x N to be the matrix (m;;,n;) of
order r(n — r) whose rows are indexed by pairs (i, k)and whose columns are indexed by pairs
(j,1). This product is left and right distributive and (M X N)" = M'x N'. Also (M, X
N,)(M, X N,) = (M;M, X N;N,). We set MON = (M x1I,_,) — (I, — N). It follows
from these remarks that if W, and W, are orthogonal then so is W, x W, and

(W MW) © (W/NW,) = (Wy x W,)(M © N)(W; X W) (7)

The index of a real symmetric matrix is the number of its positive eigenvalues.
Lemma (1.1.2)[10]: If M, N, and M + N are nonsingular real symmetric matrices then index
M + index N = index (M + N) + index (M~1 + N71),
Proof: We have M1 + N=1 = N"1(N + M)M~1so that M~ + N1 is nonsingular. Also

(w6 WG STy ine)

The result now follows by the Law of Inertia.

Theorem (1.1.3)[10]:Let y be a boundary point of E* with distinct coordinates. Then there exist
sequences i, j and k satisfying the conclusion of Theorem (1.1.1) and such that

i+ttt =k ke r(r+1)/2.

Proof: Using a slight change of notation, we have seen that there exist permutations i, j and k
of (1,...,n)and real symmetric matrices A;, A,, B;, B,,C; ,C, such that A; has eigenvalues
a;,, .. a;. A, has. eigenvalues a; _, ...a; , By = diag(Bi,,..B; ), B = diag(B; ., .. Bi, ). C1
has eigenvalues yy_, ..., ¥k,  C, has eigenvalues yy . ,..,¥x,, ahdA+ B = C, where A =
diag(A;,A;),B = diag(B,B;) C = diag(C;,C;) . We also assume iy < -+ < i, and
iypq < - <i, and similarly for the j’s and k's. We set @, = a;,, 8, = B, and 7, = ¥, 1 =
L=n.LetT = (t,,) be areal anti-symmetric matrix and let 1; > --- > 4, be the eigenvalues
of A+ exp(—T)BexpT. If x;,..,x, is a real orthonormal system of corresponding

eigenvectors, we let «; and w7 be the values of x; and x};’ when T = 0, where x’? denotes
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the derivative of x; with respect to t,,,,p < q. If W is the matrix whose rows are wy, ..., wp,
then W = diag(W,, W,)and C; = Wi} Wy, C, = W, T, Wowherel; = diag(yk,, -, Yk, )2 =
diag (Yx,,,» - Yk,) Clearly 4;, reduces to 7, when T =0, and we let 7 be the value of
AP = OAk1/0ty,q When T =0.

Starting from the equation

Aldpq + (exp(—t) BexpT)xy = Agxy (8)
We find
AT + (exp(—t) BexpT)xy, + (exp(—T) B expT)Pixy,
= Aol % + Ay (9)
As in Theorem (1.1.1) is follows that
A?q = ((exp(=T) B expT)Pxy,, xy;) (10)
and therefore
leq = 2(,819 - ﬁq)(‘)lpwlq (11)

We are going to test o = 4;, + --- + 4, for a local extreme at T = 0. If p and q are = r, then
expT has the form diag (exp Ty, 0) when T,,, = Ofor (u,v) # (p,q), and hence o remains
constant for T,,, in a neighborhood of 0. Therefore all partial derivatives of ¢ with respect to
tpq Vanish at the origin when p < q = r, and similarly whenr < p < q. by (11), c?4 = 0 at
T=0 when p = r < g, since that last n — r components or w; are 0 when 1 = I = r. we now
calculate A" at T=0 when
1=Sp=r<gq=n, 1susr<vsn 1=SI=T. (12)

Differentiation of (10) yields

Aol = ((exp(=T) B expT)P1x}?, 21 + 2((exp(=T) B expT)PIxif, x1y) (13)
It is easily seen that when T = 0

(exp(=T)Bexp T)P1¥W

1
= — (TP1BT™ + T*BTP1) + 5 B(TPIT* + T*TP9)

1
+ 5 (TPAT™ + TWTPD)B

Considering only the cases (12), a straightforward calculation shows that
when T =0,
((exp(=T) B expT)PIxy/, 2,y =0forp #u,q #v

= (qu — @P — [ju)wlpwlu forp+uq=v

= (Zﬂp__ :Bq__ ﬁv)wlpwlv forp=u,q#v

==2(Bp — Bp)(wip — why)forp =u,q =v
Recalling that w,, = 0for I = r < q, we find that when I" = 0,

T
Z((exp(—T) B exp T)PTYY xpy, 24y) = —2 (ﬁ_p - ﬁ_p) forp=u,q=v
J=1
= 0 otherwise. (14)
The second term on the right of (13) reduces when T = 0 to

4



2(By - B_p)wﬁov“’lp (15)
To compute wy,’, rewrite (9) in the form
(A+exp(—T)BexpT — A, I,)x})
=—(exp(=T)B exp T)" xy, + Ay x,
Setting T = 0 and using (11), we find, since w = 0,
(C - ]71 In)x;w = _(.Bu - .Bv)y:
where y is the vector such that y, = w,, = 0,5, = wp andy, =0 form # um # v.
Therefore
wﬁ)v = (.Bu - .Bv)((yll I, — C)_ly)q
Since g > r, and C = diag (Cy, C;), we may replace C by C, and I, by I,,_, Thus
w}g} = (.Bu - .Bv)dquwlu (16)
where d,, is the (g, v) entry of ((7; I,—r — C;)™*. Now
()71 In—r - CZ)_1 = (WZI((?Z In—r - 6)_1WZ)_1

n

wmqw
qu Yi = Vm ( )

m=r+1

Combining (13), (14), (15), (16), and (17) We findatT=0
P4 = 2(By = Be) (Bu — .Bv)z Z wl’”w“‘ e 2800 (B = Be). (18)

=1 m=r+1
where 627 = 1 when (p,q) = (u, v) and =0 otherW|se

We must now determine the index of the matrix ¢ = (o?9"),._, of order r(n — )
whose rows and columns are indexed by pairs (p, q) and (u, v) satisfying (12).
The double sum on the right of (18) is the (pq, uv) entry of
Wy x WR)' (I © L)' Wy x W) = (Wy X Wo) (I © L)Wy x Wp)) ™t
By (7) this reduces to
(CiOC)'=(A;+B)O (4 +B)=((4,©4)+ (BOB,) "
Therefore by (18)

%G = (B1 © Bz)((A1 © Az) + (B1 © Bz))_l (Bl - BZ) © (Bl © BZ)

= (B1©B,((4,©4,) +(B1©By))™ ' = (B, ©B,) 1)(B, ©B,)
Thus G has the same index as((4; © 4,) + (B; © B,)) 1 — (B, © B,) L,
Applying Lemma (1.1.2) with
M = ((A1 ©A4;)+ (B, © Bz))»N = —(B; © By),

index G = index ((C;© C,)™' = (B, ©®B,)™ )

= index(C; © C,) + index — (B; © B,) = index (A; © A,)

=r(n—r)+ index(C; © C,) -index (B; © B,)

—index (A, © A,).

Therefore




Thus G is positive definite if and only if index (C; © C,) =index (4; © A,) index (B; © B,),
and G is negative definite if and only if neg (C; © C,)= neg (4; © A,)+ neg (B; © B,),
where neg H is the number of negative eigenvalues of H. Next we determine
G+ +i+j++j=k+-+k.+r(r+1)/2, (19)
and G is positive definite if and only if
byt ottt th=kayt -tk +(—r)(n-—r+1)/2 (20)
By Theorem (1.1.1) the boundary points of E" lie on a finite number of hyperplanes of the form
Y, t oot Ve, =a ++a +B, ++ B (21)
The hyperplane
yk,l + .-+ yk’n = ak’l + .-+ ai,n—r + ﬁj'1 + .o+ Bj,n—r

intersects the hyperplane (1) in the same set. If y lies on only one of these hyperplanes (21) and
does not satisfy (19) or (20), then in every small sphere about y there exist points of E' on both
sides of the hyperplane (21). Therefore E' must fill the sphere, for otherwise there would be
boundary points of E" inside the sphere and off the hyperplane (21). This being impossible, A
must satisfy (19) or (20). Now suppose y lies on several hyperplanes (21), and (19) and (20)
both fail for each of these hyperplanes. By continuity the quadratic form G is not definite for
all points near y which satisfy the conclusion of Theorem (1.1.1). Therefore in a neighborhood
of y all points of E’ lying on only one hyperplane (21) are interior points of E'. Therefore y
cannot be a boundary point of E’. since E' is the closure of its interior, and a finite union of
linear varieties of deficiency = 2 cannot separate the interior of a sphere. The proof is
complete.

If i,j and k are increasing sequences of integers of order r and (2) holds for the eigenvalues of
A + B for any Hermitian A, B with arbitrary eigenvalues a; = --- 2 a,and g, = -+ = B, We
write (i; j; k) € SP.If

]/kl + -+ ]/kn > ail + -+ ain + ,le + -+ Bjn
for any such A, B we write(i; j; k) € S
Theorem (1.1.4)[10]: The following conditions are equivalent:
i) (@j;k)est
am n-i,+,..n—-i+Ln—j.+1,.n—j;+Ln—-k.-+1,..n,—-k;+1)€
57
(i) (ky, o kpn—j.+1,..,m—j; +1;iy,...0,.)) € SP
(iv) (i',j', k")) € St_,, wherei',j', k' are the compelements of i, j, k with respect to
n.

Proof: The equation A + B = C may be written —A — B = —C or A = C — B. This proves
the equivalence of (i) with (ii) and (iii). The equivalence of (i) and (iv) is immediate by the
trace Condition (1).

If A is a Hermitian matrix with eigenvalues a; = :-- 2 a,, and M is a linear subspace of
dimension n — 1, let A,, be the transformation PA with domain restricted to M, where P is the
orthogonal projection on M. A,, is a Hermitian transformation on M to Mand (A + B)y =
Ay + By. Itis well known that the eigenvalues a,, of A, separate those of 4, that is a1 =

< < < n - i i
a,=a, For 1=p=n-1 If (xp) IS an orthonormal sequence of eigenvectors
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corresponding to (a,) and if M contains x,, ..., Xy, then o, = a, for 1 = p = m. This is an
Immediate consequence of the minimax principle, since (A x, x) = (Ax, x)for x € M. Dually
if M contains x,,, 44, ..., X, then a, = a1 form = p = n — 1. The next theorem shows that
S is essentially independent of n.
Theorem (1.1.5)[10]: If (i;j; k) € S* for some n then i, = k,and j, = k,, for all p, and
(i;j; k) € SP? Forall n > k,
Proof: Suppose (i;j; k) € S* for some n. Considering the case f = 0, it is clear that i, =
kpyand j, = k,, for all p. If A and B are of order k., the identity diag (A — AI) + diag (B —
Al) diag (A + B — 2Al) for large A shows that (i; j; k) € Sfr. It remains to prove (i; j; k) €
Sp+l Let A and B be of order n+ 1 with eigenvalues (a,), (8,), and let (z,) be an
orthonormal sequence of eigenvectors of A + B corresponding to the eigenvalues (yp). Let M
be the subspace spanned by z, ... ,z,. Letting (ay), (B,) and (y,) be the eigenvalues of
Ay, By and (A + B)y, we have by hypothesis

Vi, oty S tta ot B+t B
But V:'cp = ykp,a{p < a;, and pr < Bj, for 1 = p = r. Therefore (i; j; k) € sn+l
Theorem (1.1.6)[10]:If (i;j; k) € S* and u,v and w are integers such that r + 1 =2u =
Lr+1Zv=1landr Zw = 1,andifi, + j, = k,_1 + k, + 2 then(iy, o, iy, iy +
Lo ir + Ly oo+ 1 eojr + Liky, o ko1, ke + 1, 0 by + 1) € SPHL. Here kg =
0 and iryq = jr41 = k. + 1 by definition. In particular, (i; + 1, ..., i + 1;j; ..., jr kg + 1) €
Sntl,
Proof: By Theorem (1.1.5) we may assume n = k,.. Let (x,,), (3,) and (2z,),1 S P Sn+1,
be orthonormal sequences of eigenvectors corresponding to the eigenvalues (a,), (8,) and
(yp) of A,Band A + B. Since x,, i, = k,,_; + n + 2, there exists an n dimensional subspace
M containing the vectors x,,, i, = k,_; + n + 1, the vectors y,,,i, + 1 =p = n+ 1, and the
vectors z,,1=p = k,_; + 1. Let (ap),(By) and (y;) be the eigenvalues of Ay, By,
and(A + B). By hypothesis

Yyt tVe, Sai +tap + B 4B
The theorem now follows because y', = y, for 1 =p =ky_1,¥p+1 =V, fOr kyy, Sp =
na,Sa,forl =p=i, q,a,=a,foriy, Eps=np,=p,forl =p=j,_;andp, =
Bp+iforj, =p=n.
Theorem (1.1.6) yields a simple proof of the following theorem due to Lidskii.
Theorem (1.1.7)[10]:[292]. If 1 =p < --- < p, = n,then (p,, ...,p; 1,...,7;) € S™.
Proof: Obviously (14, ...,7;1,...,7; 1, ...,7) € S*. Using Theorem (1.1.6) p; — 1 times with
u=w=1v=r+1, we find (p,,p,+1,..,00+r—1,;1,...,m:p;,p1 +1,...,p, +7 —
1) € S. Such use of Theorem (1.1.6) is justified since iy + j,4; =iy +k, +1 2k, +2 =
ko + k, + 2 at each stage. We may now apply Theorem (1.1.6) p, — (p; + 1) times with u =
w = 2.v =7+ 1since at each stage iy +j,41 =i, + k. +12i;, +k, +2 =k, +k, +2.
The result is

(PuPoP2+ 102+ 17— 211, ., 7501, 02, D2
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+1,..,p,+r—2)€ SP2FT2

Continuing in this way we find

(D1, s Py 1, oo, 75D, oo Py) € SET
By Theorem (1.1.5) the proof is complete.
Theorem (1.1.8)[10]:(iy; j1; k1) € ST forn =k, and only if 1 =i; = k4,1 =j; = k4, and
i+ =k, + 1.
Proof: The sufficiency of the conditions, due to Weyl, is usually proved by the minimax
principle. It can also be proved using Theorem (1.1.6) . We have already seen the necessity of
i1 = ky and j; = k, in the proof of Theorem (1.1.5). Now suppose i; + j; = k; + 2. Let
A =diag (1,..,1,0,...,0) withi; — 1 ones, and B = diag(O0,...,0,1,...,1) with j; — 1 ones,
where the orders of A and B are k;. Since k; — j; + 1 = i; —1, all the eigenvalues of A + B
are = 1. Therefore y,, = 1, while a;, = p;, = 0, contradicting (iy, j;, k;) € Sk
Theorem (1.1.9)[10]: If i,j and k are ordered pairs of integers satisfying

1=si,si,=snlsjSj,=snl1<k; <k, =n, (22)
G +j1=Sk +1 (23)
i1+j2 <
0 +j1}=k2+1 (24)

l1+l2+]1+]2=k1+k2+3 (25)

then (i;j; k) € S

Proof: By Theorem (1.1.5) we may assume n = k,. We proceed by inductiononn. Ifn = 2
the theorem follows from (1). Suppose the theorem holds for all n < N, where N > 2. By (22),
(23) and (24), i, =k, and j, = k,,p = 1,2. Suppose i; > 1. Then the pairs (i; —1,i, —
1),(ji,jo)and(k, — 1, k, — 1)satisfy (22)-(25). Therefore by the induction hypothesis
(i, —1,iy — 1;j1,j2 ky — 1,k, — 1) € S¥~1If we apply Theorem (1.1.6) with u=w =
1,v = 3, we find (i; j; k) € SY. A similar method takes care of the case j; > 1. Therefore we
may assume

h=jh=1 (26)
If
(1,2 =1, j1Ja— 1 ke ky — Lk, — 1) € 771 (27)
and if
i, +j,=2+3+k, (28)

then Theorem (1.1.6) with u = v = 2,w = 1 allows us to conclude (i;j; k) € SY. But the
Condition (28) which is needed for the application of Theorem (1.1.6) will also guarantee (27).
To see this, first note that (27) can fail only when

i) i,=i;+1=2

or
(i)j,=j1+1=2
or

(iii) ki, = 1

or

If (i) holds then iy + j, = 2 + j, = 2 + k,, contradicting (28). Similarly
8



(if) cannot hold. If (iii) holds, then by (26), iy + i, +j; +j, =2+ i1+ j, =k, +k, +3 =
k, + 4,0r iy +j, — k, + 2, contradicting (28). Condition
(iv) implies (iii) by (26). Therefore we may assume
L+, =24k, (29)

Ifi, =k, + 2, it is easy to show by the induction hypothesis that (iy, i, — 1;j;,j2; k1, ko —
1) € S¥~1 and Theorem (1.1.6)with u = w = 2,v = 3implies (i; j; k) € SY. Hence we
assume

i<k +1andj, =Sk, +1. (30)
Now (25) and (26) imply i, + j, = k; + k, + 1, which with (29) implies k, = 1. Therefore
by (30) and (22), i, + j, = 2 and hence i; + j; = 1. Using (25) we find k, = 2, contradicting
N > 2.
The proof is complete.
If in (25) we replace the equality sign by =, Theorem (1.1.9) remains true. For if i,j and k
satisfy (22)-(24) and the modified (25), there exists a pair k' = {k1, k3) suchthat ki = k, k; <
k, and i,j, k' satisfy (22)-(25). However Theorem (1.1.3) suggests that we consider only cases
where (19) holds. Conditions (23) and (24) combined may be expressed as follows:
iy +j, =k, + 1wheneverl =i =21=j=21=w =2, andu+v =w +
1. This suggests the following conjecture. Let us define inductively the following sequence
of sets of triples of sequences of integers:Let (iy,j; ,K;) €T{*if1 = i; =n, 1= j; =
n1 =k, = nandiy + j; = Ky +1andlet (iy, ..., iy; j1,-rjr; Kip oo k) €T IF1 S

W <<ip,=n,1=j;=n1=k < <k,=n,and

i1+'"+ir+j1+'”+jr§k1+"'+kr+r(r2+1) (31)
And
P : : . < s(s+1)
byy o lyg oy o F oy Sk, otk (32)
Whenever

(y;v;w) €T, 1<s<r-—1.
Theorem (1.1.8) and (1.1.9) show that 7;* < S* for r = 1, 2. It seems reasonable to conjecture
T,* < S for all r. The case r = 3is the following.
Theorem (1.1.10)[10]: If i,j and k are ordered triples of integers such that

1S <, <ip=Enl=j;<j,<j,=nl=k <k,<k;=n (33)
i +j1 Sk +1 (34)
i1+
l.2+j1}§k2+1 (35)
1 +J3
i2+j2}§k3+1 (36)
I3+ 1

i +i,+j1+j, =k, +k,+3 (37)

I +i+j1+J3

<
i1+i3+jl+jz}="1+"3+3 (38)



I +i, +j,+J3

iy +iz+ji1+)> §k2+k3+3 (39)
i tiz+ji1tJ3
i1+i2+i3+j1+j2+j3=k1+k2+k3+6, (40)

Then (i,j, k) € S¢

Proof: The proof begins along the same lines as the proof of Theorem (1.1.9) and will only be
sketched. We may assume n = kg, and proceed by induction on n. When n = 3,i; =j; =
ki =1,i, =j, =k, 2,i3 = j3 = ks =3, and the result follows from (1). Assume the
theorem for all n < N, where N > 3. As in Theorem (1.1.9), we may assume

ih=j1=1 (41)
If
(ill i2 — L i3 - 1), (il!jZJjB - 1)' (kl - 1' k2 - 2' k3 - 1) (42)
Satisfies (33)- (40) and if
ii+j3=ks+3 (43)

then the induction hypothesis and Theorem (1.1.6)with u = 2,v = 3, w = 1 yield the
theorem. Again the condition (43) which is needed for the application of Theorem (1.1.6) will
guarantee (42). Forexample k;, — 1 = 1, becauseifk, = 1,thenby(38)and (41),i; + j; =
ks + 2, contradicting (43). The second inequality of (36) together with (43) and j; = k4
(which follows from (36)) ensure j; — 1 > j,. We may therefore assume
i +J3
i+ ].2} = ks + 2. (44)
Next we show that we may assume
i,=k,+1andj, =k, +1 (45)
by showing that if i, = k; + 2, then(iy, i, — 1,i3 — 1;j1, )2, j3 k1, kp — 1, ks — 1) € SY and
Theorem (1.1.6) withu = 2,v = 3,w = 2gives (i; j; k) € S¥ Inasimilar manner we may
assume
is+j3 =k +ks+2 (46)
i3Sk, +1,j35ks+1 (47)
Now (33)-(41) together with (44)-(47) are easily seen to imply ky + k, — ks, i, = i, = ks +
1,i; =i3 =k, +1and k; + 1 = k, = 2k,. Therefor the theorem will be proved if we can
show that
(Lp+1lp+q+LLp+1L,p+q+Lpp+q2p+q) €ST
wheneverl = q = pand 2p +q = n.
Let A, B and A + B be of order n with eigenvalues (a,), (8,) and
(Yp)- We have qYp = Vo + Vp+1 + -+ ,YP—r+i, q,YP+q' +et ,YP+q =< Yp+q + o+
Yp+120d qYpoigq = Voprq + - + V2p+1. HeNCe
q(vp + Ypig + Yoprg) S trace (A+ B)
- (Vl + -+ Vp+q + Yo+q+1 + e+ VZp) .
Similarly
Q(al tape t ap+q+1)
= trace A— (Qgq1 T+ ap + Apioger T+ Aopig)
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and we have a similar statement for the S’s. Therefore we need only
prove
qg+1,..,.pp+2p+1,...2p+q q+ 1,..,p,p + 2q
+1L,..2p+ q¢l..,p —qp + 1,..,2p) €535,
This will follows from Theorem (1.1. 4) (ii) if we can show
Q,...0 —qp+q+1,..,2p;1,,p —qp + q
+1,....2p;q+ L...,p,p + 29 + 1,,2p + q) €575, - (48)
By Theorem (1.1.7) we have
(1,....2p — 2q; 1,..,p—q,p+ 1,..,2p) € SP?

2p-2q
p+1..P—qP+1,.,2p—q €S, ,
We may apply Theorem (1.1.6) g timeswithu =w=p—-—q + 1,v = 2p—2q + 110
obtain
(L,p—qi>+1,2p —q¢1,p—q

p+1,2p—qL,p—qp+q+1,2p) €sh .
Theorem (1.1.6) applied q times withu = v =p — q + 1, w = 1yields (48).The proof is now
complete.
A proof of T;* c S; along the same lines runs into the following difficulty. The first half of the
proof, that is, the application of Theorem (1.1.6) in all possible ways, carries through. However
the cases left untouched turn out to be too numerous to handle by the methods of the second
half of the proof of Theorem (1.1.10). We have verified T,* c S} forn < 8.

As for the statement S?* < T}, it is possible to show by a consideration of diagonal
matrices that if (i;j; k) € S then (32) holds for s = 1,2. This together with the remark
following Theorem (1.1,9) determines S;*. But the general statement S* < T, is false even if
we weaken the definition of T," by replacing the equality sign in (31) by=. For example a
consideration of the trace condition shows that (1,5,9,12; 1,5,9,12; 4,8,12,16) € S}°

Guided by Theorem (1.1.4) (ii), the dual set T, may be defined inductively as follows:
(i, ju k) €TP ifi, +j,+k,+n, and (i,j,k) €T if iy +-+i,+j,++j, =k +
. +k,+nr—r(r—1)/2 and

fy, iy oy, F oy, Shy, F otk +s(s+1)/2

Wherever (u; v; w) € T Itis easily seen that (i,j, k) € T ifandonlyif(n —i, +1...,n—
h+Ln—j,+1..,n—j_+Ln—k.-+1,..,n—k;+1)€T® Hence by Theorem
(1.1,4), T" < SM is equivalent to T,* < S™* . we have been unable to prove the analogue of the
last transformation rule of Theorem (1.1.4). However we can prove that if (i; j; k) € T* then
(i;j; k") € T, wherei’,j’, and k' are the complements with respect to n.

We return to the problem of determining the set E that being defined. Let F be the set of
points y defined by y; = --- 2 y,,

itotm=a+--+ta,+p+-+p,
And
Ve T oot Ve, S+t + i+ + By,

Wherever

11



GjikeETM1sSr=sn—1

We have shown that E < F forn = 4. We will provethat E = F forn = 4.

We assuming a; > --- > a, and B; > .- > B,,. The set E’ defined is a closed subset of
E. Since F is closed and convex, it will follow that E’ = F, and therefore E = F, if the boundary
of E' is contained in the boundary of F. To see this, let y' be an interior point of E’ and supposey’
is any point of F. If ¥’ is not in E' there must be a boundary point of E’ in the open segment
joining y and y'. But all points of this open segment are interior points of F.

A boundary points of E’ with at least two equal coordinates is obviously a boundary
point of F. If y is a boundary point of E’ with distinct coordinates, there is associated with y a
triple (i; j; k)satisfying the conditions of Theorem (1.1.3). All that remains to prove is that
(i;j; k) € T, To this end we first prove the following theorem.
Theorem (1.1.11)[10]:Ify is a boundary point of E’ with associated sequences (i; j; k) of order
r, then for any (x; y; z) € S, there cannot exist a triple (u; v; w) € T*™" such that x, =

Zp+tu,—Lj, Sy+v,—landk, = z,+ wp,forl =p=m.
Proof: For convenience, we write a(p) instead of a,. By hypothesis there exist Hermitian
matrices A;,B; and A; + B; with eigenvalues (a(ip)),(ﬁ(jp)), and(y(kp)),p = 1,r,and

Hermitian matrices A4,, B, and 4, + B, with eigenvalues (a(iy,), ((jp)), and (y(k,’,)),p =

1,.. ,n— r,where i’ is complement of i with respect to n. If there exists a triple (u; v,w) €
Sm_'suchthat iy < iy ,j,, <ju,, andk;, >k, ,1=p =m, thenwe have

i iz +i () éi v (k) < i v (ki) < i a(iy) + i BU)
p=1 p=1 p=1 p=1 p=1 o=

This is impossible since a (izp) >« (i{lp) and 8 (jvp) <p (j,;p). Therefore it remains only

to show that i, < i, isimpliedby i, = p + q—1.1fi, = p + g — 1, then at least p terms
of the sequence iare = p + g — 1. Therefore at most g — 1 positive integers= p + q — 1

arenotini.Hencei, >p+q—1=21i,

Theorem (1.1.12)[10]:If yis a boundary point of E’ with associated sequences i, j , k of order
r, then i, + j, = k, + r whenever (x,y,z) € T{. More generally,if x +y = z+r, the i, —
x+ j,—y 2 k,—z

Proof: We have n = r+1 = 2. Since (x; y; x+ y—r) € Tf < 87, it follows that
(x; y;z)€S8]. Letu=iy—x+1Lv=j,—y + 1, andw =k, —z Clearly, u 2 1,v 2
l,andw=n-rsincek; —1=k, —2=-= k,—r En—r.Wemustproveu + v =
w+2. tu+v=E w+1,thenw = Lu = w, and v = w. Therefore (u; v; w) € T This
contradicts Theorem (1.1.11)

Theorem (1.1.13)[10]:Under the same hypothesis as Theorem (1.1.12),ifn = r + 2, then i, +

ix, *Jju, + iy, 2 k, +k, +2r—1whenever (x,y,z) € T;.
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Proof: We are given x; +y, 2z, +r,x, +y; 2z, +1,x, +y, =z, + 7. andx; + x, +
Vityat+zy+z,+2r—1let a, =i, —x,+1,b, =10, —y, +1 and C, = Wy, =
Z,,p = 1.2. By Theorem (1.1.12), a; + b, = ¢; + 2,a,+= ¢; + ¢, + 3. Therefore

a1+b2§C1+1 (49)
a;+b,Zc,+1 (50)

Also1=a,=a,,1=b;=by,andc, =n—r.By (49),c; = 1. Moreoverc; +2 = a, +
b, = c,+1,s0that c; + 1 = c,. Now let u; = a;,u, =max (a,,a; + 1),v; = by, v, =
max (by, by +1),w; = ¢;, and w, = c,. It is easy to see that, and u; + v; = w; + 1,uy +
v, Sw,+lu,+v;Sw,+1 and uy, +v, + vy +v, S w; +w, +3. As previously
remarked there exists a pair (w7}, w5) such thatw; = w;w, = w,, and (u; v; w)) € T". This
contradicts Theorem (1.1.11).
Using a generalized version of Theorem (1.1.13), it is possible to show that
ey T, Yo, Y v, Sky thy, thy +r+r—1+1-2

Whenever(x;y;z) ETM ", n 271 + 2
Theorem (1.1.14)[10]: If y is a boundary point of E’ with associated sequences i, j, k of order
r=1,2,30r n—1,then (i;j; k) € T
Proof: Forr = 1this is obvious. For r = n — 1, the complementary sequences with respect to
n are of order 1 and satisfy i; + j; = ki + n. Therefore (i’;j’; k") € T*. By the last
sentence, it follows that(i’j; k) € T*. For the cases n = 3,4 this can be easily verified by
listing cases. Now suppose r = 2. We must prove that (23) and (24) hold. In view of (25), this
means we must show that i, + j, = k, + 2 whenever (x;y; z) € TZ. But this follows from
Theorem (1.1.12). Suppose r = 3. We may assume n = 5. By (40) and Theorems(1.1.12)
and(1.1.13) we have (34)-(39), since if (x; y; z) € sz then(x’;y';z") € T33_q,p =1,2.
Theorem (1.1.14) completes the proof that E = F for n = 5. It is possible to extend the proof
to n = 8.
Section (1.2) Interlacing Inequalities for Singular Values of Submatrices

We give a brief summary of certain particular cases of our results that merit special
attention. Let A bean n x n real or complex matrix, and let a; 2 a, = --- 2 «a,, be the
singular values of A. (They are defined to be the eigenvalues of the positive semidefinite matrix
(AA")Y2.) Let B = A;; be the (n — 1)-square submatrix of A obtained by deleting row i and
column j,and let §; = B, = --- =2 B,_, be the singular values of B. Our first theorem yields,
as a special case, these interlacing inequalities:

a; = P12 az
a, Zfr = a,
at gﬂt; (lt+2’1§t§n—2, (52)

Uy = P = Un,
an—z ; ﬁn—l.
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That inequalities (52) are the best that can be asserted is shown by (a special case of) Theorem
(1.2.3). It follows from Theorem (1.2.3) that, if arbitrary nonnegative numbers 8; = -+ =2 B,_1
are given satisfying (52), there will always exist unitary matrices U and Vsuch that the singular
values of (UAV);; are By, ..., Bn—1. (Of course, A and UAV always have the same singular
values a4, ..., a,, ) Thus nothing more than (52) can hold in general, when looking at a fixed
submatrix. Further results can be obtained, however, by examining all the submatrices of A of
fixed degree. Now let B;;; = - B;jn—1denote the singular values of A;;.We obtain the
following estimates on the mean square of the tth singular value of all the(n — 1)-square
submatrices A;;of A:

1,2 2(n—1) n—1\2 1 v
(3) at+=g—at + (F5) =3 ), i

i,j=1
n—1\° 2(n—1) 1\2
=(5) @+ = et (3) e
1st=n-2, (53)
N, n-11 ,_ n—1 n—11
<E) Ap—1 T n2 _an—zlgun 1=( 2 )an 1t Ean (54)
i,j=1

In (53) we have displayed convex combinations of a?, a?,,a?,, which serve as upper and
lower bounds for the mean square of the tth singular value (t = n — 2) of the different (n —
1)-square submatrices A;; of A. (By (52), this mean lies between a? and a?,.,) In (54), we
have similar, though not precisely the same, convex combinations of aZ_, , @2, and 0 yielding
bounds for the mean square of the B;; ,_;. These results, (53) and (54), will appear as special

cases of Theorem (1.2.5).
Let

fiiD) = (A =Bi;) (A= Bijn-t) (55)
be the singular value polynomial ofA;;. This is the polynomial whose roots are the squares of
the singular values of A;;. Let

f=G-af)..(d—ap) (56)
be the corresponding polynomial for A. As a partlcular instance of Theorem (1.2.6), we obtain
Z Zﬁ, W) = =220 (57)

i=1j=

It is interesting to contrast formula (57) with the well-known result asserting that the sum of
the characteristic polynomials of all the principal (n — 1) — quare submatrices of A is just the
derivative of the characteristic polynomial of A.
We give first the definition of the singular values of a rectangular matrix.
Definition (1.2.1)[238]: Let A be an m x n matrix. The singular values
a Za; = =2 Amin(m,n) (58)
of A are the common eigenvalues of the positive semidefinite matrices (44*)'/? and (4*A4)*/2.
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Since AA”™ is m-square and A"A is n-square, the eigenvalues of (44%)/?and ((44*)*/?do
not coincide in full. However, it is well known that the nonzero eigenvalues (including
multiplicities) of these two matrices always coincide. It is frequently convenient to define x;

to be zero for min(m,n) < t = max(m,n). Then af Z - Z @5 gxnn and the roots of

AA” (respectively A"A) are the first m (respectively n) of these numbers.
We are the following
Theorem (1.2.2)[238]:Let A be an m X n matrix with singular values (58). Let Bbeap X q
submatrix of A, with singular values
1 = ﬁz = 2 ﬁmin(p,q)(Sg)
Then
a; Zf; fori=12,...,min(pq). (60)
.Bi, = Ai+(m-p)+(n—q), fOT [ = min(p tq—mp+tq- n)- (61)
Proof: For an arbitrary matrix M, let M[il, s bpt 1y e ,jp]denote the submatrix of M lying at

the intersection of rows iy, .., i,, and columns j, ..., j,.
Suppose that B = A [iy, ..., iyt j1, -, jg |- To simplify notation let w = {iy, ..., i, Jand T =

{jl, ...,jq} denote the sets of integers giving the rows and columns of A used to form B, and

denote Bby B = A [w, ].

Let us view B as a submatrix of UAV, where U is an m-square unitary matrix and V is an n-

square unitary matrix. In this proof we may take U = I,,,, and V = I,,. (In the next theorem, U

and IV will become variable.) Then

B =Uliy, ., ip: 1, ..., m] AV[1, ..., 0y, oo g |- (62)
Thus
BB* = Uliy, .., ip: 1, .., m] AV[1, ..., i jy, o, Jig |- (63)
Where
X=AV[L,..,ntjy, e gl - (64)

Is m X q. Thus BB* is a principal p —square submatrix of the m-square Hermitian matrix
UXX*U~*. Let
x2Zx2 =z x2, = xZ =22 =0 (65)
1 =42 = = “*min(m,q) = ““min(m,q)+1 m ’
denote the eigenvalues of XX™. Thus xy, ...., Xpinmm,q) are the singular values of X. From the

well-known formulas linking the eigenvalues of a Hermitian matrix with the eigenvalues of a
principal submatrix, we obtain

xf Z B2 xfimop fori=1,2,..,p. (66)
Now x7, ...,xfmn(m,q), 0(q — min(m, q) times) are the eigenvalues of

XX =V gL, n]AAV([1, .., ni g, o] (67)
Thus X*X is a principal g-square submatrix of the n —square Hermitian matrix V*A*A V. Hence

af Zx}Zaf,, fori=12,..,p. (68)

Thus for i = min(p, q) we have af = x> = p7, yielding (60). And for i = min (p + q —

m,q + q —n) we have ﬁlz = IBi2+m—p = ai2+(n—q)+(m—p) yielding (61).
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The proof of Theorem (1.2.1) is now complete. We shall present a second proof of
Theorem (1.2.1) at the later.
Theorem (1.2.3)[238]:Let A be an m X n matrix with singular values (58). Let arbitrary
nonnegative numbers (59) be given, satisfying both (60) and (61).
Then m-square unitary matrix U and n-square unitary matrix V exist such that the singular
values of the p X g submatrix

(UAO) iy, o, ip]| AV 1, -0 Jg]

of UAV are the numbers (59).
Proof: Define ; to be zero if i > min(p, q), and define a; to be zero if i > min(m,n). Now
define inductively nonnegative numbers x;, ..., Xpinm,q) bY

a
X; = min {.31—7;;9 fm—-p<1 (69)
And
aq
X; = min {,Bi—m+p if m—p<i
Xi-1
For 2 < i < min(m, q). (70)

(We include B;_,,4+pin (69) and (70) only if i satisfies the indicated condition.) For all t >
min(m, q), define x,by x, = 0.
Itis plain that x; = **+ = Xpin(m,q). We claim that inequalities (68) are satisfied. Plainly, x; =
a;for i = min(m, q), and this also holds for min(m,q) < i = q since then x; = 0. We
show by induction on i that the lower bounds in (68) are satisfied. To show that x; = a;.p,_g,
we must show that both of the quantities entering into the minimum in (68) exceed
®y4n—q,- Plainly, by (58), a;, 2 a;4n_q,. If m — p < iwe obtain from (thus m = p), (61)
tells us that B; = a;.p,_4, Provided i = min(q,m + q — n).However,if m + q —n =0, we
havem + 1 = 1+ n — q and thus automatically0 = a;,,_, = f;.Hencem+1=1+n—
q . Suppose (induction) x;_; = @;_14n_q,. Leti = min(m, q). If we show that each of the
three quantities entering into the minimum in (70) exceeds a;.,,_q,, it will follow that
X; Z Aj_14n—q Plainly, by (58), a; = a;_11n_q. If m — p < i, we obtain from (61) that
Bi—m+p = Ai—14n—q Provided i = min(q, m + q —n).By induction, x; = @;_14n_q, =
@i yn—q (DY (58)).Thus x; = a;_14n_q,, €XCept perhaps if i > min(q,m + q —n). However,
if i > min(q,m +q —n),theni +n —q > min(n,m), so that a;,,,_, = 0 and hence
automatically x; = a@;_1.4y—gq.Therefore x; = a;,,,_4 is established if i = min(m, q).Ifi >
min(m,q),theni + n—q > min(n — q + m,n) = min(m, n), so that automatically 0 =
Qiyn—q, = X;. Therefore inequalities (68) are established.

We now claim that inequalities (66) are satisfied. By (70), x;1m—p = B, fori+m—
p < min(m,q). Thus the lower inequality in (66) is satisfied, provided i = min(p,p +
q — m). If i > min(p,p +q— m), then i + m —p > min(m, q)and hence x;,,,_, = 0,
so that automatically 5; = x;..,—p. Thus the lower inequalities in (66) are satisfied. We show
by induction on i that x; = f5; . For i = 1 this follows immediately from (69), since o; = f; .
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Suppose x;_; = B;_. If we show that each of the three quantities entering into the minimum
in (70) exceeds f3;, we may conclude that x; = f;. We may assume also that i = min(p, q),
since B; =0 (= x;) for i > min(p, q) Thus (by (60)) a; = B; if m—p <i,Bi_mip =
B by (59). By induction x;_; = B;_; = B;. Hence the inequality x; = g; for all i = p is
established.

It is a known fact (see [231]), because x2 = --- = x; satisfy (68), there exists an n-square
unitary matrix V such that the eigenvalues of

XX =V[j1 rjgll, o, n]A"AV[L, .. nfy, o g (71)
are
X2, ..., x,znin(m,q), 7 (72)
Here

X =AV[1,..,njy, . jg]
Thus XX™* has
x2, ...,x,znin(m,q), ey X2, (73)
as eigenvalues. Because the inequalities (66) are satisfied, there exists an m-square unitary

matrix U such that
UXX*U*|iy, oo, ipig, e\ ig ]
has eigenvalues 52 = ﬁfnm(p,q) = - = . Itis now immediate that the submatrix
Uliy, ., ipl1, ..., m]AV[L, ..., n)jy, e g |

of UAV has (59) as its singular values. The proof of Theorem (1.2.3) is now finished.
We remark that the nonincreasing condition (59) is actually superfluous. We have Theorem
(1.2.4).
Theorem (1.2.4)[238]:Let arbitrary numbers B; ... Bmin(p,q)P€ given, such that (60) and (61)
hold. Then the conclusions of Theorem (1.2.3) aye valid.
Proof: The proof amounts to showing that, if (60) and (61) are valid for not necessarily
decreasing numbers B .... Bmincp.pthen (60) and (61) remain valid if By ... Bminp,q)are
rearranged into decreasing order. More precisely, let o be a permutation of 1, 2,..., s
min(p, q) suchthat B;(1) Z fs2) = *** Z Bo(s)- IF o (i) = iwe then have ﬁa(i) = Ay =
o(i) < i then for some j < i we have o(j) = i and hance f,;) = By(j) = Ag(p)- thus ,80(1-)
a;holds for all i. similarly, for i = min(p + q — m,p + q — n),if a(i) = ithen Ba@ Bi
Aiym-p+n—q. T 0(i) > i, then for some j > i we have o(j) =i But then B, = Bs(j
ao'(])+m -p+n—q = Ai+m-p+n—q thus .Ba(]) Ai+m-p+n—q For all i = mln(p +q—mp+

— Tl)
For the next theorems we let Q,,, denote the totality of (’;‘)sequences w = {il, ...,ip} of

integers for which 1 = i; < --- < i,, = mand we let Q,, denote the totality of sequencesr =
{j1, -, jp} Of integers for which 1 < j; < -+ < j, = n. We let

Alwlt] = Aliy, o, iplizs s ] (74)
be the p X g submatrix of A at the intersection of the rows w and the olumns 7, and we let

ﬂw‘r.l = ,Ba)r.z = e 2 Bw‘r.nim(p,q)
17
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be the singular values of (74). As before, we let 8, = 0fort > min(p, q).
Theorem (1.2.5)[238]:Define rational numbers ¢, ..., @1 —p, and Yy, ..., P, _,by the
polynomial identities

m-1 A4 m-=p

l
1_[ (1 n i) =), oA (75)
i=p t=0
N
1_[ (1 n i) - Z Y AP (76)
i=q t=0

For i = min(p,q), define rational numbers d,,....,dminen+n-p—qn-i), and
dos o Ammineman—p-qn-i) (dependlng on i) by the polynomial identities

min(m-p,q—i) min(m+n—-p—q,n—i)
z (ptln—p—r z lpsln—q—s — z dp/lm+n—p—q—p (77)
r=0 s=0 p=0
and
min(m-p,q—1i) n—q
Z <pm—p—r/1n_p_r z ll)n—q—s/ln_q_s
=0 s=0
min(m+n—-p—q,n—i)
- 2 d Am-P=a=p (78)
p=0
then
min(m+n-p—q,n—i) min(m+n—-p—q,n—i)
2 < 1 1 2 < r .2
dpai+p ="m~N N~ ﬁw‘r,i = dpai+p (79)
p=0 (p) (q) WEQMmpTEQng p=0
Proof: Let X, = AV[1, ..., n:jy, ..., jq] and let
x‘%,l = xrz,z = 2 x127,min(p,q)+1 == x%m(: 0)
be the roots of X, X;,. Then by (66) we have
Tl—ﬁw‘l’l= Tl+mp 1§l§p

Using [231], we see that fori = p (and sofori = min(p q)),

z (pT Tl+T— z ﬁw‘fl — Z (pm —p-—-r T'l+7”

a)EQTEQ
Since x; ;4, Whenever i + r > mm(m q) we get

2% o é( j > an ams ¥Eier (80)
i =

WEQnq

By (68), a; 2 x7; 2 af,_, forl = g, and hence, by [231,304],
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n—q
z 1/)5 i+s = T Z xz,i = Z 1/)n—q—s xi2+s, (81)
(q) s=0

WEQnq

Fori =q.

v

Summing (80) over -c and dividing by (n

min(m-p,q—i) n—q

z lels Fres = m)ﬁ z Bl

,, upon using (81) we obtain

=0 p q EQmp‘L'Ean
min(m-p,q— n—q
2
é Z (pm—p—‘r Z 1:l)sn—p—sa'i+‘r+s (82)
=0 s=0

Fori = min(p, q).
On the left side of (82), the coefficient of ocl-2+p, IS

min(m-p,q—i) n—q

Z Z Prs

r=0,r+s=p s=0,r+s=p
ForO=p=min(m+n—p—q,n—1i.
However,
min(m-p,q—i) n—q

d, = Z Z Ors

r=0,r+s=p s=0,r+s=p
for0=p=min(m+n—p—q,n—1i.
Thus the lower bound in (79) is established.
On the right side of (82), the coefficient of aiz+p, IS
min(m-p,q—i) n—q

Z Z Pm-p-tW¥n-q-s

T=0,T+s=p s=0,T+s=p
for0 = p =min(m+n—p—gq,n—1i).
However,

min(m—p,q—i) n—q

d;): z z Qomp‘rlnbnqs

7=0,T+s=p s=0,r+s=p
for0 = p =min(m+n—-—p—q,n—1i.
The result is now at hand.
If p and q are large and i is small, so that min(m+n—p—-qn—i)=m + n—p —q,

formulas (79) provide convex combinations of &, ..., @, m—,—n—q. Which serve as upper and

lower bounds for the mean of the Bﬁmi Thus Theorem (1.2.5) provides a result sharper than can
be established by applying Theorem (1.2.2), since Theorem (1.2.2) only asserts that the
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B2 between ofand af, .. TO see that in fact we have convex combinations, notice that
(for these values of p, g, i),

m+n—-p—q m+n—p—q - m—-p n—q
> 4= Y > Y =y Y-
p=0 p=0 $s=0,7+s=p s=0,r+s=p s=0 s=
since
m-=p n—q
D, 0e=1=) 0
o 7=0 s=0
Similarly
m-n—-p—q m-n—-p-—q m-—p n—q
b= ) D ) nprhees
p=0 p=0 r=0,r+s=p s=0,r+s=p

Z 2 Pm-p-tPn—q-s = 1

7=0,T+s=p s=0,T+s=p
When p and g are small and i large, so that min(m —n —p — q,n —i) = n — i, formula (79)
may be regarded as providing subconvex combinations of o, ..., aZ (convex combinations of
af, ..., ak,0) which serve as bounds for the mean of the g2, ;.

Theroem(1.2.6)[238]:. Let
fw,r(l) = (/1 - Ba)‘rl) (’1 ﬂwrmm(p q))»

fw,‘r(l) =A1- “1) (/1 mm(m n). )
Then

), AT, @)
WEQmpTEQng
1 1 am-p dn—1 o)
= Am-q An—min(p.q 2 83
m—qg)!(n—q)tdama din—a f (83)
Proof: Since the matrices f,, .5, - are p X p principal submatrices of the m x m matrix X, X;,

we find (see [ 231,33]) that

(A= Birea) (A = Bz mingp.q ) A"
WEQmpTELQnq
1 d"? m—min(m,n).
T G e (i

Since X;X,, is a principal g X g submatrix of the n x n matrix A*A4, we have
Z (1- xrzl) (l — xrz’min(p’q))ﬂp—min(m,q).

TEQngq

1 dnp
" (n—q)!ldAna

(A _ “1) (A mm(m n))ﬂn—min(m,n).
Thus
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Z forx (A)Ap—min(p,q).

TE€EQnq
i : : ~min(m,q)
= (Tl — q)' dim—a Am=p z (/1 - xm) (/1 — xT,min(m,q))Ap min(m,q).
. TE€Qng
1 1 qm-pr qn-p

= /'lm_p
m—-—q)!'(n—qg)'dan-a dAn—a

The proof is complete.

We now give the promised second proof of Theorem (1.2.2). For any m X n matrix A with

singular values a; = **+ 2 Qyminmnythe roots of the (m + n) —square Hermitian matrix

M= [y

Are £y, ..., £Qmin(m,n),0 (With multiplicitym + n—2 min (m n)). to see this, observe that

-1
det(A1,,,, — M) = det [1m A] [ « ]
_ AL, — A71AA*
—-det[ -—A* AI]
= A"det(11,, — 171AA*) = 1" ™Mdet(A%1,, — AA*)
The principle (p + g)square submatrix of M, obtained by deleting all rows and columns
except rows and columns iy, ...,i,, m + jq, ..., m+jg, is

[ 0 Aliy, s ipjg, g

Aliy, s iptig, s gl 0

Using the inequalities connecting the eigenvalues of a (p + q) —principal submatrix of
Hermitian matrix M with the eigenvalues of M, we obtain the inequalities (60) and (61).

Am—min(m,n)f(l).
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Chapter 2
Interlacing Inequalities for Singular Values of Submatrices

We provide a complete noncommutative analog of the famous cycle of theorems
characterizing the function theoretic generalizations of H*. A sample of our other results: we
prove a Kaplansky density result for a large class of these algebras, and give a necessary
condition for when every completely contractive homomorphism on a unital subalgebra of a
C*-algebra possesses a unique completely positive extension. As an application, we solve the
longstanding open problem concerning the noncommutative generalization, to Arveson’s
noncommutative HP spaces, of the famous ‘outer factorization’ of functions fwith log |f]
integrable. Using the Fuglede-Kadison determinant, we also generalize many other classical
results concerning outer functions.

Section (2.1) Unique Extensions

Function algebras are subalgebras of C(K)-spaces, or equivalently, subalgebras of
commutative C* —algebras. Thus function algebras are examples of operator algebras
(subalgebras of general C*-algebras). Much work has been done to transfer results or
perspectives from function theory to operator algebraic settings. One such setting, is the theory
of noncommutative HP spaces associated with Arveson’s maximal subdiagonal subalgebras of
finite von Neumann algebras. Many of the central results from abstract analytic function theory,
and in particular much of the classical generalized HP function theory, may be generalized
almost verbatim to subdiagonal algebras. The proofs in the noncommutative case however,
while often modeled loosely on the ‘commutative’ arguments of Helson and Lowdenslager
[100,13,79,32] and others, usually require substantial input from the theory of von Neumann
algebras and noncommutative LP-spaces, see [300,177, 153, 176, 279, 163, 58, 56]. In fact in
many cases like Szegd’s theorem — completely new proofs have had to be invented. We tackle
what appears to us to be the main ‘classical’ results which have resisted generalization to date,
namely those referred to in the generalized function theory literature from the 1960°s as,
respectively, the F. and M. Riesz, Gleason and Whitney, Szegé LP, and Kolmogorov, theorems.
We the following statement: essentially all of the generalized HP function theory as
summarized in [282] for example, extends further to the setting of subdiagonal algebras.

In Arveson’s setting, we have a weak*-closed unital subalgebra A of a von Neumann
algebra M possessing a faithful normal tracial state T, such that if @ is the unique conditional
expectation from M onto D = A N A* satisfying T = 7 o @, then @ is a homomorphism on A.
Take note that here A* denotes the set {a: a* € A} and not the Banach dual of A. For the sake
of clarity we will write X* for the Banach dual of a normed space X. We say that a subalgebra
A of the type described above is a tracial subalgebra of M. If in addition A + A" is weak*
dense in M then we say that A is maximal subdiagonal (see [300, 240]). A large number of
very interesting examples of these objects were given by Arveson [300], and others (see e.g.
[161, 178]). If D is one dimensional we say that A is antisymmetric; if further M is commutative
then A is called a weak* Dirichlet algebra [282]. For antisymmetric maximal subdiagonal
algebras, many of the ‘commutative’ proofs from [282] require almost no change at all. It is
worth saying that classical notions of ‘analyticity’ correspond in some very vague sense to the
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case that D is ‘small’. Indeed if A = M then D = M and @ is the identity map, so that the theory
essentially collapses to the theory of finite von Neumann algebras, which clearly is far removed
from classical concepts of ‘analyticity. Indeed for our F. and M. Riesz theorem to hold, we
show that it is necessary and sufficient for D to be finite dimensional. Because of this, in our
several applications of this theorem we assume dim(D) < co.

A subsidiary theme is ‘unique extensions’ of maps on A. We begin with some results on
this topic. Recall from [58] that a subalgebra A of M has the unique normal state extension
property if there is a unique normal state on M extending t|A. If, on the other hand, for every
state w of Mwith w e @ = w on A, we always have that w e @ = w on M, then we say that
A has the @ -state property. The major unresolved question in [58] was whether a tracial
subalgebra with the unique normal state extension property is maximal subdiagonal. We make
what we feel is substantial progress on this question. In particular, we show that the question
Is equivalent to the question of whether every tracial subalgebra with the @-state property is
maximal subdiagonal, and equivalent to whether every tracial subalgebra satisfying a certain
variant of the well known ‘factorization’ property actually has ‘factorization’.We also give an
interesting necessary condition for when completely contractive homomorphisms possess a
unigue completely positive extension. Our unique extension results play a role in the proof of
our F. and M. Riesz theorem, and are the primary thrust of the Gleason-Whitney theorem. We
prove our SzegoLP formula, and generalized Kolmogorov theorem.

The first noncommutative F. and M. Riesz theorem for subdiagonal algebras was the
pretty theorem of Exel in [241]. This result assumes norm density of A+ A", and
antisymmetry. (We are aware of the F. and M. Riesz theorem of Arveson [301,9,54] and
Zsido’s extension there of [161,259,4,8,85,160,17,284], but this result is quite distinct from the
ones discussed above.) Although some of the steps of our proof parallel those of
[241,204,99,19,12], the arguments are for the most part quite different. Indeed generally the
proofs will be modeled on the classical ones, but do however require some rather delicate
additional machinery.

We remark that there are other, more recent, noncommutative variants of H> besides the
subdiagonal algebras see e.g. [90,5]. Here too one finds noncommutative generalizations of
classical HP-theoretic results, such as the Szego infimum theorem, these variants are in general
quite unrelated, with only a formal correspondence.

For a functional w € M*, we will need to compare the property w = w o @ on A, with
the property w = w o @ on M. On this topic we begin with the following remarks. It is easy
to see, since @ is idempotent, that w = wo@® on A iff A, € Ker(w). Here, A, = AN
Ker(w), a closed two-sided ideal in A. For normal functionals one can say more, although
this will not play an important role for us. If f € L;(M) let w; = 7(f -). From the last
paragraph, wg = wr o @ on A ff 7(fA,) = (0). On the other hand, ws = w; o ®on M iff
(fa) = t(f®(a)) = 1(®(f)a) forall a € M iff f = &(f) iff f € L1(D).

Proposition (2.1.1)[61]: If A is atracial subalgebra of M then the unique normal state extension
property is equivalent to the following property: whenever w is a normal state of M satisfying
w =woPonA, thenw =woPonM,
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Proof:Suppose that A has the unique normal state extension property, and suppose that w Is a
normal state of M satisfying w = w o ® on A. If w = ©(f -), where f € L*(M),, then by the
remarks preceding Proposition (2.1.1) we have that 7(f4,) = (0). Hence f € L*(D) by
[58,307,11]. Hence w = w o @ on M.

For the converse, note that if g € L*(M) witht = t(g - ) on 4, then since T = 7 o ®, we
have that 7(g.) = ©(g - ) o ® on A, and hence that t(g.) = t(g.) o @ on M. By the remarks
above, g € L1(D),. But then the fact that t = 7(g -) on D is enough to force g = 1. So A has
the unique normal state extension property.

We say that a subalgebra A of M has factorization if given b € Mt N M~ we canfinda € A™1
with b = a*a(or equivalently b = aa™). It is shown in [300,310,18] that any maximal
subdiagonal algebra has factorization. Thus it is logmodular, namely any such b is a limit of
terms of the form a*a with a € A~1. In fact, in the category of tracial algebras factorization or
logmodularity are equivalent to maximal subdiagonality [58]. By the next result such algebras
satisfy a formally much stronger property than that of the last proposition:
Theorem (2.1.2)[61]: Let A be a logmodular subalgebra of a C+-algebra M, and lety be a
positive contractive projection from M onto a subalgebra of A containing 1,,, which is a
homomorphism on A. Then for any state w of M, we have that w = w o Yon M, whenever w =
w © 1P on A.
Proof: If a € A~1 then by hypothesis we have

o@(@a™) = w(PW@(@a™)) = wW@Pa™) = o) =1
By the Cauchy-Schwarz and Kadison-Schwarz inequality we deduce:
1<w@@y@) w((@aha™) <o@aa)) w((@)a™) =w((@a”)) w((aa)™.
We can now follow the proof of [56] or [61,227]. Since A is logmodular, forany b € M~ n
M* we have that 1 < w(y(b))w(b~1). This leads to the equation 1 < w(W(e™)) w(e™ ™) =
f(t), foru € M,,. Differentiating and noting that f'(0) = 0, yields w(u) = w(P(u)) as
required.
When applied to tracial algebras and their associated canonical conditional expectations, the
preceding result still holds under a formally weaker hypothesis. Specifically we say that a
tracial subalgebra A of M with canonical conditional expectation & has conditional
factorization if givenany b € M* n M~1, we have b = |a|for some elementa € A N M~ with
®(a)®(a™t) = 1.
Corollary (2.1.3)[61]:. A tracial subalgebra of M with conditional factorization has the
¢ —state property.
We say that A has the unique state extension property if if there is a unique state on M extending
T|A. This is a formally weaker property than the @-state property:
Proposition (2.1.4)[61]: Let A be a weak™* closed unital subalgebra of M. If A has the @-
state property then it has the unique state extension property. The converse is true if A is
antisymmetric.
Proof: Suppose that w is a state of M extending T|A. Then we @ =10 @ =17 = w on A. By
the @-state property, on M we have w = w o @ = t o @ = . For the converse we need only
note that if A is antisymmetric, then w o @ = w on A forces T = w on A.
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Corollary (2.1.5)[61]: Suppose that A is a tracial subalgebra of M with the unique normal
state extension property. Then A,, = M N [A],is a tracial subalgebra with the @-state property.
Proof: First note that by [58], A Is a tracial subalgebra of M with respect to the same & and
7. By [58], A,has conditional factorization. Corollary (2.1.3) now gives the conclusion.
Corollary (2.1.6)[61]: The open question from [58] as to whether every tracial subalgebra with
the unique normal state extension property is maximal subdiagonal, is equivalent to the
guestion of whether every tracial subalgebra with the @-state property is maximal subdiagonal.
Itis also equivalent to whether every tracial subalgebra with the unique state extension property
Is maximal subdiagonal. It is also equivalent to whether every tracial subalgebra with
conditional factorization has factorization.
Proof: Suppose that every tracial subalgebra with the @-state property is maximal
subdiagonal, and suppose that A has the unique normal state extension property. By Corollary
(2.1.5), A, has the @ -state property.Henceit is maximal subdiagonal, and therefore satisfies
L?-density. Consequently A satisfies L?-density, and so A is maximal subdiagonal by [58].
Similarly, suppose that every tracial subalgebra with conditional factorization has
factorization, and suppose that A has the @ -state property. By results above, A has the unique
normal state extension property, and so by [58], A, has conditional factorization. By
hypothesis, A, has factorization. Thus it is maximal subdiagonal by[4], and thus as in the last
paragraph A is maximal subdiagonal.
In [86], Lumer considered the property of ‘uniqueness of representing measure’, namely the
property that every multiplicative functional on A c C(K) has a unique extension to a state on
C(K), He showed how this condition could be used as another possible axiom from which all
the generalized HP theory may be derived. The natural noncommutative generalization of
Lumer’s property, is that every completely contractive representation of A has a unique
completely positive extension toM. It is known that maximal subdiagonal algebras have this
property [60, 55]. Although we have not settled the converse yet, we can say that every unital
subalgebra of M which has this property must in some sense be a large subalgebra of M. The
following result represents some sort of converse to many of the preceding results which
established various unique extension properties as a consequence of maximal subdiagonality.
In the following result we use the C*-envelope C; (A) of an operator algebra A. See e.g.
[56,16,85,131,160] for the definition of this, and for its universal property.
Theorem (2.1.7)[61]: Suppose that A is a subalgebra of a unital C*-algebra B such that I; €
A, and suppose that A has the property that for every Hilbert space H, every completely
contractive unital homomorphism m: A — B(H) has a unique completely contractive (or equiv.
completely positive) extension B —B(H). Then B = C; (A), the Cx-envelope of A.
Proof: (i) (The case that A is a C »-subalgebra of B.) In this case, since
contractive homomorphisms on Cx-algebras are *-homomorphisms (see e.g. [56]), we must
prove that if every unital *-homomorphism : A — B(H) has a unique completely contractive
extension B —» B(H), then A = B. To see this, let p: B = B(H) be the universal representation
of B. Thenp is unital, and hence so is = = p|A. Let U be a unitary in (A)". Then since
U*p(.)U = p on A, we have by hypothesis that U*p(-)U = p on B, and thus U € p(B)’. Thus
m(A)' = p(B)’, and it follows that 7(A)"" = p(B)". If p is the unique normal extension of p
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to B**, then g is faithful on B** and it has range p(B)"'. The restriction of g to the copy
Attof A**inside B** has range m(4)" = n(A)"’, and is therefore surjective. This forces the
copy of A** inside B** to be all of B**. Thus A = B n At = B.

(if) (The general case.) Let C = C*(A), the C*-algebra generated by Ain B. Since A c C, it
follows from the hypothesis that every unital *-homomorphism m: C — B(H) has a unique
completely contractive extension B - B(H). By (i),C = B.

By virtue of this fact, we need only prove that C*(A) = C; (A) under the assumptions
of the theorem. By the universal property of C, (A), there is a *-epimorphism 8: B = C*(A) —
C, (A) restricting to the ‘identity map’ on A. If B € B(H) then the canonical map from the
copy of A in C(A), to A € B(H), has a completely positive extension @: C,(A) —» B(H). On
A, the map @ o 0 is the identity map, so that by hypothesis @ o 8 = ig. Thus @ is one-to-one,
and hence C*(A)is a C*-envelope of A.

Corollary (2.1.8)[61]: Suppose that A is a tracial subalgebra of Mwith the property that for
every Hilbert space H, every completely contractive unital homomorphism : A - B(H) has a
unique completely contractive (or equiv. completely positive) extension B — B(H). Then A
generates M as a C*-algebra. Indeed, M is a C*-envelope of A.

The classical form of the F. and M. Riesz theorem (see e.g. [147]) is known to fail for weak*
Dirichlet algebras; and hence it will fail for subdiagonal algebras too. However there is an
equivalent version of the theorem which is true for weak* Dirichlet algebras[146, 282], and we
will focus on this variant here. We shall say that a tracial subalgebra A of M has the F &M
Riesz property if for every bounded function p on M which annihilates A,, the normal and
singular partsp,, and p, annihilate A, and A respectively. During our investigation we shall
have occasion to make use of the polar decomposition of normal functionals on a von Neumann
algebra. We take the opportunity to point out that for our purposes we shall assume such a polar
decomposition to be of the form w(a) = |w|(ua) for some partial isometry, rather thanw (a) =
|w|(auw) which seems to be more common among the proponents of noncommutative LP-
spaces.

The following result shows that to study the F & M Riesz property, we may restrict our
attention to algebras for which the diagonal D is finite dimensional:

Proposition (2.1.9)[61]: If a tracial subalgebra A of M satisfies the F & M Riesz property then
the diagonal Dis finite dimensional.

Proof: Let ¢ € D*. Then yp € M™ annihilates A,. By the F&M Riesz property, y o @ agrees
with (1 o @) on A, and so ¢ = Y o @] is weak™* continuous on D. Thus D is reflexive, and
therefore finite dimensional.

Lemma 2.1.10)[61]: Let A be a maximal subdiagonal subalgebra of M. Let w be a state of M,
and let (m,,b,,02,) be the GNS representation of M. Further, let w be the orthogonal
projection of ® onto the closed subspace m,,(44){2,,.

(@) The following holds:

(i) There exists a central projection p, in m,(M)"such that for any &,y € p,the

functionals a —» m,(a)pyé, Y anda - (1 — py)&, P on M are respectively the normal

and singular parts of the functional a — m,(a)py&, Y. In particular, the triples
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(poﬂw» Pobw pOQa)) and ((H - pO) LIy (]1 - Po)hw' (H - pO)Qw) are COpiES of the GNS
representations of w,, and wg respectively.
(i) wg:a = (m,(a) (2, — 2y), 2, — 2,) defines a positive functional of M satisfying
Wo = wq o D.
(b) Suppose that in addition dim(D) < co.
(i) Then w, is a normal functional of the form w, = t(g'/? - g'/2) for some g € D,.
Moreover py (2, — 2,) = 2, — 2y, and p,Q,, is the orthogonal projection of pyQ2,,
onto Po (T[a) (AO)'Qw)-
(i) If w is singular, then for any f € D we have that 7, ()2, € 7, (A4y),.
(c) Suppose that dim(D) < oo and 2, & m,,(4y)2,,. If w, is faithful on D, then there exists a
sequence {a,} c A such that =, (a,) (2, — 20) = Py,
Proof: (a)(i): This is essentially the content of [180].
(@)(in): Let (m,, b, 2,) and 02, be as in the hypothesis, and define a positive functional
wo 0N M by

Wo:a — (Trw(a)(ﬂw - Qo);ﬂw - QO)-
Letf € A, be given. By construction
T[w(f)-Qw L (24 = £o).
Since A, is an ideal, n,(fa), € n,(4,)2, for each a € A,. Since A, belongs to
., (49)0,, we may of course select a sequence {b,,} c A, for which m,(b,)2,convergeto
0,. Hence mr, (fby)12,, convergesto ()2, Thus m,(fby)2, € m,(f),, Which forces
] T[w_(f)ﬂ_o _J- ('Qa) - 'QO)-
From the previous two centered equations it is now clear that A, € Ker(wg). Thus wg = wq ©
@ on A by the remarks preceding Proposition (2.1.1). Hence wy, = wy © @on M by Corollary
(2.1.3).
(b) (i): Since D is finite dimensional, we can find g € D, so that
wo(a) = t(ga) for alla € D.
Since wy e @ = w,, we conclude that forany a € M,
wo(a) = wo(9(a)) = 1(gP(@)) = (P(9a)) = T(ga),
There by establishing the first part of the claim.
For the second part, note that since w, is clearly normal, we have by part (a)(i) that
0=mn,(a)(l—py) 2, —02y),02, — 2 foralla € M.
For a = 1 thisyields 0 = ||(1 — py) (2, — Qo)|l, or equivalently
_ Po(2y — £29) = 0y — L.
From this fact, we may now conclude that
(Po”w (a)ﬂwr Po (Qw - QO)) =Ty (a)ﬂw'ﬂw — )y = 0foralla € A,.
Thus po(2, —2y) L por,(A4p)2,. Now select a sequence {b,} € A, so that
(b)), —0. By continuity,
Poflo = limy, poTe (by )2y € Do, (Ag) Ly,
From these considerations it is clear that p,2, is the orthogonal projection of p,£, onto
PoTe (A0)12y,.
(b) (i1): If w is singular, then
0 = wy(ab) = (m,(ab)poly, 2y) = (PoTw, (Dp) 2y, T, (7))
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for alla,b € M Since 2, is cyclic, this is sufficient to force p, = 0. But then 2, = 0, =
po(22, — 2,) = Oby part (b)(i). As before select {b,,} < A, so thatm,(b,)2, = 2, = 2.
For any f € D the ideal property of A, then ensures that =, ()2, = lim,m,(fb,), €
T[a)(AO)'Qa)-
(c): Suppose that w,,, the normal part of w, is of the form w,, = 7(h - ) for some h € L}(M),.
As noted earlier, (pom,,, Pobw Pofl,) IS @ copy of the GNS representation engendered by w,, .
If now we compute the representation of w, from first principles, it is clear that
pob,corresponds to the weighted Hilbert space L?(M, h) obtained by equipping M with the
inner product
(a,b) = t(h'/?°b*ah'/?), a,b € M,
and taking the completion. Note that L?(M, h) can be identified unitarily, and as M modules,
with the closure of Mh'/? in L?(M). For any a € M considered as an element of L?(M, h) we
will write a instead of a. The canonical *-homomorphism representing M as an algebra of
bounded operators on L2(M, h) is of course given by defining
Tn(D)Yq = Yap, a,b €M,
and then extending this action to all of L?2(M, h). Since w,, is normal, m,, (corresponding to
poT,,) is o-weakly continuous and satisfies ,(M) = m,(M)". Thus Ker(m,,) is o -weakly
closed two-sided ideal, and hence we can find a central projection e € M so that (I —e)M =
ker(m,). Restrict ,,to ax-isomorphism from eM onto m,,(M). Then for any a,b,c € M we
have
(T ()Y, Yp)h = T(h'/?b* (ece)ah'/?)
Let 1p(® denote the orthogonal projection of 1 onto the closure of {ip,: a € A,}.
(Note that 1, and 1 © of course correspond to p,.2,, and poL2, in parts (a) and (b) of the proof.)
Since L?>(M,h) may be viewed as a subspace of L?(M), let F € L?(M)be the element
corresponding to 1. It is easy to see that eF = F. From parts (a) and (b) we now have that

1
Wy = (Ta(I 1 = $O), = 9O, = 7((hze — F*). (h'/2e = )
This in turn ensures that
1
hZe —F|* = g
where g is as in part (b). Thus h'/2e — F € M. Since by assumption w, is faithful on D, it
follows that Supp(g) = 1. Since D is finite dimensional, g must be invertible. But then h'/2e —
F must also be invertible, by the previous centered equation. (Recall that if ab is invertible in
a finite von Neumann algebra then both a and b are invertible.) The polar decomposition of

h/2e — F* is of the form h'/2e — F* = ug'/? for some unitary u € M. From this it is clear
that

1
(hze — F)™! = ug='/2,
Clearly h'/?ug='/? € L?(M). Hence we may select {a,} € M converging in L?(M) to
h1/2yg=1/2 = p1/2(p'/2e — F)~1.By the previously established correspondences we then
have
1
[ = Ta(an) @ = PO, = t(|hZe — (ane) (h/?e — F)|)"/?
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— 7(|h'/%e — hY/%e|?)1/?2 = 0.
This implies, in the notation of parts (a) and (b), that =, (a,) (2, — 2¢) = poL2,. It remains
to show that we may select {a,,} € 4, or equivalently, that h*/2ug=1/2 € [A],. For this, it
suffices by the L, density of A + A* to show that h'/?ug=1/? 1 [A}],.S0 let a € A, be given,

and observe that
1

1 1 1 1 1 1 1
T (ahfug_f) =T (g‘lahiug_fg) =7 (g‘lahiug_§> =1 (g‘lahf(hfe — F*)
= (h"?e = F*)(g™"ah'/?) = (Yg_1, Y1 =P P), = 0
(The last equality follows from the ideal property of A, and the fact that yo; — 1 is orthogonal
to {y,:a € Ay}.) The claim therefore follows.
Corollary (2.1.11)[61]: Let A be a maximal subdiagonal algebra with dim(D) < oo. The
following are equivalent:
(i) A satisfies the F&M Riesz property.
(i) Whenever w annihilates A,, the normal and singular parts w, and w., will separately
annihilate A,.
(iii) Whenever w annihilates A, the normal and singular parts, w,, and w, will separately
annihilate4,.
(iv) Whenever w annihilates A, the normal and singular parts, w, and w, will separately
annihilate A.
Proof: The implications (i) = (ii) = (iii) are clear. If (iii) holds, let w be a bounded linear
functional which annihilates A,. Since @ is a normal map onto D, and D is finite dimensional,
the functional defined by
Wp =W|po®
isnormal. Then p = w — wy defines a functional which annihilates A. From (iii) we then have
that p,, and p, separately annihilate A,. The normality of wp ensures that
Pn = Wy — Wp, Ps = Ws.
Since by construction p = w — wp annihilates A,, we conclude that w,and wseparately
annihilate A,. This proves (ii). To prove the validity of (i), it remains to show that any singular
functional w which annihilates A, also annihilates D. For such , the ‘modulus’ |w] is still
singular (see e.g. [174, 241], or the argument in the first part of the proof of the next theorem).
Let (1, B4, Qo) be the GNS representation of |w|. For each a € M we have |w(a)|? <
|lw|||w]|(a*a). By a standard argument this implies that there exists a vector n € y,, such that
w() = (1 ()20, ).
Let d € D be given. By part (b)(ii) of Lemma (2.1.10) we may select a sequence {f,;} < 4, SO
that t,, (d)Q,, = lirrln m, (f,)Q,. But then

(d) = (1, (@), 1) = lim{m, ()2, 0) = limw(f) = 0
as required.
The equivalence with (iv) is now obvious.

Theorem (2.1.12)[61]:Let A be a maximal subdiagonal algebra. Then A satisfies the F&M
Riesz property if and only if dim(D) < oo.
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Proof: We proved the one direction in Proposition (2.1.9). For the other, let w be a bounded
linear functional on M which annihilates A,, and let w,and w, be the normal and singular parts
of w. Write w,, = t(h -), for some h € L*(M). We extend w, w,,, and w,, uniquely to normal
functionals on the enveloping von Neumann algebra (the double commutant in the universal
representation) and define |w|, |w,|and |wg|, to be the absolute values of these extensions
restricted to M. Then from for example ([173], cf. [240]) applied to w and t, we have that as
functionals on M, |w,| and |ws| are respectively the normal and singular parts of |w|, and that
lw| = |w,| + |ws|. We note from [134] that there is no danger of confusion as regards the
absolute value of w,since the absolute value of w,as a functional on M and as a functional on
the enveloping von Neumann algebra coincide on M. Now consider the positive functional p
given by
p=1+|w|.

Let (m,,v,,42,) be the GNS representation constructed from p, and define p, by po(a) =
(np(a)(ﬂp - !20),!2p — £,), where p, is the orthogonal projection of p onto the closure of

{m,(a)2,:a € Ap}. Forany f € Ap and any d € D*, we have by construction.That

1 1 2
7o (42225 = 7o (D" = p(|d20 - £) 42(1 - f)

2
) = 1( )
= t(d —df — f*d + |dY?f|?) = ©(d + |dY?f|?) = 1(d).
On selecting a sequence {f,} €A, so that m,(f)2, >0, it follows that py(d) =
|7, (d¥?) (2, — !20)||2 > 7(d). Hence p, is faithful on D, and 2, # 2. Thus we may apply
all of Lemm(2.1.10) to (7, by, ) -
Next notice that for each a in the enveloping von Neumann algebra we have
lw(@)|? < llwlllwl(a*a) < llwllp(a”a).
Thus on restricting to elements of M, and employing a standard argument, this implies that
there exists a vectorn € m, such that

() = (1, ()2,,7).

Now consider the related functional
B() = (1, ()82, = 20),7).
Select a sequence {f,, € A, so that 7, (f,)2y — 2. Let a € A, be given. Since 4, is an ideal,
and since w annihilates A, we conclude that
®(a) = (m,(a)(2, — 2o), 1)
= lim(n, (al = £)) (@2, ,n) = limw(a(l ~ f)) = 0.
Thus @ also annihilates A,.
By part (c) of the Lemma we can find a sequence {a,} < A such that 7, (a,)((2, — (2o) —
po(2,. Leta € A, be given. Since A, is an ideal, and since @ annihilates A,, we may now
conclude that
wn(a) = (m,(a)y, n) = lig%mo(a(ﬂ — )@, ) = lim&(a(l— f)]=0

Thus w,, annihilates A,. But then so does wg = w — w,,. It now follows from Corollary (2.1.11)
that A satisfies the F & M Riesz property.
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Corollary (2.1.13)[61]: If A is a maximal subdiagonal algebra with D finite dimensional, and
If w € M*annihilates A + A*, then w is singular.

Proof: Since A satisfies the F&M Riesz property, w,. annihilates A. Similarly, since A*.
satisfies the F&M Riesz property, w,annihilates A*. Since A is subdiagonal, w,, = 0.
Corollary (2.1.14)[61]: If A has the F & M Riesz property, then any positive functional on M
which annihilates A, is normal.

Proof:If w is a state on M which annihilates A,, and if A has the F & M Riesz property, then
the (positive) singular part of w is 0 since it must annihilate 1.

We say that an extension in M* of a functional in A* is a Hahn-Banach extension if it has the
same norm. If A is a weak* closed subalgebra of M then we say that A has property (GW,) if
every Hahn-Banach extension to M of any normal functional on 4, is normal on M. We say
that A has property (GW,) if there is at most one normal Hahn-Banach extension to M of any
normal functional on A. We say that A has the Gleason-Whitney property (GW) if it possesses
(GW,) and (GW,). This is simply saying that there is a unique Hahn-Banach extension to M of
any normal functional on A, and this extension is normal. Of course normal functionals on A or
on M have to be of the form (g -) for some g € L'(M).

Theorem (2.1.15)[61]: If A is a tracial subalgebra of M then A is maximal subdiagonal if and
only if it possesses property (GW,). If D is finite dimensional, then A is maximal subdiagonal
if and only if it possesses property (GW).

Proof: Suppose that A possesses property (GW,). To show that A is maximal subdiagonal, it
suffices to show that if g € L*(M),with t(g(4 + A*)) = 0, then g = 0.

By considering real and imaginary parts we may assume that g = g*. Then z(|g| -) and
T((|g| + g) -) are positive normal functionals on M which agree on A. They are also Hahn-
Banach extensions, since the norm of a positive functional is achieved at 1. Thus by
(GW,), these functionals agree on M, and so |g| + g = |g|. Thatis,g = 0.

In the remainder of the proof suppose that A is maximal subdiagonal. Suppose that f, g €
L*(M) correspond to two normal Hahn-Banach extensions to M of a given functional on A.
Then || f]l, = llgll1, and this quantity equals the norm of the restriction to A. We have t((f —
g)A) = 0; since A is subdiagonal it follows from [153] that h = g — f € [Ay];. In order to
establish (GW,), we need to show that h = 0. Since Ball (A) is weak* compact, and since
|If1]; equals the norm of the above-mentioned restriction to A, there exists a € A of norm 1
with t(fa) = ||f]|;. It is evident that

laf* = fra’af < f*f =IfI*.
Now 0 < T < S in LP(M) implies that Tz < Sz(see e.g. [163], and we thank David Sherman
for this reference). It follows that |af| < [f]. On the other hand, =(|f]) = t(fa) = t(af) <
t(lafD.Thus|l |f] = lafllly = =(If] = laf]) = 0, and so [f| = |af|.The functional y =
t(af.) on M must be positive since Y(I) = t(af) = t(|f]) = t(laf]) = |[Y]|. Thus af = 0,
and af = |af| = |f|. Since h € [A4,]; we have

t((f + Wa) = t(falIfll, = llglly = If + hlly
An argument similar to that of the last paragraph shows that a(f + h) = |f + h| = 0.Thus
ah is self-adjoint. Since h € [A]; it is easy to see that t(ahA) = 0. Therefore from the self-
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adjointness of ah one may deduce that t(ah(4 + A*)) = 0. Because A is subdiagonal, it
follows that ah = 0. Thus

fl =af =a(f +h) = |f +hl
Let e be the left support projection of a. Then e is the projection onto Ker(a*). We have
|flet = f*a*et = 0. It follows that fet =0. Thus 0 =elf*fel =el|f + h|?el =
et(f + h)*(f + h)et =eth*het.
Hence het = 0. To show that he = 0, we reproduce the ideas in the argument in the second
paragraph of the proof. Namely, note that |(fa)*|?> < |f*|?, so that |(fa)*| < |f*|. But
AfD=IfllL =t(fa) < (|(fa)*]), and as before this shows that |(fa)*| = |f*|. Then
also t(fa) = t(|(fa)*|), and as before this shows that fa > 0. Similarly, (f + h)a = 0. So
ha is again selfadjoint, and this implies as before that ha = 0. Thus he* = 0,and so h = he +
he* = 0 as required.

Now suppose that, in addition, D is finite dimensional, and that p is a Hahn-Banach
extension of a normal functional w on A. By basic functional analysis, wis the restriction of a
normal functional w on M. We may write p = p,, + p, where w, and wg are respectively the
normal and singular parts, and |[p|| = ||p.ll + llps||- Then p — @ annihilates A, and hence by
our F. and M. Riesz theorem both the normal and singular parts, p,, — @ and pg respectively,
annihilate A,. Hence they annihilate A, and in particular p,, = w on A. But this implies that

lleall + llpsll = llpll = llwll < llpall

We conclude that p; = 0. Thus A also satisfies (GIW;), and hence (GW).There is another
(simpler) variant of the Gleason-Whitney theorem [149], which transfers more easily to our
setting:

Theorem (2.1.16)[61]:Let A be a maximal subdiagonal subalgebra of M with Dfinite
dimensional. If wis a normal functional on M then w is the unique Hahn-Banach extension of

its restriction to A + A*. In particular, ||w]|| = ||w44+||fOr anyw € M,.
Proof: Let p be a Hahn-Banach extension of the restriction of w to A + A*. We may write p =
pn + ps, Where p,, and pg, are respectively the normal and singular parts, and ||p|| = ||p,|l +

llosll- Then p — w annihilates A + A*. By Corollary (2.1.14), p, —w = (p — w), = 0. Asin
the last part of the previous proof, this implies that p, = 0. So p; = p,, = w.

Corollary (2.1.17)[61]:(Kaplan sky density theorem for subdiagonal algebras) Let A be a
maximal subdiagonal subalgebra of M with D finite dimensional. Then the unit ball of A +
A*is weak* dense in Ball(M).

Proof: If C is the unit ball of A + A", it follows from the last remark that thepre-polar of C is
Ball(M,). By the bipolar theorem, C is weak* dense in Ball (M).

Arveson formulated the Szego theorem for L2(M) in terms of the Kadison-Fuglede determinant
A(+). The long-outstanding open question of whether general maximal subdiagonal algebras
satisfy the Szego theorem for L2 (M), was eventually settled in the affirmative in [163]. We will
now extend this result to LP(M). We refer the reader to [300, 58] for the properties of the
Kadison-Fuglede determinant which we shall need.

Lemma (2.1.18)[61]:A(bP) = A(b)P forp=>1and b € M,.
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Proof: By the multiplicativity property of A, the relation clearly holds for dyadic rationals. We
may assume that 0 < b < 1. In this case, by the functional calculus it is clear that b9 < bP if
0 < p < q. Ifqisany dyadic rational bigger than p then

A(b)P = A(bP) < A(bP)

1 1
It follows that A(bP) < A(bP). Replacing p by 1/p, we have A(bP)? < A ((bp)5> — A(b),

which gives the other direction.
Theorem (2.1.19)[61]:.(Szego theorem for LP (M)) Suppose that A is maximal subdiagonal,
and 1 <p < oo. If h € LY(M), then
ACh) =inf {r(hla+d|P):a € Ay d € D,A(d) = 1}.
Proof: We set
Sp = {lalP:a € 4,(¢(a)) 2 1},
S={a*a:a € A1, A(a) = 1}.
By the modification in [58] of a trick of Aversion’s from [300], it suffices to show that the
closure of S, equals the closure of S. First we show that S c S,,. Indeed, if b € S then b is

1

invertible, and therefore so is % . Since A has factorization, there isan a € A~* with |a] = br .
By Lemma (2.1.19) and Jensen’s formula [300, 163] we have

1 1
A(®(a)) = A(@) = A(ja]) = A (bﬁ) — A(b)P > 1.
Hence b = |a|? € S,,.
Suppose that b € S, .If b = |a|? where 4(®(a)) = 1 then by Jensen’s inequality [300, 241]
we have 4(a) = A(|a]) = 1. Hence by Lemma (2.1.18) we have A(b) = 1. Ifn € N then

since A has factorization, there exists a c € A~twith b + % 1= c*c. Thus
1
A(c)?> = A(b +—1) > A(b) = 1.

Thusb + = 1—c c € S, and we deduce that b € S. HenceS c S.

Note that the following generalized Kolmogorov theorem iIs not true for all maximal
subdiagonal algebras. For example, take A = M = L*[0, 1].
Theorem (2.1.20)[61]:.Suppose that A is an antisymmetric maximal subdiagonal algebra.

Ifh € L*(M),. then inf{z(h|l + f|?):f € Ay + Ay} is either T(h™1)7z , if K71 exists in the
sense of unbounded operators and is in L*(M); or the infimum is 0 if h™! ¢ L'(M). More

generally, if 1< p<oo then inf{z(|(1+ f)h»|P): f € Ay + A} is either 0 if h™1 ¢
LY @D (M), or t(h~ /P2 )pl— 1ifh= € LY®=D ().

Proof: We formally follow the proof of Forelli as adapted in [282]. Let h € L*(M),, and % +

1
é = 1. Define LP(M, h) to be the completion in LP (M) of Mhr. Note that if e is the support

projection of a positive x € LP(M) then it is well known (see e.g. [175]) that LP (M)e equals
the closure in LP (M) of M,. Hence LP(M, h) = LP(M)e, where e is the support projection of
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h. Now for any projection e € M it is an easy exercise to prove that the dual of LP (M) is
eL9(M) (see e.g. [175]). It follows that the dual of LP (M, h) is L1(M, h).
1

If k € LP(M, h) then kha € LP(M)LI(M) c L*(M). We view A, + A} in LP(M,h) as its
image (A, + A’g)h% , and let N be the annihilator of this in L4(M, h). Thatis,g € Niffg €
L1(M, h) and

0= T(hp (Ao +4o)g) = 7((Ao + 4o )ghp)
Since ghp € LY(M) the last equation holds iff ghP = cl, where c is a constant. Since h is

selfadjoint, if ¢ # 0 then it follows that A » exists in the sense of unbounded operators, and its
closure is the constant multiple dg € LY(M), where d = ¢~ . (Since we are in the finite case,

1
there is no difficulty with T-measurability here, this is automatic [183]). If ¢ = 0 then gh» =
1

0 which implies that g = 0. To see the last statement note that if h » is viewed as a selfadjoint
unbounded operator on a Hilbert space H, and if e is its support projection, which equals the
1

1 1

1 1 1
support projection of ha , then eh? = hr , and so ehre = eh». Since g € Mha , we have
1 1
ge = g. However ge = 0 since gh? = 0. Thus if g has norm 1 then ¢ # 0,h? € Li(M)
1 _a 1
and|d|=‘hv — (W7 ).
LA(M)
The infimum in the theorem is the pth power of the norm of 1 in the quotient space of LP (M, h)
modulo the closure of A, + Aj. Since the dual of this quotient is (4, + Ag )™ = N, this

(ghE) gEN, ||g||Lq(M) 13. This equals 0 if no

_aq
g € N has norm 1; otherW|se itequals t(h ») @ = r(h p- 1) a by the above. Indeed the

infimum is 0 iff r(ghv) =0 for all g € N. Since ghP Is constant, this occurs iff ghP = 0
which as we saw above happens iff g = 0. Thus the infimum is 0 iff N = (0) iff (4, + Ao)hv
1
is dense in LP (M, h). Since h» € LP (M, h), the latter condition implies that there is a sequence
1 1

(gn) in Ay + A with g,,h? — he in p —norm. If h=1/P € L9(M) then by Holder’s inequality
we have 7(|g, —1|) — 0, which is impossible since 1 = |t(g, — D| < ©(lg, — 1]).
Section (2.2) Szego’s Theorem and Outers for Noncommutative HP

It has long been of great importance to operator theorists and operator algebraists to find
noncommutative analogues of the classical ‘inner-outer factorization’ of analytic functions. We
recall some classical results: If f € L' withf > 0, then [log |f| > —iff f = |h| for an
outer h € H! (iff f = |h|? foranouter h € HP). We will call this the Riesz-Szego theorem.
If f € L' with [log |f| > —oo, then f = uh, where u is unimodular and h is outer. Outer
functions may be defined in terms of a simple equation involving [ log |f|Such results are
usually treated as consequences of the classical Szego theorem, which is really a distance
formula in terms of the entropy exp(J log |f|), and which in turn is intimately related to the
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Jensen inequality (see e.g. [147]). In the noncommutative situation one wishes, for example, to
find conditions on a positive operator T which imply that T = |S| for an operator S which is
in a ‘noncommutative Hardy class’, or, even better, which is ‘outer’ in some sense. There are
too many such results to attempt a listing of them (see e.g. [88]). Central parts of this topic still
seem to be poorly understood. As an example of this, we cite the main and now classical result
of [6], concerning a Riesz-Szego like factorization of a class of B(H)-valued functions on the
unit interval, which has resisted generalization in some important directions. We generalize the
classical results above to the noncommutative H? spaces associated with Arveson’s remarkable
subdiagonal algebras [300]. Our generalization solves an old open problem (see the discussion
in [88], and [178]). The approach which we take has been unavailable until now (since it relies
ultimately on the recent solution in [163] of a 40 year old open problem from [300]). Moreover,
the approach is very faithful to the original classical function theoretic route (see e.g. [147]),
proceeding via noncommutative Szego theorems.

We have attempted to demonstrate that all the results in ([282]) the ‘generalized HP-
theory’ for abstract function algebras from the 1960s, extend in an extremely complete and
literal fashion, to the noncommutative setting of Arveson’s subdiagonal subalgebras of von
Neumann algebras [300]. This may be viewed as a very natural merging of generalized Hardy
space, von Neumann algebra, and noncommutative LP space, techniques. See [62]. It completes
the noncommutative extension of the basic Hardy space theory. As posited by Arveson, one
should use the Fuglede-Kadison determinant A(a) = exp(t(log |a|)) where T is a trace, as a
natural replacement in the noncommutative case for the quantity [log f above. We use
properties of the Fuglede-Kadison determinant to give several useful variants of the
noncommutative Szegd theorem for LP(M), including the one usually attributed to
Kolmogorov and Krein. As applications, we generalize the noncommutative Jensen inequality,
and generalize many of the classical resuts concerning outer functions, to the noncommutative
HP context.

For aset S, we write S, fortheset{x € S: x > 0} see [62].. We assume throughout
that M is a von Neumann algebra possessing a faithful normal tracial state t. The existence of
such t implies that M is a so-called finite von Neumann algebra, and that if x*x = 1 in M, then
xx* =1 too. Indeed, for any a,b € M,ab will be invertible precisely when aandb are
separately invertible. We will also need to use a well known fact about inverses of an
unbounded operator , and in our case T will be positive, selfadjoint, closed, and densely
defined. We recall that T is bounded below if for some A > 0 one has kT (n)k = A||n||for
all n € dom(T). This is equivalent to demanding that |T | = &; for some € > 0, and of
course in this case, |T | has a bounded positive inverse.

A (finite maximal) subdiagonal subalgebra of M is a weak* closed unital subalgebra A
of M such that if @ is the unique conditional expectation guaranteed by [181] from M onto
A N A" ¥ D which is trace preserving (that is, T « @ = ), then:

P(aia;) = P(a)P(az), ay,a; € A 1)

One also must impose one further condition on A. There is a choice of at least eight
equivalent, but quite different looking, conditions [62]; Arveson’s original one (see also
[240]) is that A + A is weak™ dense in M. In the classical function algebra setting [288], one

35



assumes that D = A n A" is one dimensional, which forces @ = 7(-)1. If in our setting this
Is the case, then we say that A is antisymmetric.

The simplest example of a maximal subdiagonal algebra is the upper triangular matrices
A in M,,. Here @ is the expectation onto the main diagonal. There are much more interesting
examples from free group von Neumann algebras, Tomita-Takesaki theory, etc (see e.g.
[300,161,178]). On the other end of the spectrum, M itself is a maximal subdiagonal algebra
(take @ = Id). It is therefore remarkable that so much of the classical H? theory does extend
to all maximal subdiagonal algebras.

By analogy with the classical case, we set A, = A N Ker(®) and set HP or HP (A) to
be [A],, the closure of A in the noncommutative LPspace LP (M), for p = 1. More generally

we write [S], for this closure of any subset S. We will often view L? (M) inside M, the set of
unbounded, but closed and densely defined, operators on H which are affiliated to M. This is a
x-algebra with respect to the ‘strong’ sum and product (see [183]). We order M by its cone of
positive (selfadjoint) elements. The trace T extends naturally to the positive operators in M,. If
1 <p < o, then LP(M,7) ={a € M :t(Jalp) < oo}, equipped with the norm || - ||, =
(] - |P)YP (see e.g.[77]). We abbreviate LP (M, T) to LP(M). Arveson’s Szego formula is:
A(h) = inf{t(hla + d|*): a € Ay d € D, A(d) = 1}
forall h € L'(M),. Here A is the Fuglede-Kadison determinant, originally defined on M by
A(a) = exp t(log |a|) if |a|] > 0, and otherwise, 4(a) = inf A(|a| + £1), the infimum
taken over all scalars € > 0 (see [26, 300]). We will discuss this determinant in more detail.
Unfortunately, the just-stated noncommutative Szegé formula, and the (no doubt more
important) associated Jensen’s inequality
A(®(a)) < 4A(a),a €A,

resisted proof for nearly 40 years, although Arveson did prove them in his extraordinary
original [300] for the examples that he was most interested in. The second proved in [163] that
all maximal subdiagonal algebras satisfy these formulae. Settling this old open problem opened
up the theory.
An element h € HP is said to be outer if 1 € [hA],. This definition is in line with e.g.
Helson’s definition of outers in the matrix valued case he considers in [102]. We now state a
sample of our results about outers. For example, we are able to improve on the factorization
theorems from e.g. [58] in several ways: namely we show that if f € LP(M) with A(f) > 0
then f may be essentially uniquely factored f = wh with u unitary and h outer. There is a
much more obvious converse to this, too. We now have an explicit formula for the u and h.
We refer to a factorization f = wuh of this form as a Beurling-Nevanlinna factorization. It
follows that in this case if f = 0 then f = |h| with h outer. This gives a solution to the
problem posed in [88], and in [178]. If h € HP, and h is outer then A(h) = A(®(h)). A
converse is true: if A(h) = A(®(h)) > 0 then h is outer. It follows that under some
restrictionson D = A n A*, his outer iff A(h) = A(®(h)) > 0.

There are many factorization theorems for subdiagonal algebras (see e.g. [300, 178, 149,
176, 88]), but as far as we know there are no noncommutative factorization results involving
outers or the Fuglede-Kadison determinant. We mention for example Arveson’s original
factorization result from [300], or Marsalli and West’s Riesz factorization of any f € H! asa

36



productf = gh with g € HP,h € Hq,% + % = 1. Some also require rather stronger

hypotheses, such as f~ € L?(M) (see e.g. [178])

The commutative case of most of the topics was settled in [281]. While certainly gave
us motivation to persevere in our endeavor, we follow completely different lines, and indeed
the results work out rather differently too. In particular, the quantity t(exp(@(log |f|))),
which plays a central role in most of the results in [281], seems to us to be unrelated to outers
or factorization in the noncommutative setting. We remark that numerical experiments do seem
to confirm the existence of a Jensen inequality t(exp(®(log|a|))) = t(|®(a)|) for
subdiagonal algebras.

We remark that there are many other, more recent, generalizations of H*, based around
multivariable analogues of the S,-Nagy-Foias model theory for contractions. The unilateral
shift is replaced by left creation operators on some variant of Fock space. Many are currently
intensively pursuing these topics, they are very important and are evolving in many directions.
Although these theories also contain variants of Hardy space theory, they are quite far removed
from subdiagonal algebras. For example, if one compares Popescu’s theorem of Szego type
from [90] with the Szego theorem for subdiagonal algebras discussed here, one sees that they
are only related in a very formal sense.

The Fuglede-Kadison determinant A, and its amazing properties, is perhaps the main tool
in the noncommutative HP theory. In [277], Fuglede and Kadison study the determinant as a
function on M. We will define it for elements of L7(M) forany g > 0. In fact, as was pointed
out to us by Quanhua Xu, L. G. Brown investigated the determinant and its properties in the
early 1980s, on a much larger class than L7(M) (see [163]); indeed recently Haagerup and
Schultz have thoroughly explicated the basic theory of this determinant for a very general class
of T —measurable operators (see [286]) as part of Haagerup’s amazing attack onthe invariant
subspace problem relative to a finite von Neumann algebra.

We will define the Fuglede-Kadison determinant for an elementh h € L1(M), for any
q > 0, as follows. We set 4(h) = exp t(log |h|) if |h| > €1 for some & > 0, and
otherwise, A(h) = inf A(|h| + €1), the infimum taken over all scalars e > 0. To see that
this is well-defined, we adapt the argument in [57], making use of the Borel functional calculus
for unbounded operators applied to the inequality

1
OSlogtSatq, t € [1,00).
Notice that for any 0 < & < 1, the function log t is bounded on [g, 1]. So given h €
L*(M), withh > el, it follows that (log h)eyq 41 is similarly bounded. The previous centered
equation ensures that 0 < (log h)e[1,00) < éhq e[1,00) < éh‘l. Hereey 2 denotes the spectral

resolution of h. Thusif h € LI(M) and h = ethenlog h € L'(M).

The following are the basic properties of this extended determinant which we shall need.
Full proofs may be found in [286], which are valid for a very general class of unbounded
operators (see also [62] for another (later) proof for the LP (M) class).

Theorem (2.2.1)[66]: Ifp > Oand h € LP(M) then
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(i) ACh) = A(h*) = A(|h]).
(i) Ifh = gin LP(M), then A(h) = A(9).
(iii) Ifh = 0thenA4(h?) = A(h)? foranyq > 0.
(iv) A(hb) = A(h)A(b) = A(bh) forany b € LY(M) and anyq > 0.
Throughout, A is a maximal subdiagonal algebra in M. We consider versions of Szegé’s
formula valid in LP (M) rather than L?(M). We will also prove a generalized Jensen inequality,
and show that the classical Verblunsky-Kolmogorov- Krein strengthening of Szego’s formula
extends even to the noncommutative context.
It is proved in [61] that for h € L1(M), and 1 < p < oo, we have
A(h) = inf{r(hla+d|P):a € Ay,d € D,A(d) = 1}.
We now prove some perhaps more useful variants of this formula

4 1
Lemma (2.2.2)[66]:1fh € LI(M),and 0 < p,q < oo, we have A(h) = inf{z(|h? b|P)a:b €
q 1

M,,A(b) = 1} = inf{z(|bhr|P)a:b € M,,A(b) =}.The infimums are realized on the
commutative von Neumann subalgebra M, generated by h, and are unchanged if in addition
we also require b to be invertible in B.
Proof: That the two infimums in the displayed equation are equal follows from the fact that
lxll, = llx*[|,for x € LP (M) (see [275]). Thus we just prove the first equality in that line.
Forb € M+,A(b) > 1, we have by Theorem (2.2.1) (iii) that
A([hY/Pb|P) = A(|hVPbIP) = A(|h?/PbIP).

Consequently, using facts from Theorem (2.2.1) again, we have

t([R/Pb|P) = A(IhY/PbIP) = [AGRYP)AB)IP = AP = A(R)".
To complete the proof, it suffices to find, given € > 0, an invertible b in (M,),, the von

q 1
Neumann algebra generated by h, with A(b) = 1 and (|h» b|P)a < A(h) + €. Butforany b €

q
(My)+ we have |hrb|P = h9bPby commutativity, and then the result follows from an analysis
of Arveson’s original definition of A(h) (see [59]). In particular sinced(h?) =
inf{t(hibP):b € (My)+,4(b) = 1} by [59], an application of Theorem (2.2.1) (3)

ensuresthat A(h) = inf{t(hibP)a:b € (My),,A(b) = 1}.
Corollary (2.2.3)[66]:1f h € L4(M).,. and 0 p, q < oo, We have

A(h) = mf{r(|hp a|p)q a €A A(@) =1}

= mf{f(lhpl”)q a €A A(®(a)) 2 1}.
The infimums are unchanged if we also require a to be invertible in A, or if we require @ (a)to
be invertible in D,
Proof: That the two infimums in the displayed equation are equal follows from the fact that
lxll, = llx*|| for x € LP(M) (see [277]), and by replacing A with A*, which is also
subdiagonal. Thus we just prove the first equality in that line.
Fora € A, A(®(a)) = 1 we have

q 1 qg 1 qg 1
t([h? a|P)? = (|a"hP|P)9 = 1(||a’|hP|P)9 = A(h),
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by Lemma (2.2.2), since A(]a*|) = A(a™) = A(a) = A(P(a)) = 1 (using Jensen’s
inequality). Thus A(h) is dominated by the first infimum. On the other hand, by the previous

a 1
result there is an invertible b € M, with A(b) = 1 and t(|h? a|?)? < A(h) + €. By
factorization, we can write b = |a*| for an invertible a in A, and by Jensen’s formula [300,
163] we have A((D(a)) = A(a) =A(a” ) = A(b = 1. Then

T(Ihp al”)q = 1(|a’ hplp)q =7(|b al”)q <@(h) te.
Corollary (2.2.4)[66]: (Generalized Jensen inequality) Let A be a maximal subdiagonal
algebra. For any h € H! we have A(h) = A(®(h)).
Proof: Using theL!-contractivity of @ we get
T(|Ih|a|) = 1(|hal) = T(||6D(h)|q§(a)|), a € A.

Taking the infimum over such a with A(@(a)) = 1, we obtain from Corollary (2.2.3), and
Theorem (2.2.1) applied to D, that A(h) = A(|h|) = A(|®(h)|) = 4(P(h)).

We recall that although LP (M) is not a normed space if 1 > p > 0, it is a socalled
vlinear metric space with metric given by ||x — yllg
for any x,y € LP(see [277]). Thus although the unit ball may not be convex, continuity still
respects all elementary linear operations.

a a
Corollary (2.2.5)[66]:.Let h € L1(M), and 0 < p,q < oo. If h? € [hPA,]p, thend(h) = 0.

a q
Conversely, if A is antisymmetric and A(h) =0, then hr € [hPAy],. Indeed if Ais
antisymmetric, then

q 1
A(h) = inf{z(|hP? (1 — ao)|")%: a0 € Ao}.
Proof:The first assertion follows by taking a in the infimum in Corollary (2.2.3) to be of the
form1 — a4 foray € A,.

q 1 q
If A is antisymmetric, and if t > 1 with t(|h? (t1 — ay)|P?)? < A(h) + ¢, thenz(Jh? (1 —

ay)|P)1 < A(h) + e. From this the last assertion follows that the infimum’s in Corollary
(2.2.3) can be taken over terms of the form 1 + a, where a, € A,. If this infimum was 0 we

a q
could then find a sequence a,, € A, with h? (1 + a,) —» 0 with respect to [|-|[,. Thus h» €

q

[hPAo],.
We close with the following version of the Szegoé formula valid for general positive linear
functionals. Although the classical version of this theorem is usually attributed to Kolmogorov
and Krein, we have been informed by Barry Simon that Verblunsky proved it first, in the mid
1930’s (see e.g. [267]):
Theorem (2.2.6)[66]:Noncommutative Szego -Verblunsky- Kolmogorov- Krein theorem) Let
wbe a positive linear functional on M, and let w, and w, be its normal and singular parts
respectively, with w,, = t(h) forh € LY(M),. If dim(D) < oo, then

A(h) = inf{w(|al?):a € A, 4(P(a)) = 1}.

The infimum remains unchanged if we also require @(a) to be invertible in D.
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Proof: Suppose that dim(D) < co. All terminology and notation will be as [61], the preamble
to the proof of the noncommutative F&M. Riesz [61]. For the sake of clarity we pause to
highlight the most important of these. If (=, H,, ) is the GNS representation engendered
by w, there exists a central projection p, in ,,(M)" such that for any ¢,y € H,, the functionals
a - (r,(a)poé,Y) and a - (m,(a)(1 — py)é,Y) on M are respectively the normal and
singular parts of the functional a — (m,(a)&,y) [180]. In this representation £, will denote
the orthogonal projection of Q,, onto the closed subspace r,(4,)#2,,.
Let d € D be given. We may of course select a sequence (f,,) € 4, so that
lim, o1, (f), = 0. By the ideal property of A, and continuity, it then follows that
Ty (d)QO = }JI’;LO Ty (dfn)'Qw € T[w(AO)'Qw'

Once again using the ideal property of A,, the fact that 2, — 2, L m,(4,)2, now

forces ,, (d)2y, 7, ()2, = (R, — 2y, 7,(d"a),) = 0 forevery a € A,. Therefore
Ty (d)'QO (Qw - QO) 1 m, (AO)'QQ)'
From the facts in the previous two centered equations, it now follows that m,(d),is the
orthogonal projection of m,(d)f2, onto m,(4,)f2,. Using this fact we may now repeat the
arguments of [61] for the functional
wq () = My (I, d) (2 — 20), 7, (A) (2 — o))

to conclude that wq is normal, with p, (7, (d) (2, — 2y)) = 7, (d)(2, — 2y), Where p, IS
the central projection in m,(M)"" mentioned above, and also: pym,(d)(2, —2,) L
PoT,(A0)0, and py(m,(d),) is the orthogonal projection of py(m,(d),) onto
po(m,(40)2,). Thus we arrive at the fact that

inf w(ld + al?) = inf (n, ()2, + Ty (@) 24, Tu (D)2, + T, (a))

a€iy aely

inf Im, ()2 — mu(@II? = (1, (d)(2y — 20), 76, (20 — 2o))

acd,
<p07Tw (d)('Qa) - -QO)J PoTly (d) (-Qa) - QO))
inf(pome (d)2, + Pomy, (a)2y, PoTte, (A2, + PoTty,(a))

aEAO
= infw,(ld + a|*) = infr(hld + al?.
a€ei, a€ei,

On taking the infimum over all d € D with A(d) = 1, the result follows from Corollary
(2.2.3).
Throughout A is a maximal subdiagonal algebra. We recall that if h € H'then h is outer if
[hA], = H. An inner element is a unitary which happens to be in A.
Lemma (2.2.7)[66]:Let 1 < p < co. Then h € LP(M) and h is outer in H', iff [hA], = HP.
(Note that [-]. is the weak™* closure.)
If these hold, then h & [hA],,.
Proof: It is obvious that if [hA], = HP. then [hA], = H'. Conversely, if [h4], = H'and h €
LP (M), then the first part of the proof of [58] applied to [hA],actually shows that [hA], =
[hA]; N LP(M)forall 1 < p < oo. Hence by [148], we have

[RA], = [RA], N LP(M) = H* n LP(M) = HP.
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If h € [hAy]pthenl € [hA], C [[hAo],A], € [hAg],. Now continuously extends to a map
which contractively maps LP (M) onto LP (D) (see e.g. [176]). If ha,, — 1in LP, with a,, € A,,
then

®(hay) = ¢()@(a,) =0 @(1) =1,
This forces @ () = 1, a contradiction.
Lemma (2.2.8)[66]:If h € H! is outer then as an unbounded operator h has dense range and
trivial kernel. Thus h = u|h| for a unitary u € M. Also, @ (h) has dense rangeand trivial kernel.
Proof: If h is considered as an unbounded operator, and if p is the range projection of h, then
since there exists a sequence (a,,)in A with ha,, —» 1in L*-norm, we have that p* = 0. Thus
the partial isometry u in the polar decomposition of h is an isometry, and hence is a unitary, in
M. It follows that |h| has dense range, and hence it, and h also, have trivial kernel.
For the last part note that

LY(D) = @(H") = ¢([hA]y) = [®(R)D];.

Thus we can apply the above arguments to @ (h)too.

There is a natural equivalence relation on outers:
Proposition (2.2.9)[66]:1f h € HP is outer, and if u is a unitary in D, then h’ = uh is outer in
HP too. If h, k € HP are outer, then |h| = |k| iff there is unitary u € D with h = uk. Such u
IS unique.
Proof: The first part is just as in the classical case. If h, k € H' and |h| = |k|, then it follows,
as in [281], that h = uk for a unitary u € M with u,u* € H'. Thus u € H: N M = A (see
[148]), and similarly u* € A, and so u € D. The uniqueness of u follows since the left support
projection of an outer is 1 (see proof of Lemma (2.2.8)).
As in the classical case, if h € H? is outer, then h ,is outer in H1. Indeed one may follow the
proof on [281], and the same proof shows that a product of any two outers is outer (see also the
last lines of the proof of Theorem (2.2.13) below). We do not know whether every outer in H!
is the square of an outer in H2.

The first theorem is a generalization of the classical characterization of outers in H?:
Theorem (2.2.10)[66]: Let A be a subdiagonal algebra, let 1 < p < coand h € HP. Ifhis outer
then A(h) = A(@(h)). IfA(h) > 0, this condition is also sufficient for h to be outer.

Note that if dim(D) < oo, then @(h) will be invertible for any outer h by Lemma (2.2.8). Thus
In this case it is automatic that A(®(h)) > 0.

Proof: The case for general p follows from the p = 1 case and Lemma (2.2.7). Hence we may
suppose that p = 1.

First suppose that his outer. Given any d € L*(D) and any a, € [Ay];, we clearly have
that t(|d — ao|) = t(|d| — u*ay) = ©(|d|), where uis the partial isometry in the polar
decomposition of d. In other words, for any a € [A], we have

2@y = inf lla—aelly = inf [la — aell; -

ag€EA4g ao€lAol1
Therefore
t(|@(h) d]) = inf t(Jhd — ayl), d € D.
ag€Ag
Notice that [hAy]; = [[hA]140]1 = [[A]140]1 = [Ao]i- Thus the above equality may
alternatively be written as
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t(|@(h) d|) = inf t(|lhd — ay|), dE€ED.

ag€Ay
Finally notice that |® (h)d’| = ||®(h)|d| and |h(d — ay)| = ||R|(d — ag)|. Therefore if now
we take the infimum over all d € DwithA( d) > 1, Szegd’s theorem will force
A(@(h)) = A(|e(W)]) = A(|h]) = 4A(h).

Next suppose that A(h) = A(®(h)) > 0. We will first consider the case h € [A],.By Lemma
(2.2.7) we then need only show that h is outer with respect to[A],. Replace h by A = u*h where
u is the partial isometry in the polar decomposition of @(h). If we can show that eh is outer, it
(and hence also u*) will have dense range, which would force u* to be a unitary. Thus h = uh
would then also be outer. Now notice that by construction || = |h| and ®@(h) = |@(h)]|. From
this and the generalized Jensen inequality we have

A = AR = A(JR]) = A(h) =2 A(@(R)) = A(X(R)) = A(h).
Thus A(h) = A(®@(h)) > 0. We may therefore safely pass to the case where @(h) = 0. By
multiplying with a scaling constant, we may also clearly assume that A(h) = 1.
Foranyd € Danda € A, we have

(|1 — h(d + a)|?) = (1 — ®(h)d — d*®(h)) + t(|h(d + @)|?). (2)
To see this, simply combine the fact that T o @ = 7 with the observation that ®(h(d + a)) =
@ (h)®(d + a) = ®(h)d. With d, a as above, notice that 7(|h(d + a)|?) = =(||h|(d + a)|?).
By Szegd’s theorem in the form of Corollary (2.2.3), we may select sequences (d,,) € {d €
D7 1:A(d) = 1},(a,) c A,, such that
Lim (Jh(dy + an)[*) = A(IRI*) = 4(W)* = 1.
Claim: we may assume the d,,’s to be positive. To see this, notice that the invertibility of the
d,,’s means that for each n we can find a unitary u,, € D so thatd,,u,, = |d*,|. Since for each
n we have
t(|h(dy + @) 1?) = T(|h(dy + a)unl?) = T(Ih(1d" ] + ayuy)[?),
the claim follows. Notice that then (@ (R)d,) = t(d'* ®(h)dY?) = 0. Using in turn the
L?-contractivity of @, the fact that @ (h(d,, + a,)) = ®@(h)d,,, and Holder’s inequality, we
conclude that
t(|h(dn + a)|?) = (|2 (W) d,|*) = (|2 (R)d,])?
> 7(®(h)d,)?* = A(@(h))* = 1.

Since Y&rglo (|h(d, + a,)|?) = 1, we must therefore also have rlll—?(}o t(®(h)d,) = 1.Butifthis

is the case then equation (2) assures us that h(d,, + a,) — 1 in L?-norm asn — oo. That is,
1 € [hA],. Clearly h must then be outer.Now let h € [A],. By noncommutative Riesz
factorization (see [181]) we may select hy, h, € [A], sothat h = hyh,. Sinced(h,)A(h,) =
A(h) = A(®(h)) = A(P(hy))A(P(hy)) > 0and A(h;) = A(P(h;)) foreach i = 1,2 (by the
generalized Jensen inequality), we must have A(h;) = A(®(h;)) for each i = 1, 2. Thus both
h, and h, must be outer elements of [A],. Consequently

[hA]y = [hihaA]y = [ [heA]]n = [M[Alz]n = [[Ra[Al2]2]h = [[A]2]: = [A]L, so that his
outer as required.

Note that: In the general non-antisymmetric case, one can have outers with
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A(h) = 0.Indeed inthe casethat A = M = Loo[0, 1], then outer functions in L? are exactly
the ones which are a.e. nonzero. One can easily find an increasing function h: [0, 1] —= (0, 1]

satisfying A(h) = 0, or equivalently fol log h = —oo. See also [280]. This prompts the
following:

Definition (2.2.11)[66]: We say that h is strongly outer if it is outer and A(h) > 0.Note that if
dim(D) < oo, then every outer h is strongly outer.

Corollary (2.2.12)[66]: Let 1 < p,q,r < o with %:% + - and let h = hyh, with hy €

H%nd h, € H". If A(h) > 0 then h is outer in H" iff both h;and h, are outer.
Corollary (2.2.13)[66]: Iff € LP(D) with A(f) > 0 then f is outer. Indeed there existd,, € D
with A(fd,) = 1,and fd,, = 1in 2-norm. Also, any f € LP(M) with A(f) > 0 has left and
right support projections equal to 1. That is, as an unbounded operator it is one-to-one and has
dense range.
Proof: For the first assertion note that @(f) = f and so A(f) = A(®@(f)) > 0. An inspection
of the proof of the theorem gives the d, with the asserted properties. Thus f clearly has left
support projection 1, and by symmetry the right projection is 1 too. Finally note that for the
last assertion we may assume that M = D.
Corollary (2.2.14)[66]: If 1 < p < wand A(h) > 0 then h is outer in H? iff [Ah], = HP.
Proof: Replacing A by A*, it is trivial to see that A(h) = A(®(h)) > 0, is equivalent to
A(h*) = A(@(h*)) > 0. The latter is equivalent to h+ being outer in H2(4*) = (H?)*; or
equivalently, to (H?)* = [h*A*],. Taking adjoints again gives the result.
Proposition (2.2.15)[66]: If h € H?, then h is outer iff the wandering subspace of [hA],(see
[280, 62]) has a separating cyclic vector for the D action, and
leMII? = inf{z(|h(1 - ao)|*):ao € Ao}.
Proof: (Following [281].) For x € L*(M) set §(x) = inf{r(||x|% (1—ag)|®):ay € Ag}-
First suppose that h € H? is outer. Then [hA], © [h4,], = H? © [4,], = L*(D),
which has a separating cyclic vector. We next prove that if h € H? is outer, then ||®(h)||* =
5(|h|?). To do this we view @ as the orthogonal projection from L?(M) onto L?(D), which
restricts to the orthogonal projection P from [A], onto L2(D). For any orthogonal projection
P from a Hilbert space onto a subspace K, we have ||P())|| = inf{|[{ —nll:n €
K+}. Thus||@(W)||? = inf{z(|h — ao|?): ay € [4,],}.Since h is outer, we have
[[hA]240]2 = [H?Agla, o [hAg]z = [Aola- Thus
@M = inf{r(lh — hao|*: ao € Ao} = 6(|h|?).
Conversely, suppose that the wandering subspace of [hA], has a separating cyclic vector. By
[57], we have [hA], = uH? for aunitary u € [hA], € H*. We have h = uk, with k € H?, and
[A], = u*[hA], = H?. So ks outer. If ||@(h)||? = 6(h), then using the notation in the last
paragraph,
@@ )II? = 5(|uk|?) = S(|k|?) = [@(K)]I>.
That is, 7(@(k)* (1 —®w)*®(u))®(k)) = 0. Since by Lemma (2.2.8) the left support
projection of &(k) is 1, the functional a — t(®(k)*a®(k)) is faithful on M, (indeed,
(@ (k)" a®(k) # 0 for any non-zero a € M,, which forces @(u)*®(u) = 1. A simple
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computation shows that @(ju— ®W)|?) =1—®w)*®(u) =0, so that u=®(u) €
D.Thus h = ukis outer.A classical theorem of Riesz-Szego states that if f € L' with f > 0,
then R log f > —oo iff f = |h| for an outer h € H* iff f = |h|? for an outer h € H%. We now
turn to this issue in the noncommutative case.
We are adapting ideas of Helson-Lowdenslager and Hoffman:
Lemma (2.2.16)[66]:Suppose that A is a maximal subdiagonal algebra, and that k €
L>(M)with k & [kA,],. Let v be the orthogonal projection of k onto [kA,],. Then |k — v|? =
@(|k —v|?) € L1(D).Also, A(|k — v|) = A(k).
Proof:Suppose that ka,, —» v,with a,, € A,.Clearly k —v L k(1 —a,)a, € kA,for all a, €
Ag. In the limit, k —v L (k —v)ay.That is,7(|k — v|%?a,)=0, which by [59] implies that
|k —v|? = ®(lk —v|?) € L}(D).For the last assertion, note that by Lemma (2.2.2) we have
A(k —v|?) = inf{z(|(k — v)d|?):d € D,with A(d) = 1}.Butsince vd € [kA,], for every
d € D, we may apply Szegé’s theorem to conclude that this infimum majorises inf{t(|kd —
kay|?):d € D,with A(d) = 1,a, € Ay} = A(|k|?) = A(k)?using the fact that |kd —
kao| = [|k|(d — ao)I.
Theorem (2.2.17)[66]:Suppose that A is a maximal subdiagonal algebra, and that k € L?(M).
Let vbe the orthogonal projection of k onto [kA,],. If A(k) > 0, then k has an (essentially
unique) Beurling-Nevanlinna factorization k = uh, where u is a unitary in M, and equals the
partial isometry in the polar decomposition of k — v, and h is strongly outer and equals u*k.
We also have A(k) = A(k — v).If|[k — v]is bounded below then (k — v)d = u for some d €
D.
Proof: By Corollary (2.2.5), k ¢ [kA,],. By the Lemma, |k — v|, € L}*(D). Letu be the
partial isometry in the polar decomposition of k — v. Since 4(k —v) = A(k) > 0 by the
Lemma, we deduce from Corollary (2.2.13) that u is surjective, and hence is a unitary. In the
case that |k — v| is bounded below letd = |k — v| —1 € D,, and then u = (k — v)d. Let
h = u*k € L>(M). We claim that t(u*ka,) = 0 forall a , € 4y, sothat h = u*k € L*(M) &
[45 ], = H?. To see this, let e, be the spectral projection of |k — v| corresponding to the
interval [0, 1/n]. Then by elementary spectral theory, and since k — v = ulk — v|, we have
1— e, =|k—v|rforsomer €D.(Taker = g(|k — v|) where g is %X(%,oo)). Thus
t(agk™u(l —e,)) = t(agk™(k — v)r) =0,
since kayr* € [kAy], and k — v L [kAy],. On the other hand, by the Borel functional
calculus it is clear that e,, — e strongly, where e is the spectral projection of |k — v|
corresponding to {0}. Since A(|k — v|) = 4(k) > 0 by the Lemma, it is easy to see by
spectral theory that e = 0 (this is essentially corresponds to the fact that a positive function f
which is 0 on a nonnull set has [ log f = —o0). We conclude that (agk*ue,) — 0, and it
follows that
t(agk™u) = t(agk*ue,) + t(apgk™u(l —e,)) = 0.
To see that u*k is outer, we will use the criterion in Theorem (2.2.10). We claim that @ (u*k) =
|k — v|. To see this, note that by the last paragraph we have t(u*x) = 0 for any x € [kA,],
and in particular for x = vc for any ¢ € D. We have
t(@(Wk)c) =t(ukc) = t(u*(k —v)c) = t(|k — v]|c).
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Since this holds for any ¢ € D we have @(u*k) = |k — v|. Thus we have by the generalized
Jensen inequality (2.2.4) that

A(k) =AW k) = A(@(W'k)) = A(lk —v|) = A(k).
Hence h = u*k is outer by Theorem (2.2.10).
The unigqueness now follows.
Corollary (2.2.18)[66]:Suppose that A is a maximal subdiagonal algebra with Dfinite
dimensional, and that k € L?(M) with A(k) > 0. Let v be the orthogonal projection of k onto
[kAy],. Then |k — v] is invertible, and all the conclusions of the previous theorem hold.
Proof: By the above, |k —v| € LY(D) =D, and A(|lk —v|) = A(k) > 0. Thus |k — v|is
invertible since D is finite dimensional. The rest follows from the previous theorem.
We next give a refinement of the ‘Riesz factorization’ into a product of two H? functions:
Corollary (2.2.19)[66]:. If A is a maximal subdiagonal algebra with Dfinite dimensional, and
if £ € LY(M) with A(f) > 0, then there exists an outer h? € H?, an invertible d € D with

A(d) = J%’ and an h; € [fA,]; such that f — h; € L2(M), and f = (f — hy)dh,. If also

f € HY, then this can be arranged with h; € H',®(h,) = 0,and f — h, € H?,

Proof: Let k = |f|z . By Corollary (2.2.5) we have k & [kA],. If u,v are as in Theorem
(2.2.16), and if f = w|f| = wk? is the polar decomposition of f, then

f = (wWkw)(u'k) = (wk(k —v))dh, = (f — hy)dh,
where h, = u*k and h; = wkv.
If ka,, » v in L? norm, with a,, € A,, then fa,, = wk?a, - wkv in L! norm. Thus h; €
[fAoly. Also, f —hy = wkud™! € L*(M) (recall that since D is finite dimensional, d — 1 =
|k —v| €D).If f € HY, then h; € [fA,], € H',and ®(h;) =0S0 f — h, e H' N L*(M) c
L>(M) © [A*], = H?.
Corollary (2.2.20)[66]:.If A is a maximal subdiagonal algebra, and if f € L*(M) with A(f) >
0, then there exists a strongly outer h € H', and a unitary u € M with f = uh.
Proof: By the proof of Corollary (2.2.19), and in that notation, we have f = wkuh, for an
outer h,. Note thatw is a unitary, since f has dense range (Corollary (2.2.13)). Since
A(wku) = A(k) > 0, we have by the last theorem that wku = Uh, for a unitary U and
strongly outer h;, € H?.Leth = hqh,.
Corollary (2.2.21)[66]:If A is a maximal subdiagonal algebra, and f € LP(M) then A(f) > 0
Iff f = uh for a unitary u and a strongly outer h € HP. Moreover, this factorization is unique
up to a unitary in D.
Proof: (=) By Corollary (2.2.20) we obtain the factorization with outer h € H*. Since |f| =
|h| we have h € LP(M) n H! = H? (using [153]), and 4(h) > 0. (<) We have A(f) =
A(w)A(h) > 0.
The uniqueness of the factorization was discussed after Proposition (2.2.9).
Note that. The u in the last result is necessarily in [fA],indeed if ha,, — 1 with a,, € A, then
fa, = uha, = u.
Corollary (2.2.22)[66]:1f A is a maximal subdiagonal algebra, then f € HP with A(f) > 0 iff
f = uh for an inner u and a strongly outer h € HP. Moreover, this factorization is unique up
to a unitary in D.
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Proof: Clearly f is also in H'. Then u is necessarily in [fA], ¢ H*.Sou € H' N M = A(see
[149]). Thus uis ‘inner’ (i.e.is a unitary in H* = A).

An obvious question is whether there are larger classes of subalgebras of M besides
subdiagonal algebras for which such classical factorization theorems hold. The following
shows that, with a qualification, the answer to this is in the negative:

Proposition (2.2.23)[66]: Suppose that Ais a tracial subalgebra of M in the sense, such that
every f € L>(M) with A(f) > 0 is a product f = uh for a unitary u and an outer h € [A],.
Then A is a finite maximal subdiagonal algebra.

Proof. Suppose that A is a tracial subalgebra of M with this factorization property. We will
show that A satisfies the ‘L?-density’ and the ‘unique normal state extension’ properties which
together were shown in [59] to imply that Ais subdiagonal. As in [59, 153,149], A, is the tracial
algebra A,, = M N [A], extending A. If x € M s strictly positive, then A(x) > 0 by e.g.
Theorem (2.2.1) (ii). So x = uh for a unitary u and h € H?. Clearly h is bounded, so that h €

1
A, and x = (x*x)z = |h|. Also, h™1 € A, since if ha,, - 1 then a,, > h™1. Thus A, has
the ‘factorization’ property and so is maximal subdiagonal [59]. Hence A, + AL, and therefore
also A + A*, is dense in L?(M). Next, suppose that g € L*(M), satisfies 7(g4,) = 0. We need
to show that g € L*(D),. Since t((g + 1)A,) = 0, we can replace g with g + 1 if necessary,
1

to ensure that A(g) > 0. Let f = gz € L*(M). Then A(f) > 0, f L [fA,],, and by hypothesis
f = uhfor an outer h € [A], and some unitary u in M. Since h=u"f Lu* € [fA], =
[hA], = [Ay],, and h € [A],, itfollows that h € [D],. Thus g € [D]; = L*(D). This verifies
the ‘unique normal state extension’ property of [59]. The following generalizes [145]:
Corollary (2.2.24)[66]:1f f € L'*(M)., then the following are equivalent:

() A(f) >0,

(if) f = |h|Pfor astrongly outer h € HP,

(iii) f = |k|P for k € HP with A(®(k)) > 0

Proof: (i) =(ii) By a previous result, A(fv) > 0, and so by the last result we havefp = uh,

where h is outer in H?, and u is unitary. Thus f = (fva )z = (h*h)z = |h|P.
(it) =(iii) This follows from Theorem (2.2.10) .
(iii) =@) If f = |k|? for k € HP with A(®(k)) > 0, then A(f) = A(k)p = A(D(k))p >
0 by Theorem (2.2.1) and the generalized Jensen inequality.

Of course in the case that D is finite dimensional one can drop the word ‘strongly’ in the
last several results. In particular, in the case that the algebra A is antisymmetric, these results
and their proofs are much simpler and are spelled out in our survey [62].
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Chapter 3
The Algebraic Structure and Quasi-Radial Quasi-Homogegeneous Symbols

The k-dimensional representations form a generalized maximal ideal space with a
canonical surjection onto the ball of k X k,, matrices which is a homeomorphism over the open
ball analogous to the fibration of the maximal ideal space of H> over the unit disk. The algebras
are non conjugated via biholomorphisms of the unit ball, non of them is a C*-algebra, and for
n = 1 all of them collapse to the algebra generated by Toeplitz operators with radial symbols.
Section (3.1) The Non-Commutative Analytic Toeplitz Algebras

In [68, 208, 211, 212], a good case is made that the appropriate analogue for the analytic
Toeplitz algebra in n non-commuting variables is the WOT-closed algebra generated by the
left regular representation of the free semigroupon n generators. It obtain a compelling
analogue of Beurling's theorem and inner-outer factorization. We add further evidence. The
result is a short exact sequence determined bya canonical homomorphism of the automorphism
group onto this algebra onto the group of conformal automorphisms of the unit ball of CV. The
kernelis the subgroup of quasi-inner automorphisms, which are trivial modulothe WOT-closed
commutator ideal. Additional evidence of analytic properties comes from the structure of k-
dimensional (completely contractive) representations, which have a structure very similar to
the fibration of the maximal ideal space of H*® over the unit disk. An important tool in our
analysis is a detailed structure theory for WOT-closed right ideals. Curiously,left ideals remain
more obscure.

The non-commutative analytic Toeplitz algebra £,, is determined by the left regular
representation of the free semigroup F,, on n generators z, ..., z,which acts on £, (F,) by x
(w) &, = &, TOr v, w in F,. In particular, the algebra £,, is the unital, WOT-closed algebra
generated by the isometries L; = (z;) for 1 < i < n. This algebra and its norm-closed version
(the non-commutativedisk algebra) were introduced by Popescu [214] in an abstract sense in
connection with a non-commutative von Neumann inequality and further studied in [208, 214,
209, 212, 213]. For n = 1, weobtain the algebra generated by the unilateral shift, the analytic
Toeplitz algebra. The corresponding algebra for the right regular representation is denoted R,,.
This algebra is unitarily equivalent to £, and is also equal to the commutantof £,,. (see [68,98]).

It contains the classification of the WOT-closed right and two-sided ideals of £,,. These
ideals are determined by their range, which is always a subspace in LatR,,; and this pairing is
a complete lattice isomorphism.The ideal is two-sided when the range is also in Lat £,,. This
is the keytool needed to establish classify the weak-« continuous multiplicative linear
functionals on £,. We obtain some factorization results for right ideals that allow us to show
that a WOT-closed right ideal is finitely generated algebraically precisely when the wandering
subspace of the range space is finite dimensional; and otherwise, they require a countably
infinite set of generators even as a WOT-closed right ideal.

We examine the representation space of &,. The multiplicative linear functionals have a
structure that parallels the maximal ideal space of H*. This provides a natural homomorphism
of £, into the space H* (IB,,) of bounded analytic functions on the ball. Strikingly, the dilation
theory for non-commuting n-tuples allows us to obtain an analogous structurefor k-
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dimensional representations for every k < oo. In particular, the open ball B, , of strict
contractions in Mj, ,;, sits homeomorphically in a canonical way in this space.
Automorphisms of £, are shown to be automatically norm and WOT continuous. We
show that there is a natural homomorphism from Aut&,, onto Aut(B,,), the group of conformal
automorphisms of the ball of C™, determined by their action on the WOT —continuous linear
functional ¢, forA € B,. The kernel of this map is the ideal of automorphisms which are trivial
modulo the WOT-closed commutator ideal. In order to show that this homomorphismis
surjective, we determine all automorphisms of £, of the form AdW for unitary W. Using
certain automorphisms of the Cuntz-Toeplitz algebra found by Voiculescu [221,299], we are
able to obtain an isomorphism of this subgroup Aut,(%,) with Aut(B,). Thus the
automorphism group of £, is a semidirect product.
We will write L = [L; ... L,] both for then-tuple of isometries and the isometric operator from

}[,,(L")into H,. By L, or v(L)we will denote the corresponding word A(v) in the n tuple. We
allow n = oo. In this case, C" is replaced by a separable Hilbert space A, and the unit ball
B, becomes the unit ball of H endowed with the weak topology.

This occasionally causes additional difficulties which will be pointed out as necessary.
The full Fock space of a Hilbert space # is the Hilbert space

F(H) = Z DI Ok
k=0
where H®0% = C and H®* is the tensor product of k copies of . When H = C"* with

orthonormal basis (jfor 1 <i <n, the Fock space has anorthonormal basis ¢, =
(i1 ® ...® ;, forall choices of w = (i ... 1, ) in{1, ...,n}* and k > 0 (with the convention that
{ spans H PO, For each vector {in H, there is a left creation operator £({)¢é = {®¢. Clearly,
there is a natural isomorphism of Fock space onto #,,, where n = dim FH given by sending {,,
to &,,. This unitary equivalence sends £({; ) to L;.

The following heuristic is useful when working with operatorsin £,,. IfA = ), a, L, is afinite
linear combination of the set {L,: w € F,}, then A&, = )., a,¢,; conversely, given a finite
linear combination of basis vectors { =), a,¢,, the operator A = )., a,L,, belongs to £,
and satisfies A¢; = ¢. Sometimes this operator will be denoted by L. . This correspondence of
course cannot be extended to infinite combinations. However, notice that for an arbitrary
element A of &,, A is completely determined by its action on &,: indeed, A, = AR, =
R,A& . Soif Aé, =), a,¢,, We have

A8 =) tubor = ) aulluf).

w
It is useful to view the formal sum }.,, a,,L,, as the Fourier expansion of A.
In particular [68], the Cesaro sums

Sw= > a-%,u,

n lw|<n

converge in the strong-* topology to A.
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The algebra £,, contains no non-scalar normal elements. Every non-scalar element of £,, is
Injective and has connected spectrum containing more than one point. So £, contains no non-
zero compact operators,quasinilpotent elements or non-scalar idempotents. In particular, £, is
semisimple.(See [114,68].)

If M is an invariant subspace for £,,, the wandering subspace isW = M © Y.i-, L; M.

By the analogue of the Wold decomposition [210], it follows that M = ¥, ,cr ®L,W . The
invariant subspaces of the analytic Toeplitz algebra are determined by Beurling's [40] as the
subspaces wH? where w is an inner function in H*. These subspaces are always cyclic with
wandering subspace wH? © zwH? = Cw. The subspace wH? is the range of T,,, which is an
isometry in H* = £, = R;. The analogue of Beurling'stheorem is:
Theorem (3.1.1)[156]:([208, 68]). Every invariant subspace of £,, is generated by a wandering
subspace. Thus it is the direct sum of cyclic subspaces. The cyclic invariant subspaces of £,
are precisely the ranges of isometries in R,,; and the choice of isometry is unique up to a scalar.
If M is a cyclic invariant subspace for £, then its wandering subspace is 1-dimensional. If &
is a wandering vector for M, then we denote the corresponding isometry in R, by R..
Explicitly, we have the formula, R:¢,, = L, ¢. Conversely, any isometry in R,is an R for
some £,-wandering vector¢: Similarly, we see that any isometry in £,, has the form L, for
some®R,,-wandering vector &.

By analogy, the isometries of £, are called inner; and the elements with dense range are
called outer. An element A in £, is inner if and only if ||A|| = ||A&;|]| = 1. As a corollary, one
obtains the following analogue of inner-outer factorization:

Corollary (3.1.2)[156]: Every A in £, factors as A = L¢B where L is an isometry in £, and

B belongs to £,, and has dense range. This factorization is uniqueup to a scalar. The operator

Bis invertible if and only if A has closed range.

We also need to understand the structure of the eigenvectors for the adjoint analogous to the

point evaluations in the unit disk associated to eigen-values of the backward shift.

Theorem (3.1.3)[156]: (cf. [21] and[68,69,196,197]). The eigenvectors for £;, are the vectors
n

v= (=D Y @i, = (- DY - Y LiL)™E,
WEF, i=1
For x in the unit ball B,,. They satisfy
Livy = 4y

And (p(L)v,, vy) = p(A) for every polynomial p =3, a,w in the semigroup algebra CF,.
This extends to the map ¢, (A) = (Av,, v;), which is a WOT-continuous multiplicative linear
functional on £,,. The vector v, is cyclic forg,. The subspace M; = {v;}* is £, invariant, and
its wandering subspacelV, is n-dimensional, spanned by
i = A& — (L= AUIDV2Liyfort <i<n

These results are used in [68] to show that £, is hyper-reexive. Moreover,for every
weak-* continuous linear functional f on £, with ||f]| < 1, there are vectors ¢ and ¢ such that
f(4) = (AS, Oforall Ain £, and|[]I[¢]] < 1.
This yields the immediate consequence which will be important on several occasions.
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Corollary (3.1.4)[156]: ([68,199]). The weak-* and WOT topologies on £,, coincide.

We identify the WOT-closed right and two-sided ideals of £,,. Let Id,.(%,,),Id,(£,) and
1d(£,,) denote the sets of all WOT-closed right, left and two-sided ideals respectively. The
Important observation is that these ideals can be identified by their ranges. If J belongs to

1d,(%,,), then the subspace 3¢, belongs to LatR,,. To see this, note that
- RpIé1 = JHné1 = IH, = IL6 = 36
Thus 3&; = JH, is the range of  and is R, invariant.
When J belongs to Id,(&,); we have £,3¢; = 3¢;; so &, is £, invariant.
Hence when S is a two-sided ideal, 5, belongs to Lat(&,)NLat(R,,):

Conversely, if M belongs to Lat(®R,,), we shall see during the proof of Theorem (3.1.5) that
the set {A € 8,,: A&, € M} belongs to Id,(£,,). It will follow that when J is a right ideal, the

subspace 3¢, determines § and moreover  is two-sided precisely when J&;is also €,
invariant.
We do not make the same claims for left ideals. One should note that when S is a left ideal,

&, is not equal to J7,,. The full range of the ideal is not a complete invariant. There are
technical difficulties for left ideals that we were not able to resolve; but analogous results are
plausible.
We remark that Id,.(£,,) and Id(L,,) form complete lattices with the operations of intersection
and WOT-closed sum.
Theorem (3.1.5)[156]:Let u: Id,-(£,,) — Lat(R,,) be given by u(J) = 3¢,. Then pa complete
lattice isomorphism. The restriction of p to the set Id(&,) is a complete lattice isomorphism
onto Lat £, N Lat®R,,. The inverse map 1 sends a subspace M to
(M) ={ e, :J§ €8}
Proof: We have seen above that M = u(5) is a subspace of the appropriate type for right and
two-sided (and even left) ideals.
Conversely, we now check that « sends invariant subspaces to ideals of the appropriate type. So
fix a subspace M in Lat(R,) and consider «(M). It is clear that (M) is a WOT —closed
subspace of £,,. Suppose that J is in (M )and A belongs to £,,. Then
JAS € JH, =R =Ry Jé M
Whence ((M) is aright ideal. And if M isin Lat £,,, then for J inu (M) and A in &, :
AJE,EAM c M
So (M) is a left ideal. Thus «(Lat, N LatR,,) is contained in 1d(&,,).
Next we show that pu is the identity map. Fix M in Lat(*R,,). By the definitions of the maps
involved, we have (M) is contained in M. To see the opposite inclusion, let {(J-} be an
orthonormal basis for the R,, wandering subspace W =M & ), @ R;M . Then

M= @R[G] = D D Rayly,
j J
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Since L(]El = {; belongs to M, it follows that Le, lies in (M). So
> @ Ray L, € (DT, = (G = u(1(D)
j

Therefore u (M) = M.
Now fix §in Id,.(£,). As before, the defnitions involved show that J is contained in ¢ u ().
To see that this is an equality, we first show that for every J in H,,,

3¢ = 1u Q) (1)
Since £, ¢ is a cyclic invariant subspace for £,, it may be written as £,[¢] = RanR,, where
n is a wandering vector for £, [£]. Thus

3¢ =38n$ = I RyHy = Ry Hy = RyM
evidently, the same computation for 1 pu () yields the same result; hence (1) holds.
Suppose that f is a WOT-continuous linear functional on £, which annihilates the ideal 5. By
[68,152], there are vectors & and n such that f(A) = (4¢&,n) forall Ain £,. Since f(3) = 0,
it follows that n isorthogonal to 3¢. Then by the previous paragraph, n is also orthogonal
toc u ()€ and thus f also annihilates ¢ u (). By the Hahn-Banach Theorem,we therefore have
J=1u ().
Thus we have established that p is a bijective pairing between Id,.(£,,)and Lat®R,, which carries
1d(8,,) onto Latg,, n LatR,and = u~ L. If J;and 3, are WOT-closed right ideals, then
w31 +32) = (31 +32DHn = 31Hn + 3oHy = u(3) Vul3e)
and hence sums are sent to spans. Similarly, ifM; and M, are subspaces in Lat(8,) N LatR,,,
then
(M NMy) ={] €EL,:J8 EMNM}={] €L,:]§ EM PN € 8,:]& € My}
= U(My) N (M)

It follows that u preserves intersections. Finally, to see that u is complete, note that if 5, is an
increasing union (or decreasing intersection) of ideals,we have

u(U 3k> = J3er = \/ 1o
k k k

and similarly for intersections. Therefore p is a complete lattice isomorphism.
Corollary (3.1.6)[156]:1f ] belongs to £,,, then the WOT-closed (two-sided) ideal(/)generated
by J consists of all elements A in £, such that A¢; lies in®,JH,,.

Proof. The ideal (J) is determined by its range, and this must be the least element M of
Lat(8,) N LatRcontaining J¢;. Thus

M =2,R,J¢ = 8n ] Ry =L JH,
By Theorem (3.1.5), it follows tha(J) = ((M)t.
Theorem (3.1.5) enables us to characterize the WOT-continuous multiplicative linear
functionals on £,,.
Theorem (3.1.7)[156]: Suppose ¢ is a (non-zero) WOT-continuous multiplicative linear
functional on £,,. Then there exists A in B,, such that ¢ = @,
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Proof: Let § = ker ¢. Then Jis a WOT-closed two sided maximal ideal of codimension one.
Set M = u(3J) and note that &, & M. (If not, Theorem (3.1.5) implies I belongs to (M) = G,
which is impossible.) In fact, M has codimension one. To see this, let N' = M + C&,. If V' #
H,, let { be a unit vector in V. Choose 4 in £,s0 that ||[{ — A&, || < 1 and set a = @(4).
Since A —al isinJ, Aé§; — aé;belongs to M. Hence

1=({—ad, Ol =1 — A8, + (A5 —a&y, Ol = 1 — 481, O < 1,
which is absurd. So ' = H,, and hence M belongs to Lat(£,,) N Lat R,,and has codimension
one. Thus M+ is a 1-dimensional invariant subspace forg:. By Theorem (3.1.3), there is a
point A in B, such that M = {v,}*. ByTheorem (3.1,5), ker ¢ = «(M) = ker ¢;. Therefore
P =P
We present, as an example, an ideal which will be important later. Let e denote the WOT-
closure of the commutator ideal of £,,. The space #; is the symmetric Focz space spanned by

the vectors %Zaesk $o(w) Where w is inF,, k = |wl, Sy is the symmetric group on k elements,

and o (w) is the word with the terms in w permuted by o. Also recall that for A in B,,, @, is the
multiplicative linear functional on £,, given by ¢;(A) = (Av,,v;) as in Theorem (3.1.3).
Proposition (3.1.8)[156]: The WOT-closure of the commutator ideal is

e = (LlL] —L]Ll o :/:]> = ﬂ ker<p,1
1€B,
The corresponding subspace in Lat(2,,) N Lat R,,is

u(e) = span {Euziz]-v - Euzjziv PlF), WUVE Tn}
= H5t = span {v: 1 € B}t

Proof: Let 3 be the WOT-closed ideal generated by the set of commutators {LiLj — LiLi:i #
j}. Clearly @ © J. On the other hand, consider the set of operators of the form A(BC — CB)Dfor
A,B,C,D in L,. These elements span a WOT-dense subset of e. Moreover, since the
polynomials in the L;are WOT-dense in £,,, we may further suppose that each of A,B,C, D is
such a polynomial. Thus by expanding, it suffices to show that operators of the
formL,(L,L, — L,L,)L, belong to  for all words u, v, w,x in F,. Now, every permutation
of K objects is the product of interchanges (i,i + 1) for somel < i < XK. Using this, it follows
that L, — Ly (w)belongs to 3 for everyw in F, and every cinS,,,. Therefore it follows that
L,(L,L, — L,L,)L.belongsto 3. Thus J = é.

The subspace u(e) = u(3) is the smallest £,R,invariant subspace containing {fzizj —

fz,-zi: i + j} which is the subspace spanned by the vectors of the form Euzizjv — Euzjziv.

It is now clear that ;5 is orthogonal to u(e).On the other hand, a vector { =), a,, &,iS
orthogonal to u(e) if and only if it is orthogonal to every &, — &5, for w € Frand o € S,
Hence a,; () = a,; Whence it follows that ¢ belongs to 3.

Next we show span{v,: 1 € B,} = H;5. Evidently, each v, belongs to ;. Let Q,denote the
projection onto span{¢,,: |w| = k}. For each A inB,and zin T,

Vs = Z ZMQmV;

mz=0
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Thus by considering the H,,-valued integralsfn Z%v;, dz.

For k = 0, it follows that Q, v, lies in span{v,: 1 € B,,}. Now it is an easy exercise to show
that the set of all Q,v,'s contains each %Zaesk $o(w) Tor [w| = k. Hence span{v;: 1 € B} =
Hy.

It is clear that the multiplicative linear functionals ¢;vanish on the commutator,and hence on
the y closed ideal that it generates. Conversely, suppose that A in 8, isnotin é. Then Ain &, is

not contained inu(é). Therefore, since u(é) is the orthogonal complement of the
set{v,: 4 € B,,}, thereis a A in B,, such that

0 # (A&, v3) = (61, 4"13) = 9 (A) (&, 1) = (1 = APV 29, (4).
Thus ¢, (A) # 0; whence A is not in ker ;.
Next we develop some useful lemmas about factorization in right ideals. In particular, they will
allow us to determine when a right ideal is finitely generated. Recall from Theorem (3.1.1) that
each isometry in £, has the form £.for some R,,-wandering vector ¢.

Lemma (3.1.9)[156]:Let L¢,, forl < j < k, be a finite set of isometries in £, with pairwise
orthogonal ranges M. Let M = Z?Mj and J = ((M). Then J equals {4 € £,: Ran(4)
M }and every element of  factors uniquely as

k
A= z LE]A] for A] € ’Q’Tl
j=1

Thus the (algebraic) right ideal generated by {ng: 1<) < k} equals J.
Proof: Clearly each M; is R invariant, and thus so is M. Hence if A in £ satisfies A¢; € M,
then AF,is contained in M. Thus
I ={A € L,:Ran(4A) c M’}
So 5 is a WOT-closed right ideal containing Lyforl<j<k.
Conversely, suppose that A belongs toS. Then since Lg, L’gjis the orthogonal

projection onto M; , we obtain the factorization.

k k
j=1 j=1

Where A; =L*(]A. This decomposition is unique because theL;;,s are isometries with

orthogonal ranges. We will show that each A;belongs toL,.As {;is a R,-wandering vector
forM, it is orthogonal to };7-; R; M.

NowN = Ran(A)is contained in M, whence {; is also orthogonal to }.i_; R; V. Therefore, for
any word win F,,

(R;A*zjfa)) = ((j'ARifw) = (ceriAfw) =0,
and so R;/A*¢; = 0. Now compute using [68]

AjR; — RiA; = Ly AR; — RiLy A = (Ly R; — Ryl ) A
$1(RiLg;$1)"A = (AR ()" = & (R{A™(;)" =0
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Therefore A;belongs to R;, = £,,. It is now evident that A belongs to the Algebraic right ideal
generated by {L(j: 1<) < k}.

An important special case concerns the (two-sided) ideals Bg'k generated by {L,: |w| = k},
which yields a useful decomposition of an arbitrary element of £,,. In particular, the ideal £% :=
L leads us to a unique decomposition of £, as &, = CI + Y™, L;2,,.

This provides a handle on the algebraic rigidity of £,that will prove useful for analyzing
the automorphism group.
Corollary (3.1.10)[156]:For 1 <n < o and k > 1, every A in £, can be written uniquely as
asum

A= z a,L, + Z L,A,
lw|<k lw|=k
Where a,, € Cand A4, € &,,.
Proof: The isometries {L,:|w| = k} have pairwise orthogonal ranges summing to M =
span{é,: v = k}. This subspace is®,R,, invariant, and thus by Theorem (3.1.5), the right ideal

i(M)is in fact two-sided. Lemma (3.1.9) shows that (M) coincides with Bﬁ'k .

Given Ain g, writeA¢; = Y a,¢,. The coefficients a,, for |w| < karethe unique constants
such that (A — Ylowl<k awLw)Ellies in M. Therefore by Lemma (3.1.9), this difference can be
written uniquely as ¥}, (=k Lo Aw-

Example (3.1.11)[156]:Lemma (3.1.9) is not valid for countably many generators even with
norm closure. Indeed, consider the isometries LXL,in £,for k > 0. Their ranges are
orthogonal, summing to the £, R,-invariant subspace generated by¢,,. So the WOT-closed
right ideal 5§ that they generate is the two-sided WOT-closed ideal generated by L,. Consider
a sum of the form

A= 1K Lh(L)
k=0
Where h;, will be functions in H*. This will lie in  provided that A is a bounded operator.

However, it is a norm limit of finite sums of this type only if the series converges in norm.
An easy computation shows that

A4 =y (1) (L),
: : : e k=20 : L :
As L,is a unilateral shift of infinite multiplicity, this sums to an operator unitarily equivalent

to the infinite implication of a Toeplitz operator with symbol Y.,>0|hk|?. Thus A is bounded
precisely when this sum is bounded.

The sum of operators is norm convergent exactly when this sum of functionsis norm
convergent. Constructing a sequence which is bounded but not norm convergent is easy.

The algebra H* is logmodular [118,251,200], and so if f is a non-negative real function in
L™ such that logf is integrable, then there is a function h in H* such that |h| = f. Choose a
sequence of disjoint closed intervals ] of the unit circle, each of positive length. Let f; =
27k + xj,for k = 0, and let hy, be analytic functions with |h;|* = f;.
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Then

Z|hk|2 = 2+ x; where | = U]k

k=0 k=0
This sum is bounded. However, ||h;|| > 1 for all k, and thus this sum is not norm convergent.

Moreover, this ideal is not finitely generated as a right ideal because M has an infinite
dimensional R,, wandering space Q2. Any element J in J has Ran(J) contained in M, and its
projection onto Q. is a subspace of at most one dimension. The ranges of a set of generators
must necessarily spanM; and thus countably many are required.
We need a variant of Lemma (3.1.9) which is valid for countably generated ideals. Let Xy (£,)
denote the order k column space of £,,, which is the set of all k-tuples of the form

Ay

Az

A= ,AiEBn, 1Sl£k

Ay
such that A is bounded with respect to the norm obtained by considering A as an element of
B(H,, 7{,5")). Similarly, let R (2,) denote the order k row space of £, consisting of operators
A= [AIJAZJ AK]JAL € LTU 1 < [ < k

such that A is bounded with respect to the norm obtained by considering A as an element of
B(}[,Ek),}[n).. For k < oo, this is all k-tuples, but the bounded-ness condition is non-trivial
fork = oo,

The following lemma shows, in particular, that the infinite row matrix, L = [Lq, L,, L3, ... ],
maps Co (Lo,) bijectively onto 23 This result also applies to the two-sided WOT-closed ideal

J generated by the set {L,, -+, L,}.
The range of this ideal is the sum of the pairwise orthogonal ranges of

{LL;k=0,2<j<n}.

Lemma (3.1.12)[156]:Let, forng, for j = 1, be a countably infinite set of isometries in £, with
pairwise orthogonal ranges M;. Let M = }.;2, M ; , and let ] be the WOT-closed right ideal
(M). Then every element of J factors uniquely as A = ZX, where Z is the fixed isometry in
R (8,) given byZ = [Liz'LZf ] and X is a bounded operator in C,(2,). Hence A can be
written uniquely as the WOT limit

A= WOT LLmZL(

Proof:The proof begins as in Lemma (3.1.9). There |s a unique decompositionof A as a WOT-
convergent sum,

A=WOT — %>, ngXj,wherer = L’E},A.

TheX;are elements of £, by the same computation. Thus defining X to be the column operator
with entries X;, we obtain a formal factorization A = ZX. To see that X is bounded, it suffices
to compute that X*X = A*A,
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Corollary (3.1.13)[156]: Every element A in £, decomposes uniquely as
A= z awLw + (,()ka

lw|<k
Where (a)o|<xbelongs to €2, W, = [L
length k, and X belongs to C, (2,).
Proof: The identity AS; = Y., er, a, ¢ determines the coefficients a,,uniquely, and shows
that they belong to #2. For each j, the isometries ij,ihave pairwise orthogonal ranges, and
hence the sun ¥,|=; a,L,, 1S norm convergent. Summing this over j < k yields the unique

operator of this formin the same coset of 4 + £%*The remainder is factored by Lemma
(3.1.12).These lemmas allow us to determine when a right ideal is finitely generated.
Theorem (3.1.14)[156]:Let J be a WOT-closed right ideal. If M = u(5)in LatR,,has a finite
dimensional wandering space of dimension k, then  is generated by k isometries as an
algebraic right ideal. When this wandering subspace is infinite dimensional, J is not finitely
generated even as a WOT-closed rightideal. However, it is generated by countably many
isometries as a WOT-closed right ideal.

Proof: When the wandering space Q is finite dimensional, choose an orthonormal basis

{¢j11<j <k} Then M=Z§:1®RanL<j. Thus by Lemma (3.1.9), the isometries

{ng:l <jJ sk} generate I as an algebraic right ideal. Similarly, when Q is infinite

dimensional, Lemma (3.1.12) yields a countable set of isometries which generate § as a WOT-
closed right ideal.

Finally, suppose that  is finitely generated as a WOT-closed right ideal, say by
{4j:1 < j < k}. Then the operators of the form Y* B; for Bj in £, are WOT-dense in 3.
Therefore

L, ,» -, and {wy;} is a listing of all words of

W2’

11]

-
W) = ) A, = Ry[{46:1 < < k)]

This subspace is finitely generated, and therefore has finite dimensional wandering space.

In the category of unital operator algebras, we take the view point that the natural
representations are the completely contractive unital representations. Given an operator algebra
A, for each 1 <k <N, we let Rep,(Y) denote the set of completely contractive
representations of 2 into B(H), whereH is a fixed Hilbert space of dimension k. Put the
topology of pointwise weak-* convergence on this space. When k < oo, this is the topology of
point wise (norm) convergence. Since the unit ball of B(H) is weak-* compact(and norm
compact when k < o0), Tychonoff's Theorem shows that the set of contractive maps from 2
into B(H) is pointwise weak-* compact. When k < 1, the collection of representations is
closed in this topology, and thus is also compact. Unfortunately, the collection of
representations is not closed when k = co. For an example, consider the direct sum id™ of n
copies of the identity representation of B(H)for n = 1. Since the direct sumof n copies of the
unilateral shift S is unitarily equivalent to S™, we may find representations o,, of B(H) on
H'such that o,,(S) = S™ for every n. Note that no point wise weak-* limit point of this sequence
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of representations is multiplicative, and hence the space of representations is not closed when
k = co.

The natural equivalence relation on representations is unitary equivalence. When k < oo, the
unitary group U, is compact and acts on Rep; (Y). Thus the quotient space is also compact
and Hausdorff. This need not be the case for k = 2V, since unitary orbits of representations
need not be closed in general.

For these reasons, our standing assumption is that all representations of £, are on finite
dimensional spaces.

The familiar case of k = 1 yields the set of multiplicative linear functionals. It is well known
that multiplicative linear functionals are automatically completely contractive. In this case,
unitary equivalence is the identity relation. Moreover, there is an objective pairing between the
multiplicative linear functional and its kernel, a maximal ideal of co dimension 1. So Rep, (Y)
Is the direct analogue of the maximal space of a commutative Banach algebra. In a non-abelian
algebra, there may be many maximal ideals of other co-dimensions.

For k > 1, it is clear that two similar representations will have the same kernel. In the case of
L£,, similar representations which are both completely contractive need not be unitarily
equivalent. (Indeed, when n = 1, simply consider two similar, but non-unitarily equivalent,
contractions.) When k < oo and a representation @ in Rep; (YY) is irreducible (no invariant
subspaces),the range must be all of M = B(H). This is shows that every proper subalgebra
of M has a proper invariant subspace. Thus the kernel will be a maximal ideal of codimension
k?.Conversely, if M is a maximal ideal of Y of finite codimension, then there is a finite
dimensional representation of Y on Y /M with kernel M. This quotient is simple, and thus by
Wedderburn's Theorem, Y /M is isomorphicto M, for some positive integer k. In particular,
M has codimension k?.Restrict this representation to a minimal invariant subspace M to
obtaina representation  and note that M must have dimension k. Now m doesnot act on a
Hilbert space. However, it is clearly a completely contractive representation. Any Hilbert space
normon M is equivalent to the quotient norm, and thus will yield a completely bounded Hilbert
space representation. Then by Paulsen's [206], this is similar to a completely contractive
representation. This shows that the map from irreducible representations in Rep; () to the set
of maximal ideals of codimension k? is surjective.The algebra £,, has many representations of
every dimension. This will follow from Popescu's work on dilation theory for non-commuting
n-tuples of operators. The case of k = 1 is special and has some extra structure. So we will
handle these special features separately.

Recall the situation for n = 1 in which £, is isomorphic to H*. There is a natural continuous
projection m; of the maximal ideal space My~ of H* onto the closed disk D given by
evaluation at the coordinate function z. For each point Adin D, there is a unique multiplicative
linear functional ¢, (h) = h(4) extending evaluation of z at A. But for|A| = 1, there is a very
large space M, of multiplicative linear functionals taking the value A at z. (See Hoffman [118]
or Garnett [95].) The famous corona theorem of Carles on [47] shows that the point evaluations
in the open unit disk are dense in M.

Even though £,, is not commutative, the space Rep; (£,,) of multiplicative linear functionals is
very large. For representations of dimension greater than one, there are interesting parallels
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with the case of multiplicative linear functional. The analysis is based on the extensive
knowledge of dilation theory for non-commuting n-tuples. We reprise the results that we will
need.

Recall that if @ is a linear map of an operator algebra Y into B(H), then @ ®:) s the map from
My (Y) into My ,(B(H)), each endowed withthe usual operator norms, given by

o®I([4;]) = [®(4;;)] When ¢ = k, we write @) instead. The complete bound norm of

@ is defined to be [|P|l., = supy||@%®||. The map @ is completely contractive if ||®]|, <
1.See Paulsen's book [206] for details.

Let B,, ,denote the collection of all contractions in R,,(B(#)) where dim H = k; namely all
n-tuplesT = [T ...T,,] in B(H™, H), such that dim H = k and ||T|| = ||X%, T;T;||Y/? < 1.
This is the higher dimension alanalogue of the n-ball. It is endowed with the product norm
topology when k < oo and the product weak-* topology when k = V.

If @ is a (completely contractive) representation of £,, on a Hilbert space H, then the n-
tupleT = @ AW (L) = (@(L,), ..., (L)) is a contraction.Bunce [43], generalizing Frahzo
[82], showed that every contraction T has a dilation to an n-tuple of isometries S = (S, ..., Sy,)
with orthogonal ranges. Popescu [210] extended this to n = oo and showed that there is a
unique minimal isometric dilation of T. This yields a representation of the norm-closed algebra
generated by L because the map taking each L; to S; is a completely isometric isomorphism.
Following this with the compression to the original space yields a homomorphism taking L;to
T;. However, this map usually does not extend naturally to a continuous map from £, into
Alg(S). Popescu [209] determines when this has a wot-continuous extension to a representation
of 2,. Nevertheless, when k = dim H < oo, we shall see that norm-continuous extensions
always exist.The following is a technical lemma used in the proof of Theorem (3.1.16) below.

Recall that ﬁg'j is the WOT-closed ideal of £, generated by the set {L: |w| = j}.
Lemma (3.1.15)[156]:Let @ belong to Repy (£,).If T := (®(L,) , ..., ®(L,,)) satisfies
ITIl =7 < 1, then [[@(A)I| < r/||A|l for every Ain £,”.
Proof. Let ¥ be the 1 x n/ row matrix with entries L, for |w| = j. And let (T denote the
row matrix with entries y(T) for |w| = j. By Corollary (3.1.10)for n < o and Corollary
(3.1.13) for n = oo, we may factor A = wX for some X in C ,; (£,). Notice that w is an
isometry, and therefore ||A|| = ||X||. By the Frahzo-Bunce dilation result [82,43] for n < oo
and Popescu [210] forn = oo, the n-tupler 1T dilates to an n-tuple of isometries S, and
therefore w; (r~'T)dilates to the isometry w;(S). Hence
loo; (D = 77|l ™ D] < 7] a0y (S]] = 7

Then since @ is completely contractive,

lo@] = ||#0) ()20 )0 < [yl < 1Al

The first result generalizes the fact that there is a natural map of M y~. onto the closed unit
disk. The uniqueness result appears to be new even for n = 1 when k > 1. Recall that for n =
oo, B,, denotes theunit ball of Hilbert space with the weak topology.

Theorem (3.1.16)[156]:For k < oo, there is a natural continuous projection m,, ,0f Rep, (£,,)

onto the closed unit ball B,, ; given by
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T[n,k((p) = ((p(Ll)i ey (D(Ln))

For each Tin B,, ;, the open unit ball, there is a unique representation inn,;}(T). It is WOT-
continuous and is given by Popescu's functional calculus.The restriction of 7} to B, is a
homeomorphism.
Proof: Since @ in Repy(2,) is completely contractive, it follows that

T = o) =[P(Ly) .. P(Ly)]
is a contraction. Hence m,,  is a well defined map of Rep, (£,)into B,, ..
Since it is determined by evaluation at the points L;, this is a continuous map from
Rep; (£,,)with the topology of pointwise convergence into the ball with the product topology.
By Popescu's functional calculus, there is a representation @ for every T in the interior B,,
(and in fact, for every completely non-coisometric contraction). Since Rep; (£,,) IS compact,
the image is compact and therefore maps onto B, .
When ||T|| = r < 1, the WOT-continuous representation @is defined as follows. Each A in
L, is determined by A&, =), a,¢,as a formal sum A =3, a,L,. The image &,(A) is
determined as a norm convergent sum

Pr(4) = ) a,0(T)
w
To see this, apply Lemma (3.1.15) for each j > 0 to obtain

Zaww(T) <r Zaww(L) =rl Z:lawl2

lw|=j lw|=j lw|=j
Thus two partial sums of ), a,@(T)which both contain all words of lengthless than j will
differ in norm by at most

Siexs 7™ (Dhoot=el @) < Swy 7 141 = (1 = 1) [1411(2)

which tends to zero as j tends to infinity. Therefore this series is norm convergent. The fact that
it is WOT-continuous was shown by Popescu in [209].

The proof of uniqueness follows similar lines. Let @ in Rep, (£,,) be a completely contractive
representation of £, such that m,, ,, (@) = T, where [|T|| = r < 1. We shall show that @ = @..
So let A be an element of £,.Then by Corollary (3.1.10)for n < oo and Corollary (3.1.13) for
n = oo, A can be written uniquely as

A= z a,L, + z LA, withA, € 2,

lwl<j lw|=J

Therefore

PU) = ) e, + ) aDP(A,)
lwl<j lwl=j

|w]

Let ¥x(4) =Xj0l<k (1 —?) a,L, denote the Cesaro sums. Recall that ||3,(4)] < |IA]l,

and that they converge to A in the strong-* operator topology. For each integer j, there is an
integer k sufficiently large that
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ol .
Taa)Lw <r ”A”

lwl<j

Then A—Zk(A)=A1+Z”w”<]-%awLw where A; belong to Lg’j. Clearly, ||A.]] <

(2 + 77)||All. Hence, using the fact that @ is contractive and Lemma (3.1.15),

”qb(A)—CD(zk(A))”S B(A) — D Z%aw%
|

w|<j
Hl@ @I < r/llAll + 17 (2 + 7)1l < 47| Al
Since @ and @, agree on polynomials in L, it follows that

P(4) = lim & (Z (A)) = lim &, (Z (A)) = ®.(A).
—00 k —00 k
Finally, we verify that the map sending T to @ maps B,, , homeomorphically onto the open

set n;'}((IBn,k). It is evident from the series representationof @, and estimate (2) above, that
IfiT|| <r<1,||T'|| <r,and Aisin &,,

|@7(4) — @ (Al < z lag | lw(T) = w(T)H +2r/ (1 =) All
lwl<j
Thus as T' converges to T, it follows that @,/(A) converges to @4 (A). So this mapping of
B,, kinto Rep (£,,) is continuous.

Now we specialize to 1-dimensional representations. In this case, each fibre over a point
on the boundary of the ball is homeomorphic to every other because the gauge automorphisms
act on the ball by the unitary group, and thus is transitive on the boundary. Moreover, this fibre
is always very large based on the fact that it is known to be very large for n = 1.

Theorem (3.1.17)[156]: There is a natural continuous projection m, ;of the space Rep,(£,)
onto the closed unit ball B,, in C™ given by evaluation at the n-tuple(L, , ..., L,,).

For each point A in B,,, there is a unique multiplicative linear functionalin 7z;;1(1); and it is
given by ¢, (4) = (Avy, vy. The set 7, 1 (B,,)is homeomorphic to B,, and the restriction of
the Gelfand transform to this ball is a contractive homomorphism of £, into H*(IB,,).The
ball B,, forms a Gleason part of Rep, (£,,). These are the only weak-* continuous functionals
onL,.

For each point A in 0B,,, 7,1 (4) is homeomorphic to ;1 (1,0, ... 0).

There is a canonical surjection of mt; ; (1) onto the fibre M; of My given by restricting ¢ in
m, 1 to Alg(X, A;L;) =~ H*. This map has a continuous section.

Proof: ByTheorem (3.1.15), the map 7, ; maps Rep, (£,,) onto B, by evaluation at L. For each
point A in the open ball, there is a unique preimage 7, 1 (A)which is evidently ¢,. Also, the
preimage of B, is homeomorphic to the open ball. By Theorem (3.1.7), these are the only
WOT-continuous multiplicative linear functional son £,. By Corollary (3.1.4), these coincide
with the weak-* continuous ones.
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For each polynomial p(z) = ¥ a,w in CF,, the Gelfand transform p(L)(1) = p(d)is
evidently a contractive homomorphism of CF, into C[z] normed as a subset of H*(BB,,).
Suppose that p,, (L) isa WOT-Cauchy sequence in £,,. Since the set {¢;: ||1|| < r} is a compact
set of WOT-continuous linear functionals for each 0 < r < 1, the restriction of p,, (L) to this
set converges uniformly. Thus the limit lies in H*(BB,,). This shows that the Gelfand map
yields a contractive homomorphism into H “(B,,). which carries WOT-convergent sequences
to sequences converging uniformly on compact subsets of the ball.

Now recall that the Gleason part containing o, is the equivalence class

{9 € Repy(8): |l — @oll < 2}.
Consider the positive linear functional 8¢ (T) = (T¢, &)on B(H) for a unit vector . Let  be

another unit vector with [(¢,{)| = cos 6 for 0 <6 < % it is a well known fact that
8¢ = 6cll = sup 1(76,6) = (76, )1 = 2(1 = sin 6)

Since(vy,v;) = (1 — [|A||2)Y/? # 0, it follows that ||@, — @, |l < 2 for A in B,,. On the other
hand, if ||A|| =1, then S=Ym" 4, L;is a_proper isometry inL,such that ¢,(S) = 0and
©,(S) = 1. So the Mabius map b,.(z) = = :2 for 0 < r < 1 can be used to obtain

-
@o(b,(S)) =-rand @;(b,(S)) = 1.

Hence ||@o — @, ]| = 2. So the Gleason part of ¢, is precisely B,,.

Next consider the point A = (1,0, ...,0)in dB,. The algebra Alg(L,) is isomorphic to H*. For
@ in 7;1(1,0,...,0), let p(¢) be the restriction of ¢ to Alg(L,). Clearly, (¢) belongs to M;,
the fibre of M’y over the point 1, and p is continuous. We now produce a right inverse for p.

Let P be the projection onto the subspace span{fzf: k > 0}, and notice that PLH, is an £,-

invariant subspace. So the map ¥ (A) = PA|ps;, is @ homomorphism of £,,. In fact, PLH, is
also $R,, invariant. Thus the kernel of this homomorphism is § = {A € £,: PA&; = 0}, which
is the WOT-closed ideal generated by {L,, ..., L, }.

The range of  is contained in the WOT-closed algebra generated by the operators PL;P, which
are all 0 except for PL, P which is a unilateral shift. The map taking L, to PL, P is isometric and
WOT —continuous, and carries Alg(L,) onto T (H*). By composing ¥ with the isomorphism
of Alg(L,)onto H*, we may regard as a surjection of £, onto H®.Let a :=¥*|;,, be the
restriction of the Banach space adjoint of y to M. Clearly a is a continuous map; and if ¢ =
a(y ), we have

1 (@) = (11,1 (), 0, ...,0)
So a maps M;into 7;1(1,0, ...,0)and p o a(y) = p(Y¥) for in M;.
Therefore this is a continuous section, and p is surjective. In particular, this yields a
homeomorphism of M; into ;5 (1,0, ...,0).
For any other A with ||A|| = 1, choose a unitary U = [u;;] in M, such that u;; = A; . We will
show that the gauge automorphism 6, maps ;1 (1,0, ...,0) onto ;1 (1).Indeed, for any ¢ in
m,1(1,0, ...,0).
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n
0y(L;) = ¢ (Z uijLi> = Uy = A

i=1
It is evident that this map is continuous with inverse obtained by sending ¢ top®;*. So it
induces a homeomorphism between 7;,1(1,0, ...,0).Andr;; 1 (1). The role of L, is played by
Oy*(Ly) = Xty ALy
Example(3.1.18)[156]: This example is to illustrate some of the possibilities on the boundary
when k > 1.
It is possible that the fibre over a boundary point is a singleton. Consider Reps(£,), the pair

0 0 O 0 0O
1 0 0] and Tzz[o 0 0]
0 0 O 1 0 0
and a representation @ such that @(L;) = T;for i = 1,2. Then since TZ =T =TT, =
T,T, = 0, it follows from Lemma (3.1.9) that kerd contains the ideal Lg'z. Every element A
in £L,can be represented uniquely as A = ayl + a,L, + a,L, + A'where A’ belongs to /:32.
Therefore @(A) = aql + a,T; + a,T,is uniquely determined.
On the other hand, the fibre over Tmay be very large indeed. Let
T, = (1) 8] and TZ:[(l) 8
We consider a class of homomorphisms & of £,in ;5 (T). Let ; denote the standard basis for
C2. Both T; are lower triangular, so we will consider those representations @ which map £,into
the algebra 7, of 2 x 2 lower triangular matrices.
The functionalse;(4) = (®(4){;, ¢;) are multiplicative since compression to the diagonal is
multiplicative on 7,.Moreover, ¢, (L;) = 1and ¢, (L,) = 0, and hence ¢, lies in 5 3(1,0).
Likewise,p,(L,) = ¢,(L,) = 0. S0 ¢, = ¢, is evaluation at 0 by Theorem (3.1.17). Recall
from Corollary (3.1.10) that every A in £, can be uniquely written as A = ayl + L;A; +
L,A,, where a, = @,(A4) and A; = L;(A — ayl). Define §(4) = ¢,(4,) = ¢, (L5(A —
@o(A)]). Then

P(A) = apl + @(L)P(Ay) + P(L)P(43)

[ 2] <[y DD e e
_ [ao + ¢,(4,) 0] _ [901(14) 0 ]
®1(47) Qo 5(4)  @o(4)

In order to have a representation, it remains to verify complete contractivity.
An explicit family of such representations may be obtained as follows.

Let M, = span {fzf:k > O}and M, = span {fZZZ{(: k > O}, and setM = M, DM,. Then

M tis invariant for £, and R,. Thus compression to Mis a WOT-continuous homomorphism.
The compression to M is a homomorphism onto H* (L, ), sending L, to the unilateral shift as
we have discussed before. The compressions of both L;to Mvanish on M,, and L,maps
M;isometrically onto M,. Hence the compressions are

T1=
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T, O 0 0
PycLq| pe = OZ 0] and PMLlezI 0]

Thus W maps £,0nto the algebra of operators of the form
Ty,
Ty,
Indeed, this shows that every element of £,may be written uniquely as
A = hy(Ly) + Lyhy(L;) + A'where h; € H*and P;;A" = 0.
Now let i be any multiplicative linear functional on H*in the fibreM;.
Then @ = p@¥ isacompletely contractive homomorphism of £,0nto 7,such that ®(L;) =

T;. Indeed,
_|The O | _¥he) O
o) = [Th1 ho(O)] B [ 0

0
hO(O)] for h; € H

Y(hy)  ho(0)
Hence we have shown that the fibre 733 (T) is very large.

We analyze the automorphism group of £,. The automorphismsof the algebra L, =
H>are precisely the maps ©+(h) = h(7") where T'is a conformal automorphism of the unit
disk. So Aut(L,) is isomorphic to Aut(BB,), the group of conformal automorphisms of the unit
disk. In particular, they are all norm and wot-continuous. See [118], where two proofs are
given, both based on factorization of analytic functions. Our main result is Theorem (3.1.19),
which is valid even for n = oo. Our original proof of Theorem (3.1.19) failed whenn = oo,

An automorphism of £, will be called quasi-inner if it is trivial modulothe WOT-closed
commutator ideal e(see Proposition (3.1.8)). Denote the set of all quasi-inner automorphisms
by g-Inn(L,,). In particular, this contains the subgroup Inn(Ln{,,) of inner automorphisms.
Theorem (3.1.19)[156]:There is a natural short exact sequence

0 —g-Inn(2,) —AUL(EL,) - Aut(B,) — (0)

The mapTtakes OtoT, (1) = (¢;0 1)1 (L)for A € B,,.Moreover, Thas a continuous section
kwhich carries Aut(B,,)onto the subgroup Autu(&,,)of unitarily implemented automorphisms.
Thus Aut(£,,)is a semi direct product.
The proof will be carried out in stages. First we establish an automatic continuity result for
automorphisms.
Lemma (3.1.20)[156]:Every automorphism @of &,, for n = 2, is continuous.
Proof: The proof is a standard gliding bump argument. We define B; = @~1(L;) and set A =
max{1, ||B.|l,||B,||}. Suppose that © is not continuous . Then there is a sequence A, in £,
such that

Akl < 2A)7% and [lO (Al > k.
Let A be defined by the norm convergent sum

m
A=) BEBAy = ) BSBid + BI ) BEBiApi
k=1 k=1 k=1

SetX,, = Yis0BXBA 414k Thenforallk > 0,
m

oAkl = IL1L" O Al = = le(All > k.

D AL AL (A) + LT 0 (X,)
k=1

63



This is absurd, and consequently & must be continuous.
We show that every automorphism determines a special point in the ball.
Proposition (3.1.21)[156]:Let @ be an automorphism of £,. Then there is a unique point A4 in
B,, such that ©(8%) = ker ¢,. Indeed, ¢, = @,071.
Proof: Let
S =00 =[S, ... S,]:
By Corollaries (3.1.10) and (3.1.13), &, = CI + LC, (%,), and this decomposition is
unique. Applying 0 yields £, = CI + SC,,(£,,), and every A in £, has a unique
decomposition as A = al + SBfor some B in C,(2,). Hence the continuous linear map T
fromC @ C,(L,)toL, given by
T(a;B) = al + SB
Is a bijection. By Banach's isomorphism Theorem, T is invertible. So there is a constant ¢ > 0
so that
c|el?1+ B*B ||'/? < ||lal + SB|| < c|||«|?1 + B*B ||*/?:

Let 3 = SC,(L,) = 0(L£Y). Since T maps a subspace of codimension one onto J, it
also has codimension one. We claim that this ideal is WOT-closed. Suppose that J; = SBg is
a bounded net in 3 which converges weak-* to an operator X in £,,. Then the netB; is
bounded in C, (£,) by the previous paragraph. Hence there is a cofinal subnet Bg, which
converges weak-* to an operator B in C,(2,). Consequently, it follows that X = SB belongs
to /. This shows that the intersection of £ with each closed ball is weak-* closed. by the
Krein-Smulian Theorem (c.f. [73]), & is weak-* closed. By Corollary (3.1.4), the weak-*
and WOT topologies coincide on £,,. Hence J is WOT — closed.

Consider the multiplicative linear functionalg = ¢,0~1, which yields the formula ¢ (al +
SB) = a. Since £ is WOT-closed, this functional is WOT-continuous. Therefore by Theorem
(3.1.7), there is a point A in B,, such that ¢ = ¢;.

We will show that automorphisms of £, are automatically WOT-continuous.First we establish
a criterion for WOT-convergence in £,. Recall that C,, 2, is the ideal generated by
{L,:|w| = k}.

Lemma (3.1.22)[156]:For a bounded net A, in £,,n < 1, the following are equivalent:

(i) WOT-li;n A, = 0.

(ilw —limA, & = 0.

(iii) lim ;ist(Aa;B%") = Oforall k > 1.

Proofozl It is evident that (i) implies (ii). If (ii) holds, then write
Agki =) afé,:

w
Then Ay := Ay Xjw|<k AL, belongs to %% by Lemma (3.1.9) Condition
(i) Clearly implies that lima$ = 0 for every w. Hence
a

lim sup dist(Aa,E%k) > lim sup ||Aa —Agk || < lim sup Z la%|? =0
a a a &2
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for every k = 1. Now if (iii) holds, then

1/,
0 =lim dist(Aa,Bg’k)lim sup dist(4, &;; 53?;"51) = ( z |ac0f)|2>
a a
lw|<k

A fortiori, lima$, = 0 for every w inF,. Therefore
(24

li;n(Aa $us &y) = li;n(Aa SuRyE,) =0

for every pair of words u; v in F,,. These vectors span a dense subset of #,,.
As the net A, is bounded, it converges WOT to 0.
Theorem (3.1.23)[156]:Every automorphism @ofg,, is WOT-continuous.
Proof: By Lemma (3.1.22), there is a point A in B, such that ¢,071 = ;.
Thus

= 0(L%) = kerg,:
Hence

(27F) = 6(8%)* = F*forall k > 1:
Clearly Nnj<; % = {0} since
01Ny 39 € 6713 = 2%  forall k > 1:
Thus by Theorem (3.1.5), we have
Nis1 S¥H, = 11011 (3)

Set{, = 0(L,)¢, forw € F,. Fix an integerj and let Mjand JV;be the closed linear spans of
{¢w:lw| = j}and {&,: |w]| = j} respectively. If B = ¥, |=j bw&wis a finite linear combination
of the &,,, put B = X4=j by L. Then since O is bounded,

bulu|| = OB < llONlIBI = llelllIAll.
lw|=j
Thus the map ¥ ,|=j bwéw M Xjw|=j Pulw €Xtends to a bounded linear operator T; : M; +—
N .
Now consider a bounded netB,, = Y.,(=; b5 <, such that lirr(z) b&¢&, = 0 forall w. Let
w—

Ba = Xjw|=j bes€w- It follows that
w —limO(B,)¢; = w — limT;f, = Tjw — limpB, = 0:
a a (¢4
Hence 6 (B,) converges WOT to 0.Again let A,be a bounded net converging WOT to 0 in
£, and let A = sup||A,|l, it suffices to show that

ligln(@(Aa)flq) =0
for ¢ in a dense subset of ,. A convenient choice is U,<; (3*H,,)*, which is dense by the
equality (3). Choose Zin (3*#,,)*t, and setp = k2. Decompose A, = B, + C,where

Z(Aa)+ —|ang andC, = A, — B, € 2.

lw|=j
Since the Cesaro mean Zp(Aa) is contractive, it follows that },,,(4,) < A.

Also the terms A, ; = ¥|4|=j @eL,, are bounded by s, and thus
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k-1

1Bll < A+ 7 ) [[Ag, || < 24
j=1
Hence ||C, |l < 3A. Moreover each net B, and C, converge wot to 0.
Now since B,, is supported on words of length less than p, we have seen that ©(B,) converges
WOT to 0. Finally by construction,
(0(Cx)é1; ) =0
since ©(D,)é&; lies in %7, which is orthogonal to .
The weak-* topology on the unit ball of B(H;,,) is metrizable, and the ball is compact. Thus it
follows readily that a linear map@ is weak-* continuous on a bounded convex set if and only
If it takes every weak-+* null sequence to a weak-x* null sequence. Hence we see that @ is weak-
* continuous on every closed ball of £,. Therefore by the Krein-Smulian (c.f [73]), it follows
that @ is weak-* continuous. By Corollary (3.1.4), the weak-£,, and WOT topologies coincide
on £,. Thus @is WOT-continuous.
The tools are now available to define the map t given in Theorem (3.1.19). Using Theorem
(3.1.17), we identify B, with Rep,(8,) by associating A in B,, with the multiplicative linear
functional ¢, in Rep;(L,).
Theorem (3.1.24)[156]: For each O in Aut(&,), the dual map tg on Rep,(L,) given by
79(®) := @ o ®~1 maps the open ball B, conformally onto itself. This determines a
homomorphism of Aut(&,,) into the group Aut(B,,) of conformal automorphisms. If 7,(¢,) =
@y, then there is a unitary matrix U in ‘U, such that t5(@;) = @ya-
Proof: Since @ is WOT-continuous by Theorem (3.1.24), it follows that tg(¢p,) = @, 0071
iIs a WOT-continuous multiplicative linear functional. Hence by Theorem (3.1.7), this is a
functional ¢,. Thus tg maps B,, into itself. We obtain an explicit formula for this map using
the fact that ("™ (L) = A, whence
To(A) = (9A0™HIM (L) = ¢ ™(T) = T(A);
where
T=(0H"(L)=[07"(Ly) .0 (L)]
By Theorem (3.1.17), T is analytic and thus so is 7.
Next notice that the map t taking 0O to tg is @ homomorphism. It is evident that t,; = id;that
is, the identity automorphism induces the identity map on B,. Suppose that ©;belong
toAut(L,), and t; = 7(0;) forj = 1; 2.Then
©1(010;)(D) = (92(0:0) )TV (L) = (9207707 TV(L) = (pr,(D(OTHEM (L
= (pr, (LML) = 71(12(D)):
Hence 7(0,0,) = 1(0,) o 7(0,).
Consequently
ToTg-1 = Id = Tg-1Tp;
from which we deduce that 7, is a bijection. Therefore z,is a biholomorphic bijection (i.e. a
conformal automorphism) of the ball.
If zis a conformal automorphism of B,,. such that = (0) = 0, then by Schwarz's Lemma, there
IS a unitary operator U in U,, such that (1) = U,[256] for n < coand [113] for n = oo.
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The following corollary characterizes the quasi-inner automorphisms.
Corollary (3.1.25)[156]: For @ in Aut(£,), the following are equivalent:
(i) © belongs to ker 7 .
(ii) ©(L;) — L; belongs to efor 1 < i < n.
(iii) ®(A) — A belongs to ¢ for every A in £,,.
Proof:If © belongs to ker 7 , then so does ®~1; whence

0(O(L) —L; = 191(A) — 2

is zero for everydin B, if and only if @(L;) — L; belongs to Njep, ker @, forl <i<n.
But this set equals e by Proposition (3.1.8). So (i) and (ii) are equivalent.
Suppose that (ii) holds. As e is an ideal, it readily follows that @(p(L)) — p(L) belongs to e for
every polynomial in L. Then because @ is wotcontinuous and e is -closed, this extends to the
WOT-closure of these polynomials, which is all of £,,. This establishes (iii). Clearly (iii) implies
(ii).
To complete the picture, we need to construct explicit automorphisms to demonstrate that the
map Tt is surjective. In fact, much more will be established. An explicit section of T will be
found that maps Aut(B,) onto the subgroup Aut,(8,) of unitarily implemented
automorphisms. This will establish that Aut(&,,) actually has the structure of a semidirect
product.
A certain class of unitarily implemented automorphisms of £, are well known from quantum
mechanics, and are called gauge automorphisms. Think of #,, as being identified with the Fock
space F(H) with dimH = n. For any unitary U on H, form the unitary operator

U=Z® U®k

k=0
which acts on Fock space by acting as the k-fold tensor product of U on the k-fold tensor

product of H. It is evident that

U¢(Q) U* = ¢UQ) for{ € H:
therefore O, = Ad Udetermines an automorphism of ,. If U = [u;; ] is an n X n unitary
matrix, this automorphism can also be seen to be given by

n
@U(L]) = ZuijLi for 1 S] < n.
i=1
An easy calculation shows that ©,0, = Oy ; so this is a homomorphism of the unitary group

U,, into the automorphism group Aut(£,,). It follows from Lemma (3.1.27) below that t,U =
U, the coordinatewise conjugate of U.So T maps the group of gauge automorphisms onto the
unitary group.

In [299], Voiculescu constructed a larger subgroup of automorphisms of the Cuntz-
Toeplitz algebra &, which turn out to be the one we want. He starts with the group
U(1,n)consisting of those (n+ 1) X (n+ 1) matrices X such that X*JX =], where | =

1 _ g
[ O]. One may compute that these matrices have the form X = [xo Th] where the
0 I, N2 X1

coefficients satisfy the (redundant) relations:

@ NIl = llm2ll* = llxoll* — 1
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(i) X111 = Xonz and X711z = XoM1
(i) X1 X; = I, +mniand X1X7 = I, + 1212
Let us write L, = )i, (; L;for{ € C*. Voiculescu shows that there is a (unique)
automorphism @y of &, such that the restriction to the generators
IS given by

Ox(Lg) = (xol Ly,) ™ (LX1z_ (C,m1)):
It is easy to verify that the kernel of this map consists of the scalar matrices x,I,,,, for x, in
the circle T. Moreover Voiculescu constructs a unitary operator Uy by

Ux(A&1) = Ox(A)(xol Ly,) "¢ forallA € &,

so that Oy (A) = UxAUyx for Ain £,,.
It is apparent that the norm-closed (nonself-adjoint) algebra 2, generated by fL; : 1< i<n
Is mapped into itself by this map. Since this is a group homomorphism, it maps 2, onto itself.
Then because Oy is unitarily implemented, it is WOT-continuous and thus determines an
automorphism of £,,. We will provide discussion below to indicate another method of obtaining
these automorphisms that fits into our framework some what better.

There is also a natural map from U(1,n) onto Aut(B,,) by fractional linear maps. This
result must be well known. We do not have a reference, but the results of Phillips [211] on
simplectic automorphisms of the ball of B(H) may be modified to apply to the ball of B(#; X)
for Hilbert spaces HandX . Taking H = C" and X = C yields our map.

Lemma (3.1.27)[156]: For X in U(1,n), define a map 6x: B,, = C" by

XA+ 1,
0x(1) = o (/1»7]1)f0r/1 € B,,.
Then 6y belongs to Aut(BB,,) and the associated map 6: U(1,n) — Aut(B,) is a surjective
homomorphism with kernel equal to the scalars.
Proof:First one computes using (i) and (ii) above:
lxo + (A% — (X1 — A4, n)I?
= [xol* + KANn)I? = IX. A7 = lIn2lI* + 2 Re({A, xom1) — (X14,12))
= (Ixollz/”—2 Im2117) = (X1 A7 = K4, xm1)1%) + 2 Re{A, xomy) — {(X172)
=1- .
Thus this map carries B,, onto itself, and so belongs to Aut(B,,).
A straightforward calculation shows that this map is a group homomorphism.Again the kernel

of this map is the circle of scalar matrices in U(1,n). The unitary operator X = [t 3] Is sent

to U. Now 04 (0) = x;n, is an arbitrary point in the ball. Hence the range of 8 is a transitive
subgroup of Aut(B,,) containing the unitary group. By Schwarz's lemma [256, 113], the range
is the whole group of conformal automorphisms.

To see the relationship between ® and 6, we make the following computation.

Lemma (3.1.27)[156]:7(6X) = 8(X ) forall X in U(1,n).

Proof: Compute forX = [xo Th] that
N2 Xi
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_ ) Xo —M
X1=Jx =[ 0 ]
% - Xq
Therefore if e;form the standard basis for C*, then

7(0)(A) = [0205+ (L)) = 9 (Tl + Ly,)” (Uxzer + (en2)))

= (G + AN (A Lyend +(eam))e;
i=1

n
= (%, + (A,m))‘lz:((Xl/L e;) + (mz e, e = (%o + (AN (X4 +17,)
i=1
= 0Oz(1):
Theorem (3.1.28)[156]: The restriction of t to the subgroup Aut,(&,) of unitarily
implemented automorphisms is an isomorphism onto Aut(BB,,).
Proof: Define a map K: Aut(B,,) — Aut, (£,) as follows: given aa in Aut(B,,),pick X €
U(1,n) belonging to 8 (a)and set K (a) = Og. This is a well defined monomorphism
because @ and 6 have the same kernel and complex conjugation is an automorphism of
U(1,n).By the previous lemma, it follows that T is the identity on Aut(B,,). In particular, t
restricted to Aut, (2,) is a surjective homomorphism.
To prove that this map is injective, suppose that @ is a unitarily implemented automorphism
such that 7(0) = id. A fortiori, @ is contractive.
But ©(L;) = L; + C; where C; € ewhence
12 l0ll; = (IL; + &I =1 + NIGE1I1%
Consequently,C;&;, = 0 which implies that C; = 0. Therefore ® = Id andour map is an
isomorphism.
We record an immediate consequence of the proof.
Corollary (3.1.29)[156]: Every contractive automorphism of £, is unitarily implemented. In
particular, it is completely isometric.
It would be interesting to know if automorphisms of £,, are automatically completely bounded.
All the necessary parts for Theorem (3.1.19) have now been accumulated. The homomorphism
T IS now known to be surjective, with kernel g — Inn(&,,) and a continuous section k onto
Aut(L,,) as required.
Notice that if @ is unitarily implemented, then S; = @~1(L;) will be isometries with pairwise
orthogonal ranges. They generate the ideal
n

ZS" g, = 0-1(2Y).
i=1

This is a WOT-closed two-sided ideal of codimension one, and thus by Theorem (3.1.5) its
range is a £,K,, invariant subspace of codimension one. The complement is a one-dimensional
invariant subspace for £2, and thus by Theorem (3.1.3) is spanned by v, for some A in B,,. It
Is easy to check that 7, (0) = A.

Conversely, given A, we can construct such isometries. By Theorem (3.1.3), the subspace
{vA}* is &, invariant and has an n-dimensional wandering space Q,. Let & for 1 <i < n be

69



an orthonormal basis for W,. Then by [68], the operators S; = Lg, are isometries in £, with

ranges summing to {v;}*. We will sketch how to construct the automorphism _ which takes L;
toSiforl <i<n.

The first step is to show that v, is cyclic for the WOT-closed subalgebra 2 generated by
{S1, ..., Sy }. This is established by showing that {, = (S)v,, w € F,, isan orthonormal basis
for H,,. This immediately yields a unitary operator W such that WL,W* = S; such that AdW
Is an endomorphism of £,,.

The second step is to show that Y = £,,. Since it is contained in £,,, we see that vy = &;
Is an eigenvalue for A*. Since A is unitarily equivalent to £,,, there is a non-zero p such that
W,, = §1. Apply the argument again to obtain a second unitary W'sothat AdW'W (L;) = S =
Lt where ¢ form an orthonormal basis for the wandering space of {¢;}*. But then (whenn <

1) there is a unitary U in Uy, such that {; = U,, = U¢,, .

Unfortunately, this argument fails for n = oo. Consequently, it follows that AdW'W = @.
Thus the two endomorphisms AdW and AdW' must have been automorphisms.

Section (3.2) Cmmutative Banach Algebras of Teoplitz Operators

Recall first that the C*-algebras generated by Toeplitz operators which are commutative
on each weighted Bergman space over the unit disk were completely classified in [262]. Under
some technical assumption on “richness” of a class of generating symbols the result was as
follows. A C*-algebra generated by Toeplitz operators is commutative on each weighted
Bergman space if and only if the corresponding symbols of Toeplitz operators are constant on
cycles of a pencil hyperbolic geodesics on the unit disk, or if and only if the corresponding
symbols of Toeplitz operators are invariant under the action a maximal commutative subgroup
of the Mabius transformations of the unit disk. We note that the commutativity on each
weighted Bergman space was crucial in the part “only if” of the above result.

Generalizing this result to Toeplitz operators on the unit ball, it was proved in [245, 251]
that, given a maximal commutative subgroup of biholomorphisms of the unit ball, the C*-
algebra generated by Toeplitz operators, whose symbols are invariant under the action of this
subgroup, is commutative on each weighted Bergman space. The geometric description of
corresponding symbols in terms of so-called Lagrangian foliations (which generalize the notion
of a pencil of hyperbolic geodesics to multidimensional case) was also given. It turned out that
for the unit ball of dimension n there are n + 2 essentially different “model” commutative C*-
algebras, all others are conjugated with one of them via biholomorphisms of the unit ball. It
was firmly expected that the above algebras exhaust all possible algebras of Toeplitz operators
on the unit ball which are commutative on each weighted Bergman space.

We present here a quite unexpected result. There exist other Banach algebras generated
by Toeplitz operators which are commutative on each weighted Bergman space. These algebras
are non conjugated via biholomorphisms of the unit ball, non of them is a C*-algebra, and for
n = 1 all of them collapse to the C*-algebra, which is generated by Toeplitz operators with
radial symbols.

Let B™ be the unit ball in C", that is,
B" ={z = (2zq,...,2y) € C":|z|* = |z1|*+... +]|z,|% < 1},
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and let S™ be the corresponding unit sphere, the boundary of the unit ball B™. In what follows
we will use the notation t(IB™) for the base of the unit ball B™, considered as a Reinhard
domain, i.e.,

_ T(B™) ={(r,....7m) = (1], |z ) = r’=r2+...+1r2€ [0, 1)}.
Given a multi-index a = (a4, @5, ..., a,) € Z} we will use the standard notation,

la| = a1 + ax +...+ ay,
al! = aq! a,! - ayl,
70 = Z{xlzgz v gan
an,
Two multi-indices a and 3 are called orthogonal, a L B, if
aﬁzalﬁl'l'azﬁz‘l"l'anﬁn =0 (4)

Denote by dV =dx;dy,...dx,dy,, where z, = x;+iy,l=1,2,...,n, the standard
Lebesgue measure in C*; and let dS be the corresponding surface measure on S,,. We introduce
the one-parameter family of weighted measures,
d _F(n+)L+1)1_ A dv A>-1
u() = mragp G @), ,
which are probability ones in B™; and recall two known equalities (see, for example, [150])

@ 2n"a!
| £ a5@ = bup i1+ Tam 5)
@y g _ 5 al(n+1+1) 6
j[-BnZ 270 dn(2) = “Prn + la|+ 1+ 1). (6)

We introduce the weighted space L, (B", dv;) and its subspace, the weighted Bergman space
A% = A%(B™), which consists of all functions analytic in B™. The (orthogonal) Bergman
projection B™of L, (B™, dv;)onto A5 (B™) is known to have the following integral form
@($) dva({)
En@ = [ T
Finally, given a function a(z) € L, (B"), the Toeplitz operator T, with symbol a acts on
A% (B™)as follows

T, @ € A3(B™) — B;(ap) € A7 (B™).
Letk = (k4,..., k,,) be atuple of positive integers whose sum is equal to n: k,+... +k,, = n.
The length of such a tuple may obviously vary from 1, for k = (n),ton, fork = (1,...,1).
Given a tuple k = (kq,..., k,,), we rearrange the n coordinates of z € B™ inm groups, each
one of which has k; ,j = 1,...,m, entries and introduce the notation

Z(l) == (21,1' . Zl,kl)' Z(Z) == (22,1' . Zz'kz), ey Z(m) = (Zm,l’ . Zm, km).
We represent then each z(jy = (2; 4, ..., 2, k; ) € B* in the form

2(j) = Tj8(j) wherer; = \/IZmIZ +...1z;,k; | and §(;) € 9.

Given a tuple k = (k4,...,k,,), a bounded measurable function a = a(z),z € B", will be
called k-quasi-radial if it depends only on r4,..., 73,.
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Varying k we have a collection of the partially ordered by inclusion sets Ry of k-quasiradial
functions. The minimal among these sets is the set R, of radial functions and the maximal

.....

There is some ambiguity in the above definition. Indeed given a tuple k there are many
corresponding sets Ry which differ by perturbation of coordinates. At the same time each
perturbation of coordinates of z is a biholomorphism, say k, of the unit ball B®, which generates
the unitary equivalence of the Toeplitz operators T, and T,., Thus it is sufficient, in fact, to
consider only one of these perturbation different sets.

To avoid all possible repetitions and ambiguities in what follows we will always assume first,
that k; < k, <...< k,,,, and second, that

Z11 = 21,210 = Zgy s Z0, K1 = Z 200 = Zie 0 Zo0 Ko

= Zkyip, 0 Zmo kpy = zp,. (7)

Given k = (kq,..., k,;)and any n-tuple a« = (a4, ..., @), we define
A1) = (0(1;---;0(k1);0((2) = (ak1+1:---:ak1+k2)»---:a(m) = (Otp—km+1s++» %p)-

T, with symbol a € Ry, by [245], is diagonal with respect to the standard monomial basis in
A% (B™). The exact form of the corresponding spectral sequence gives the next lemma.
Lemma (3.2.1)[193]: Given a k —quasi-radial function a = a(ry,...,7,), we have

Taz® = yap (@) z% a € ZY,
Where

Va,k,/l(a) = ya,k,/’l(l“(l) | sy “(m))
2" n+ || +_+ 1)

T+ 1) Mk — 1+ |ag|)!
m

2 N+2ki—1])
x ja(rl,...,rm)u—|r|2)/11_[13.'“<”' M,
j=1

T(B™)

Proof: We calculate

I + 1+ 1
(T2, 70 = (78, 7@y = L )

a ,—arq _ AV
n F(/1+ 1) Xma(T‘l,...,Tm)Z v Z (1 |Z| ) dV(Z).

Changing the variables z.;, = r;¢), wherer; € [0,1]and ¢;) € Ski,j = 1,...,m, wehave
m

F(Tl + A+ 1) 1 Zla(')|+2k'—1j
PG D) o, @0 A=l | [

j=1
m
R OF )
X 1_[ J o Sy a5
j=1"8"
m
2" n + la|l+ a + 1 , oy
( | | ) f a(rl’“.’rm) (1 _ |T|Z)Al_[1}2|a(])|+2k] 1]dr'
j=1

ST+ DI (k- 1+ EODES .
Then the result follows by (11).

<Za’ Za) =

B™)
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Given k = (ky,...,k,,) we use the representations z:y = 1;¢(;y,j = 1,...,mto define the
vector
&= (5(1)15(2)' ""f(m)) € S*1 x Sk2 x ... x Skm,
we introduce now an extension of k —quasi-radial functions, which may be called following
[125, 129, 317] the quasi-homogeneous functions. A function ¢(z) is called quasi-
homogeneous (or k —quasi-homogeneous) function if it has the form
S@) S
W&

(p(Z) = <,0(Z(1),Z(2), "'lZ(m)) = a(rl,rz, '"er)fs = Cl(T'l,T'z, "'er)fgz(;)f(z) “Stm)
where a(ry,15,...,7;,) € Ryand s € Z™,
After separating positive and negative entries in s, it admits the unique representation s = p —
q, Where p,q € Z%and p L q. Then &%, for s € Z", is always understood as

& = &g,

where s =p —q, with p,q € Z} and p L q. We will call the pair (p,q) the quasi-
homogeneous degree of the k-quasi-homogeneous function a(ry,1,,...,7,,)§PE74.
Lemma (3.2.2)[193]: The Toeplitz operator T,EP&9with Kk-quasi-homogeneous symbol
aéP&~9acts on monomials z%, ¢ € Z% as follows
0 if 3lsuchthat a; < q; —p;

T, eps-qz% = { - _ .
aghe Vakpqr(@)z® P74, ifvia, = q —py

where
3 @ 2" n + |a| +a+ 1)
a =
Vakpai A+ DIk — 1+ lagD@+p—q)!
m

X j a(ry,..., 1) (1 — |r|2)/11_[T}_Zla(j)"'p(j)_q(j)|+2kj—1drj (8)
T(B™) Jj=1
Proof: For each two multi-indices a, § € Z™, we calculate
(Tagpqua;Zﬁ> = (agP&iz, zF)
'n+ A+ 1)

T+ 1) Jgn

Changing the variables Z(jy = 158y where 7; € [0,1) and $i) € Ski ,j = 1,...,m we have

(§P&9z%, zP)

a(ry,..., 1) EPE92% 7 (1 — |z|2)AdV (2).

m
rn + 4+ 1) 242 2|lapy+p(h—aepl+2k;—1
= nn]_'(/1+ 1) Xna(rl,...,'rm)(l_lrl ) 1_17} J J J dT]
]:

m
YD+p(j) #BGHFPG)
Xl I Lk,. S Sy as(E)
j=1
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s 2" (n + |lal+ a + p)
PG+ DI = 1+ Jagytpg))!

m
[Ap+Bepl+2kj=1
X ja(rl,...,rm)(l—lrlz)’lﬂq PRV
T(B™M) j=1

The last integral is non zero ifand only if a + p =+ q and a; + p, — q; = 0, for each | =
1,2,...,n.NowforB=a+ p—q,witha; + py—q; =0, foreach 1 =1, 2,...,n, we have
by (11),

(a+p—-—qT'h+ 1+ 1)

B B\ — (,a+P—g ,a+p—g\ —
Zhzf) = ? ) rm+ja+p—-—¢ql+2+1)°

and the result follows.

A particular case of the next theorem when k = (n) and A = 0 was proved in [317].
Theorem (3.2.3)[193]: Let k = (ky, k5, ..., k,,) and p, q be a pair of orthogonal multi-indices.
Then for each pair of non identically zero k-quasi-radial functions a, and a,, the Toeplitz
operators T, and T,,zps-a COMmute on each weighted Bergman space Az (B") if and only
if |p(])| = |q(])| for eaChj = 1, 2,. L, M.

Proof: For those multi-indices o with oy +p;—q; =0, for each [ = 1,2,...,n, by
Lemmas(3.2.1) and (3.2.2) we have

Tazfp;qua’lZa
2" n + la+p+q|l+ 1+ 1)(a+p)!

T+ 1) ]'[}’l:l(kj — 1+ |agpy| +pp) (@+p—q)!
m

X f ay (1, o, 1) (1 — |7]2)% 1_[Glza(j)+p(j)+q(j)|+2kj_1d7~]-
=1

T(B™) ]
2" (n + |la| + 4 + 1)

X
m

2 N +2ki—1
X J az(rl,...,rm)(l—|r|2)’11_[r. [pl2k71 . patp=a

J
T(B™) j=1

and
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Ta1 Taz fpf_q Za
2" a| + A+ 1)
m

2lacpyppntacplt2ki—1
X f ‘11(7‘1» ...,T'm) (1 _ |r|2)l T} laypiprag|+2k; d?’}

T(B™) f=‘1h
2" I'n + la+p—q|l+ 1 + 1)(a+ p)!

X
re+ DIk — 1+ |agpg + 95D (@+p —g)!
m

2|agypgy+agl+2k-1 -
X fal(T1,---,7"m)(1—|T|2)'11_[7}- PR  dyy 2%t

T(B™) j=1

Thatis T, T, spzaz® = Ty, Tq evzaz®if and only if [pg| = [q| foreachj =1,2,...,m

We note that under the condition p(;)| = |q(;|,foreachj = 1,2,...,m, formula (13) reads

as
2" (n + |a| +a+ 1)

r@ + DI (k= 1+ |agpp|)! @+p—9)!
m
X f a(ry, .., 1) (1= |7|2) 1_[7}2|a(j)|+2kj_1d7‘j .

(B™) j=1
_ (ki — 1+ |agy|)! (@ +p)!
IRk = 1+ Jagyepp]) (@ +p— )
_ 1_[’" [ (k= 1+ fap])! — (@+p)!
j=1

(ki = 1 + |agyepp|)! (@gm+pp — ap)!

)7a,k,p,q,/1 (a') =

ya,k/l ((1)

Vaia(a) (9)

As surprising corollaries we have:

Corollary (3.2.4)[193]:Given k = (kq, k5, ..., k,,), for each pair of orthogonal multi-indices

p and g with |p | = |q¢j |, forall j = 1,2,...,m, and each a(ry,15,...,7,) € Ry, We have
Tanqu = TprqTa = Tafpgq.

Givenk = (ky,ky, ..., ky), and a pair of orthogonal multi-indices p and q with [p¢;y| = |q¢j|.,

forallj =1,2,...,m, let

() = (0,...,0,pj0,...,0) and G;y = (0,..., 0,4, 0,...,0).

Then, of course, p = ﬁ(l) + ﬁ(z) +...+ ﬁ(m) and q= ﬁ(l) + ﬁ(2)+ .ot q(m)-

Foreachj = 1,2,...,m, we introduce the Toeplitz operator T; = Tfﬁ(j)?ﬁ(j) :

Corollary (3.2.5)[193]:The operators T}, j = 1,2,...,m, mutually commute.Given an h-

tuple of indices (jy, j,,---, jr), Where2 < h < m, let

Pn =By + Pyt .-+ DBy adGn = g,y + A+ - (-
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Then
In particular,

Given k = (kq,k,,..., k), we consider any two bounded measurable k —quasi-
homogeneous symbols a(ry, 15, ...,7,,)EPE2 and b(ry, 15, ..., 7,,,)EXEY, which satisfy the
conditions of Theorem (3.2.4) , i.e., a(ry, 1y, ..., 1,) and b(ry, 1y, ..., 13, )are arbitrary k-quasi-
radial functions, p L q,u L v, and|p¢j| = |q¢j| and |ugpy| = vl forallj =1,2,...,m.
Theorem (3.2.6)[193]:Let (14,75, ...,7,,)EPE%Nd b(1y, 75, ..., 1) EXEY, be as above. Then the
Toeplitz operators Ty zrgq and T, zuz» cOMmute on each weighted Bergman space Az (B™) if
and only if foreach | = 1, 2,..., n one of the next conditions is fulfilled

B pm=q =0

i) u=v,=0;

(i) p, = u =0;

(ivy q, =v,=0.

Proof: We calculate and compare first TyepzaTpzugvz® and T)pzugv Tyepgaz® for those
multindices a when both these expressions are non zero.By (8) we have
Tagrgalpeuy,
B 2"I'(n + |lal+ 1+ D(a+u—v+p)!
r + DML (k-1 + |agepp| ) @+u—v+p—q)!
m

2|acp|+2kj-1
X Ja(rl,...,rm)(l—lrlz)’lﬂg S dr;

7(B™) j=1
2"I'n + |lal+ A+ 1)(a+u)!

X
r(d + DI (k- 1 + |agyup|)! (@ +u—v)!
m

2 i 2k;i—1
X fb(rl,...,rm)(1-|r|2)11_[,}|“<f>|+ I g i

T(B™) j=1
and
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beugv’Tagpqua
2"T(n + |lal+ A+ D(a+u—v+p)!

N ra+1) H?Ll(kj— 1+ |a(j)+u(j)|)!(a+p—q +u—v)!
m

X J b(Tl, ...,Tm) (1 - |r|2)/1 1_[7}2|a(j)|+2kj_1d7”j
T(B™M) j=1
2"T'(n + |lal+ 41+ 1)(a+ p)!

X
ra+1) ]_[}”zl(kj— 1+ |a(j)+p(j)|)!(a+p —q)!
m

X J b(ry, ..., ) (1= 7|22 Hrf'“(”l”"f_ldrj Jatu—v+p—
T(]Bm) j=1
Thatis Tyepzal pguze, = Tpruzv Toevzaz® if and only if
(@tu-v+p)lat+w) (a+p—q+w)!(a+p)

(a+u—v)! (a+p—9q)!

Varying «a it is easy to see that the last equality holds if and only if foreach [ = 1,2,...,none
of the next conditions is fulfilled

(i) p=q =0;

(i) u = v = 0;

(iii) p= u = 0;

(iv) q = v; = 0.
To finish the proof we mention that under either of the above conditions both quantities
Taepza Tpzugpz®and TpzugvT 5 zpzqz® are zero or non zero simultaneously only.
Example (3.2.7)[193]:Let n = 7 and k = (2,5). Then by Theorem (3.2.4) the Toeplitz
operators with symbols a(r;,7,) €R, and b &PEY, where b(ry,7,) € Rp,p =
(14,0,0,3,0,1,0),qg =(0,1,1,0,1,0, 2), commute. We mention that here

p(1) =(1,0),p(2) =(0,3,0,1,0) and q(1) = (0,1),q(2) = (1,0,1,0, 2).

As easy to see, all pairs (u, v) of orthogonal multi-indices such that (by Theorem (3.2.8)) the
Toeplitz operators with k-quasi-homogeneous symbols having that quasi-homogeneous
degrees mutually commute, and commute with both T, and Typzq are of the form

u = (uy,0,0,uy,0,u4,0),v = (0,v,5,v3,0,vs5,0,v,), (10)
where u,, uy, ug € Z,,v,,v3,Vs, v, € Z,, and
Uy = Vy, Uy + Ug = V3 + Vg + V5. (11)

that is, the Banach algebra generated by all Toeplitz operatorsT,zuz-v, where a(ry, ;) € Ry,
and the orhogonal multi-indices u and v of the form (10) satisfy the condition (11), is
commutative.

We formalize the above example as follows. First, to avoid the repetition of the unitary
equivalent algebras and to simplify the classification of the (non unitary equivalent) algebras,
in addition to (7), we can rearrange the variables z, and correspondingly the components of
multi-indices in p and q so that
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(i) for each j with k; > 1, we have

p(]) = (pj,li 'pj,hj , 0, . 0) and q(]) = (O, ey O, qj,hj+1' ey qj,kj) ; (12)
(i) if k;" = k;"" withj" < j"”, then h;" < h;".
Now, given k = (kq,..., ky,), we start with m-tuple h = (hy, ..., hy,), Where h; = 0ifk; = 1
and 1 < h; < k; — 1ifk; = 1; in the last case, if k;" = k;" with j* < j”, then h;" < h;"". .
We denote by R, (h) the linear space generated by all k-quasi-homogeneous functions

a(ry, 1y, ..., 1) $PE7Y,

where a(ry,13,...,h,) € Ry, and the components p(;yand q¢jy,j = 1,2,...,m, of multi-
indices p and q are of the form (12) with

pj,1+ et pj,hj = q]"hj+1+ Lot qj:kj 'pj,l""lpj,hj ’qj'hj+1 + 1,...,q]',k]. S Z+.

We note that R, c Ry (h) and that the identity function e(z) = 1 belongstoR; (h).

We have the following result.

Corollary (3.2.8)[193]:The Banach algebra generated by Toeplitz operators with symbols
from R, (h)is commutative.

We would like to emphasize the following features of such algebras:

(i) For different k and h these algebras are not conjugated via biholomorphisms of the unit ball;
(if) These algebras are just Banach and not C*-algebras; extending them to C*-algebras they
become non commutative;

(ili) Given k # (1,1,...,1), there is a finite number of different m-tuples h and thus a finite
number of different corresponding commutative algebras;

(iv) These algebras remain commutative for each weighted Bergman space A2 (B™), with 1 >
-1,

(v) Forn = 1 all of them collapse to the single C*-algebra generated by Toeplitz operators with
radial symbols.

We finish presenting another application of Theorems (3.2.4) and(3.2.8),Studying
commutativity properties of Toeplitz operators on the Bergman space on the unit disk 1.
Louhichi and N. V. Rao [124] conjectured that if two Topelitz operators commute with a third
one, none of them being the identity, then they commute with each other.

As next example shows, this conjecture is wrong when formulated for Toeplitz operatorson the
unit ball (B™), withn > 1.
Example (3.2.9)[193]:Given n > 1, let k = (2,1,...,1). Consider the following three
symbols
ag = a(ry, 7o, v, Thoq), @ = b(1ry, 1y, e, rn_l)fgjo)f((f)'l) )
a; = c(ry, 12, ., Tn—1)f((11)'0)f((%1)

where a, b, c € Ry.

Then by Theorem (3.2.3) T,, commutes with both T, and T, while by Theorem (3.2.6) the

operators T,  and T,,, do not commute.
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Chapter 4
Eigenvalue Inequalities and on the Eigenvalues of Normal Matrices

Using techniques from algebraic topology we derive linear inequalities which relate the
spectrum of a set of Hermitian matrices 44,...,4,, € C™™ with the spectrum of the sum A, +
- -+ +A,. There results are a direct generalization of a theorem of Wielandt on the eigenvalues
of the sum of two normal matrices. Characterizations of eigenvalues of normal matrices using
the lexicographical order in C are presented, with some applications.
Section (4.1) Schubert Calculus

Consider real n x n diagonal matrices D4, ..., D,.with diagonal elements 1, (D;) >
A,(Dy) =...2 1,(D;),l = 1,...,r. In this section we are concerned with geometric
properties of the set of possible spectrums of the matrices

T
{Z U/ U;:U; are unitary. (1)
1=1
Equivalently we are interested in the following question:

Given Hermitian matrices A;,...,A, 2 € C"*™ each with a fixed spectrum A,(4;) =
- A,(4;),j = 1,..,r and arbitrary else. Is it possible to find then linear inequalities which
describe the possible spectrum of the matrix A; + -+ + A4,.?

For r = 1 this question is of course trivial. For r = 2 the question is classical and very well
studied (compare with [139, 10, 263, 34, 239, 237, 225, 108]).

An early example of an eigenvalue inequality for a sum of two Hermitian matrices is that of
Weyl [108,112,158,33,78]. A generalization of the Weyl inequalities to k —fold partial sums
of eigenvalues of Hermitian matrices A, B and A + B is due to Freede and Thompson [225].
Still more general is the class of eigenvalue inequalities described by Horn [10,32] for sums of
two eigenvalues.

We will present a systematic geometric approach to obtain such eigenvalue inequalities.
Although our main results are in the case of two matrices, where r = 2, the approach works
equally well in the case of r-fold sums A; + ---+ A, of Hermitian matrices A4, ..., 4,. Our
interest in this problem originates in the observation by Thompson [239, 237] who indicates
that most of the known inequalities for the case r = 2 can be derived using methods from
algebraic topology, i.e. by the Schubert calculus of complex Grassmann manifolds. As this
topological approach is described only in a rudimentary form in [239, 237,35,132] we first
present a rigorous development of the Schubert calculus technique towards eigenvalue
inequalities. We then show that it is also possible to derive with the same method a large set of
inequalities for the case r > 2 as well.

The algebraic topology approach to solving inverse eigenvalue problems is by no means
limited to the task of finding eigenvalue inequalities for sums of Hermitian matrices. In fact,
the technique has been already successfully applied to solve an outstanding inverse eigenvalue
problem arising in control theory, i.e. the pole placement problem for multivariable linear
systems by static output feedback. See. [248, 138].
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The minmax principles of Wielandt and Hersch-Zwahlen are reviewed, which
characterize in geometric terms partial sums of eigenvalues of a Hermitian matrix. We review
the relevant results from the Schubert calculus of Grassmann manifolds. We apply the
technique and state the main results. We show how the inequalities of Weyl [108], [34] and
Freede-Thompson [225] follow from the main theorem. In the last section we describe a large
set of nonzero products in the cohomology ring H* (G, C"), Z) of the Grassmann manifold,
leading to a new class of inequalities for sums of eigenvalues of Hermitian matrices A4, A,..
Let A € C™™ be a complex Hermitian matrix with eigenvalues

M (A)s2,(A) =...= 1,(4). (2)
The classical Courant-Fischer minmax principle then asserts that (compare e.g. [222]):
Theorem (4.1.1)[289]: For1 <i < n:

A(4) = dwn%ﬁialeiy tr(Axx™) (3)
= max  min tr(Axx") (4)
dimW=n—i+1 X€W
llx|l=1

Amore general version of the minmax principle is due to Wielandt [109] and Hersch- Zwahlen
[138] and characterizes partial sums of eigenvalues via flags of subspaces of C". To state their
result we first recall some basic notions and definitions from geometry:
The complex projective space CP" is defined as the set of all one-dimensional complex
subspaces of C™**1, i.e. as the set of all complex lines passing through the origin 0 e C**1. More
generally, the complex Grassmann manifold G, (C™) is defined as the set of all k-dimensional
complex linear subspaces of C". In particular for k = 1 one has the complex projective space
G,(C™) = CP™ 1. The Grassmannian is a smooth, compact manifold of real dimension
2k(n — k).
Equivalently, the Grassmannian G, (C™) may be defined as the set of all Hermitian projection
operators P: C* — C™" of rank k. A Hermitian projection operator of C™ is a Hermitian matrix
P € C™"satisfying
P*=P,P? =P,andrank P = k. (5)
For any k-dimensional complex linear subspace L c C"let P,: C* — C™ be the uniquely
determined projection operator satisfying
im(P,) = L, ker(P,) = L+, (6)
where Lt denotes the orthogonal complement of L in C™ with respect of the standard Hermitian
inner product. Thus P; is the orthogonal projection of C" onto L along L*.If X € C™** is any
full rank matrix whose columns form a basis of L, then one has
P, = X(X*X)"'x* (7)
Conversely, for any full rank matrix X € C™**, the operator defined by (7) is a rank
k Hermitian projection operator on C™. Thus the map Lt — P, is a bijection of G,(C") onto
the set
{P e C"™™:P*=P,P? =P,and rankP = k}.
Given any k-dimensional linear subspace L c C™ let P,: C* — C™ denote the associated
Hermitian projection operator. We then define
tr(A|, ):= tr(P,AP,) = tr(AP,) = tr(AX(X*X)™'X"), (8)
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where X € C™¥ is any full rank matrix whose columns form a basis of L. Note that tr (4|, ))
IS the trace of a Hermitian operator and therefore a real number.
Definition (4.1.2)[289]: The smooth map
Ra:Gp(CM) - R
L—tr(A|,) €©)
is called the Rayleigh quotient of A on G, (C").
If k = 1 the map R, coincides with the classical Rayleigh quotient
R < Ax,x > 10

a(x) = m (10)
The extremal principles for the partial sums of eigenvalues of a Hermitian matrix A of
Wielandt, Hersch-Zwahlen and Riddel are now stated as follows:
Theorem (4.1.3)[289]: (Wielandt [19]) For 1 < i; <...< i, < n:

Ai(A) + -+ Ay (4) = max i tr(A|,) (11)

dimVj:ij dim(LﬂVj)Zij

dimW, oty Len(em tr(dl.) (12)

dimWj=n—ij+1 dim(LNV;)zj
In particular, for k = 1, Theorem (4.1.3) specializes to the Courant-Fischer minmax principle
as formulated in Theorem (4.1.1).
Note that ,it can be shown (see [222]) that the maximal value of (11) is assumed at a “partial
flag of eigenspaces”, i.e. at a flag (V,..., V) having the property that
dim(V;) = i and V; € ker (441 — A) @ ... ® ker (4,1 — A)forj =1,..,k
We conclude with the following result from Hersch-Zwahlen [138]:
Theorem (4.1.4)[289]: Let A be a Hermitian matrix with eigenvalues 1,(4) =...= 1,(4)
and a corresponding orthogonal set of eigenvectors v, ..., v,. Denote with
V, ==span (vq,...,v,),m=1,..,n. (13)

Let1 <i; < <i, <nthenone has:

AMA)+ -+ 1;(4) = LErGrIz(i&Ln){tr(Ah): dim(LnV)>j,j=1,..,k}. (14)

Thus the result of Hersch-Zwahlen just says that the sum of eigenvalues A;(4) + -+ 1;(4)
Is characterized as the minimal value of the trace function tr(A|, )when evaluated on a Schubert
subvariety of G, (C").

Consider again the Grassmann manifold G, (C™)consisting of k-dimensional linear subspaces
of the vector space C™". Using the Pliicker embedding G, (C™)can be embedded into the

projective space C"PPN of dimension N = k'(:ik)' — 1. Under this embedding G,(C") is a

projective variety described by a famous set of quadratic relations (see e.g. [203]).
Definition (4.1.5)[289]: A flag F is a sequence of nested subspaces
{0}cV,cV,c--cVy=C" (15)

where we assume thatdimV; =i fori = 1,...,n.
Leti = (i,..., ;) denote a sequence of numbers having the property that

i <ip <...< iy <n. (16)
Definition (4.1.6)[289]: For each flag F and each multiindex i define
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C(i;F) = {W € G, (C):dim(wnV; ) = s}
Is called a Schubert cell and

S(i;F) ={W € G (C*):dim(wn V) = s}
Is called a Schubert variety.
We emphasize that the Schubert cell C(g; iF)is indeed a cell, i.e. isomorphic to theaffine space
CY where N:=Y*_ i; —j is the dimension of the cell C(i;F). (Compare with [203].)
Moreover the Zariski closure of the cell C(i; F)is the variety S(i; F)which is a projective
algebraic subvariety of G, (C™).

The following results are well known and we refer e.g. to [309, 203].

Theorem (4.1.7)[289]: For every fixed flag F the Schubert cellsC(i; F) decompose the
Grassmann variety G,(C™) into a finite cellular CW-complex. The integral homology
H,,,(G,(C"),Z) has no torsion and is freely generated by the fundamental classes of the
Schubert varieties S(i; F )of real dimension 2m.

Consider a fixed Schubert variety S(g; .’F)Its homology class is independent of the choice of
the flag F and therefore depends only on the numbers i,,...,i,. we will use the symbol
(iy,..., 1) to denote this homology class. The Poincar’e-dual of the class (i, ..., i) will be
denoted by

fug, ...y =n—k—-i;, +1,n—k—i,+2,..,n—i,} € H(G,(C"),2Z) (17)
At this point we want to mention that our notation was already used by Schubert (compare with
the book of Fulton [309,306,258]) and is slightly different to the one used in [203,

103,46,173,30]. The cohomology ring
k(n-k)

H* (G, (CM), Z) = @ H?™ (G, (C™), Z) (18)

has in a natural way the structure of a graded ring. From Poincar”e-duality and Theorem (4.1.8)
it follows in particular that each graded component H>™ (G, (C"), Z) is a free Z-module with
basis the set of Schubert cocycles {uy,...,u;} where n > k >y, =...> u; = Oand
jerlj=j=m

Before we describe the multiplicative structure of this ring we formulate the following
proposition which establishes the crucial link between geometric intersection properties of
Schubert varieties and algebraic properties of the ring H*(C,,(C™), Z). A proof of this as well
as more general theorems can be found e.g. in [308, 202].

Proposition (4.1.8)[289]: Consider r Schubert varieties S(i;; F,),l = 1,...,7. 1

r+1

ﬂ{n —k—ig+ 1., n—ig) %0, (19)

=1
then the intersection

T

ﬂs(g;ﬂ) + 0. (20)

=1
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The multiplicative structure of H*(G,(C"),Z) is described by the classical formulas of Pieri
and Giambelli. For this denote with

o = {k,0,..,..,0}, j=1,..,n—k. (21)
In fact o; is the j — th Chern class of the universal (classifying) bundle over G, (C").
In the following we describe the formulas of Pieri and Giambelli. Giambelli’s formula
expresses a general Schubert cocycle {u,, ..., ur} as a polynomial in the special Schubert
cocycle g; and Pieri’s formula expresses the product of a general Schubert cocycle with a
special Schubert cocycle. Pieri’s formula:

md o= Y W (22)
Hi-12V izl
Z?=1Vi:(2?=1”i)+j
Giambelli’s formula:

Ouy Ouser ™ Tprtie-1
— — Ouz_y O, E
(o i} = det (o, ) = det | * L (23)
Oli—te+1 o Opy

Note that Giambelli’s formula implies that the Chern classes o; generate the ring
H* (G, (CY), Z).

There is a deep relationship between the ring H*(G,(C™),Z)and the ring of symmetric
functions Z[x,, ..., x;]°* , where S, denotes the group of permutations, acting on k letters. To
explain this relationship we consider a special set of symmetric functions called Schur
functions. (See e.g. [123, 247,]). For this let u: = (4, ..., 4g) and define

det[xHitk=T]
= ;L =1,.. k. (24)

Su = det[x*—7]

Note that s, is the quotient of two alternating functions and therefore a symmetric function,
called a Schur function. As explained in detail in [123,109,29] the set of Schur functions

{sﬂ:ul > Uy == U > 0and Zui =q} (25)
Is an additive basis of the space of symmetric functions of degree q. As explained in [103, 136,
247] one has a ring epimorphism
Y: Z[xq,..., %] > H*(G,(C), Z)
SM - {.ull"'uuk} (26)
The kernel of this map has as an additive basis the set of Schur functions s, withs, > n — k.
Using this epimorphism any calculation in the ring H* (G, (C"), Z) can be formally done in the
ring Z[x,, ..., x,]°* .We want to mention the rule of Littlewood and Richardson which explains
how to additively expand a product of Schur functions in terms of Schur functions:
Consider two Schur functions s, and s,,. The product s, s, is a symmetric functionof degree

Y. u; + X, v; and has therefore an expansion in terms of Schur functions:

SuSy = Z Cﬁl,vSA (27)
p)
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The appearing coordinates Clﬁv are usually called the Littlewood Richardson coefficients
[123,107,247]. In order to give a combinatorial characterization of those coefficients let u =
(u1,--., 1) be a partition of n representing the Schur functions,. In other words we assume

thatn >k > uy = pp =...= ;. = 0and Y5 1;11 = n If the integer ; is repeated r;-times in

the partition u, the abbreviated notation p = (uft,..., ur*) will be used. The number |u| :=
K u; is sometimes called the weight of the partition u and the numbers y; are called the parts

of the partition.

It is usual to present a partition by a left based array of boxes which has exactly u; boxes in the

i- th row. Such an array is sometimes called a tableau.

Example (4.1.9)[289]: Two partitions with correspondlng diagrams are illustrated:

B2De— 1 (3%1) «— 1

Let A = (44,...,4;) be asecond partition. One writesA > puif A, > u;, i =1,..., k. If A > pu

one defines the skew tableau A/u as the tableau obtained from the tableau A by removing the

first u; boxes in the row i of the tableau A.

Example (4.1.10)[289]:1 = (5,4,2,2),u = (3,2,1) then A/u is given

|
We are now in a position to formulate the theorem of Littlewood and Richardson. The
following formulation as well as the subsequent example can be found in the article of Stanley
[247,228,236,249,87].
Theorem (4.1.11)[289]: Let s, and s,be two Schur functions represented by two partitions
u, v. Then the Littlewood Richardson coefficient C,ﬁv of s, in the expansion of the product s;s,,
Is zero unless A > u. In this case the coefficient is equal to the number of ways of inserting
v; 1's,v, 2’s,v3 3’s, ... into the skew tableau A/u subject to the conditions:
(i) The numbers are weakly increasing in each row and strictly increasing in each column.
(i) If aq, a5, ... is the set of numbers obtained when reading of the numbers inserted in A/u
from right to left then for any i, j the numbers of i’s among a, a5, ..., «; is not less than
the number(i + 1)’s among the numbers a4, a5, ..., a;.
The following example given in [247]:
Example(4.1.12)[289]: Let A= (542,2), u=(3,2,1)andv = (4,2,1). Then the
following skew diagrams A/u are the only ones which satisfy (i). and (ii). In particular the
coefficient of s in the expansion of the product s, s, is equal to

111 |
111 111

112
212 112

BE BE
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Using the Littlewood Richardson rule together with the description of the ring H* (G, (C"), Z)
as given in (26) we are in a position to multiply arbitrary cocycles in H*(G,(C"),Z)The
following example illustrates the procedure:

Example(4.1.13)[289]: Consider the elements {3, 2, 0} and {2, 1, 0} in H*(G5(C®), Z)Then
{3,2,01{2,1,0} = {5,3,0} + {52,1} + {4,4,0} + 2{4,3,1} +{4,2,2} + {3,3,2}(28)
We conclude with the Poincar’e duality theorem of cocycles. For this consider a cocycle
{Uy,...,ux}. The dual cocycle in H*(G,(C"),Z) is defined as the cocycle A:={n-k —
U, .-, — k — pq}.Using this notation one has:
Theorem (4.1.14)[289]:

{ue, o wt{vy, ... vt ={n—k, ... n—k}
Proof: Apply Theorem (1.3.12)of Littlewood and Richardson together with the description of
H*(G,(C™), Z) induced by the representation (26).
In order to derive result we will use the following simple lemma,.
Lemma (4.1.15)[289]: Suppose the eigenvalues of a Hermitian n X n matrix A are ordered as
AM(A)=...21,(A). Thenforany 1 < i; <...< i, <nonehas:

k
By (A) + ook Ay (A = = ) Ay 11 (A) (29)

In the following we will consider Hermitian matrices A;,...,A,,; € C™*™with corresponding
eigenvalues

ALi,(A)=...=2 ,A4)1=1,...,r+1 (30)
and corresponding orthogonal sets of eigenvectors vy, ..., v,,;;. Assume that
Ary1 =4+ -+ A,. (31)
For each Hermitian operator 4;,1l = 1,...,r + 1 construct a flag of eigenspaces
Fi:{0}c V;;cV,c...cV,; =C" (32)
defined through the property:
Vs = span(vyy, ..., V), m=1,...,n. (33)

The following result, which has been first proved by Thompson [225] for the case r = 2,
establishes the crucial relationship between matrix spectral inequalities and the Schubert
calculus.

Lemma (4.1.16)[289]: Let A4,,..., A,.be complex Hermitian n X n matrices and denote with
F, ..., Fr41 the corresponding flags of eigenspaces defined by (33). Assume 4,,; = A; + - -
-+ A,.and leti; = (iy;,..., i) be r + 1 sequences of integers satisfying

1 <ipy<..<ig<nl=1,..,r+1 (34)
Suppose the intersection of the r + 1 Schubert subvarieties of G, (C™) is nonempty, i.e.:
S (i_l; Tl) NN S(ips1; Frer) 0 (35)
Then the following matrix eigenvalue inequalities hold:
k r k
D (A4 A) S D D (A) (36)
j=1 1=1 j=1
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k r k
D Aty (A + o+ Ar) Z i (A) (37)
j=1 =1 j=1
Proof: Consider L € Gy (C") with
r+1
Le ﬂS(i_l; Fl) #0. (38)
=1
Then, by using the Hersch-Zwahlen extremal principle (Theorem (4.1.4)) one has:
0= tkr((A1 +r A — Al (39)
= ) (Al trApaly) (40)

=1

> min{tr (A L € S(irsns Fron)} + min{tr(=Ar 111 L € S(iniai Fran)} (41)

j=1
r k k
= 2 2 D)+ 2y (=Arin), (42)
j=1

Thus by Lemma (4.1.15) one has

Z Inctyppre(Ars) 2 Z Z i (A) (43)

=1 j=1

which proves (36). The mequallty (37) follows from (36) by replacing the matrices
A by —A;, 1l =1,...,r 4+ 1and using Lemma (4.1.15). This completes the proof.
In general it will be difficult to verify the intersection property (35) as it assumes the knowledge
of the eigenspaces of A44,...,4, andof A,,;, = A; + - - - +A,. By combining Lemma (4.1.16)
with the intersection theoretic result of Proposition (4.1.8) we obtain a result with a more easily
verifiable hypothesis.
Theorem (4.1.17)[289]:Let i; = (iy;, ..., i) be r + 1 sequences of integers satisfying

1<ipy<..<ig<nl=1,..,r +1. (44)
Let {(n—k—1i;+1,...,n—1iy} € H(G,(C"), Z)denote the Schubert cocycle that is the
Poincar’e dual of the fundamental homology class of the Schubert variety S (5’1;17-"1) for | =
1,...,r + 1. If the (r + 1) —fold product of the Schubert cocycles in H* (G, (C™),Z) )

r+1

H{n—k— i 41, n—iy} % 0 (45)
=1
then the eigenvalue inequality (36) and (37) holds for any set of Hermitian matrices
AL,... A, € CV",
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Corollary (4.1.18)[289]:Let i: = (iy,..-, i), j: = (1 --+» Jx),P: = (P1,---, Pr),bE SEQUENCES
satisfying1 <i; <...<ipz <n1<j; <...<jp<nandl < p; <...<p, <n. lIfthe
triple product
n-k—i;+1,...n—-iy{n—k—j,+1,...,n—j; }
x{n—k—p+1,...n—p}#* 0 (46)
is nonzero then for any pair of complex Hermitian matrices A,B € C**" the following

eigenvalue inequalities hold:
k

Z . p+1<A+B)>ZA (A)+ZA,U(B> (47)

Ea (A+B) <Zan - +1(A>+Zzn i1 (B). (48)

We conclude with a S|mple example.
Example (4.1.19)[289]: In H* (G, (C™), Z) ) the following nonzero products exist:

{1,0}{1,0}{2,0} = {2,2} (49)
{1,0}{1,0}{1,1} = {2,2} (50)
{1,0}{1,0}{1,0}1,0} = 2{2,2}. (51)

By Theorem (4.1.16) and Corollary (4.1.17) the following eigenvalue inequalities hold for
arbitrary 4 X 4 Hermitian matrices:
AM(A+ B)+ 24,(A + B)A,(A) + 23(A) + 1,(B) + A3(B) (52)
A A+ B)+ 23(A + B) < 41(A) + 25(A) + 4,(B) + A5(B), (53)
AMLA+B+C)+24,(A+B+0C)
<A (A) +13(4) + 1,(B) + A3(B) + 1,(C) + 15(0). (54)
We apply the preceding results to verify some classical eigenvalue inequalities. The first
inequality is given in [108].
Weyl Inequality [108]: (4.1.20)[289]:
For any indices 1 < i,j <nwithl <i+j —1 < nand any Hermitian matrices A,B € C™"
one has:
Aitj-1(A + B) < 4;(4) + 4;(B). (55)
Proof: Here k =1,G,(C") =CP" 'and H*(CP" 1), Z2) =Z[x]/(x™) is a truncated
polynomial ring. Using this classical description of the cohomology ring of the projective
space, the Schubert cocycles are
{i}=x,i=0,...,n—1. (56)
Let i,, j; and p, defined by:
i=n—i+1l,jii=n—j+1L,p,=i+j—1. (57)
Then (46) reduces to
{i—-1}{j—-1}n—-i—-j+1}={n-1} (58)
But since x™ ' generates H?>™~D(CP™1),Z) = Z one has {n — 1} # 0. Thus the Weyl
inequality follows immediately from Corollary (4.1.18).
Lidskii Inequality: (4.1.21)[289]:
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For 1 < a; <...< a; < nand for any Hermitian matrices A, B € C™*™ one has the matrix
eigenvalue inequality:

k k k
Ay (A+B) < Y Ao (A + ) 4;(B) (59)

Proof:Consider i =(n—ay +1,....n—a; +1),ji=n—-k+1,...,n),p = (ay,..., ay).
Then the product in condition (46) of Corollary (4.1.18) is given by

{fa,—k,...,a0 —1HO,...,0{n—k —a; + 1,...,n — ay }. (60)
Since {0,...,0} =1 € H*(G,(C"),Z))and{n —k — oy + 1,...,n — o} is Poincare dual to
{a;, — k,...,a; — 1} the above triple product is equal to {n — k,...,n - k} and hence nonzero.
This completes the proof of the Lidskii Inequality.
Thus both the Weyl and the Lidskii inequality are direct consequences of the Poincar’e duality
of the projective space CP™~1 and of the Grassmannian G, (C™)respectively. A proof of the
next inequality requires a more subtle topological argument.
Freede-Thompson Inequality [225]: (4.1.22)[289]:
Foranyl <o, <...<ap<n,1<bh; <...<b, <nwitha, + b, —k < nand Hermitian
matrices A, B € C™" one has:

k k k
Aaysny—v (A+B) < Y Aq (A)+ Y A, (B). 61)

Proof: Consideri:==(n—a, +1,....n—a; +1),ji=m—b,+1,....,.n— by + 1),p:=
(ay + by —1,...,a, + b, — k). Then the product in condition (46) of Corollary (4.1.18) is
given by

fa, —k—a,+14b,—k—b,—1}{n—-k—a,+2,....n+k —a, —b,}. (62)
By assumption one has ay + by — 2k < n —k. From the Littlewood Richardson rule it
follows that the product of the first two factors is of the form:

{ak—k—al+1}{bk—k—b1_1}{ak_bk_Zk;---;a1+b1_2}+zcﬁv (63)
A

where Cﬁv are again the Littlewood Richardson coefficients and the sum is taken overall
partitions A, A # a;, — b, — 2k, ..., a; + b; — 2. Now the result follows from the observation
that the cocycle a;, — b, — 2k,...,a; + b, — 2 is (compare with Theorem (4.1.14)) dual to the
cocycle {n —k —a; —b; +2,...,n+ k — a;, — by}, i.e. the product (62) is nonzero and
Theorem (4.1.18) applies.
It is a consequence of Theorem (4.1.17) that any nonzero product in H*(G,(C™), Z)implies an
eigenvalue inequality of the form (36) and an inequality of the form (37). We describe a large
class of nonzero products. In particular we will describe all maximal nonzero products in
H* (G, (C"), Z) and we will describe all maximal nonzero products in H* (G, (C"), Z)consisting
of 3 factors. The following lemmas prepare for those results.
Lemma (4.1.23)[289]: Assume u: = {uy,..., 4} and v: = {v,,...,v;} are two cocycles in
H* (G, (C™), Z) which are complimentary in dimension, i.e. there weights satisfy |u| + |v| =
k(n — k). Then pv # 0if, and only if p and v are dual to each other, i.e. v={n—k —
Uy —k — g}
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Proof: See also [203] for a different proof based on Poincar’e-duality. From the description of
H*(G,(C"),Z) in (25) it is clear that uv # 0 exactly when the coefficient of {(n — k)*} =
{n—k,...,n—k} in the expansion pv is nonzero. Applying the rule of Littlewood and
Richardson to the skew tableau (n — k)*/u one verifies that there is only one possibility to
fill this tableau with v, 1's,v, 2’s,..., v, k’s, and in this case one necessarily has v, = n —
k—ug,...,vp,=n—k — .

Lemma (4.1.24)[289]:Assume u; = {i1s,--- Ui}, L = 1,..., 7, are cocycles withYj_; uy; <
n — k. Then the following |dent|ty holds in H* (G, (C"), Z)

{Tl k - Eﬂklw- n—k-— Z{#u}n{ﬂu» s Mgt }

={n—k,...,n—kb. (64)
Proof: Using inductively Littlewood Richardson’s rule it follows that

T T r
1_[{#11» o U} = {z Uit » - - Z /’lkl} + Z Cy ittty -y Hicr ) (65)
=1 =1 =1 u

(Compare with (63)). Because {n — k — Xj—; Uxi,»---» 1 — k — X.]—1 U1} 1S the Poincare dual
of the first term after the equality sign the result follows from the previous Lemma.
In the next Lemma we will identify the Schubert symbol {x;, x,} € H* (G, (C"), Z)with zero
forx, >n— 2.
Lemma (4.1.25)[289]: If{a,, @}, {b;, b, } are two cocycles in H*(G,(C"), Z and

m = min{(cy — a;), (b — b)} (66)
then one has

(@, @ by b} = ) {an +bi=1,a5 + by i) (67)

i=0
Proof: Direct consequence of the Littlewood Richardson rule. (Compare with [107].)
For the following Lemma let [x] denote the largest integer smaller or equal to x.
Lemma (4.1.26)[289]: If {a;, oy} € H*(G,(C™),Z),1 = 1,...,r,} are r Schubert cocycles
with
;= Az =" 2 Ay — Ay (68)

1 m m
m:= min{[zzmu - azz)] 'Z(au - Ay (69)
=1 =2

then there are positive nonzero integers ci such that

T m T m
H{au; ay} = z C {Z a; — i;z: Az + 1. (70)
=1 i—0 U= i=0

In particular if /2, c; a;; < m + n — 2 at least one summand is nonzero and therefore the
whole product is nonzero.
Proof: Let ¢ € {2,...,r} be the largest integer with the property that
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(a;; — az1) = Z(au — dy). (71)

Denote with mi: = Y%, (ay; — ay). Usmg mductlvely Lemma (4.1.25) one sees that

g
[ Jawan=Y e {z z} 72
1=1 i=0 \I=1 1=0

with positive, nonzero constants c,. In particular if @ = r then m = m and the result is proven.
If a < rthen (a;; —ay) < Xi2,(aq; — ayy) and therefore m = [%Zﬁl(all —ay)].
Multiplying inductively expression (71) with the factors {ay;,a,;},l=a+1,...,r one

deduces also in this case, using the fact that all Littlewood Richardson coefficients are positive,
that [TZ1{ay — az} = Xito G {2124 C {xi, yib where
T T

Zall—meiSZall and2a21<y12a21+m (73)

i=0 =1 =1
In particular, if }j_;a;; —m <n—2,the product |s nonzero, which completes the proof.

As a direct consequence of this Lemma we obtain a description of all maximal nonzero products
in H*(G,(C"), 2)
Theorem (4.1.27)[289]: Assume {a,; ,am} € H*(Gx(C"),Z),l =1,...,r, are r cocycles with

Z(au a2) = 2(n—2) 78

Then [[j=,{a11,a5} # 0if, and only |f

(aj;,az) < z (a;,az),j=1,..,r. (75)

IE(L,j—1,j+1,.7
Proof: After a possible reindexing we can assume that
Ay — Az 22 Ay — Ay (76)

Because of assumption (74), m = [%Z{zl(aﬂ — a,;)]. Because of the description of

H* (G, (C™), Z) in (25) it is clear that the product is nonzero if, and only if the coefficient of
{n—2,n-2} € H*=2)(G,(C™), Z) in the product expansion is nonzero. By the last Lemma
this is the case iff )|_;a;; <m+n—2. Moreover because of (73) the number
%Zle(all — ay;)] is an integer. But then Y./_, a;; < m +n — 2. is equivalent to };j_,(a;; +
a)] < 2(n — 2)which is true by assumption (74).

Combining Theorem (4.1.27) with Theorem (4.1.17) one finally has:

Theorem (4.1.28)[289]: Let (iy;, i;) be r + 1 pairs of integers with:

1Sill<iZlS n,l=1,...,r +1 (77)
r+1
T(Zn_1)+3 Sz(lll + lZl) (78)
=1
- i <1—7+ z (i + iy) j=1, .7+ 1. (79)

1€{1,...j—1,j+1,..r+1
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Then for any set of Hermitian matrices 44,...,4,,; € C™" satisfying the relation A4,,; =
A, + - - - + A, the following eigenvalue inequalities hold:

T
/1n—i1,r+1+1(Ar+1) + An—iz,r+1+1(Ar+1) = z(Al) + /11'21(‘41)) (80)
- =1
Dt (Arin) + digria (Arin) € ) Oty (AD) + A1 (A)) (81)
=1

Proof: Denote with a,; = n —i;; — 1landa,; = n — i,;. Then condition (78) is equivalent to
the condition Y72 (ay; + ay;) < 2(n — 2) and condition (79) is equivalent to inequality (75).
The product [T}Z1{n — i;; — 1,n — iy }is nonzero and the result follows once again from
Theorem (4.1,17) .

In order to illustrate the theorem in the case r = 2,let A = A;,B = A, and let

(i1,1, iz,l) =n-a,+1,n-a+1), (82)
(i1,2' iz,z) =Mn-b,+1,n-b; +1), (83)
(i1,3'i2,3) = (c1, €2). (84)

Then we obtain
Corollary (4.1.29)[289]: Let 1<a;<a,; <n1<b;<b,<n and 1<c¢;<c, <n
satisfy the system of linear inequalities

a, +a,+b;+ by, <c;+c, +3 (85)
a, +a,+b;+ by <ci+c,—1 (86)
b,— by<a,—a;+c;—c;—1 (87)
c;—c;<a,—a;+b,— by —1. (88)
Then the eigenvalue inequality
Ae1(A+ B) + A2(A+ B) < 241(4) + A42(4) + 251 (B) + 442(B) (89)

holds for any pair of Hermitian n X n matrices A, B. We would like to remark that the
assumptions in Corollary (4.1.29) imply the assumptions in Horn [10]. It is also possible to
derive the inequality (89) by the methods developed in [10].

We describe all maximal nonzero products of H* (G, (C™), Zconsisting of 3 factors. The
results are based on a description of the Littlewood Richardson coefficients as given by
Schlosser in [107].

In the following we explain his description and simultaneously adapt the notation for our
purposes.

Let u: = (Uq,..., i), vi= (vq,..., v )andA: = (A4,..., A;)be partitions. We are interested in
conditions when the Littlewood Richardson coefficient cﬁl’v IS nonzero.We will use the

combinatorial description of cj,,, as given in Theorem (4.1.11) and the following
parameterization by Schlosser [107].
Consider the tableau A and denote with pj;the number of boxes in the skew tableau A/u with

label i in the h —th row. This gives us the following description forthe tableau A:
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Row (90)
1 U1 P11 M
2 Mz P21 D22 A,
K Uk DPx1 Prz - DPrk | A
lu| v, Vk2 - Vg | Total

Of course not all configurations of numbers p,;will result in a filling compatible with the rule

of Littlewood and Richardson. On the other hand, as shown in [107], one can iteratively fill the

skew tableau A /u, starting with pkl and proceeding inductively with
pnivh=k,....i+1,i=1,...,k—1,

subject to the following inequalities:

Max(h,i; (v) < pp; < Min(h,i; (v), (W) (91)
Where
k
Max(h,i; (v)) = max{0,v; —v; — 1 — z pji + z pj,i+ 1}
k h+1
Mln(h l (U) (‘Ll)) mln{.uh 1 Mh Z(ph_lj ph]) Vi — Z p]l}
j=h+1
and
k
pjl' =V — z Phni, = 1, ,k (92)
j=h+1
we assume that
Vo = 0,p0j =0, ppho = 0. (93)

For our purposes, which is stated in similar form in [107], is:
Theorem (4.1.30)[289]: Let y, v be partitions and let phi be iteratively described through (91)
and (92). Denote with

A =y + Z pn h=1,..k. (94)

Then A:= (44,...,A)describes a tableau and the Littlewood Richardson coefficient c,f,v IS
nonzero
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Corollary (4.1.31)[289]:Let u, v be partitions and let A satisfy the inequalities induced by the
iterative scheme (91) and (92). Then

fuH{vi{in—k-44,...n—k- 2,3} # 0 (95)
Proof:The cocycle {n — k — 44,...,n — k — 1}is the Poincare dual of the cocycle {1} and
because the Littlewood Rlchardson coefficient c vIS non- zero the results follows from
Lemma (4.1.23).
Corollary (4.1.32)[289]:Let A, B be complex Hermitian n X n matrices. Let u, v be partitions
and let A satisfy the inequalities induced by (90) and (91). Let

a; = pup+1,...,ap:=u +k (96)
b1:=vk+1,...,bk:=vl+k (97)
C1:=/1k+1,...,ck:=).1+k (98)
Then
Zaw <A+B)<Zaav (A)+Zabv (B). (99)

Section (4.2) Wlelant’s Theorem W|th Spectral sets and Banach Algebra

The classes of Hermitian and unitary matrices have a rich structure and much is known
about the eigenvalues of these types of matrices. The more general class of normal (i.e. unitarily
diagonalizable) complex matrices is less well understood. And not much is known about
spectral problems involving normal matrices even with their eigenvalues being described in
terms of those of their Hermitian and skew-Hermitian parts.

The dierence between Hermitian and general normal matrices is that the latter can have as
eigenvalues arbitrary complex numbers. C, of course C is not an ordered field. But it turns out
that the simple fact that C can be totally ordered as a vector space over the reals is enough to
obtain useful information on spectra of normal matrices using Hermitian matrices as an
inspiration.

A total order in C compatible with addition of complex numbers and multiplication by positive
reals is the lexicographic order. It is characterized by its positive cone H = {a + ib:a >
0or,if a=0,b > 0}.

Compatibility with addition means H + H € H, and compatibility with multiplication by
positive reals meansAH < H forA > 0. The order being total means H U —H = C \ {0}.

The lexicographic order is not Archimedian and, apart from rotations of the positive cone, is
the only total order in C compatible with the above mentioned operations. We shall use the
notation <'®* for it, and, for real Bwe use <{ for the total order with positive cone ei®H.

Let A be an n X n complex normal matrix. Let a4, ...., a,be its eigenvalues ordered so that
a, =¥ . >* o and let vy, ..., v, be corresponding orthonormal eigenvectors of A. For j =
1,...,n denote by Ejand E;the subspaces of C, spanned by vy, ..., v; and v, ..., v,respectively.
Applying the argument used to obtain the corresponding result for Hermitian matrices, we get:
Theorem (4.2.1)[143]: For j — 1, ...,n we have

aj = _min x*Ax = max x"Ax
X€EEj||x||=1 xEE]'-,||x||:1

In addition, we have
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aj = max min x'Ax = min max x Ax
dimH=j x€Ej||x]|=1 adimH=n—j+1 x€E | x||=1

(Here max and min are used in the lexicographic sense).

Analogous characterizations hold for any order of the type <!* either using the same
proof or applying the theorem to the normal matrix e '®A. Note how these results make
immediately visible the fact that the numerical range W (A) = {x*Ax : ||x|| = 1} of a normal
matrix A is the convex hull of its eigenvalues any straight line moving in the plane parallel to
itself must touch W (A) first at an eigenvalue of A.

From the above theorem we immediately obtain, again repeating the Hermitian argument, a
result concerning principal normal submatrices of normal matrices:

Theorem (4.2.2)[143]:Let A be an n x n normal matrix with eigenvalues a; >'* ... >'* o,
If B is a principal k x k normal submatrix of A with eigenvalues g, >'¢* ... >"* g, we have
a; =1 B > g +n—k,j=1,..,k.

An analogous result holds for any order of the type Sleex.

For other interlacing results in this setting see [154,160,126,135], [50].

The result in [154] shows that for a n X n normal matrix to have a principal (n — 1) X (n — 1)
normal principal submatrix is a highly restrictive condition, essentially forcing the matrix apart
from a rotation and a translation, to be Hermitian. It seems plausible that one can obtain this
from Theorem (4.2.2) above.

In [50,139] an interlacing result is presented for the arguments of eigenvalues of a normal
matrix and a normal principal submatrix a relation with Theorem (4.2.2) above is unclear.

and then there is the general interlacing theorem for singular values which for normal matrix
and submatrix yields a statement whose relation with the above result is again unclear.

Note also that Theorem (4.2.2). does not follow directly from the interlacing theorem for
Hermitian matrices applied to the Hermitian and skew-Hermitian parts of A and B.

A generalization of the first part of Theorem (4.2.1) can be obtained by mimicking the
corresponding result for Hermitian matrices [139].

Take a sequence V = (V,, ..., },) of subspaces of C"* with V; c --- c 1}, and dim(V;) =i for
i =1,..,n_Given a sequence I = (iy, ..., i), withi < i; < .- < i, < n, the Schubert variety
associated to V and I is Q;(V) = {Lsubspace of C*dim(L) =r,dim(Ln V3 >d,d =
1,..,7}.

Keep the notation and write E = (Ey, ..., E},),
E'=(E},..,E{).Putalsol'=(n—i.+1,..,n—i; +1)

If L is a subspace of dimension r and x4, ..., x,- is an orthonormal basis of L, the Rayleigh trace
of Awith respectto L is

T
tr(Al,) = z dAx,.
d=1

(This does not depend on the basis)
Theorem (4.2.3)[143]:1f the eigenvalues of a normal matrix A are a; >'* ... >!¢* o, one has

@, ++a = Lg}lli?E) tr(A4],) = Lerrrzlf,l()%l) tr(Al.)

where again max and min are used in the lexicographic sense.
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This characterization of course also valid for any order of the type <%* can be applied to
obtaining inequalities for the eigenvalues of a sum of two normal matrices if this sum is itself
normal.
Let A and B be n xn normal matrices with eigenvalues a; >'* ... >!** ¢ and
B, =>tex . >lex B, respectively. Suppose that A+ B is normal, with eigenvalues
y, >tex . >*y . Let E,E' F,F' and G,G" be sequences of subspaces built from the
eigenvectors of A, B and A + B,as before. Let I,]and K be sequences of r indices:
I=C(iy,e,ip),1<i; < <ip<m,
J=0pJr) 1<)y < <Jp <
K=(ky ., ko), 1<k, <<k, Sn
Then, using the characterizations of Theorem (4.2.3), it is easy to see that
Theorem (4.2.4) [143]:1f
g (G) N 2L(EN) Ny, (F) #0,
Then
Vi, oo+ Ve, <y o ta + B+ B
For the Hermitian case this appears in [263], [289]
So a geometric condition, nonempty intersection of the three Schubert Varieties, implies
a linear inequality between the eigenvalues of the three normal matrices A, B and A + B. We

abreviate this inequality to
z Vi < a; + z B,

For the Hermitian case,by Klyachko, has shown that the inequalities arising from all such
geometric conditions actually yield a complete list of restrictions for the eigenvalues of a sum
of two Hermitian matrices in terms of the eigenvalues of the summands, For recent surveys on
this see [306], [13].

Klyachko’s results, coupled with the combinatorial work of Knutson and Tao [11] imply
the classical Horn conjecture, on eigenvalues of Hermitian Matrices, which we now recall.
For two real ordered spectra a and £ denote by E(«, ) the set of all possible ordered spectra
of sums of two Hermitian matrices with spectra « and 5. For each r-tuple I = (i; ... i,.) with
1<i <--<i, <ndefine

p() =(,—r1,..,i, —2,i; —1).
Then Horn’s conjecture, now proved, can be presented as the following recursive description

of the set E:
F@B ={r:) v=) a+) pand) v, =) a,+ ) f

wherever p(K) € E[p(I),p(J)], 1 <r <n}.

By the Schubert calculus (see for example [287]), the geometric condition 2, (G) N 2,(E") N
2;,(F") # 0 is equivalent to p(K) € LR[p(I), p(J)], meaning that the r-tuple p(K) can be
obtained from p(I) and p(J)using the combinatorial Littlewood-Richardson rule. From the
results in [1] and [11] it turns out that it is also equivalent to p(K) € E[p(I),p(J)].
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Return now to normal matrices A with spectrum «, § with spectrum 3 and A + B with spectrum
y with notations as above. As we have seen, the condition Qg (G) N Qy,(E") N Q,(F') #
0 implies p(K) € LR[p(D), p(D].

Therefore, bearing in mind the results quoted, we can now state:

Theorem (4.2.5)[143]:For1 < r < n,whenever one has p(K) € E[p(1), p(J)]the inequality

ZVK Slex2“1+zﬂj

holds for the eigenvalues of the normal matrices A4, B and A + B. And the same, of course,
for any order of the type<!e.

In [113], Helmut Wielandt proved an interesting result which gave regions in the
complex plane which contain all the eigenvalues of the sum of two normal matrices A and B
in terms of the spectra of A and B. We give a generalization of Wielandt’s result to Banach
algebras and we also give a multiplicative version of Wielandt’s theorem. Before
statingWielandt’s theorem, we need to review some geometric concepts in elementary complex
function theory.

Definition (4.2.6)[244]: A generalized circle is either a circle ({z € C: |z — k| = r} where
k € Candr > 0) orastraight line ({z € C: Re(az) = f} where o € C\{0} andf = 0)in the
complex plane.

Definition (4.2.7) [244]: A Mobius transformation is a function of the form f (z) =

4D herea,b,c,d € Candad — bc # O.
cz+d

We note that a Mobius transformation maps generalized circles to generalized circles.
Definition (4.2.8) [244]: A circular region is a subset of the complex plane of the formf (K)
where f is a Mdbius transform and K is either the open unit disk {z € C: |z| < 1} or the closed
unitdisk {z € C: |z| < 1}.

A subset of a complex plane is a circular region if it is either an open or closed disk, a
complement of an open or closed disk or a half-plane. The boundary of a circular region is
always a generalized circle. We can now state Wielandt’s theorem. We let (M) denote the
spectrum of the matrix M. If S and T are non-empty subsets of the complex plane, then S +
T={s+t:seS,teTtandS - T ={st:s€ S, teT}

Theorem (4.2.9)[244]: [113]. Let A and B be two n by n normal matrices. Let K be a circular
region which contains all of the eigenvalues of B, then ¢(A + B) € 0(4) + K.

We will give a generalization of this result to Banach algebras. We will assume no knowledge
of normed algebras and Banach algebras beyond their definitions. (See [311]. All of the normed
algebras and Banach algebras in this section will be automatically assumed to be complex and
unital. We denote the unit of a unital normed algebra as 1. If a is an element in a unital normed
algebra A, then the spectrum of a is the set {A € C: (A1 — a) is not invertible}. The spectrum
of a Banach algebra is always non-empty and compact. We note that B(H), the set of all
bounded linear operators on a Hilbert space is an example of a Banach algebra; if further 7 is
finite dimensional then B(#)is the algebra of n by n complex matrices where n = dim(H).
We have the following.
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Proposition (4.2.10)[244]:Let A be a Banach algebra then 1 + x is invertible whenever x €
A with [|x || < 1.

While this result may fail ifcA is an incomplete normed algebra, there are incomplete normed
algebras for which the above result also holds as noted in [242]. All of our results below hold
if we replace Banach algebra with complex unital normed algebra for which the conclusion of
Proposition (4.2.10) holds. Since the proof that every element of a complex Banach algebra has
compact spectrum uses Proposition (4.2.10) rather than using completeness directly, if A is a
complex unital normed algebra for which the conclusion of Proposition (4.2.10) holds all its
elements will have non-empty compact spectrum.

The term spectral set has several different meanings in mathematics. We will always use the
term in the following sense:

Definition (4.2.11)[244]: Let A be a complex unital Banach algebra and let a € A. A closed
subset S of the complex plane which contains the spectrum of a is called a spectral set of a if
lr(@)|| < sup,es|r(2)|for all rational functions r which have no polesin S.

This concept is due to von Neumann [138] who gave the definition in the special case where
the Banach algebra is B(H),. Many different subsets of the complex plane may be the spectral
set for the same element a € A. In general, the intersection of two spectral sets is not
necessarily a spectral setand hence there is no minimal spectral set of a unless the spectrum of
a is itself a spectral set of a. Any set which contains a spectral set must itself be a spectral set.
We note that the rational functions form amonoid under composition; the invertible elements
of thismonoid are the Mobius transformations. This observation leads to the following
proposition:

Proposition (4.2.12)[244]: Let A be a Banach algebra and let a € A. Let m(z) be a Mobius
transformation whose pole lies outside the spectrum of a. If S is a spectral set for a, then m(S)
IS a spectral set for m(a).

Spectral sets play an especially important role in the special case where the Banach algebra
A = B(H) where H is a Hilbert space. We note that in his original work [138], von Neumann
gave necessary and sufficient conditions for a closed circular region in the complex plane to be
a spectral set of a bounded linear operator.

Proposition (4.2.13)[244]: [138]. Let H be a complex Hilbert space and let A € B(H). Let
k € Cand r > 0, then the circular region {z € C: |z — k| < r}is aspectral set for A if and only
if|A — x| <.

Proposition (4.2.14)[244]:[138] Let H'be a complex Hilbert space and let A € B(H). Let k €
Candr > 0, then the circular region {z € C: |z — k| = r} is a spectral set for A if and only if
l(A—kD7 <r—-1.

We note that the forward implications of the two previous propositions follow immediately
from the definition of a spectral set and apply to general Banach algebras. The backwards
implications of the two previous propositions are false for general Banach algebras.
Proposition (4.2.15)[244]: [138]. Let H be a complex Hilbert space and let A € B(H). Let
a € C\{0} and B = 0, then the circular region {z € C : Re(az) = B} is aspectral set for A if

and only if a(**5) > BI.
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Since a spectral set of an operator must contain its spectrum; the smallest possible candidate to
be a spectral set of an operator is the spectrum. The class of operators whose spectrum is itself
a spectral set are important enough to be named (in honour of von Neumann fittingly enough).
Definition (4.2.16)[244]: Let H be a Hilbert space and let A € B(H).A is said to be a von
Neumann operator if the spectrum of A is a spectral set of A.

The class of von Neumann operators are an important class of operators; important subsets of
von Neumann operators include the normal operators and the subnormal operators [140]. If H
is finite dimensional, then A € B(#) is a von Neumann operator if and only if it is normal.
We now extend the definition of a von Neumann operator to Banach algebras in the obvious
way.

Definition (4.2.17)[244]: Let A be a unital Banach algebra and let a € A. Then a is called a
von Neumann element if the spectrum of a is itself a spectral set of a.

Theorem (4.2.18)[244]: Let A be a unital Banach algebra and let a,b € A. Let S, and S, be
spectral sets of a and b respectively. If S, and S, are separated by a generalized circle then
a — b is an invertible element of A.

Proof: Let G be a generalized circle which separates S, and S;,. If G is a circle, then G =

{z € C:|z— k| = r} for some k € Cand r > 0. One of Sa and Sy, is contained in the set {z €
C: |z — x| < r} and the other is contained inthe set {z € C: |z — k| > r}. WLOG let S, <
{zeC:|lz—k|>r}and S, € {z € C: |z — k| < r}. From this it follows that a — k1 is
invertible, ||(a — k1)7t|| <r~tand ||b — k1|| < r.Therefore ||(a — k1)" (b — k1| < 1
anda—b =(a—kl)— (b—kl1) = (a—k1)[1— (a —x1)"1(b — k1)] is invertible.

Now suppose G is a line.Now choose T € Csuchthatt € G Uaog, Uag,. Thena—71and b —
T 1 are two invertible elements of the Banach algebra having spectral sets S, — tand S,-t
respectively which are separated by a line ¢ — T which does not contain the origin. Hence
(a —tI)~Yand (b — 1)~ have spectral sets (S, — ) "1 and (Sb — ) — 1 which are separated
by a circle(G — t)"1. Hence (a — 71)"1 — (b — t 1)t is invertible which means a — b =
(a—t1)—(b-t)=(@—tD[(B-11)1=(a—71)"1(b -7 1)isinvertible.
Corollary (4.2.19)[244]:. Let A be a unital Banach algebraand let a, b € A. Let S, nd S, be
spectral sets of a and b respectively and let K any circular region which contains S,,. Then
ocla+b)c S, +K.

Proof: Suppose A€ ao(a+b), then b— (11 —a)=a+ b —A1 is not invertible. The
intersection of A — S,and K must be non-empty by Theorem (4.2.18), since the boundary of K
is a generalized circle. Now let u € (4 —S,) N K. We note that since A —u €S, u€
Kand A = (1 — p) + u, our result follows.

Our generalization of Wielandt’s theorem now follows immediately.

Theorem (4.2.20)[244]:. Let A be a unital Banach algebra and let a, b be von Neumann
elements in A. Let K be a circular region containing o(b). Then a(a + b) € d(a) + K.

We also have a multiplicative version of Corollary (4.2.19).
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Theorem (4.2.21)[244]: Let A be a unital Banach algebra and let a, b € A with at least one
of a or b being invertible. Let S, and S;, be spectral sets of a and b respectively and let K be
any circular region which contains S,,. Then g(ab) € S, - K.
Proof: If a invertible then A1 —ab = a(Aa~! — b). Suppose A cannot be expressed as a
product of a number in S, and a number in K. Then {1/z : z € S,)}is a spectral set for Aa™?
which lies entirelyoutside K. Then by Theorem (4.3.13), 2a~! — b and hence A1 — ab is
invertible. The proof where b is invertible is similar.

The special case where a and b are von Neumann elements of the Banach algebra is a
multiplicative version of Wielandt’s theorem.
Theorem (4.2.22)[244]: Let A be a unital Banach algebra and let a and b be von Neumann
elements of Awith at least one of a or b being invertible. Let K be any circular region which
contains the spectrum of b. Then a(ab) € o(a) - K.
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Chapter 5
Riesz and Szego Type Factorizations with Helson -Szego Theorem

We show the contractivity of the underlying conditional expectation on HP (A) for p <
1.We introduce noncommutative Hardy-Lorentz spaces and give the Szegéand inner — outer
type factorizations of these spaces.We then proceed to use Helson Szego theorem to haracterise
the symbols of invertible Toeplitz operators on the noncommutative Hardy spaces associated
to subdiagonal subalgebras.

Section (5.1) Factorizations for Noncommutative Hardy Spaces

We deal with the Riesz and Szego type factorizations for noncommutative Hardy spaces
associated with a finite subdiagonal algebra in Arveson’s sense [300]. Let M be a finite von
Neumann algebra equipped with a normal faithful tracial state t. Let D be a von Neumann
subalgebra of M, and let @: M — D be the unique normal faithful conditional expectation such
that 7o @ = 7. A finite subdiagonal algebra of M with respect to @ (or D) is a w"-closed
subalgebra A of M satisfying the following conditions
(i) A+ A%isw*-densein M;

(i) @ is multiplicative on A, i.e., @(ab) = ®(a)®(b) forall a, b € A4;
(ii) A NA*=D.
We should call to fact that A*denotes the family of the adjoints of the elements of 4, i.e., A" =
{a*:a € A}. The algebra D is called the diagonal of A. It is proved by Exel [240] that a finite
subdiagonal algebra A is automatically maximal in the sense that if B is another subdiagonal
algebra with respect to @ containing A, then B = A. This maximality yields the following
useful characterization of A:

A={x€eM:t(xa) =0,V a€ A} (1)
where A, = A N ker® (see [300]).

Given 0 < p < oo we denote by LP (M) the usual noncommutative LP-space associated
with (M, 7). Recall that L (M) = M, equipped with the operator norm. The norm of L (M) will
be denoted by || - [[,. For p < oo we define H? (A) to be the closure of A in LP(M), and for
p = oo we simply set H*(A) = A for convenience. These are the so-called Hardy spaces
associated with A. They are noncommutative extensions of the classical Hardy spaces on the
torus T. On the other hand, the theory of matrix-valued analytic functions provides an important
noncommutative example. We see [300] and [89]for more examples. We will use the following
standard notation in the theory: If S is a subset of LP (M), [S], will denote the closure of S in
LP (M) (with respect to the w*-topology in the case of p = o). Thus H? (A) = [A],,. Formula
(1) admits the following HP (A) analogue proved by Saito [153]:

HP(A) ={x € LP(M):1(xa) =0,Va € Ay}, 1 < p < oo. (2)
Moreover,
HP(A)NLP(M) =HI(A),1 <p<q < oo, (3)

These noncommutative Hardy spaces have received a lot of attention since Arveson’s
pioneer work. We refer Marsalli- West [176] and Blecher-Labuschagne [66, 58, 56], whereas
more references on previous works can be found in the survey [89]. Most results on the classical
Hardy spaces on the torus have been established in this noncommutative setting. Here we
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mention only two of them directly related with the objective. The first one is the Szego
factorization theorem. Already in the fundamental work [300], Arveson proved the following
factorization theorem: For any invertible x € M there exist a unitary u € M and a € A such
that x = ua and a1 € A. This theorem is a base of all subsequent works on noncommutative
Hardy spaces. It has been largely improved and extended. The most general form up to date
was newly obtained by Blecher and Labuschagne [66]: Given x € LP(M) with1 < p < ocosuch
that A(x) > 0 there exists h € HP (M) such that |x| = |h|. Moreover, h is outer in the sense
that [hA], = HP(M). Here A(x) denotes the Fuglede-Kadison determinant of x and |x| =

(x*x)'/? denotes the absolute value of x. We should emphasize that this result is the (almost)
perfect analogue of the classical Szego theorem which asserts that given a positive measurable
function w on the torus there exists an outer function ' such that w = || iff logw is integrable.
The second result we wish to mention concerns the Riesz factorization, which asserts that
HP(A) = H1(A).H" (A) forany 1 < p,q,r < o suchthat1/p = 1/q + 1/r. More precisely,
given x € HP(A) and € > Othere exist y € H9(A) and z € H" (A) such that

x = yzand lyllglizll, < llxll, +e.
This result is proved in [153] for p = q =2, in [176] for r = 1and independently in [164] and
in [89] for the general case as above.
Recall that in the case of the classical Hardy spaces the preceding theorems hold for all positive
indices. The problem of extending these results to the case of indices less than one was left
unsolved in these works. (We mentioned this problem for the Riesz factorization explicitly in
[89]). The main purpose is to solve the problem above. As a byproduct, we also extend all
results on outer operators in [66] to indices less than one.
A major obstacle to the solution of the previous problem is the use of duality, often in a crucial
way, on noncommutative Hardy spaces. For instance, duality plays an important role in proving
formulas (2) and (3), which are key ingredients for the Riesz factorization in [89]. In a similar
fashion, we will see that their extensions to indices less than one will be essential for our proof
of the Riesz factorization for all positive indices.

Our key new tool is the contractivity of the conditional expectation @ on A with respect
to ||.]|,for 0 < p < 1. Consequently, ® extends to a contractive projection from H? (A) onto
LP(D). This result is of independent interest and proved .

We devoted to the Szego and Riesz type factorizations. In particular, we extend to all
positive indices Marsalli-West’s theorem quoted previously. It contains some results on outer
operators, notably those in HP (A) for p < 1. see [66]. We devoted to a noncommutative Szego
formula, which wasobtained in [66] with the additional assumption that dimD < oo,

In particular, A will always denote a finite subdiagonal algebra of (M, t) with diagonal D.
It is well-known that extends to a contractive projection from LP (M) onto LP (D) forevery 1 <
p < . In general, @ cannot be, of course, continuously extended to H?(A) forp < 1.
Surprisingly, @ denotes extend to a contractive projection on HP (A).
Theorem (5.1.1)[279]: Let 0 < p < 1. Then

vaea,llo@ll, < llall, - (4)

Consequently, @ extends to a contractive projection from HP(A). onto LP(D).The
extension will be denoted still by®.
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Inequality (4) is proved by Labuschagne [163] for p = 27" and for operators a in A
which are invertible with inverses in A too. Labuschagne’s proof'is a very elegant and simple
argument by induction. It can be adapted to our general situation.

Proof: Since {k27™:k,n € N,k = 1} isdense in (0, 1), it suffices to prove (4) for p = k27",
Thus we must show

t(|o@)** ") < t(|al** "), Va€EA. (5)
This inequality holds for n = 0 because of the contractivity of ® on L*¥(M). Now suppose its
validity for some k and n. We will prove the same inequality with n + 1 instead of n. To this
end fix a € A and € > 0. Define, by induction, a sequence (x,,,) by

x; = (|al + €)% "and x4, = %[xm + (|a] + s)kz_nx;ll].

Observe that all x,,, belong to the commutative C*-subalgebra generated by |a|. Then it is an

easy exercise to show that the sequence (x,,) IS nonincreasing and converges to (|a| + e)"z_n_1
uniformly (see [158]). We also have

T(Xme1) = %[T(xm) + T(x;ll/z (la| + g)kz—nx;ll/z)] > %[T(xm) N T(x;ll/z |a|k2_nx;l1/2)]

1 n
=3 [7(xm) + T(lal®* "x5b)].

Now applying Arveson’s factorization theorem to each x,,, we find an invertible b,, € A with

b} € A such that
2n/k

byl = x7;

Letp = k27™. Then

1
llabz'll, = lllal byt ll, = lllal 1(bz' ) [, = Hallby |~ I, = (z(al?lby|7))?
= (z(lafPxz! NP
where we have used the commutation between |a| and |b,,,| for the next to the last equality.
Therefore, by the induction hypothesis and the multiplicativity of @ on A

T(Xme1) 2 %[T(lbmlkz_n) + T(la?n_l |k2_n)]

1 -n -n
ZE[T(¢|bm|k2 )+ t(@|(@)P(by)™* [¥277)]-
However, by the Holder inequality

((@1@ 127" < 11D (@Pbr) 2D le(br) 2™,
It thus follows that
1 -n —n—1.N2 -n\—1
t(@ns) 2 51100 2) + (0@ 277) (@12 ) |
> T(|<D(a)|k2_n_1).

Recalling that x,,, > (|a| + €)¥*" 'as m — oo, we deduce
t((lal + &) = rjo(@)2 ).
Letting ¢ — 0 we obtain inequality (5) at the (n + 1) — th step.
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Corollary (5.1.2)[279]:®is multiplicative on Hardy spaces. More precisely, @(ab =
®(a)®(b)fora € HP(A) and b € H1(A)with0 < p,q < oo.

Proof: Note that ab € H" (A) for any a € HP(A) and b € HY(A), where r is determined by
1/r =1/p+ 1/q. Thus @(ab) is well defined. Then the corollary follows immediately from
the multiplicativity of @ on A and Theorem (5.1.1).

The following is the extension to the case p < 1 of Arveson-Labuschagne’s Jensen inequality
(cf. [300, 163]). Recall that the Fuglede-Kadison determinant A(x) of an operator x €
LP(M) (0 < p < oo)can be defined by

400 = exp(eliog 1x1)) = exp | [ log e dvy (@) ).
0

where dv,, denotes the probability measure on R, which is obtained by composing the
spectral measure of |x| with the trace . It is easy to check that
A@) = limllxll,

As the usual determinant of matrices, A is also multiplicative: A(xy) = A4(x)A(x). We refer
for information on determinant to [26, 300] in the case of bounded operators, and to [157, 76]
for unbounded operators.
Corollary (5.1.3)[278]:Forany 0 < p < o and x € HP (A) we have A(®(x)) < 4(x).
Proof: Letx € HP(A).Then x € H1(A)too for g < p. Thus by Theorem (5.1.1)
le)llg < I xllg -

Letting g = Oyields A(®(x)) < 4(x).
The following result is a Szego type factorization theorem. It is stated in [89]. We take this
opportunity to provide a proof. It is an improvement of the previous factorization theorems of
Arveson [300] and Saito [153]. As already quoted in the introduction, Blecher and
Labuschagne newly obtained a Szego factorization for any w € LP(M) with 1 < p < oo such
that A(w) > 0. Note that the property that h™* € H9(A) whenever w~! € LI(M) will be
important for our proof of the Riesz factorization below. Let us also point out that although not
in full generality, this result has hitherto been strong enough for applications. See Theorem
(5.1.13) below for an improvement.
Theorem (5.1.4)[279]:Let 0 < p,q < . Let w € LP(M) be an invertible operator such that
w~! € LI(M). Then there exist a unitary u € M and h € H? (A) such that w = uh and h™1 €
Hi(A).
Proof:We first consider the case p = q = 2. The proof of this special case is modelled on
Arveson’s original proof of his Szeg"o factorization theorem (see also [153]). Let x be the
orthogonal projection of w in [wA,],; and set y = w — x. Thusy L [wA,],; whence y L
[yA,],. It follows that

Va €4, t(y'ya) = 0.
Hence by (2), y*y € H'(A) = [A];, and y*y € [A*], too. On the other hand, it is easy to see
that [A], N [A*]; = LY*(D). Indeed, if a € [A]; N [A*];, then t(ab) = 0 for any b € A, + A§;
so t(ab) = 7(®(a)b) forany b € A + A*. It follows that a = @ (a) € L*(D). Consequently,
y'y € L'(D),soly| € L*(D).
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Regarding M as a von Neumann algebra acting on L2(M) by left multiplication, we claim that
y is cyclic for M. This is equivalent to showing that y is separating for the commutant of M.
However, this commutant coincides with the algebra of all right multiplications on L?(M)by
the elements of M. Thus we are reduced to prove that if z € M is such that yz = 0, then z = 0.
We have:
0 =1(z"y"yz) = t(lyl*|z"|*) = «(ly|*> ®(Iz"|*)) = llydll3,

where d = @(|z*|?)/? € D; whence yd = 0. Choose a sequence (a,,) € 4, such that

x = limwa,. (6)
Then (recalling that =1 € L2(M))

0=1(w lyd) = lirfnr (w Y w— wa,)d) =1(d) — lign 1(a,d) = 7(d)

It follows that d = 0, so by virtue of the faithfulness of @,z = 0 too. This yields our claim.
Therefore, [My], = L*(M). It turns out that the right support of y is 1. Since M is finite, the
left support of y is also equal to 1, so y is of full support. Consequently[My], = L?(M)too. Let
y = u|y|be the polar decomposition of y. Then w is a unitary in M. Let h = u*w. We are going
to prove that h € H2(A). To this end we first note the following orthogonal decomposition of
L>(M):
L>(M) = [yAol, ©® [yD], @ [y4s 12 (7)
Indeed, forany a € Aand b € A, we have
(ya,yb*) = t(by"ya) = t(|y|*ab) = 0;
S0 [y4y]2 @D [yD], @D [vAj ], is really an orthogonal sum. On the other hand, by the previous
paragraph, we see that
L2(M) = [yM]; < [yAol. @ [yD], @ [y 12 -
therefore, decomposition (7) follows. Applying u* to both sides of (7), we deduce
L2(M) = [uwyAol, @ [u"yD], ® [u'yA; 1
= [lyl4o]2 @ [lyID]: @ [lylAo]2 -
Since |y| € L?(D), [|y|A4o]; € [Ao],, and similarly for the two other terms on the right.
Therefore,

LZ(M) = [lyl4olz @ [l¥IP], @ [lyl4c]. < [Ao]. © [Pl D[4 ]2 = LZ(M) .

Hence
[l¥|4ol2 = [Aol2, [l¥ID]2 = [P, [1¥I4o]2 = [4p 12 (8)
Passing to adjoints, we also have
[Ao|yl]2 = [Aol2, [PIYI]z = [D]2, [Aolyl]2 = [Ao ]2 -
Now it is easy to show that h = u*w € H2(A). Indeed, since y L [wA,],7(y*wa) = 0 for all
a € Ay; S0 t(aly|u*w) = 0. However, [Aq|y|]l. = [Ao]- Thus
Va € Hi(4), t(ah) = 0.

Hence by (1), h € H2(A), as desired.
It remains to show that h=1 € H%(A).To this end we first observe that ®(h)®(h™1) = 1.
Indeed, givend € D we have, by (6)
(WP lyld) = 1R ylde(h) = t(w  uly|d®(h))

=limt (0w Y (w — wa,)d®(h)) = 1d®(h)) = 1(hd) = T(u*wd) = T(u*yd)

n

= 7(lyld),
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where we have used the fact that
t(u'xd) =lim® (v wa,d) = limt (ha,d) = 0.
n n

Since [|y|D], = L*(D), we deduce our observation. Therefore, ®(h) is invertible and its
inverse is @ (h — 1). On the other hand, by (6)
®(h) =lim® (u'(y + way)) = 2(|y|) +lim® (ha,) = u*y.
n n

Hence,
u =yeh)™t =yoh™).
Now let a € A,. Then
7(h™1a) = 1(w tua) = 1(w™y®(h — 1)a) = liznra)_l(a) — wa,)®(h—1)a) = 0.

It follows that A= € H?(A).Therefore, we are done inthe case p = g = 2.

The general case can be easily reduced to this special one. Indeed, if p = 2and q = 2, then
given w € LP(M) with ™t € LI(M), we can apply the preceding part and then find a unitary
u € Mand h € H2(A) such that w = uh andh™! € H%(A). Then h = u*w € LP(M), SO w €
H?(A) n LP(M) = HP(A) by (3). Similarly, k=1 € H1(A).

Suppose min(p, q) < 2. Choose an integer n such that min(np,nq) = 2. Let w = v|w| be the
polar decomposition of w. Note that v € M is a unitary. Write

1
w = v|w|'" |w ... |0V = w0, .0,
where w; = v|w|'™ and w, = |w|¥™ for2 <k <n. Since w, € L™ (M) and wj' €
L™ (M), by what is already proved we have a factorization
W, = Uyhy,
with u,, € Ma unitary, h,, € H"(A)such that h;' € H™(A). Repeating this argument, we
again get a same factorization for w,,_{u,,:
Wn—1Un = Up-1hp_1;
and then for w,_,u,,_,, and so on. In this way, we obtain a factorization:
w = uh, ..hy,
where u € M is a unitary, h, € H"™ (A) such that h;;' € H"(A). Setting h = uh, ... h,, we
then see that w = uh is the desired factorization. Hence the proof of the theorem is complete.
Remark(5.1.5) [279]:Let w € L?>(M) be an invertible operator such that w™! € L>(M). Let
w = uh be the factorization in Theorem (5.1.4). The preceding proof shows that [hA], =
H?(A). Indeed, it is clear that[yA], c [wA],. Using decomposition (7), we get
[wA], © [YAl, = [wA]; N [yAp ]2 -
Now forany a € Aand b € A,,
(wa,yb*) = 1(y*wab) = 0
since y 1 [wA,]. It then follows that [wA], © [yA], = {0}, so[wA], = [yA],. Hence, by (8)
[yAl, = [u*wA], = [w'yAl, = [lylA], = H*(4).

We turn to the Riesz factorization. We first need to extend (3) to all indices.
Proposition (5.1.6)[279]: Let0 <p < g < co. Then
HP(A) N LY(M) = H1(A) and HP (A) N LY(M) = H{ (4),
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where HJ (4) = [4o],.
Proof: It is obvious that H1(A) € HP(A) n L1(M). To prove the converse inclusion, we first
consider the case q = o. Thus let x € HP(A) n M. Then by Corollary (5.1.2),
VaeA, ®(xa)=d(x)P(a)=0.
Hence by (1), x € A.

Now consider the general case. Fix an x € HP(A) n L9(M). Applying Theorem (5.1.4)
to w = (x*x + 1)¥/2, we get an invertible h € H9(A)such that
h*h =x*x + 1and h™! € A.
Since h*h < x*x, there exists a contraction v € M such that x = vh. Then v = xh™! €
HP(A) N M, so v € A. Consequently, x € A.H1(A) = H1(A). Thus we proved the first
equality. The second is then an easy consequence. For this it suffices to note that Hé’ (A) =
{x € HP(A): @(x) = 0}. The later equality follows from the continuity of @ on HP(A).
Theorem (5.1.7)[279]: Let 0 <p,q,r <o such that 1/p =1/q+ 1/r. Then for x €
HP(A)and e > 0 there exist y € H(A) and z € H" (4) such that x = yz and ||yll, llz]l, <
llx]l, + €. Consequently,
lxll, = inf{llyllg llzll: x = yz,y € H1(A),z € H" (A)}

Proof: The case where max(q,r) = oo is trivial. Thus we assume both g and r to be finite.
Letw = (x*x + &)2. Thenw € LP(M) and w™* € M. Let v € M be a contraction such that
x = vw. Now applying Theorem (5.1.4) to w?/", we have: wP/" = uz, where u is a unitary in
Mandz € H"(A) suchthat z=! € A.Sety = vwP/qu. Thenx = yz,s0y = xz~1. Since x €
HP(A) and z71 € A,y € HP(A). On the other hand, y belongs to LI (M) too. Therefore, y €
H49(A) by virtue of Proposition (5.1.6). The norm estimate is clear.
We consider outer operators. All results below on the left and right outers are due to Blecher
and Labuschagne [66] in the case of indices not less than one. The notion of bilaterally outer is
new. We start with the following result.
Proposition (5.1.8)[279]: Let0 <p < g < ocoandleth € H1(A). Then

(i)  [hA], = HP(A) iff [hA], = HI(A);

(i) [Ah], = HP(A) iff [Ah], = HI(A);

(iii) [AhA], = HP(A) iff [ARA], = HI(A).
Proof: We prove only the third equivalence. The proofs of the two others are similar (and even
simpler). It is clear that [AhA], = HP(A) = [AhA], = HI(A). To prove the converse
implication we first consider the case g = 1.Let g’ be the conjugate index of q. Let x € L' (M)
be such that

Va,b €A t(xahb) = 0.

Then xah € H] (A) for any a € Aby virtue of (2) (more rigorously, its HP -analogue as in
Proposition (5.1.6)). On the other hand, by the assumption that [AhA],, = HP(A), there exist
two sequences (a,,), (b,) < A such that

lign a,hb, = 1in HP(A).
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Consequently,
limxa,hb, = x in L' (M),

n
where % =1/q' + 1/p.Since xa,hb, = (xa,h)b, € Hj(A) c H(A), we deduce that x €
HY (A). Therefore, x € H} (A) N LY (M), so by Proposition (5.1.6), x € Hi (A) Hence,
7(xy) = 0 forally € H9(A). Thus [AhA], = HI(A).
Now assume g < 1. Choose an integer n such that np > 2. By the proof of Theorem

(5.1.7) and Remark(5.1.5), we deduce a factorization:

h = h;h, ..h,,
where h, € H™ (A) for every 1 < k < n and [hyA], = H?(A)for 2 < k < n. By the left
version (i.e;part i) of the previous case already proved, we also have [hyA],, =
H™(A) and [hA]nq = H™(A)for 2 < k <n. Let us deal with the first factor h;. Using

[AhA], = HP(A) and [hyA],, = H"P(A)for 2 < k < n, we see that [Ah;A], = HP(A);s0
again [AhyA], = HP(A) by virtue of the first part. It is then clear that [AhA], = HI(A).

The previous result justifies the relative independence of the index p in the following definition.

Definition (5.1.9)[279]: Let 0 < p < co. An operator h € HP (A) is called left outer, right outer
or bilaterally outer according to

[hA], = HP(A), [hA], = HP(A)or[AhA], = HP(A).
Theorem (5.1.10)[278]: Let 0 < p < o and h € HP (4).
(i) If h is left or right outer, then A(h) = A®(h)). Conversely, if A(h) = A(®(h)) and
A(h) > 0, then h is left and right outer (so bilaterally outer too).

(i) If Ais antisymmetric (i.e; dimD = 1) and h is bilaterally outer, then A(h) = A(®(h)).
Proof: (i) This part is proved in [66] for p = 1. Assume h is left outer. Let d € D. Using
Theorem (5.1.1), we obtain

l@(h)dll, = inf{llhd + x|l ,: x € H} (4)}.
On the other hand,
[hAo]p = [[hA]pAO]p = [[AlpAol, = [Ao], = Hg (A).
Therefore,
@ (h)dll, = inf{llh(d + ap)ll,: a € Ao}
Recall the following characterization ofA(x) from [66]:
A(x) = inffllxall,:a € 4, A(@(a)) = 1}. (9)
Now using this formula twice, we obtain
t(®(h) = inf{lle(h)dll,:d € D,A(d) = 1}
= inf{llh(d + ag)ll,:d € D,A(d) = 1,a, € AO} = A(h).
Let us show the converse under the additional assumption that 4(h) > 0. We will use the case
p = 1 already proved in [66]. Thus assume p < 1. Choose an integer n such that np > 1. By
Theorem (5.1.7), there exist hq,...,h, € H"Y(A) such that h = h; ..h,.Then A(h) =
A(Chy) ... A(hy); so A(hg) >0 for all 1<k <n. On the other hand, by Arveson-

Labuschagne’s Jensen inequality [300,163] (or Corollary (5.1.3)), A(@(hy)) < A(hy).
However,
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A(@(h) = A(®(hy) ... A(@(hy)) < A(hy) ... A(hn) = A(h) = A(P(R)).
It then follows that A(®@(hy)) < A(hy) for all k. Now h;, € H™P(A) with np > 1, so hy is left
and right outer. Consequently, h is left and right outer.
(if) This proof is similar to that of the first part of i). We will use the following variant of (9)
A(x) = inf{ll(axb)l,:a,b € A, A(®(a)) = 1,4(@(b)) = 1} (10)
for every x € LP(M). This formula immediately follows from (9). Indeed, by (9) and the
multiplicativity of 4
inf{ll(axb)ll,: a,b € A, A(P(a)) = 1,4(P(b)) = 1} = inf{A(ax): a € 4, A(P(a)) =1}
= inf{d(a)A(x):a € A, A(®(a)) = 1} = A(x).
Now assume h € HP(A) is bilaterally outer and A is antisymmetric. Then @ (h) is a multiple
of the unit of M. As in the proof of i), We have
le(R)Il, = inf{llh + x|l,: x € HJ (A)} = inf{llh + ahbq|l,: a € A, by € Ay}. (11)
Using dimD = 1, we easily check that
inf{llh + ahbyll,:a € A, by € Ao} = inf{ll(1 + a0)h(1 + by)ll,: ag, by € 4o}. (12)
Indeed, it suffices to show that both sets{h + ahby:a € A, by € Ap}tand {(1+ ay)h(1 +
by):ay, by € Ay} are dense in {x € H?(A): ®(x) = ®(h)}. The first density immediately
follows from the density of AhA,in HJ (A). On the other hand, letx € HP (A)with @(x) =
®(h) and let a,,, b,, € A such that lif{" a,hb, = x. By Theorem (5.1.1),

lifln @ (a,)P(h)P(b,) P(x).
Since @(x) =t(x)1 =t(h)1 = ®(h) # 0, we deduce that limr (a,)t(b,) = 1. Thus

replacing a,, and b,, by a, /r(an) and b,, /t(b,,), respectively, we can assume that a,, = 1 +
d, and b, =1+ b,with a,,b, € Ay,; whence the desired density of {(1+ a,)h(1+
by):ay, by € Ap} in {x € HP(A): ®(x) = @ (h)}. Finally, combining (10), (11) and (12), we
get A(®@(h)) = A(h).

Note that, the assumption that A is antisymmetric in Theorem (5.1.12), ii) cannot be removed
in general, as shown by the following example. Keep the notation introduced and consider the
case where M = L*(T; M,) and A = H*(T; M,). Let ¢, and ¢, be two outer functions in
HP(T),andleth = ¢, ® e;; + ze,, ® e,,, Where z denotes the identity function on T. Then
it is easy to check that h is bilaterally outer and

1
AR = exp (3 5log ol +[log le.]) > 0.

However,@(h) = ¢,(0)e;;,50 A(®(h)) = 0.
The following is an immediate consequence of Theorem (5.1.12). We do not know, however,
whether the condition 4(h) > 0 in i) can be removed or not.

Corollary (5.1.11)[279]: Let h € HP(A),0 < p < co.
(1) If A(h) > 0, then h is left outer iff h is right outer.
(i)  Assume that A is antisymmetric. Then the following properties are equivalent:
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@Y h is left outer;

(2) h is right outer;

(3) h is bilaterally outer;

(4) A(@(h)) = A(h) >O0.
We will say that h is outer if it is at the same time left and right outer. Thus if h € HP (A)with
A(h) > 0, then h is outer iff A(h) = A(®(h)). Also in the case where A is antisymmetric, an
h with A(h) > 0Ois outer iff it is left, right or bilaterally outer.
Corollary (5.1.12)[279]:Let h € HP(A) such that h™* € H(A) with 0 < p,q < . Then h is
outer.
Proof: By the multiplicativity of 4,4(h)4(h™") = 1 and 4(@(h))4(@(h™1)) = 1. Thus by
Jensen’s inequality (Corollary (5.1.3)),

A(h)y = A(h"H)™H < (@)™ = A(@(W));
whence the assertion because of Theorem (5.1.10).
The following improves Theorem (5.1.4).
Theorem (5.1.13)[279]: Let w € LP(M) with 0 < p < oo such that A(w) > 0. Then there
exist a unitary u € M and an outer h € HP (A) such that w = uh.
Proof: Based on the casep = 1 from [67], the proof below is similar to the end of the proof of
Theorem (5.1.4). For simplicity we consider only the case where p > 1/2. Write the polar
decomposition of w: w = v|w|. Applying [66] to |w|/? we get a factorization: |w|Y/? =
u,h,with u, unitary and h, € H?P(A) left outer. Since A(h,) > 0, h, is also right outer; so
h, is outer. Similarly, we have: v|w|?u, = u;h,. Then u = ujand h = hyh, Yyield the
desired factorization of w.
The following is the inner-outer factorization for operators in HP (A), which is already in [66]
forp > 1.
Corollary (5.1.14)[279]: Let 0 < p < o and x € HP(A) with4(x) > 0. Then there exist a
unitary u € A(inner) and an outer h € HP(A) such that x = uh.
Proof: Applying the previous theorem, we get x = uh with h outer and u a unitary in M.
Leta,, € A such that limha,, = 1in HP(A). Thenu = limxa, in H? (A) too; sou € HP(A) N
M. By Proposition (5.1.5), u € A.
Corollary (5.1.15)[279]: Let 0 < p < oo and h € HP(A)with A(h) > 0. Then h is outer iff
for any x € HP (A)with |x| = |h| we have A(®(x)) < A(®(h)).
Proof: Assume h outer. Then by Corollary (5.1.3) and Theorem (5.1.9),
A(D(x)) < A(x) = A(h) = A(@(h)).
Conversely, let h = uk be the decomposition given by Theorem (5.1.13) with k outer. Then
A(h) = A(k) = A(P(k)) < A(P(h));

so h is outer by Theorem (5.1.12).

Corollary (5.1.16)[279]: Let 0 < p,q,r < oo such that 1/p = 1/q+ 1/r. Let x € HP(A) be
such that A(x) > 0. Then there exist y € H4(A) and z € H" (A) such that

x = yzand|xll, = [[yllyllzll,

Proof: This proof is similar to that of Theorem (5.1.7) Instead of Theorem (5.1.4), we now use
Theorem (5.1.13). Indeed, by the later theorem, we can find a unitary u, € M and an outer h, €
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HP/T(A) such that |x|P/" = u,h,. Once more applying this theorem to v|x|P/9u,, we have a
similar factorization: v|x|?/9u, = u,h,, where v is the unitary in the polar decomposition of
x. Since h; andh, are outer, we deduce, as in the proof of Corollary (5.1.14), that u, € A. Then
y = uq,h; and z = h, give the desired factorization of x.
Let w € L*(T)be a positive function and let du = wdm. Then we have the following well-
known Szeg“o formula [92]:
inf{fT|1 — f|?du: f mean zero analytic polynomial} = exprlongm.

This formula was later proved for any positive measure u on T independently by
Kolmogorov/Krein [15] and Verblunsky [268]. Then the singular part of p with respect to the
Lebesgue measure dmdoes not contribute to the preceding infimum and w on the right hand
side is the density of the absolute part of p (also see [141]). This latter result was extended to
the noncommutative setting in [66]. More precisely, let w be a positive linear functional on M,
and let w = w,, + w;be the decomposition of w into its normal and singular parts. Let w €
L' (M) be the density of w,, with respect to 7, i.e., w,, = t(w -). Then Blecher and Labuschagne
proved that if dimD < oo,

Alw) = inf{w(|a]®):a € A, A(®(a)) = 1}.
It is left open in [66] whether the condition dimD < oo can be removed or not. We will solve
this problem in the affirmative. At the same time, we show that the square in the above formula
can be replaced by any power p.
Theorem (5.1.17)[279]: Let w = w,, + w;be as above and 0 < p < co. Then

A(w) = inf{(w]alP):a € A, A(®(a)) = 1}.
Proof: Let

S(w) = inf{w(|a|P):a € A, A(P(a)) = 1}.
First we show that

d(w) = inf{w(x):a € A, A(P(a)) = 1},
where M} denotes the family of invertible positive operators in M with bounded inverses.
Given any x € M;! , by Arveson’s factorization theorem there exists a € A such that |a| =
x¥P and a=! € A. Then x = |a|P, so A(x) = A(]a|P) = A(a)P. Since a is invertible with
a~1 € A, by Jensen’s formula in [300], 4(a) = A(®(a)). It then follows that
S(w) < {w(x):x € M;1,A(x) = 1}.

The converse inequality is easier. Indeed, given a € A with A(®(a)) = land ¢ > 0,set x =
la|P +&. Then x € M{tand A(x) = A(a)? = A(®(a))P by virtue of Jensen’s inequality.
Since il_r)g w (|al? +¢) = w(|a|?), we deduce the desired converse inequality.
Next we show that § (w) = §(w,,). The singularity of wsimplies that there exists an increasing
net (e;) of projections in M such that e; — 1 strongly and w(e;) = 0 for every i (see [181]).
Let € >0. Set

x; = €7@ (e, + geit ), where et =1 —e.
Clearly, x; € M{* and (x;) = 1. Let x € M;'and A(x) = 1. Then A(x;xx;) = 4(x) =1, and
x;xx; = x in the w*-topology. On the other hand, note that

ws(x;xx;) = 27w (eifxe).

Therefore,
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O(w) < limsupw(x;xx;) = wy(x) + limsupw,(x;xx;)
< wp(x) + limsupe?™ @ w (e xe) < wy(x) + 2| wsll[lx]I.
It thus follows that § (w) < 6(wy,),so §(w) = §(w,,). Now it is easy to conclude the validity
of the result. Indeed, the preceding two parts imply
§(w) = inf{t(wx):x € M;1,A(x) = 1}.
By a formula on determinants from [300], the last infimum is nothing but A(w). Therefore, the
theorem is proved.
Section (5.2) Noncommutative Hardy-Lorentz Spaces
The classical Hardy spaces HP (D), 1 < p < oo, are Banach spaces of analytic functions on the
unit disk satisfying that

0<r<i

2T
sup f|f(rei9)|pd9 < oo,
0

by taking radial limits,H? (D) can be identified with HP (T ), the space of functions on the unit
circle which are in LP(T )with respect to Lebesgue measure and whose negative Fourier
coefficients vanish. These spaces have played an important role in modern analysis and
prediction theory. One of the key results in the functional analytic approach to Hardy spaces is
Szego theorem (see [274]), which is formula for the weighted L?(T ) distance from 1 to the
analytic polynomials which vanish at the origin.

The theory of Hardy spaces was generalized in two directions. Masani and Wiener [186,
185] extended Szego theorem to the theory of multivariate stochastic processes by studying
matrix valued functions. Concurrently, Helson and Lowdenslager [115] adapting techniques
from functional analysis to extend the theory to the setting of a compact group with ordered
dual, thus laying the foundation for the theory of function algebras. This eventually led to the
definition of a weakx*-Dirichlet algebra of functions by Srinivasan and Wang [272]. Srinivasan
and Wang were able to prove Szego’s theorem and several other important results in the theory
of function algebras.

Arveson [25] introduced the concept of maximal subdiagonal algebras, unifying analytic
function spaces and nonselfadjoint operator algebras. Subsequently, Arveson’s pioneer work
was extended to different cases by several authors. In 1997, Marsalli and West [184] defined
noncommutative Hardy spaces for finite von Neumann algebras and obtained a series of results
including a Riesz factorization theorem, the dual relations between H? (A) and H?(A) and so
on. Labuschagne [166] proved the universal validity of Szegé’s theorem for finite subdiagonal
algebras. Blecher and Labuschagne [41] gave several useful variants of the noncommutative
Szegatheorem for LP (). Tt was also in [42] that the longstanding open problem concerning
the noncommutative generalization of the famous ’outer factorization’ of functions f with
log |f| integrable was solved. Recently, Bekjan and Xu [39] presented the more general form
of Szego type factorization for the noncommutative Hardy spaces defined in [184].

We introduce the noncommutative Hardy-Lorentz spaces. By adapting the techniques in
[39], we establish the Szego factorization theorem of these spaces. Section contains some
preliminaries and notations on the noncommutative LP-9-spaces and noncommutative HP9-
spaces. The proof of the Szego factorization of noncommutative Hardy-Lorentz spaces are
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presented. Finally mainly devoted to the inner-outer type factorization of noncommutative
Hardy- Lorentz spaces.

We denote by Ma finite von Neumann algebra on the Hilbert space #, equipped with a
normal faithful tracial state t. The identity in M is denoted by 1 and we denote by D a von
Neumann subalgebra of M, moreover, we let e: M —=D be the unique normal faithful
conditional expectationsuchthatto e = 7. A is afinite subdiagonal algebra of M. A finite
subdiagonal algebra of M with respect to € (or D) is a w* —closed subalgebra A of M
satisfying the following conditions:

i) A+ A"isw" —densein M;

(i)  eis multiplicative on A, i.e..e(ab) = € (a) € (b) forall a,b € A;

(iii) A NA*=D.

We denote by M., ;the lattice of (orthogonal) projections in M. A linear operator
x:dom(x) = H, with domain dom(x) € H, is said to be affiliated with M if ux = xufor all
unitary u in the commutant M’ of M. The closed densely defined linear operators x affiliated
with Mis called T —measurable if for every € > 0 there exists an orthogonal projection P €

Mproj SUCh that P(H) < dom(x) and (1 — P) <e&. The collection of all t-measurable

operators is denoted by M. With the sum and product defined as the respective closures of the
algebraic sum and product, M is a *-algebra. For a positive self-adjoint operator x affiliated
with M, we set

n [oe]
T(x) =suprt j/ldE,l = J Adt(Ey),
n
0 0

where x = fooo AdE) is the spectral decomposition of x.

Let 0 < p < oo, LP(M; 1) is defined as the set of all T-measurable operators x affiliated with

M such that
1

lIx1l, = 7(|x|P)P < co.

In addition, we put L*(M; t) = M and denote by |||l (= || -|| ) the usual operator norm. It
is well known that LP (M; 1) is a Banach space under [|-|[,, for 1 < p < co. They have all the
expected properties of classical LP-spaces (see also [89]).
Let x be a t-measurable operator and ¢t > 0. The “t-th singular number (or generalized s-
number) of x” is defined by

ue(x) = inf{llxE|: E € My, T(1 = E) < t}.
See [81] for basic properties and detailed information on the generalized s —numbers.
Let x be a T-measurable operator in LP (M)with 0 < p < co. The Fuglede-Kadison determinant
A(x) is defined by

Alx) = exp(r(log |x|)) = expf log tdviy,(t),
0
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where dv, denotes the probability measure on R, which is obtained by composing the spectral
measure of |x| with the trace t. We refer to [25, 84] for more information on determinant in
the case of bounded operators, and to [42, 111] for unbounded operators.
Definition (5.2.1)[142]:Let x be a T-measurable operator affiliated with a finite von Neumann
algebra M and 0 < p, q <o, define

f 1

© % q 4t a . 0
||x||Lp.q(M)=J(f° () L) if g < o, i

1

sup tPuy(x),if g = 0.
>0

The set of all x € M with lx|[pagary < oo is denoted by LP9(M) and is called the

noncommutative Lorentz space with indices p and q.
Note that

()Ifl<p<o,1<q<om, and%+§= 1,%+%= 1, then by Xu [325], we obtain the

following result
(LPA(M))* = LP"T (M).
For more information on LP9 (M) we refer to [81, 315].

(if) Since (1) = 1, in (13) we can write
1

Fo1 dt\’
Ixllpae = | [ @) if g <o
0

Definition (5.2.2)[142]:Let A be a finite subdiagonal algebra of M. For 0 < p,q < o, we
define the noncommutative Hardy-Lorentz spaces to be the closure of A in LP9 (M), denoted
by HP- (M)
Lemma (5.2.3)[142]: Let 0 < p; <p < 0,0 < g,s < oo, then

LPA(M) c LPvS(M).
Consequently,

HP9(A) € HPYS(A).
Proof: Similarly to the proof of [112] we can prove that LP9(M) c LP* (M) with q < oo,
and LPv¥(M) c LPvS(M) with u <s. Now it suffices to prove that [x|| piugey <

Cllx|[peoaey, V x € LP2 (M) and 0 < u < oo. Indeed, ¥ x € LP*° (M), we have
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1

gl

Y dt Cuu 1
Icllrsnon = [ @Gy Fr =1 [ 77 @Gyt de
0 0
1 1
1 u 1 u
u 1 u u
<3 [OTC sup Py de | = el | [ 77
5 0<s<t(1) 5

= —1 11 Lo ary
U U\u
G1-5)
which gives the first inclusion of the lemma. Consequently, we obtain
HP(A) c HPvY*(A) < HPS(A).

Definition (5.2.4)[142]:Let x be a t-measurable operator affiliated with a finite von Neumann
algebraM and 0 < p,q < oo, define

Q|

1 1 dt
lelng,q(M) =94\a

(14)

1
sup tPx**(x), ifq =
\ t>0 .
where x**(t) = (5 [ (us(x))"ds)7 ,0 <7 < min (1,q),r <p. The set of all x € M with
||x||2¢,q(M) < oo is denoted by L27 (D).
Lemma (5.2.5)[142]:Let 0 < p,q < oo, then
1

x|l pacaey < ||x||213.q(M) < eP||x||pagny,

where r is as in Definition (5.2.4).

Proof: The first inequality is an immediate result from the following estimate
1

r

1 t
peG) < 7 [ GsCoyds

Now we turn to prove the second inequality. Hardy’s first inequality of [119] tells us that

114



1 q
0 0 0

1
T

t

q_4)_ T4 d
> f S(HS(X)) TS (T p) 1dS — (pzr) jsp(,us(x))q?s
0 0
q

_ 4
p
=(p_JImewm<eHﬂqu)

Lemma (5.2.6)[142]:Let 0 < p,q < oo, assume M has no minimal projection, then
1
le@llipg < llallipg ;le(@liraoa) < e?llallipqqn,
where r is as in Definition (5.2.4).
Proof : [81] gives that

fmxdﬂfdw—jkﬂdeﬂs—mmﬁwkmﬂ%)eE Nyroyr7(€) < 6},
0

where N is a von Neumann subalgebra generated by all spectral projections of|e(a)|. Itis clear
that V,,.o; € D = A N A", then we get

j (,us(e(a)))r ds = Slttp{r(|e(a)e|r) re € Nyypoj, T(€) <t}
0

< sup{t(le(a)e|") : e € D,7(e) < t}
= sup{t(le(a)e|") : e € D,t(e) < t}
< sup{|le(ae)|ly : e € D,t(e) < t}.

Sjmdwfﬁ-
0
It follows that

1 4

r

) "at [ af1g . \d
|mm%Wm—jw j%@mwm <o fw@yes) S

= || (a')”LP Q(M)

1
le(@lpa ey < ||€(a)||zgrq o = lallp.a oy < ePlle(@lpa oy
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Lemma (5.2.7)[142]: Let 0 <1y <1, < 1,1y <1, <p, 1y <7, < q, then ||x|[7a.q (M)is
L
equivalent to ”.X'”Lg,zq o)
Proposition (5.2.8)[142]:Let 0 < p, Py, P1, 9, 90, 1 < eoSuch that =1y i,l =14 i,

p Po P1 4 qo q1
then

1
1Yzl Lp,qe) < €PllYlLroao (aeyllZllLrors (ar),

wherey € LPo9o(M),z € LPvI1(M).

Proof: Let 0 < 2r < min(1,p, q), we have

1 1 1

1 t T 1 % t 2r [t 2r
o) = ¢ [ wsoaras | < ;)| [wois) | @@y
= y**%t, 2r)z**(t, 2r). 0 ’

Combing the above estimate with Lemma (5. 2.5) we infer that
1

) [ dt
Iyzllimaoe < vlips o, = | [ @ 027 @)
0

1
o1 1 dt
< J (£ y™ (6, 1))z (r, 27) 1 —
0
1 1

(1 A ar\"
< j(tpo y* (r, 27”)‘107 j(tplz** (r, 27”)"1?
0 0

= 1Y W5p000 (0, 1200101 2y < (@P0ll Y000 00) (€7 1zl 31 )
1

= e?|lyllroao oyl ZllLprar (ary,

which gives the result.
Lemma (5.2.9)[142]:Let 1 < p,q < oo, then

HPY(A) ={x € LPI(M):1(xa) =0,Va € A,}.
Proof: From [274], we deduce that

HPU(A) ={x € LPI(M):1(xa) =0,V a € A,}.
Conversely, we assume that there exists some

x €{z€LPI(M):1(za) =0,V a € Ay},

and x € HP9(A). Hence, there exists some y € LP"9' (M) such that t(xy) # 0 and t(ya) =
0,Va€ HPY(A). Putting 1 <r <min(p’,q"), we have y € L"(M) and t(ya) =0,V a €
A. [39] implies that y € Hf (A). Let 1 < s <min(p,q), then x € {z € L°(M): 1(za) =
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0,Vae€ Ay} =H®(A). Consequently, adapting [40] we deduce that t(xy) = t(e(xy)) =
t(e(x)e(y)) = 0. This is a contradiction.
Proposition (5.2.10)[142]:Let 1 < p,q < 0,1 < r < min(p, q), then
H"(A) N LPI(M) = HP9(A).

Proof: It is easy to verify that HP9(A) € H" (A) N LP9(M). Conversely, let x € H"(A) N
LPA(M), then x € {z € L'(M):t(za) = 0,Va € A,}. Therefore, x € H?9(A) in view of
Lemma (5.2.9)
The following result describes the Szego type factorization theorem for noncommutative
Hardy-Lorentz spaces, and we refer to see Theorem (5.2.18) below for an improvement.
Theorem (5.2.11)[142]: Let 0 < py,p2,q1,q < 0. Let w € LPr91 (M) be an invertible
operator such that w™! € LP292 (M), then there exist a unitary u € M and h € HP191(A)
such that w = uh and h™! € HP292(A).
Proof: Let w € LPr91(M) be an invertible operator such that w=! € LPz92 (M). Take 0 <
r; < min(py, q1),0 < r, < min(p,,q;),thenw € L' (M) and w™! € L™2(M). By [39], there
exist a unitary u € Mand h € H™ (A) such that w = uh and h™! € H™2(A).
We first consider the case min(py,02,91,92) > 1. Since h = u*w € LPv91 (M), applying
Proposition (5.2.10), we conclude that h € HP191(A). Similarly, ™1 € HP292 (A).

On the other hand, if min(p;,p2, 91,92) <1, we choose an integer n such that
min(np,,nq,, np,,ng,) > 1. Let w = v|w| be the polar decomposition of w. Note that v €

1

M |s a unitary. Write w = v|w| |a)|n. | |a)|n = wiW, * Wy, Where w; =v|w|r,w, =
|w|n ,2 < k <n. Since w;, € L"Pr"1 (M) and w;* € L1491 (M), by what is already proved
in the first part, we have a factorization w, = u,h, with u, € M a unitary, h, €
H™11% (A)such that h,, " € H™"P2"92(A4) . Repeating this argument, we can get a similar
factorization for w,,_ uy,: Wn—1 U, = Up_1hy,_q1, and then for w,,_,u,_4, and so on. In this way
we obtain a factorization: w = uh, h, ... h,,, whereu € M isaunitary, h;, € H"Pv™1(A)such
that hit € H"P2"92(A),1 < k < n. Setting h = hyh, - -+ h,, We see w = u, is the desired
factorization.
Corollary (5.2.12)[142]:Let0 < p,q < 0,0 <r < min(p,q),0 < s < oo, then

H™(A) N LP1(M) = HP(A),

Hy® (A) N LPA(M) = HP(A).
Proof: It is clear that

HP9(A) € HS(A) N LPA(M).

1
To prove the converse inequality, fix an x € H™S(A) N LP9(M) and set w = (x*x + 1)z ,
then we see w € LP9(M)and w~! € M. Applying theorem (5.2.11) to w, we get a unitaryu €
M and an invertible h € HP9(A) such that w = uh and h™! € A. Then we obtain
h*h = x*x + 1.

Since |h| = |x|, there is a contraction v € M such that x = vh. It follows that v = xh™! €
H™S(A) N M, therefore, we obtain that v € A. Consequently, x € A - HPI(A) =
HP(A), and we conclude the first inequality. The later equality is immediate established by
adapting the similar proof.
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Proposition (5.2.13)[142]:Let 0 < p, < p; < 0,0 < q4,q, < o and h € HP91(A), then:

(1)  [hA]p2a2(M) = HI2%2(A) if and only if [hA] prar (M) = HPrI1(A).

(ii)  [hA]p2492(M) = H12% (A) if and only if [hA ] p1a1 (M) = HPP91(A).

(i)  [AhA]pza. (M) = H29%2 (A) if and only if [AhA]prar (M) = HPr% (A).
Proof :We shall prove only the third equivalence. The proofs of the others are similar.
First, if[ AhA] p1a1 (M) = HPr91(A), from the density of HPv91(A) in HPv91(A), we see
that [AhA ] p2qa. (M) = HP292 (A). To prove the converse implication, when p;,q; = 1, let
x € LP1"P1' (M) with

t(xahb) =0,V a,b € A,
then xah € H} (A), where p,’, p,'is respectively the conjugate index of p;,p;. On the other
hand, by the condition that [AhA]pz4a2(M) = HP292(A), there exist two sequences
(a,), (b,) € A such that
”Clnhbn — 1”HP2,QZ(C;1) - 0,n - oo,

Letr > 0,s > 0 be such that% =4+ =14 qi. Proposition (5.2.8) gives that
2

P’ p2’s B q1’
||xanhbn — X“L?’.S (M) < C||X||Lp1’.p1’(M)”Xanhbn — 1||Lp2,CI2(M) - 0,
n — oo,

Consequently, we get
lxa,hb, — x||;rs0r) = 0,n — oo,

Since xa,hb, = (xa,h)b, € Hj (A) c Hy*(A), we know that x € Hy*(A) N

LP1"Pr (M) = HP1"P1'(A) . Hence t(xy) = 0,V y € HPv91(A). It follows that
[AhA]pra1 (M) = HPY91(A).

Now we assume min(py, 91,02 92) <1. Choose an integern such that
min(np,,nq., np,,nqg,) = 1, then the conclusion of the previous case tells us that
[ARA] rp1nar(ay = H™Pr™M1(A). Since H™191(A)is dense in HPvv(A), the proof of the
first part implies that [AhA], pra1on = HPVIV(A).

The previous result justifies the relative independence of the indices p,q in the following
definition.
Definition (5.2.14)[142]: Let 0 < p,q < co. An operator h € HP9(A) is called left outer,
right outer or bilaterally outer according to [hA] p.acary = HPI(A), [Ah]pagey = HP(A)
or [AhA]pacry = HPI(A).
Theorem (5.2.15)[142]:Let 0 < p,q < oo and h € HP1(A).
(i)  If his left or right outer, thenA(h) = A(e(h)). Conversely, if A(h) = A(e(h)) and
A(h) > 0, then his left and right outer (so bilaterally outer too).
(i) i) If A is antisymmetric (i.e., dimD = 1) and h is bilaterally outer, then A(h) =
A(e(h)).
Proof: Let he HP9(A). Putting 0<r <min(p,q) <o we obtain that he€
H" (A).Proposition (5.2.13)and [39] imply that (i) and (ii) hold.
The following corollary is a consequence of this theorem.
Corollary (5.2.16)[142]:Leth € HP9(A) and 0 < p, q < 0.
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(i) IfA(h) > 0, then h is left outer if and only if h is right outer.
(i) Assume that A is antisymmetric (i.e.,dimD = 1), then the following properties are
equivalent:
(@)h is left outer;
(b)h is right outer;
(c)h is bilaterally outer;
(d) A(e(h)) = A(h) > 0.

We will say that h is outer if it is at the same time left and right outer. If h € HP"9(A)with
A(h) > 0, then h is outer if and only ifA(h) = A(e(h)). Also in the case where A is
antisymmetric (i.e., dimD = 1), an h with A(h) > 0 is outer if and only if it is left, right or
bilaterally outer.
Corollary (5.2.17)[142]:Let h € HP+9: (A) be such that h™! € HP292(A) with 0 <
P1,,P2, 41,9, < othe An his outer.
Proof: Let h € HPv91 (A) be such that h™1 € HP292(A). Taking 0 < r < min(py, q;) <
0,0 < s < min(p,,q,) < oo,we get h € H"(A) and h™! € HS(A). By virtue of Proposition
(5.2.13) and [40], we see that h is outer.
The following theorem improves Theorem (5.2.11).
Theorem (5.2.18)[142]: Let w € LP9(M) with 0 < p, g < oo such that A(w) > 0, then there
exista unitary u € M and an outer h € H?9(A) such that w = uh.

1
Proof: Write the polar decomposition of w: w = v|w|.For|w|z , by virtue of Theorem
1
(5.2.11) we get a factorization : |w|z = u,h,, with u,unitary and h, € H?P24(A) left outer.

1
Since A(h,) > 0, h, isalso right outer, it follows that h, is outer. Similarly we have: v|w|zu, =
uhy.
This tells us that u = u,, h = h,h, yield the desired factorization of w.
We present the inner-outer factorization for operators in HP9(A).
Corollary (5.2.19)[142]:Let0 < p,q < oand x € HP9(A) with A(x) > 0, then there exist
a unitary u € A(inner) and an outer h € HP9(A) such that x = uh.
Proof: Let x € HP9(A) with A(x) > 0. Applying the previous theorem, we get x = uhwith
h outer and u unitary in M. Let (a,) € A such that limha, =1 inHP9(A), then u =
limxa,in H?9(A), which impliesthatu € H?9(A) N M = A.
Corollary (5.2.20)[142]:Let 0 < p,q < o0 and h € HP9(A) with A(h) > 0, then h is outer if
and only if for any x € HP9(A) with |x| = |h|, we have A(e(x)) < A(e(h)).
Proof: Let h be outer and x € HP9(A) with |x| = |h|,. Taking 0 < r < min(p,q) < oo we
obtain that x € H" (A). From [39], we get A(e(x)) < A(e(h)). Conversely, let h = uk be the
decomposition given by Theorem (5.2.18) with k outer. It is easy to check that A(h) = A(k) =
A(e(x)) < A(e(h)). Putting 0 < s < min(p,q) < o we get h € H5(A). Hence, [39] tells
us that A(e(x)) < A(e(h)). Consequently, A(e(x)) < A(e(h)). So h is outer due to Theorem
(5.2.15).
Lemma (5.2.21)[270]: Let € > —1 then
L1+28,1+€(M) cC L1+8'1+2£(M).
Consequently,
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H1+2£,1+£(dq) c H1+S,1+2£(dq).
Proof: Similarly to the proof of [112] we can prove that L**2&1t (M) < L1128 (M) with
> —1,and L**ete (M) c LHrelt2e () with € > 0. Now it suffices to prove that
x| +ervenry S Clla? |l a2empry, V X% € LM25%(M) and € > —1. Indeed, V x* €

L1*28°(M), we have
1

1+e
d(1+¢)

1
||x2||L1+s,1+s(M) = f((l + 5)1+£H(1+8)(x2))1+5 —

1 1+¢
1+¢&

=1 [ @+ e)t+2e((1 + 5)1+£.u(1+s)(x2))1+£ d(1+¢)
0

1 1+¢
1+¢&
<1 [+ )T (sup(1 + 26)978 gy ()1 d(L + )
o £20
1
1 1+¢
1+4¢

= |lx?||1+2e00 05y | (1 + )TF2ed (1 + &)
0
which gives the first inclusion of the lemma. Consequently, we obtain
}11+2&1+€(dq) C:}{1+&1+£(dq) C:f11+&1+2£(dq).
Lemma (5.2.22)[270]: Let € > —1then

1
llx? |l av2erseary < N[ 1s2eave (M) < eTHe||x?|| L2417 (M),
1+¢€

Where 1 + ¢ is as in Definition (5.2.4).

Proof The first inequality is an immediate result from the following estimate
1
1+ 1+e

j (as20 2N + 20)

2)) <
Hare (D) < | 755

Now we turn to prove the second mequahty. Hardy’s first inequality of [119] tells us that
1
oo 1+¢

(BRI 1+ 6)(1”25)(1*8) (H(1+s) (x*)**ed(1+¢€)
L1+£ (M)
0

ld(1+e)
1+¢

%} 1+¢
-1

(1+&)Tee j (s ()AL +6) | d(1 + )
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(ee)

1 S\t -1
<|——| [ [a+9 (Harae®) | @+ ey
14+2&/ o
1+ 2¢ 1+e d(1+¢)
— 1+2 2 1+¢
(F55) [ @+ oz 20 e S

1+ 2¢ 1+€
= ( < ) ”x ||L1+2£1+8(M) < el+23||x2||11‘1|-f2£,1+s(M).

Lemma (5.2.23)[270]: Let € > —1, assume M has no minimal projection, then
1

”S(az)llaiius@/{) < ”azllaii’HS(M)’. ||£(a2)||L1+e,1+s(M) < em||a2||L1+g,1+g(M)‘

where 1 + ¢ is as in Definition (5.2.4).
Proof : [81] gives that

1+¢ 1+¢

f (Ba+2e)(e(@®))od(1 + 2¢) = f Harze)(le(@)[**5)d(1 + &)

= sup {T(ele(az)l”se) e € NypojrT(€): 1+ £},

(1+¢)
where V' is a von Neumann subalgebra generated by all spectral projections of |e(a?)]. It is

clear that V,,,; € D = A N A”, then we get

1+¢
j (2o (@) d+e) = sup (r(le(aV)el' ™) e € Moy, 7(e) < 1+¢)
0

< sup{t(le(a®)e|'*€): e € D,t(e) <1+ &}
(1+¢)

= sup{t(|le(a®)e|**®) :e € D,1(e) < 1 + &}
(1+¢)

< sup{lle(a*e)|lifi: e € D,1(e) <1+ ¢}
(1+¢)
1+¢

< [ Gz @)ea + 20)

It follows that

1 d(1
le(@®)l}iteire gy = f(l +¢) mj(#(1+ze)(€(a2)))1+gd(1 +¢) ET-:E)
0

1 1
1 1+¢ d(l + 8) *
< j(l + 8) 1—_|_gf(ul+2£(a2)) d(l + 8) 1—+8 = “( 2)“ }rsgus
0 0
e,
5 1
”€(a )“LHSHS(M) < ”5(61 )”L1+£1+£ M) = ”a ||L1+£1+£ (M) < €1+€||€((,l )”L1+81+8(M)
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(1+&)(2+5¢) _ (1+48)(2+11¢)
(1+26)(1+3¢)” ~  (1+5&)(1+6¢)

Proposition (5.2.24)[270]: Let 0 < € < oo, suchthat 1 =
then

1
|ly?z? ||L1+s,1+4s(M) < eT+e||y? || 1+2e145¢ M) ||z2 || 1+3e1+6e M)

where y2 € L[1+28145¢ (1) 22 € [1+381+6s (),
Proof:iLet 0 < 2(1+¢) < min(1,1+ ¢, 1+ 4¢), we have

1
) 1+¢ 2(1+8)
*k 1+
0?7 (A + 14 8) = 15 | (a2 0?29) a1 + 20
0
1
1 /1+te 2(1+8)
1 \1+e 5 o021+
<(1) || (Hoa0r2) " da s 2e)
0
1+¢ 2(1+e)
2(1+¢)
${ [ (rre@)™ a1 + 20
0
= ()71 +&2(1+ )71 +¢&2(1 +¢)).
Combing the above estimate with Lemma (5.2.22) we infer that
1Yzl srerrseqaey < Ny°2° M areavae (5
1
0 L d(1 + ¢) 1+4¢e
&
= j((l + )T+ (y222)" (1 + 1 +¢)0+4) — =
1+¢
0
1
° . L d(1+ ) 1+4€
— - &
< f((1 + &)1z () (1 + 6 1 + )T (22) (1 + £, 2(1 + £)) —
0
1
b 1 1 d(1+ ) 1+5¢&
— _—— &
< j (14172 (72" (1+ 8,1+ )T " (1+6,2(1+ )70 =——
0
1
1+6¢

[ 1 d(1+
X j((l + &)T#2z (y2)*™* (1 + &, 2(1 + £))(1+69) %
0

2* 21*
|| y ||L§-(I-12-f:€1)+5£ (M)”Z ||L;'("13_f:€1)+68(1\/[)
1 1
< (61"'28” yz||L1+25,1+55(M))(€m”22||L1+3s,1+es (]V[))

= em“yZ ||L1+2£,1+58 (M) “Z2 ||L1+3£,1+6£ (]V[)'
which gives the result.
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Lemma (5.2.25)[270]:Let 0 < € < oo, then

H1+£’1+2£(cﬂ) — {xz € L1+£,1+2£(M) . T(xZaZ) =0,V a’ € c/lo}.
Proof: From [274], we deduce that

H1+g'1+28(cﬂ) — {xz € L1+s,1+28(M) . T(xZaZ) =0,V a2 € UQO}-
Conversely, we assume that there exists some

x? € {z? € [*e122(M) : 1(z%a?) = 0,V a? € A},
and x2 ¢ H'*&1%2¢(.4). Hence, there exists some y? € L(+&).(1+28) (pr) sych that
t(x%y?) # 0and t(y2a?) = 0,V a? € H*®1*t2¢(4) Puttingl < 1+¢ <
min((1+ €)', (1 + 2&)"), we have y? € L1*¢(M) and 7(y?a?) = 0,V a? € A.[39]
implies that y? € H}™® (A). Let1 <1+ ¢ < min(1+¢,1+ 2¢), thenx? € {z2 €
L*e(M):1(z%a%) = 0,V a? € Ay} = H1T¥(A). Consequently, adapting [39] we deduce
that. 7(x2y?) = t(e(x%y?)) = t(e(x?)e(y?)) = 0 This is a contradiction.
Proposition (5.2.26)[270]:Lete > 0,1 < 14+ e <min(1 + ¢,1 + 2¢), then
H1+g(cﬂ) N L1+$,1+2£(M) — H1+€'1+2€(cﬂ).

Proof It is easy to verify that H1t&1*t2¢(.4) < H*e(A) N L1t&12¢ (). Conversely, let
x? € H"¢(A) n L1e1+28(r), then x? € {z2 € L'*¢(M) : 1(z%a?) = 0,Va? € A,}.
Therefore, x? € H1*1%2¢(4) in view of Lemma (5.2.25)

The following result describes the Szego type factorization theorem for noncommutative
Hardy-Lorentz spaces, (see [38]) and also see Theorem (5.2.33) below for an improvement.
Theorem (5.2.27)[270]:Let—1 < & < oo, let w € L1*&1+3¢( M) be an invertible operatorsuch
that w =1 € L1*281%4€ (A1), then there exist a unitary u € M and h? € H1*&1%3¢(.4) such that
w = uh? and h™2 € H1t281+t4e( ),

Proof: Letw € L1*&1*3¢(0) be an invertible operator such that w1 € L1t2&1%4€ (A1), Take
0<l+e<min(l+&1+3£),0< 1+¢e< min(l+2¢1+4¢), then w € L1E(M)
and w™1 € L1*¥(M). By [4], there exist a unitary u € M and h? € H1*¢(A) suchthat w =
uh? and h™% € H'*¢(A).
We first consider the case min(1 + &,1 + 2,1+ 35,1+ 4¢) > 1.Since h? = u*w
€ L1*&1%32 (M), applying Proposition (5.2.26), we conclude that h? € H*t&1*3¢(.4),
Similarly, h=2 € H1*t2&1%4€ (1),

On the other hand, if min(1 +¢,1 + 2¢,1 4+ 3¢,1 4+ 4¢) < 1, we choose an integer n
such that min(n(1 + ¢),n(1 + 2¢),n(1 + 3¢),n(1 + 4¢)) > 1. Let w = v|w| be the polar

1 1

decomposition of w. Note that v € M is a unitary. Write w = v|w|ﬁ|w|% e | ol =
WiW, * - wy, Where w; = v |a)|%,a)2+£ = |a)|%,2 <2+4+¢& <n, € 20.Since w,,, €
[r+an(+38) (A1) and w51, € LPAF2On0+48) (A by what is already proved in the first
part,we have a factorization w,, = u,h? with u,, € M a unitary, h? €
Hr+an+3¢) ( 4) such that h;2 € HM(1+28)n(1+48)(4) Repeating this argument, we can
get a similar factorization for w,,_u,: w,_1u,, = u,_;h%_;, and then for w,,_,u,,_;, and so
on. In this way we obtain a factorization: w = uh?h2 ... h%, where u € M is a unitary,
hi,. € Hr+an(0+38)( 4) sych that h;2, € HM(AF29n0+48)(4) 1 < 1+¢ < n,e > 0.
Setting h? = h2h5 ... h2, wesee w = u,, is the desired factorization.
Corollary (5.2.28)[270]:Let, 0 < 1+ e < min(1+¢,1+ 2¢),—1 < & < oo, then
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H1+£,1+£(dq) N L1+£,1+2£(M) — H1+£’1+2£(cﬂ),
Hé+5,1+8 (cﬂ) N L1+£,1+2£(M) — H1+£’1+28(cﬂ).

Proof: It is clear that
H1+8’1+28(cﬂ) cC H1+€’1+g(cﬂ) N L1+£’1+28(M).
To prove the converse inequality, fix an x? € H*&1*¢(A) n L1+e1+2¢8() and set =

1
((x?)*x? + 1)z, thenwe see w € L**&1+2¢(M)and w™! € M. Applying Theorem (5.2.27)
to w, we get a unitary u € Mand an invertible h? € H1*&1%2¢(.4) such that o = uh? and
h™2% € A. Then we obtain
(h®)*h? = (x?)*(x?) + 1.
Since |h?| = |x?|, there is a contraction v € M such that x> = wvh2. It follows that v =
x2h™% € H'*&l*e(A) n M, therefore, we obtain that v € A. Consequently, x? € A -
Hirelt2e gy = gitel+2¢(.4) and we conclude the first inequality. The later equality is
Immediate established by adapting the similar proof
Proposition (5.2.29)[270]:Let—1 < & < oo, and h? € Ht281*¢(A), then:
) [hzo‘l]L1+e,1+2e(M) = Hlteltze (A)if and only if [hzuq]L1+2£,1+s, O Hitzelte (A).
i) [hzcﬂ]L1+e,1+2e(M) = Hlteltze (cﬂ)lf and only if [hzcﬂ]L1+2£,1+s, Y Hit2elte (A).
iii)[o‘lhzcﬂ]LHe,Hze(M) = gltel+2e (A)if and only if [dqhqu]L1+2£,1+£, o) =
H1+2£,1+£ (dq)
Proof : We shall prove only the third equivalence. The proofs of the others are similar.
First, if [Ah®A] 12e1+enpy = HP2EME (A), from the density of H'*251*¢ (A) in
H1*281%¢ (A), we see that [Ah®A] 1rerszeny = HFE128 (A). To prove the converse
implication, when & > 0, let x2 € L(1+28).(1+&) (a1 with
t(x2a’h*(a* +¢€)) = 0,Va%a’+¢c € A,
then x2a?h? € H} (A), where (1 + 2¢)’, (1 + €)'is respectively the conjugate index of 1 +
2¢,1 + &. On the other hand, by the condition that [Ah?A] 1+e1+2e(yy = H 51428 (A), there
exist two sequences (a,2), (a,% + &,) < A such that

|lan?h?(an? +&,) — 1|

H1+s’1+28(o‘l) - O’n — 0.

Proposition (5.2.24) gives that

(2+3¢e71)
(1+2en

L1+8,1+£ (]V[)
< 5||x2||L(1+26)',(1+s)'(]v[)”xzanzh(anz +é&)— 1”

Lete > —1,besuchthat1 =

|x%a,2h?(an? + &, ) — x|

L1+8,1+2£ (M) - O’n — 0.

Consequently, we get
2,22 (@ + €)= 2 svesse
Since x2a,h?(a,% + &,) = (x?an?h)(a,? +¢&,) € HE (A) < Hy ' *4(A), we know that
x? € Hy "8 (A) nLA+2e0Arey(pry = gA+2en+er (). Hence  t(x?y?) =
0,V y? € H*t281%e (4). It follows that
[c/lhzc/l]L1+2£,1+e(M) = H1+2€’1+£ (cﬂ)

- 0,n »> oo,
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Now we assume min(1l+ 2¢,1+¢,1+4+¢,1+4 2¢) < 1. Choose an integer n such that
min(n(1 + 2¢),n(1 + ¢),n(1 + ¢),n(1 + 2¢)) = 1, then the conclusion of the previous
case tells us that [Ah2A] narzemase py = H'T2OM0+E(A) Since HM(1+2n01+6) (1) s
dense in H'*?&1*%(A), the proof of the first part implies that [AR*A] 1+2e14e5p) =
H1+2€,1+€,(dq).

The previous result justifies the relative independence of the indices 1 + ¢, 1 + 2¢ in the
following definition (see [38]).
Theorem (5.2.30)[270]:Let —1 < &£ < o and h? € HIt&1+2e( 1),
(i) If h? is left or right outer, then A(h?) = A(e(h?)). Conversely, if A(h?) =
A(e(h?))and A(h?) > 0, then his left and right outer (so bilaterally outer too).
(ii) i) If A is antisymmetric (i.e., dimD = 1) and h? is bilaterally outer, then A(h?) =
A(e(h?)).
Proof Let h? € H*&1+2¢(.4). Putting0 < 1+ £ < min(1 + &1 + 2¢) < oo we obtain that
h? € HY*E(A).
Proposition (5.2.29)and [39] imply that (i) and (ii) hold.
The following corollary is a consequence of this theorem.
Corollary (5.2.31)[270]:Let h? € H*®1*t2¢(A)and —1 < & < oo.
i) If A(h?) > 0, thenh?is left outer if and only if h? is right outer.
i) Assume that A is antisymmetric (i.e.,dimD = 1), then the following properties
areequivalent:
(a) h2is left outer;
(b) h? is right outer;
(c) h? is bilaterally outer;
(d) A(e(h?)) = A(R?) > 0.

We will say that h? is outer if it is at the same time left and right outer. If h? €
Hitelr2e( 4y with A(h?) > 0, then h? is outer if and only if A(h?) = A(e(h?)). Also in the
case where A is antisymmetric (i.e., dimD = 1), an h? with A(h?) > 0 is outer if and only
if it is left, right orbilaterally outer.

Corollary (5.2.32)[270]: Let h? € H'*&1%3¢ (A) be such that h=2 € H*2&1%4€ (4) with
0 < & < oothen h? is outer.

Proof: Let h? € H'*&1%3¢ (.4) be such that h™2 € H1*t281%4€ (4), Taking 0 < 1+ ¢ <
min(l+&1+38) <o,0 < 1+¢& < min(1+2¢ 1+ 4¢g) < oo, we get h? € H1TE(A)
and h=2 € H1*¢(A). By virtue of Proposition (5.2.29) and [39], we see that h? is outer.

The following theorem improves Theorem (5.2.27).

Theorem (5.2.33)[270]:Let w € L*+&1*2¢ (M) with —1 < & < oo such that A(w) > 0, then
there exist a unitary u € Mand an outer h? € H*&1*2¢(4) such that w = uh?.

1
Proof Write the polar decomposition of w: w = v|w]|. For |w]z, by virtue of Theorem (5.2.27)

1
we get a factorization: |w|z = u,h2, with u,unitary and h% € H2(1+8)2(1+28) (1Y |eft outer.
Since A(h,?) > 0,h,%is also right outer, itfollows that hZis outer. Similarly we have:

1
v|w|zu, = u,h?.
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This tells us that u = u,,h?> = h#h3 yield the desired factorization of w.

Here we present the inner-outer factorization for operators in H1+&1+2¢(.4),
Corollary (5.2.34)[270]:Let —1 < e < 0 and x? € Ht&l1t2¢(.4) with A(x?) > 0, then
there exist aunitary u € cA(inner) and an outer h? € H*&1+2¢(.4) such that x2 = uh?.
Proof Let x2 € H1*t&1*2¢(4) with A(x?) > 0. Applying the previous theorem, we get x? =
uh? with h2outer and u unitary in M. Let (a,?) € A such that limh?a, =1 in
H*relt2e4), thenu = limx?a,? in H¥&*2¢(.4), which implies that u €
H1+€'1+28(cﬂ) NA= A.
Corollary (5.2.35)[270]:Let —1 < £ < o0 and h? € H1*t&1*2¢(.4) with A(h?) > 0, then h?
is outer if and only if for any x2 € H1t&1+2¢(4) with |x?| = |h?|, we have A(e(x?)) <
A(e(h?)).
Proof Let h? be outer and x2? € H*&1*2¢(.4) with |x?| = |h?|,. Taking 0 < 1+¢ <
min(l+¢&,1+ 2¢8) < oo we obtain that x2 € H*¢(A). From [39], we get A(e(x?)) <
A(g(h?)). Conversely, let h? = uk? be the decomposition given by Theorem (5.2.33) with
k? outer. It is easy to check that A(h?) = A(k?) = A(e(x?)) < A(e(h?)).Putting0 < 1+
e < min(l+e&1+2) <oowegeth? € H*¢(A). Hence, [39] tells us that A(s(x?)) <
A(g(h?)). Consequently, A(e(x?)) < A(e(h?)).So h? is outer due to Theorem (5.2.30).
Section (5.3) Subdiagonal Subalgebras with Applications to Toeplitz Operators

Let T be the unit circle of the complex plane equipped with normalised Lebesgue
measure dm. We denote by HP(T) the usual Hardy spaces on T. Let P, be the orthogonal
projection from L?(T) onto H?(T). The classical Helson-SzegO theorem [101] (see also [141]),
characterises those positive measures u on T such that P, is bounded on L?(T,u). The
condition is that u is absolutely continuous with respect to dm and the corresponding Radon-
Nikod ym derivative w satisfies

w = e“*? for two functions u, v € L®(T) with |||, < /2, (15)
where ¥ denotes the conjugate function of v.
The motivation of this theorem comes from univariate prediction theory. Let P, denote the
space of all polynomials in z, and P_ the space of all polynomials in z without constant term.
P =P, + P_is the space of all trigonometric polynomials. Then P, is bounded on L?(T, p) if
and only ifP, and P_ are at positive angle in L?(T, ). Recall that the angle between?, and
P_ is defined as arccos of the following quantity

p = sup{|[; fgdu|: f € Pr,g € P IIf N2y = gz, = 1}

Thus P, is bounded on L?(T, ) ifand only if p < 1.

In multivariate prediction theory one needs to consider the matrix-valued extension of the
Helson-Szego theorem. Let M, denote the full algebra of complex n x n-matrices, equipped
with the normalised trace tr. Let P, (M,,) denote the space of all polynomials in z with
coefficients in M,,. P_(M,,) and P(M,,) have similar meanings. Let w be an M,,-valued weight
on T, i.e. w is an integrable function on T with values in the family of semidefinite nonnegative
matrices. For any trigonometric polynomials f and g in P(M,,) define

(f,9)0 = [ytr(g°fw)dm and lIfll, = If,fll°,
where a* denotes the adjoint of a matrix a. Like in the scalar case, define
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p = sup{|[tr(g* fw)dm|: f € P (My), g € P-(My), Iflle = llgll, = 1}
Again, p < 1 if and only if P, ® IdM,, is bounded on P(M,) with respect to ||.[|,,. The
problem here is, of course, to characterise w such that p < 1 in away similar to the scalar case.
This time the task is much harder, and it is impossible to find a characterisation as nice as (15).
Numerous works have been devoted to this subject, see, for instance [223, 172, 171, 180, 106,
266]. In particular, Pousson’s characterisation in [106] is the matrix-valued analogue of a key
intermediate step to (15). It is strong enough for applications to the invertibility of Toeplitz
operators.
The preceding two cases can be put into the more general setting of subdiagonal algebras in
the sense of [300]. We will provide an extension of the Helson-Szego theorem in this general
setting.
We study the invertibility of Toeplitz operators. It is well known that the Helson-
Szego theorem is closely related to the invertibility of Toeplitz operators. This relationship was
remarkably exploited by Devinatz [7]. Pousson [105, 106] then subsequently extended
Devinatz’s work to the matrix-valued case. Using our extension of the Helson- Szego theorem,
we will characterize the symbols of invertible Toeplitz operators in the very general setting of
subdiagonal algebras.
We end this introduction by mentioning the link between the Helson-Szegé theorem and
Muckenhoupt’s A, weights. Let w be a weight on T. Hunt, Muckenhoupt and Wheeden [243]
proved that the Riesz projection P, is bounded on L?(T,w) if and only if
lllfwlllfw 1 < oo, (16)
where the supremum runs over all arcs of T. Such a w is called an A,-weight. Thus for a weight
w the two conditions (15) and (16) are equivalent via the boundedness of the Riesz projection.
It seems that it is still an open problem to find a direct proof of this equivalence.
Hunt, Muckenhoupt and Wheeden’s theorem was extended to the matrix-valued case by Treil
and Volberg [266]. Namely, let w now be an M -valued weight on T. Then P, & IdM,, is
bounded on P (M) with respect to ||. ||, if and only if

1 Yz 1 N1

(he) (he™) (o) w

It is not clear for us how to extend Treil and Volberg’s theorem to the case of subdiagonal
algebras. On the other hand, Hunt, Muckenhoupt and Wheeden also characterised the
boundedness of P, on LP (T, w)forany 1 < p < oo by the so-called 4,, weights. A well known
open problem in matrix-valued harmonic analysis is to extend this result to the matrix-valued
case; even to the very general one of subdiagonal algebras.

M will be a von Neumann algebra possessing a faithful normal tracial state z. The associated
noncommutative LP-spaces are denoted by LP(M). We refer to [89] for noncommutative
integration. For a subset S of LP (M), we will write [S],,for the closure of S in the LP —topology.
On the other hand, S* will denote the set of all Hilbert-adjoints of elements of S. When an
actual Banach dual of some Banach space is in view, we will for the sake of avoiding confusion
prefer the superscript x . For example the dual of M will be denoted by M*. Because M is finite,

sup

1/2
sup

127



there will for any von Neumann subalgebra N of M, always exist a normal contractive
projection ¥: M — N satisfying 7 oy = 7.This is the so-called normal faithful conditional
expectation onto N with respect to .
A finite subdiagonal algebra of M is a weak* closed unital subalgebra A of M satisfying
the following conditions
(i) A+ A*isweak” densein M;
(i)  the trace preserving conditional expectation @: M - A N A* = D is multiplicative on
A:
®(ab) = (a)®(b),a,b € A.
In this case, D is called the diagonal of A. We also set A, = A N Ker(®). In the sequel, A will
always denote a finite subdiagonal algebra of M.
Subdiagonal algebras are our noncommutative H*’s. The most important example is, of
course, the classical H*(T) on the unit circle. Another example important for multivariate
prediction theory is the matrix-valued H*(T). More precisely, let M = L*(T) ® M,, =
L*(T; M,,) equipped with the product trace, and let A = H*(T; M,,) the subalgebra of
M consisting of n X n-matrices with entries in H*(T). Many classical results about Hardy
spaces on T have been transferred to the matrix-valued case. A third example is the upper
triangle subalgebra T,,of M,,. This example is closely related to the second one, and is a finite
dimensional nest algebra. We refer to [89] for more information and historical references on
subdiagonal algebras, in particular, on matrix-valued analytic functions.
For p < oo the Hardy space HP (A4) associated with a finite subdiagonal algebra A is defined to
be [A],. The closure of A, in LP(M)will be denoted by Hf,’ (M). By convention, we put
H*(A) = A and Hy® (A) = A,. These spaces exhibit many of the properties of classical HP
spaces (see [278, 64, 65, 175, 190, 152]). In particular for 1 < p < oo, LP(M) appears as the
Banach space direct sum of HP (M) and HY (M)*, with HP (M) appearing as the Banach space
direct sum of HY (M) and LP(D). In the case p = 2, these direct sums are even orthogonal
direct sums.
Recall that if a weight w on T satisfies (15), then necessarily logw € L'(T), or
equivalently,
exp (leogw) > 0. (17)
The integrability of logw is also equivalent to the existence of an outer function h € H*(T)
such that w = |h|. To state the outer-inner factorisation and prove the Helson-Szego analogue
for subdiagonal algebras, we need an appropriate substitute of the latter condition. This is
achieved by the Fuglede-Kadison determinant. Recall that the Fuglede-Kadison determinant
A(a) of an operator a € LP (M) (p > 0) can be defined by

0]

A(a) = exp(t(log |a])) = exp f log tdvq(t) |,
0
where dv4 denotes the probability measure on R, which is obtained by composing the spectral
measure of |a| with the trace 7. It is easy to check that
A(a) = lirr(%llallp and A(a) = inf exp t(log(|a| + 1)) .
p—>

>0
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As the usual determinant of matrices, 4 is also multiplicative: A(ab) = A(a)A(b). We refer
for information on determinant to [26, 300] in the case of bounded operators, and to [157, 288]
for unbounded operators.

Return to our Hardy spaces. An element h of HP (M) with p < oo is said to be an outer
element if hA is dense in HP (M). If in addition A(h) > 0, we call such an h strongly outer. See
[63] for p = 1 and [284] for p < 1. We will however pause to summarise the essential points
of the theory. For any outer element h of HP (M), both h and @ (h) necessarily have dense range
and trivial kernel. Hence their inverses exist as affiliated operators. For such an outer element,
we also necessarily have that A(h) = A(®(h)). If indeed A(h) > 0, the equality A(h) =
A(®(h))is sufficient for h to be outer. Using this fact it is now an easy exercise to see that if
A(h) > 0, then hisan outer element of H? (M) if and only if h* is an outer element of HP (M)*
if and only if h is right outer in the sense that Ahwill also be dense in H? (M). In this theory
one also has a type of noncommutative Riesz-Szego theorem, in that any f € LP (M) for which
A(f) > 0, may be written in the form f = uh where u € M is unitary and h € HP (M)an outer
element of HP (M).

Given a state w on M, we write (m,,, L?(w)R2,)for the cyclic representation associated to w.
The subspaces A* and A, embed canonically into L?(w) by means of the operation a —
m,(a)f,. The angle between A* and 4, in L?(w)is defined to be that between the closed
subspaces 7, (A*)2,and T, (4,)12,. The latter is equal to cos™* p with p given by

p = sup{|{r, ()2, T, (D)2,):a € Ag, b € A, |l ()20l < 1, ||, (b)M20 ]| < 1}
In view of the fact that =, (a)2,, 7, (b)2, = w(b*a), this may be rewritten as

p = sup{|w(b*a)|:a € Ay, b € A*,w(|a|?) < 1,w(|b|?) < 1}.

In general 0 < p < 1.4* and A, are said to be at positive angle in L?(w)if p < 1. Let P, be
the orthogonal projection from L2 (M) onto H?(M). It is then clear that P, defines a bounded
operator on L?(w) if and only if p < 1.
We present our noncommutative Helson-Szego theorem. This theorem will prove to be an
important ingredient in our onslaught on Toeplitz operators . The classical Helson-Szego
theorem contains the information that any finite Borel measure for which the angle between A
and Aj is positive must necessarily be absolutely continuou with respect to Lebesgue measure,
and moreover that the Radon-Nikod"ym derivative of this measure must have a strictly positive
geometric mean (17). Before presenting our noncommutative Helson-Szego theorem, we first
show that under some mild restrictions the same claims are true in the noncommutative case.
LY (M) will denote the positive cone of L? (M).
Proposition (5.3.1)[170]:Let D = A n A*be finite dimensional, and let w be a state on M for
whichp < 1. Then w is of the form w = (g -) for some g € L1 (M).
Proof:We keep the notation introduced at the end of the previous section. Let w,, and wq
respectively be the normal and singular parts of w. Firstly note that by [183], there exists a
central projection eyin m,(M)" such that for any &,¢ € L?(w) the functionals a —
(m,(a)eyé, P)and a — (m,(a)ey &, P) on M are respectively the normal and singular parts of
the functional a - (m,(a)é ), where ey =1—¢, In particular, the triples
(eoT,, eoL? (W), e0f,,) and (egm,,, ey L? (w), e5 12,,) are copies of the GNS representations of
w, and w,respectively. Since p < 1, we must have that
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Ty (Ao)w N, (A7)0, = {0}.
Now suppose that the singular part wg of w is nonzero. By Ueda’s noncommutative peak-set
theorem [315] there exist an orthogonal projection e in the second dual M** of M and a
contractive element a of A so that

(i)  a™ converges to e in the weak*-topology on M**;

(i)  ws(e) = wg(1) (here wy is identified with its canonical extension to M**);

(ili) a™ converges to 0 in the weak*-topology on M.

Since the expectation @ is weak*-continuous on M, @ (a™)is weak* convergent to 0. But then
the finite dimensionality of D ensures that @(a™)converges to 0 in norm.

Recall that the bidual M** of M may be represented as the double commutant of M in its
universal representation. So when this realisation of M**is compressed to the specific
representation engendered by w, it follows that e yields a projection & in m,(M)''to which
m,(a™) converges in the weak*-topology on m,,(M)". This weak* convergence in m,(M)"
together with the second bullet above, then yield the facts that

(i) mw(a™)f, converges to &1, in the weak-topology on L?(w);

(i)(en,, eé”w) = ws(D).

From the first bullet and the fact that {®(a™)} is a norm-null sequence, it follows that 7, (a™ —
®(a™))1,, is weakly convergent to éw, and hence that é0,, € r,(4,)2,,. Butif an converges
to e in the weak*-topology on M**, then surely so does (a*™). In terms of the GNS
representation for w, this means that r,((a*)™)f2,, also converges toéwin the weak-topology
on L?(w). But then éw € m,,(4*),,. Then éw = 0 since éw € m,(4y)w N1, (A*)02,. But
this cannot be, since by the second bullet this would mean that wg(1) = (éw, ey 2,,) = 0. Thus
our supposition that wg is nonzero, must be false. The condition that p < 1, is therefore
sufficient to force w to be normal. That isw is of the form w = 7(g.) for some g € L (M).
The following lemmata present two known elementary facts.
Lemma (5.3.2)[170]:For any g € LY (M) we have that

s(@(9)) = s(9)
where s(g) denotes the support projection of g.
Proof: For simplicity of notation we respectively write s and s, for s(g) and s(®(g)). Since
s¢ € D, we have that

(53955 ) =7 ° P(sp955 ) = T(s5P(9)sp ) = 0.

Therefore g'/2s$ = sgg/? = 0. This is sufficient to force s3 L s, which in turn suffices to
show that s > s.
Lemma (5.3.3)[170]:Let e be a nonzero projection in D. Then eAe is a finite maximal

subdiagonal subalgebra of eMe (equipped with the trace te(.) = Tle)f(')) with diagonal

ede N (ede)* = eDe.

Proof: The expectation @ is trivially still multiplicative on the compression eAe. Using the
fact that e € D, it is an exercise to see that® mapseAe onto eDe. It is also straightforward to
see that the weak*-density of A + A* in M forces the weak*-density of eAe + (ede)” in eMe,
and that (ede), = eAye.
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Definition (5.3.4)[170]: Adopting the notation of the previous two lemmata, given a nonzero
element g € L (M), we define A4 (g) to be the determinant of s, gs, regarded as an element
of (seMSg, TSg)
Proposition (5.3.5)[170]: Let D = A n A* be finite dimensional, and let g € L (M) be a norm-
one element for which the state w = 7(g - ) satisfies p < 1. Then 44(g) > 0.
Proof: It is clear from the previous lemmata that we may reduce matters to the case
wheres(®(g)) = I, and hence we will assume this to be the case. Suppose by way of
contradiction that 4(g) = 0. By the Szego formula for subdiagonal algebras [159], we then
have that

0=A4(g) = inf{t(gla—d|*):a € Ay, d € D,A(d) = 1}.
Thus there exist sequences {a,,} c Ayand {a,,} € D with4(d,,) = 1 for all n, so that

1(gla, - d,|*) > 0as n - oo,

By [60] we may assume all the a,,’s to be invertible. Now let u,, € Dbe the unitary in the polar
decomposition d,, = u,,|d,|. It is an exercise to see that then {u}a,} c A,with |a,, — d,|* =
lura, — |d,||?. Making the required replacements, we may therefore also assume that {d,,} c
D™,
Since 1< (d,) < |ld,ll for all n, we will for the sequences d,, = mdnanda‘; =

—”d1” a, (n € N), still have that t(g|a, — d,|?) — 0 as n — . Now recall that D is finite

dimensional. So by passing to a subsequence if necessary, we may assume that {d,,} converges
uniformly to some norm one element d,of D*. But then by what we showed above,
1704 (@) — m(do)||, = t(gl@ — do|*)"/?
< 7(g1@ = dul)"? + 1(gldy — do|*)"/?
< 1(91@G — dul)Y? +||dy = dol| ,7(9)"?
- 0.
Thus m,(dy) € my(Ap) N1y(AL). Since @(g) is of full support, we have that
®(g)2dy®(g)? # 0. So
0 <7(P(9)"?do@(9)"? = T(P(g)do) = (P (gdy)) = T(gdo)-
Therefore m,(d,) # 0. But this proves that the subspaces m,(4,) and m ;(A*) have a
nonzero intersection, and hence that p = 1.
The following technical lemma is a crucial step in the proof of the classical Helson-Szego
theorem. The challenge one faces in the noncommutative world is that the functional calculus
at our disposal in that context is simply not strong enough to reproduce so detailed a statement
in that framework. However in the lemma following this one, we present what we believe to
be a reasonable noncommutative substitute of this interesting lemma.
Lemma (5.3.6)[170]: Let u =e ™ withyp a real measurable function on T. Then
infgey=ry|le™™ — g|| < 1 if and only if there exist an & > 0 and a k, € H*( T)so that

kol = £ and [ip| + arg (k)| < - & almost everywhere.
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Lemma (5.3.7)[170]:Let u be a unitary element of M. Then there exists some f € A so that
lu — flle < 1 ifand only if there exists h € Aso thatR(u"h) is strictly positive.
Proof: Suppose first that there exists f € A with ||lu — f|l, < 1. We then equivalently have
that ||1 —uf|| = ||1 — f*ul| < 1. On setting
a = ||1 —u*f]l, it follows that ||T — R(u * f)|| < a < 1, and hence that

—al <R f)—1<al
This in turn ensures that 0 < (1 — a)l < R(u*f).
Conversely suppose that there exists h € AN M~1 so that R(u*h) = al for some 0 < a <
||SR(u*h)|| < ||h||, where M~1 denotes the subset of invertible elements of M. Given & >

0, setd = ﬂ It then follows that

2ae
—2AR(u*h) + )L2|h|2 < - (m — 52)11

(Observe that ﬂ < 1 in the above inequality.) It is clear that if € is small enough, we would

have that 1 > (2% — > (0. Thus we may assume this to be the case. For simplicity of
Il y plctty
notation we now set § = (ﬁiﬁ —€ ) It therefore follows from the previous centered inequality

that
0<|1—-u*(Ah)|? =1-2Ru*(1h) + |Ah]?* < (1 — &)L

Hence as required, ||1 — u*(AL)|12 < (1 - 6) < 1.
We are now finally ready to present our noncommutative Helson-Szegotheorem. In view of
Propositions (5.3.1) and(5. 3.5), it is not unreasonable to restrict attention to normal states (g.)
in this theorem for which A5 (g > 0. The following result is a sharpening of the result of
Pousson [108], in that here the conditions imposed on the unitary u are less restrictive. This
sharpening is achieved by means of the preceding Lemma.
Theorem (5.3.8)[170]:Let g € L (M) be given with ||g|l; = 1, and denote s(®(g)) by se.
Consider the state w = t(g.). Then p < 1 and 44,(g) > 0 if and only if gis of the form g =
frufWhere

(i) u € M isapartial isometry with initial and final projections sg4, for which there exists

some k € s4Asg SO that R(u*k) = asg for some a > 0,°
(i) and f; and f; are strongly outer elements of H2 (M) commuting with s, for whichg +
(I —s) = IfL1* = Ifz]*
If in addition dimD < oo, we may dispense with the restrictions that w is normal, and that
4¢(g) > 0.
Proof: Set s = sgfor simplicity. Suppose that g satisfies the condition 4,(g) > 0. Using the
fact that then Ay(g'?) = A44(9)Y? > 0, it follows from the noncommutative Riesz-
Szegotheorem (see [63]) that there exist strongly outer elements h;,hyp € H*(sMs) and
unitaries v, vy € sMs for which g'/? = v, h; = hzvg. (Then also g*/? = |h,| = |h}].) We
set
u=vgpv,, f,= h,+stfr=hg+st.
It is then clear that
g = frufiand g + st = |f,? = 5|2
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We proceed to show that f; and fgare strongly outer. The proofs of the two cases are identical,
and hence we do this for f; only. Notice that

log(If.) = log(lh| + s) = log(|h.Ds.
Since @(f) = ®(h,) + s+, we similarly have that

log(I2(fu)]) = log(|®(hy)D)s.
It then follows that

7(log |fL]) = ©(s)Ts(log |h,Dand T(log [P (f)]) = t(s)Ts(log |P(h)]).
Thus the outerness of h; yields that
T(log |fi]) = t(log |P(fL)]) > —o0,50 A(f}) = A(@(fL)) > O.
Then an application of [63] now shows that f; is strongly outer. On the other hand, we have
(my(a)y, m(b)2,) = 1(gb*a) = t(uf b afr),a € Ag, b € A",
So
p = sup{|t(gb*a)|:a € Ay, b € A*,1(glal*) < 1,7(g|b|?) < 1}

= sup{|t((u(sf,b*)(afes))| : @ € A, b € A", t(lafes|?) < 1,7(|bf;s|?) < 1}

= sup{|T(uF,F,)|: F, € sH*(M),F, € H3(M)s, ||F1ll; < L IIFIl, < 13,
In the above computation one has used the fact thatf; and fy are strongly outer to approximate
F; and F, with elements of the formsf,b* and afzswhere a € A, and b € A™ However, it is
easy to check that for F; € sH?(M),F, € H;(M)s

F,F, € Hy (sMs) and ||F;F, Iy < ||IF;lI211Fl.
Conversely, by the Noncommutative Riesz Factorisation theorem [176, 153], for any € > 0
and any F € H} (sMs) there exist F; € H?>(sMs) ¢ sH?*(M) and F, € H;(sMs) c H*(M)s
such that
F = F F, and ||Fi||;|IFz |l < [|Filly + &
From these discussions we conclude that
p = sup{|t(uF)|:F € Hy(sMs), IFll; < 1} = sup{|ts(uF)|: F € Hy (sMs), T,(|F|) < 1}.
The norm of the restriction of the functional L!(sMs) - C:a — 7,(ua) to H} (sMs) is by
duality precisely the norm of the equivalence class [u] in the quotient space sMs/(Hj (sMs)).
However, it is well known that
sAs = {a € sMs:t4,(ab) = 0,b € sAys}
(cf. e.g., [153] ). From this fact it is now an easy exercise to see that the polar (Hj (sMs)) is
nothing but sAs. It therefore follows that
p = inf{|lu — k||.: k € sAs}.
The result now follows from an application of the preceding Lemma.
We start by recalling the definition of Toeplitz operators. Givena € M, the Toeplitz operator
T, with symbol a is defined to be the map
T,: H*(M) » H?>(M): b — P, (ab),

where P, denotes the orthogonal projection from L2 (M) onto H?(M). see [177] (see also [30]).
We will characterise the symbols of invertible Toeplitz operators. We point out that these
results are new even for the matrix-valued case. In achieving this characterisation, we will
follow the same basic strategy as Devinatz [7] in his remarkable solution of this problem in the
classic setting. Our first result essentially reduces the problem to that of characterising
invertible Toeplitz operators with unitary symbols.
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Theorem (5.3.9)[170]:Let a € M be given. A necessary and sufficient condition for T, to be
invertible is that it can be written in the form a = ukwhere k € A7, and u € M is a unitary
for which T, is invertible.
Suppose that a € M is indeed of the form a = ukwhere k € A=, and u € M is a unitary. It is
a simple exercise to see that then T}, is invertible with inverse T,_, . Since T,T,_, = T,, and
T, T, = T,, itis now clear that T, will then be invertible if and only if T;, is invertible.
Proof: The sufficiency of the stated condition was noted in the above discussion. To see the
necessity, assume T, to be invertible. There must therefore exist some g € H*(M) so that
T,g = L. This in turn can only be true if there exists some h € H3 (M) so that ag = 1 + h*. By
the generalised Jensen inequality [63] we have that
A(@)A(g) = A(ag) = A+ k) = A(@(1+ k%)) =4A(0) = 1.
Clearly we then have that A(|a|*/?) = A(a)*/? > 0. So by the noncommutative Riesz-Szegd
theorem [64], there must exist an outer elementf € H2(M) and a unitary v so that |a|*/? = vf.
(Note then that f € M, so f must belong to A too.) Let w be the unitary in the polar
decomposition a = w|a|, and consider b = w|a|*/?v. Notice that by construction bf = a.
Thus T, T; = T,. We will use this formula to show that T is invertible, from which the result
will then follow.
Firstly note that the injectivity of T, combined with the above equality, ensures that Tris
injective. Next notice that the equality T,Tr = T,. ensures that (T, )™'T}, is a left inverse for
Tr. So Ty must have a closed range. However since f is outer, we also have that [fA], =
H,(M). Since fA c Ty (H,(M)), these two facts ensure that the range of T is all of H,(M).
HenceTymust be invertible.
But if T; is invertible, then so is T ¢ = Tf,. Since ¢ Tr = T sz = T|q, the operatorT, must be
invertible. Since o(|al) c o(T|q)) by [177], we must have that 0 € o(]al). In other words
|a| must be strictly positive. But if |a]| is strictly positive, then by Arveson’s factorization
theorem there exists some k € A~ with |a| = |k|. Finally let w, be the unitary in the polar
formk = wy|k|. Then a = wwgyk, which proves the theorem with u = wwy.
Our next step in achieving the desired characterisation, is to present some necessary structural
information regarding unitaries u for which T, is invertible. We then subsequently use this
structural information to obtain a characterisation of invertibility in terms of positive angle.
Lemma (5.3.10)[170]: Let u € M be a unitary. A necessary condition for T,, to be invertible is
that it is of the form u = (g )~'dg,”'where g,, gare strongly outer elements of H2(M) and
d a strongly outer
element of L2(D) related by the conditions that
d = ®(go) = @(91),dgo ' ,d"gi" € H*(M) and g5g, = d"(g1g1)"d.
Proof:Let u € M be a unitary for which T, is invertible. Since T, = T,,- is then also invertible,
itfollows that there must exist g,, g; € H*(M) so that T,,g, = I = T, g,. This in turn means
that there exist hq, h; € HZ (M) with
ugo =1+ hy,u*g, =1+ h;.
Notice that we may then apply the generalised Jensen inequality [64] to conclude that
A(go) = AW)A(go) = A(ugo) = A(l) = 1.
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Similarly A(g,) = 1. By [63] this means that both g, and g, are injective with dense range,
and hence that g5 tand g;! exist as affiliated operators. On the other hand, we have that

giugo = gi(l + hg) € H'(M)" and giug, = gi(1+ hi) € H'(M)".
Hence

giugo € H'(M) n H'(M)" = L'(D).

If we denote this element by d, it follows that u is of the form u= (g})~d g5 . It is then
clearthat d*(ggg91)~d = g3 go.
It remains to show that g, and g, are outer and thatd = 4(g,) = 4(g7). To see this notice that
since g; € H*(M)*andug, = 1 + h§ € H2(M)*, we have that

d = ®(d) = 2(giugo) = P(g1(1+ hy )) 2(g91)@ (1 + hp) = P(g1).
Similarly, d = ®(g,). (Since @ maps H%(M) onto L?(D), this equality also shows that d is in
fact in L?(D),, and not just L*(D),.) It now follows from the equality g5go, = d*(9:91)~1d,
that

A(go)* = A(g590) = A(d"(g191)d) = A(d)?A(g1)™% = A(®(91))*4(g91) 72
Since as was shown earlier we have that 4(g,) = 1, it therefore follows that 0 < 4(g;) <
A(D(gq1)).1f we combine this with the generalised Jensen inequality [63],we obtain 0 <
A(g1) = A(P(g,).Similarly, 0 < A(gy) = 4(D(g,)). Thus by [64] both g, and g, are
strongly outer.
When combined with Theorem (5.3.9), the following lemma characterises the invertibility of
Toeplitz operators in terms of positive angle. If we further combine this lemma with the
noncommutative Helson-Szego theorem obtained, we end up with the promised structural
characterisation of invertible Toeplitz operators with unitary symbols.
Lemma (5.3.11)[170]:Let u € M be a unitary of the form described in the previous lemma.
Then T,is invertible if and only ifA* and A, are at positive angle with respect to the functional
T(w *), where
w = gogo = d*(g19:1)7"d.
Proof: First suppose that T,, is invertible. For any a € A the element gya will belong to H2(M).
So the invertibility of T;, ensures that we can find a constant K > 0 so that
lgoallz < KT (god) Iz, a € A.
Recall that by Lemma (5.3.10) u is of the form u = (g;)~dgy* . Thus the former inequality
translates to
lgoalls < KIIPy(gi)~"dallz, a € A.
Now observe that foranyb € A,, the element (g;)~*db* will belongto H2(M)*A}y c HE(M)*.
Hence
Pi((g1)~"da) = P,((g71)"'da + (g7)~'db").
If we now write ||f||,fort(wf*f)/?, then for any a € Aand b € A, we have that
lla*ll, = t(a*wa)/? = || goall,
< KIlIP,((g1)~'da + (g1)~dbM)ll
< Kll(g1)"'d(a + b)),
= Kt((a* + b)w(a+ b*)) =K|la* + b]|,

Thus A* and Ajare at positive angle with respect to the functional t(w.).
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Conversely, suppose that A* and A,are at positive angle with respect to the functional 7 (w").We
first show that T;, has dense range, and hence that it will be invertible whenever it is bounded
below. Let a, € H2(M) be orthogonal to T,,(H*(M)). We will show that a, must then be the
zero vector. Given a € A, the orthogonality of a, to T,,(H?(M)) together with the fact that u =
(g))~tdgy?t, ensures that
0 = (T, (go), ao) = 1(a3T,(goa)) = t(asP+((91)'da) = t(aj(gi) *da).
However, as was noted in the first part of the proof, for any b € A,we have that
ag(91)~'db* € Hi(M)*,
which implies that
(a5 (97)tdb*) = (P (ay(g;)tdb*)) = 0.
Thus
1(a5(g)) " td(a + b*)) = Oforalla € 4, b € A,.
Hence d*g;la, = 0,s0a, = 0.
It remains to show that T, is bounded below whenever A* and A, are at positive angle with
respect to the functional t(w -). Hence assume that there exists a constant B > 0 so that
la*|l, < Blla* + b]|, foralla € A, b € A,.
Since by assumption we have that d = @(g;), and since both g; and ((g;) 1d)belong to
H?(M)*it follows that
d = o(d) = d(gi[(gD)d]) = P(gNP((g1)d) = do((g1)~1d).
This yields that @((g;)~*d) =1. Now since g; is by assumption strongly outer, we have that
A(g,) = A(@(g1)) > 0 by [63]. Consequently
A(d) = A(g1)A((gD) 7 d) = A@(g))A((g) d) = A(d)A((gD)1dD).
Thus since A(d) > 0 by the strong outerness of d, we must have that
A((gD)7'd) =1 =A() = A(P(gD ™ d)).
Hence by [63] ((g;)~1d) is a strongly outer element of H?(M)*. But this ensures that
[((g)1d)Ay ] = Hi (M)*. Hence for any fixed a € A, we may select a sequence {b,} € 4,
so that
(g1)~'dby — (P, — Id)[(g7)~'da] € Hg (M) in L*(M).
Finally recall that by assumption |go| = |(g1)~td|. So given any a €A, with {b,} c A, the
sequence as constructed above, we have that
lgoallz = lla”ll, < Blla®™ + byll, = Bllgo(a + bp)ll2 = Blllgol(a + by)ll2
= BllI(gD) " I(a+ b, = Blll(g) (@ + by)ll,.
Letting n — oo now yields
lgoall, < BIIP:[(g1) " da]ll = BIIT,(go)ll, for anya € A.
Finally note that by assumption g,is an outer element of H2(M). With g,A therefore being
dense in H2(M, the above inequality extends by continuity to the claim that
lall, < BIIT, (@)l for anya € H2(M).
Thus T, is invertible.
Definition (5.3.12)[170]:Given f € M we define the Hankel operator with symbol f by means
of the prescription
He : H*(M) » H*(M)*: x = P_(fx),
where P_ is the orthogonal projection from L?(M) ontoH?*(M)*.
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The following lemma is entirely elementary.
Lemma (5.3.13)[170]: Let f € M be given. Then
[H71uz|| = sup{lz(fF)|: F € Hg (M), T(|F|) < 1}.
Proof: Since for every x € H2(M) we have that(Id — P_)(x) € H3 (M), it is clear that such
an (Id — P_)(x)will be orthogonal to any y € H2(M)*. Thus (P_(fa), b) = {fa, b)forany a €
H2 (M) and b € H*(M)*.Thus
[H714z]| = sup{llP — (fa)I: @ € HE (M), |lall, < 1} = sup{[(P_(fa),b)|:a € H5 (M), b
€ H2(M)*|lall; < 1, [Ibll; < 1} = sup{[{fa, b)|:a € H (M),b € H*(M)"|lall,
< 11Ibll; < 1} = sup{lt(fa,b")|:a € H5 (M), b € H*(M)*|lall, < 1,1Ibll,
<1} = sup{|t(fF)|:F € Hy(M),7(|F]) < 1}.
Here the last equality follows from the Noncommutative Riesz Factorisation theorem from
[153] and[176].
When taken alongside Theorem (5.3.9), this result fully characterises invertible Toeplitz
operators.
Theorem (5.3.14)[170]:Let u € M be a unitary of the form described in Lemma (5.3.10). Then
the following are equivalent:
(i) T,is invertible;
(if)there exists k € A such that R(u*k) is strictly positive;
(iii) The Hankel operator H,, restricted to H2 (M) has norm less than 1.
Proof: Our aim is to apply Theorem (5.3.8). In this regard we point out that although this
theorem is formulated for norm one elements of L* (M), that assumption is one of convenience
and not necessity. Hence the value of ||w||; is no essential obstruction to applying this theorem.
Next observe that the fact that w = g§g,, not only ensures that A(w) = 4(gy)? >0, but also
that w is injective. Thus by Lemma (5.3.2), s(@(w)) = 1. We showed in the proof of the
preceding Lemmathat A((g;)~1d) =1 = A(®((g;)~1d)). Applying this fact to d*g;?!
enables us to conclude from [63] that d*g;?! is a strongly outer element of H2(M). On setting
hp = d*g;tand h, = g,, it follows that w is of the form
w=dgr'(g))'d=d"gr" [(91)7'dgo " 190 = hruh,
with hy and h; strongly outer elements of H2(M) for which we have that
|hi| = |gol = @'/?and|hz| = |(g1)'d| = |w|"/2.
With all the other conditions of this theorem being satisfied, we may now conclude from
Theorem (5.3.9) that A and Aj, are at positive angle with respect to the functional 7(w) if and
only if there exists a k € A such that R(u*k) is strictly positive. From the proof of Theorem
(5.3.8) we also have that A and A; are at positive angle if and only if sup{|t(fF)|:F €
HY(M),t(|F|) < 1} < 1. The result now follows from an application of the preceding two
lemmata.
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Chapter 6
Structure of Commutative Toeplitz Banach Algebras

.We prove the analogous commutability result for Toeplitz operators whose symbols are
subordinated to the quasi-nilpotent group. At the same time we conjecture that apart from the
known C*-algebra cases there are no more new Banach algebras generated by Toeplitz
operators whose symbols are subordinated to the nilpotent group and which are commutative
on each weighted Bergman space.We explicitly describe the maximal ideal space and the
Gelfand map of 7°(A). Since 7°(A) is not invariant under the *-operation of L(AZ(B™)) its
inverse closedness is not obvious and is shown. We remark that the algebra 7 (1) is not semi-
simple and we derive its radical. Several applications of our results are given and, in particular,
we conclude that the essential spectrum of elements in (1) is always connected. We show
that B, (h)is generated in fact by an essentially smaller set of operators,i.e.,theToeplitz
operators with k-quasi-radial symbols and a finite set of Toeplitz operators with “elementary”k-
guasi-homogeneous symbols.Then we analyze the structure of the commutative subalgebras
corresponding to these two types of generating symbols . In particular,we describe spectra,
joint spectra, maximal ideal spaces and the Gelfand transform.
Section (6.1) Quasi-Nilpotent Group Action

We finish the classification of the Banach and C*-algebras generated by Toeplitz
operators that are commutativeon each (commonly considered) weighted Bergman space over
the unit ball B™ in C" .The short history of this problem is as follows.
The C*-algebras generated by Toeplitz operators which are commutative on each weighted
Bergman space over the unit disk were completely classified in [98] .Under some technical
assumption on “richness”of a class of generating symbols the result was as follows. A C*-
algebra generated by Toeplitz operators is commutative on each weighted Bergman space if
and only if the corresponding symbols of Toeplitz operators are constant on cycles of a pencil
of hyperbolic geodesicson the unit disk, or if and only if the corresponding symbols of Toeplitz
operators areinvariant under the action of a maximal commutative subgroupof the Mobius
transformations of the unit disk. The commutativity on each weighted Bergman spacewas
crucial in the part"only if" of the above result.
Generalizing this result to Toeplitz operators on the unit ball, it was proved in[219,218], that,
given a maximal commutative subgroup of biholomorphisms of the unit ball, theC*-algebra
generated by Toeplitz operators, whose symbols are invariant under the action of this subgroup,
IS commutative on each weighted Bergman space. There are five different pair wise non-
conjugate model classes of such subgroups :quasi-elliptic, quasi-parabolic¢ quasi-hyperbolic,
nilpotent, andquasi-nilpotent) the last one depends on a parameter, giving in total n + 2 model
classes for then-dimensional unit ball). As a consequence, for the unit ball of dimension n, there
are n + 2 essentially different "model” commutative -C*-algebras, all others are conjugated
with one of them via biholomorphisms of the unit ball.
It was firmly expected that the above algebras exhaust all possible algebras of Toeplitz
operators which are commutative on each weighted Bergman space. That is, the invariance
under the action of a maximal commutative subgroup of biholomorphisms for generating
symbols is the only reason for the appearance of Toeplitz operator algebras which are
commutative on each weighted Bergman space.
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Recently and quite unexpectedly it was observed in[306] that for n —1 there are many other,
not geometrically defined, classes of symbols which generate commutative Toeplitz operator
algebras on each weighted Bergman space. These classes of symbols were in a sense originated
from, or subordinated to the quasi-elliptic group, the corresponding commutative operator
algebras were Banach <and being extended toC*-algebras they became non-commutative.
Moreover, for n = 1 all of them collapsed to the commutativeC*-algebra generated by Toeplitz
operators with radial symbols (one-dimensional quasi-elliptic case). These results were
extended in [36,297] then to the classes of symbols, subordinated to the quasi-hyperbolic and
quasi parabolic groups, which as well generate via corresponding Toeplitz operators classes of
Banach algebras being commutative on each weighted Bergman space. That is, together
with[193] <cover the multi-dimensional extensions of the (only) three model cases on the unit
disk. The study of the last two model cases of maximal commutative subgroup of
biholomorphisms of the unit ball, the nilpotent, and quasi-nilpotent groups (which appear only
for n > 1and n < 2 respectively), was left as an important and interesting open question.
After many unsuccessful attempts to find commutative algebras generated by Toeplitz
operators and subordinated to the nilpotent group we conjecture that a part from the known
cases there are no more new Banach algebras generated by Toeplitz operators with symbols
subordinated to the nilpotent group of biholomorphisms of the unit ballB"and commutative on
each weighted Bergman space.
At the same time such commutative algebras subordinated to the quasi- nilpotent group do
exist, is devoted to their description. According to our current understanding the only additional
source for the appearance of (Banach) Toeplitz operator algebras which are commutative on
each weighted Bergman space comes from a torus action on B™. The maximal commutative
group of biholomorphisms, to which the symbols are subordinated, must contain the torus
T*with k > 2, as a subgroup. In the case of the one-dimensional torusT the above commutative
Toeplitz operator algebras collapse to known commutative C*-algebras generated by Toeplitz
operators whose symbols are invariant under the action of the maximal commutative group of
biholomorphisms in question.
We recall some notation from [218] that are used throughout Let
B" :={z = (2q,...,2,) € C":|z|?> = |z1|* + -+ + |z,|* < 1}
be the unit ball in C". The Siegel domain D,,in C", which is an unbounded realization of the
unit ball B™,has the form
D,={z=(z,z,) € C"1 xC:Imz, — |z'|*> > 0}
Recall that the Cayley transform w: B™ — D,, maps biholomorphically the unit ballB"ontoD,, .
Letvbe the usual Lebesgue measure on C* = R?" and fix 1 > —1. Then the standard weighted
measureu, onB™with weight parameterAis given by:
_ r(n+A+1)

duy = c;(1—|z|»)*adv  and ¢, = O

Herec,is a normalizing constant such that u,;(B™) =1 OnD,we can consider the
corresponding weighted measure jiydefined by. 1

ABA(E' ) = 2 (I — 1§V (E ).
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Let fbe a function on B™, then we put (u; ) () := 2"+ (1 — i&,) ™ 471 f o w~1(§) where
¢ € D,,.A straightforward calculation shows, cf [36,218]
Lemma (6.1.1)[38]: Let A > —1, then u,defines a unitary transformation of L, (B", u;) onto
L, (Dni .ﬂ)l)
In the following we writecA% (B™) and A2 (D,,)for the weighted Bergman spaces of all complex
analytic functions inL,(B", u;)andL,(D,, fi;), respectively. It is known that by restriction
U, defines a unitary transformation ofA% (B™) and Az (Dy,).
Let By, ,be the Bergman projection of L, (Dy, iiy)onto A%(D,,). Given a bounded measurable
function f € L*(D,,) we define theToeplitz operator Tracting on the weighted Bergman space
A% (D,)inthe usual way by

Tr:= BDMMf,
WhereM,denotes the multiplication byf. We study a class of commutative Banach algebras

generated by Toeplitz operators on AZ(D,,).
To simplify the notation we will not indicate the dependence of T, on the weight parameterA .
Note that via the unitary transformation U, the results on Toeplitz operators acting on weighted
Bergman spaces over D, can be directly translated to the corresponding setting of Toeplitz
operators on A3 (B™).
Put D := C* ! x R x R,. Then the map:

k: D — D,:(z',u,v) — (z,u+iv+ilz'|?)
defines a diffeomorphism with inverse

k1(z',z,) = (z',Re z,, Imz, — |Z'|?).
Given a function f on D,, we define Uyf : = f ok to obtain a function U,f onD. On the
domain D we consider the measure
dn,(z',u,v) = %v’ldv(z’,u, V).
We have the following, of. [36,219]
Lemma (6.1.2)[38]: The operator U, is unitary from L,(D,, fi;) to L,(D, uy) with inverse
Uyt =Ug givenby USf = for™L.
We occasionally omit the dependence of the weight 2 > —1 and put Ay(D) = UyA: (D)
which clearly forms a closed subspace of L, (D, ).
As was explained in [219,218] the classification of maximal commutative subgroups G of
biholomorphisms of D,, or B™ yields five essentially different types. Corresponding to each
type there are commutative Banach or C*-algebras of Toeplitz operators acting on weighted
Bergman spaces. The aim is to define such algebras in case of the quasi-nilpotent group G of
biholomorphisms. We recall the definition.
Let 1 < k < n — 2. We rather use the notation z = (z’, ', z,,) for z € D,where z' € C* and
w' € C"*~1, The quasi-nilpotent group T* x R**~1 x R acts on D,,, cf. [218], as follows:
given (t, b, h) € Tk x R**~1 x R, we have:
T(t,b,h):(z",w',z,) » (tz',w' + b,z, + h + 2iw'.b + i|b|?).

Note that in the case k = n — 1 we obtain the quasi-parabolic group, while
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for k = 0 the group action is called nilpotent.
On the domain D = C* x C* %1 x Rx R, we use the variables (z’,w’,u,v) and we
represent L, (D, n,)in the form:

L,(D,n;) = L, € ® L, @ H L,(R) @ L(R4,7m,) (1)

Let F be the Fourier transform on L, (IR), and with respect to the decomposition (1) consider
the unitary operators U;: =1 Q I @ F ® I acting on L, (D, n;). With this notation we put
A1 (D): = Uy (Ao (D).

Next, we introduce polar coordinates on CX and put r = (ry,...,7) = (21|, ..., |z ]).
Moreover, in the following we write x": = Re ' and y':= Im w. Then one can check that r, y’
and Im, — |w'|* are invariant under the action of the quasi-nilpotent group. Following the
ideas in [218] and with rd,. = i d,._ ... d We represent L,(D, ;) in the form

Ly(RE, 7dr) & Ly (TF)L(R™*71) @ Lr(R™F71) @ Lo (R) ® L (Ry,12) (2)

We define the unitary operator U, on L,(D,n) by U, = I&F ) O Fp_-1)®1 &1 &1. Here
Faoy=FQ ..QF is the k-dimensional discrete Fourier transform and Fy_x_1) =

F® ... ® F denotes the (n — k — 1)-dimensional Fourier transform onL, (R™ *~1). Note that
L,(D,n;) is isometrically mapped by U, onto

fz((zk; L, (R’i) ® L,(R*™* 1) @)L,(R"* 1) ® L,(R) ® L, (R, 12)) (3)

We put A, (D) = U, (A, (D)) and we write elements in (3) as {f(r,x",y',&,v)}
where

BezZk’

(r,x',y',&v) € RE x R**1 x R** 1 x R x R,.
Next we recall the definition of the unitary operator U; which acts on (3) by:
1
Us: {fp(r,x",y',&, v)}ﬁez — {fﬁ (r, \/E(x’,y’),z— (—x',y"),§, v>}
‘/E Bezk

One immediately checks that the inverse U; ! has the form

O A A R G e SN G |

pezk
In the following we write Z, = N U {0} = {0,1,2, ... } for the nonnegative integers. In order to
state the main result of Section in [218] we need to introduce the operator R, which defines
an isometric embedding of ¢, (z’i, L,(R"*=1 x R+))into (3). It is explicitly given by
_ s
Ry: {Ca (x E)}gezk = {XZRX]R+ (,8 f)AB(f)rﬁe §rI*+v) 2 o (x f)
Bezk
— {gﬁ r,x",y' &, v)}ﬁezk
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Here X7k xR, (B, §)denotes the characteristic function of Z% x R, and cp(x’, &) is extended by
zero for & € (—,0) and all x’ € R* %=1, Moreover, we have used the abbreviation

n—-k—1 |2k+2 (2&)IBl+A+k+1
. j (28) @

A= T D)

The ad joint operator Rj is given by:

Ry:{fp(r,x', ¥, U)}ﬁezk — {A45(&)
|U,|2 CA'UA
Xf 2 fﬁ(r,x’,y’,E,v)rdrdy’—dv}ﬁezk (5)
Rﬂ‘_xR"—k_lxR+ 4 +

We set U := UzU,U,U,, Wwhich gives a unitary operator from R3(D,) onto A;(D) :=
Us (cﬂz (D)). The following result has been proved in [218], and it provides a decomposition
of the Bergman projection By, in form of a certain operator product.

Theorem (6.1.3)[38]: [218] The operator R := RyU maps L,(D,, ;) onto the space

£, (z’i, L,(R**=1 x R+)), and the restriction

Rz yAZ(D) = £ (2, L, R*5~1 x R,))
Is an isometric isomorphism. The ad joint operator
R* = U"Ry: Ly (24, Ly(R"™*" X R,)) > AZ(D)  Ly(Dy, 1)
Is an isometric isomorphism of L, (z’fr, L,(R* k-1 x [R+))onto the subspace AZ(D)of
L, (D,,, iiy). Furthermore one has:
RR* =1I:1, (z’i,Lz(Rn—k—l X ]R+)) > 1, (z’f,,Lz(le”—k—l X R+)),
R'R = By, ,: Ly(Dy, iz) > A (D)
Now, we restrict our attention to bounded measurable symbols on D,, that are invariant or have
a certain homogeneity with respect to the quasi-nilpotent group action on D,,.
Definition (6.1.4)[38]: A bounded measurable function a: D,, — C is called quasi-nilpotent if
ithas the form a(z) = a(r,y’, Imz, — |w'|?). In particular, such a is invariant under the action
of the quasi-nilpotent group.
The following theorem was proved in [218].
Theorem (6.1.5)[38]: [218] Let a(z) = a(r,y’, Imz, — |w'|?) be a bounded measurable

quasi-nilpotent function on D,,. Then the Toeplitz operator T, acting on A% (D)) is unitary
equivalent to the multiplication operator y,I = RT,R" acting on the space

L, (Z'LLZ (R k-1 x R+)). The sequence

Yo = Va(B, X, f)}ﬁezﬁ €L, (Zl-f-; Lz(Rn_k_l X R+))
With (x',&) € R* %1 x R, is given by

rﬁe—f(lrlzﬂf)—
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) ok _n—k-1 (Zf)|ﬂ|+/1+k+1 ( L ., , 2)
KB, §) = 2n ™ s wa_fk_lx&a i YD

X rﬁe‘z’f(”+(|r|2)‘|y’|2v’lrdrdy’dv.
We need to prove a similar result for a class of more general symbols.
Recall that we use the notation x':= Rew’' € R"* ¥ lwhere o’ € C**land let a =
(aq, ..., a;)be atuple in z'such that |a| = (ay, ..., a,,) = k Similar to [38,193] we divide the
coordinates of z’' € C* into m groups as follows:
Z(1y = (211, ...,Zi’al),ZEZ) = (231) ) 234, ) wZ(m) = (Zmas - r Zina, )and such that z' =
(2(1)Z(2s 1 Z(my)- In the following we will use the same notation also in case of multi-indices
S € z¥instead of vectors z’ € C*. By passing to polar coordinates, we write each tuple ZEJ-) =
(2] 1)) 2] oj)Where j = 1,...,m, in the form

! : 112 ’ 2 i— ;
Z(]) or 7}5(1) Wlth T} - \/|Z]'1| + °°c + |Z],CZ]| andE(]) (S SZ(X] 1 (e (C(X].

Here S2%~1denotes the real (2n — 1) -dimensional boundary of B™.
Definition (6.1.6) )[38]: Let a(r,y'Imz, — |w’|?) be a quasi-nilpotent function and a € ZTas
above.
(i) Then a is called “a-quasi-nilpotent quasi-radial” if its radial dependence on r can be
expressed as a function of ry, ..., 7;,,.
(if) The function b = (', w’, z,,) is called “a-quasi-nilpotent quasi-homogeneous”if it is a-
quasi-nilpotent quasi-homogeneous with respect to the variable z', i.e.

b = (Z’,(U’,Zn) = bO(rli o T yllmzn - |w,|2)€p€q (6)
Where & = (§,,&,,...,&,) € $?4171 x §2¢271 x| x §2¢m~1 and p,q € z™ are orthogonal.
The pair (p, q) is then called the “degree”of b.
Note that there is a one-to-one correspondence between the set of tuples {(p,q) € ZT* %
Z™:p L q}and ZX via (p,q) — p — q.
Consider an a-quasi-nilpotent quasi-homogeneous symbol b = (z', w’, z,,) as in (6) and of
degree (p, q) € z¥ x z% with p L g. Our next aim is to calculate the operator RT,R*. On the
domain D = C* x C**~1 x R x R, we use the variables (z’, w’, u, v).Moreover,we express
z'in polar coordinates z’ = ty,q, ..., ty Where r, > 0 and ¢, € s = Sifors = 1, ..., k. Then
we have the relations

Zje = TjSje = Liele

for¢ ={1,..,a;}andj = 1,..,m. It follows that ; , = t; ,7; ,r;~* in the case ofr; # 0 and

therefore:
m

gt = ergarvra | [ leil-lal 7)
_ J=1
Note that the assignment z’ +— EPEY depends on the initial choice of a € Z1".
Using Theorem (6.1.1) we can write:
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RT,R* = RByp, ,bBy ,R* = R(R*'R)b(R"R)R* = (RR*)RbR*(RR") = RbR"
= RyUsU,U,UobU, YU U US IR,
= RoU3U Uy by (1, ., Ty, y' Imzy, — |W'|2)EPEUG UT MU, M USIR,
First we calculate the operator U,bU,*. Let {fﬁ (r,x',y",¢&, v)}ﬁez,:be an element in the space
(3) and write r := (1y,...,%y). Since the ymbol
bo(r1,y',v + |r|?)EPEY is independent of x’ we obtain from (7) that:

Uzbo(r, y'; v+ |r|2)€p€_q Ugl{fﬁ(r' x,' y,' SZ' U)}Bezl-lc_ (8)
m
bo(r,y', v+ |r|®)rP~4 1_[7}._|pj|_|qj| fp—prq(r, x',y',&,0)
j=1 ,BEZk

Combining (8) and (5) gives:

RTbR*-{CB(x’ )} gege = RoUsUbU3 U5 {ngxm(ﬂ, &)

Ag(E)rBe=s0TT” o)-1 cg(x', f)}

Bezk
= RyU3UbUs ™ {xgen, (B, 4O

—f(hﬂz+v)———yj7=x +/8y'

1
ol o)

= RyUs { s, (B — 1 + 0, ) Ag- pra (P 20by x (r,y' v+ Ir?)
m

_ 24 L
o 1_[]_|p]| lq;] . SUr*+v)—5 ‘ —x'+,/&y’

j=1

1
X Cg—p+q <U€x' - \/Ey’,g‘)}
Bezk

) —x'"+y'
= RO {XZSC.X]R.F (ﬁ —ptq, E)Aﬁ_P+CI(5)bO <r12—\/gi v+ |7"|2>

“lpil-lq; _ 2 _1 507 /
% 1_[7} Ipjl-la;l rB+2q, §(Ir12+v)—5=[y'| Cﬂ—p+q(x :E)}Bezk
j=1

Xe
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= {Aﬁ (f)Aﬁ—p+q (E)XZE_X]R_,_ (.8 —p+aq, f)CB—p+q (x,: f)}ﬁezk

m

x J F2(B+q) ﬂrf|f’f|‘|qf| p—E(r2Hv)-IyP?
REXRM-k-1xR, jo1 g
—x' 4+’ , vt
X by|r,——=—,v+|r|* |rdrdy dv
2\/E pezk
Now put:
VYbp,q (ﬁ: x', f)
m
—lpil~la;
= Aﬁ(E)Aﬁ_p+q(f)XZ'ixR+(.8 -p+4q$) ) 1_[7}- Ipil=lail
R¥XRM=K=1xR, =1
X 72(B+@) g —25(IT?+v)—|y1? b, <r,ﬂ,v + |r|2>rdrdy’
2%
A
x 2 dv 9)

Hence, we have proved:
Theorem (6.1.7) )[38]: Let b be defined as in (6). The operator RT,R* acts on the Hilbert space

¢, (2%, L, (R"™*"1 x R,,) )by the rule:
RTyR*:{Cp (", )} e = Vopa (B, 6)- Cpopaq (X', D} 5
Note that, in the case p = g = 0,Theorem (6.1.8) reduces to Theorem (6.1.5).
Example(6.1.8)[38]: We calculate RT, R*more explicitly in the special case whereb, = 1 and
we choose k = m, i.e. a« = (1,...,1) € z¥. Let (p, q) €Z¥such that p L g and put
b(z',w',z,) = éPET = tPt1
According to Theorem (6.1.7) it is sufficient to calculate the functions:
Yb,p,q(Br x',&):
= AB (E)Aﬁ—p+q(E)XIR{+ ) N

X j 12B+q-p e—zz(|r|2+v)—|y|2rdrdyrCA_VdV
RKxR0-k-1xR, 4

forall g € Z¥ with f —p + q € z¥. We use the identity:

2 1 n—-k—-1
e 2v- I gy’ vidv = n

j r(A+1)(28€)~@+n
RXxRP-k-1xR,

(cf [97]) where >0, which together with (4) shows that

Vopq(Brx',6) = 2k(2€)lﬁl+k+lm lpl\/ﬁ'(ﬁ 1 + )IJ r2B+a-p g=28-1yI* gy
—p+q)URE
(g + 5 4 1)
) Jﬁmﬁ—p+qﬂ |

In particular, in this case y,, , , (8, x', §)is independent of x" and .
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The goal is to study the commutatively of Toeplitz operators with symbols having
certain invariance properties. We will use the above notation. Fix a € z7'with |a| =k as
before and let a = ay(ry, ..., 7, ¥’ Imz,, — |w'|?) be a bounded measurable a-quasi-nilpotent
quasi-radial function on D,,. Consider the symbol:

b(z',w',z,) = by(ry, ..., Ty, y' Iz, — |w'|?).EPEQ (10)
We calculate the operator products RT,T,R* and RT,T,R*. According to Theorem (6.1.7) and
Theorem (6.1.1) we have

RTbTaR*{cﬁ}ﬂEZ,i = (RT,R*)(RT,R*){cs} pe
= (RTbR*){Vb,p,q (B; X,, SZ) C[:? (X,, E)}Bezl_lc_
= {Vb,p,q (B; X’, ’S)ya,0,0 (ﬁ —-D + q, x,' E)Cﬁ—p+q (X,, g)}BEZl}_ (11)
On the other hand it follows:
RTaTbR*{cﬁ}BEZE = (RTaR*)(RTbR*){cﬁ}BEZE = (RT,R )V p,q(B.x',8).c(x", )} perk
= {)7a,0,0 (B, x', E)Vb,p,q B, x",¢) CB—p+q (', 5)}[3&2’4‘_ (12)
Hence, we conclude from (11) and (12) that both operators T, and T;,, commute if and only if

Ya,00B: X", 8) = Vao0B—p+qx",§)
for all B € Z¥. According to (9) this is equivalent to:

ot ’
ij a, r,x——l_y,v+ |7]? rzﬁe‘zf(”‘|r|2)‘|y'|2v’lrdrdy’dv
RExRM-k-1xR,

B! 2,/&
_ (2&)Ipl+lal “ <r,ﬂ,v . |r|2>
B—p+q)! RXxRP-k-1xR, 2\/?
X rm*q‘pe‘25(’”|T|2)'|y'|2v’1rdrdy'dv (13)
Since ay(r,y', Imz, — |w'|*)only depends on r = (ry, ..., 1,,, )We can assume that the above
integral has the form:

—X' + ! ! 2
j a, <r,T€y,v + |r|2>r23e‘25(”+|r|2)‘|y | virdrdy'dv =: (¥),
REXRP-k-1xR,

Where B € ZX. Withe = (1,1, ...,1) € Z¥ we obtain
(*) f— lf ao r,ﬂ, v + |'r|2 |’r2ﬁ|e_2€(v+|r|2)_|y,|2vl']"d']"dy,dv
RExRM-k-1xR,

2k 2\/?

1 j < —x'+y'
= ok Qo T',—,U+|T|2>
2k RP-k-1xR, JRT xSa1-1x§am—1 2\/E
m
. _ /12
X [p2Be|. 1_[1}2|ﬁ(’)|+2a’ L ez vido(pey) - do(pamy)rdrdy’dv.
j=1

In the last integral we wrote da(p( j)) for the standard area measure on the sphere $%~1. The

integral over the m-fold product $*171 x ... x $%m~1can be calculated explicitly by using the
following well-known formula:

146



Lemma (6.1.9) )[38]: Let do denote the usual surface measure on the (n — 1) —dimensional
sphere S™ ~ land let 8 € ZX. Then

) B

=

0 = | l077+#|do(ps,) - do(pem)
§a1-1x,  xSam—1

-1

=2mp! ﬁr (aj; = |ﬁ(j)|) (14)

j=1

[, b?ldow) =

Using the formula in Lemma (6.1.9) we define:

This finally gives:

@ j ( r
()= . IRTXIR""“lxIR+aO r,Z\/E

2 +2a;-1 2 +2a,— 2
x p2Polza=t 2B acwirt-y gy dy dy,

Note that the last integral does not depend on the full multi-index 8 but rather on the values
|By| forj = 1, ..., m. We denote this i , s |Bamy|)- Then the commutativity
condition (13) can be written in the form:

Op
EGa(WmL s [Bamy])
)
_ (&) Ipl+lq| _ZB—P*a
GO - o
X Ga(|Bewy| -
According to the definition (14) this is equivalent to:

ool D ] r(252+ o)

= (25) 'p'+"”G (Bl = ey + lacw| - Bam| = [pam| + |aam|)
i+ 1 -1
xﬂr( —+ 18| = Ipy] + lagy )

=1
This equality can be ]only true simultaneously for all a-quasi-nilpotent quasi-radial functions
aandall g € Zk if o] = lagpl for j =1, ... ,m. Hence, we obtain:
Theorem (6.1.10) )[38]: Let a € ZXbe given. Then the statements (i), (ii) and (iii)below are
equivalent:
(i) For each a-quasi-nilpotent quasi-radial function a = ay(ry,y'Imz, — |w'|?) €
L*(D,)and each a-quasi-nilpotent quasi-homogeneous function
b= bO(rli o T yIImZn - |wl|2)€p€_q € Loo(Dn) (15)

(=x"+y),v+ |7‘|2>

— |pemy| + |aamy)-
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of degree (p, q) € Z* x Zk the Toeplitz operators T, and T, commute on each weighted
Bergman space A2 (Dy,).
(i)  The equality 7,00(B,x",€) = Va00(B —p + q,x',&)holds for all B € Z¥ and for
each a-quasi-nilpotent quasi-radial functions a.
(iii)  The equality [p¢jy| = [q;)| holds foreach j = 1,...,m
Now, let us assume that b € L (D,,) is of the form (15). Under the assumption [p¢ ;| = [q(j),
for each j = 1, ..., m, we calculate yy, , ,(B,x',%) in (9) more explicitly by reducing the order
of integration. Assume that § — p + q € z%. Then:
Vb,p,q (ﬂ’ x,: E)

= Ag(§)Ap—p+q($xr, () 2+

k .
REXRP-k-1xR,
m

% 1_[rj—|p(j)|—|q<f)|e_zg(|r|2+v)_|y'|2bo

j=1

><< —x'+y' +| |2> drd  cAv
r,————,v + |r|? | rdrdy
2,/¢ 4

= ®B+qAB (E)Aﬁ—p+q (E)XIR+ ) 27k

o j‘ 1_[r_ZIB(J')|+IQ(i)I—Ip(i)|+2°‘i‘1
]RTXRH_R—lXR+ J

j=1

x e—zé’(lr|2+v)—|y’|2b0 (T,ﬂ,v + |r|2> rdrdy’ cAv
e

p)
dv

2
dv

_ Op+q Ap-p+q(§)
Op  Ap(d)

__ B+ ﬁ P+l l)
BB - p+q)',1r( +|ﬁo>|+|qo>|)

where D, (B,x",$)= Vppq(B,x", &), which can be seen by choosing p = g = 0Oin the above
equalities. Hence we have proved:
Proposition (6.1.11) )[38]: Let a € z* be given. Assume that b € L*(D,,) is of theform (15)

and let [p¢;y| = |q(;|, foreach j = 1,...,m.Then in the case of g — p + g € zT* we have

(8 +9)! ﬁ r (= + o)
?b,p,q(ﬁ!x,' f) = j 1
VB! (B=p+q)! j=1F<a]; + Byl + |q(,-)|)

In the case of B —p+q ¢ zkwe have 7, ,,(B,x",&) = 0. The factor
Vbp.q(B,x’,&)can be expressed int he form

'Db(ﬁ'xlif)
(a +1

Db(ﬂix,rg);

-Vb,o,o(ﬁ»x',f)-
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m

l_[TZIﬁ(J')I+|q(j)|—|p(j)|+20fj—1
J

jRTan-k-lxR+ =1

B.x',8) = 0pA5(Exm, ()27

—25(|7‘|2+v)—|y’|2 —x'+y’ 2 , cAvh
0
X e b o ,V+ |r|e|rdrdy d (16)

Let @ € z™ be given and (p + q) € z¥ x zli. From Proposition (6.1.11) we conclude:
Corollary (6.1.12) )[38]: Leta = ay(r,y’,Imz,, — |w'|?) € L*(D,,) be an a — quasinilpotent
quasiradial function. Under the assumption |p(j)| for all
j=1,2,..,mwe have

Tanqu = T{pqua - Ta,é-pg-q (17)
on each weighted Bergman space.
Proof: The first equality in (17) is a direct consequence of Theorem (6.1.10). If e(2) =
1thenT, = Id, and thus ¥y, 0,0(B,x’,§) = 1. Hence, Proposition (6.1.11) implies that in the

case of a symbol bgpza With |pgy| = |qp|, forall j = 1,2,...,m, one has

m a; +1
Popq(B,x',€) L1 [ | r( o)
bp,g\P»* 5 = . ’
Jﬁwﬁ_p+qﬂﬁﬂf(%;1*W&n“ﬂ%n0
Wheneverf — p + q € z%(cf. Example(6.1.8) for the choice of & = (1, ...,1) € z¥ and the
case p; = q;,j =1, .., k). Moreover, if f —p + q € z¥, then it holds Vbp.qBrx',E).
Theorem (6.1.10), Proposition (6.1.11) and the assumption that |[p ;| = [q;|, forallj =
1,2,:--,m, imply now that
)7ab,p,q (:Br x’, 5) = ?b,p,q (:8' x’, f) -]7a,0,0 (ﬁ' x’, f)
= Vbp.q B, x",$) Ya,0,0 B-pr+4qx.%)
This together with (11) and Theorem (6.1.7) yields the second equality in (17).
We define commutative Banach algebras of Toeplitz operators which are induced by the
quasi-nilpotent group action. Given a pair of multi-indices (p, q) € zT* x z*, we put

ﬁ(}) :=(0, ,p(]), 0, ,) and (7(])=(0, ey CI(]), 0, ,)

so that p = ﬁ(l) + ﬁ(z) + e+ fj(m) and q= 6(1) + C~[(2) + -+ Q(m)
Consider the Toeplitz operators:

(18)

Tj:= Tepinzan
(cf. Definition (6.1.6)). Now, we can prove that certain products of Toeplitz operators are
Toeplitz operators again with the product symbol.
Proposition (6.1.13) )[38]: Let us assume that |[p¢jy| = [q;| forall j = 1,2,...,m. Then the

Toeplitz operators T; commute mutually. Moreover,

m
[ [7=Tere 19)
j=1

on each weighted Bergman space.
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Proof: Let b; = P00, for j = 1, ..., m, We only prove the following product rule:
TiTi: = T gpwgaat (20)
fori,j € {1,...,m}and i # j. According to Theorem (6.1.7) the operator RT;T;R* acts on the
J J J
sequence space £, (z’i, L,(R* %=1 x ]R+)) by the rule:
RT;T;R*{cp(x', &)} pezk
= RTJ'R* {Vbj,ﬁ(j)ﬁ(j) (B, %", ). Vbi:ﬁ(i):q(i) ('B — DGy 4g) X', E)
X Veg=pw-poy+aa+ap * ’f)}ﬁezg
Hence it is clear that (20) is equivalent to:

Vb)) (B, x",8)- Vo (8- PGy 4Gy *'$ ) = Vi B (B,x,) (21)
By (18) we have

a; + 1
(B +dp)! r( * |ﬁ(”|>

\/ﬁo) (Boy = P(1)+qo))'F( -+ B | + |q(1)|)

and similar for i replaced by j. Moreover, the function on the right hand side of (21) has the
explicit form:

?bi’bj'ﬁ(i)'ﬁ(j)’q(i)ﬁ(j) (ﬁi x,; 6)
a, + 1
(.8+C~I(l) +C?(J))| 1_[ ]"( £ + |B({’)|)

a, + 1
\/.3' (B—Bu — By +da + CI(;))'*’E{U}F( + |IB(£’)| + |q(%’)|)

Now, (21) can be easily checked from these identities.

Let « € zT* with |a| = k as before and consider two a-quasi-nilpotent

quasi-homogeneous functions ¢; € L*(D,,) where j =1, 2. We express ¢; , forj = 1,2 inthe
form

~ ’
]/b],ﬁ(]),Q(]) (lB)x ;f) -

(pl(z’,w’,zn) = al(rli "'er'yllmzn - |w'|2)(p(_q»
) (Z" w,JZn) = az(rl» o T y,ImZn - |w’|2)(pcq;
where (p, q), (u, v)ez® x z¥ with p L g and u L v are the degrees of ¢,
and ¢,, respectively. Moreover, assume that |p: ;)| = |q(;)|and |u(j)| = |vyl, for j=
1,2,....m
Theorem (6.1.14) )[38]: The Toeplitz operators T, and T¢, commute on each weighted
Bergman space A3 (D,,) if and only if for each #=1,2,..., k one of the conditions (i) — (iv) is
fulfilled:
() pe=¢q,=0
(i) u,=v,=0
(i) pr=u,=0
(iv) q=v,=0
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Proof: Similar to the argument in the proof of Proposition (6.1.13) it follows that the operators
T, and T, commute on A4 (D,) if and only if for all § € z¥ :
7(p1,p,q B, x’, ’S)-ﬁpzu,v(ﬁ —-p+q,x,8)= ]7<p2u,v(ﬁ'x,r E)-]7<p1,p,q B-p+qx,&)
Since |pgjy| = lagpland |ucy| = |vpl, forj = 1,2,..., mwe can use the
factorization ofy, , ,(8,x’,&) and ¥, (B, x', &) in Proposition (6.1.11):
)7(p1,p,q B, x’, §) = (pp,q (.8) ]7<p10,0 (.Br x', &),
)7(p2u,v B,x",¢) = (pu,v(,B)- ]7<p20,0 (B, x",$),

where we use the notation:
(0( + 1

B+ )] I |:8(J)|>
®pq(B) = ]
. \/ﬁ!(ﬁ—p+q)!l:1lf<a];1+|Bcf)|+|q<f>|>

Moreover, it follows from Theorem (6.1.10) and again by the conditions on (p, q) and (u, v)
that

(22)

V0,008, %", &) =FVp00B —u+v,x',8)
V0,008, %", &) = Vp008 —0+q,x",&)
Therefore we only need to verify that
Ppq(B). Py (B—p +q) = Pypy(B). Py (B —u+v).

By a straightforward calculation this is equivalent to:

(B-p+q+v)! (B—u+v+q)!
| P7PTqTv): AP UTrTq):
(B +q)! (B-p+q)! = (B +)! (B-u+v)!

Varyingf it can be seen that this equality holds if and only if for each ¢ = 1,2,..., k one of
the conditions (1) — (iv) is fulfilled.
Let (p,q) € z¥ x z% and @ € zTsuch that |a| = k. Let h € zbe given with the properties:
(i) 1<h;j<a; —1,ife; > 1. Inthecaseof a; = a;, withj; < j, weassumethath; <
hj2 .
In the following we assume that p;y and q;, for j = 1, ..., m are of the
particular form
Py = @)1, - 2 Djn;» 05 e ,0)and q¢;, = (0, ...,0, Ajhjgrr ...,q]-,aj). (23)
below we will use the data @ and h to define commutative Banach algebras of Toeplitz
operators.The second assumption in (ii) serves to avoid repetition of the unitary equivalent
algebras.
Define R, (h) to be the linear space generated by all bounded measurablea-quasi-nilpotent
quasi-homogeneous functions
b(z',w',z,) = by(ry, ..., T, V', Imz, — |0'|?). (P9 (24)
Moreover, in (24) we assume that pg and qg; are of the form (23) with:
Piat -+ Din; = Qjhjyy, T T Qja; -
As a corollary to Theorem (6.1.14) we obtain:
Theorem (6.1.15)[38]: The Banach algebra generated by Toeplitz operators with symbols from
R, (h) is commutative.
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Finally, we remark:

(i) Fork > 2 anda # (1,1, ...,1) the commutative algebras R, (h) are just Banach algebras,
while the C+-algebras generated by them are noncommutative.

(ii) These algebras are commutative for each weighted Bergman space A% (D,,) with 1 >
—1.

(iii) For k = 0 (nilpotent case) or k = 1, 2 these algebras collapse to the single C*-
algebras which are generated by Toeplitz operators with quasinilpotent symbols
b(r,y', Imz, — |z']).

Let 0<e<n-3,6>0. We rather use the notation (x + 2¢) = ((x + 2¢)’, (u +

2e), (x + 2¢),,) for (x + 2¢) € D, s_Where (x + 2¢)’ € C" 72 and (u + 2¢)' € C*¢,

The quasi-nilpotent group T1*¢ x R"¢~2 x R acts on D,,,._1, cf. [218], as follows: given

(t,bs_,,h) € T?*e x R"¥72 x R, we have:

T (t, bs_q, h): ((x + 28), (u + 2) (x + 2¢),)
> (t(x +28), (u+28) + bg_y, (x + 28), + h + 2iw.bg_5 + i|bs_5|?).

Note that in the case ¢ =n — 2, e = Owe obtain the quasi-parabolic group, while for ¢ =
—2 the group action is called nilpotent.

On the domain D,_, = C1*® x C""¢72 x R x R, we use the variables

((x+2&), (u+2¢),u, (u+ ¢)) and we represent L,(Ds_,,n.—1) in the form:

L, (Ds—2;77(s—1)) =L,(C"*) Q L(C" ) Q L,(R) ® LZ(R+:77(5—1))- (25)
Let F be the Fourier transform on L,(R), and with respect to the decomposition (25)
consider the unitary operators Us := | @ I ® F & I acting on Ly(Ds_, 1(e—1)). With
this notation we put A (Ds_,) = Ug(As_1(Ds-5)).

We introduce polar coordinates on C**! and put r = (ry,..,7e11) = (|(x +
26)1], o, [(x + 28)g41]). In the following we write x":= Re (u + 2¢)" and (x + €)' ==
Im(u + 2¢)’. Then one can check that r, (x + €)' and Im(x + 2¢),, — |(u + 2¢)'|? are
invariant under the action of the quasi-nilpotent group. Following the ideas in [218] and
withrd = nd, --- T(1+e)drg,,, We represent L,(Ds_5,me_4) in the for

L, (RS_1+£),r1dr1) ® L, (T'**) @ L,(R"472)

® L(R**72) @ L(R) ® Ly (Ry,7e—1) (26)
We define the unitary operator Us,1 0N Ly (Ds_2,Me—1) BY Usy1 = I® F146) ® Frp_e—p)
RIQI®I Here Friye) =F @ ... ® Fis the (1 + &)-dimensional discrete Fourier
transform and F,,_._,y = F®... ® F denotes the (n — ¢ — 2)-dimensional Fourier

transform on L, (R™72). Note that L,(Ds_z, N1+¢)) is isometrically mapped by
U, onto

2 ((Z““), Ly (RE®) @ Lp(R™™72)) @ Ly (R"™572) ® L, (R)
® Lo (R4, Me—1))- ) (27)
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We put Ag,1(Ds_y): = Ugypq(As(Ds_,)) and we write elements in (27) as {fﬁ (r,x', (x +
), &u+ 8)}ﬁezk’Where (r,x,(x+ &), & u+e) EREFFILXRY"E 2 X R €72 x R X
R,.
Next we recall the definition of the unitary operator U, , which acts on (27) by:

Usis: {fﬁ(r,x’, (x+¢&),{,u+ 8)}B€Z

= {5 (n B s o o G G e
g |7 /(X (x+¢ 'Z\E x,(x+¢€)),{,ute

One immediately checks that the inverse U;}, has the form
UL {f[; (r,x,(x+¢&),(,u+ 8)}ﬁez

— {fﬁ (r,zic/,?—\/?(x+e)’,:/%+\/?(x+e)’,(,u+£>}

In the following we write Z, = N U {0} = {0,1,2, ... } for the nonnegative integers. In order
to state the main result of Section 8 in [218] we need to introduce the operator R,_, , which
(1+¢

defines an isometric embedding of ¢, (z+ ),L2 (R*€72 x R+)) into (27). It is explicitly
given by
RS—Z . {Cﬁ (x', C)}BEZS_HS)

BEZ(1+£)

ﬂEZ(1+£)

_ 2 _lu+e)r|? ,
— 3 X e, g, (B O Rooz) g (e UM+ (0, 0)
+ xRy ﬁeZ(Hs)

= {gﬁ(r, x’, (x + 8)’, {, u+ S)}ﬁez(“s)
Here x,c+n , (B, ¢)denotes the characteristic function of Zf“) X R, and cg(x’,{) is
+ +

extended by zero for { € (—,0) and all x" € R*"¢72. Moreover, we have used the
abbreviation

| _nmem2 fpers (pg)IBl+2et
Ap(Qi=mr \/cs_l BIT(e) (28)

The ad joint operator R;_, is given by:
R.;‘k—l: {fﬂ (T, x,) (x + 8),) () u+ 8)}ﬁEZS+1 = {(AS—Z)B(()

|(u+s)'|2
B =S P+ (u+e)——— fp(r,x',(x +€),{,u+ e)rdrd(x + &)’

X f
REFIXRN-E-2xR,
Calu+e)E1

)

d(u+ 8)}[3625_1%) (29)
WesetU _,:= Ugy,Ug1UgUg_q, Which gives a unitary operator from RZ_(D,+s—1) ONtO
Ag12(Dg_3) = Usi345,1(Ds_,). The following result has been proved in [218], and it
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provides a decomposition of the Bergman projection By, , ., ., informof a certain operator

product.

Theorem (6.1.16)[270]: [218] The operator R __, := Ri_;Us_, maps Ly (D451, Ae-1))

onto the space #,(z5*?, L,(R"¢72 x R,)), and the restriction

RS—Z|(dq§_2)s_1('ps_2)(Cﬂg—Z)s—l(DS—Z) = £,(z5, Ly(R" 72 X R,))
Is an isometric isomorphism. The ad joint operator
Ri_, =Ui_; Re_y: Lz(ZiJrl'Lz(Rn_g_z X R+)) = (AZ_3)e—1(Ds-3)
C Ly(Dpys—1,He—1)
IS an isometric isomorphism of Lz(zi“, L,(R" €72 x ]RL,)) onto the subspace
(AZ_))e—1(Ds_,) of Ly(D,y4s—1, He—q). Furthermore one has:
Rs—z Riy =1Ly (25, L,(R"*72 X R,)) = Ly (25", L(R"7*72 X R,)),
Rs_2Rs—» = BDnJ,S_LS_l: Ly(Dpis—1,He—1) = (AZ_3)e—1(Ds_7)
Consider an (S + ¢)-quasi-nilpotent quasi-homogeneous symbol
b._,((x+ 2¢&), (u+ 2¢), (x + 2¢),,)
as in[38] and of degree (p,p + €) € z0*2 x z(* with p L (p + €) . Our next aim is to
calculate the operator Rs_, T, R _,. On the domain D;_, = C*&) x C"#72 x R X R,
we use the variables ((x + 2¢)’, (u + 2¢)’,u,u + €). Moreover, we express (u + 2¢)’in
polar coordinates (u + 2&)" = t171, ..., t(146)T(1+e) Wherers = 0and t;, €S = Sfor s =
1,...,(1 + &). Then we have the relations
(u+28)j, =1;;p =t M,

for¢ ={s,..,(B; + €)}andj = 1, ..., m. It follows that &; , = t; ,7; ,r; " in the case of r; #

0 and therefore:
m

({ + €)P+e = (PEP+eyp+p+e 1_[ r]f|Pj|—|(P+5)j| (30)
j=1
Note that the assignment (x + 2¢)’ — ({ + €)P({ + £)P*# depends on the initial choice of
(B + ) € Z'.Using Theorem (6.1.16) we can write:

R, Tbs_z s—2 =Rs5 BD,H_S_Ls_lbs—ZBDn,S_l s—2
= Rs_, (R;—z Rs_, )bs—z (R;—z R, ) ;—2

= (RS—Z Rs_, )RS—Z bs_>Rs_, (Rs—z Rs_, ) = Rs_2bs_;Rs_,
= R;—lUs+2Us+1UsUs—1bs—2Us_—11U51U;4}1U;4}2R5—1
= Rg_5 Usy2Us 1 Ushg_1 (1, .., T, (x + €)', Im(x + 2¢),,
— |(u+28)'12)( + &)P({ + e)P*U U U UsiaRs—y
First we calculate the operator Us_, bU; . Let {f3(r,x’, (x + €)', {,u + 8)}362(1+€)be an
+

element in the space (27) and write r := (ry,...,1,). Since the ymbol
be_1(r,(x +&),(u+ &)+ |r|>)({ + €)P({ + £)P*¢ is independent of x’ we obtain from
(4.2) that:
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Us+1bs_1(7", (.'X,' + S)I, (‘Ll, + g)
+ Ir)Q + P+ P U {fp(r ', (x + )0, w+ )} e

={b_1(r,(x + &), (u+¢) + |r|?)r?rte

m

X 1_[ rj_|pj|_|p+£j| fpre(r,x', (x + €)', ¢, (u+¢)) (31)

j=1
Combining (31) and (29) gives:
RS—Z Tbs_zR;—Z : {Cﬁ (x,' f)}ﬁeziﬂ = R;—2U5+2Us+1bs—2Us_+11 Us_+11 {Xzi§%+ (,Br Z)

_ ) _|(u+s)’|2
(As_p) (P e~ Ir+lureN="3 Cﬁ(x’,i)}

ﬁezl+8

ﬁezl+8
= R;_3 Usi2Usy1bs o U;Jf-l1{)(zi+sxmz+ B, (AS—Z)B Orf

2

—L(Ir P+ ute))—a|—=x+T (x+e)’ 1

s = L IR U
G
ﬂEZ:H-S

= R;—2U5+2{Xz_1|_+5xﬂ&+ (B +¢ ()(As—2)3+s(()rﬁ+2(p+s)bs—l
X (re_p, (x+ &), (u+¢)+1r|?

et (|7 |2+ (u+e))— ——| ——x"+,/ (x+¢)’ ’
% 1_[ rj—lpjl—l(PJrs)jl

j=1
(- o)
\/— BEZ]'+8

i —x"+ (x+¢)

=Rs_, Xzl+texRr, (B+&Q) (As—z)ﬁ+s({)bs—1 r, 2\/? ,(u+e)

m
—lp.|— . 1 12
+ |r|2) % nrf Ipjl-|(p+e))] FB+2(p+e) o =S (Ir [P+ (ure) 5] Ce+e)'| Cove

j=1

(x", )} pegr+e
= {(As-2)p (D (As_2) pre (DX mitexr, (B + & 0) Cpae(x', )} pegrre

m

y j r2(B+p+e) Hr_—|Pj|—|(P+€)j| o= S (T2 +(ute))~lx+el?
R1+8X]Rn—£—2xﬂg+ j=1 J
—x'+ (x+ &) Cemr(u+ )t
X b4 <r, ( ) ,(u+e)+ |r|2>rdrd(x+e)’ e-1( ) d(u+s)}
2\/-2 4 ,BEZ]_|'_+E
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Now put:
Vb,p,p+£(,8» x', ()
= (As-2)p(§)(As-2) p+e (f)){z}jsx]& B+¢0)

Xf | |rj_|pj|_|(p+£)j|r2(ﬁ+p+s)e—2((|r|2+u+s)—|x+s|2
RItEXRN-E-2xR,

j=1
x'+(x+¢g)

X be_4 (r,_T, (u+e)+ |r|2) rdrd(x + €)
Hence, we have proved:
Theorem (6.1.17)[270]: Let bs_, be defined as in [38]. The operator R;_, T},_,Rs_, actson
the Hilbert space #,(Z3*¢, L,(R"¢72 x R,)) by the rule:
RS—Z Tbs_zR;—Z : {C,B (x,' C)}ﬂeziﬂ = {ybs_z,p,p+£ (.8' X’, {) Cﬁ+s(x,r O}ﬁez“f
Note that, in the case € = 0, Theorem 4.5 reduces to Theorem 4.2.
Example (6.1.18)[270]:We calculate R,_, T,,__,Rs_, more explicitly in the special case
where
bs_;+ = landwechoosese = m—1,ie.a=(1,..,1) € zL* Let (p,p + &) € Z1*¢ such
thatp L (p + ¢€) and put

be_,((x+28),(u+2¢),(x + 28),) = ({ + &)P({ + &)P*e = tPtP+e
According to Theorem (6.1.17) it is sufficient to calculate the functions:

ybs_z,p,p+£(.8r X’, {)
= (As-2)p (D As-2) p+e(Dxr, (O

Xj T2'8+85_2 e—z((lr|2+(u+s))—|x+s|2rdrd(x +¢)
RItEXRN—E-2xR

s Ce—q(ute)®t

dlu+e) (32

Cre—ny(u + €)™V
x L& 1)(4 ) dlu+e)

forall g € Z1*t¢ with (B + £) € z1*¢. We use the identity:
e~ 2@+l gy 4+ e) (u+ ) du+e) =n

n—e—2

j [(e)(20)~0+D)
RITEXRN-E-2xR,

(see [97]) where ¢ > 0, which together with (28) shows that

_ o(1+e) Iﬁ|+e+1+|p+€| Ipl 2B+e
ybs 2pp+£(.8 X () 2 (26) \/m! .[RET
H1+£F<,8j + (p+ 82)]' — Db + 1)
VB (B + ©)! '

In particular, in this case y,__, »p+£(8,x',{) is independent of x" and ¢

Fix (B +¢) ezt with | + | =&+ 1asbeforeand leta,_, = a;_, (1, ..., Ty, (x +
&)'Im(x + 2¢) , — |(u + 2¢)’|?) be a bounded measurable (8 + £)-quasi-nilpotent quasi-
radial function on D, ._;. Consider the symbol:

o—20-1Gc+e)? gy
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be_,((x + 2¢&),(u+ 2¢), (x + 2¢),,)) = bs_1(1ry, ..., Ty, (x + €)', Im(x + 2¢),

—[(w+2e)'1%).({ + )P (¢ + e)PTe. (33)
We calculate the operator products Rs_, Ty, T, ,Rs_, andRs_, T, T, R _,.

According to Theorem (6.1.7) and Theorem (6.1.1) we have
RS—Z Tbs—zTas—zR;—2 {Cﬁ}ﬁezli = (RS—Z Tbs—zR;—2 ) (RS—Z Tas—zR;—Z ) {Cﬁ}ﬁeziﬂ
=(Rs—2 Ty, Ri-2 WPy ppre (B2 8)- (¢, O}, e

= {Vbs_z,p,phs‘ (:8' X’, E)yas_z,0,0 (:8 + & X’, S;)CB+£(x,t E)}ﬁEZfﬁ"l (34)
On the other hand it follo

RS_Z Tas—szs—zR :—Z{Cﬁ}ﬂezi‘ﬂ = (RS_Z Tas—zR;_2 ) (RS_Z Tbs—zR;k_2 )
= (RS—Z Ta5—z R;_, ){Vbs_z’p’P+g(ﬁ) x',{). Cp (x', O}Beli‘“l
= (Vo200 (B %", Doy pre (B, e, O} e (35)

Hence, we conclude from (34) and (35) that both operators T,,__, and T;,__,commute if and only
if

]7(15_2,0,0 (ﬁ’ x” () = ]7(15_2,0,0 (ﬁ + S’ x" ()
for all p € Z1*¢. According to (9) this is equivalent to:

1 ( —x'"+ (x+¢)
- a -1 T‘,

ﬁ! REFIXR-€-2xR, ’ 2\/?

% rz[;e—zf((u+e)—|rIZ)—|(X+£)'|2(u + &) lrdrd

20)~Ipl+Ip+el ! /
N ( ((,)B + 5)' -[]Rg"'l RA—E-2xR as—1 <T', - -;\(/x?-i_ 8) ) (u + 8) + |7"|2>

X r23+5e_25((“+8)+|r'2)‘|("+E)’|2(u + &) rdrd(x + €)'d(u + ¢)
Since a,_1(r, (x + €)', Im(x + 2¢),, — |(u + 2¢)|?) only depends onr = (1, ..., T;,,) WE
can assume that the above integral has the form

,(u+e)+ |r|2>

f Gs-1 (T U e |r|2>r2ﬁ o~ 28((wror+ir?)-|+e)|”
S— ) )
Ri+1XRn_£_2XR+ 2\/?

X (u+ &) rdrd(x + )'d(u + €) =: (),

Where g € Z&t1. With e = (1,1, ...,1) € Z&*1 we obtain
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1 —x'+ (x+¢&)
() = 32 f L <r, (u+e) +|r?
RETIXRME-2xR,

2%

)
X |r23|e_25((”+5)+|rlz)_|(x+8) | (u+ &) trdrd(x + &)'d(u + €)

1 j j < —x’+(x+£)’( Lo
= as_ |1, ,(u+e
28+t RP—E-2xR, YRMxSF1+e-1x  xSAm+e-1 ’ 2\/?
m
+|1‘|2> |p2ﬁ+e|_ l_lr]'2|ﬂ(j)|+2(ﬂ+£)j_1 e—24’((u+e)+|r|2)—|(x+s)’|2
j=1

x (u + s)s_lda(p(m))rdrd(x +&)'d(u+¢)
In the last integral we wrote dO'(p( j)) for the standard area measure on the sphere S(+&)i-1,

The integral over the m-fold product SB+&1~1 x . x §B+&m=1can be calculated explicitly
by using the following well-known formula:
Lemma (6.1.19)[270]:Let do denote the usual surface measure on the (n — 1)-dimensional

sphere S™ ~ L and let 6 € Z1*¢. Then
01 - 1 9n - 1
2r (A=) .1 (*2—)

Using the formula in Lemma (6.1.19)we define:
Op= j |p?P*¢|do(pqy) - do(pam))
SB1te-1x xSPm+e-1

= (Bi+e+1 -
-2 [r (B i 36)
j=1

This finally gives:
eﬁ 1 ! 14 2
(x) = as_1 (1, —=(Cx"+(x+¢€)),(u+e)+|r|
RT'XR"&-2xRy

21+€ 2\/?

X rf'ﬁ(5)|+2([))+8)1_1 ".rrzrlﬁ(m)|+2(ﬁ+8)m—1e—2(((u+€)+|1‘|2)—|(x+€)’|2(u + 8)5—1d,r.d(x + E)Id(u
+ ¢).

Note that the last integral does not depend on the full multi-index g but rather on the values

|By| for j=1,..,m. We denote this integral by G, __ (Bl - |Bam|)- Then the

commutativity condition (35) can be written in the form:
=L Gayu (IBesls s |Bomy|) = @RI 22 6 (8| = ooy + o +

B!
| [Bomy| = Pamy | + | @ + ey ).
According to the definition (36) this is equivalent to
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B+e)+1 -
Gay_, (IBy ) - |Bem |) = 1_[ ( : |ﬁ(,-)|>

= 0" 'p'+"’+£'G ia,. 2(|:3(1)| oo |Bamy| = [Py |

+e)+1 -
+ | + & em)) 1_[ ((B ), + Bl = ppy| + (0 + e)(j>|>

This equality can be only true S|multaneously for all g + ¢ -quasi-nilpotent quasi-radial
functions as_, and all g € Zi** if |pjy| = |(p + €)(jy | for j = 1,...,m. Hence, we obtain
see[38]:

Theorem (6.1.20)[270]: Let (B + &) € Z1*€ be given. Then the statements (a), (b) and (c)
below are equivalent:

(@) For each (B + e)-quasi-nilpotent quasi-radial function as_, = as_1(r;, (x+
&), Im(x + 2¢),, — |(u + 2¢8)'|*) € L*(D,,,5s—;) and each (B + &)-quasi-nilpotent
quasi-homogeneous function

bs_y = be_1(1y, e, T, (x + &), Im(x + 28),, — |(x + 28)'1|%). ({ + &)P({ + £)P*

€ L*(Dns-1) (37)
of degree (p,p + ¢) € Z1+¢ x Z1*# the Toeplitz operators T,,_, and T, _, commute on each
weighted Bergman space A2_;(D,41s_1)-

(b) The equality ¥,,_, 00(B,x",€) = Va,_,00(B + & x',&) holds forall B € Z¥ and for each
(B + €)-quasi-nilpotent quasi-radial functions as_,.

(c) The equality |p;y| = | (p + €)(;| holds foreachj = 1,...,m.

Now, let us assume that bs_, € L% (Dy45-1) is 0f the form (37). Under the assumption |p;)| =
|(p + €)(jl, foreachj = 1,..,m, we calculate y,__, ,+(B, x",¢) in (32) more explicitly by
reducing the order of integration. Assume that g + ¢ € z1*¢. Then:

Vbs_z,p,p+e(.8r xli ()

= (As—z)ﬂ({)(As—z)me(f))(uh(f) J r2(B+p+e)

&+1 n—&-2
REFIXR xRy

m
~lpepl-1@+e) ] — 2 -|Gcve)'|’
% | |r U N g =28(Ir 1>+ u+e)~|(x+e)'| bs_4

><<r —x"+ (x + &)
, 27

=Opp+e (As-2) (O (As—2)pre(Oxm, (270D

j | | Z2lBalH@eragl-lppl+2ai-1  _acqriz+ren-|Grer[’),
: s—1
RMXR?E-2xR,

(u+¢e)e !
4

(u+s)+|r|2>rdrd(x+ g)’ Ce1 d(u + ¢)

X

j
j=1
—x'"+(x+¢e)

x(r, N

(u+ )81
4

,(u+e)+ |r|2>rdrd(x+s)’ el d(u + ¢)
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_ @,8+p+£ A,B+£ (C)
Op A

. Dbs_z (lgr X’, {)

((,8+€)]+1 |.3 |)
_(ﬁ+p+6YI] o)

B +e+1
BB+ (B2 4 g + @ + 2

where D, (8,x',{) = Vp,_, pp+e Which can be seen by choosing £ =0 in the above equalities.
Hence we have proved:

Proposition (6.1.21)[270]:. Let (8 + €) € z* be given. Assume that b;_, € L*(D,,45_1) is Of
the

form (37) and let |p;y| = |(p + €)(;y|, foreach j = 1,...,m. Then in the case of
p + ¢ €z we have
Vbs_z,p,p+e (,3, x,: ()

Dy,_,(B%",O),

(B+e) +1
=(ﬁ+p+eNI1 < : |&nD

+1
BB+ (VA2 g+ o+ e )

In the case of (B+¢&)e&zl*® we have Vby_ppp+e(Brx',§) = 0. the factor
Vb,_,pp+e(B,x",¢) can be expressed in the form

Vbs_z,p,p+e (,3, x,» Z)

—0p A3 xa, 20+ j

RT'XRM€-2xR,

' ]7b5_2,0,0 (ﬁ’ x,' 5)

m
1_[ r2Iﬁ(i)|+ICI(J')|—IP(J')|+2(I>’+8)]'—1
J

j=1
x =2 Aritre)-lera 'y <r, HIOED e+ |r|2>
2,/¢
Comq(u+ )1
X rdrd(x + €)' = 1 ) dlu+e) (38)

4
Let B+ &€z be given and (p,p + ¢) € z1*¢ x z1*¢.  From Proposition (6.1.21) we
conclude:
Corollary (6.1.22)[270]: Let a;_, = as_1(r, (x + €)', Im(x + 2¢),, — |(u + 2¢&)'|?) €
L*(D,4+s—1) be an (B + &) — quasi-nilpotent quasi-radial function. Under the assumption
lp()H)| forallj = 1,2,...,m we have

Tag o Tgrepgrape = Trep@raprelas, = Ta, ,qrep@rer s (39)
on each weighted Bergman space.
Proof: The first equality in (39) is a direct consequence of Theorem (6.1.20). If e(x + 2¢) =
1then Te = Id, and thus v, o o (B, x', §) = 1. Hence, Proposition (6.1.21)implies that in the case
of a symbol bs_, = ({ + &)P({ + &)P*€ with |py| = |(p + )|, for all j=1,2,...,m, one
has
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Vbs_z,p,p+£ (,8: x,» ()

B+e);+1
_ (ﬂ+p+e)'1—[ ( 7 IB(,-)|>
VBB + o <B+e)1+1

(40)

+ 1By + @ + 8)(j)|>
Whenever (8 + &) € z1*¢ (cf. Example (6.1.18) for the choice of (8 + ¢) = (1, ...,1) € z}*€
and the case p; = (p + ¢€);for1,...,1 + €) Moreover, if B + ¢ € z{**, then it holds

Voo pppteBrx', ). Theorem (6.1.20), Proposition (6.1.21) and the assumption that|p ;| =
|(p + &)jyl, forall j = ,m, imply now that

yas 2bg_ 2pp+e(,8 x' () Vbs 2pp+£(.8 x' Z) yas 200(.8 x' ()

- Vbs_z,p,p+s(,8 x' C) Vas_z,O,O(,B + &, x' ()
This together with (33) and Theorem 4.5 yields the second equality in (39).
Proposition (6.1.23)[270]:Let us assume that |p | = [(p + &) (| forall j= 1,2,...,m,. Then

the Toeplitz operators T; commute mutually. Moreover,
m

1_[ Tj:= T grepigrape (41)

j=1
on each weighted Bergman space.
Proof: Let b; = ({ + &)P0({ + &)®*¥w, for j = 1,2,...,m, We only prove the following
product rule:

It = T(q+g)f?(i>+5(j>(m)m(iﬁmm (42)

for i,je{j=12,...,m} and i=+j. According to Theorem (6.1.17)the operator
Ry, TiTiR;_, acts on the sequence space £, (z5+, L,(R"¢72 x R,)) by the rule:

Ro—z TTiRs—2 {cp(x', O} g pens

= R, TiR-2 T, 7855, B X' P o (B = Py + )iy x',6)

X Cﬁ—ﬁ(i)-ﬁ(j)+(p+8)(i)+(p+8)(j) (x', O}Beziﬂ
Hence it is clear that (42) is equivalent to:
7bj,ﬁ(j)'(p+€)(j) (B,x,0). Vbi,ﬁ(i)»(p+€)(i) (,3 — by (+ 8)(]')' X', 5)

= ]7bilbj’ﬁ(i);ﬁ(j),(st)(i),@Tg)(j) (,8; x', Q). 43)
By (40) we have
)7b1"ﬁ(]')'(p+€)(j) (:8: x', ()

- B+ s) +1
(B + @ +)p)! ( ] |ﬁ(”|>
B — (B+e);+ 1 — Y
\/3(1)! (Biy =Py + @ +€)p)! F( - -+ 1By + o+ 8)(j)|)

and similar for i replaced by j. Moreover, the function on the right hand side of (43) has the
explicit form:
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Vbi'bi'ﬁ(i»ﬁ(j),(151?)(1-),(5173)( D B,x".9)
(.B + @+ 5)(;') + (p + S)U))!

\/.3! (B - Piy — Py + (Im)(i) + (Im)(j))!
r ((ﬂ L 82){) Lk |ﬁ(f)|)
(,3 + E)f +1
2

X

Pe(i ) F( + By + (Zm)wﬂ)
Now, (43) can be easily checked from these identities.
Theorem (6.1.24)[270]: The Toeplitz operators T, and Te.,; commute on each weighted
Bergman space (A2%_,)._1(D,.+s—1) if and only if for each £ =1,2,...,£ + 1 one of the
conditions (a) — (d) is fulfilled:
@p,=(@+e),=0
M) u,= (u+e),=0
©)pe=u, =0
d@+e)=(u+e,=0
Proof: Similar hat the operators T _and T, commute on (AZ_;) -1 (Dp4s—1) if and only
if for all € z&*1 :

)7gos,p,p+s(181xl; ()-]7¢s+1u,u+s(,8 +¢&x',{) = ]7<ps+1u,u+s(,8'x’:()-?zps,p,p+e(,8 +¢&x',0)
Since |p(])| = |(p + E)(])l and |U(])| = | (u + 8)(])| for ] = 1,2,..., mwe can use the
factorization of 7, _p, p+: (B, x",{) and ¥, .y u+e(B, x',¢) in Proposition (6.1.21):

)7(ps,p,p+€(ﬁixli () = (Dp,p+€(:8)-]7(p50,0(ﬁ'xII{)i

]7<Ps+1uzu+8(ﬁ’ X’, 6) = (Du,u+e(ﬁ)- ]7<Ps+10'0 (:8' X,, ()l
where we use the notation:

. B+e);+1
(3):(ﬁ+p+€)!n F( = +|ﬁ(j)|) (44)
B! (B + ¢)! j=1 F(('B-I_gz)j 1 + |,3(j) + (p+g)(j)|)

Moreover, it follows from Theorem (6.1.20) and again by the conditions on (p,p + ¢€)
and (u,u + ¢) that
7<p50,0 (ﬁ, X’, {) = 7<p50,0 (:8 + &, X’, {)
Voer00Bx8) =¥y, 008 +&x',0)
Therefore we only need to verify that

CDP,P+8(IB)'CDu,u+g(,B + 8) = q)u,u+s(ﬁ)- q)p,p+s(ﬁ + 8)-

By a straightforward calculation this is equivalent to:
(B+u+2¢)! (B+p+2¢)!
| = — |2 = -7
B+p+e) G (B+u+e)! Gio
Varying [ it can be seen that this equality holds if and only if for each
?=1,2,...,&+ 1 one of the conditions (a)-(d) is fulfilled.
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Section (6.2) Toeplitz Operators with Quasi-Radial Quasi-Homogeneous Symbols

We study of commutative algebras generated by Toeplitz operators acting on the
Bergman spaces over the unit ball. The fact of just an existence of such algebras was quite
unexpected and its exploration for the unit disk case was started in [294, 296, 295]. The final
result on classification and description of the C+-algebras generated by Toeplitz operators being
commutative on all weighted Bergman spaces A2 (ID™) on the unit disk was obtained in [98].
In an equivalent reformulation it states that, under some technical assumption on the “richness”
of a class of generating symbols, a C+-algebra generated by Toeplitz operators is commutative
on each weighted Bergman space if and only if the corresponding symbols of Toeplitz operators
are constant on the orbits of a maximal commutative subgroup of the Mobius transformations
of the unit disk.
This result was extended then to the case of the unit ball. As proved in [218, 219], given a
maximal commutative subgroup of biholomorphisms of the unit ball, the C*-algebra generated
by Toeplitz operators, whose symbols are constant on the orbits of this subgroup, is
commutative on each weighted Bergman space.
There are five different pairwise non-conjugate model classes of such subgroups: quasi-elliptic,
quasi-parabolic, quasi-hyperbolic, nilpotent, and quasi-nilpotent (the last one depends on a
parameter, giving in total n + 2 model classes for the n-dimensional unit ball). As a
consequence, for the unit ball of dimension n, there are n 4+ 2 essentially different “model”
commutative C*-algebras, all others are conjugated with one of them via biholomorphisms of
the unit ball. The next surprise came first in [193] and was developed then in [37,38,195].
As it turned out, for n > 1 there exist many other, not geometrically defined, classes of symbols
which generate commutative Toeplitz operator algebras on each weighted Bergman space.
These classes of symbols were always subordinated to one of the above model classes of the
maximal commutative subgroup (with the exception of the nilpotent subgroup). The
corresponding commutative operator algebras were Banach, and being extended to C*-algebras
they became non-commutative.
We note that in all above cases of the commutative C*-algebras generated by Toeplitz operators
these algebras always come with an unitary operator (specific for each algebra) that reduces
each operator from the algebra to a multiplication operator, giving thus, among other results, a
complete spectral picture of the operators under study.
As for the commutative Banach algebras generated by Toeplitz operators, the results obtained
so far give just the description of these algebras in terms of their generators. The next
challenging task is to develop their Gelfand theory, obtaining thus more detailed information
on the operators forming the algebra.

We study the case of a commutative Banach algebra generated by Toeplitz operators
with quasi-radial quasi-homogeneous symbols (i.e. an algebra subordinated to the quasi-elliptic
group). To simplify the considerations we restrict our attention to the lowest dimensional case
n = 2.The corresponding (unique) commutative Toeplitz operator algebra 7° (1) is Banach (not
C*), and can be described as follows:

Let H: = A% (B™) be the weighted Bergman space over B2 with parameter 2 > —1, and write
T-0qa(A) for the commutative C*-subalgebra of £L(H) generated by all Toeplitz operators T,
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with radial bounded measurable symbols a on B? (i.e.a(z) = a(|z|)). Further, we denote by
T, the unital Banach Structure of A Commutative Banach Algebra algebra with a single
generator T,,, where ¢ is the “simplest” quasi-homogeneous symbol on B2 .1t is easy to see
that operators in J;,4(A) and T, commute and, as an important observation, we remark that
T (A)is generated by these two algebras (cf. Corollary (6.2.5)).

Our results on the structure of7" (4)already reveal some important features which we
expect to be useful under a further study of the higher dimensional case n > 2, and in a situation
where the quasi-elliptic group of automorphisms of B™ is replaced by another group among the
above model classes.

The main theorem explicitly expresses the maximal ideals of 77 (1) and the Gelfand map.

Theorem (Theorem (6.2.28)) The compact set M (7°(A)) of maximal ideals of the algebra
T (A) has the form

M(T(A) )=7Z, x{0}UM,(1) xD (0,%)

where M., (A1) can be identified with the subset of all multiplicative functional of 7;,4 () that
map compact operators to zero. The Gelfand transform is generated by the following
mapping of the elements of a dense (non-closed) subalgebra of 77 (4):

i . Yo (k) (k,0) € Z, x {0}
D,.T. — n ' g
< vile ijOM(Dyj)f] (1,&) € Mpy() XD (05)

Here Dy, € T1aq(A) Is a diagonal operator with respect to the standard orthonormal basis

[e,: a € Z2] of H with the sequence Yj = {yj(lal)}aof the corresponding eigenvalues.

As an important ingredient of the proof we carefully analyze the structure of the algebras

Traa(A), Ty, and of C*-algebras that are generated by just a finite number of Toeplitz operators
with radial symbols. In order to identify the multiplicative functionals of the previous algebras
we essentially employ the concept of the “joint spectrum” and the “joint approximate
spectrum‘of finite tuples of operators together with the Berezin transform on functions with
respect to suitable subspaces of H. It is important to note that the arguments are not purely
algebraic but heavily rely on the analytic structure of the generating Toeplitz operators and the
underlying Bergman space.
Some important properties of 77 (A) can be deduced by the help of the previous theorem. Since
T (A)is not invariant under the = —operation of L(H) the inverse closedness of this algebra is
not obvious, and usually such a feature is hard to show. Here we can prove the inverse
closedness of 77 (4) from the explicit description of the maximal ideal space and by extending
multiplicative functionals (in a multiplicative way) from commutative Banach algebras to an
enveloping (non-commutative) C* —algebra.

We show that 7°(1) is not semi-simple, and in Lemma (6.2.7) we describe some of the
elements in its radical RadT (1). However, to calculate the radical precisely we again need
Theorem (6.2.28) together with additional arguments (see Lemma (6.2.38) and Theorem
(6.2.43)).
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Finally we wish to point out that the derivation of the maximal ideal space has important
consequences for the operator theory of the elements in 77 (1)We give some remarks on the
essential spectrum and the Fredholm property of (certain) operators A € 7 (1) (cf. Theorem
(6.2.32) and Corollary (6.2.36)) and solve a“zero-product-problem”for Toeplitz operators (cf.
Corollary (6.2.10)), which holds true despite of a certain ambiguity in the representation of
operators as a finite sum of products of elements inJ;.;4(4) and T;,(see Lemma (6.2.8)).

We recall the construction of commutative Banach Toeplitz algebras that are subordinate
to the quasielliptic group.We obtain a set of generators for this algebra 7 (A)in the lowest
dimensional case and we study some of its subalgebras. contains preliminary results on the
maximal ideals for certain finitely generated subalgebras of 7°(1). Our main result (Theorem
(6.2.28)) on the Gelfand theory of 77 (A)is proved and we give some applications.

Among them we prove the inverse closedness of 7 (1)and calculate its radical.
We write B", (n € N) for the open Euclidean unit ball in C", i.e.
B" :={z = (2q,..,2,) € C":|z|?> = |z1|* + - + |z,]|?* < 1}
Let dv denote the standard volume form on B™. With A > —1 we consider the one-parameter
family of the standard weighted measures
dpp(2) = (1 = |z|))* dv
where c;> 0 is a normalizing constant such that v, (B™). More precisely, c, is explicitly given
by the formula:
_r n+1+1)

AT+ D)
The weighted Bergman space A3 (B™) is the closed subspace in L, (B", dv;) consisting of all
functions analytic in B™. We write B, for the orthogonal Bergman projection from L, (B", dv;)
onto A5 (B™). It is well-known that B, can be expressed as the following integral operator:

¢($)
B1910) = | e g i)
]BTL
where ¢ € L,(B", dv,) and (z, &) == z,&; + -+ z,&,, .Given a function g € L*(B") the
Toeplitz operator T, with symbol g acting on Az (B") is defined by:
Ty = By(g¢p) ¢ € AZ(B")
Forn > 1, new classes of commutative Banach algebras generated by Toeplitz operators with
specific bounded symbols on B™ have been constructed in [37,38,193,195]. As we have
remarked already these algebras remain commutative on each weighted Bergman spaces
AZ(B™) with 2> —1, and are induced by the maximal commutative subgroups of the
biholomorphisms of the unit ball: quasi-elliptic, quasi-parabolic, quasi-hyperbolic and quasi-
nilpotent.
These Toeplitz Banach algebras are not invariant under the =-operation of L(A3(B™)),
and being extended to C+-algebras they become non-commutative.
We shortly recall now the definition of the commutative algebras that are subordinated
to the quasi-elliptic group of biholomorphisms (for further details see [217, 192]). Let k =
(ki, ko, - - ki) be atuple of positive integers with |k| = k, + k, +- - - +k,,, = n. We divide
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the coordinates of z € B™ into m groups of k; entries, respectively by using the notation z =
Z(l), e Z(m) € C™ with

Z(]) = (Zj,l' ""Zj,kj) € «:kj
wherej = 1,...,m. Let %=1 c C*i denote the (real) (2k; — 1) —dimensionalunit sphere in
C*i. We express zjy = 0 in polar-coordinates z ;y = 1;z(;)¢(;) With

Sty = ||Zﬁ|| €s*™~' and 1= ”Z(j)” € R, (45)
A bounded function ¢ (z) on B™a 3 is called k-quasi-homogeneous if it has the form:
0(2) = ary, . )& 60 e Eomy ) ey ey (46)

and ais a function of the m non-negative real variables r, ..., 7;,.The tuple (p,q) € Z} x Z}
with p L qis called the quasi-homogeneous degree of ¢(z).
Fixatuple h = (hy, ..., hy,) € ZV Withh; = 0ifk; =1land1 < h; < k; —1ifk; > 1.
We denote by R, (h) the linear space generated by all k-quasi-homogeneous functions of the
form (46) such that
(l) Forj with k] > 1: p(]) = (pj,li ""pj,hj , 0, . 0) and CI(]) = (0, . 0, qj:hj+1 ) ey q]"kj ),
WIth pj 1, s Djnp Qjnjyqr -0 ik € Ly @NAP g + 4 Din. = Qjnjyreor Ak -
(i) If kj, = kj» with j* <" thenh;, < h;,, .
Recall that the quasi-elliptic group of biholomorphisms of B™ is isomorphic with the n-torus
(T™ (here T = S$*) and acts on B™ as follows
TS t=(t,...ty): z2=1(21,...,2,) — tz = (t;124, ..., tZp).
Note that the functions from R, (h) are invariant under the subgroup T™ of the quasi-elliptic
group T™, which acts onB™ as follows
T3t =(t;,....tn): 2= (21, ., Zp) — (tlz(l), ...,tmz(m)).
The main result in [193] states the following:
Theorem (6.2.1)[303]: The Banach algebra B, (h) generated by Toeplitz operators with
symbols from R, (h) is commutative.
In the case of n >1 the algebras By, (h) do not extend to commutative C*-algebras. This effect
arise from the multidimensional setting and has no counterpart in the case of n = 1.
Our next global plan is to study the internal structure of B, (h) more precisely and, in particular,
we wish to determine their maximal ideal spaces.
We consider the simplest model case where
n=2andk =2
that is, we fix the dimension n = 2 and we choose m = 1. As a consequence we need to put
h = (1) = 1, and our main object to study, the commutative Banach algebra 7(1): = B, (1),
is generated by the operators of the form T p,0)¢(0,p)» Where a € L, [0,1) and p € Z,.
By [192], for any bounded measurable function a(r) we have
Toz% =Yoa(lal)z% a €2
Where
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r'(lal+4+3)
rA+0Dr(al+2)
According to [192], for |p| = |q| we have
Tewozomnz” = Vp,l(a)zfﬁngz_p, a € 72,

Vea(lal) = j a(N7) (1 = PAriatigr, (47)

Where
(@) = a,(a, — 1) ...a,(a, —p+1)

P T o+ 1+ lal(@ +laD - 2 + Jal)
We mention that y, 4 does not depend on the weight parameter A. By [193], for any bounded
measurable @ = a(r) and p € Z* we have

TaTrwogom = TewozonTy =T jrwozon (49)

As a consequence the algebra 7°(A) is generated by the operators T, with a € L,[0,1), and
Tewozop, where p € Z* (see Corollary (6.2.3) for an even‘“‘smaller”set of generators).

We start our analysis by studying separately the different types of Toeplitz operators
that, according to generate 7°(1). First we consider operators with radial and then with quasi-
homogeneous symbols.

Let y = {¥(|a|)} |a| € Z" be a bounded sequence. Denote by D, the (bounded linear)
diagonal operator which acts on the weighted Bergman space A% (IB2), by the rule

Dez®=y(la)z*, a€Zi

Of course each Toeplitz operator with bounded measurable radial symbol a(r) is diagonal, and
T, = D, 2. However, as the next lemma states, not all bounded diagonal operators D,, can be
represented in such a form since the eigenvalue sequence y,; of T, is always slowly
oscillating.
Lemma (6.2.2)[303]:Let a(r) € L, [0,1)and k = |a|.Then
Um (72 (k) = Yo (k + 1) = 0.
Proof: Let M = ess — sup |a(r)|. By (27), we have

|ya',l(k) - ya,/l(k + 1)|

| rk+2+3)
rA+Drk+2)

(48)

f a(vVr)(1 = r)*rktidr

F'(k+ 21+ 4)
" T(A+Dr'(k+3) J

a(vVr)(1 —r)rrktidr

rk+1+3)

= [Fa+Dracs ) cWn@ -

A+1  T'(k+21+4)
k+A+3r(A+10rk+3)
0

a(vVr)(1 = r)Arktidr
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A+1
= mya,/1+1(k) — Yok +1)

<M A+1

- k+24+3

The last expression tends to 0 when k — oo.

It follows from the lemma that the set of (partial) limit points of the sequence y,, , is connected
and compact.

According to the results in [194] and for the unweighted case (A1 = 0) the algebra 7.,4(1)is
isomorphic and isometric to the C+-algebra SO which consists of all slowly oscillating
sequences satisfying the condition

Llim|y(m) —y(m)| = 0.

7—)1
We denote by M (7,.,4(4))the compact set of maximal ideals of the algebra 7;.,4 (1) (or, which
is the same, of the algebra SO(4)). Let M., (1) be the fiber ofM (7,.,4(1)) consisting of all
multiplicative functionals 1 such that 1(D,) = Owhenever D, is compact (or whenever y €
co,» Where ¢, denotes set of all sequences converging to zero).
Each point k € Z, defines a multiplicative functional ¥ (k) on 7..,4(4):

Y(k): Dy — y (k),

and thus the set Z,. can be considered as a part of M(7;.,4(4)). Moreover,

M(Trqa(D) = Z1 U M, (1) (50)
and by [95], the set Z, is densely and homeomorphically embedded into M(7,.,4(1)) with
respect to the Gelfand topology on M(7,.,4(1)) Furthermore, by [250], the set M, (A1) is
connected.

We mention for completeness that none of the points of M, (A1) can be reached by
subsequences of Z. ; its topological nature requires to use nets (subnets of Z, ). That is, for each
point u € M, (A) there is a net {nﬁ}geg , valued in Z, which tends to u in the Gelfand topology

of M(J7.44(2)). Or, in other words, for each y = {y (n)}nez, € SO(1), we have that

Lim y(ng) =v(W (51)
where we identify y(u) with u(y), the value of the functional u € M, (1) on the elementy €
SO(A).

Consider now the special case of a radial symbol: (r) = r2 . By (47) we have

r(al+2+3) |
yr2, A(lal) = F(Ai'“l';(l :| +) 2 ] a(Vr)(1 —r)trle*tdr
F(lal+1+3) | N
=T+ Dral ) @A Nt
0
I'(lal + 2 +3) la| + 2

B(A+1,|a|+3) =

T+ DI (lal+2) la[+ 1 +3
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The sequence y,2 ;(n), n € Z,, is real valued, strictly monotone (thus separatingpoints of Z.,),
and convergent when n — oo. Hence, by the Stone-Weierstrass theorem, the unital C+-algebra
generated by a single Toeplitz operator T2 coincides with the algebra of all diagonal operators
D, with y € ¢, where c denotes the set of all convergent sequences.
Corollary (6.2.3)[303]: Lety € c,then D, € (). In particular, for all n € Z, the orthogonal
projection P, of A3 (B?) onto span{z*: |a| = n} belongs to the algebra 7" (1).

In order to simplify formulas, and with the coordinates in (45) we will use the notation
b, = (&) = EPOECP) where & = (¢3,&,) € S® c C%and p € N; for p =1 we simply

write ¢ = ¢;.
We start with some calculations based on (48):
a, _a a; a+1_a,-1
Tpz, "2, _2+|a| 1z, ap =21
a,(a, — 1) _
2. Q1 _Qp _ 2\M2 a1+2 _a,—2
T¢211222_—(2+|0(|)2 z, 'z, 0, apy = 2
ay(a; —1) @ +2, a,—2
T,,z517z%2 = z, V' z0 0, a, =2
; P21 72 T B+ ]a@+ a2 ?
Thus
1 1 (= 1) 442 a2 1
T? —T,, )z 222 =< — ) PR S — P
(T3~ To2)21"2 24+]al 3+lal) 2+|al T 2 3+ |a| 7t "2
or
h Tp2 = D, T,
where
2+ |af
d,(la]) = ——, a € 72,
2(lah =5 ;

Due to the remark before Corollary (6.2.3) we conclude that the Toeplitz operator T4, belongs
to the unital algebra generated by T, and Tg. Similarly, for any p € N, and a, > p we have
T, 7% ,% _ “2(“2 - 1) (“2 —p+ 1) a,+p _ax—p
"1 %2 T pr1+al).. R+ a]) T2
(T T )Zalzaz _ az(a; = 1) .. (az —p+1(a;, —p) Za1+p+1za2—'p—1
$7p)"1 2 T (pt1tal) ..+ aD@F|a) 2
T 781,% — az(a; = 1) ... (az —p) Za1+p+1 a,—-p-1
Pp+1”1 %2 T (p 1+ al) .2+ ]a) ! 2

By comparing these relations we obtain:

a;, _a; __ p a, _0«ar

T¢ T¢p - T¢p+121 Zy," = pi2+4]al T¢ T¢le Zy"
Note that the last equality is also valid in the case of 0 < a, < p and hence
T, =D Ty T,
bp+1 dp+1° ¢ ' dp

where
2+ |af 2+ |af

“ptiltlal prDF1+]al’

1 () a e}
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By induction we finally have

p
Ty = 1_[ Dg, |2, (52)
k=1
where the eigenvalue sequence dy, = {dy (|a|)}jez, IS given by
2+ |af
e (e =3 a

Note that d, (|a|) = 1, as it should be.
An alternative form of (52) is

| ) Ty, = DapT;j o (53)
where the eigenvalue sequence d,, = {dp|a|}|a|ez+ IS given by
- (2 + |a])P
d,|la| = , 54
= G T Tabg, &Y

and(x)y =x(x—1) --- (x — p + 1) isakind of Pochhammer symbol.

We note that, for eachp € N, both sequences d,, and c?p tend to 1 when |a| — 0. Thus we
have according to the remark before Corollary (6.2.3):

Theorem (6.2.4)[303]:For each p € N, the Toeplitz operator Ty, belongs to the unital algebra
generated by T, andTy.

Corollary (6.2.5)[303]:The Banach algebra 7 (1) is generated, in fact, just by Toeplitz
operators T, with bounded measurable radial symbols a(r) and the single Toeplitz operator T,

(with the simplest quasi-homogeneous symbol ¢ (£)).
We normalize the monomialsz%to the standard orthonormal basis [e,: a € Z2]of the
Bergman space A2 (B2), i.e.

e, = |4 *+A+3) o e (55)
* al (A +3) ’ i

Then we have in the case of a € Z3 with a, = p:

V(@a; + Da;

Tpeq = 2 + |a €la;+1,a,-1), (56)
T¢> €a = (2 + |a|)? €(a;+p.az-p), (57)

which implies that ||T£|| = 27P for all p € N, and thus the spectral radius of Tyis equal to % :

Note that (48) and (56) imply that the action of T,, does not depend on the weight parameter A.
Thus the structure of the unital Banach algebra T, generated by T, does not depend on the
weight parameter as well, and thus the spectrum of T is independent of 4.

Consider now the case 1 = 0. Since ¢ extends continuously to the boundary 0B? of B? it
follows from the results in [298] that the essential spectrum of the operator T, is given by
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Ty —
ess — SpT¢ = ImT¢(€)|aBz =Im mtltz

50

le +T22 =1,t1,t2651

where D (0, %) Is the closed disk centered at origin and with the radius % :
Finally,

_ 1 — 1
D (05) = ess — sp T¢ C sp T¢ cD (OE)
implies that sp T, = D (O, %)

By [75], the maximal ideal space M ( T,) of the commutative Banach algebra T coincides
with the spectrum of the operator Ty,i.e. M( T) = D (0%)

Theorem (6.2.6)[303]: The Banach algebra 7 is isomorphic via the Gelfand transform to the
algebra C,D (0, %) which consists of all functions analytic in D (0%) and continuous on

D(0,3).
Proof: Consider two unital algebras: the Banach algebra 73 and the C+-algebra T3, both are

generated by Tg. The operator Ty commutes with its adjoint Ty = T3 modulo a compact

operator, thus the quotient algebra 7"\4;‘ = T4 /([T N XK). where X denotes the ideal of all
compact operators, is a commutativeC*-algebra which is isomorphic and isometric to

C (ess —sp T¢) =C(D (0,%)). As the spectrum of any compact operator is at most countable

and having at most one limit point 0, which is not the case for any non-zero operator from T,
, we have T, N K = {0}. Thus

(1
Ty = Ty/(Ty 0 K) = (T +T5 0 K)/(T5 0 K) € T4 /(T 0 K) = C(D (0,5)
That is, the algebra T3, being isomorphic to the uniform closure of all polynomials of ¢ defined
on (D (0, %) is isomorphic to Ca (D (0,%)) :
For each k € Z2, we denote by H, the following subspace of A3 (B?):

H, = span{e,:a € Z3, |a| = k}, (38)
and, of course, we have an orthogonal decomposition of A%(B?) into finite dimensional

Hilbert spaces
;@) = (P
k=0

each space H,, is obviously invariant for all operat_ors from T (4). The diagonal operator D;,
restricted to Hy, is just the scalar operator y (k)1, while the operator T, acts on Hy as a weighted

shift operator. Moreover, the operator Ty, restricted to Hy, is nilpotent,

k+1
(Tom) =0
In particular, this implies that, for all p € N,
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p-1
@ Hy < ker Ty (59)
k=0

Recall as well that each orthogonal projection P, of A% (B2) onto H, is a diagonal operator,
which belongs to the unital subalgebra of 7" (1)generated by T ..
An important information on the structure of 77 (1) gives the next lemma.
A much stronger result can be found at the end of the section (cf. Lemma (6.2.38) and Theorem
(6.2.43)):
Lemma (6.2.7)[303]: The algebra 7' (A)is not semi-simple. Its radical RadJ (A)contains, in
particular, all operators of the form Ty, = Dy where y € ¢, and p € N.
Proof: In virtue of (53) it is sufficient to prove that D, T4 € RadJ (1) , or (see, for example,
[75]) that the operator A = D, T is topologically nilpotent, i.e.,

1
lim [|A*||* = 0.
k— o0

we have
A* = DETE = DETE(I = (Py + -+ Py_y)) = [Dy (I = (P + -+ P_p))] T
Thus

1
la< I < 112y (1 = o + -+ P-) 175 || = 17 suply O

As y € ¢, the last expression tends to 0 when k — oo.
We denote by D (A) the dense (non-closed) subalgebra of 77 (1) formed by finite sums of finite
products of its generators: T, with bounded measurable radial symbols a(r) and T, ) withp €

N.
An operator A from D(A) has the form

m
— p
A=)"D,T}
p=0

We mention that for arbitrary diagonal operators Dy, the above representation is not unique.

To describe this ambiguity we will use the notation K, (p), with p € Z,,, for a finite dimensional
diagonal operator, whose eigenvalue sequence has the form
y ={r0),y(1),...y(p—1,00,...},

of course, for p = 0, it is just the zero operator.
Lemma (6.2.8)[303]:We have

peo Dy, T = 0(60)
if and only if Dy, = ky,(p) , foreachp = 0,1, ..., m.
Proof: The part “if” follows from (59).
To prove the “only if” part, consider any n > m and note that each D, is diagonal with respect
to the basis (55) with

Dypea = Vp(lal)ea-
Moreover, by (57), the operator T acts on (55) as Ty e(q,,a,) = Tp(@).
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€(a,+p,a,-p)» Where 0 # rp (a) € Rifa, = p. Then by (60), we have

0= z Dy, T, beom = z ¥p (1) T (0, ) ey n—p).-

= p= 0
Since{ep,np: p= 0, 1,...,m}forms a system of orthogonal vectors and 7,,(0,)=0 we conclude

that yp(n) =0 forp = 0,1,...,mandn = m.
Therefore Dyp Is finite dimensional forp = 0,1, ..., m, and, in particular, D, =K, (m).
It follows that D, Tg" = K,, (m)Tg" = 0, and thus we have

m
P _
> D, 1P =0
=0

Repeating the above arguments m times (each time lowering the sum upperlimit), we have
consequently

Dy, ., =Ky, ,(m=1),D, , =Ky, ,(m=2),..,D, =K, (0)=0
At the same time the situation is quite different for special finite sums of finite products of
generators from D (A4).
To proceed with the result we define the“grade”for some operators by:

grade (D,):= 0, and grade (T¢p) = p.
Moreover, if [[7=, Ay is the product of the above operators, then we put

m m
grade (1_[ Ak> = z grade(Ay)
k= =1

= k=
Theorem (6.2.9)[303]: Let us assume that all summands of the operator

-y H%H o | =0

have different grades. Then it follows that for each k at least one radial symbol a, is

identically zero.
Proof: By (53) and (54), we have

pk,1+---+pk,n _
A= z HT Dy T4 “]=0o,

where each D, is invertible and its elgenvalue sequence tends to 1. Thus, by Lemma (6.2.8),
we obtain that each diagonal operator H;njl Tay.q is finite dimensional.

Then the result follows by [319], Theorem (6.2.1), and Theorem (6.2.6).
As a corollary to the previous theorem we give a result on the so-called zero-product problem
(see, for example, [168,169,319]).
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Corollary (6.2.10)[303]:For the operator
m

n
a=]|r] [7.
q=1 s=1

the following statements are equivalent:

(A =0,

(if) A is finite dimensional,

(iii) At least one radial symbol a, is identically zero.

We start from recalling some known facts and definitions: Let A = A (x4, ... x,) be a unital
commutative Banach algebra generated by the elements x, ... x,,, and let M(A) denote the
compact set of its maximal ideals. Then (cf. [167]) the joint spectrum o (x4, ... x;;) of x4, ..., x,
IS the subset of C" defined by

(%1, ... xp) = {m(xy), m(x,), ... m(x,)):m € M(A)}. (61)
In (61)we identify maximal ideals in A and multiplicative functional on Ain the usual way.
As is well known, the mapping
m € M(A) - (m(xy), m(xy), ... m(x,)) € a(xy, ... %)
defines a homeomorphism between M (A) and o (x4, ... x5,)
Ife € A denotes the unit element then we can also write (cf.[318])

0 (X1, s Xn) = {(py, o ttn) € € J (X — pa, oo, Xy — ppe) # A} (62)
where J(x; — yye, ..., x,, — Une) denotes the smallest ideal in the algebra A4 which contains
the elements x; — p e, withj =1, ..., n.

Let H be a complex Hilbert space and (4, A4,) be a tuple of (bounded) commuting operators
onH.
We say (cf. [67]) that (u; ,u,) € C? is in the joint approximate point spectrum om(4,,4,) of
(A4, A,) if and only if, for all B, B, € L(H),
Bi(Ay — D) + By(Ay —upD) # 1
Now, let A = A(A;, A,) be the Banach algebra in L(H) generated by the commuting operators
A4, A, and the identity element. The next statement is well-known and quite standard.
Lemma (6.2.11)[303]:The following inclusions hold:
om(Ay,A;) € 0(A1,4,) = M(A) € M(A,) X M(A,)

where A, and A, denote the unital Banach algebras generated by A4, and A, respectively.
Proof:Note that, by restriction, each element ¢ € M(A) defines a functional in M(c/lj), j=
1,2 which proves the second inclusion. The first inclusion directly follows from the
characterization (62).

Below we need a more concrete characterization of the joint approximate point spectrum
which has been given by A.T. Dash:
Proposition (6.2.12)[303]: [67] A tuple (u;,u,) € C? isin om(A,, A,) if and only if there is
a sequence {f,}, < H of unit vectors such that
I(A; = Dfull = 0 and|[(A; — u2Dfull = 0
as n tends to infinity.
It is instructive to consider first the unital algebra with just two generators:
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a diagonal operator D,, and Ty. The result will already give a good approximation to what one
can expect for the algebra 77 (1).

We fix 1 € (—1, o) and a diagonal operator A; = D,, € T;.44(4), Whose eigenvalue sequence
y = {y(k)} € Z, satisfies the conditions:

(Ny(ky) # y(ky), forall k; # ks,

(ii) none of the eigenvalues y (k) belongs to the set of limit points of y.

We note that the aim of these conditions is to separate“as much as possible” the points of the
compact set of maximal ideals of the unital algebra generated by D,,. Furthermore they will be
important in the proof of Lemma (6.2.14).

Let A, =T,. We consider the unital Banach algebra A = A(A;,A;) generated by two

commuting elements A, and A4,.
If we denote byLim(y) the set of all limit points of the sequencey, then the spectrum of the
operator D, is given by
o(D,) = clos Im(y) = {y(k):k € Z,} U Lim (y)
Recall that the operators A; and A, act on the basis elements (55) as follows
Aeq = Dyea =ylaleq,
V(@ + Da,
2+ |C(| €(a+1,a,—-1)"

Lemma (6.2.13)[303]: We have (D, ) x {0} € om(4,,4,) .
Proof: Fix first(k) € y , and observe that e oy € ker Teaozon. If we put f, = e , for
n € N, then we have

|(Dy —yUDfa]| =0 and ||(Traozon —01)fy|| = 0.
That is, Lim(y) X {0} c om(A4, 4,).
Lemma (6.2.14)[303]:None of the points (y(k),{),wherek € Z, and k € Z, (( €

D(0, %)\{O}belong to the joint spectrum o (4,,4,) .
Proof: We fix a pair(y(k), {), with { = 0, and show that the ideal in A(A;,A4,), which is
generated by the operators A; —y(ko)I = D, —y(ko)l, and A, — {I = Ty — {I, coincides
with the whole algebra A (A4, 4,).

Consider the finite dimensional space Hy, in (58). Then it can be easily seen that Hj
and its orthogonal complement H,io = AZ(B?) © Hyare invariant under the operators
D, and Ty. Moreover, the restriction of A, = Ty to Hy is nilpotent,

ko+1
((042|Hk0) =0
The operator A, —y(ky)I is diagonal, and its eigenvalue sequence is of the form y =

{y (k) — y(ko)}ke z, - The above conditions (i) and (ii) guarantee that
inf ly(k) —y(ko)| >0
k#kg
for each ko € Z,. Thus the diagonal operator Dy _1y With the eigenvalue sequence

Azea == Td)ea ==
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__0 (g 1 }

Y {(1 o) Gy =y i) ez,
is well defined, it obviously belongs to A(A,) € A(A4,4,), and

Dy -1y (A —yk)I) =1— Py,

where Py is the orthogonal projection of A% (B?) onto Hy,. From this relation we also
conclude that y (k) defines an element in A (44, A,). The operator

Dy—1y(A; —y (ko)) + (A; — D Py,
belongs to A (A4, A4,) and is invertible. Its inverse belongs to A(A;,4,) as well and has the
form

Dy-1)(A; —y(ko)I ) — (_1(5_1142 +{2A5 4 4 (_ROASO)PkO
which implies that the ideal generated by the operators A; — y(ko)I = D, — y(ko)I and A, —
{I =Ty — I coincides with the whole algebra A (A4, 4;).
To finish the description of the joint spectrum a(4,, A,) we need first some preliminary

facts on the Berezin transform corresponding to certain subspaces of Az (B2).
Let S c Z, be infinite. We introduce the Hilbert space

Hg := span{e,:|a| € S} c A% (B?).
Its reproducing kernel function Ks(z, w) has the form of a power series converging uniformly
on compacts of B2 x B2:

Ks@@) = ) eq(2) eq(@)
|x|€S
Lemma (6.2.15)[303]:Let {w,,},, € B? be such that the sequence (||w,,||),,0f real numbers is
increasing and lim w,, = vk € 0B2. Then

n—>00
1Ks (. |2 = z ley(w,)|2 > 0, as n — w.
|x|eS
Moreover, for all z, w € B? the following estimate holds:

|KS(ZI (l))l <

(1= (7, W)+~ (63)

Proof: According to the multinomial theorem we have for j € Z, :

rG+A+3) © J! rG+i+3)
§ 2 20 201 20, — 2j
a a

Sinced > —1 it follows with |a| = j = oo that
rG+1+3) r@g+2)
T
As {w, },, is increasing and S is infinite, the first assertion follows from

1 rG+21+3) .
150 = Frgy ) el
jes J:

=j+1- oo
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and the monotone convergence theorem. The inequality(63) is a consequence of:

r(;+,1+3) r(1+,1+3) .
Ko(r) 2 s > ol > s Y [z, @)1

JES JEZ,
1

T (- {z @)
and the lemma is proved.

Let B2 be the closed unit ball in C2. Given a function i € CB2, we define its Berezin transform
with respect to Hs as

Bs[$](2) =

Now, we can prove:
Proposition (6.2.16)[303]:Let ¢ € CB? be invariant under the componentwise S*-action on
B2, i.e. forall (1,z) € S x B2 we have:

Y(1z) = yY(2) (64)

Let v € dB? and put w,, = —v such that lim w,, = v. Then, we have:

lim By[pl(wn) = (o).

Proof: Let € > 0 and consider the orbit 0, == {Av: 1 € S$!} c dB2.Let§ > 0 and define a §-
neighborhood of 0, by

KeC ol WKsC 2, Ks(,2)), 2 € B2,

0g = {z € B? : dis(z,0,) < 6}.

Let z € 02, then there is 1, € S'such that |z — A,v| < 6.Since ¥ is continuous up to the
boundary of B2 and due to the invariance (64) it follows that one can choose § > 0 sufficiently
small with

e>Y(z) —yp@Aev)| = [Y(2) —yYp@)|. (65)
Fix & > 0 with (65). Then there is ¥ € (0,1) such that for all z € B2\0? and n € N one has

{(z, o) <y < 1.

Hence it follows that:

, r(,+,1+3) r(,+a+3)
K50l < s > (o)) € sy [z )iy

JES JEZ4

= Cé‘.
Now we calculate

[(v) — Bs [¢]<wn)|

= T f Ve
—¢<z)||Ks(z,wn)|2dm<z).+”Ks( —5 | W
B2\0$
: 11l 52
V@I K5z o) dv2(2) < e+ 265 T B
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The last term on the right tends to zero as n — o (by Lemma (6.2.15)), and hence the
proposition is proved.
Lemma (6.2.17)[303]:We have Lim(y) x D (0,7) € om(4y,As).

Proof: Let (u,{) € Lim (y) X D (O, %) Recall that D (0,1) = Ima| 52 . Then we choose

v € dB? such that ¢ = ¢(v)and fix a sequence{m,}, Zfsuch that
limy(m,) = p.
Consider the set S, := {m,: £ € N} c Z, and define the Hilbert space Hs,.
Hsﬂspﬁ{ea: |a| = m,, €€ N}
Let {w,},, € B? be a sequence as in Lemma (6.2.15)with 1{% w, =v . We define a

corresponding sequence {f,, },, of unit vectors by

KS(-»(‘)n)
= 66
= TR Gl (66)
Then, we have
2 1
D, —ul = Z z m, — w|?|ey, (wy)|?.
”( Y ‘Ll )fn” ||K5(-,a)n)||2£ 4 h/( { ‘Ll)l | 0{( n)l
EN |a|=m,
Given £ > 0 we choose £, € N such that |y(m, — p)|? < e for £ > ¢,. Then,
o
2 1
D, — ul < Zz mp — w)|?|e,(w,)]? + &.
”( 14 u )fn” ”KS(-;wn)HZ{):l |a|=m£|]/( £ [.l)l | a( n)l
by Lemma (6.2.15) the first term on the right hand side tends to zero as n — oo, and therefore
Lim||(D, — u1)f]| = 0 (67)
Using 0 < TTy < T4z together with Proposition (6.2.16) we have
2 - -
(Ty = EDfull™ = (TgTofo ) — EBs, [](wn) — EBs, [P (wy,) + €12
< Bs, [ — §1°1(wn) (68)

- ¢ —¢I*(v) =0, as n— oo
Finally, (67), (68) and Proposition (6.2.12)imply that (i, §) € on(D,, Ty).
Theorem (6.2.18)[303]: We have

_/ 1
M(A(4A1,4,)) = o(D,) x {0}ULim(y) x D (O'E>'

— 1
= y(k):k € Z,} x {0}ULim(y) x D (05)
To uniform the result and make it independent of a concrete choice of the diagonal operator
A, = D, we proceed as follows. Given the operator D,,, the compact set of maximal ideals of
the Cx-algebra A (A;) was identified with
o(D,) = {y(k):k € Z,} x U Lim(y).
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The last set is homeomorphic to a certain compactification of Z, , and this homeomorphism is
given by

y(k) €y —k,
Y= ell_)Tg,) y(k,,) € Lim(y) > class of equivalence containing {k,, },ck-

We say that two subsequences {k,,} and {k,,,} are equivalent if and only if the following
limits exist and coincide:
limy(k,) = limy(k,,)
e—>00 e—>0o
We denote by M, (y) the part of the maximal ideals of <A (A;) which is homeomorphic

toLim(y). Now Theorem (6.2.18) reads as follows.
Theorem (6.2.19)[303]:We have

M(A(Ay,Az)) = Ty X {0} U Mo, (y) X D (0%)

The difference among different choices of the generating operator D, is reflected now in the
different corresponding compactifications of Z,, i.e. in different sets M, (y).

We describe first multiplicative functionals of the C*-algebra generated by a finite number of
diagonal operators: Let D, , ..., D, be bounded diagonal operators on H = A% (B?) acting on
elements of the basis (55) as

Dy .eq =vj(lal)eq, for a€zZ2
and whose eigenvalue sequence y; belongs to SO (A). Consider then the unital C* —algebra
Aj = A(Dy,, ..,D,, ) € L(H) (69)

which is generated by elements of D = (Dw v Dy )
Recall that the joint spectrum U(Dyl» ---»Dyn) of the operators D, , ..., D,,_, which is identified
with the maximal ideal space M (A}) of Ap, has the form:

o(Dy,,....Dy ) = {1, ., 1tn) € C*:J(D), — 11, ..., Dy, — pul) # Ajp}
where/(D,, — i1, ..., D, — uy,I)denotes the smallest ideal in the algebra A, containing the
elements D, — p;I , forj = 1,...,n. (4, -, fty) € o(Dy,, ...,D,, ). Then

D = (05, = Bl)(Dyys = mal) ++++ (D5, = Bl ) (Dy, — )

Is an element of this ideal, and hence D is not invertible in Ap. Since Ap (as a C*-algebra) is

inverse closed, the operator D is not invertible in £L(H) either. Note that D is diagonal with the
eigenvalues

y(lal) = lyi(aD) — p1l? + -+ [y (la]) — pa|™ 2 0.
Corollary (6.2.20)[303]: Either there is k € Z, such that y;(k) = u; forall j =1, ...,n, or

there is a sequence {m,} c Z, such that forallj = 1, ..., n:

elljglo yi(me) = p;. (70)
Let (i, ..., un) € o(Dy,, ..., Dy, ). According to Corollary (6.2.20), we assume first that there
ISk € Z, such that forallj = 1, ..., n:

Vj(k) = Uj
Then we define a multiplicative functional ¢ )onA}, by:
P (D) = (Deq oy, ek,0)) (71)
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forall D € Aj,. Note that Yy (D,;) = p; forallj=1,..,n
If such k € Z, does not exists, then, by the second option of Corollary (6.2.21), there is a
sequence {m,:¥ € N} c Z, having the property (70). Define the functional on A}, by:

Vi, (D): = (De o), €,0)) (72)
Lemma (6.2.21)[303]: The limit (72) exists for allD € Ap, and the functional gy, ,is
multiplicative with Y,,,(Dy;) = pj, forallj =1,..,n
Proof: Similar to the proof of Lemma (6.2.22) below.
Now we modify the definition (72) so that the right hand side extends to a larger algebra (see
Lemma (6.2.23) below). Consider the infinite set S = {m,: £ € N} c Z, and define the Hilbert
space

H; =span{e,:a € Z,,|a| € S}

Let K be the reproducing kernel of H, i.e. for all z, w € B? we have

K= (@0) = ) eu@eg(@). (73)
|a|eS

Leté € D (O, ;) and v € 0B? such that ¢p(v) = &. Let {w;}, < B? be a sequence with

w, — v € dB?% as k — oo, and assume that {wy}x is increasing. Define a sequence {f}, of
unit vectors in H by

Ks(., wg)
=—————€H. 74
Je = koGl 7%
Lemma (6.2.22)[303]:. The multiplicative functional ¥, 1 in (72) can be also defined as
Yimy(Dy) = Lim(Dy fi, fc), where Dy € Aj, (75)

Proof: Since the functional ¥, is continuous and due to Lemma (6.2.21) it is sufficient to
show that for all (iy, ..., i,) € Z":

Lim(D}} D2 .. D) fi, fie) = My % oo i1

e—oo

A simple argument using the Cauchy-Schwarz and triangle inequality together with||f || = 1
shows that it is sufficient to prove forj = L. nthat

Lim”( VJ_“V )fk” =0. (76)

k— oo

But this has been already shown for the above choice of {f;} in the proof of Lemma (6.2.17)
by using the convergence (70).
Further, for each operator D, € A}, the limit along the subsequence {m,} of its eigenvalue

sequence y exists and is equal to the value of the functional v, ; on the diagonal operator D,
lim Y(my = w{m{;} (DV)

e—oo

Leté €D ( ) be as above, with corresponding sequences w;, — v € B2 such that ¢ (v) =

&and {f;} is of the form (74).
Lemma (6.2.23)[303]:The functional ¥y, extends to the functional ¥ = (Y, €) on the
algebra generated by elements of A}, and T via

P (DT]) = llm (DT, .fk'fk>
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with j € Z, and D € A},. Moreover, for elements of the form Y72, D; T’we have

11)(2 DT’) z Yim (Dy)87.

Proof: Similar to the proof of Lemma (6222) and using the convergence lim||(T, —

e—oo

EDfr|| = 0 (see (68)).

Let A be a unital commutative Banach algebra which is generated by two of its unital
subalgebras A, and A, sharing the same identity, and let M(A), M(A,), and M(A,) be their
respective sets of maximal ideals (=multiplicative functionals). Recall that, since the
restrictions of a multiplicative functional ¥ € M(A) onto subalgebras A, and A, are
multiplicative functional ¥, € M(A,) and ¥, € M(A,), correspondingly, we have a natural
continuous mapping

K1 € M(A) — (Y1,93) € M(Ay) X M(A3)
As A is generated by A, and A,, the mapping x is obviously injective, and thus its range can
be identified with M(A).
The unital Banach algebra 77 (1), we are interested in, is generated by two algebras sharing the
same identity: the C+-algebra 7,.,4(1), which is generated by all Toeplitz operators T, with
radial symbols a € L*[0,1), and the Banach algebra Ty, which is generated by a single Toeplitz

operator Ty, where ¢ (&) = £(1,0)£(0,1). Thus, by (50) and the last paragraph of the section,
the mapping « identifies M (7 (1)) with a subset of (Z, x UM, (1)) x D (0%)
Lemma (6.2.24)[303]:None of the points of the set Z, X (5 (0%) \{0}) belongs to M(T(1)).

Proof: Let us assume that a point (k, &) € Z, X (5 (O, %) \{0}) belongs to M (7 (A)). Then,

for the operator A = P, Ty, € T (1), where Pyis the orthogonal projection onto Hk (see (58)),
we havey(A) =1, & = 0. At the same time, by Lemma (6.2.7), the operator A belongs to the
radical of the algebra 7' (1), and thus ¥ (A) = 0. Contradiction.
Lemma (6.2.25)[303]:The set Z, x {0} belongs to M (T (1)).
Proof: Let ¢ = (k,0) € Z, x {0}. Denote by v, the multiplicative functional on T;.,4 (1)
(see (71)) given by:
w(k) (Dy) = <Dyek,0» ek,o) =Y () where Dy € Traa(A).
Then the functional ¥ = (k,0) = (w(k), 0) is defined on a dense subalgebra D, of 7 (1) as
follows: for any A = Y7L, D, T; € D(y) where D}, € T;44(4) we put:
Y(A) = (Ae(k,oy e(k,o)) = L|J(k)(Do) YDO(k) (77)
Note that the functional s is well-defined, since };;2,, Dqu‘: = 0 implies Dy = 0, according to
Lemma (6.2.8). Moreover, we have
m
D,T?
2.y

'l’(Zp OD Tp) (z TS e(k,0) €w.0))| <

Hence 1 is continuous and extents to a multlpllcatlve functional on 7°(4).
Recall that M., (1) denotes the multiplicative functionals on 7,,;(A1) that map compact
operators to zero.
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Lemma (6.2.26)[303]:The set M, (1) X D (0, %) belongs to M(T(1)).
Proof: We define the functional ¥ = (u, &) € M, (1) X D (0,%) on a dense subalgebra D,, of
T (2) as follows: for any A = Y7 Dquf € D(A) , where D,,(1) € T.q4(1), We put:

Y (Zzo DpT£> =), HOYE =) yD,

First we need to show that v is well-defined. Indeed, according to Lemma (6.2.8), the equality
A=Y7r0 DpT(})’ = 0 implies that D,, is compact forall p = 0, ..., m. But u € M,,(4), and thus
u(D,) = 0 for all p = 0,...,mwhich implies that 1(4) = 0. The functional is obviously
multiplicative on D(y), and thus it remains to show that it is continuous and therefore extents
to a multiplicative functional on 7 (4).

Fix now any A = Y7L, Dpsz: € D(A) and consider the unital C+-algebra Apgenerated by

Dy, ..., D,,,. Clearly, the restriction i) of 1 to A}, defines a multiplicative functional on Aj,.
Note that

(Hoy wer tim) = (Do), ., (D)) € 6(Do, .., Do),
Since y maps compact operators in A5to zero and because of Lemma (6.2.23), we have
Phas the form (75):
lp(Dy) = éiﬁ(Dyfk»fk> »Dy € CAE

where {m,:¥ € N} c Z, is a suitable sequence which is induced by (puy,..., t;,) aS was
explained, and f;,, with k € N, are given by (74) with & = ¢ (v).
Now from Lemma (6.2.23) it follows that

m m m

P (Z DpTJ,’) WO DT fuf|<|[D. DT

p=0 p=0 p=0
and thus ¢ is continuous on D, and extends to a multiplicative functional on D y,.
Theorem (6.2.27)[303]:The compact set M (7" (A)) of maximal ideals of the algebra 77 (1) has
the form

= <

)

M(T (1) =Z, x {0} U M, (1) xD (0, %)

(i) The Gelfand image of the algebra 7 () is isomorphic to 7 (1) /Rad T (1) and coincides with
the algebra

So(A) v

(M) B, C, (5 (0%)>]
which is identified with the set of all pairs
— — 1
(r.f) € SO@) X [¢(MeoD)) B Co (D (0 5))]

satisfying the following compatibility condition y(u) = f(u,0), for all u € M, (1).

Here &, denotes the injective tensor product, and we identify y (i) with the value of the
functional u € M, (1) on the element y € SO(A).
(if) The Gelfand transform is generated by the following mapping of elements of SO(4):
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i Yo(k) if (k,0) € Z, x {0}
D, T’ n o RN
< Yi¢ Z viwé&, if (&) € My, (A) XD (O'E)

j=0
Proof: Follows directly from Lem]mas (6.2.24), (6.2.25), and(6.2.26), Theorem (6.2.6) and the
injective tensor product description (see [256]).
Our next aim is to show that the algebra 7" () is inverse closed, that is: each operator A € 7 (1)
which is invertible in £(A%(B?)) is invertible in T(1), i.e., A~* € T(1). The proof of this fact
essentially relies on Theorem (6.2.27).
Lemma (6.2.28)[303]:Let ¢ = (k,0) € Z, X {0} c M(T(A)), and assume that A € (1) is
invertible in L(AZ2(B?)). Then y(4) = 0.
Proof: Recall that the functionaly = (k,0) on 7 (4) is defined on the dense subalgebra D(A)
by (77). Clearly, it extents by the same formula (77) to a continuous (not necessarily
multiplicative) functional on A2 (B?).
Let X7t Dijdf, € D(4), and let B € L(AZ(B?))be arbitrary. Then:
Y(BA) = (BAe(,0), €k,0)) = (BDyo€(k,0) €,0)) = Yo(k)(Bew,oy €k,0)) = W(A)Y(B)
=(B)yY(4)
By continuity it follows that Y (BA) = y¥(B)y(A) for all A € 7(4). In particular, if A is
invertible in A2 (B?) , then
1=9U) =914 = (A DY),
and we conclude that Y (A) # 0.
Given D = (D,,, ...,D,. ) € Tr44(A), we consider the unital C-algebra Af, generated by
Dy, ..,D, (see (69)). Let Ap and A}, be the Banach algebra and the C+-algebra which are

generated by elements of A, UTy and of A UTy, respectively. Clearly we have Ap € Aj.

Consider now the functional » = (4, &) € Mo, (1) X D (O, %) C M(T(l)). Its restriction to the
algebra A7, maps compact operators to zero. Thus, according to Lemmas(6.2.23) and(6.2.24),
we can construct the sequence of unit vectors {f} }, by (54) with & = ¢(v) such that

¥ (DyT)) = lim (D, T} fio fi) Dy € Ap (78)
Moreover, by continuous extension the right hand side of (78) defines a multiplicative
continuous functional on A, (which coincides with the restriction of 1 € M, (1) x D (O,%)to

the algebra A .
We show now that the restriction of 1to A, extends further to a multiplicative and continuous
functional on the (non-commutative) C*-algebra «A},. The nature of such an extension is very
simple. Let & be the ideal of all compact operators on A% (B?). Two quotient algebras

Ap =Ap(ApNK) and A =Ay/(ApNK)
will be involved. For an algebra A c L(AZ(B™)), we denote by pr the natural projection

priA - A=A/ (ANXK)

As [T¢, Ta] € X and both operators Tyand T commute with diagonal operators D,,, the C+-
algebracA}, is commutative, and furthermore A c A}.
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The functional v, restricted to <A, maps compact operators from Ap, to zero, and thus it admits
the natural decomposition.
. pr . P

Y:Ap = Ap =
for a suitable multiplicative functional { on Ap.
We extend now the functional ¥ from A, to the functional (one-dimensional representation)
i)* on Aj, on the Cr-algebra A}, defining it on the extra generator [T3] = Tg + Aj N X as
it should be:

C

P*([T]) = w([T3])
The extension ™ of the functional i from Ap onto A is thus given by
w*: c/qD 12; dziD 1& C
As the next lemma shows the functional 1 *has the same form as in (78):
W' (D, TTS) = lim (D, TITS fio fi) (79)
Lemma (6.2.29)[303]:The limit on the right hand side of (79) exists for all D, € AR and
j1,j2 € Z... Moreover, it has the value:

_ oz RV
lim (D, T T3 fio fid = W(Dy )W (Te) " ([T5])
In particular, by linearity and continuity it induces a multiplicative functional y* on A}, which

extends .
Proof: Similar to the proof of Lemma (6.2.22) or Lemma (6.2.23) and by using the convergence

£L@||(T5 — & fi|| = 0, where & =y(Ty).
Corollary (6.2.30)[303]:lety = (i, &) € M., (A) X D (o, %) c M(T(D), and let A € A, be

invertible as an element in £ (c/l,% (IB”)). Then Y(A) # 0.

Proof. As each C+-subalgebra of L(A%(B")) , the algebra Ap is inverse closed and thus we
have A~ + A} . According to the previous lemma the functional yextends to a multiplicative
functional ¥* on A}, , and therefore
1=9"(AA7Y) =PAPA™),

which shows that ¥ (A4) # 0.
Now, we deal with the general case: Let A € 7 (1) be invertible as an element in L(A3(B™)),
then we wish to show that A* € 7(1). Choose a sequence {4}, < D(A) such that

fm Aw = 4
Since the group of invertible elements is open, we can assume that A, is invertible for all k €
N. Moreover, by the continuity of inversion we have

At = lim At

k—oo

and hence it is sufficient to show that A;* € 7(1) for each k. Fix D = (D,,,..,D, ) C
T:-2qa (1), such that (with our notation above)
Ay € Ap
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From Theorem (6.2.27), Lemma (6.2.28) and Corollary (6.2.30), together with the fact that A,
Is invertible, we have
Y(4,) #0

For all multiplicative functionals on Ap , and thus A;* € Ap © T(4).
Hence we have shown:
Theorem (6.2.31)[303]: The commutative Banach algebra 7°(A) is inverse closed, and, in
particular, foreach A € 7(1) ,

sprayd = SPL(A,%(B")),A
The next assertions give, in particular, some information on the spectra of elements of the
algebra 7 (4).
Lemma (6.2.32)[303]: The difference Ty, = Tg, where p € N, belongs to the radical of the
algebra 7' (A).
Proof: By (53) we have T¢,p - qu = D&p_ng, and the assertion follows from Lemma (6.2.7)

and the convergence lgim d, (k) = 1 (see (54)).
Corollary (6.2.33)[303]: The operators

m my Nk m mg

Pkt +Pkny
Z Tay, | | T"’pk,s and z Tay, T¢
k=1 \ g=1 s=1 k=1 \ g=1

differ by an element in the radical and thus have the same Gelfand images and the same spectra.
Theorem (6.2.35)[303]: With our previous notation we have:
(i) The Calkin algebra 7(1) = T(1) / (T(1) N X) is semi-simple and isomorphic to the

injective tensor product (M, (1)) X®, C,D (0%)

(ii) The Calkin algebra 7*(1) = 7*(1)/(T*(1) n K) of the C*extension 7* (1) of the Banach
algebra 7" (A) is isomorphic and isometric to C(MOo (/1)) x D (0%)

(i) Both natural homomorphisms

T(A) - T = (Mo, (D) XK, C, (5 (0%))

~ — 1
T*() » F() = (M (D)) <D (%))'

are generated by the following mapping:
n
. n _ _ 1
D Dy Thm ) e, ) € M) x D (0,3)
- j=
j=0

(iv) The essential spectrum of all elements of both algebras 7 (A) and 7*(A) is connected.
Proof: Follows from Theorem (6.2.27) and by arguments similar to the ones used in the proof
of Theorem (6.2.31) The last assertion is a consequence of the connectedness of both sets

M, (1) and D (0, %) .
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Corollary (6.2.35)[303]:For all elements of the form I + }'7_ 1Dy Tq{, , Where n € C, and, in
particular, for finite sums of finite product of generators of the algebra 77 (4).

n mg ng
o4 0 ] [T | [700. )
k=1 \ g=1 s=1

where n € C and none of ny is equal to zero, their spectrum and essential spectrum coincide.
In particular, for such operators the spectrum is connected, and being Fredholm this operator
Is invertible.

Corollary (6.2.36)[303]:An element Y7, D, T’ from the dense subalgebra D(A) is compact
if and only if each diagonal operator D,, |s compact or if and only if each eigenvalue sequence

y; belongs to c.
Our last aim is to describe explicitely the radical of the algebra 77 (A).
Consider the multiplicative functional ¥ (k,0) € Z, x {0} c M(T(A)).
First we would like to analyze the structure of operators A € T (A) satisfying the following
property

Y04 =0forall k €Z,. (80)
For an element A = 25.’:0 Dijdf from the dense subalgebra D(A1) of (1), we have

p
Yk,0)(A) = Y0 z Dijq[], = Yo (k)
=0

That is, the operator A = Z]P=O Dijj) satisfies property (80) if and only if y, = 0, i.e. A has to
be of the form

p
A= z D, T = TyC, (81)
=0
where C = 25.’:0 Dijq{_1 € T (A). The description of Rad T (1) n D(A) is straightforward:

Lemma (6.2.37)[303]:We have

Rad T(A) ND(A) ={T4C:C € D(A) N K}
Proof: Observe first that A € Rad T(4) n D(A) if and only if A satisfies property (80) and A
is compact. That is A is of the form A = T, C in (81) with C € D(4); and by Corollary (6.2.36)
compactness of A is equivalent to compactness of C.
The description of Rad (1) N (T(A)\D(A)) is more elaborated. We start with an easy
lemma.
Lemma (6.2.38)[303]:Each operator A € T (1)\D(A) satisfying the property (80) can be
approximated in norm by the operators of the form (81).
Proof: Given A € T(A)\D (A1), there is a sequence of operators

z D,,(MT) € D(A) (82)
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such that |4 — 4,|| < % Then, for each k € Z,, we have

- - ~ 1
[V ()| = [0y (An)| = [ea0y (An = A)| < |4 = Ay]| < -
That is, ||, (n)|| < %for alln € N. Then for the operators

pn
A, = Z Dy, (n)Tq{, = TyCy
j=1

we have ||4, — A, = ||Dyo (]| < %

Finally, the inequality ||A — A,ll < ||A — A, + ||4n — An| S% implies that the sequence
{A,} converges to the operator A.

Let H := AZ(B?). We consider two of its subspaces V and W defined by:

V =span{ey,o:k € Z,} and W =3span{eqy):k € Z,}

It is easy to see that V = ker T, and W = coker Ty, = (ImT,)". We introduce as well the
orthogonal projectionsP: H - VandQ: H » W.
Corollary (6.2.39)[303]: For each operator A € T (A) satisfying the property (80), ImA L W.
Proof: For operators A € T(A) it follows from (81). Then, by Lemma (6.2.38), each operator
A e T(A)\D(A) with (80) can be uniformly approximated by operators whose range is
orthogonal to W. Thus the limit operator A obeys the same property.
The following result is known (see, for example, [48,253]).
Lemma (6.2.40)[303]:Let H be a Hilbert space and A o C*-algebra in L(H). Let A € A have
a closed range. Then:
(1)The orthogonal projection P onto kerA = kerA*A belongs to the algebra A.
(2) There exists B € A , namely B = (P + A*A)™1, A* € A, such that
(i)P =1 — BA is the orthogonal projection onto ker A,
(ii) Q = I — AB isthe orthogonal projection onto (Im A)+,
(ili) ABA = Aand BAB = B, i.e. Bisarelative inverse of A.
With n € Z, we recall the definition H,, = span{e,: a € Z2, |a| = n}, and let:

n

B:H - @Hj — i,
=0

denote the orthogonal projection. Recall that the finite dimensional spaces H, and hence H,
are invariant for all elements of 7* ().
Consider the sequence of C+-algebras

T (D) ={AB, : AET* (D} = T* (M),
where we have used that B, € 7,,4(4) € 7*(2). Then the restriction of T, to H,, defines an
element in 77 (1) for all n € Z,, (we keep denoting the restriction by Ty and do not indicate the
n-dependence). Since dimH,, < oo, the range of T in H,, is closed.
Let [T, H, = ker Ty =V n H, c H, denote the orthogonal projection.
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Letting [[, =0 on H© H,, we can consider [[,as a (finite dimensional) orthogonal
projection on H.

By Lemma (6.2.40)applied to T € 7, (1) c L(H,), we have [], € 7 (2).

As H, and H © H,, are invariant under P we remark that the projections P and P, commute,
and, in particular, [,, = P,PP,.

Now we give a generalization of (a slightly weaker version of) Lemma (6.2.37).

Lemma (6.2.41)[303]:Let A € Rad T (1), then there is C € T*(4) N XK such that A = T C.
Proof: Recall that if A € Rad T (1) then A is compact and satisfies property (80). According
to Corollary (6.2.39), we have (Im An H,) L (W n H,), forall n € N, According to Lemma

(6.2.40) (1) the operator B, = (P + T(7,T¢)_1T(7,I3n belongs to 7, (1), and Lemma (6.2.40), (ii)
gives
AB, = I,B, = (Q, + TyB,)AB, = T4B,AP, (83)
where In is the identity element in L(H,,) and Q,, = I, — T B, € T;; ()is the orthogonal
projection onto W n H,,.
Since P, —» I as n — o in the strong topology, it immediately follows that
B,—»B=(P+T3Ty) T

in the strong sense as n — oo. Since A is compact it follows that B,A — BA and AP, — A as
n — oo With respect to the norm topology. The inequality
0 < ||B.AP, — BA|| < ||B.AB, — BAB,|| + |BAB, — BA|| < |1B,A — BAI|l + ||BI|||AB, — A||
implies that ||B,AB, — BA|| - 0 asn — oo. If n on both sides of (83) tends to infinity then we
conclude from B,AP, c 7.;(1) c T*(A) for all n € N that BA € T, (1), and, in addition, 4 =
TpBA = T4C with C = BA € T*(A).
Finally the simple arguments based on results of Theorem (6.2.34) show that the operator A =
Ty C € T*(A) is compact if and only if the operator C € 77*(4) is compact.
Summarizing our previous results we obtain the following description of Rad T (A):
Theorem (6.2.42)[303]:We have

Rad T(A) = {T,C:C € T.(M) NK} nT () (84)
If A € Rad 7(1) ND(A), then A can be even expressed in the form A =T, C, where C is
chosen inD(1) N K.
Proof:. The first assertion follows directly from Lemma (6.2.41) and the simple observation
that the elements on the right hand side of (84) do belong to the radical. The last statement has
been shown in Lemma (6.2.37).
Remark(6.2.43)[303]:Lemma (6.2.41) says that A € Rad T (1) has the form A = T, C, where
C € T*(4) n K, while Lemma (6.2.37) gives a more precise information in case of A € D(A) :
C can be taken from D (1) N K. Let us comment this ambiguity for A € Rad 7 (1) N D(A).
We start from the representation A = Ty, C;, with C; € D(1) N Kgiven by Lemma (6.2.37). In
turn, Lemma (6.2.41) gives a different representation A = T C, of A, where C, € T*(1) N K.
In particular, from 0 = Ty, (C; — C,) itfollows that Im(C; — C;) < KerT,. More precisely, the
operators C, and C, are related in the following way:
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Cr=BA=(P+TgTy) TgA=(P+TgTy) T4TyCr=(1-(P+T5Ty) P)Cu.
The operator P obviously commutes with (P+T5T¢)_1, and (we recall that) P is the

orthogonal projection onto KerTg. Thus C, = C; — P(P + T(Y,qu)_lcl, and we arrive again to

the previous two different representations of the same operator A:
A = T(l)CZ = T¢Cl

We mention as well that the projection P does not belong to the algebra 7*(4), while the
operatorP(P + T5T,) " C; does.
Section (6.3) Toeplitz Operators on the Unit Ball
Let B™ denote the complex n-dimensional open unit ball in C"*. We introduce the standard
weighted L? —spaces L?(B", dv,), where the family of probability measures

dv,(z) = ¢;(1 — |z]?*Adv(2)
Is parameterized by 1 € (—1, «). The normalizing constant A is given in (85) below and by dv
we denote the usual volume form on B™. We write A2 (B™) for the classical weighted Bergman
space, being the closed subspace of L?(B", dv,) that consists of all complex-valued analytic
functions. The Toeplitz operator T, with symbol a € L., (B") acting on A% (B™) is defined as
the compression of a multiplication operator on L2(B",dv,) on to the Bergman space, i.e.,
T,f = By(af), where B, is the Bergman (orthogonal) projection of L?(B" dv,;) on to
Az (BM).

For a generic subclass S < L., (B™) of symbols the algebra 7 (S) generated by Toeplitz
operators T, with a € S is non-commutative and practically nothing can be said on its
properties .However, if S c L, (B™) has a more specific structure (e.g. induced by the
geometry of B™, or with a certain smoothness properties) the study of operator algebras 7°(S5)
Is quite important and has attracted lots of interest during the last decades. The reason of such
an interest is caused, in particular, by the fact that such algebras provide rather simple but
tractable examples of non-commutative algebras and play an important role in the applications.
At the turn of this century it was observed (see [192] that, unexpectedly and contrary to the
case of Toeplitz operators acting on the Hardy space over the circle, there exist many non-
trivial algebras 7°(S) that are commutative on each standard weighted Bergman space. The
detailed structural analysis of such commutative algebras became then an important task sit
provides an explicit information on many essential properties of Toeplitz operators such as
compactness, boundedness, invariant subspaces, spectral properties, etc.

We continue a project on the classification and structural analysis of commutative Banach
algebras that are generated by Toeplitz operators with a specific class of the so-called quasi-
homogeneous symbols acting on the weighted Bergman space A% (B™). The classification of
these algebras has been given earlier in [193]. Subsequently in [303], and as a model case, we
have analyzed the examples example 7°(S) of such type. More precisely, 77(S) is the unique
commutative Banach algebra in the above classification geverated by Toeplitz operators over
the two- dimensional unit ball B2. As it turned out 7' (1) is generated, in fact, by all Toeplitz
operator with bounded measurable complex-valued radial symbols a onB? (i.e. a(z) =
a(|(z)[)togather with a single Toeplitz operator T, having a certain gquasi-homogeneous
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symbol ¢. Among other results we explicitly described the space of maximal ideals of T (A),
results we were able to prove the inverse closeness of 7' (1) and state some spectral properties
of the elements in 7 (4).

Our next plan is to extend the results in [303] to the case of all commutative Toeplitz Banach
algebras in [193] that are induced by the quasi-elliptic group of biholomorphisms of the unit
ball B". In [193] these algebras have been described in terms of their generators. Thus
developing the Gelf and theory for these algebras will permit us to obtain more detailed (and,
in particular, spectral) information on their elements. As it turned out, the algebra 7 (). studied
in [303] indeed was the simplest in many respects.

Let us single out some of the principal difficulties that bring the general multi-dimensional case
studied here compared to the analysis of 7 (1). We mention first that in all cases the algebra
under study is generated by two mutually commuting commutative subalgebras: the C*-algebra
generated by Toeplitz operators with bounded (quasi-) radial symbols and the Banach algebra
generated by Toeplitz operators with quasi-homogeneous symbols. In the case of [303] this last
Banach algebra was generated by a single operator T, with the simplest quasi-homogeneous
symbol ¢.

In the general case we can as well essentially reduce the number of generators having quasi-
homogeneous symbols. However, still a finite number N > 1 of them remains. Due to this
reduction some (bounded) Toeplitz operators with unbounded quasi-radial symbols come into
play, and therefore immediately: realize whether these Toeplitz operators with unbounded
symbols belong or do not belong to the C*-algebra generated by Toeplitz operators with
bounded quasi-radial symbols. Fortunately we manage to prove that the answer is positive, and
so we do not need any further extension of the generator set.

In order to describe the compact set of maximal ideals of the Banach algebra generated
by Toeplitz operators with quasi-homogeneous symbols we need to calculate the joint spectrum
of its generators (not just the spectrum of the unique generator, as in [303]). In addition this
task be-comes more difficult as, contrary to the case of [303], the quasi-homogeneous functions
in general do not extend continuously to the boundary dB™ of the unit ball. As a consequence
our previous approach in [303] does not apply anymore in its full power. Finally we mention
that C*-algebra generated by Toeplitz operators with bounded quasi-radial symbols has a more
complicated structure and involves a new class of slowly oscillating sequences which is
defined.

We recall the construction in [193] of a class of commutative Banach algebras B, (h)
that are generated by Toeplitz operators on the weighted Bergman space A% (B™) and have
k —quasi-radialquasi-homogeneous symbols. These algebras are indexed by pair (k, h) of
multi-indexes that fulfill certain relations. We point out that this class of Banach algebras is
subordinated to the group of quasi-elliptic automorphisms of the unit ball since the k-radial
part of the symbols of the generating operator is invariant under the action of this quasi-elliptic
group, defined by the n-torus action on the ball B™ (see [245,192]).

We devoted to the analysis of the subalgebra 7; (L},_,,-) of By (h), which is generated

byToeplitz operators withbounded k-quasi-radial symbols .All elements T € T; (Li_,,) are
operators that are diagonal with respect to the standard monomial basis in A% (B™)). Therefore
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we can identify T with its eigenvalue sequence and interpret 7; (Li_,,) as a C*-subalgebra of
all bounded complex-valued sequences on Z7* (here m € N is the length of the multi-indexk).
As for bounded Toeplitz operators with k-quasi-radial symbols we give an explicit integral
form for their eigenvalues, and show that the eigenvalue sequences for all operators from
T3 (Lk-qr) slowly oscillate in a specific sense.Quite a delicate task in this section is the proof

that some Toeplitz operators with unbounded quasi-radial symbols belong to the algebra
T (Li-qr). We prove as well that 7, (Li_,,-) contains the orthogonal projections onto certain

types of closed subspaces of A3 (B™). These two assertions are crucial for reducing the set of
generators of By (h)in Theorem (6.3.20). With an analysis of the maximal ideal space
M (T (L-qr)) of the algebra 7;(Lg_,,). In particular, we give a useful stratification of
M (T3 (Li-qr))in Lemma (6.3.15).This stratification will be important in the description of the
maximal ideals of the full algebra B, (h).
We define a second subalgebra 7; (e, (h)) of B, (h), which is generated by a finite set of
Toeplitz operators with so-called elementary k-quasi-homogeneous symbols. Contrary to the
case, the generators of 7;(&,(h)) are not anymore diagonal with respect to the standard
monomial basis and their action on the elements of this basis is independent of the weight
parameter A > —1. We show that the union of generators of both above sub algebras gives in
fact a reduced set of generators for By, (h).
As was already mentioned, a special care has to be taken since the elementary k-quasi-
homogeneous functions do not admit continuous extensions to the boundary dB™, unless m =
1. The main result is description of the maximal ideal space of 75 (¢, (h)) and the corresponding
Gelf and transform. First we treat the case where m = 1 and in the final part we generalize the
result to the case m > 1 by using an appropriate tensor product description.
We list several open problems closely related to the results.Finally we wish to remark that in
the case of dimension n > 3 adscription of the maximal ideal space of the full commutative
algebra By, (h), the Gelf and map, a characterization of the radical, and a spectral analysis of its
elements can be achieved.
Consider the open complex unit ball B":= {z € C":|z|* = |z,|* +- +|z,|*> < 1} in C"
equipped with the standard weighted measure.
dvy(2) = (1 — |2|*)* dv(2),

Where 1 > —1 is fixed. Here we write dv for the usual volume form on Bn. Recall that due to
the assumption 4 > —1 the measure v, (B™) of the unit ball is finite and we chose c; > 0 such
that v, (B™) = 1. In fact this is realized by defining

'n+1+1)

CETra+ 1

We write L2 (B™, dv, ) for the Hilbert space of all squareintegrable functions with respect to v;.
The corresponding norm and inner product are denoted by||-||; and (-,-);, respectively.
The weighted Bergman space AZ(B™) over B™ consists of all complex-valued analytic
functions that are squareintegrable with respect to the measured v;. It is a standard fact that
AZ(B") is a closed sub space of L2(B", dv;) and that the orthogonal projection (Bergman
projection) B, from L2(B™, dv,) on to A% (B™) has the following explicit form
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[B,0](2) = j e (i,(va;;)"““l dvi(w), where ¢ € I2(B", dvy).
]BTL

In the following we write (z, w): = z,w, +-+ +2z, @, for the usual Euclidean inner product. Let
Z., be the set of all non-negative integers. Recall as well that the standard orthonormal basis

[eq: a € Z7] of A% (B™)is given by the monomials

i jr (n+lal+A+D) )

alll (n +1+ 1)

Although the functions e, depend on the particular choice of the weight A we do not indicate
this dependence in our notation and we assume that A € (—1, o) is arbitrary but fixed.
Given g € L., (B™), the Toeplitz operatorT, with symbol g on AZ(B") is defined by:

gw)f (w)

Tyf 12:= BND = | G oy
]Bn
Recall that the algebra generated by the set of all Toeplitz operators with bounded measurable
symbols is non-commutative. However, after a restriction of the symbol class to a certain type
of functions it turns out that the induced Toeplitz algebra becomes commutative. In sense, com-
mutative Banach algebras generated by Toeplitz operators of such type are subordinate to
(some of) the maximal abeliansub groups of the automorphism group Aut (B™) of B™. The
classification of commutative algebras interms of the generating symbols has been given in
[37,38,193,195]. Here we are interested in a class of commutative Toeplitz Banach algebras
that is induced by the quasi-elliptic group of biholomorphisms of B", cf.[193].For
completeness were call some notation and results from [193]:
Let m € {1,...,n}, and fix a tuple k = (k4,..., k) € ZT7* with |k| = k; +--- +k,, =n. Then
we can interpret C™ as a product space C* = C*1 x C*z x---x C*m, and we use the notation

z= (2., Z(m)) € C, where z(;y = (2j1,...,2;,k; ) € €.
We will frequently employ polar coordinates. Let us write S%%=11 < C*/ for the (real) (2k; —
1)-dimensional units herein CXi. We express non-zero vectors Z(jy € C*i in the formz;, =

T}'E(j),Where

dv(w).

0 2k _
E(j)_@ € S4%J 1andr]-—|z(j)|€[R+.
Let us recall now the notion of k-quasi-homogeneous functions on the unit ball B" in

[303,193]:
Definition (6.3.1)[302]: Fix (p,q) € Z% X Z%} withp L q(i.e.(p, q) = 0). Abounded function
@(z)on B" is called “k-quasi-radialquasi-homogeneous” with the quasi-homogeneous degree
(p, q) if it has the form

0(2) = a(ry, - )& 60y Eony €y €y € oy (87)
and a = a(ry, ..., 13,,) IS @ function of them non-negative real variables ry, ..., 7;,,. A function
that can be expressed in the form a = a(ry, ..., 13,) is called “k-quasi-radial”.

192



In what follows we denote by Lj_,, the Banach space of all bounded measurable k-quasi-radial
functions on B".

In order to define a class of c commutative Toepliz Banach algebras we choose a second tuple
h € Z} which is subordinate of k in the sense that it fulfills the following conditions: h; = 0
ifk;=1land1<h; <k;—1ifk; > 1.

We denote by R, (h) the linear space generated by all k-quasi-radialquasi-homogeneous
functions (87) which satisfy (i) and (ii):

(i) For j with k; > 1 the tuples p(;), 4, € Z’fr" have the form:

p(]) = (p], 1, . pj,hj , 0, ey 0) and CI(J) = (O, ey O, qj'hj+1’ . qj:kj) (88)
and, in addition, |p(])| = |q(1)|
(“)If k], == kj,, Wlth j’ < j”, thenhj, < hj,,.
For a given set F of bounded measurable complex-valued functions on B™ we denote by 7; (F)
the unital Banach algebra in L(A3(B™)) which is generated by all Toeplitz operators with
symbols in F. Note that 7; (F) has the structure of a C*-algebra in the case when F = F, i.e. F
Is invariant under complex conjugation.[22] states:
Theorem (6.3.2)[302]: The Banach subalgebra By (h): = T3 (Rx (h)) of L(A3(B™)) which is
generated by Toeplitz operators with symbols from R, (h) is commutative for all 1 > —1.
We study separately two commutative subalgebras of B, (h)which together generate B, (h) The
first one has the structure of a commutativeC* —algebra and is generated by Toeplitz operators
with k —quasi-radial symbols. The second one is a commutative Banach algebra generated by
a finite number of Toeplitz operators with certain quasi-homogeneous symbols. The analysis
of these subalgebras serves as an important tool for studying the complete Banach algebra
structure of B, (h) in an upcoming work.
As is shown [192], a Toeplitz operator with a bounded measurable k-quasi-radial symbol a =
a(ry, ..., 1,y ) has the monomialsz® (or the normalizedmonomials e, (z) (66)), where a € Z%,
as eigenfunctions. In what follows, for each multi-indexa = (ay, ..., ) = (@), -, Amy) €
Lk,
we denote by k = k(a) = (ky, ..., krn) € ZY' the multi-index with the entries k; = |a |, for
all j = 1, ..., m. In particular, |a| = |k| and the eigenvalue y, x  (x) of T, with respect to z“
depends only on x = k(a), i.e.,
Taz® = Yaxa(K)z%. (89)
Moreover, we have the following explicit expression of y, j ; (k)

m
2mMIr(n+ |kl +A+1 -
D [ a- o] [P oo
ri+1) Hj:l(kj— 1+ kj) " 7(B™) o

The integration is taken over the base t(B™) = {r = (1}, ...,1;») € RT: 0 < |r| < 1}of the
unit ball B™ considered as a Reinhardt domain.

Ya,k 2 (K) =
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Corollary (6.3.3)[302]: Let a € ZX, and x = (|a(yy|, ..., |a@ny|) € Zas above. Then we have

r@+1 [T, (k- 1+ k;)!

m
1— 2 Al_[ .ij+2kj_1d o
(j)a(r)( I71%) _17} ] 2m(n+ |k| + 1+ 1)
T(B™ ]=

Proof: Put a(r) = 1, then T, is the identity operator. Thusy, , 2(x) = 1 for all x € ZT', and
the assertion follows from the expression (90) of y, j (k).
Let y = {y(x)}«ezmbean arbitrary bounded sequence of complex numbers. Denoteby D,, the
diagonal operator which acts on the weighted Bergman space A2 (B™) by the rule

Dyeq(z) =y (K)eq(2),a € ZX. (92)
According to the above remarks each Toeplitz operator with bounded measurable k-quasi-
radial symbol a(ry,...,n,) is diagonal, and T, = Dy, ; 2. However, as we will show later on,
not all bounded diagonal operators D, can be represented in such a form since the eigenvalue
sequence y, x 2 Of T, possesses certain specific features (cf.Lemma (6.3.6)). Now consider a
particular case of k-quasi-radial symbols:

m

2"Tn+ x| +2+1) 2(ki+8; 1 )+2ki—1

Vi) = mo e, j a(r) (1 = [ ] [ oo o gy
F( +1)H]:1( ]_1+ j).‘t(IBm) j=1

2"T(n+ |kl +A+1)  TQA+DI(k-1+ki+6;,)!

TTO+ DI (g-1+Kk)! 27T(n+ k[ +A+ D)
_ kl +Kl
n+ k| +A+1]

(91)

Where §; , is the standard Kronecker delta.

We mention that neither of the sequences {y,z ;(k)},, where I =1,...,m, has a limit
whenx — oo (or, which is the same, |k| — o), though all of them possess many partial limit
values. In particular, given any m-tuples = (s4,...,S) € ZY, we introduce the subsequence
{ks(M)}nez, OfZY, where kg(n) = (syn,s;n,...,s,n). Then, foreach I = 1,...,m,

. l
lim vz, (ks(n)) = Sl

In general, let {k(n)}nez, Where k(n) = (ki(n), kz(n),..., ky(n))be subsequence of ZI.

Then the limit of the sequence v,z , along the subsequence {k(n)}ez, exists if and only if

ki(n)

[k(m)]

At the same time, regardless of the way how « tend so infinity, we always have
|1£|iz>noo Vrza(K) £ +Vpz 1a(k) = 1.

We denote by A™"! the standard (m — 1)- dimensional simplex with the vertices
(10,...,0),(0,1,0,...,0),...,(0,...,0,1) € R}*. Summarizing the above results to:

the sequence { nez, has a limit, and in the last case both limits coincide.
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Lemma (6.3.4)[302]:For any subsequence {k(n)},ez, of ZT, all limits
lim V2 i (k(n)) = B,l=1,...,m,

[re(n)|—>o0
Exist if and only if (B4,...,8y) € A™ tand
lim fu(n)

k= [ ()]
Moreover, for each point(By,...,B,,) € A™ 1, there is a subsequence {k(n)}nez, With the
above properties.
In order to make our considerations geometrically more transparent we proceed as follows.
Denote by R = (R™, ||-|[;) the Banach space R™equipped with the norm||x||; = X%, |,
where x = (xq,...,%,) € R™. Let ST*~1(0, R) be the sphere in RY* of radius R centered at the
origin. We interpret ZT* = ZT' N ZT* as a metric space with the metric p; (', k') = ||k' — k"'||;
in herited from R™. Then |k| = p;(0,x), and A™ 1= S"1(0,1) n R™ is nothing but the
corresponding part of the unit sphere S7*~1(0,1).
We denote by RT* the compactification of R® by the “infinitely far” sphereS{" 1(0, o)
consisting of rays through the origin. Each such ray and its intersection with the unit sphere
S$m=1(0,1) are identified. This yields a parametrization of the points of the “infinitely far”
sphere S"~1(0, o) by elements of the unit sphere SI*~1(0,1), identifying these two objects.
Let now Z™* be the closure of Z™ inRT*, being the compactification of Z* by the corresponding
part A™~1(0) of the “infinitely far” sphere S]"~1(0, 00). That is ZT = ZT* U A™ (), where
we also parameterize the points of A™~1() by the points of A™~1, identifying them.
Lemma (6.3.4) states that each sequence y,2, ;,1 = 1,...,m, admits continuous extension to
Am—l(oo).
We denote by c¢(Z™) the unital C*-algebra which consists of all bounded sequences {v (k) }icenm
that admit a continuous extension to A™~1(0).
The elements of them- tuple (y,z 1, ---, ¥r2 x,2) are real-valued sequences and separate the
points of Z*. Then, by the above discussion and the Stone—Weierstrass theorem, the unital
C*-algebraT; ({rf, 5, ..., i })coincides with the algebra of all diagonal operators D, with y €
c(Z™). Furthermore, its maximal ideal space coincides with Z™.

For each k = (kq, ..., k) € ZT introduce the finite dimensional spaceH,, defined by

Hy = span{e,: a € %, |ay| = kj,j = 1, ...,m}(93)
And let

=,Bl,l = 1,...,m.

Py: A2(B™) - Hy (94)
Be the orthogonal projection onto Hy. Then we have:
Corollary (6.3.5)[302]: Lety € c(Z™), then Dy € Ti(Li-qr)- In particular, for all x € Z1":
Pe € ({13, . 2D € (LY gr € Bi(h).
For eachj = 1,2,...,m,introducethestandardunit  vectore;: = (0, ...,0,j { 1,0,...,0) € ZY',
being also the j-th vertex of A™~1, We denote by d, (m) these to fall bounded sequences y =
{v (1) }cezmthat satisfy the following condition
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sup |k|

K+0

< +o00, (95)

< KS
JORDRERTCEED
s=1
Note that the point (I%I’ %) € A™~1corresponds to the point of A™~1(co)defined by the
ray passing through k € Z1.
Lemma (6.3.6)[302]: For each a = a(ry, ..., ;) € Lo (t(B™)),the eigenvalues equence
Ya .k 20f the Toeplitz operator T, belongs to d; (m).
Proof: For allk + 0 we have by (90)
m

2MI(n + +14+1 YA
Yakr = Il ) | amya =y [ ar
S T@A+ DT (k- 1+ k) J

(B™) j=1
m
2™ (Cle| + A+ 2 ki
_ (|m| ) ' f a(r) (1 _|7'|2)/11_[7}-2k] 2kj=1
F(A+ DI, (k- 1+ k;)! i =z
m m :
-0 | amya -] [
s=1 7(Im) j=1
m
n+|kl+1+1 ke +x
= Vaka () - Zﬁya,m(k +ey)
S=
Or,
m
N(a, A, k):=(A+ 1)[Va,k,,1+1(k) — ya,k,l(k)] + z ksyari(k +es) —nyg (k)
m s=1
ks
= |k| [Va; k, (k) — z mya,k,a(k +es)|
s=1
But

IN(a, 2, )| < 2(n + 2+ Dllallw,
And the result follows.
Some important comments to the definition of d,(m) and Lemma (6.3.6) have to be added.
First of all we mention that the condition (95) pacifies the form in which the sequences y €
d, (m) may oscillate at infinity. In particular, (95) implies that

m
ks
Yara () = ) Tervaralk +eo)
s=1

Then, for m = 1, the class d, (1) coincides with the class which in the work of Suarez [290]
was denoted by d, and is commonly used in Tauberian theory. For each m # 1,d, (m) Is just
a (non-closed) linear space, and only for m = 1 it is an algebra

Further, for m = 1 ,i.e., in the case of radial symbols, and the un weighted Bergman spaces, it
Is known [271] (see as well [76,290] for the one-dimensional case n = 1) that the set of
Toeplitz operators with bounded radial symbolsis dense in the C*-algebra generated by these
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operators, and that the [.,-closure of the set of corresponding eigenvalue sequences y,, coincides
with the [- closure of d,. Moreover, by [271] this closure coincides with the C*-algebra
S0,(Z,) of all slowly oscillating sequences introduced by Schmidt [246], i.e., of all bounded
sequences y = y(p)p=oSuch that

érzlh/ () —v (@] =0.
q+1
This gives the exact characterization of the algebra
According to [194] the set SO, (Z,) is apropersubset of the standard SO(Z,) Recall in this
connection (see, for example, [293]) that the algebra SO(ZY") consists of all sequence y =

{v (k) }xezm such that

Lim(y (k) —y (k+p)) = Oforallp € ZT.
For m = 1and anarbitrary weight parameter A € (—1, ) Lemma (6.3.6) just ensures that the
algebra 7; (LT, 4)- is isomorphic to a subalgebra of SO, (Z,) .
It is clear that for m > 1 the C*-algebra 7, (Ly_g,) is isomorphic to a certain subalgebra of the
C*-algebra generated by sequences in d, (m).But the exact description of this subalgebra is
unknown. As partial information we mention that the algebra 7; (Li_ ;) intersects SO(ZY'), for
example, by diagonal operators whose eigenvalue sequences have a limit as k =
(k1,...,km) — oo, At the sametime, contrary to the case m = 1,7} (Li_,,)is not a subalgebra
of SO(Z"),, as will be shown in Lemma (6.3.13).
It is unclear whether the set of all Toeplitz operators with bounded k-quasi-radial symbols is
dense in T (Ly_4,), as itis the case for m = 1 and 4 = 0. The fact that d, (m)(contrarytodl)
Is not an algebra suggests that the answer might be negative.
We list the above open questions among others.Then extcorollaries to Lemma (6.3.6) give a
further characterization of the eigenvalue sequences y,,, of Toeplitz operators T, €
T/l(L?co—qr)'
Corollary (6.3.7)[302]:We have that

m

KS
Vara() = ) T iVarale +e) = 0(1/Iel) ask .
s=1

Foreach j = 1, ..., m let us fix the values of kg for all s # jarbitrarily, and define the “j — th

coordinate” sequence Rj = {Kj(n)}nez,, Where K;j(n) = (k1(n), ...,k (n)) has the entries

Kkj(n): = n and k4 (n): = k. By considering e; as the j-th vertex of A™~*(o0) it is clear that
#If}o kj(n) = e; € A™ 1 (o0).

Corollary (6.3.8)[302]:For eachj = 1, ..., m the sequence {yq i 1 (K; (1)) }nez, be longs to d;,

and thus to S0, (Z,).

Proof: Follows from Lemma (6.3.6) together with the observation that

k() _ .

And that the sum ... ; |ks(n)| does not depend on n and is bounded.
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The nextimportant particular case of k-quasi-radial symbols is as follows: for each j =
1,...,m, we introduce the unbounded k-quasi-radial function

1—|z]> 1—|r?
1z()I? r?
Although this symbol is unbounded, it generates a bounded Toeplitz operator. Moreover,
Corollary (6.3.3) yields the explicit formula for its eigenvalue sequence (see the notation in

(89)):

aU)(z): = € R, U {+oo}.

A+ 1

Kj + k] -1
In particular, sincek; > 1 we have that a¥) € L, (B", dv,) for j = 1,...,m with norm

A+1

ki —1°
The last formula implies an interesting characterization of the first (i.e., for k = 0) eigenvalue
of a Toeplitz operator with quasi-radial symbol.
Lemma (6.3.9)[302]:Let a(r) € L,(B", dv;) be aquasi-radial symbol. Then the first
eigenvalue (ground state) of a bounded, or densely defined unbounded Toeplitz operator T, is
given by

ya¥l k, A(k(a)) =

,a €EZT.

||a<j>||L1(Bndm =(aY),1); =(ToiHL 1)1 =Va01,2(0) =

Yara©® = [ a(r)dv,
]BTL
In the case of a non-negative symbol a it coincides with [|a(r)|[., @ dv,)-
Recall that a finite positive measure v on B" is called a Carleson measure with respect to

AZ(B"™) (shortly: Carleson measure) if the Toeplitz operator T, with measure symbol v
defined by

. f )

o (1 - (z, w))n+1+/1
Bn

has a bounded extension from the space H* (B™) of all bounded analytic functions on B" to
the Bergman space A5 (B™) (e.g. see [179], [65]). From the above discussion it follows that
v;:=aWdv, forj = 1,..,mis a Carleson measure.

Let us recall the notion of the (¢, 1)-Berezin-transform where# > A (for the unweighted
case 1 = 0 see [148, 65], and for an arbitrary weight A > —1 see [179]). If u is a complex-
valued, Bore regular measure on B™ and z € B™ then we set

o (= g @2
B{’(ﬂ)(z)-—aJn (1 — |21+ du(w) . (96)

Here the constants c; and c, were defined in (85) and ¢, denotes the (unique up to unitary
multiples) automorphism of B™ with ¢, o ¢, = id and ¢,(0) = z. When u = adv, with a €
L,(B", dv;) then a change of variables shows that (76) takes the form

dv(w), where f € H*(B"),
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Bladv)@) = | ao g, (@)dvi(w),
]BTL
Note that the right hand side of this equation is independent of A > —1. On the other hand, by
inserting the well-known relation
(1 - 291 = |w|?)

1 —l¢pz(w)| = 1 —(z o)

Into (96) we obtain the following expression for the (¢, 1) — Berezin-transform, which will be
most suitable for the considerations below,

a(w)
— (7. w))2(+1+8)

The following result has been proved in the unweighted situation A =0 in [66], and in the
general weighted case A > —1in [179]:

Proposition (6.3.10)[302]: (See [65,179].) Let the positive measure v be Carleson with respect
to the weighted measured v, on B™ where 4 > —1. Then:

(i)The functions B,(v) are bounded and continuous on B™ for all¢ > A.

(ii)The convergence Tg,(v) — T, holds, as £ — oo, in the uniform topology of L(A5(B™)).
Corollary (6.3.11)[302]: The Toeplitz operators T,y with Ly-symbol a®, where j €
{1,...,m}, belong to the algebra 7, (Li_ ;)

Proof: Since the measures v;: = aPdv,, for j=1,...,m, are Carleson we conclude from
Proposition (6.3.10) that the functions v;, : = B,(v;) are bounded and as £ — o the norm
convergence Ty, = Ty» holds. Hence it remains to show that v; ,(z) for all j and¢ are k-quasi-
radial.

For any given r € N let us denote by U(r) the group of unitary r x r-matrices. Then we have
the natural embedding G = U(k,) X---X U(k,,) < U(n) of groups. It can be easily seen from
the expression (97) of the (¢, 1) —Berezin transform and the transformation rule of the integral
that in the case of a k-quasi-radial symbols a(w) the integral transform B,(a)(z) is invariant
under the action of G. Hence B,(a)(z) defines a k-quasi-radial function, as well for all £ > A.
Since a¥) is k-quasi-radial this observation finishes the proof.

The eigenvalues of the Toeplitz operator T ¢ are real-valued and monotonically decreasing
when k; = |a¥)| tends to infinity. By c we denoe the set of all converging sequences. The
Stone— Weierstrass the ore directly leads to the following lemma.

Lemma (6.3.12)[302]: The unital C*-subalgebra in 7;(Li_,4) which is generated by the
operators T ,(j, where j = 1, ..., m, coincides with the set of all diagonal operators NG whose

eigenvalue sequences y&) = {y ) (i)} ez depend on k; only; more over being considered
with respect to their dependence on ;,i.e.,yY) = {V(])(Kj)}KjeZ+’ they belong to c.

Biladv)(s) = (1 — [+ [Jn 5 n@. O
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We mention that the operators T, € T3 (Ly—4,) Where j = 1,...,m, commute among them-
selves. Moreover, they commute with each Toeplitz operator T,, having a k-quasi-radialquasi-
homogeneous symbol ¢ € Ry (h).

The next lemma shows that 7; (Li_,,-) is not a subalgebra of SO(ZY).

Lemma (6.3.13)[302]:For j = 1, ....,m, the eigenvalue sequence y ,j , ,0f the Toeplitz
operator T ,j is not slowly oscillating when k = (ky, ..., k) — oo.

Proof: The assumption that the sequence y . , , belongs to SO(ZY"). Implies that the set of
its partial limits is connected (see, [293]). At the same time this set has the form

{ A+1 } U (0
K] +k] -1 K €L,

and hence is discrete, which leads to a contradiction.

Letj € {1,...,m} be fixed and for each d € Z, consider the closed subspace:

Hé”: = span{ea: laU)| = Kj = d} c A% (B™). (98)

By Qg): Az (B™). - Hé’) we denote the orthogonal projection of AZ(B™) on to Hc(l’ ),

Moreover, given (a, b) € R2, we define family of diagonal operators
pWe =211 (99)
whTEa +b Kk Y
where a € Z', k; = |aV)|. These operators will appear in (107) below. Then Lemma (6.3.12)
yields
Corollary (6.3.14)[302]: The operators Qc(lj) and ng) belong to the algebra T; (Li_,,).

Next we describe a fibration of the compact set M(I]}(L‘,’j’_qr)) of maximal ideals of the
commutative C*-algebra T;(Li_,). We identify a maximal ideal with a corresponding
multiplicative functional in the standard way. First we introduce some notation:

Let 8 = (64,...,0,,) € {0,1}* =: 0, and with 1 = (1,1,...,1) we write 8¢ = 1 — 0 for the
“complementary” m-tuple. In particular, we have 1¢=0 = (0,0,...,0). Using the
notationjy = {j: 6; = 1}, we introduce

Zg_ = ]gg Z+(]) and KQ = {(Kjly---)Kj|9| ):]p E]G} .

Given 6 € 0, let
; O foralld € Z if6;=0
_ o ) Uy — +r J
Moy = {u € M(f];‘(l’k‘qr))'”( d ) o {1 forsomed € Z,, if 6, = 1}'

Lemma (6.3.15)[302]: The following decomposition onto mutually disjoint sets holds
M(T)l(L‘I)co—qr)) = U MQ .

6€o
Proof: From the definition of the setsM it follows that the union is disjoint and varying 6 € 0

we cover all possible cases.
We note that the set M; admits a simple alternative description. For each u € M, thereisax €
Z=" such that

200



u(P) = HQ(’) ﬁ# )

j=1 j=1

Where P is the orthogonal projection defined in (94). Thus, given any operator D, =
ZpeZTy(p)Pp € gi(L(;(o_qr), we have

H(Dy) = ,u(PK).u(Dy) = :u(PKD]/) =y (Wu(B) =v ().
Identifying the functional p with x € Z!, we have that M; = ZT'. Moreover, each functional
U € M; can be defined by the formula

u(D): = (Deak ) eak)/l;
Where a,: = ((k1,0, ...,0), ..., (K, 0, ...,0)) € ZX! x-o.x Z¥m = 71,
We note as well that all functional from M (7;(Ly-4-))\M; map compact operators of the
algebra 7; (Ly- 4,) to zero.
In order to analyze the sets My, with 8 # 1, we mention first that for each u € My there is
auniquetuple ko € Z° such that y(Q(’)) =1 for all j € J,. Therefore, we have the following

decomposition of Mg in to disjoint sets

Mgy = U Mg (kg ),
ngZﬁ
Where Mg(kg) = {u € MQ:H(Q,(C’]'.)) = 1forall j € Jy}.
Note that,we mention for the completeness that none of the points of Mg (xy) can be reached
by subsequences; its topological nature requires to use nets (subnets of Z'fcl). That is, for each

point u € Mg(kg) there is a net {kgc(B)}pep, Valued in Z'fc', such that ¥ = o (kg, Kgc(B))
tends to u in the Gelfand topology of M (T} (Ly_4,-))- Here o is the permutation of m- tuples
such that (kg,kgc(B)) = 0 — 1(ky, ..., Kp). In other words, for each y = {y(k)},ezm €
T3 (Li-qr), We have that

[l),ieggt Yy () =y (1), (100)

Where k = o (ig, kge(B)) With (kg, kgc(B)) € ZE x ZOc+= Z™, and where we identify y(u)
with u(y), the value of the functional x on the element y € T, (Li_ ;).

We consider a second intrinsic commutative subalgebra 7; (g (h)) of By (h), which is
generated by a finite set of elementary k-quasi-homogeneous symbols (see the definition in
(105)). The structure of this algebra is independent of the weight parameter A and different from
T (Lk-qr)- its elements are not diagonal operators with respect to the standard orthonormal
basis ofAZ (B™).

We start by recalling some notation and results from [193]:
Let (p,q) € Z} X Z} be a pair of orthogonal multi-indices with [p¢;| = |q;| for all j =
1,2, ..., m. We use the notation in [293] and write

ﬁ(]) = (O, . 0, p(]), 0, . 0) and q(]) = (0, . 0, CI(]), 0, ey O),
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Where the entries p(;y and q(;) are at thej-th position, respectively. For each j = 1, ..., m with
k; > 1consider the Toeplitz operator TEPHEPH Aswas shown in [293],we have

m
Teg, = ﬂTg?(j)ga(j) (101)
j=1
Let us recall the action of Tfﬁ(j) £y ON the monomials z%, a« € Z. According to [293] we have
O, if3¢ € {1, . kj } such thataj,g < q]"g - pj,f,
- a — N N
Teroein? Vipgyagya(@zPO™0, otherwise ’

Where the numbers Vk,p(j),q(j),,l(a) € Z% explicitly are given by

(102)

?k'l’u)'qu)ﬂ(“)
2"I(n + lal+ 2+ D(a+u—v+pg))

T+ D=1+ |agy +pey|)! Tewj(ke — 1+ |agy|)! (agy + By — dgH) !

m
X f(1 —|r|2),1ﬂrﬂ“@'”"f‘ldr.
=1

The integ(gl )on the right hand side can be calculated by using Corollary (6.3.3)
(a +5p)! (k — 1+ |ap])!
(k-1 + |agy +py ! (@) + B — dg)H)!
_ (g +p5)! (k=1 + agy +py))!
(k-1 + |agy + ) (e + 2y —ap)
Note that this expression only depends on the portion a;of a. For simplicity

._ P P(m) £49(1) a(m)
Bpq(2):= &0 M ET L E (103)

For a k-quasi-homogeneous function of degree (p,q). Replacing z% by the normalized

monomial e, (z) in (86) gives:

Lemma (6.3.16)[302]: For j = 1, ..., m with k; > 1the Toeplitz operator T%(.) a(.)acts on the
]t

Vipgyagya (@) =

or honor-mal basis [e,: a € Z%] by the rule
0, if3¢e {1,..,k;} such thata;, <q;, —Dpj.
Top a0 = {pk,p(j),q(j),,l(oc)z“+ PUI-AU) otherwise
The factor Pip(iyag M(oc) Is independent of the weight parameter A and given by
(agy +p)) (ki - 1 +ag])!
(! (agy + 1oy — 4y — T+ lagy + oD
In particular, (104) only depends on a(;y.

Now assume in addition that the tuples p;y and q;y are of the form (88), for j = 1,...,m, and
such that (by definition) @5 € Ry (h). Then we have

Prpag @ = N (104)

L6
Dj1 Pjh; _4jh;+1 —CIj,kj

R ] J
qjﬁ(j)ﬁ(n(z)'_ S;1,j "'fj,hj Ej,h,-+1 "'qu,kj '
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Let k; > 1and (¢;,7;) € {1,...,hj} X {h; + 1, ..., k;} =: ], ; be arbitrary. We define set
of so-called elementary k-quasi-homogeneous functions by
llufj,rj(z)i = fj,ejfj,rj (105)
Since |pj)| = |qj)| we can express p;y + qjy (non-uniquely) in the form

P +qp = Z Bepr; €2y
().15)€ln
where e, . = (0, ..., } o,.., % 0,..,0) € Zlf,and Beir; € L. We also write et for the t-th
4 @i
standard unit vector in R¥/, For each j = 1, ..., mwe now can decompose D5
uniquely) in the form of a product

Gy (2 (non-

Be.r:
P50 (2) = 1_[ W, (2)77 (106)
(£j mj)€ nj
After a straight forward computation using Lemma (6.3.17) we have

Twp,ri Toac Ca
(0, if It €1, ...,kj with a, < (—e{,j—p(].) + e, + qo))t,
_ (“+?~’(j)+5f}-)![("j—1+ |“(j)|!)]2

al (a + E{,j + fo(].)—Erj—,ﬁ(].))(kj -1+ |a(]-) + p(j)l)! (kj -1+ |a0)|)!

\ otherwise.

)

e —_ ~ _~ _~
a+egj+p(j) erj q(])

On the other hand it is easy to verify that
Tl[’g.r.T
I

e =Ty
Bpd e ¢P(j)'+equ(j)+érje“

(0., ifat € 1, ...,k]- witha]-,t < (—egj—p(j) + er; + q(]-))t
.y (“+ﬁ(j)+éf,~)!(kj—1+|“(j)|)!
Ca+e, +p(j)-er;=d()
\/“! (“ +PG)- €= q0) — er,-) (kj + |agy + pp])!
_ . otherwise.
by comparing the action of the above operators on [e,: a € Z] we conclude that
P

Ty, To. . =Ty, Tp. . = T . .
Wepr Pogagy Ve PBGyag) k; + |a(]-) +p(j)| Wejrj PB(ag)
Or equivalently
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T kj+|ag| T
Ve ®Bpacgy — kgtlagyrpe) Ve PRy S
using the notation in (99) we can rewrite (107) in the form
NG
Lo Tonyag) = D"‘fJP(J‘)'T‘I"’MT‘Dﬁ(j)ﬁm
Note that according to Corollary (6.3.14) one has ng-),m(m € T (Li-qr)-
of the form (106). With j € {1, ..., m} consider the

(107)

Now, we return to symbols @5 4,
sequences {¥; (1) }rez, defined by

lpiyl-1
] ki+r (kg + 7)oyl =1+ 1)

A1l kj+r+ 4 (i =1+ 7 + [pyl)!
and note that lim, . 7;(r) = 1. Let D, ;be the diagonal operator acting one a, for all a € Z3,
by

i) = : (108)

Dy,eq. = 7i(ag)eq-
then it follows from Lemma (6.3.12) that Dy, € T (Lk-qr)- Moreover, by induction it is clear

from (87) that
IpHl-1

LOROR T%(j)%) 1_[ w r (109)

We also need the exact action of a product of Toeplltz operators with elementary k-quasi-
homogeneous symbols.
Lemma (6.3.17)[302]:Let @5

(89) by

T

be given by (106) and define the operator A appearing in

ﬂ{’ T
- || = (110
(£j,rj)€lnj

Then A acts on the basis [e,: a € Z% |by the rule
0, if3f e {h] + 1, ,k]} C(j’g < anf)’

P

— 1 —
Aea= Dy Pogaga = 1 (ag+p())!

(k; + |oc(j)|)|’”<f>| (ag+acn)!
In particular, the operator A acts on [e,: a € Z} ].in the form
Ae, = m(a(j))ea+ﬁ(j)—67(j) ’ (111)
Where the scalar factorsm(a;,)only depend on the j-th portion ay;)of [e,: a € Z}].
Proof: The first assertion follows from Lemma (6.3.16), (109), and the relation

(a +7())! _ (ap) +Pe)

\/“! (a + B — dcp)! \/“(j)! (agy + Py —acp)!
The second statement is an immediate consequence of the first.
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Remark(6.3.18)[302]:Recall that the decomposition (106) of T%,( . Is not unique. However,
PV ]

Lemma (6.3.18) shows that the map
;B#j,rj
Poag = 1_[ Ty, -=
¢jrpen; 7
Is well-defined, i.e. the operator A is independent of there presentation (106) of T%(j).zz(,-)'

We associate to the space R, (h) the following set €, (h) of elementary k-quasi-homogeneous
functions of quasi-homogeneous degree (1,1)
m

e = | e, m. (12)
j=1

Where for each j € {1, ..., m} with k; = 1 we put€, ;(h) = @, and in the case where k; >
1wedefine

Ek,](h) = {lp{’],?‘](z) = Ejfj, E_jrj’: ('EJJ r]) € {1) )h]} X {h] + 1) ey k]} = ]h,j}' (113)
Clearly, € ;(h)contains X7, h;(k; —h;) elements. These symbols ets define the

corresponding commutative Toeplitz Banach algebras 7;(€ ;(h))and T;(E,(h)). The
following result has been proved in [193].

Proposition (6.3.19)[302]:Let k = (kq, ..., K,,) € ZT*. For each pair of orthogonal multi-
indices p and q with |p¢jy| = |qj| forall j = 1,...,m and each a = a(ry, ..., 1;,) € Ly_q, WE
have

TaTa,, = Top,Ta = Tao,,-

Now formula (101), Proposition (6.3.19), the decomposition (109) with D, € Ti(Li-gr), and
the notation in Theorem (6.3.2) permit us to essentially reduce the set of generators of the

algebra B, (h).Namely, we have:
Theorem (6.3.20)[302]:The following commutative Banach algebras coincide

T (Le_qr U €(R)) = Bi(h) (114)
The algebra on the left hand side of (114) is clearly generated by its two commutative
subalgebras T; (Li_4,) and T3 (€, (h)). Whereas the first one is a commutative C*-algebra, the
second algebra is just a commutative Banach algebra and is not in variant under the x-
operationof L(AZ(B™)). Recall that T3 (Li-qr)was analyzed. Our next aim is to analyze the
structure of the finitely generated algebra 7; (€, (h)).
As was already mentioned, the structure of the algebraZ; (€, (h))does not depend on the weight
parameter A. Thus in what follows we will always assume that A = 0, i.e., the operators will
act on the unweighted Bergman space A2(B"): = A3(B") and clarify the structure of the
algebra 77 (€, (h): = T (€, (h).
By Lemma (6.3.16)the Toeplitz operator with symbol Ye,r; (z2) =¢ j0;8ir ) defined in (105),
acts on the orthonormal basis [e,: a € Z}]as follows
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( 0, if @ = 0,
Tj

ey + é{)}. — érjotherwise.

k: + |a ; |
j ()
Let H bean abstract Hilbert space whose orthonormal basis is enumerated by Z”.. If we consider
set of operators Ty, r0n H which act on the basis elements according to (115), then the unital

Banach algebra generated by such operators would be isomorphic and isometric to the algebra
T (€, (h)Now, we will choose a particular realization of H which is different from our present
setting of weighted Bergman spaces over the unit ball together with a set of operators Tor;
We introduce the Segal-Bargmann space and certain Toeplitz operators acting on it.
The main simplification we achieve in this way lies in the additional tensor product structure
of the multi-dimensional Segal-Bargmann space. This feature will allow us tore present the
corresponding Toeplitz operator algebra(and hence the algebra 7 (€, (h)))in the form of a
tensor product, cf. (130).
Westar with C™ equipped with the standard Gaussian measure
dp, (2): = n e 12 du(2),
where dv denotes the Lebesgue measure on C* ~ R?™. Denote by H(C™) the space of entire
functions on C™. The Segal-Bargmann space (or Fock space) F2(C") is defined as
F2(C™) := H(C™) N L(C", duy).
Denote by P the orthogonal projection from L, (C", du,)ontoF2(C"). with g € L, (C") the
Toeplitz operator T, with symbol g acts on F2(C™) in standard way
T, f € FA(C™) » P(gf) € F*(C™).
Given k = (ky, ..., ki) € ZT' with |k| = n, we interpret C™ as a product space
C* = Ck1 x ... x Ckm
and we write z = (z), ..., Z¢m)) € C", Where z(;y: = (z;, 1, ..., 2, kj) € C*i. With respect to
polar coordinates we express z¢;y # 0 in the form z;) = r;¢;,, where
D) ¢ gak-1
|26
Let (£;,7;) € {1,...,hj} X {hj;q, ..., k;}. We interpret the elementary k-quasi-homogeneous
functions Yori= E{;j,rj@jlrj as elements in Loo(C™). It can be checked by an easy calculation
(see [104]) that

S = andr; = |z(p| € R,

0, ifajrj = O,

ij,rjfa —= \/(aji’j +1Daj,

So T €p, + &, otherwise.

Here the monomials

1
— a 3 n
fo = (Z)\/az witha € Z%

form the standard orthonormal basis in F2(C™).
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That is the set of Toeplitz operators Ty, _, where Ty, _ € € (h), obeys the relations (115).
] ]
Denote by T(E,(h)) the unital Banach algebra generated by Ty, ~ with Ty, € €. (h).
Iiay) Iiaw)

According to the above remarks we have
Lemma (6.3.21)[302]: The assignment T;,, ~ — Ty, _ extends to an isometric isomorphism
) 7]

between the Banach algebras 7 (€, (h)) and (&, (h)).

We start with a classical result on Toeplitz operators with continuous symbols, see
[162,291]. Denote by € (B™) the algebra of all functions continuous on the closed unit ball B™,
and let 7(C(B™))be the C*-algebra generated by all Toeplitz operators Ta act in g on the
Bergman space A2 (B™)and having symbolsa € C(B™).

Theorem (6.3.22)[302]:(See [162,291].) The algebra 7 (C (B™)) is irreducible and contains the
ideal K of all compact operators on A2(B™). Each operator T € 7 (C(B™)) has the form
T=T,+ K, wherea € C(B") and K € X. (116)
The quotient algebra 7 (C(B™)) = 7(C(B™))/X is isomorphic and isometric to € (S2"1), and
under their identification the homomorphism
m: T(C(B™)) » F(C(B™)) = €(s*"1) (117)
Is given by
m:T =T, +K - a|gn-1.
we note that the representation (116) is not unique. An ambiguity comes from the fact that for
any two functions a, a; € C(B™) with (a — a;)|s2-1 = 0 the difference T, — T, is compact,
andthus T, + K=T, + Ky, forK; =K+ (T, — T,,) € K.
In order to make the representation (116) unique (and in a sense canonical) we proceed as
follows. We introduce the C*-algebra H(C(5?""1)) consisting of all functions that are
homogeneous of order zero on B™ and continuous on §2"~1 = gB™.Let 7(H(C(S*™1))) be
the C*-algebra generated by all Toeplitz operators acting on the Bergman space A2 (B™) having
symbols in H(C(S?™"1)). With any pair of functions a € C(B™) and @ € H(C(S?" 1)) such
that (a — @)|gz2n-1 =0 we have T, —T,; € K. Moreover, the algebras 7(C(B™)) and
T(H(C(S*™1)))consist of the same operators, in spite of the fact that they have different
systems of generators.

Each operator T € T(C(B™)) = T7(H(C(S?™1))) admits the (unique) canonical
representation

T =T, + K,where @ € H(C(5*"1)) and K € X. (118)
we note that none of the above operator T,is compact (unless T; = 0 and thus T; = 0), and the
essential spectrum of T; is given by

ess —sp Ty = a(S?™ 1) = a(B").

This implies the estimate r(T;) = ||all,,, for the spectral radius r(T;) of T; which, together
with || T;1l < llall,, shows that

ITall = r(Ty) = llall,,, foralla € (H(C(S*™1)). (119)
the above observations permit us to give another equivalent description of the quotient algebra
T(CB™) = T(H(C(S?™ 1)) = €(57™1). Indeed, the assignment

T=T,+kw— T,
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gives a Banach space isometric isomorphism
T(C(BM) - Ty(C(S*™™1)):= {Ta: @ € (H(C(SP )} (120)

This isomorphism becomes algebraic after introducing the multiplication law in T, (C (52" 1))
as le @ T(iz = ledz.
With our previous notation let A = 0,n € N and m = 1, so that k = (n), and h = (h), with
1 < h <n— 1. Letthe tuple

l/) = (IIJIJ R l/)y) (121)
be the (somehow) ordered set of y: = h(n — h) elementary quasi-homogeneous symbols in

Z;Z

£ (h) = {w,-,l(z): = # :j=1,..hl =h+ 1,...,n},

AndletT(Y) = (Ty,, ..., Ty,) be the ordered set of the corresponding Toeplitz operators. We

introduce the Banach algebra B(&, (h)), asubalgebra of H(C(5%"~1)), being the unital algebra
enerated by all elementary quasi-homogeneous functions from €, (h), as well as the unital
Banach algebra T (€,(h)), a subalgebra of T(H(C(S?"*1))), which is generated by the
Toeplitz operators in T (y).
Note that in our particular case (m = 1) the functions y; € 1 continuously extend to the sphere
§2n-1 = 9B™, and thus we are in the framework of the previous subsection. The general case
of m > 1 where such a continuity on the boundary is not fulfilled will be treated in the section.
We define the following tuples of multi-indexes
P:={(p,q) € Z% XZ%:p = (P1,---,Pn,0,...,0),4 = (0,...,0,Gn+1 ,---, qn). IPl = lql}.
If (p, q) € P, then there is « = a(p, q) € Z" such that
A (122)
FED e
Consider the space of polynomials Fp: = {@,q)(2): = 2PZ%: (p, q) € P}. Itis easy to see that
all the elements of Fp are harmonic polynomials on R?™ = C". Moreover, we have:
Lemma (6.3.23)[302]: The functions in Fp are orthogonal in L, (B"). If were strict them to a
sphere rS2"~1 of radius r € (0,1), then they define orthogonal functions in L,(rS?""1,0)
where o denotes the usual surface measure on rS2"1,
Proof: With (p, q), (r,s) € Pand suitable numbers C(p, q) > 0 it holds

jz'pfq z"75 dv(z) = fzp“Zq” dv(z)
B" B"
D1 Ph,_Sh+1 SnsT 5Th ,4h+1

= le wZptzyM Lzt L2 L2 du(z) = C(p, q)8p10s -

BTL
The second assertion follows by the same argument.
Let A € L(A%(B™)), then we write B[A](z) € L. (B") for the Berezin transform of A. More
precisely, B[A](z) is defined by

B[A](2) = AK (-, 2),K(, 2))o, (123)

1K, 215
Where K: B" x B" — C is the reproducing kernel of the unweighted Bergman space A2 (B™)
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1
RO = Ty

Recall that B: L(A%(B™)) — C£(B™) is linear and injective. Here we write C2(B™) for the
space of bounded real analytic functions on B".
Lemma (6.3.24)[302]: Let @ € Z* and (p, q) € P be related to « via (122), then

B [T o TIZYV] (z) = zP29H,, (|2]), (124)
Where the function Hyy,, fulfills li¥r11 H)p; (p) = 1 and it has the explicit form
0]
n+ !
(1 = fppayres E D!
(pl = D! !
Xf e — (n+ |p|)s?
. (1 _ |Z|Ze_sz)n+|p|+1
Proof: According to Lemma (6.3.17) the operator product T
basis [eg: B € Z}] of A*(B™) in the form
T 10;)11 le:eﬁ = m(f)eg+p-q,

Hp, (Iz]) =

s2lpl-1 g (125)

3,1 ... T% acts on the orthonormal
1 Ty

Where m() is defined by

1 (B +p)!
mB)={m+ 18D | (B -’

0, otherwise

if B — q = 0 (componentwise),

Hence it follows

1 @ _ 1 a PO
(T le Tw:eﬁ K(,2),K(,2)) = Z (T f;l ijeﬁeﬂ,en)o ep(z)en(2)
BmELY
= Y mB)G@epipqg D= ) mB +DepDesip() = ()
Bj=q; BEL}

Using the explicit form of m(f + q) above and the expression for eg(z) in (86) together
with|p| = |q|we obtain

) zPz4 z rn+|B8|+Ip|+1) |zP)? prqil“(n+€+ Ip| + 1) |z|**

<) — _

Dl o I Ip| 1
&, GFIBIHIPDPT Bl L (et £+ pDPT 2

In the last equation we have applied the multinomial theorem. In order to obtain an integral
representation of (x) we use the well-known relations

! _ 1 f o~ (DD g

B2Ipl

ut r(t)
2F(t+€)ﬁ =—(1 —u)t'

Which hold true for u € [0.1]and t = 0. Interchanging summation and integration implies
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o ¢
Zqu 1 e_lxlz VA 2
() =———| e PO N T+ +|p|+1) (7 121 dx
! Ip| p)
n. el Jrzipl — !
ZP79 (n + |p))! e—(+IpDIx|?
2Pl (1 — e~1x1%|2|2)

Finally, by changing to polar coordinates in the last integral, we obtain the expression (125).
The limit behavior lim Hy, (p) = 1 can be directly checked from (125). However, we can also
p

give a more abstract argument. By (118) we can write the product of Toeplitz operators in the
form

T =T v +K, (126)

a1
Yt Y 22
14 |z2IPl

Where K is a compact operator. If f is a continuous function in a neighborhood of 52"~ and
bounded on B™ then it is well-known that liﬁzB[Tf](pz) = f(z) for all z € §?™1 (cf.[21]).
p

Moreover, it holds |lim B[K](z) = 0. From (126) we obtain

T

- a %y — 4P54q

lplTTng [T 1!111 Twy] (pz) = zPZ

For allz € $?"~1. Together with (124) it follows that lip} Hp (p) = 1.
p

Recall (see (117)) that the Banach algebra homomorphism m: T(C(B™)) — C(S?™1) is given
by
n(T, + K) = a|gzn-1.
Here K is compact and a € C(B") is continuous up to the boundary.
Proposition (6.3.25)[302]: The restriction of « to the algebra 77 (&€, (h)) is injective.
Proof: Let T € (&, (h)) with (T) = 0, then we want to show that T = 0. Choose sequence

T, = z au(OT 5 .. Ty? € T(E())

a€eZl
Such that {;im T, =T in the norm topology. Here for each ¢ € Z only finitely many

coefficientsa, (£)are non-zero. As was already mentioned the operator product T 1‘211 ij
Y

admits the decomposition

T TY=T% . T +K,K, €X,

aq
Y1t Ty T Yy Yy
And we have i (T 3}11 TIZ;’) = zP74|z|72IPl = zP 29 where (p, q) and a are related sin (122).

Since T is continuous we have
0=n(T) = limn(T,) = {gimZaa(p, NGO

p.q
Where the convergence on the right hand side is in C(S?™~1). In particular, the convergence
takes place in L,(52""1, o). Due to the orthogonality result in Lemma (6.3.23) it follows
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2

PRI GYEL = 18a D@D N2 ZUE, 21015, = 0(£ = o0).

P,q Lz(szn_l,O') p.q

as a consequence we have that tgim a,(p,q)(¥) = 0.

Now we consider the sequence of Berezin transforms B[T,]. According to Lemma (6.3.24) we
have forall £ € Z,

BITI() = ) aap (2720 Hyy (12D = ) Hi(2D) ) aq(p.9) ()77,
p.q =1 ».9)
Ipl=Iql=1
by continuity of the Berezin transform, it follows thattgim B[T,] (z) = B[T](z)uniformly for
z € B™. In particular, if we fix r € (0,1) and restrict B[T,]to rS?"~1, then we obtain a
convergent sequence in L, (rS?™" 1) Since zPZ4 are orthogonal in L, (rS?™1) and by applying
{gim a,(p,q)(£) = 0, we obtain

él_)?’glo Hlpl(lzl) aa(p,q)(g) =0
for all (p, q) and therefore B[T,](z) converges to zero in L,(rS?*~1). Since r was arbitrary it
follows that {gim B[T,](z) = B[T](z) = 0 a.e. on Bnand from the continuity of B[T] we see

that B[T] identically vanishes on B™. Since the Berezin transform B is injective on bounded
operators we have T = 0.

Corollary (6.3.26)[302]:The algebra 7 (Ex(h)) does not contain any non-zero compact
operator. Each element T € T (T (€, (h))) admits a unique representation

Where 1 € B(E,(h)) and Ky is the compact operator from K N T (Li_,, U €, (h)) uniquely
determined byap;i.e.,if both operators T; = Ty, + K, and T, =T, + K, belong to T (&, (h)),
then K; = K,and thus T; = T5,.

Proof: According to Proposition (6.3.24)we know that the homomorphism = is injective on

T (€, (h)); as it vanishes on compact operators, we have that K N 77 (€, (h)) = {0}.
Representation (127) follows from(118). Assuming that both T; = T;, + K; andT, =Ty, + K;
belong to T (Ex(h)), we have Ty — T, = K; — K, € KNT(E,(h)) = {0}. Thus K; = K, IS
uniquely determined by .

We mention that the latter result remains true for the algebras 7, (&, (h))with the only
difference that K, € K N T3 (Li_g4r U Ex(R)).

We mention that the exact form of the compact operator in (127) can be easily figured
out. Indeed, let F be a dense subset of 7 (&, (h))consisting of finite sums of finite products of
its generators. For elements of F the concrete form of the compact operator in (127) can be
obtained using (108) and (109). Let now {T},},cn, Where T, = Ty, + Ky, € Fbe a sequence

that uniformly converges to T =T, + K € T(E(h))\F. Then the sequence {T},},en
converges to 7 in the quotient algebra 7 (H(C(S?™1))). The isomorphism (120) implies that
Ty, = Ty uniformly, and thus K = lim Ky,

p—co
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We have then
T(&(h) = T(&()/(T(Ex(M) N K) = (T(E(h) +K)/K
c T (H(C(S™ 1)/K = Cc(s* D). (128)
Lemma (6.3.27)[302]: For eachy;,; € & (h), the spectrum of Ty IS given by spTy;, =

= 1
D (0,5)
Proof:Follows from two facts: ess — sp Ty;, =Range ¥; [gzn-1 = D (O, %) and the spectral

radius of Ty, is equal to= which follows from (119).
1 2

We recall the notion of the joint spectrum (see [285] or [27]). Let A be commutative Banach
algebra with identity and let x,,...,x, € A. The joint spectrum ofx,, ..., x, IS the subset
04(xq, ..., x,)Of C™ defined by

Oa (X1, Xp) = {(@(x1),..., @(xn)): ¢ € M(A)},
Where M (A) is the compact set of maximal ideals (=multiplicative functionals) of A.
By (128), the algebra T(Sk(h)) is isomorphic to the unital subalgebra of C(S2"~1) generated
by the elements of y in (101), with the following assignment: Ty, — Pj|san-1. ldentifying

them we calculate the joint spectrum of elements of T'(), relative to C(S2"™1), as the joint
spectrum of i in the algebra C(S?™™1).
Lemma (6.3.28)[302]: The joint spectrum of the Toeplitz operators with symbols in i is given
by
o(T () = P(S*"™1) c chh,
Proof: As S2"~1 is the compact set of maximal ideals of C(S%"1),we have
o(T ) = o¢sen-1y () = (S H).
At the same time the unital Banach algebra T(Sk(h))it self, considered as a finitely generated
algebra by elements of T'(y) is isomorphic to the “polynomial” algebra P(a(T (y))), and, by
[285], its compact set of maximal ideals coincides with the poly nominally convex hulla (T (v))
of a(T(Y)),i.e.
M(T (€(h)) = 6(T(¥)).
From [285] yields
Theorem (6.3.29)[302]:The Banach algebra T(ek(h)) Is isomorphic to the algebra
PG (T)))- _
We proceed now with the description of the set ¢ (T (¥)).Withr € Nands > 0 let B" (0, s) be
the closed ball in R" of radius s centered at the origin.
Example(6.3.30)[302]:Given n > 1, consider m = 1, so that k = (n), and h = (1). In this

case we have with our former notation
Z1Zo Z1Z3 Z1Zy
Ex(h) = {1/)1,2(2) = W WP13(2) = W e W1 n(2) = |Z|2}-
By changing to polar coordinates z; = rjelgf, with r; € R, for j = 1,...,n and writing r =

(ry, 173, ..., 1) We obtain:
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W(S¥1) = {(T.lrzei(el—@z)’“.’rlrnei(el_en)): Ir| =1,6; € [0,2m),j =1, n}

n-1
D(0,=
< ( 2)

Setting w; = |w;|t; = ry1j4,€" @270 Dforj = 1,2,...,n — 1gives

n—1 1
02 = Y ey P = 77 (1= < 7,
j=1

Which implies that
1 _ 1
lp(szn_l) = {(a)l, (Un_l) € Cn_l: |W| < E} = ]Bg‘l’l—l (0 E)

Notethatthecasen > 1,m = 1,k = (n),andh = (n — 1)givesthesame result:for

Zn1Z
Y = (l/h,n(Z) = Wlpz,n(z) = W oo Pne1a(2) = ri |12 n>;
We have that

1 _ 1
P(s2-1) = {(wl, o wny) € CV o] < E} — Bt (05).
Example(6.3.31)[302]:Consider now the case: n > 3,m = 1,k = (n),and h = (h), with 1 <
h < n — 1. In this case we have h(n — h) elementary quasi-homogeneous symbols,

£.(h) = {l/J]l(Z)—l gt = Loohl=h+ 1,...,n}.

Passing to the polar coordinates z; = r]-ele ,forj=1,...,n, and with |z| = 1 we have
Yj = rjrlei(ef_el), wherej=1,...,hl=h+1,...,n
Therange of Y = (W1 nst - Yimo oo Pnnetr - Phn) ON SZ1is calculated as
PSP ) = {(ryrpg1€" 70, L, rmet G0 L et Or=bn))
Irl =1,6,—6,€[0,2m),j =1,...,h,
(n—h)

_ 1
l=h+1,...,7’l c ]D(OE)

Let
riTpyqe' 070 = Wi h+1 = Ay p+1lintrr -

rjrlei(ef_el) = wj; = a1ty

rhrnei(eh_en) = Wpn = Apntnn,
here a;; € Ry, t;; € St,j=1,...,hand [l = h + 1,...,n. Moreover, the above components ti1
obey the relations
T = {tj utj, i2tj,1,t,1, = 1:forall ji,j, € 1,...,hand [;,l, E h +1,...,n}.
note that not aII relatlons in T are mdependent An equivalent reformulation of the relations
Tisa follows. The equation t; 3T, 15t .. t;,;, =1 is equivalent to ¢t , =
t,, 11tj, 12tj,1,Showing that only n — 1 of the h(n — h) variables t; ; are actually independent
(e.0. taketl,hﬂ, oo, tint2hts - thher) Which yields

T={tj; =t ps1tiitjps1:j = 2,..., K 1=h+2,...,n}.
Then we have
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h n
1
=) > lwplP = 0F 4 D= OF 44D < 4,
j=11=h+1
Which implies that
1 — 1
lp(szn—l) — {(wl,h+1' ey (l)h’n) € (Ch(n_h): |(1)| < E SubjeCt to T} - Bh(n_h) <O, E);

Where w;; = a;,t;;, withj =1,...,hand [ = h + 1,...,n, as above.

We unify the results of the above examples in the next lemma.

Lemma (6.3.32)[302]:Letn > 1,k = (n), and h = (h), withl <h < n — 1.Then the vector
Y in (4.21) has h(n — h) components, and

B(S21) = A(n, h) € BO-D (o,%),

Where
En-l(o,g), ifh=10rh = n— 1,
A(n’ h) - {(,l) = (wl,h+1: reey wh,n) € ]Eh(n_h) (O; %) (129)
w subjectto T }, otherwise.

Corollary (6.3.33)[302]:The Banach algebra 7 (&, (h)) is isomorphic to the polynomial
algebra P(A(n, h)), where A(n, h)is the polynomially convex hull of A(n, k).

Proof: Follows from the above lemma and Theorem (6.3.29)

Note that, if h =1 or h =n — 1, then the set A(n, h) = B"®~M (0, %) is convex and thus

coincides with its polynomially convex hull. At the same time, inthecasen >3 and 1 < h <
n — 1, an explicit description of the polynomially convex hull A(n, h): of A(n, k) seems to be
quite anon-trivial task. We do not know the answer, and leave it as a problem (v) in the section.
The following discussion provides a (rough) upper bound for A(n, h):

It is easy to see that A(n, h): is a subset of B~ (O, %) We will show here that it is

even proper subset. Withr € (0, %) consider the sets
A, (n,h):={w € A(n, h): |w| =1}
And for each fixed z € C"™~M define the holomorphic polynomial P,(w) = r~?{w, z). Let
AS(n, h) be the (open) complement of A,(n, h) in the r-sphere S**™ ™~ For any z €
AS(n, h) there is 0 < y < 1 such that
Kw,z)| <y 7r? forall w € A.(n, h).
Hence it follows for w € A,.(n, h) and by using the maximum principle in the last equality:
2r
1 =1R@lzy™" sup [R(lzy™?" sup |RQrw)l =— sup P(w).
w€EA, (n,h) w€A, (nh) Y weA(n,h)

Thus, no point in A%.(n, h) with y < 2r be longs to the polynomial convex hull of A% (n, h).
In particular this holds for all points in A5 ,(n, h) = B"™~") (0, %) \A(n, h) # 0.
Now we list several properties of A(n,h) forthecasen >3and1 <h<n—1.
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(i) A(n, h) is a compact subset of B~ (0, %)

(if) None of the points of A(n, h) is interior, i.e., this set has an empty interior.
(iii)The set A(n, h) is a contractible star-like set, i.e., together with each of its point the set

A(n, h) contains the radius of B*"~") (O, %) passing through this point.

(iv).Both A(n, h) and its complement C*(»=™M\ A(n, h) are connected sets.
(V)The set A(n, h) is invariant under the following action of the (n — 1)-dimensional torus
T Y For 7= (Tynst - Tim Tonst--Thaer) €T and each point o=
(W1 ht1s---» Wrp) € A(n, h) the coordinates of u = 7 - w € A(n, h) are of the form

Tj W1 ifj=landl=h+1,...,n,.0rj=2,...,handl=h + 1,
Wi = {mrl,lrj,hﬂwj,l , otherwise.
Consider now the general case of n > 1, with m > 1, that islet k = (kq,..., k,;,) and h =
(hy,..., hy). Inthis case, by (112),

HOES YENO!
j=1

Where for each j € {1, ..., m} we have used the notation in (113).
We consider as well the ordered sets i and y[j] formed by elements of £y (h) and &, ;(h),j =
1,...,m, respectively, together with the corresponding unital Banach Toeplitz operator
algebras: T (€ (h)), generated by operators acting on A, (B"), and T (&;(h)), generated by
operators acting on A, (B*/), where j = 1,...,m.
With the above multi- index k = (ky,..., k) € Z1*, we interpret C"as a product space
C* = Ckr x---x Ckm,
As is well known, in this situation the standard Hilbert space tensor product decomposition
holds
F2(CY) = F2(Ch) @@ F2(Ckm).
Similarly we have
Ay, 1= Ay (B¥1) XX (BFr) = A,(B*) @@ A, (BFm).
We introduce as well the unital Banach algebras: T(Ex(h)), generated by Toeplitz operators
on F#(C") with symbols in &, (h), and T'(&, ; (h)), generated by Toeplitz operators onF? ((Cki)

with symbols in & ;(h), where j = 1,..., m. By Lemma (6.3.21) we have
m m

T(Exj(h) = T(E(R)) = .®1‘I€k,j(h) = _®1T(8k,j(h)). (130)
since the choice of the tensor product nérm IS somehow tzicky, some comments to the above
formula have to be added. In the setting of C*-algebras the task is simpler and therefore we first
extend the algebras 7' (€ j(h))and T (& ;(h)) to the corresponding C*-algebras T (& ;(h))
and T (&, ;(h)) where j = 1,...,m. Note that all these C*-algebras are of type I. A simple
method of proving that 7 (& ;(h)) is of type I uses the observation that it is asubalgebra of

T (C(B*mik)),which by its description in Theorem (6.3.23) is a GCR-algebra. Thus these C*-
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algebras are nuclear (see, for example, [44,182]). This in turn implies that the C*-cross-norms

on the tensor products
m m

_ X 11*(8,(,]- (h)) and X 1:7"*(8,(,]- (h))

] = ] =
are uniquely defined and coincide, in particular, with the spatial cross-norm [80,44], being the
standard norm of operators acting on the Hilbert spaces F2(C")) and Ay, respectively. Finally

the tensor products of Banach algebras
m m

® T(E (W) and ® T(&, ;(h)
j=1 j=1

In her it the operator norm from their C*-algebra extensions.
Theorem (6.3.34)[302]:The compact set M(7,(E,(h))) of maximal ideals of the algebra
T, (€, (h))is given by
MT;(Ex(h)) = A(ky, hy) XX Ak, hyy). (131)
Proof: As was stated before, the description of the algebra 75 (€ (h)) does not depend on the
weight parameter A. That is all algebras 7; (€, (h)) , where A € (—1, o), are isomorphic and
thus have the same compact set of maximal ideals. By (110) the compact set of maximal ideals
of the algebra T (&, (h)) (the unweighted caseA = 0) coincides with the one of the algebra’

721 T (Ek,j(h)). Then by the terminology of [136], the norm on A, is uniform, and the
corresponding operator (spatial) norm is ordinary. By [136],

m
M(i ® :r<ek,,-(h)>) =M (T(Ec(h) XX M(T (Em(h)),

which, together with Corollary (6.3.34) and there marks after Lemma (6.3.29) finishes the
proof.

We now describe the space of maximal ideals in (131) in a different form. As before let k =
(ky,..., k,,)and consider the following compact subset of the boundary dB"

1 .
Dcom'p: = {(Z(l),...,Z(m)) € C": |Z(])| = \/—% fOT'] = 1,...,m}

2kq1-1 2k;m—1
= §27! o gAML
vm vm

We interpret the tuple ¥ = ([1],...,¥[m]) of ordered elementary k-quasi-homogeneous
symbols on C" as a vector valued function

llj : Dcomp - Cy'
Here y = X721 hj(k;j — h;). As a consequence of Theorem (6.3.35) we have:
Corollary (6.3.35)[302]: The compact set M(TA(Ek(h)))in(131) coincides with the
polynomial convex hull (Dcomyp) Of the range Y (Deomp)-
Proof: It is easy to check that Y (Domp) = A(kq, hy) XX A(ky,, by ). Note that the relation
X x Y = X XY holds for compact subsets X ¢ C™ and Y c C"2. Hence we have
lpA (Deomp) = [ACky, hy) XX Ak, hin)] = /i(klihl) XX (ko hin).-
Now, the assertion follows from Theorem (6.3.35).
216



We recall some standard notation (see [285]). Given acompact (polynomially convex) set M c
C4, we denote by P(M) the closed subalgebra of C(M) consisting of all functions that
uniformly on M can be approximated by analytic polynomials. The algebra A(M) is the
subalgebra of C(M) consisting of all functions that are analytic on the interior int(M) of M.
Note that A(M) = C(M) in the case where int(M) = @.
Recall as well that the inclusion P(M) c A(M) holds. Although many partial results (both
positive andcounterexamples)areknown,thequestionwhetherthe algebras P(M)and A(M)
coincide still remains open for general subsets M c C1.
Theorem (6.3.36)[302]: The Gelf and trans form is generated by the following mapping of
generators of the algebra 7(&, (h))

Tlp’?jjrj — (Uj,gj T (132)
Where Ve, r; is givenin (93) and w = (@118, +1 -9 W+ » Oy P, k.)€
M (T3 (€, (h))).
(i) The Gelf and image of the algebra 7; (€, (h)) coincides with P(M),where

M = M(T;(E(h)) = A(ky, hy) XX Ak, hm).

(it) The isomorphism 7, (Ex(h))) — P(M) is generated by the mapping (132) of generators of
the algebra (75 (Ex(h))).
(iii)In the case where either h; = 1orh; = k; — 1 forall j = 1,...,m we have that

= _kl_1 1 _km_1 l —
M=B8B 0,5)x--x B 0,5 and P(M) = A(M).
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List of Symbols

Symbol Page
diag diagonal 1
© Direct difference 3
min minimum 14
max maximum 15
det Determinant 21
H® essential Hardy space 22
HP Hardy space 22
dim dimension 23
Ker kernel 23
L Lebesgue space of the real line 24
L? Hibert space 25
supp support 28
74 Gleason — Whitny 31
inf infimum 33
L1 Dual Lebesgue space 34
sup supremum 34
H?! Hardy space 34
dom domain 35
H? Hardy space 41
L essential Lebesgue space 43"
WOT weak operator topology a7
Aut Automorphism 48
) orthogonal sum 48
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(%) tensor product 48
lat lattice 50
Ran range 53
£? Hilbert space of sequences 56
Rep representation 56
Alg Algebra 60
q— Inn quasi-inner 63
dist distance 65
im imaginary 80
tr trace 86
lex lexicographic 93
Re real 96
proj projection 112
arg argument 131
H, Hankel operator 137
AZ Bergman spaces 163
rad radial 163
clos closure 175
®€ Injective tensor product 182
Ssp spectrum 185
ess essential 207
© multiplication law 208
comp compact 216
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