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Abstract

This project is made to study the fluid structure interaction for light aircraft wing
structure (SAFAT 03 wing structure) that was drawn by CATIA software; in order to
know if the requirements of certification are being satisfied to ensure the freedom of
aeroelasticity problem such as flutter and divergence.

Galerkin energy method utilized to calculate the flutter and divergence speed and
a MATLAB code used in order to calculate the flutter speed

The fluid structure interaction approach has been used in ANSYS, the problem
setup in ANSY'S environment and tested using a typical wing configuration, but due to
the complexity of SAFAT-03 wing structural components and the limitation of
computing platform the results not obtained using ANSYS.
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Chapter One: Introduction

1.1 Overview

Fluid-structure interaction (FSI) is interacting of solid structures with an internal
or surrounding fluid flow. FSI problems play prominent roles in many scientific and
engineering fields.

Fluid-structure interaction (FSI) occurs when a fluid interacts with a solid

structure, exerting pressure on it, which may cause deformation in the structure. [1]

1.2 Problem Statement

To get type certification of SAFAT®03 it should be free from flutter , divergence
and aileron reversal and also the structure must be able to resist the structural problems
during flight envelope [2],So Verification of SAFAT®03 wing structure is important.

1.3 Proposed Solution
Structural and aero elastic Analysis of the wing structure by using analytical

and computation methods.

1.4 Objectives

1. Examine of wing deformation

2. Estimate the aero elasticity specification (divergence, flutter)

1.5 Methodology

3D wing model drawn as CAD format by CATIA application, the model
Modified to be suitable for CFD, the modified model entered into CFD, to solve it as
unsteady aerodynamic, the internal structure of the wing and its materials defined, and

then the structure model entered to mechanical part, to solve it as transient FEM.



The pressure distribution transferred from CFD to structural part. ANSYS®
System coupling used to return the deformed mesh to CFD to solve it again, in addition

to repeat this process.

This will be repeated at 1.2*Vy;y, divergence and flutter speeds, then the results

Arranged in the tables and plotted on graphs, to evaluate it.

1.6 Thesis Outline
Chapter two studied literature review, chapter three deal with calculations,
chapter four showed results and discussion and chapter five take the conclusion,

recommendation and future work.



Chapter two: Literature review
"Aeronautical engineering is the science or study of the design of aircraft"[3]. So
this requires more regards for the safety, to save the life of the human. So there are more

phenomena must take into account. One of this phenomena the aero elasticity.

2.1 Aeroelasticity

" Aeroelasticity is the subject that describes the interaction of aerodynamic,
inertia and elastic forces for a flexible structure and the phenomena that can result. "[4]
This field of study is summarized most clearly by the classical Collar aero elastic

triangle in figure 1

=

Inertia Forces

AN

Stability

Vibration
and Control

Dynamic
Aecroelasticity

Elastic Aerodynamic

Forces \ / Forces

Static
Aeroelasticity

Figure 1: Collar’s aeroelastic triangle. source[4]

e Stability and control (flight mechanics) = Dynamics + Aerodynamics
e Structural vibrations = Dynamics + Solid Mechanics

e Static aeroelasticity = Steady Flow Aerodynamics + Solid Mechanics



The Aeroelasticity is divided into two class:

The first class Static aeroelasticity involves the interaction of aerodynamic and
elastic forces. Such interactions may exhibit divergent tendencies in a too flexible

structure, leading to failure, or, in an adequately stiff structure, converge until

a condition of stable equilibrium is reached.[5]

The second class involves the inertia of the structure as well as aerodynamic
and elastic forces. Dynamic loading systems, of which gusts are of primary importance,
induce oscillations of structural components. If the natural or resonant frequency of the

component is in the region of the frequency of the applied loads then the amplitude of

the oscillations may diverge, causing failure.[5]

Aeroelasticity

Static Aeroelaesticity

Dynamic

Aeroelasticity

Load

distribution

Divergence

Control

Reversal

Figure 2: Tree of Aeroelasticity. source[5]

2.1.1 Divergence

Divergence is static instability of a lifting surface of an a/c in flight, at speed

called divergence speed, where the elasticity of lifting surface plays an essential role in

the instability[6]

Flutter

Buffeting

Dynamic

Response
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Figure 3: Divergence. Source[7]

2.1.2 Flutter
Is defined as a dynamic instability of flight vehicle associated with the
interaction of aerodynamic, elastic, and inertial forces.[7]

At some critical speed, known as the flutter speed, the structure sustains
oscillations following some initial disturbance. Below this speed the oscillations are
damped, whereas above it one of the modes becomes negatively damped and (often

violent) unstable oscillations occur,[7]

Unless some form of nonlinearity (not considered in detail here) bounds the
motion. Flutter can take various forms involving different pairs of interacting modes,
e.g. wing bending/torsion, wing torsion/control surface, wing/engine, etc.[4] wing

bending/torsion mode which is taken into account.

2.1.3 Torsion and Bending Wing Flutter

This type of flutter occurs when wing bending and torsion mode are coupled.
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Figure 4: Wing Flutter. Source [4]
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Figure 5: Torsion Frequency Vs Bending Frequency. Source [7]

Flutter occurs at Velocity at which torsion frequency equal the bending

frequency.[7]

The characteristic behavior of a typical mode that undergoes flutter instability

under varying airflow speeds U is shown in Figures 6,7and 8[8]
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2.2 Fluid Structure Interaction
Fluid-Structure Interaction (FSI) analysis is an example of a Multiphysics
problem where the interaction between two different physics phenomena, done in

separate analyses, is taken into account.[9]

From the perspective of the Mechanical application, an FSI analysis consists of
performing a structural or thermal analysis in the application, with some of the loads
(forces or temperatures, for example) coming from a corresponding fluid analysis or
previous CFD analysis. In turn, the results of the mechanical analysis may be used as

loads in a fluids analysis. [9]

The interaction between the two analyses typically takes place at the boundaries
that the mechanical model shares with the fluids model. These boundaries of interaction
are collectively called the fluid-structure interface. It is at this interface where the

results of one analysis are passed to the other analysis as loads.[9]



For one specific Multiphysics problem, the structural thermal-stress analysis, an
FSI analysis is not always required. If the thermal capabilities of the Mechanical
application are sufficient to determine a proper thermal solution, an FSI approach (using
separate applications for separate analyses) is not required and the thermal-stress

analysis can be done entirely within the Mechanical application.[9]

In the case where the thermal solution requires the specialized capabilities of a
CFD analysis, the structural thermal-stress analysis is done using the FSI approach. The
CFD analysis is done first, then the calculated temperatures at the fluid-structure
interface are applied as loads in the subsequent mechanical analysis.[9]

Typical applications of FSI include:

e Biomedical: drug delivery pumps, intravenous catheters, elastic artery modeling
for stent design.

e Aerospace: airfoil flutter and turbine engines.

e Automotive: under-the-hood cooling, HVAC heating/cooling, and heat
exchangers.

e Fluid handling: valves, fuel injection components, and pressure regulators.

e Civil engineering: wind and fluid loading of structures.

e Electronics: component cooling.

The Mechanical application supports two types of Fluid-Structure Interaction one-
way transfer and two-way transfer.[9]

2.2.1 One-way FSI

In a one-way transfer FSI analysis, the CFD analysis results (forces,
temperatures, convection loads, or heat flows) at the fluid-structure interface are
transferred to the mechanical model and applied as loads. The subsequently calculated
displacements or temperatures at the interface are not transferred back to the CFD
analysis.[9]

10
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One-way transfer is appropriate when displacements and temperatures
differentials calculated in the Mechanical application are not large enough to have a

significant impact on the fluid analysis.[9]
There are four supported applications of a one-way FSI analysis:

e Pressure results from a CFD analysis are input as applied forces in a structural
analysis at the fluid-structure interface.

e Temperature results from a heat transfer CFD analysis are input as body loads
in a structural analysis to determine the thermally induced displacement and
stresses (thermal-stress analysis).

e Convections from a heat transfer CFD analysis are input as convection
boundary conditions (film coefficients and bulk temperatures) in a thermal
analysis at the fluid-structure interface.

e Temperatures or heat flows from a heat transfer CFD analysis are input as
temperature or heat flow boundary conditions in a thermal analysis at the fluid-

structure interface.[9]

2.2.2 Two-way FSI

In a two-way transfer FSI analysis, the CFD analysis results (forces,
temperatures, heat flows, or heat transfer coefficients and near wall temperatures) at the
fluid-structure interface are transferred to the mechanical model and applied as loads.
Within the same analysis, the subsequently calculated displacements, temperatures, or

heat flows at the fluid-structure interface are transferred back to the CFD analysis.[9]

Two-way transfer is appropriate when displacements and temperature
differentials calculated in the Mechanical application are large enough to have a

significant impact on the fluid analysis.[9]

Because of the two-way interaction between the two analyses, the analyses are
looped through repeatedly until overall equilibrium is reached between the Mechanical

application solution and CFD solution.[9]

Two-way FSl is supported between Mechanical and Fluent and Mechanical and
CEX. In either case, you set up the static or transient structural portion of the analysis

11



in the Mechanical application, including defining one or more fluid-structure interface
boundary conditions. Continuing the analysis in Fluent or CFX, and view the structural

results in the Mechanical application.[9]

C.bibin was studied the flutter phenomena of aircraft wing modeled by CATIA
at different dynamic condition, ultimate condition was assumed at subsonic cruise
speed then study both the structural deformation and flow distribution over wing. The
boundary condition was taken from CFD and from this inputs the FEA will solve the
structural deformation and stress distribution, in addition to using fluent software to get
pressure distribution results. The results have been accurate when it compared with

structural result.[10]. But these results can be more accurate by using system coupling.

Later Modeling of the wing of HALE UAV- Morphing Wing (swept& upswept)
in CATIA then analyzed for the aerodynamic under the given flight conditions. The
pressure distribution resulted from the Fluent (flow) analysis is then applied as a

structural load over the wing in ANSYS.

The results are then plotted using MATLAB. As Mahindra Kumar doing that
for analyzing the wing flutter, the result of stress have been within the elastic

region.[11]

But, if this wing has structural parts, it will give real results, also its better to
use ANSYS for plotting the results for more accuracy and must use another method to

evaluate the result

2.3 SAFAT 03

SAFATO03 is light aircraft for basic pilot training, glider tow and proficiency
flight. It is completely metal aircraft with two seats, low wing aircraft with seats one
along second, tricycle with fixed landing gears, with contemporary pilotage’s,

navigation’s and communication’s equipment's.[12]

12



2.3.1 Specifications

Table 1: SAFAT 03 specifications. source[12]

ESTIMATED WEIGHTS

Maximum Takeoff Weight 1080 kg
Empty Weight 543 kg
FLIGHT CHARACTERISTICS

Range 800 km
Maximum Speed 215 km/h
Length of takeoff field 268 m
Length of landing field 350 m
Service Ceiling 4000 m
Cruise Speed 185 km/h
Rate of Climb (with 0° flap) 4.6 m/sec

Engine Type

LYCOMING 10-360-B1F with power 180
hp. Propeller: HARTZELL HC-C2Y-
-1BF/F7666A

Chord Length

1.61895m

Semi Span Length

3.3266 m

13
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Figure 9: SAFAT 03

2.3.2 SAFAT 03 Wing Structure
Cantilever, rectangular, with main and aux wing spar, rips skin and the
integral fuel cell located between them. With NACA 65,415 [13]

Table 2: Materials used in wing

Spars, Strangers Aluminum alloy 7075-T6
Skin, Ribs Aluminum alloy 2024-T3

14



Table 3: Material Physical properties

Aluminum alloy 7075-T6

Aluminum alloy 2024-T3

Modulus of elasticity 71.7GPa 73.7GPa
Shear Modulus 26.9GPa 28GPa
Poison Ratio 0.3 0.3
Ultimate Tensile Strength | 572MPa 483MPa
Tensile Yield Strength 503MPa 345MPa
Density 2.81g/cc 2.78g/cc

15




Chapter Three: Calculation

This chapter is deal with calculations of flutter and divergence speeds analytically
and numerically but also take the geometry drawing and its details (such as meshing)

in account.

3.1 CATIA drawing

The wing was drawn by CATIA software, this wing consists of 11 ribs,2 spars

(main and front), 8 stringers and skin

Figure 10 is to demonstrate rear rib

v rip 9.igs:2]
ENOVIAVSVPM File  Edit  View  |nsert  Jools  Window  Help

RS UIEE R e BASY nEenQAALAT0EE 'S '8 & o0 L N8 %E  Z.
i :
=

Select an object or a command

Figure 10: Rear Rib

And the figure 11 demonstrates tip rib
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Figure 11: Tip Rib

First the airfoil was imported from dotdat file to CATIA through EXCEL, then
determine the dimensions of this part as sketch, after that convert it to solid by web in
aerospace sheet metal design option, then surface flange added to it. After that circular
section cut out from rib by cut out option with adding flange to it. Then stamp was

added to rib surface by surface stamp option.

Finally, joggle added to flange edges by joggle option. And the previous process

used to other ribs.

Then the mid rib drawn as shown in figure 12

3.igs]
ENOVIAVSVPM _File  Edit  View  lnsert  Jools

SlmEie

Ja B,

1Q93R AT

ke

P08

kR fege o m @ E e R AL BIT R EE 3 S A8 w | oo@ L T 5 -

Figure 12: Middle Rib
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Then the nose rib was drawn as shown in figure 13
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Figure 13: Nose Rib

After that the stringers was drawn as shown in figure 14 below

Bl X
x

Edit View Inset JTools Window Help

@ |

A
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% PartBody
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Figure 14: Stringer
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First, “L” section was drawn and apply pad to it, then the spar was drawn as shown in

figure 15.

IAVSVPM File  Edit View Inset Tools Window Help

Nl
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Figure 15: Main Spar

First, the “I” section was drawn and applying pad to it with adding flange for
both top and bottom face, then cut out circular section from main spar with adding
flange to each circular sections, then the piece between nose rib and spar was drawn as

shown in figure 16

E jew Insert  Tools  Window  Help
™ Product]

NBE8 ) a0 e BA wEHesQAsA06EE S 288 @ 00 B0 R Za

Select an object or a command [ =i e

% m Q) E] ENG  &5TPM

Figure 16: Piece between Nose Rib and Spar
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Then all structural items were assembled in one structure as shown in figure 17

n :
BJ st File  Edit  View nset  TJools  Analyze  Window  Help
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Figure 17: Wing draw without skin

These parts or items were assembled together by offset constrain to demonstrate
the spacing between ribs, after that by using quick constrain to connect the surface of

the part together. Also manipulation used to move the parts throw and around all axis.
Finally, remove option used to remove the intersection between the parts

lastly, figure 18 is to show wing structure with skin

B CATIA V5 - [assemply1.CATProduct] =
Bd stet  File Edt View Inset Tools Anshze  Window  Help
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Figure 18: Wing draw with skin
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Finally, the skin of entire wing structure was drawn by import the airfoil from
dotdat file to CATIA through EXCEL, then extrude it by using pad option.

After that the edge of the extruded airfoil was projected to offset it by value of

thickness of airfoil then extrude it.

Finally, subtract them from other

3.2 ANSYS Workbench

/4" dddddddddddddd - Workbench

Fie View Toods Unts Extensons Help

Project

econnect (@) Refresh Project # Update Project
BRERER 7roject schematic

r View All / Customize. .

Figure 19: ANSYS Workbench

The geometry (domain and wing structure) was entered into geometry part then
branch from geometry part to Fluid flow (fluent) part was connected and transient
structural part and branch from setup of fluid Flow(fluent) to setup of system coupling

in addition to branch from setup of transient structural to setup of system coupling.

The wing structure at fluid flow(fluent) part suppressed but at transient structural

part the domain was suppressed.

3.3 CFD setup

The domain of wing was drawn and subtracted the wing from it as shown in figure
20, this domain is drawn to be suitable to FLUENT.
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B A Fluid Flow (Fluent) - DesignModeler
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Figure 20: Wing draw with domain

Table 4: Domain Specifications

Surface Area 2.411e+009 mm?2
Volume 7.9992e+012 mm3

Meshing to that domain was ruined by the following specifications
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Fi B: Fluid Flow (Fluent) - Meshing [ANSYS ICEM CFD]
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Figure 21: Meshing the domain

Table 5: Meshed Domain Specifications

Min size of 17.22 mm
Elements
Max size of 3453.3 mm

Elements
Growth rate 1.4

No. of Nodes 6486 nodes

No. of Elements 33268 elements

Average skewness 0.283

Then the setup of the fluent was adjusted as shown in figure 22
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Figure 22: FLUENT Solution

The type of solver is pressure based and time is transient
Then the velocity of inlet selected, firstly substitute the velocity was substituted as
20% more than dive velocity (Vy;y). This (Vgive) IS Obtained from equation

Vit = 14 % Vepgise-eeevenneennn. 6

Then the velocity was selected at inlet as

Then dynamic mesh was ruined with smoothing mesh method
After that smoothness selected method as diffusion
With diffusion parameter 2

Then create that dynamic mesh with wing as zone type system coupling

# I J) El ene 250PM

Mesh (Time=0.0000e+00) Now 05, 2016
ANSYS Fluent Release 16.0 (3d, phns, lam, ransient)

"

The type of scheme selected in pressure velocity coupling in solution method as simple

Then the calculation ruined by following parameters

24



Table 6: FLUENT inputs

Input Speed 1.2*Vygiv

No. of Time step 50 steps
Time Step Size 0.01s
Veruise 51.4m/s
Viiv 71.94 m/s

Diffusion Parameter 2

Then the materials of wings were added as shown in table 8

Table 7: Materials used in wing

Spars, Strangers Aluminum alloy 7075-T6
Skin, Ribs Aluminum alloy 2024-T3

Then mesh ruined to wing (with suppression the domain)
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Figure 23: Meshing the wing

the smoothness was adjusted as medium, in addition to transition as fast
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Table 8: Mesh Output

Min Edge Length 2.5842e-002 mm
No. of nodes 510797 nodes
No. of elements 252510 elements
Min Skewness 9.8228e-002

On the other hand, fluid solid interface set as skin and fixed support as the root.
Then two data transfer was created to satisfy the two-way concept
For first data transfer

At source fluid structure interaction selected as participant, wing of domain as

region.

And force as variable, at target transient structure selected as participant, fluid solid

interface as region and force as variable.
For second data transfer

Then opposite the participant and region in the second data transfer, increment
displacement as variable and displacement as variable

Table 9: System Coupling Inputs

Time Step 0.01s

Iteration 5 iterations

Finally, running the solution

3.4 Analytical calculation

Flutter speed and divergence speed calculated.

Flutter speed is obtained from MATLAB code, but the divergence speed is obtained

from equations.

26



3.4.1 Divergence speed

GJ 2
Vdivergence = \/2 * opca * (:—L) ......................... 8
Where
T
(€ B 9
] G/L

The value of GJ was obtained from ANSY'S software by given value of torque,

that give angle of twist with given value of length.

3.4.2 Flutter speed
This speed was obtained from the following MATLAB code in appendix A

In MATLAB code there is some parameters (kappa frequency and theta frequency) we

calculated from following equations

Wp = V;h ..................... 10
wg = ‘I‘—g ...................... 1
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Chapter four: Reslts and discussion

The flutter is obtained from MATLAB code that presented in APPENDEX A[4]

First, the kappa frequency was calculated from equation 10, Secondly the theta

frequency was calculated from equation 11.

Finally, flutter can be obtained by substituting the all parameter.

Table 10: Values of frequencies and Flutter speed

Kappa Frequency 104.03 rad/s
Theta Frequency 488.24 rad/s
Flutter Speed 94.7 m/s
600 T T T
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Figure 24: Flutter Curve (Frequency vs Airspeed)

This curve is representing the frequency vs airspeed; from the above curve the

linearity variation of damping ratio with air speed.
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The flutter speed is indicated corresponding to damping ratio equal to 18.89%
The current density corresponds to current altitude.
Then applying theoretical equations to calculate divergence speed

Table 11: divergence equation parameters and divergence speed

Torsion Stiffness 58877.876 N.m?

(e) or (the space between elastic center and

aerodynamic center) 0.243m
Density 0.817 kg/m?3
Divergence speed 119.4 m/s

This results are very acceptable because the flutter speed always lesser than divergence

speed generally.
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Chapter five: Conclusion, Recommendation

5.1 Conclusion

This project dealt with the application of the concept of fluid structure interaction
for the estimation of flutter speed utilizing ANSYS workbench. The problem had been
setup in ANSYS environment, but due to the limitation of computation hardware
(computer) the problem solution still a problem.

Another way to estimate the divergence and flutter speeds is to use Galerkin
approach for energy, that used as a verification method and MATLAB code used to
estimate the flutter frequency and speed. The obtained results showed that the flutter
occurred at 94.7m/s. where the dive speed is m/s, which satisfy the regulations. Where
the divergence speed calculated and found 119.4m/s.

Hence, the analytical calculations of flutter and divergence speeds has been
satisfied, but the numerical solution and examine of wing deformation by ANSYS is
not satisfied because it requires high performance requirements and the wing structure
is very complicated also it consists a lot of details so availability of supercomputer is

very important.

5.2 Recommendation

We strongly recommended to continue the work, this need to explore ANSYS

more and to simplify the wing internal structural component.

Also to validate the obtained results utilizing NASTRAN PATRAN as a tool
because it consists of special branch of aeroelasticity analysis.

5.3 Future work
Use experimental analysis in order to obtain flutter and divergence speeds to

validate the results from the computational and analytical methods.
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Appendix A
% Flutter Chapter BO4 Appendix

% Sets up the aeroelastic matrices for binary aeroelastic model,

% performs eigenvalue solution at desired speeds and determines the frequencies
% and damping ratios

% plots V_omega and VV_g trends

% and plots flutter conic solution

% Initialize variables

clear; clf

% System parameters

s = 3.3266; % semi span

¢ =1.618985; % chord

m = 39.04/(3.3266*1.618985); % unit mass / area of wing

kappa_freq =104.03; % flapping freq in Hz

theta_freq = 231.239; % pitch freq in Hz

xcm = 0.5*c; % position of centre of mass from nose

xf = 0.4*c; % position of flexural axis from nose

e = xf- 0.25*c; % eccentricity between flexural axis and aerocentre (1/4 chord)
velstart = 1; % lowest velocity

velend = 1000; % maximum velocity

velinc =0.1; % velocity increment

a =6.85; % 2D lift curve slope

rho = .817; % air densit



Mthetadot = -1.2; % unsteady aero damping term

M = (m*c”"2 - 2*m*c*xcm)/(2*xcm); % leading edge mass term
damping_Y_N =1; % =1 if damping included =0 if not included
if damping_Y_N ==

% structural proportional damping inclusion C = alpha * M + beta * K
% then two fregs and damps must be defined

% set dampings to zero for no structural damping

z1 =0.0; % critical damping at first frequency

z2 = 0.0; % critical damping at second frequency

w1l = 2*2*pi; % first frequency

w2 = 14*2*pi; % second frequency

alpha = 2*w1*w2*(-z2*w1l + z1*w2)/ (wl*wl*w2*w2);

beta = 2*(z2*w2-z1*w1) / (w2*w2 - wl*wl);

end

% Set up system matrices

% Inertia matrix

all=(m*s"3*c)/3 + M*s"3/3; % | kappa

a22= m*s*(c"3/3 - c*c*xf + xf*xf*c) + M*(xf"2*s); % | theta
al2 = m*s*s/2*(c*c/2 - c*xf) - M*xf*s"2/2; %I kappa theta
a2l =alz;

A=[all,al2;a21,a22];

% Structural stiffness matrix

k1 = (kappa_freg*pi*2)"2*all; % k kappa heave stiffness
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k2 = (theta_freq*pi*2)"2*a22; % k theta pitch stiffness

E =[k1 0; 0 k2];

icount = 0;

for V = velstart:velinc:velend % loop for different velocities
icount = icount +1,

if damping_Y_N == 0; % damping matrices

C =10,0; 0,0]; % =0 if damping not included

else % =1 if damping included

C =rho*V*[c*s"3*a/6,0;-c"2*s"2*e*a/4,-c"3*s*Mthetadot/8] +alpha*A + beta*E;
% Aero and structural damping

end

K = (rho*V"2*[0,c*s"2*a/4; 0,-c"2*s*e*a/2])+[k1,0; 0,k2]; % aero / structural

stiffness

Mat = [[0,0; 0,0],eye(2); -A\K,-A\C]; % set up 1st order eigenvalue solution matrix
lambda = eig(Mat); % eigenvalue solution

% Natural frequencies and damping ratios

forjj=1:4

im(jj) = imag(lambda(jj));

re(jj) = real(lambda(jj));

freq(jj,icount) = sqrt(re(jj)*2+im(jj)"2);

damp(jj,icount) = -100*re(jj)/freq(jj,icount);

freq(jj,icount) = freq(jj,icount)/(2*pi); % convert frequency to hertz

end
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Vel(icount) =V,

end

% Plot frequencies and dampings vs speed
figure(1)

subplot(2,1,1); plot(Vel,freq,'k’);

vaxis = axis; xlim = ([0 vaxis(2)]);

xlabel ('Air Speed (m/s) *); ylabel ('Freq (Hz)"); grid
subplot(2,1,2);

plot(Vel,damp,'k’)

xlim = ([0 vaxis(2)]); axis([xlim ylim]);

xlabel ('Air Speed (m/s) *); ylabel (‘Damping Ratio (%)"); grid
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