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ABSTRACT 

     Interaction of radiation plays an important role in determining the optical 

properties of matter. In this work amplification of electromagnetic waves 

depends on the relation between the external with internal field .It is shown 

that amplification exists when the external and internal field are in phase. 

When the two field are normal to each  other no amplification exists . While 

absorption happens when the two fields apposes each other. The internally 

generated electric field due to the interaction of matter with electromagnetic 

field is usually described by polarization. An alternative way based on the 

notion of internal field and current density is introduced here. The 

mathematical model is based on RCL circuits and effective values and 

complex representations. It shows that the external  field induces internal field 

perpendicular to it ,beside two current components ,One parallel and the other 

is perpendicular to it .The material act as a resister and an inductor connected 

in series.  
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خلصالمست  

تفاعل الموج الكهرومغنطيسي مع المادة دوراً مهماً في تحديد الخواص يلعب 

ى علالموجات الكهرومغنطيسية تضخيم إعتماد وضح  هذا العملالضوئية للمادة 

. وهذا يدل علي ان التضخيم يكون حاضرا علاقة المجال الداخلي بالخارجي

 تعامدانم لانفي طور واحد . وعندما يكون المجا لانمتي ما كان المجا

 يعاكسلبعضهما البعض ينعدم التضخيم . بينما يحدث الامتصاص عندما 

ى لتفاعل المادة مع والمجال الكهربي المتولد يعزبعضهما البعض. لانالمجا

وعادة يوصف بالاستقطاب. ويمكن استبداله بمفهوم  المجال الكهرومغنطيسي

تحتوي يعتمد على دائرة ج الرياضي ذالنمو. وكثافة التيارالمجال الداخلي 

. وهذا يوضح أن المجال والقيم الفعالة والتمثيل المركب( ملفو مكثفو مقاومة)

الخارجي يولد مجال داخلي حثي معامداً له بجانب مركبتين للتيار أحداهما 

موصلتين لمادة كمقاومة ومحاثة . حيث تعمل اهموازية والاخرى عمودية علي

     التوالي. على
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Chapter one 

Introduction 

1.1  Electromagnetic  

Electromagnetic field results from as collation of electric and magnetic fields 

perpendicular to each other. The electromagnetic field 𝐸𝐹 is used widely in 

many applications. One of these very interesting one is Laser. Laser is the 

light amplification by the stimulated emission of radiation, which serves to 

explain most but not all the critical physical interactions that occur within a 

laser generation cavity [1]. The first actual continuously generating laser was 

attributed to Javan and colleagues in 1961 that used a mixture  of helium and 

neon. One of the most practical lasers used in oral and maxilla facial surgeries 

was developed by Patel in 1964[2]. Laser is a highly intensive light All light 

consist of waves traveling through space, the color of the light is determined 

by the frequency of these waves .The beam of a laser is a very pure red color 

– it consists of an extremely narrow range of wave lengths within the red 

portion of the spectrum, it is said to be nearly “monochromatic “ or nearly 

“single –colored”. Near monochromatic is a unique property of laser light 

meaning that consists of light of almost a single wavelength [3] . Four 

functional elements are necessary in lasers to produce coherent light by 

stimulated emission of radiation Active medium, Excitation mechanism, 

Feedback mechanism, and output coupler. The type of lasers it is solid 

crystalline and glass lasers, gas lasers, liquid bye lasers, and semiconductor 

lasers (diode laser).   The importance of emission and absorption comes from 

wide variety of applications light source and laser technologies depend on 

The emission phenomena [4] Laser is now widely used in computer to store 

information in CD̒s. it is also used in telecommunication to transmit 

information and calls through optical fibers. Laser is also useful in medicine 

especially in surgery.[5,6]. As well as it is importance in industry. Absorption 
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process plays an important role in the efficiency of solar cells . solar cells are 

considered as an alternative to petroleum energy which is expensive and 

causes pollution.  Despite the wide variety of application of laser in modern 

technology, its theoretical background suffers from noticeable setbacks. One 

of the most  problem is related to the theory of amplification which needs to 

be promoted to relate amplification to more physical parameters,[7,8,9,10] so 

as to produce new laser types. The subject matter of electronics may be 

divided into two broad categories: the application of physical properties of 

materials in the development of electronic control devices and the utilization 

of electronic control devices in circuit applications. [11,12] the interaction of 

light with matter has aroused interest – at least among poets, painters, and 

physicists.[13] This interest stems not so much from our curiosity about 

materials themselves, but rather to applications, should it be the exploration of 

distant stars, the burning of ships of ill intent, or the discovery of new paint 

pigments.[14,15] Optics, as defined is concerned with the interaction of 

electromagnetic radiation with matter. The theoretical description of the 

phenomena and the analysis of the experimental results are based on 

Maxwell’s equations and on their solution for time-varying electric and 

magnetic fields. The optical properties of solids have been the subject of 

extensive treatise. [16] This interaction induces internal field and polarization. 

The interaction of conductors, dielectrics, ionic crystals and field shows 

different characteristics.  

1.2  Research problem                                                           

  The research problem is related to the fact that there is no direct relationship 

between the internal and external field and processes of interaction of 

electromagnetic field with the bulk matter.   

1.3 Aim of The work 

 The aim of this work  is to study the nature  of internal field , complex 

conductivity on the basis of polarization and current density relation with 

electric field. And also study new amplifications conditions. 
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1.4  Literature review                                                                 

     The relation between optical properties and the electrical properties of 

matter are discussed by many authors,[17,18,19,20,21,22] some of them like 

the paper of R.Abd Elhai, Using the tight binding approximation in deriving 

the quantum critical temperature superconductivity equation.[23] In some 

papers and works, like the work H.G.I.Hamza,in which he uses  the resistance 

depending on the magnetic and electric susceptibility to derive the expression  

of the critical temperature.[24] And  Lutfi Mohammed Abdalgadir, with 

others researcher derive Schrodinger quantum equation from classical and 

quantum Harmonic Oscillator.[25] K.G.Elgaylani,derive of Klein-Gordon 

equation from  Maxwell’s electric wave equation.[26], and  Almahdi.A.Alhaj, 

studies the relation between  the amplification of the electromagnetic 

radiation  and the phase between the external electric field intensity(𝐸)and the 

velocity of the electron and its relation to amplification.[27] Mohammed 

Ismail derive new Maxwell's equation which accounts for the effect of 

diffusion current an them.[28]   

1.5 Research methodology 

The methodology is as follows 

1. find the electric conductivity of Direct and alternating current :  

2. find the  amplification conditions on the basis of phase relation to the 

electric susceptibility  

3. The Relation between current and electric field in terms of  a conductivity 

4. find the  Electric conductivity by using RLC circuits Relations. 

5. find the Electric conductivity by using Effective values.  

6. find the Electric conductivity using complex Representation 

1.6 presentation of the thesis 

The thesis consists of five chapters. Chapter1 is the introduction. Chapter2 is 

concerned  with the theoretical background and chapter3 is devoted for laser 

and light amplification. Literature review is in chapter4,while the contribution 

is in chapter5.  
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Chapter two 

Theoretical Background 

Introduction 2.1 

This chapter concerned Background with Maxwell's equation and optical 

properties of solids  and Polarization and susceptibility and The RLC Circuit. 

Maxwell's Equations 2.2  

Until  Maxwell's work , the known basic laws of electricity and 

magnetism were. Gauss law applied to electrostatics [29,30] 

   𝛻. 𝐷 = 𝜌                                                                                            (2.2.1)                                            

corresponding result for magnetic field yields 

 𝛻. 𝐵 = 0                                                                                              (2.2.2)   

faraday's law of induction 

 𝛻𝑋𝐸 = −
∂B

∂t
                                                                                      (2.2.3)  

Amperes law for magneto motive force 

𝛻𝑋𝐻 = j                                                                                               (2.2.4)  

The first there of these are general equations and are valid for static 

as well as dynamic fields The fourth equation was derived From 

steady state observations and we have to examine its validity for 

time varying fields taking the divergence of both sides of (4) we 

have   

𝛻.(𝛻𝑋𝐻) = 𝛻. j = 0 
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𝛻. j +
∂𝜌

∂t
= 0 

𝛻. j = −
∂𝜌

∂t
= −

∂(𝛻. 𝐷)

∂t
= 𝛻. (

−∂𝐷

∂t
) 

Maxwell replaced j in Amperes' law by  j +
∂𝐷

∂t
   with this 

modification Amperes law take the from  

𝛻𝑋𝐻 =  j +
∂𝐷

∂t
                                                                                   (2.2.5)     

The four equations whish .the field E,D,B,H satisfy everywhere are  

𝛻.𝐷 = 𝜌 

𝛻. 𝐵 = 0 

𝛻𝑋𝐸 +
∂B

∂t
= 0 

𝛻𝑋𝐻 =  j +
∂𝐷

∂t
                                                                                  (2.2.6)   

These equations are the  fundamental equations of electromagnetic 

field and are known as Maxell's equations. 

2.3 optical properties of solids 

 we mean those properties that relate to the interaction of solids with 

electromagnetic radiation whose wavelength is in the infrared to the 

ultraviolet. There are several aspects to optical properties of solids 

and looking at the subject in full generality can often lead to complexity, 

whereas treating each part as a separate case often leads to confusion. We will 

try to keep to a middle ground between these, by emphasizing only one topic 

(absorption) but treating it in some detail. Although we will concentrate on 

absorption, we will mention other optical phenomena including emission, 
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reflection, scattering, and photoemission of electrons. There are several 

processes involved in absorption, but the main five seem to be:[31,32] (a) 

Absorption due to electronic transitions between bands that involve 

wavelengths typically less than ten micrometers. (b) Absorption by excitons 

at wavelengths with energies just below the absorption edge due to valence–

conduction band transitions (in semiconductors). (c) Excitation and ionization 

of impurities that involve wavelengths ranging fromabout one micrometer to 

one thousand micrometers. d) Excitation of lattice vibrations (optical 

phonons) in polar solids for which the usual wavelengths are ten to fifty 

micrometers. (e) Free-carrier absorption for frequencies up to the plasma 

edge. Free-carrier absorption is particularly important in metals, of course. By 

gathering data about any optical process, we can gain information about the 

inner workings of the solid. 

Polarization and susceptibility 2.4 

When a dielectric is  placed in an external electric field E the 

positive and negative charge are displaced from their equilibrium 

positions by very small distance (less than an atomic diameter) 

throughout the volume of dielectric this results in the formation of a 

large number of dipoles each having some dipole moment in the 

direction of the field .The material is said to be polarized with 

polarization P defined as the dipole moment per unit volume of the  

material.[33,34] 

 

Fig(2.4.1) A dielectric slap placed in an electric field 𝐸0  produced by fixed charges 

(encircled) outside the slap. The internal polarization field 𝐸p is assumed to be due to 

fictitious bound. Charges at the surface of the slap and is directed apposite to 𝐸0 
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As shown in  the effect of polarization is to reduce the magnitude of external 

𝐸0 field  thus the magnitude of resultant field is less than the applied field 

𝐸 < 𝐸0  in vector notation we may write  

(2.4.1)            𝐸 = 𝐸0 + 𝐸P   

The field𝐸P  is called the polarization field as it tends to oppose the applied 

field 𝐸0  within the material for ordinary electric fields ,the polarization 𝑃 is 

proportional to the Macroscopic field 𝐸 . In (𝑆𝐼) units, it is expressed as 

𝑃 = 𝜀0𝑥𝑒𝐸                                                                                              (2.4.2) 

Where 𝜀0 is the permittivity of free space and 𝑥𝑒 is the electric susceptibility 

Thus ,except for a constant factor ,the electric susceptibility is a measure of 

the polarization  produced in the material per unit resultant  electric field. 

The total dipole moment is defined as 

𝑃 = 𝛴𝑞𝑛𝑟𝑛  ,                                                                                                 (2.4.3) 

Where 𝑟𝑛 is the position vector of the charge 𝑞𝑛The electric field at a point 𝑟 

from a point of moment 𝑃 is given by 

𝐸(𝑟) =
3(𝑃. 𝑟)𝑟 − 𝑟2𝑃

4𝜋𝜖0𝑟
5

                                                                              (2.4.4) 

One contribution to the electric field inside a body is that of the applied 

electric field , defined as  

 𝐸0≡ field produced by fixed charges external to the body. 

 The other contribution to the electric field is the sum of the fields of all 

charges that constitute the body. If the body is neutral, the contribution to the 

average field may be expressed in terms of the fields of atomic dipoles of the 

form of (2.4.4). We define the average electric field 𝐸(𝑟0) as the average field 

over the volume of the crystal cell that contains the lattice point 𝑟0 :  

𝐸(𝑟0) =
1

𝑉𝑐
∫𝑑𝑉𝑒(𝑟)  , 
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Where 𝑒(𝑟) is the microscopic electric field at the point 𝑟 . The field 𝐸 is a 

much smoother quantity than the field 𝑒.   

The electric field due to these charge has a simple from at any point between 

the plates, but comfortably removed from their edges. By Gauss's  law  

𝐸1 = −
|𝜎|

𝜖0
= −

𝑃

𝜖0
                                                                                          (2.4.5) 

We add 𝐸1 to the applied field to obtain the total macroscopic field inside the 

slab: 

𝐸 = 𝐸0 + 𝐸1 = 𝐸0 −
𝑃

𝜖0
𝑧̂                                                                               (2.4.6)   

Where 𝑧̂ is the unit vector normal to the plane of the slab. 𝐸1 ≡  Field of the 

surface charge density 𝑛̂. 𝑃  on the boundary of a simply-connected body. 

This field is smoothly –varying in space inside and outside the body and 

satisfies the Maxwell equation for the macroscopic field 𝐸 . The reason  is 

𝐸1a smooth function when viewed on an atomic scale is that we have replaced 

the discrete lattice of dipoles 𝑃𝑖 with the smoothed polarization𝑃.[35] 

2.4.1 Dielectric constant and polarizability  

The dielectric constant 𝜖 of an isotropic medium relative to vacuum is defined 

as  

𝜖 =
𝜖0𝐸 + 𝑃

𝜖0𝐸
= 1 + 𝝌                                                                                (2.4.7) 

The susceptibility is related to the dielectric constant by 

𝜒 =
𝑃

𝜖0𝐸
= 𝜖 − 1                                                                                          (2.4.8) 

Here is the macroscopic electric field. In a noncubic crystal the dielectric 

response is described by the components of the susceptibility tensor or of the 

dielectric constant tensor: 

𝑃𝜇 = 𝜒𝜇𝑣𝜖0𝐸𝑣  ;        𝜖𝜇𝑣 = 1 + 𝜒𝜇𝑣       
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2.4.2 Sources of  polarizability 

The net polarizability  of dielectric material results mainaly from the 

following there types of contributions:[36] 

Ionic polarizability                                    

Dipolar polarizability 

Electronic polarizability                            

The extent to which a particular polarizability contributes depends on the  

nature of the dielectric and the frequency of the applied electric field . 

2.4.3 Ionic polarizability  

The ionic polarizability arises due to displacement of charged ion relative to 

other ions in a solid.[37] 

Consider the equation of motion of two particle of masses 𝑚1 and 𝑚2 

respectively. 

𝑚1𝑢
..
𝑛+1 = −𝑐(2𝑢𝑛+1 − 𝑢𝑛 − 𝑢𝑛+2) + 𝑒𝐸                                                  (2.4.9) 

𝑚2𝑢
.
𝑛 = −𝑐(2𝑢𝑛 − 𝑢𝑛−1 − 𝑢𝑛+1) − 𝑒𝐸                                                    (2.4.10)  

Consider the solution  

𝑢𝑛 = 𝑢0𝑒
−𝑖𝑤𝑡𝑒−𝑖𝑘𝑛𝑎 

𝑢𝑛+1 = 𝑢0𝑒
−𝑖𝑤𝑡𝑒−𝑖𝑘(𝑛+1)𝑎                         

𝑢𝑛+1 = 𝑢+ 

𝑢+ = 𝑢0+𝑒−𝑖𝑤𝑡                                              

𝑢𝑛 = 𝑢𝑛+2 = 𝑢− 

𝑢− = 𝑢0−𝑒−𝑖𝑤𝑡                                                                                                  (2.4.11) 

Inserting equation(2.4.11)in(2.4.9) and (2.4.10) yields 

−𝑚1𝜔
2𝑢+ = −2𝑐[𝑢+ − 𝑢−] + 𝑒𝐸              

−𝑚2𝜔
2𝑢− = −2𝑐[𝑢− − 𝑢+] − 𝑒𝐸       

= 2𝑐[𝑢+ − 𝑢−] − 𝑒𝐸                                                                                      (2.4.12) 

Adding the two equations yields 

−𝑚1𝜔
2𝑢+−𝑚2𝜔

2𝑢− = 0 

𝑢− =
−𝑚1

𝑚2
𝑢+                                                                                                    (2.4.13) 

Thus inserting (2.4.13)in(2.4.12) yields 
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−𝑚1𝜔
2𝑢+ = −2𝑐[1 +

𝑚1

𝑚2
]𝑢+ + 𝑒𝐸                                                           (2.4.14)  

But the electric field intensity is given by 

𝐸 = 𝐸0𝑒
−𝑖𝑤𝑡                                                                                                      (2.4.15) 

substituting(2.4.15) and (2.4.11)in (2.4.14) yields  

 

𝑚1 [2𝐶 (
1

𝑚1
+

1

𝑚2
) − 𝜔2] 𝑢0+ = 𝑒𝐸0  (2.4.16) 

𝑚1[𝜔0
2 − 𝜔2]𝑢0+ = 𝑒𝐸0 

𝑢0+ =
𝑒

𝑚1[𝜔0
2 − 𝜔2]

𝐸0                                                                                (2.4.17) 

 

There fore 

𝑢+ =
𝑒

𝑚1[𝜔0
2 − 𝜔2]

𝐸                                                                                    (2.4.18) 

 

Similarly inserting equation(2.4.12)in(2.4.13) yields 

 

−𝑚2𝜔
2𝑢− = −2𝑐[

𝑚2

𝑚1
+ 1]𝑢− − 𝑒𝐸− 

𝑚2 [2𝐶 (
1

𝑚1
+

1

𝑚2
) − 𝜔2] 𝑢− = −𝑒𝐸− 

𝑚2[𝜔0
2 − 𝜔2]𝑢− = −𝑒𝐸− 

𝑢− =
−𝑒

𝑚2[𝜔0
2 − 𝜔2]

𝐸                                                                                  (2.4.19) 

Thus the ionic polarization is given by 

 

𝑃𝑖 = 𝑒𝑛𝜒 = 𝑒𝑛(𝑢+ + 𝑢−)                                                                               (2.4.20) 

𝑃𝑖 =
𝑒2𝑛

(𝜔0
2 − 𝜔2)

(
1

𝑚1
+

1

𝑚2
)𝐸 = 𝜒𝑖𝐸      (2.4.21) 

Thus the ionic susceptibility is given by 

𝜒𝑖 =
𝑒2𝑛(𝑚1 + 𝑚2)

𝑚1𝑚2(𝜔0
2 − 𝜔2)

                                                                                  (2.4.22) 

2.4.4 Dipolar polarizability 

A molecule, such as 𝐻2𝑜, having a permanent dipole moment is called a 

dipolar or polar molecule and a substance comprising such molecule is called 

a dipolar substance, the dipolar polarizability is the property of dipolar 

substance. In the absence of an external electric field , the dipoles have 
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random orientations and there is no net polarization, However, when the field 

is present the dipoles orient themselves along the field and produce 

orientational or dipolar polarizability the thermal agitation of molecules tends 

to counteract the ordering effect of the electric field and equilibrium state is 

reached where in the different dipolar make all possible angles varying from 

zero to 𝛑 radians with the field direction, the potential energy of such a 

molecule of dipole moment  P oriented at an angle 𝛳 with the field direction 

fig(2.4.2) is given by[38]     

𝑉 = −𝑃. 𝐸 = −𝑝𝐸𝑐𝑜𝑠𝛳                                                                        (2.4.23)   

Where𝛳 is the angle between the moment and the field direction. Then 

𝑃 = 𝑁𝑝〈𝑐𝑜𝑠𝛳〉,                                                                                                (2.4.24)   

Where 𝑁 is the concentration of molecules and 〈𝑐𝑜𝑠𝛳〉  is the thermal 

average. According to the Boltzmann distribution law the relative probability 

of finding a molecule in an element of solid angle 𝑑𝛺 is proportional to 

exp(−
v

𝑘𝐵𝑇
), and 

〈𝑐𝑜𝑠𝛳〉 =
ʃ𝑒−𝛽𝑉𝑐𝑜𝑠𝛳𝑑𝛺

ʃ𝑒−𝛽𝑉𝑑𝛺
                                                                                (2.4.24) 

Where 𝛽 ≡
1

𝑘𝐵𝑇
 . The integration is to be carried out over all solid angle, so 

that  

〈𝑐𝑜𝑠𝛳〉 =
∫ 2π𝑠𝑖𝑛𝛳𝑐𝑜𝑠𝛳𝑒𝛽𝑝𝐸𝑐𝑜𝑠𝛳𝑑𝛳

𝜋

0

∫ 2𝜋𝑠𝑖𝑛𝛳𝑒𝛽𝑝𝐸𝑐𝑜𝑠𝛳𝑑𝛳
𝜋

0

                                                      (2.4.25) 

We let 𝑠 ≡ 𝑐𝑜𝑠𝛳 and 𝑥 ≡
pE

𝑘𝐵𝑇
, so that  

〈𝑐𝑜𝑠𝛳〉 =
∫ 𝑒𝑠𝑥𝑠𝑑𝑠

1

−1

∫ 𝑒𝑠𝑥𝑑𝑠
1

−1

=
𝑑

𝑑𝑥
𝑙𝑜𝑔∫ 𝑒𝑠𝑥𝑑𝑠

1

−1

 

=
𝑑

𝑑𝑥
𝑙𝑜𝑔(𝑒𝑥 − 𝑒−𝑧) −

𝑑

𝑑𝑥
𝑙𝑜𝑔𝑥 = 𝑐𝑡𝑛ℎ𝑥 −

1

𝑥
≡ 𝐿(𝑥) 

In the limit of 𝑥 ≪ 1, we have 

𝑐𝑡𝑛ℎ𝑥 =
1

𝑥
+

𝑥

3
+

𝑥3

45
+ ⋯ ; 𝐿(𝑥) ≅

𝑥

3
=

pE

3𝑘𝐵𝑇
,                                         (2.4.26) 
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And the polarization is 

𝑃 = 𝑁𝑝〈𝑐𝑜𝑠𝛳〉 =
pE

3𝑘𝐵𝑇
                                                                                  (2.4.27) 

The Dipolar polarizability per molecule is given by 

𝑃𝑑 =
𝑝2E

3𝑘𝐵𝑇
                                                                                                        (2.4.28)  

 

 

Fig (2.4.2) : A molecule dipole moment P placed in on electric field E 

2.4.5 Electronic polarizability  

The  electronic polarizability arises due to displacment  of the electron cloud 

of an atom relative to its nucleus in the presence of an applied electric field  as 

shown in fig (2) the polarization as well as the dielectric constant of a material 

at optical frequencies results mainly from the electronic polarizability.[39]  

The equation of motion in the local electric field is 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑚𝜔0

2𝑥 = −𝑒𝐸0𝐿𝑒
−𝑖𝜔𝑡                                                                    (2.4.29)  

When one assumes the solution 

𝑥 = 𝑥0𝑒
−𝑖𝜔𝑡                                                                                           (2.4.30)   

−𝑚𝜔2𝑥 + 𝑚𝜔0
2𝑥 = −𝑒𝐸0𝐿𝑒

−𝑖𝜔𝑡 = −𝑒𝐸𝐿  

        𝑥 =
𝑒

𝑚(𝜔0
2 − 𝜔2)

𝐸𝐿 

Therefore the polarization is given by  

𝑃𝑒 =
𝑛𝑧𝑒2 𝑚⁄

𝜔0
2 − 𝜔2

𝐸 = 𝜒𝑒  𝐸                                                                                (2.4.31) 

𝑃e=Electronic polarizability 
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Thus the electric susceptibility is given by 

𝜒𝑒 =
𝑛𝑧𝑒2

𝜀0m(𝜔0
2 − 𝜔2)

                                                                                     (2.4.32) 

 

             Un polarized atom                                       polarized atom 

 

Fig (2.4.3)Electronic polarization. In the presence of external field 

 

The total polarizability of a dielectric is given as a sum of electronic ,ionic, 

and dipolar terms, i.e. 

𝑃 = 𝑃e + 𝑃i + 𝑃d                                                                                   (2.4.33) 

2.5  The RLC Circuit 

    The RLC circuit is the electrical circuit consisting of a resistor of resistance 

R, a coil of inductance L, a capacitor of capacitance C and a voltage source 

arranged in series. If the charge 

 

on the capacitor is Q and the current flowing in the circuit is 𝐼, the voltage 

across 𝑅, 𝐿 and C  are RI , L 
𝑑𝐼

𝑑𝑡
 and  

𝑄

𝑐
  respectively. By the Kirchhoff’s law 

that says that the voltage between any two points has to be independent of the 

path used to travel between the two points[40] 

LI′(t) +  RI(t) + 
1

𝐶
 Q(t) =  V(t)                                                                     (2.5.1)  
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Assuming that 𝑅, 𝐿, 𝐶 and 𝑉 are known, this is still one differential equation in 

two unknowns, 𝐼 and 𝑄. However the two unknowns are related by 𝐼(𝑡)  =

 
𝑑𝑄

𝑑𝑡
 (𝑡) so that 

𝐿𝑄′′(𝑡) +  𝑅𝑄′(𝑡) + 
1

𝐶
 𝑄(𝑡) =  𝑉(𝑡)                                                            (2.5.2) 

or, differentiating with respect to t and then subbing in 
𝑑𝑄

𝑑𝑡
 (𝑡)  =  𝐼(𝑡), 

𝐿𝐼′′(𝑡) +  𝑅𝐼′(𝑡) + 
1

𝐶
 𝐼(𝑡) =  𝑉′(𝑡)                  (2.5.3) 

For an ac voltage source, choosing the origin of time so that V(0) = 0, 𝑉(𝑡)  =

 𝐸0 𝑠𝑖𝑛(𝜔𝑡) 

and the differential equation becomes 

𝐿𝐼′′(𝑡) +  𝑅𝐼′(𝑡) + 
1

𝐶
 𝐼(𝑡) =  𝜔𝐸0 𝑐𝑜𝑠(𝜔𝑡)                                                (2.5.4) 

The General Solution 

We first guess one solution of (2.5.4) by trying 

𝐼𝑃(𝑡) =  𝐴 𝑠𝑖𝑛(𝜔𝑡 −  𝜙)                                                                                   (2.5.5) 

with the amplitude A and phase 𝜙 to be determined. That is, we are guessing 

that the circuit responds to an oscillating applied 

voltage with a current that oscillates with the same rate. For 𝐼𝑝(𝑡) to be a 

solution, we need 

𝐿𝐼′′𝑝 (𝑡)  +  𝑅𝐼𝑝′ (𝑡)  +
1

𝐶
 𝐼𝑝(𝑡)  =  𝜔𝐸0 𝑐𝑜𝑠(𝜔𝑡)                                     (2.5.6) 

−𝐿𝜔2𝐴 𝑠𝑖𝑛(𝜔𝑡 −  𝜙)  +  𝑅𝜔𝐴 𝑐𝑜𝑠(𝜔𝑡 −  𝜙)  +
1

𝐶
 𝐴 𝑠𝑖𝑛(𝜔𝑡 −  𝜙)  

=  𝜔𝐸0 𝑐𝑜𝑠(𝜔𝑡) 

=  𝜔𝐸0 𝑐𝑜𝑠(𝜔𝑡 −  𝜙 +  𝜙) 

and hence 

(
1

𝐶
 −  𝐿𝜔2)  𝐴 𝑠𝑖𝑛(𝜔𝑡 −  𝜙)  +  𝑅𝜔𝐴 𝑐𝑜𝑠(𝜔𝑡 −  𝜙)  

=  𝜔𝐸0 𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜔𝑡 −  𝜙)  −  𝜔𝐸0 𝑠𝑖𝑛(𝜙) 𝑠𝑖𝑛(𝜔𝑡 −  𝜙) 
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Matching coefficients of 𝑠𝑖𝑛(𝜔𝑡 −  𝜙) and 𝑐𝑜𝑠(𝜔𝑡 −  𝜙) on the left and 

right hand sides gives 

𝐿𝜔2  −  
1

𝐶
  𝐴 =  𝜔𝐸0 𝑠𝑖𝑛(𝜙)                                                                           (2.5.7) 

𝑅𝜔𝐴 =  𝜔𝐸0 𝑐𝑜𝑠(𝜙)                                                                                         (2.5.8) 

It is now easy to solve for A and ϕ 

 𝑡𝑎𝑛(𝜙)  =  
𝜔𝐿 − 

1

𝜔𝐶

𝑅
 =⇒    𝜙 =  𝑡𝑎𝑛 −1( 

𝜔𝐿 − 
1

𝜔𝐶

𝑅
  ) 

 𝐸0 = √(𝜔𝐿 − 
1

𝜔𝐶
)
2

  +  𝑅2     𝐴 

=⇒  𝐴 =
𝐸0

√( 𝜔𝐿 − 
1

𝜔𝐶
)
2
  +  𝑅2 

                                                                 (2.5.9) 

Naturally, different input frequencies ω give different output amplitudes A. 

Here is a graph of A against ω, with all other parameters held fixed. 

Now back to finding the general solution. Note that subtracting (2.5.6) from 

(2.5.4) gives 

𝐿(𝐼 −  𝐼𝑝) ′′(𝑡)  +  𝑅(𝐼 −  𝐼𝑝) ′(𝑡)  + 
1

𝐶
 (𝐼 −  𝐼𝑝)(𝑡)  =  0 

That is, any solution of (2.5.4) differs from Ip(t) by a solution of 

𝐿𝐼′′(𝑡)  +  𝑅𝐼′(𝑡)  + 
1

𝐶
 𝐼(𝑡)  =  0                                                                 (2.5.10) 

This is called the complementary homogeneous equation for (2.5.4). 
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Chapter three 

      Laser and light Amplification    

3.1   Introduction:    

  Laser plays an important role in ours day life. Thus it is important study The 

laser properties . The stimulated  emission beside spontaneously emission   

processes are studied here . The laser production is also discussed. 

3.2   Emission and Absorption of light: 

    The atom now a day is considered as a system consisting of a central, 

positively charged nucleus surrounded by a number of  negatively charged 

electrons revolving around the nucleus in certain orbits .Each orbit describes 

energy level .The energy is characterized by a principal quantum number 

denoted by n . The nearest level to the nucleus is called the ground state and 

its principal quantum number is equal to one. Each type of atom contains a 

certain amount of energy levels. If the atom contains additional energy states 

over and above its ground state it can emit or absorb photons .The absorption 

takes place when an electron makes a transition from a lower to a higher 

energy state , with a photon being absorbed in this process. In the emissions 

process the electrons move from a higher  state to a lower one . A photon with 

energy equal to the energy difference between the two levels  E1  and  E2  is 

released or absorbed in the emission or absorption process .The frequency 𝑓 

of  the photon is related to the energy difference  between the two levels  E1  

and  E2   according  to the  relation [41,42] 

E2- E1 = ℎ𝑓                                                                                                      (3.2.1) 

Where  ℎ  is Planck’s constant. 
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3.2.1   Absorption process  

Absorption  is the process by which a photon is absorbed by atom, the photon 

of frequency 𝑓  passes through an atomic system with energy levels E1 and  

E2  can absorb this photon if     

ℎ𝑓  =𝐸1- 𝐸2                                                                                                        (3.2.2) 

As a result  an electron leave  𝐸1  to  𝐸2  . The population of the lower 

level 𝐸1 will be depleted at a rate proportional both , i.e.  

     
𝑑𝑁1˳

𝑑𝑡
  = - β12 ρ𝑁1                                                                                          (3.2.3) 

Where β12  is a constant of  proportionality  called Einstein coefficient. The 

produced β12 ρ can be interpreted as .The probability per unit frequency that  

transitions  are induced by the effect of the field. [43,44]  

 

Fig (3.2.1) The atomic absorption 

 3.2.2 spontaneous emission process  

   spontaneous emission is the process by which an electron                    

spontaneously ״ without any outside influence, decays from a higher energy 

level to a lower one after an electron has been raised to the upper level by 

absorption. The population of the upper level2 decays   spontaneously to the 

lower level1  at a rate proportional to the upper level population  𝑁2 ,i.e. [45] 

𝑑𝑁2˳

𝑑𝑡
  = - 𝐴21 𝑁2                                                                                                   (3.2.4) 

Where   𝐴21  is a constant of proportionality  
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Fig (3.2.2) shown the spontaneous emission of  light 

3.2.3 Stimulated emission process  

The process is described by the Einstein coefficient  𝐸2  which gives the 

probability per unit energy density of  the radiation field that electrons from 

the excited state  𝐸2  are forced to return to its ground state 𝐸1 is a photon of 

energy ℎ𝑓  = 𝐸2- 𝐸1   is incident on the atom .The rate of  transition of 

electron from  𝐸2  to  𝐸1 is given by[46]  

𝑑𝑁2˳

𝑑𝑡
  = - β21𝑁2ρ                                                                                                   (3.2.5) 

The emitted and incident photon have the same frequency, direction and are 

in phase. 

Stimulated emission is one of the fundamental processes that led to the 

development of laser. This is because   the coherence of the incident and 

emitted photon increases the light intensity . 

 

Fig (3.2.3) the stimulated Emission of light 

3.3  Amplification of light and population inversion 

If a light of intensity 𝐼0      
is incident on a medium, it’s intensity in active 

medium increases. [48,49]The intensity, I, of light at a distance Z inside the 

medium is given by 
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𝐼 = ˳ 𝐼0      
𝑒𝛽𝑧                                                                                                           (3.3.1) 

Where   β is called amplification factor. 

If a light of radiation density ρ is incident on a medium the rate of electrons 

leaving level E1 is given byβ12 𝑁1, While  the rate of electron coming to E1 

from E2    by spontaneous and stimulated  emission  are given byA12𝑁2  and     

β21𝑁2     respectively.[50] Thus the rate of change of electrons in  level1 𝐸1  

is given by    

               
𝑑𝑁1˳

𝑑𝑡
  = (−β12𝑁1+    β21𝑁2)ρ   + A12 𝑁2                                       (3.3.2) 

 Similarly the rate of change of electrons in  level2𝐸2 is given by    

                
𝑑𝑁2˳

𝑑𝑡
  = (β12 𝑁1  -    β21𝑁2)ρ   -  A21 𝑁1                                       (3.3.3) 

At equilibrium the number of atom 𝑁2 in level  E2 is constant. Thus the rate  

of change of  𝑁2  vanishes, 1.e  

𝑑𝑁2˳

𝑑𝑡
  = 0    

Thus a equation (3.3.3)   becomes   

          (β12 𝑁1  -    β21𝑁2)ρ   -  A21 𝑁1   = 0    

If β12 =  β21  = β, Then 

         ρ β( 𝑁1  -   𝑁2) = A21 𝑁1    

On the other hand the rate of electron transition  

-  
𝑑𝑁2˳

𝑑𝑡
𝐴∆𝑧 

from level2 is equal to the rate of photon emission   

∆𝐼˳

ℎ𝑓
A 

Through the area A,1.e  
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  -   
𝑑𝑁2˳

𝑑𝑡
 A∆Z  =  

∆𝐼˳

ℎ𝑓
A                                                                                         (3.3.4) 

By reviewing of equation (3.3.4) and neglecting the process of  spontaneous 

emission one gets 

     ( β12 𝑁1  -   β21𝑁2)ρ A∆Z = 
∆𝐼˳

ℎ𝑓
A 

         But since     I= ρc, then, 

(β12 𝑁1  -    β21𝑁2) 
𝐼𝐴∆𝑍˳

𝐶
 = 

∆𝐼˳

ℎ𝑓
A                                                                       (3.3.5) 

          Bearing in mind that  

         β =  β12 = β21       

∆𝐼˳

∆𝑍
= 

𝑑𝐼 ˳

𝑑𝑧
 = β( 𝑁2  -   𝑁1)

ℎ𝑓𝐼˳

𝐶
                                                                             (3.3.6) 

Hence  

∫
𝑑𝐼˳

𝐼
 = β( 𝑁2  -   𝑁1)

ℎ𝑓˳

𝐶
∫𝑑𝑍;                                                                           (33.7) 

𝐿𝑛𝐼 =β( 𝑁2  -   𝑁1)
ℎ𝑓˳

𝐶
Z+ Co 

I =  I0𝑒
β( 𝑁2  −   𝑁1)

ℎ𝑓˳

𝐶
Z
                                                                                        (3.3.8) 

Comparing (2.3.1)  with (2.3.8)  one finds that the amplification coefficient β 

is given by  

      β = β( 𝑁2  -   𝑁1)
ℎ𝑓˳

𝐶
                                                                                  (3.3.9) 

Thus according to equation   (2.3.8)    I increases when the radiation enters 

more and more inside the medium when  

            β( 𝑁2  -   𝑁1)
ℎ𝑓˳

𝐶
 > o         

                     this requires that  
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 𝑁2   >   𝑁1                                                         (3.3.10)                          

Which means that the population 𝑁2of the upper level𝐸2  should be more than 

the population 𝑁1 of lower level 𝐸1 . this condition is called population 

inversion. 

3.4  properties of laser 

Laser is a highly intensive light All light consist of waves traveling through 

space, the color of the light is determined by the frequency of these waves 

.The beam of a laser is a very pure red color – it consists of an extremely 

narrow range of wave lengths within the red portion of the spectrum, it is said 

to be nearly “monochromatic “ or nearly “single –colored”. Near 

monochromatic is a unique property of laser light meaning that consists of 

light of almost a single wavelength [51]  

3.4.1  Directionality  

Devices such as automobile head lights and spot lights contain optical 

systems that collimate the emitted light, such that it leave the device in a 

directional beam.However, the beam produced always (diverges spreads). 

Rapidly parallel beams of directional light, which we refer to, as collimated 

light cannot be produced.  All light beams eventually spread  (diverge) as they 

wave through the space. But laser light is more highly collimated, that is it is 

more directional than the light from any conventional source and thus les 

divergent. In some applications optical system are employed with laser to 

improve the directional of the output beam. One system of this type can 

produce a spot that can reach the moon.[53] 

3.4.2  Coherence  

Coherence is the most fundamental (property) of laser light and can 

distinguish it from the light from other sources. Thus a laser may be defined, 

as a source of coherent light. The importance of coherence cannot be 
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understood until other concepts have been introduced. But evidence of the 

coherence of laser light can be observed easily. 

3.5  Elements of a laser    

Four functional elements are necessary in lasers to produce coherent light by 

stimulated emission of radiation.[54] 

3.5.1 Active medium  

The active medium is a collection of atoms or molecules that can be excited to 

a state of inverted population that is, where more atoms or molecules are in an 

excited state than is some lower energy state. The two state chosen for the 

lasing transition must possess certain characteristics. First atoms must remain 

in the upper lasing level for a relatively long time to provide more emitted 

photons by stimulated emission than by spontaneous emission in other lower 

energy levels, more photons will be lost by spontaneous emission- giving off 

randomly directed out of phase light .Photons are coherent in the process of 

stimulated emission. The active medium may be gas, a liquid , a solid material 

,or a junction between two  slabs of semiconductor materials.  

3.5.2 Excitation mechanism  

The excitation mechanism is a source of energy that excites or “pumps” the 

atoms in the active medium from a lower to a higher energy state in order to 

produce  a population inversion. In gas lasers and semiconductors lasers the 

excitation mechanism usually consists of an electrical current flow through 

the active medium.   Solid and liquid lasers most often employ optical pumps, 

for example, in a ruby laser the chromium atoms inside   the ruby crystal may 

be pumped into an excited state by means of a powerful burst of light from a 

flash lamp containing xenon gas. 
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3.5.3 Feedback mechanism  

The feedback mechanism usually consists of two mirrors, one at each and of 

the active medium. Aligned in such a manner that they are highly parallel to 

each other. 

3.5.4 Output coupler 

The output coupler allows apportion of the laser light contained between the 

two mirrors to leave the laser in the form of a beam. One of the mirrors of the 

feedback mechanism, allows some light to be transmitted through it at the 

laser wavelength. The fraction of the coherent to beam is less than one percent 

for some helium neon lasers more than 80 percent for many solid state lasers.  
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Chapter four 

Literature review 

4.1 Introduction:    

   The relation between optical properties and the electrical properties of 

matter are discussed by many author's,[55,56,57,58] some of them use the 

tight binding approximation in deriving the quantum critical temperature 

superconductivity equation. In some papers and works, Resistance Depending 

on the Magnetic and Electric Susceptibility was used derive the Equation of 

the critical temperature. Major attempts to study the nature of electric field 

inside matter and its interaction with individual atoms are exhibited in this 

review. 

4.2 Using the tight binding approximation in deriving the 

quantum critical temperature superconductivity equation 

In Rasha paper, she used plasma equation to derive Schrödinger temperature 

dependent equation according to plasma equation, a fluid of particles of mass 

m, number density 𝑛, velocity 𝑣, force 𝐹 and pressure P can be described by 

the equation[59]   

                                 𝑚𝑛 [
𝜕𝑣

𝜕𝑡
+ 𝑣. ∇𝑣] = 𝐹 − ∇𝑃                                      (4.2.1) 

The force 𝐹 can be defined as 

𝐹 = −𝑛∇𝑉 

Where 𝑉 is the potential of one particle. In one dimension  

𝑚𝑛 [
𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑥
] = −∇𝑉 − ∇𝑃 = −𝑛

𝑑𝑉

𝑑𝑥
−

𝑑𝑃

𝑑𝑥
                    

𝑑𝑣 =
𝜕𝑣

𝜕𝑡
𝑑𝑡 +

𝜕𝑣

𝜕𝑥
𝑑𝑥            
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𝑑𝑣

𝑑𝑡
=

𝜕𝑣

𝜕𝑡
+

𝜕𝑣

𝜕𝑥

𝑑𝑥

𝑑𝑡
=

𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑥
                     

Thus according to Equation (4.2.I), in one dimension  

                                                𝑚𝑛
𝑑𝑣

𝑑𝑡
= −𝑛

𝑑𝑣

𝑑𝑥
−

𝑑𝑝

𝑑𝑥
                                 (4.2.2)    

Schrodinger equation can be derived by using Anew expression of energy can 

be obtained from the plasma equation to do this one can use (4.2.2) to get  

𝑚𝑛
𝑑𝑣

𝑑𝑥

𝑑𝑥

𝑑𝑡
= −𝑛

𝑑𝑉

𝑑𝑥
−

𝑑𝑃

𝑑𝑥
 

Multiplying both sides by dx and integrating yields  

𝑚𝑛 ∫𝑣𝑑𝑣 = −𝑛 ∫𝑑𝑉 − ∫𝑑𝑃 

Considering the pressure to be p 𝑃 = 𝑦𝑛𝑘𝑇 in general, thus  

𝑚𝑛
𝑣2

2
= −𝑛𝑉 − 𝑃 = −𝑛𝑉 − 𝛾𝑛𝑘𝑇 

Hence                               𝑚
𝑣2

2
= +𝑉 + 𝛾𝑘𝑇 = 𝑐𝑜𝑛𝑠𝑡 

This constant conserved quantity looks like the ordinary energy beside the 

ordinary thermal energy term 𝑦𝑘𝑇 

                                       𝐸 =
𝑃2

2𝑚
+ 𝑉 + 𝛾𝑘𝑇                                            (4.2.3) 

To find Schrödinger equation for it, consider the ordinary wave function  

𝜓 = 𝐴𝑒𝑖/ℏ(𝑃𝑥−𝐸𝑡) 

Differentiating both sides by 𝑡 and 𝑥 yields  

𝜕𝜓

𝜕𝑡
= −

𝑖

ℏ
𝐸𝜓 ⟹ 𝑖ℏ

𝜕𝜓

𝜕𝑡
= 𝐸𝜓 

                                 
𝜕2𝜓

𝜕𝑥2
= −

𝑃2

ℏ2
𝜓 ⟹ −ℏ2∇2𝜓 = 𝑃2𝜓                          (4.2.4) 
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Multiplying both sides of Equation (4.2.3) by yields 𝜓 yields 

𝐸𝜓 =
𝑃2

2𝑚
𝜓 + 𝑉𝜓 + 𝑉𝜓 + 𝛾𝑘𝑇𝜓 

Substituting Equation (4.2.4), one gets  

𝑖ℏ
𝜕𝜓

𝜕𝑡
= −

ℏ2

2𝑚
∇2𝜓 + 𝑉𝜓 + 𝛾𝑘𝑇𝜓 

This equation represents Schrödinger equation when thermal motion is 

considered. The solution for time free potential can be  

𝜓 = 𝑒−𝑖/ℏ(𝐸𝑡)𝑢 ⟹
𝜕𝜓

𝜕𝑡
= −

𝑖

ℏ
𝐸𝜓    𝐸𝜓 = −

ℏ2

2𝑚
∇2𝜓 + 𝑉𝜓 + 𝛾𝑘𝑇𝜓 

The time independent Schrödinger equation thus takes the form  

𝐸𝑢 = −
ℏ2

2𝑚
∇2𝑢 + 𝑉𝑢 + 𝛾𝑘𝑇𝑢                                                                 (4.2.5) 

For constant potential, the solution can be  

𝑢 = 𝑒𝑖𝑘𝑥, 𝑉 = 𝑉0 

Inserting this solution in Equation (4.2.5) yields  

𝐸𝑢 =
ℏ2𝑘2

2𝑚
𝑢 + 𝑉0𝑢 + 𝛾𝑘𝑇𝑢           𝐸 =

ℏ2𝑘2

2𝑚
𝑢 + 𝑉0 + 𝛾𝑘𝑇 

    If one set the kinetic term to be 𝐸0 =
ℏ2𝑘2

2𝑚
, one can thus write the energy in 

the form                𝐸 = 𝐸0 + 𝑉0 + 𝛾𝑘𝑇                            (4.2.6)                    

This quantum energy expression involves a thermal term beside kinetic and 

potential term. The resistance, 𝑧, per unit length (𝐿 = 1) per unit area (𝐴 = 1) 

can be found from the ordinary definition of, 𝑧.  

The resistance z is defined to be the ratio of the potential, 𝑢, to the current per 

Lülit area, 𝐽, 𝑖. 𝑒.         

     𝑧 =
𝑢

𝐼
=

𝑢

𝐽𝐴
=

𝑢

𝐽
=

𝑢

𝑛𝑒𝑣
=

𝑚𝑢

𝑛𝑒𝑝
                                                                (4.2.7)  
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With n and e standing for the free hole or electron density and charge 

respectively, while p represents the momentum of electron of mass m, where 

𝑃 = 𝑚𝑣 

      This resistance (it actually stands for resistivity) can be found by using the 

laws of quantum mechanics for a free charge which are responsible for 

generating the electric current, where the wave function takes the form[60] 

                                                𝜓 = 𝐴𝑒𝑖𝑘𝑡                                                 (4.2.8)  

This selection of 𝜓 comes from the fact that the resistance property comes 

from the motion of the free charges. The potential 𝑢 is related to the 

Hamiltonian 𝐻 through the relation                   𝐻 = 𝑒𝑢 

Thus for freely moving charge one gets:  

𝐻̂ = 𝑒𝑢 =
1

2
𝑚𝑣2 =

𝑃̂2

2𝑚
= −

ℏ2

2𝑚
∇2 

In view of Equation (4.2.8) and according to the correspondence principle 

𝑉takes the form                                 𝑢 =
〈𝐻̂〉

𝑒
=

∫ 𝜓̅𝐻̂𝜓𝑑𝑥

𝑒
=

∫ 𝜓̅𝑃̂2𝜓𝑑𝑥

2𝑚𝑒
 

                                =
ℏ2𝑘2

2𝑚𝑒
∫ 𝜓̅𝜓𝑑𝑥 =

ℏ2𝑘2

2𝑚𝑒
                                              (4.2.9) 

While 𝑃 becomes  

                              𝑃 = 〈𝑃̂〉 = ∫ 𝜓̅𝑃̂𝜓𝑑𝑥 = ℏ𝐾 ∫ 𝜓̅𝜓𝑑𝑟 = ℏ𝐾             (4.2.10)  

Thus inserting Equations (4.2.9), (4.2.10) in (4.2.7) one obtains  

𝑍 =
𝑚ℏ2𝑘2

2𝑚𝑒2ℏ𝑘𝑛
=

ℏ𝑘

2𝑒2𝑛
= (

ℎ

2𝜋
) (

2𝜋

𝜆
)

1

2𝑒2𝑛
 

                          𝑧 =
ℎ

2𝜆𝑒2𝑛
=

ℎ𝑓

2𝑓𝜆𝑒2𝑛
=

ℎ𝑓

2𝑒2𝑛𝑣
=

ℎ𝑓√𝑢𝜀

2𝑒2𝑛

ℏ𝜔√𝑢𝜀

2𝑒2𝑛
                  (4.2.11)  

Where the expression 𝑓𝜆 for velocity is found by as suming charges to be 

waves, then following the electromagnetic theory (EMT), the speed of the 



28 
 

waves is affected by electric permittivity 𝜀 and magnetic permeability through 

the relation  

                         𝑣 = 𝜆𝑓 =
1

√𝜇𝜀
                                                                 (4.2.12) 

where the effect of medium changes the wave length, 𝜆, while the frequency, 

𝑓, is unchanged. Thus assuming the charge density, 𝑛, to be constant, the only 

change of, 𝑍, can be caused by 𝜇 and 𝜀. It is also important to note that, in 

superconductors, the current can flow without the aid of deriving potential 𝑢. 

the role of 𝑢 is confined only in enabling electrons to gain kinetic energy 

through the relations  

                                        𝑒𝑢 =
1

2
𝑚𝑣2 = 𝑘                                             (4.2.13) 

where this potential can be applied between any two arbitrary points m the 

superconductors then remove it. The role of resistive force is neglected here 

as done in deriving London equations.  

      The expression for 𝑍 can also be found by inserting Equation (4.2.13) in 

to get  

𝑍 =
𝑢

𝐽
=

𝑢

𝑛𝑒𝑣
=

𝑚𝑣2

2𝑛𝑒2𝑣
=

𝑚𝑣

2𝑛𝑒2

𝑃

2𝑛𝑒2
=

ℎ

2𝜆𝑛𝑒2
 

          𝑍 =
ℎ𝑓

2𝜆𝑓𝑒2𝑛
=

ℎ𝑓

2𝑒2𝑚
=

ℎ𝑓√𝜇𝜀

2𝑒2𝑛

ℏɷ√𝜇𝜀𝑜(1+𝒳)

2𝑒2𝑛
                                      (4.2.14) 

It is important to note that this quantum resistance expression resembles the 

ones found by Tsui  where one uses De Broglie hypothesis 𝑖. 𝑒. 𝑃 = ℎ/𝜆.  

Consider holes in a conductor having resistive force 𝐹𝑚, magnetic force 𝐹𝑚 

and pressure force 𝐹𝑝, beside the electric force 𝐹𝑒, the equation motion then 

becomes [61]:           𝐹 = 𝐹𝑟 + 𝐹𝑚+𝐹𝑒 − 𝐹𝑝 

where            𝐹𝑝 = −∇𝑃, 𝐹𝑟 = −
𝑚𝑣

𝜏
, 𝐹𝑚 = 𝐵𝑒𝑣, 𝐹𝑒 = 𝑒𝐸 = 𝑒𝐸𝑜𝑒

𝑖𝑜𝑥 
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𝑃, 𝑥, 𝑚, 𝑣, 𝜏 , 𝐵, 𝑒 and 𝐸 stands for the pressure, displacement, mass, 

velocity, relaxation time, magnetic flux density, electron charge and electric 

field intensity respectively. Thus the equation of motion takes the form  

                             𝑚𝑥̈ = −
𝑚𝑣

𝜏
+ 𝐵𝑒𝑣 + 𝑒𝐸 − ∇P                                  (4.2.15)  

The solution of this equation can be suggested to be:  

𝑥 = 𝑥0𝑒
𝑖𝑜𝑥    𝑣 = 𝑣0𝑒

𝑖𝑜𝑥    𝐸 = 𝐸0𝑒
𝑖𝑜𝑥                                                 (4.2.16)                             

Inserting (4.2.16) in (4.2.15) yields 

                    −𝑚ɷ2𝑥 = (−
𝑚𝑣0

𝐸0𝜏
+

𝐵𝑒𝑣0

𝐸0
−

𝑘𝑡∇𝑛

𝐸0
+ 𝑒)𝐸                            (4.2.17) 

𝑥 =
(−

𝑚𝑣0

𝐸0𝜏
+

𝐵𝑒𝑣0

𝐸0
−

𝑘𝑡∇𝑛

𝐸0
− 𝑒)𝐸

𝑚ɷ2
 

This expression of x can be utilized in the formula which relates the electric 

polarization vector 𝑃 to the susceptibility 𝜒 on one hand and to the number of 

atoms 𝑁 via the following relation [62] 

𝑃 = 𝜀0 𝜒𝐸 = +𝑒𝑁𝑥                                                                                (4.2.18) 

Motivated by the important role of holes in HTSC, displacement can be 

assumed to result from the motion of holes or positive nuclear charges, thus 

inserting Equation (4.2.17) in (4.2.18) yields  

𝜀 o𝜒𝐸 = 𝑒𝑁
(−

𝑚𝑣0
𝐸0𝜏

+
𝐵𝑒𝑣0
𝐸0

−
𝑘𝑡∇𝑛

𝐸0
−𝑒)𝐸

𝑚ɷ2
 

𝜒
𝑒𝑁

𝑚ɷ2𝜀0𝐸0
(
𝑚𝑣0

𝜏
− 𝐵𝑒𝑣0 + 𝑘𝑇∇𝑛 − 𝑒𝐸0)                                                (4.2.19) 

The electric flux density assumes the following relation  

𝐷 = 𝜀𝐸 = 𝜀0𝐸 + 𝜒𝜀0𝐸(1 + 𝜒)𝐸 = 𝑃 + 𝜀0𝐸 

The electric permittivity is given by    𝜀 = 𝜀0(1 + 𝜒)                              (4.2.20)        
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The electric permittivity is thus given according to Equation (4.2.20) to be                                               

𝜀 = 𝜀0(1 + 𝜒) = 𝜀0 [1 +
𝑒𝑁

𝑚ɷ2𝐸0
(
𝑀𝑉0

𝜏
− 𝐵𝑒𝑣0 + 𝐾𝑇∇𝑛 − 𝑒𝐸0)].          (4.2.21) 

The resistance 𝑍 can be found by inserting (4.2.21) in (4.2.14) to get:  

𝑚ɷ2𝜀0𝐸0 + 𝑒𝑁 (𝐾𝑇∇𝑛 +
𝑚𝑣0

𝜏
− 𝐵𝑒𝑣0 − 𝑒𝐸0) < 0 

𝑘𝑇∇𝑛 < +𝐵𝑒𝑣0 + 𝑒𝐸0 −
𝑚ɷ2𝜀0𝐸0

𝑒𝑁
−

𝑚𝑣0

𝜏
 

𝑇 < +
𝐵𝑒𝑣0

𝑘∇𝑛
+

(𝑒 − 𝑚ɷ2𝜀0)𝐸0

𝑒𝑁𝑘∇𝑛
−

𝑚𝑣0

𝜏𝑘∇𝑛
 

    𝑧 =
ℏɷ

2𝑛𝑒2
√𝜇𝜀√1 +

𝑒𝑁

𝑚ɷ2𝜀0𝐸0
(𝑘𝑇∇𝑛 +

𝑚𝑣0

𝜏
− 𝐵𝑒𝑣0 − 𝑒𝐸0)               (4.2.22) 

𝑧 =
ℏɷ

2𝑛𝑒2
√𝜇𝜀0

√
𝑚ɷ2𝜀0𝐸0 − 𝑒𝑁 (𝑘𝑇∇𝑛 +

𝑚𝑣0

𝜏
− 𝐵𝑒𝑣0 − 𝑒𝐸0)

𝑚ɷ2𝜀0𝐸0
 

Thus the critical temperature is given by 

𝑇𝑒 =
(𝐵𝑒𝜏−𝑚)𝑣0

𝜏𝑘∇𝑛
+

(𝑒−𝑚ɷ2𝜀0)𝐸0

𝑒𝑁𝑘∇𝑛
                                                                 (4.2.23) 

If the internal field B results from 𝑁0 atoms each having a verge flux density 

𝜇𝐵 then:           𝐵 = 𝜇𝐵𝑁0                                                                        (4.2.24) 

Therefore 𝑇0 can take the form  

𝑇𝑒 =
(𝜇𝐵𝑁0𝑒𝜏−𝑚)𝑣0

𝜏𝑘∇𝑛
+

(𝑒−𝑚ɷ2𝜀0)𝐸0

𝑒𝑁𝑘∇𝑛
                                                            (4.2.25) 

In tight binding model [63] the energy of electrons in the crystal is given by  

E +2ycoska     𝜀 = 𝜀0 + 𝑎1 + 2𝑦𝑐𝑜𝑠𝑘𝑎                                                  (4.2.26) 
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where 𝜀0 is the energy in the absence of crystal field, while the other terms 

describe the effect of the crystal field. The energy 𝜀0 can split into two terms 

the kinetic part which can describe the thermal motion in the form 
𝑓0

2
𝑘𝑇 

beside the potential term −𝑉0 for atffactive force or bounded particle.  

Thus one can write            𝜀0 =
ℏ2𝑘0

2

2𝑚
+

𝑓0

2
𝑘𝑇 − 𝑉0                                 (4.2.27)   

𝐸 =
ℏ2𝑘0

2

2𝑚
+ 𝑦𝑘𝑇 + 𝑉     𝜀0 =

𝑓0

2
𝑘𝑇 − 𝑉0 − 𝛼0      𝛼0 =

ℏ2𝑘0
2

2𝑚
                                    

𝑓0 represents the degrees of freedom.  

The terms describing the effect of the crystal force are  

𝛼1 = ⟨∅𝑚|Ĥ𝑐𝑟𝑦|∅𝑚⟩,        𝑦 = ⟨∅𝐽|Ĥ𝑐𝑟𝑦|∅𝑚⟩,      𝛼 = 𝛼0 + 𝛼1            (4.2.28) 

In view of Equations (26) and (27)  

𝜀0 =
𝑓0

2
𝑘𝑇 − 𝑉0 + 𝛼 + 2𝑦𝑐𝑜𝑠𝑘𝑎                                                            (4.2.29) 

Here 𝐻𝑐𝑟𝑦 stands for the crystal force Hamiltonian part, while ∅𝑚 and ∅𝐽 the 

states of particles located at the site m and 𝑗 respectively.  

The superconductor is characterized by the existence of energy gap. This gap 

can be under stood here in two ways. If the electrons or holes are not free. 

This requires 𝐸 to negative. Thus Equations (4.2.27) and (4.2.26) needs  

𝜀 =
𝑓0

2
𝑘𝑇 − 𝑉0 + 𝛼 + 2𝑦𝑐𝑜𝑠𝑘𝑎 < 0                                                      (4.2.30) 

     Or the max value of 𝜀 where 𝑐𝑜𝑠𝑘𝑎 = −1  is less than zero, 𝑖. 𝑒.  

𝜀𝑚𝑎𝑥 =
𝑓0

2
𝑘𝑇 − 𝑉0 + 𝛼 + 2𝑦𝑐𝑜𝑠𝑘𝑎 < 0                                                (4.2.31) 

𝑓0
2

𝑘𝑇 ≤ 𝑉0 − 𝛼 + 2𝑦 

For constant attractive crystal force  
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𝐻𝑐𝑟𝑦 = −𝑉𝑐𝑟𝑦 

𝛼1 = ⟨∅𝑚|𝐻𝑐𝑟𝑦|∅𝑚⟩ = −⟨∅𝑚|𝑉𝑐𝑟𝑦|∅𝑚⟩ = −𝑉𝑐𝑟𝑦𝛿𝑚𝑚 

𝑦 = ⟨∅𝐽|−𝑉𝑐𝑟𝑦|∅𝑚⟩ = −𝑉𝑐𝑟𝑦⟨∅𝐽|∅𝑚⟩ = −𝑉𝑐𝑟𝑦𝛿𝑗𝑚=0                            (4.2.32) 

Thus                   
𝑓0

2
𝑘𝑇 ≤ 𝑉0 − 𝑎 

Thus the critical temperature is given by  

𝑓0

2
𝑘𝑇𝑐 = 𝑉0 − 𝛼                                                                                            (4.2.33) 

Substituted Equation (4.2.33) beside Equation (4.2.32) in Equation (4.2.30) 

one gets 

𝜀 =
𝑓0
2

𝑘𝑇 −
𝑓0
2

𝑘𝑇𝑐                                                                                            (4.2.34) 

   The energy ∆ s equal to the difference between zero energy in conduction 

band and the negative energy in the valence band. Thus 

∆= 0 − 𝜀
𝑓0
2

𝑘𝑇𝑐 −
𝑓0
2

𝑘𝑇 

Since this relation holds for 𝑇 < 𝑇𝑐 one can neglect 𝑇 since it is small to get  

∆= 𝜀
𝑓0
2

𝑘𝑇𝑐 

Equation (4.2.30) can also be utilized to get the forbidden energy states which 

characterizes superconductors, where 

𝑐𝑜𝑠𝑘𝑎= 
𝜀−

𝑓0
2

𝑘𝑇+𝑉0−𝛼

2𝑦
                                                                                        (4.2.35) 

The energy is forbidden when 𝑐𝑜𝑠𝑘𝑎 ≥ 1 

𝜀 −
𝑓0

2
𝑘𝑇 + 𝑉0 − 𝛼

2𝑦
≥ 1 𝜀 −

𝑓0
2

𝑘𝑇 + 𝑉0 − 𝛼 ≥ 2𝑦 
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𝑓0
2

𝑘𝑇 + 𝛼 − 𝜀 − 𝑉0 ≤ −2      
𝑓0
2

𝑘𝑇 ≤ 𝜀 + 𝑉0 − 2𝑦 − 𝛼 

Thus the critical temperature     
𝑓0

2
𝑘𝑇 ≤ 𝜀 + 𝑉0 − 2𝑦 − 𝛼 

The forbidden energy is thus related to the critical temperature through the 

relation              𝜀 −
𝑓0

2
𝑘𝑇𝑐 − 𝑉0 + 2𝑦 + 𝛼                                             (4.2.36) 

4.3 Using the Resistance Depending on the Magnetic and 

Electric Susceptibility to Derive the Equation of the critical 

temperature 

Some authors uses temperature dependent Schrödinger equation to study the 

effect of magnetic field an so. When the temperature of a conductor approach 

to the absolute zero, the friction resistance can be ignored[64], if an electron e 

is induced by an electric field 𝐸, then the force on it is given by    

𝑚
𝑑𝑣

𝑑𝑡
= 𝑒𝐸                                                                                                 (4.3.1) 

Including the position variable 𝑥 in Equation (4.3.1) it can be written as 

𝑚
𝑑𝑣

𝑑𝑥

𝑑𝑥

𝑑𝑡
= 𝑒𝐸                                                                                            (4.3.2) 

Then      ∫𝑚𝑣𝑑𝑣 = ∫𝑒𝐸𝑑𝑥                                                                      (4.3.3)                                        

According to the definition of the potential 𝑉 , we get   

𝐸 = −
𝑑𝑉

𝑑𝑥
                                                                                                  (4.3.4) 

From Equation (4.3.3)              
𝑚𝑣2

2
= 𝑒∫

𝑑𝑉

𝑑𝑥
𝑑𝑥 =                                   (4.3.5) 

Then        𝑣 =
2𝑒𝑉

𝑚𝑣
                                                                                     (4.3.6)      

While m is constant, and when the potential difference is constant, then the 

velocity 𝑣 is being also constant. Using Equation (4.3.6) and substituting the 



34 
 

value of 𝑣 in the equation of current, that given due to the electron velocity 𝑣, 

charges density 𝑛, and the area 𝐴, 𝐼 =  𝑛𝑒𝑣𝐴 , then the current 𝐼 is found to be  

𝐼 =
2𝐴𝑛𝑒2𝑉

𝑚𝑣
                                                                                                 (4.3.7) 

Then the resistance 𝑅 is given  

𝑅 =
𝑉

𝐼
=

𝑉

𝑛𝑒𝑣𝐴
=

𝑉𝑚𝑣

𝐴𝑛𝑒[2𝑉𝑒]
=

𝑚𝑣

2𝐴𝑛𝑒2
                                                             (4.3.8) 

On other hand 𝑅 can be written due to the resistivity 𝜌, the length 𝑙, and the 

crossection area as          𝑅 =
𝜌𝐿

𝐴
                                                                (4.3.9) 

Considering the electron as a wave, its velocity becomes [65]   

𝑉 =
1

√𝜇𝜀
                                                                                                             (4.3.10) 

Accordingly the resistivity is given by 

𝜌 =
𝑚

2𝑛𝑒2𝐿√𝜇𝜀
                                                                                           (4.3.11) 

If a magnetic field with a flux density 𝐵, an electric force 𝐹𝑒, besides a 

friction resistance 𝛾𝑣 , and a pressure 

force ∆𝑃 = ∇(
1

3
𝑚𝑛𝑣2)  act together, then the centripetal forces which 

balance this force is given by [66].  

𝑚𝑣0
2

𝑟
= 𝐵𝑒𝑣0 + 𝐹𝑒 − 𝛾𝑣0 −

𝑚

3
𝑣0

2∇𝑛                                                        (4.3.12) 

Where 𝑣0 is the radial velocity, while the friction force and the pressure are 

given by               𝐹𝑟 = 𝛾𝑣0,  ∇𝑃 =
1

3
𝑚𝑣2∇𝑛                                           (4.3.13) 

where 𝑦 is the friction coefficient. 

𝑚ɷ0
2𝑟 = 𝐵0𝑒ɷ0𝑟 + 𝐹𝑒 − 𝛾ɷ0𝑟

𝑚

3
ɷ0

2𝑟2∇𝑛 

when the outer magnetic field vanishes, then the radial velocity becomes 



35 
 

𝑣0=ɷ0
𝑟                                                                                                     (4.3.14) 

And       𝐹𝑒 = 𝑚ɷ0
2𝑟 + 𝐵0𝑒𝜔𝑒𝑟 +

𝑚

3
ɷ0

2𝑟2∇𝑛                                         (4.3.15) 

where 𝐵0 denotes the ineer magnetic field.  And when an outer magnetic field 

𝐵 is applied, then            

𝑚
𝑑𝑣

𝑑𝑡
= −∇𝑃 + 𝐹𝑒 + 𝐹𝑟 + 𝑒𝐵0𝑣 + 𝐵𝑒𝑣                                                  (4.3.16) 

where 𝐹𝑟 is the radial force, and 𝐹𝑚 , 𝐹𝑒 are the magnetic and the electric 

forces respectively, which are given by      

  𝐹𝐵 = 𝐵𝑒𝑣 𝑎𝑛𝑑 𝐹𝑒 = 𝑒𝐸                                                                        (4.3.17) 

The equation of motion in the presence of the outer magnetic field is given in 

the form[67] .             

  
𝑚𝑣2

𝑟
= −

1

3
𝑚𝑣2∇𝑛 + 𝐹𝑒 − 𝛾𝑣 + 𝐵0𝑒𝑣 + 𝐵𝑒𝑣                                       (4.3.18) 

where 𝑣 is the radial velocity, and while 𝑣 = ɷ𝑟 then 

𝑚𝜔2𝑟 = −
1

3
𝑚𝜔2𝑟2∇𝑛 + 𝐹𝑒 − 𝑦𝜔𝑟 + 𝐵0𝑒𝜔𝑟 + 𝐵𝑒𝜔𝑟 

= (−
1

3
𝑚𝜔2𝑟2∇𝑛 + 𝐹𝑒 − 𝑦𝜔𝑟 + 𝐵0𝑒𝜔𝑟 + 𝐵𝑒𝜔𝑟) + 𝑚𝜔0

2𝑟 − 𝐵0𝑒𝜔𝑟

+ 𝑦𝜔0𝑟 +
1

3
𝜔0

2𝑟∇𝑛                                                                   (4.3.19) 

When 𝜔 is so closed to 𝜔0then  

𝜔 → 𝜔0𝑎𝑛𝑑 𝜔 + 𝜔0 = 2𝜔0 

𝜔 − 𝜔0 = ∆𝜔 = 𝜔𝐿 

where 𝜔𝐿is Larmar frequency, substitute Equation (4.3.15) and Equation 

𝑚(𝜔2 − 𝜔0
2)𝑟 = −

1

3
𝑚(𝜔2 − 𝜔0

2)𝑟∇𝑛 − 𝑦(𝜔 − 𝜔0)𝑟 + 𝐵0𝑒(𝜔 − 𝜔0)𝑟 +

𝐵𝑒𝜔𝑟 
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𝑚[1 +
𝑟

3
∇𝑛] 𝑟(𝜔 − 𝜔0)(𝜔 + 𝜔0) = −𝑟𝑦𝜔𝐿 + 𝐵0𝑒𝜔𝐿𝑟 + 𝐵𝑒𝑤0𝑟 

𝑚[1 +
𝑟

3
∇𝑛] 𝑟(2𝜔0)𝜔𝐿 = −𝑟𝑦𝜔𝐿 + 𝐵0𝑒𝜔𝐿𝑟 + 𝐵𝑒𝑤0𝑟 

Dividing both sides by 𝜔0𝑟 we get  

[2𝑚 [1 +
𝑟

3
∇𝑛] +

𝑦

𝜔0
−

𝐵0𝑒

𝜔0
] 𝜔𝐿 = 𝐵𝑒                                                   (4.3.20) 

𝜔𝐿 =
𝑒

[[2𝑚 [1 +
𝑟

3
∇𝑛] +

𝑦

𝜔0
−

𝐵0𝑒

𝜔0
]]

𝐵 

The current for one atom with 𝑍 electrons, moving around its nucleus with a 

frequency 𝑓 is              𝑖 = +𝑍𝑒𝑓 = +
𝑍𝑒

2𝜋
𝜔𝐿                                         (4.3.21) 

where 𝑍 is the atomic number, e is the electron charge, and 𝜔𝐿is Larmar 

frequency. The magnetic torque for one atom is given by 

𝑀𝑎 = 𝑖𝐴                                                                                                  (4.3.22) 

where 𝐴 is the area surrounded by the current which is equal  

𝐴 = 𝜋𝑟𝑒
2 

And from Figure l, one get:  

𝑥 = 𝑦 = 𝑧,   𝑟2 = 𝑥2 + 𝑦2 + 𝑧2,   𝑟2 = 3𝑧2, ∴ 𝑧2 =
1

3
𝑟2 

But                  𝑟2 = 𝑧2 + 𝑟𝑒
2,   ∴ 𝑟2 =

1

3
𝑟2 + 𝑟𝑒

2  ,  𝑟𝑒
2 =

2

3
𝑟2     (4.3.23) 

So the magnetic torque for one atom 𝑀𝑎 becomes  
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Figure( 4.3.1), Magnetic torque in 𝑍directiene 

 

𝑀𝑎 =
2𝜋𝑖𝑟2

3
 

If the number of atoms per unit volume is assumed to be 𝑁 then, the magnetic 

torque for the matter is     

   𝑀 = 𝑁𝑀𝑎 =
2𝜋

3
𝑁𝑟2 𝑧𝑒𝜔𝐿

2𝜋
=

𝑁𝑧𝑒𝑟2

3
𝜔𝐿                                                  (4.3.25)                

𝑀 = +
𝑁𝑧𝑒𝑟2𝜇0

3[2𝑚[1+
𝑟

3
∇𝑛]+

𝑦

𝜔0
−

𝐵0𝑒

𝜔0
]
𝐻                                                                 (4.3.26) 

According to the definition of susceptibility 𝜒𝑚 then[68]. 

𝑀 = 𝜒𝑚𝐻                                                                                               (4.3.27)  

Comparing Equations (4.3.26) and (4.3.27) the susceptibility being 

𝜒𝑚 = +
𝑁𝑧𝑒𝑟2𝜇0𝜔0

3[2𝑚[1+
𝑟

3
∇𝑛]𝜔0+𝑦−𝐵0𝑒]

                                                                 (4.3.28) 

Then the resistivity in Equation (4.3.11) becomes 

𝜌 =
𝑚

2𝑛𝑒𝐿√𝜀0𝜇
=

𝑚

2𝑛𝑒𝐿√𝜀0𝜇
𝑁𝑧𝑒𝑟2𝜔0

3[
2𝑚
ℏ

[1+
𝑟
3
∇𝑛]

1
2
𝑘𝑇+𝑦−𝐵0𝑒]

 m  

where ℏ𝜔0 =
1

2
𝑘𝑇 denotes the photon energy. 

   The resistivity 𝜌 is imaginary, and the real resistivity vanishes when  
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3 [
2𝑚

ℏ
[1 +

𝑟

𝑚
∇𝑛]

1

2
𝑘𝑇 + 𝑦 − 𝐵0𝑒] ≤ 0    𝑜𝑟 3 [

2𝑚

ℏ
[1 +

𝑟

3
∇𝑛]

1

2
𝑘𝑇] ≤ 𝐵0𝑒 − 𝑦    (4.3.30) 

Accordingly the critical temperature becomes 

𝑇𝑒 =
2(𝐵0𝑒−𝑦)

3[
2𝑚

ℏ
[1+

𝑟

3
∇𝑛]]𝑘

                                                                                   (4.3.31) 

Assuming that the charges in the conductor are acted by a resistance force 𝐹𝑟 , 

and a magnetic force 𝐹𝑚 , besides the electric force 𝐹𝑒 , and then the equation 

of motion becomes [69].  

𝐹 = 𝐹𝑟 + 𝐹𝑚 + 𝐹𝑒                                                                                    (4.3.32) 

The previous forces are given by the formulas  

𝐹0 = 𝑘0𝑥, 𝐹𝑟 =
𝑛𝑚𝑣

𝜏
       𝐹𝑚 = 𝐵𝑒𝑣, 𝐹𝑒 = 𝑒𝐸 

where 𝑛, 𝑘, 𝑥,𝑚, 𝑣. 𝑒, 𝐵, 𝜏and 𝐸 denotes the density, rigidity coefficient, 

displacement, mass, velocity, 

electron charge, magnetic flux density, resolving time, and the electric field 

respectively.  

    The equation of motion takes the formula  

𝑚𝑎 =
𝑛𝑚𝑣

𝜏
+ 𝐵𝑒𝑣 + 𝑒𝐸                                                                          (4.3.33) 

When the electron moves with a uniform constant velocity, the Equation 

(4.3.33) becomes 

(
𝑛𝑚

𝜏
− 𝐵𝑒)𝑣 = 𝑒𝐸, 𝑣 =

𝑒

(
𝑛𝑚

𝜏
−𝐵𝑒)

𝐸                                                        (4.3.34) 

And the conductivity is given by  𝐽 = 𝑛𝑒𝑒𝑣 =
𝑛𝑒𝑒

2

(
𝑛𝑚

𝜏
−𝐵𝑒)

 𝐸                     (4.3.35( 

where 𝑛𝑒 the electrons density, while 𝑛 denotes the density of the medium 

atoms, accordingly the conductivity being 

𝜎 =
𝑛𝑒𝑒

2

(
𝑛𝑚

𝜏
−𝐵𝑒)

 𝐸 = 𝜎𝐸                                                                              (4.3.36) 
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And the conductivity approaches to infinity when  

𝑛𝑚

𝜏
− 𝐵𝑒 = 0                                                                                          (4.3.37) 

According to the Maxwell-Boltzmann statistics the density of the atoms in the 

medium takes the formula [70].  

𝑛 = 𝑛𝑒𝑒
𝐸

𝑘𝑇 ≈ 𝑛0 (1 −
𝐸

𝑘𝑇
) 

Then                           
 𝑛𝑚0

𝜏
(1 −

𝐸

𝑘𝑇
) = 𝐵𝑒 

𝐸

𝑘𝑇
= 1 −

𝐵𝑒𝜏

𝑚𝑛0
=

𝑚𝑛0 − 𝐵𝑒𝜏

𝑚𝑛0
 

𝑇𝑒 =
𝑚𝑛0𝐸

𝑘(𝑚𝑛0𝐵𝑒𝜏)
                                                                                        (4.3.38) 

Equation (4.3.38) represents the critical temperature in which the conductivity 

becomes very huge, and when       

  
𝑛𝑚

𝜏
− 𝐵𝑒 ≪ 1                                                                                         (4.3.39) 

The conductivity also becomes very high, and then  

𝑛𝑚

𝜏
[1 −

𝐸

𝑘𝑇
] − 𝐵𝑒 ≪ 1  , 1 −

𝐸

𝑘𝑇
≪

𝐵𝑒𝜏

𝑚𝑛0
, 

𝐸

𝑘𝑇
≪

𝐵𝑒𝜏

𝑚𝑛0
− 1, 

𝐸

𝑘(1−
𝐵𝑒𝜏

𝑚𝑛0
)
≫ 𝑇  (4.3.41)           

And finally the critical temperature is found to be  

𝑇𝐶 =
𝑚𝑛0𝐸

𝑘(𝑚𝑛0−𝐵𝑒𝜏)
                                                                                      (4.3.42)  

4.4  Schrodinger quantum equation from classical and quantum 

Harmonic Oscillator 

Maxwell's equation and plank quantum theory wave used here to relate 

conductivity to absorption coefficient  Maxwell's theory is one many theories 

that can describe electromagnetic field[71 ]. The equation of the electric field 

intensity E inside a polarized medium field 
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−∇2𝐸 + 𝜇0𝜎
𝜕𝐸

𝜕𝜏
+ 𝜇0𝜀0

𝜕2𝐸

𝜕𝜏2
= −𝜇0𝜎

𝜕2𝑃

𝜕𝜏2
                                                  (4.4.1) 

The solution of this equation can be expressed in terms of time attenuation 

coefficient  , wave member 𝐾 and  angular frequency 𝜔, to be in the form 

[72]  

𝐸 = 𝐸0𝑒
−𝛼𝑡𝑒(𝑘𝑥−𝜔𝑡)                                                                                 (4.4.2) 

The displacements of charges can be described by:  

𝐸 = 𝐸0𝑒
−𝛼𝑡𝑒(𝑘𝑥−𝜔𝑡) =

𝑋0

𝐸0
𝐸                                                                     (4.4.3) 

The electric dipole moment can thus define in terms of charge density:  

𝜌 = −𝑒𝑛𝑒𝑋 = −𝑒𝑛𝑒𝑋0𝑒
−𝛼𝑡𝑒∕(𝐾𝑥−𝜔𝑡)𝛼𝑡 =

𝑛𝑒𝑐𝑋0

𝐸0
𝐸                                 (4.4.4) 

 Differentiating (4.4.2) with respect to 𝑋 and 𝑡 yields:  

𝜕𝐸

𝜕𝑥
= 𝑖𝐾𝐸, ∇2𝐸 =

𝜕2𝐸

𝜕𝑥2
= −𝐾2𝐸 

𝜕𝐸

𝜕𝑥
= (−𝛼 − 𝑖𝜔)𝐸 ,

𝜕2𝐸

𝜕𝑡2
= (−𝛼 − 𝑖 𝜔)2                                                   (4.4.5) 

 Differentiating (4.4.2) with respect to t gives:  

𝜕𝐸

𝜕𝑡
= −𝑒 𝑛𝑒𝑙𝑒𝑐 =

𝜕𝑥

𝜕𝑡
= 𝑖 − 𝑒 𝑛𝜔𝑥 

𝜕2𝐸

𝜕𝑥2
= −𝑒 𝑛𝑒𝑙𝑒𝑐𝜔

2 𝑥 = 𝑒 𝑛𝑒𝑙𝑒𝑐𝜔
2𝑥                                                          (4.4.6) 

Inserting equations (4.4.5)and (4.4.6) in equation (4.4.1) yield: 

[𝐾2𝐸 + 𝜇𝜀(−𝛼 − 𝜔)2𝐸 + 𝜇𝜎(−𝛼𝑖𝜔)𝐸] =
−𝑒𝑛 𝜔2𝜇𝑥0

𝐸0
𝐸  

𝐾2 + 𝜇𝜀𝛼2 − 𝜔(𝛼2 − 𝜔2 + 2𝑖𝛼𝜔) − 𝐸 + 𝜇𝜎𝛼 − 𝜇𝜎𝜔𝑖 =
−𝑒 𝑛 𝜔2𝜇𝑥0

𝐸0
    (4.4.7) 

Thus equation (4.4.7) reads:  
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𝐾2 +
(𝛼2 − 𝜔2 + 2𝑖𝛼𝜔)

𝑐2
− 𝜇𝜎𝛼 − 𝜇𝜎𝜔𝑖  

−𝑒 𝑛 𝜔2 𝜇𝑥0

𝐸0
𝐸 = −

𝜇𝜕2𝑃

𝑡2
 

𝐾2 +
(𝛼2)

𝑐2
−

𝜔2

𝑐2
+

(2𝑖𝛼𝜔)

𝑐2
 – 𝜇𝜎𝛼 − 𝜇𝜎𝜔𝑖 =  

−𝑒 𝑛 𝜔2 𝜇𝑥0

𝐸0
 

But since the speed of light is given by:  

           𝜇 𝜀 =
1

𝑐2
 

Thus equation (4.4.7) reads  

            𝐾2 +
(𝛼2−𝜔2+2𝑖𝛼𝜔)

𝑐2
− 𝜇𝜎𝛼 − 𝜇𝜎𝜔𝑖  

−𝑒 𝑛 𝜔2 𝜇𝑥0

𝐸0
𝐸 = −

𝜇𝜕2𝑃

𝑡2
          (4.4.8) 

𝐾2 +
𝛼2

𝑐2
−

𝜔2

𝑐2
+

(2𝑖𝛼𝜔)

𝑐2
− 𝜇𝜎𝛼 − 𝜇𝜎𝜔𝑖 =

−𝑒 𝑛 𝜔2 𝜇𝑥0

𝐸0
  

But:  

𝐾2 = +(
2𝜋

𝜆
) = (

2𝜋𝑓

𝜆𝑓
)
2

=
(𝜔2)

𝑐2
 

Thus:  

𝛼2

𝑐2
+

2𝑖𝛼𝜔

𝑐2
− 𝜇𝜎𝛼 − 𝜇𝜎𝜔𝑖 =

−𝑒 𝑛 𝜔2 𝜇𝑥0

𝐸0
                                                    (4.4.9) 

Equation real parts on both sides on (4.4.9)  

𝛼2

𝑐2
− 𝜇𝜎𝛼 =

−𝑒 𝑛𝑒  𝜇𝑥0

𝐸0
𝜔2                                                                        (4.4.10) 

Since the speed of light is given large 𝑐 ≫ 𝛼  

Hence:  

𝛼2

𝑐2
→ 0                                                                                                     (4.4.11)  

Thus the absorption coefficient is given by:  
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𝛼 =
−𝑒 𝑛𝑒𝑙𝑒𝑐 𝑥𝑜

𝐸𝑜
     

𝜔2

𝜎
                                                                                 (4.4.12) 

Expression (4.4.12) can be simplified by using the conductivity expression for 

direct current:  

𝜎 =
𝑛𝑒2𝜏

𝑚
                                                                                                  (4.4.13) 

And by using the electron equation under the action of electromagnetic field, 

where:  

𝑚𝑥̈ = −𝜔𝑛
2𝑥𝑜 𝑒

𝑖𝜔𝑒 = −𝑒 𝑥𝑜𝑒
𝑖𝜔𝑡 

Thus:  

𝑥𝑜

𝐸𝑂
=

𝑒

𝑚 𝜔2
                                                                                                 (4.4.14) 

Thus a direct substitution of (4.4.13) and (4.4.14) in 12) yields: 

𝛼 =
𝑒 𝑛 𝜔2𝑚

𝑛 𝑒2𝜏
  (

𝑒

𝑚 𝜔2) =
1

𝜏
                                                                         (4.4.15)  

One can also engorge polarization term in the equation (a) to get:  

𝛼2

𝑐2
−

2𝑖𝛼𝜔

𝑐2
− 𝜇𝜎𝜔𝑖 − 𝜇𝜎𝛼−= 0                                                              (4.4.16)  

Since for osculating electron the equation of motion is:  

𝑚𝑥̈ = −𝜔𝑛
2𝑥𝑜 𝑒

𝑖𝜔𝑡 = 𝑒𝐸𝑜𝑒
𝑖𝜔𝑡 −

𝑚𝑣𝑜𝑒𝑖𝜔𝑡

𝜏
                                               (4.4.17) 

Since                       𝑣 = 𝑑𝑥 𝑑𝑡⁄ = 𝑖𝜔𝑥                                                   (4.4.18)  

[𝑖 𝜔 +
1

𝜏
]𝑚 𝑣 = 𝑒 𝐸                                                                                (4.4.19)  

Using the relation 

𝐽 = 𝑛 𝑒 𝑣 =  
𝑛 𝑒 2

𝑚
[𝑖 𝜔 +

1

𝜏
]
−1

 𝐸 = 𝜎 𝐸[𝜎1 + 𝑖𝜎2]𝐸
2                             (4.4.20)  

Therefore: 
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𝜎1 =
𝑛 𝑒2(𝑇)−1

𝑚
[(𝑇)−1 + 𝜔2] , 𝜎2𝐸 =

𝑛 𝑒2𝜔

𝑚
[𝜏−1 + 𝜔2] −1                     (4.4.21)  

Inserting the complex conductivity of (4.4.20) in equation (4.4.16) yields:  

𝛼2

𝑐2
−

2𝑖𝛼𝜔

𝑐2
− 𝜇(𝜎1 + 𝑖 𝜎2) 𝛼 − 𝜇 (𝜎1 + 𝑖 𝜎2)𝜔𝑖 = 0                               (4.4.22) 

Equating imaginary parts one gets:  

𝛼 = [
2 𝜔

𝑐2
+ 𝜇 𝜎2] = −𝜇 𝜎1 𝜔                                                                  (4.4.23)  

Using 𝐶2 is very large, one can neglect the first term in the ??? 

2 𝜔
𝑐2⁄   . →                                                                                              (4.4.24) 

To get: 

𝛼 = 
−𝜎1𝜔

𝜎2
                                                                                                (4.4.25)  

In view of in equation (4.4.24). The absorption coefficient (4.4.25) is given 

by:  

𝛼 = 
1

𝜏
                                                                                                      (4.4.26) 

Consider an electron osculating naturally with frequency 𝑤0and affected by 

the osculating electric field [73,74] 

𝐸 = 𝑒  𝐸0 𝑒
𝑖  𝜔𝑡                                                                                       (4.4.27) 

The equation of motion for such electron is given by: 

𝑚
𝑑𝑣

𝑑𝑡
= −𝑘𝑥 + 𝑒 𝐸 −

𝑚 𝑣

𝜏
                                                                        (4.4.28) 

Where: 

𝐾 = 𝑚 𝜔0
2                 𝑋 = 𝑥0 𝑒

𝑖 𝜔𝑡          𝑉 = 𝑖𝜔𝑥                                     (4.4.29) 

There for equation (  4.4.28  ) becomes: 
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𝑖  𝑚𝜔𝑣 = −𝑚 𝜔0
2𝑥 + 𝑒 𝐸 

–𝑚 𝑣

𝜏
= 𝑖 𝑚 𝜔0𝑣 

–𝑚 𝑣

𝜏
+ 𝑒 𝐸 

[𝑖 (𝜔 − 𝜔0) +
1

𝜏
]𝑚 𝑣 = 𝑒𝐸                                                                    (4.4.30)  

becomes:  

By  setting: 

𝜔 − 𝜔𝑜 = ∇𝜔                                                                                         (4.4.31) 

Thus: 

𝑉 =
𝑒𝐸

𝑀[𝑖∇𝜔+
1

𝜏
]
=

𝑒[
1

𝜏
−𝑖∇𝜔]𝐸

𝑀[𝑖∇𝜔+
1

𝜏
]
                                                                        (4.4.32)  

According to the relation between current density, velocity and conductivity 

one gets:  

𝐽 = 𝑛𝑒𝑣 =
𝑛𝑒

2[
1
𝜏
−𝑖∇𝜔]

𝑀[𝑖∇𝜔+
1

𝜏
]
                                                                                (4.4.33) 

Hence the conductivity is given by:  

𝜎 =
𝑛𝑒

2[
1
𝜏
−𝑖∇𝜔]

𝑀[𝑖∇𝜔+
1

𝜏
]
                                                                                           (4.4.34) 

For non-polarized medium, equation (4.4.27) can be solved by assuming: 

𝐸 = 𝐸𝑂𝑒𝑖(𝑘 𝑥−𝜔𝑡)  

To get:  

𝑘2 −
𝜔2

𝑐2
+ 𝑖𝜇0𝜔𝜎 = 0 

In view of this equation beside (34) one gets: 

𝐾2 −
𝜔2

𝐶2
= 𝜇𝜎𝜔𝑖 =

𝜇0𝜔[∇𝜔+
1

𝜏
]

𝑀[𝑖∇𝜔+
1

𝜏
]
𝑛𝑒2                                                         (4.4.35) 
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If the wave length in the medium is near to that of free space it follows that:  

𝑘2 = (
2𝜋

𝜆
)
2
= (

2𝜋𝑓

𝜆𝑓
)
2
=

𝜔2

𝑐2
                                                                    (4.4.36)  

As a result:  

𝐾2 −
𝜔2

𝐶2
= 0                                                                                           (4.4.37) 

Hence using equation (4.4.37) in equation (4.4.35) yields:  

𝜔 − 𝜔0 = −∆𝜔 =
−𝑖

𝜏
𝜔0 − 𝜔 =

𝑖

𝜏
                                                          (4.4.38)   

A similar result can be found for polarized material According to equation 

(4.4.3): 

𝑋 = 𝑥0𝑒
𝑖𝜔𝑡              𝑋̇ = 𝑣 = −𝑖𝜔𝑥0𝑒

−𝑖𝜔𝑡           𝑉0𝑒
−𝑖𝜔𝑡 

𝑋̈ = − − 𝑖𝜔𝑣                𝑃 = 𝑒 𝑛 𝑥                                                          (4.4.39) 

Thus:  𝜇
𝜕2 𝑃 𝐸

𝜕𝑡2
= 𝜇 𝑒 𝑛 𝑥̈ =  −𝑖 𝜔 𝜇 𝑛 𝑒 𝑣 =  −𝑖 𝜔 𝜇 𝐽 =  −𝑖 𝜔 𝜇𝜎𝜎𝐸 

Thus equation (4.4.8) for 𝛼 neglected becomes: 𝐾2 −
𝜔2

𝐶2
= 𝜇𝜎𝜔𝑖 = 0 

This is typical equation (4.4.35) thus gives again:  

𝜔0 − 𝜔 =
𝑖

𝜏
                                                                                             (4.4.40) 

According to plank hypothesis the original energy and the energy medium are 

is given by: 

𝐸𝑓 = 𝐸0 − 𝐸 = ℏ 𝜔 = (
ℏ

𝜏
) 𝑖                                                                   (4.4.41)  

This expression for frictional energy agrees with equation  (4.4.26) and 

(4.4.2)in view or equation (4.4.2) in a resistive medium with the aid of 

equation(4.4.2) one can write the wave function 𝜓 similar to    

𝐸. This is justifiable as far as [75,76]  
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𝐸2𝛼  Number of photon  

𝜓2𝛼  Number of particle: 

Thus, one can write 𝜓 to be:  

𝜓 = 𝐴 𝑒
𝑖

ℏ (𝐸 −
𝑖ℏ

𝜏
) 𝑡                                                                               (4.4.42) 

𝜕𝜓

𝜕𝑡
=

−𝑖

ℏ
(𝐸 −

𝑖ℏ

𝜏
)𝜓 ,    𝑖ℏ

𝜕𝜓

𝜕𝑡
+

𝑖ℏ

𝜏
𝜓 = 𝐸𝜓 

𝑖ℏ [
𝜕

𝜕𝑡
+

1

𝜏
] 𝜓 = 𝐸𝜓                                                                                 (4.4.43) 

𝐻̂𝜓 = 𝐸𝜓                                                                                               (4.4.44) 

Thus the energy operator takes the form:  

𝐻̂𝜓 = 𝐸𝜓                                                                                                (4.4.45)  

Using:  

𝐸 =
𝑃2

2𝑚
+ 𝑉                                                                                             (4.4.46)  

𝐸𝜓 =
𝑃2

2𝑚
𝜓 + 𝑉𝜓                                                                                    (4.4.47)  

𝜕Ψ

𝜕𝑥
=

𝑖

ℏ
𝑃𝜓                                                       

In 3 dimensions:     −ℏ2∇2Ψ = P2Ψ                                                             (4.4.48) 

𝑖ℏ [
𝜕

𝜕𝑡
+

1

𝜏
]Ψ =

−ℏ2

2𝑚
∇2Ψ + 𝑉 Ψ 

𝑖ℏ
𝜕𝜓

𝜕𝑡
=

−ℏ2

2𝑚
∇2𝜓− 𝑖ℏ

𝜏
𝜓                                                                             (4.4.49) 

To find solution for harmonic oscillator, it is important to separate variables 

Thus one can write the wave function as[77]  

𝜓(𝑟, 𝑡) = 𝑓 (𝑡)𝑢(𝑟)                                                                                         (4.4.50)  
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Inserting of equation (4.4.50) in (4.8) yields:  

𝑖ℏ𝜕𝑓

𝑓𝜕𝑡
=

ℏ

2𝑚𝑢
∇2𝑢 + 𝑉 =

𝑖ℏ

𝜏
+ 𝐸0                                                               (4.4.51)  

Therefore: 

𝑖ℏ
𝜕𝑓

𝜕𝑡
     = 𝐸0𝑓                                                                                        (4.4.52) 

The solution or this equation is: 

𝑓 =  𝐴0 𝑒
−𝑖 𝐵𝑂𝑡                                                                                                 (4.4.53) 

Substituting (4.4.53) in (4.4.52) yields:  

ℏ 𝛽𝑂 = 𝐸0                                                                                                (4.4.54)   

For Harmonic Oscillator the potential is given by:  

𝑉 =
1

2
𝑘𝑥2                                                                                                (4.4.55)  

This equation (4.4.51) reduces to: 

−ℏ2

2𝑚
∇2𝑢 +

1

2
𝑘𝑥2𝑢 = (𝐸0 +

𝑖ℏ

𝜏
) 𝑢 = 𝐸𝑢                                                  (4.4.56)                                    

But the energy of harmonic osciIIator is given by: 

𝐸 = 𝐸0 +
𝑖ℏ

𝜏
= (𝑁 +

1

2
) ℏ 𝜔                                                                   (4.4.57)  

𝑛 = 1,2,3……. 

The harmonic Oscillator satisfies periodicity condition, 1 .e:  

𝑓(𝑡 − 𝑇) = 𝑓(𝑡)                                                                                     (4.4.58)  

In view equation (4.4.53) this requires: 

𝑒−𝑖 𝐵𝑂𝑡 = cos𝛽0𝑇 − 𝑖 𝑠 𝑖𝑛 𝛽0𝑇 = 1 
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This means that: 

cos 𝛽0𝑇 − 1                      sin    𝛽0𝑇 = 0 

Hence:  𝛽0𝑇 = 2 𝜋 𝑠      S = 1,2,3………….. 

𝛽0 =
2 𝜋

𝑇
𝑆     𝑆 𝜔                                                                                      (4.4.59)  

Inserting (4.4.59) in (4.4.54), the energy is given by: 

𝐸𝑂 = ℏ 𝜔                                                                                                (4.4.60)  

This energy IÖSI by friction is thus gives according to equation (4.4.57) and 

(4.4.60) given by: 𝐸𝑓 = 𝐸 − 𝐸𝑂ℏ 𝜔 (𝑁 − 𝑆 +
1

2
)                                  (4.4.61)  

4.5  Derivation of Klein-Gordon equation from Maxwell’s 

electric wave equation 

In the work done by kamil Maxwell's equation were used to derive klein-

Gordon equation can be described by Maxwell's equations,where [78,79] 

∇.𝐷 = 𝜌, ∇, 𝐵 = 0, ∇ × E = −
∂B

∂t
, ∇ × H = J +

∂D

∂T
                                (4.5.1)  

where D, B, E, H and J represent the electric flux density, the magnetic flux 

density, the electric field and the current density, respectively. Satisfying the 

following relations, we have  

𝐵 = 𝜇0𝐻, 𝐽 = 𝜎𝐸,𝐷 = 𝜀0𝐸 + 𝑃                                                              (4.5.2)  

where P, 𝜇0 go and 𝜀0 are the macroscopic polarization of the medium, the 

permittivity of free space and the permeability of free space, respectively. 

Applying the curl operator to both sides of the 3rd equation in (4.5. 1), the 

following equation is obtained.  

∇ × (∇ × 𝐸) = −∇ ×
∂B

∂t
= −

∂

∂t
(∇ × B)                                                  (4.5.3) 

Using the identity [80] 
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 ∇ × (∇ × 𝐸) = ∇(∇. 𝐸) − ∇2𝐸                                                                (4.5.4) 

Equation (4.5.3) gives:   ∇(∇. 𝐸) − ∇2𝐸 = −
𝜕

𝜕𝑡
(∇ × 𝐵)                         (4.5.5)               

From (4.5.2) since:                              𝐵 = 𝜇0𝐻                                       (4.5.6) 

Then (4.5.5) becomes:    ∇(∇. 𝐸) − ∇2𝐸 = −
𝜕

𝜕𝑡
(∇ × 𝜇0𝐻)                     (4.5.7)                            

From equation (4.5.7), since:         ∇ × 𝐻 = 𝐽 +
𝜕𝐷

𝜕𝑡
                                  (4.5.8) 

From (4.5.1) we have: 

 ∇(∇. 𝐸) − ∇2𝐸 = −
𝜕

𝜕𝑡
(μ0𝐽 + 𝜇0

𝜕𝐷

𝜕𝑡
)                                                      (4.5.9) 

But:                              𝐷 = 𝜀0𝐸 + 𝑃                                                        (4.5.10) 

Therefore:  ∇(∇. 𝐸) − ∇2𝐸 = −𝜇0
𝜕𝐽

𝜕𝑡
− 𝜀0𝜇0

𝜕2𝐸

𝜕𝑡2
− 𝜇0

𝜕2𝐸

𝜕𝑡2
                     (4.5.11) 

Also:            𝐽 = 𝜎𝐸                                                                                (4.5.12)  

Then       ∇(∇. 𝐸) − ∇2𝐸 = −𝜇0
𝜕𝐽

𝜕𝑡
𝜀0𝜇0

𝜕2𝐸

𝜕𝑡2
= −𝜇0

𝜕2𝑃

𝜕𝑡2
                         (4.5.13)  

The polarization, P , thus acts as a source term in the equation for radiation 

field [81]  

Since:     𝐷 = 𝜀0𝐸, ∇.𝐷 = 𝜌, 𝜌 =0                                                          (4.5.14)  

Therefore:              𝜀∇. 𝐸 = 𝜌 = 0, ∇. 𝐸 = 0                                           (4.5.15) 

Therefore equation (13) becomes: 

−∇2𝐸 = −𝜇0
𝜕𝐽

𝜕𝑡
+ 𝜀0𝜇0

𝜕2𝐸

𝜕𝑡2
= −𝜇0

𝜕2𝑃

𝜕𝑡2
                                                  (4.5.16) 

This represents the wave equation for electric field.  

   Klein-Gordon equation for free particles is usually derived by using 

Einstein relativistic energy equation:  
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𝐸2 = 𝑃2𝑐2 + 𝑚0
2𝑐4                                                                                 (4.5.17) 

where 𝐸, 𝑝 and 𝑚0 are the energy, momentum and rest mass, respectively.  

This equation is then multiplied by the wave function 𝜓 to get: 

𝐸2𝜓 = 𝑃2𝑐2𝜓 + 𝑚0
2𝑐4𝜓                                                                        (4.5.18)  

The energy and momentum terms are replaced by considering the particles as 

free waves having the wave function: 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝐸𝜓  𝜓 = 𝐴𝑒

1

ℎ
(𝑃𝑥−𝐸𝑡)

                                                                  (4.5.19) 

This equation is differentiated with respect to t and x to 𝜏 and 𝑥 to get: 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= 𝐸𝜓 = ℏ2 𝜕2𝜓

𝜕𝑡2
= 𝐸2𝜓                                                        

ℏ

𝑖

𝜕𝜓

𝜕𝑥
=

ℏ

𝑖
∇𝜓 = 𝑝𝜓 − ℏ2∇2𝜓 = 𝑃2𝜓                                                      (4.5.20) 

Inserting (4.5.20) in (4.5.18), the following equation is obtained: 

- 𝑖ℏ
𝜕𝜓

𝜕𝑡
− 𝑐2ℏ2∇2𝜓 + 𝑚0

2𝑐4𝜓                                                                 (4.5.21)                  

This is Klein-Gordon equation.  

Maxwell's equation for an electric of field intensity 𝐸 in a dielectric insulating 

non-charged medium material of electric dipole moment 𝑃 is given by 

equation (4.5.16) to be.   −∇2𝐸 + 𝜀0𝜇0
𝜕2𝐸

𝜕𝑡2
= −𝜇0

𝜕2𝑃

𝜕𝑡2
                          (4.5.22) 

Where for non-charged insulating material: 

𝜌 = 0, 𝜎 = 0  

Where for simplification it is better to consider current density 𝐽 as a constant, 

that is:                       
𝜕𝐽

𝜕𝑡
= 0                                                                    (4.5.23) 

The electric dipole moment is given by:  
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𝑃 = 𝑛𝑞0𝑥 =
𝑁𝑞0𝑥

𝐴𝑥
=

𝑄

𝐴
=

∅

𝐴
 = 𝐷 = 𝜀𝐸                                                         (4.5.24) 

Where n is the number density of charge, N is the total number, A is the area 

and x is the distance.  

𝑉= Volume =  ,    𝑄 = Total charge = 𝑁𝑞0 

𝑞0 = Charge of  a single pole according to Gauss law.  

The charge 𝑄 and total flux  ∅ are related by:    𝑄 = ∅                          (4.5.25)  

To solve equation (4.5.22), one can assume the electric field intensity in free 

space 𝐸 to be.               𝐸 = 𝐸0𝑒
𝑖(𝑘𝑥−𝑤𝑡)                                                (4.5.26) 

 Thus:                      
𝜕2𝐸

𝜕𝑡2
= −𝜔2𝐸      ∇2𝐸 = −𝑘2𝐸                                (4.5.27)  

From equations (26) and (24):  

𝜕2𝐸

𝜕𝑡2
= −𝜇0𝜀𝜔

2𝐸                                                                                     (4.5.28)  

 The speeds in vacuum 𝑐 and in the medium 𝑣 are given:  

𝑐 =
1

√𝜇0𝜀0
  𝑣 =

1

𝜇0𝜀
                                                                                  (4.5.29) 

Thus (28) reads:  

−𝜇0
𝜕2𝑃

𝜕𝑡2
= −𝜇0𝜀𝜔

2𝐸 = −
1

𝑣2
 𝜔2𝐸  = −(

2𝜋𝑓

𝑓𝜆𝑚
) 𝐸 = −𝑘𝑚

2𝐸                 (4.5.30) 

Inserting (4.5.27) and (30) in (4.5.22) yields:  

𝑘2 −
𝜔2

𝑐2
= −𝑘𝑚

2
                                                                                    (4.5.31) 

Multiplying both sides by𝑐2 and ℏ2, one gets:  

𝑐2ℏ2𝑘2 − ℏ2𝜔2 = 𝑐2ℏ2𝑘𝑚
2
                                                                  (4.5.32) 

Using De Broglie and Plank hypotheses:  
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𝑃 =
ℎ

𝜆
= ℏ𝑘   𝐸 = ℎ𝑓 =  ℏ                                                                     (4.5.33) 

Equation (4.5.32) can thus be given by:  

𝑐2𝑃2 + 𝑐2𝑃𝑚
2 = 𝐸2                                                                               (4.5.34) 

Since the electromagnetic waves can be assumed as a photon moving with the 

speed of light 𝑐, the photon momentum rest mass mo is given by:  

ℏ𝑘𝑚 = 𝑃𝑚 = 𝑚0𝑐                                                                                   (4.5.35) 

Here the rest mass is assigned to a medium since the medium lower photon 

speed and it can even stop it when it is absorbed. Thus inserting (4.5.35) in 

(4.5.34) yields:          𝑐2𝑃2 = 𝑚0
2𝑐4 = 𝐸2                                            (4.5.36) 

This is the Einstein expression that relates momentum to energy. The 

derivation of this relation can be done by using the classical equation of 

energy and Plank hypothesis only. The classical energy for an 

electromagnetic wave photon oscillating particle with maximum velocity is 

given by:  

𝐸 =
1

2
𝑚𝑣𝑚

2                                                                                            (4.5.37) 

Since for waves or any harmonic system, the root mean square (r. m. s) 

velocity 𝑣𝑟𝑚𝑥 is given by:                  𝑣𝑟𝑚𝑥 =
1

√2
𝑣𝑚                               (4.5.38) 

By assuming the photon speed 𝑐 equal to the r. m. s speed, that is:  

𝑐 =
1

√2
𝑣𝑚                                                                                                (4.5.39) 

It follows that:              𝐸 = 𝑚(
𝑣𝑚

√2
) = 𝑚𝑐2                                           (4.5.40) 

According to Plank theory:       𝐸 = ℎ𝑓 =
ℎ𝑐

𝜆
= 𝑚𝑐2                             (4.5.41) 

Therefore, the momentum p is given by:  
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𝑃 = 𝑚𝑐 =
𝑚𝑐2

𝑐
=

ℎ𝑐

𝜆𝑐
=

ℎ

𝜆
                                                                          (4.5.42) 

The Klein-Gordon equation can be obtained by replacing the electric dipole 

moment term in equation (4.5.17) by the term standing for photon rest mass in 

equation (4.5.30) to get:  

−∇2𝐸 + 𝜀0𝜇0
𝜕2𝐸

𝜕𝑡2
= −𝑘𝑚

2𝐸                                                                  (4.5.43) 

Multiplying both sides by 𝑐2ℏ2  and using equation (4.5.29), the following 

equation is obtained:  

−𝑐2ℏ2∇2𝐸 + ℏ2 𝜕2𝐸

𝜕𝑡2
= 𝑐2ℏ2𝑘𝑚

2𝐸                                                         (4.5.44)  

According to relation (4.5.35):      𝑃𝑚
2 = ℏ2𝑘𝑚

2 = 𝑚0
2𝑐2 

Thus (4.5.44) reads:   −𝑐2ℏ2∇2𝐸 + 𝑚0
2𝑐4𝐸 = −ℏ2 𝜕2𝐸

𝜕𝑡2
                       (4.5.45) 

The incorporation of mass for photon in Maxwell's equations corresponds to 

adding the term 𝑚0𝐴
𝜇𝐴𝜇 to the electromagnetic field lagrangian.  

     Since in the electromagnetic (e. m) theory the oscillating electric wave 𝐸 is 

related to its e. m, the energy or intensity is obtained according to the relation:  

𝐼 ∝ 𝑐𝜀0𝐸
2                                                                                                (4.5.46) 

And since the e. m intensity, when treated as a stream of photons of density n 

is given by:         𝐼 ∝ 𝑛ℎ𝑓  ∝ |ψ|2ℎ𝑓                                                     (4.5.47) 

Where the photon density is related to the wave function 𝜓 according to the 

relation:        𝑛 = |ψ|2                                                                            (4.5.48) 

Comparing (46) and (47) it follows that:  

𝐸2 ⟺ |ψ|2  𝐸 ⟺ ψ                                                                                     (4.5.49)  

Thus the correspondence between 𝐸 and 𝜓 secure the replacement of 𝐸 by 𝜓 

in equation (45) to get:  
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−ℏ2 𝜕2𝜓

𝜕𝑡2
= −𝑐2ℏ2∇2𝜓 + 𝑚0

2𝑐4ψ                                                         (4.5.50) 

This represents Klein-Gordon equation for free electron. 

4.6  Phase effect between the Electric Internal Current Field 

and the External Current Field on Amplification of the total 

Field and Intensity of the Electromagnetic Radiation 

The behavior of electromagnetic field inside any medium was tackled also by 

some authors [82]The equation of motion of the electron of mass m and 

velocity v under the action of electric force 𝑒𝐸  and resistive force 𝛾𝑣 can be 

described by the equation of motion[83] 

𝑚 
𝑑𝑣

𝑑𝑡
= 𝑒𝐸 − ɣ𝑣                                                                                                (4.6.1) 

Where e is the electron charge ,E is the electric field intensity , and ɣ is the 

resistance coefficients. To solve equation (4-2-1) consider the velocity v and 

the electric field intensity E to be in the form: 

V = V0sin(𝜔𝑡 + ∅)                                                                                 (4.6.2) 

E=E0E = sin𝜔 𝑡                                                                                         (4.6.3) 

Where ∅ is the phase , V0 and E0 are velocity and electric intensity 

amplification respective while 𝜔 is the angular frequency . but  the current 

density is given by  

𝐽 = 𝑒𝑛𝑣                                                                                                                 (4.6.4)  

Where 𝑛 is electron density Substituting (2)in (4) yields 

𝐽 = 𝑒𝑛˳𝑣0 sin(ωt + ф)                                                                                      (4.6.5) 

𝐽 = 𝑒𝑛𝑣0˳(cosф sinωt + sinф cosωt)                                                          (4.6.6) 
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Looking at (4.6.6), it is clear that the phase ф between E and 𝑣produces an 

additional oscillating cosine term.Therefore the definition of conductivity is 

terms of J and E should  include two terms one corresponds to the external 

field as in (4.6.3) , beside .an additional term  which may be defined to be 

representing an internal field Em in the form  

Em=𝐸𝑚0
𝑐𝑜𝑠𝜔t                                                                                                      (4.6.7) 

Where𝐸𝑚0
 is the medium field intensity amplitude 

Thus 𝐽 can be written in terms of  

J = σ1𝐸 + σ2Em                                                                                                 (4.6.8) 

By substituting the value of Emfrom equation(4.6.7)and equation (4.6.8) we 

find;  

σ1E0sinωt+ σ2E0 cosω t                                                                                  (4.6.9) 

Comparing the coefficients of sinωɯt and cosωt in (4.6.7)and   (4.6.9) 

yields.  

nev0cosф= σ1E0 

 nev0sin ф= σ2Em                                                                                              (4.6.10) 

where Emis the medium internal filed thus the external and internal  field 

conductivitiesσ1andσ2 are given by  

σ1=
nev0

E0
cos  ф 

 σ2= 
nev0

Em
sin ф                                                                                                      (4.6.11) 

This last one is an imaginary conductivity. 

to see how the phase angle ф between E and v affect the amplification of 

electromagnetic  radiation , it is important to utilize the expression for the 
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light intensity 𝐼  which penetrates a distance z inside a medium , which is 

given by[84] 

𝐼 = 𝐼˳ 𝑒𝛽𝑧                                                                                                            (4.6.12) 

WhereI0is the initial light intensity, 𝛽 is the amplification factor it is given by 

[85] 

β =
μ c σ1

𝑛1
                                                                                                          (4.6.13) 

with μ , c ,𝑛1 , standing for the magnetic permeability , speed of light and the 

refractive index ., inserting  (4.6.11) in (3)gives 

β =
μ c 

𝑛1

nev0

E0
cosф                                                                                         (4.6.14) 

it is clear from this relation that amplification takes place when ф vanishes  

𝑖. 𝑒 

β =
μ c 

𝑛1

nev0

E0
                                                                                                     (4.6.15) 

when ф = 0 

but if the velocity v and E are normal to each other . 𝑖 –  𝑒when 

ф = 90β = 0                                                                                                     (4.6.16) 

no amplification or absorption takes place ,however ,when v and E are out of 

phase by  

ф = 180 = 𝜋 

in this case equation (16) reads  

𝛽 = −
𝜇 𝑐 

𝑛1

nev0

E0
                                                                                                (4.6.17) 
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The current density can be explained by associating with v and internal filed 

.𝐸𝑖 the conductivity defined by   

𝐽 = 𝑛𝑒𝑣 =𝜎0Ei                                                                                                   (4.6.18) 

So    𝐸𝑖 =
𝑛𝑒

𝜎0
𝑣 =

𝑛𝑒

𝜎0
˳ 𝑣0𝑠𝑖𝑛(𝜔𝑡 + 𝜙)  

Ei = E𝑖0 sin(ωt + ϕ)                                                                                       (4.6.19) 

WhereE𝑖0is the initial field intensity amplitude 

Ei and E are in phase when ϕ = o .thus using the lows of vectors the total 

filed ET  in the direction of E is given by  

ET = (E0 + 𝐸𝑖0) s 𝑖𝑛(𝜔𝑡) + (𝐸T0 sin(𝜔𝑡)                                                (4.6.20) 

WhereE𝑇0
total field intensity amplitude 

And the total intensity of the electromagnetic radiation is given by  

 𝐼 =  (𝐸0 + 𝐸𝑖0)
2                                                                                               (4.6.21) 

Thus the total field increases and amplification takes place ,,which is 

consistent with (4.6.18)and(4.6.21) .But if V and E are out of phase by 90 .1.e   

Ф = 90  in this case (4.6.19) becomes 

𝐸𝑖 = 𝐸𝑖0 sin(𝜔𝑡 + 90) =  𝐸𝑖0[sin𝜔𝑡 cos 90 + cos𝜔𝑡 sin 90] 

𝐸𝑖 = 𝐸𝑖0 cos𝜔𝑡                                                                                                 (4.6.22) 

Thus no component of 𝐸𝑖in the 𝐸 direction According to the law of vectors 

the total field in direction of  𝐸 is given by  

𝐸𝘛0
=(𝐸0 + 𝐸𝑖0) = 𝐸0 + 0 =  𝐸0                                                             (4.6.23) 

Substituting (4.6.20)in (4.6.23)one be found that 

𝐸𝑇= 𝐸𝘛0
 sin 𝜔𝑡 = 𝐸0sin𝜔𝑡                                                                            (4.6.24) 
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And   I = 𝐸𝑇0

2=𝐸0
2 = I0                                                                                                  (4.6.25) 

Thus the light passes without   attenuation on amplification This result is 

again in agreement with equation (4.6.18) and (4.6.22) , which indicates that  

Ф =90, β = 0, I = I0                                                                                       (4.6.26) 

But when  𝐸𝑖 and E are out of phase by π , in this case the resultant filed in the 

x direction is given by  

𝐸𝑇 = 𝐸 + 𝐸𝑖0=𝐸0  sin𝜔𝑡 + 𝐸𝑖˳ sin(𝜔𝑡 + 𝜋) (27) 

 = 𝐸0  sin𝜔𝑡 + 𝐸𝑖0[sin𝜔𝑡 cos 𝜋 + cos𝜔𝑡 sin 𝜋] 

= 𝐸0  sin𝜔𝑡 − 𝐸𝑖0 sin𝜔𝑡                                                                             (4.6.28) 

By using equation (4.6.24),equation(4.6.28) become; 

𝐸𝑇0
sin𝜔𝑡 =(𝐸0  − 𝐸𝑖0) sin𝜔𝑡                                                                    (4.6.29) 

Divided two side of equation (4.6.29)sin𝜔𝑡 

𝐸𝑇0
= 𝐸0  − 𝐸𝑖0                                                                                                  (4.6.30) 

Thus the total field decreases 𝑖. 𝑒 

𝐸𝑇0
< 𝐸0   ,    𝐸

2
𝑇0

< 𝐸2
0      ,     𝐼 < 𝐼0                                                         (4.6.31) 

This is  absorption takes place , this is again is consistent with (4.6.18) and 

(4.6.23) where  

𝐼 = 𝐼˳ 𝑒−𝛼𝑧                                                                                                          (4.6.32) 
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4.7 Derivation of Maxwell's Equation for Diffusion Current and 

Klein-Gordon Equation beside New Quantum Equation Form 

Maxwell's Equation for Massive Photon 

Mohamed. I used also Maxwell's equation to derive Klein-Gordon equation.   

From Maxwell's equation [86]            ∇ × 𝐻 = 𝐽 + 𝐺                             (4.7.1) 

Taking into account diffusion effect the equation of continuity takes the form  

∇. 𝐽 + 
𝜕𝜌

𝜕𝑡
−

𝜕𝜌ℎ

𝜕𝑡
+ 𝑐𝑑∇

2𝜌 = 0                                                                  (4.7.2)  

The current density 𝐽 is assumed to result from external ohmic field𝐽𝑂, beside 

bounded charge j b and diffusion process  𝐽𝑑 

𝐽 =  𝐽0 + 𝐽𝑏 + 𝐽𝑑                                                                                     (4.7.3)  

Where                   𝐽0 =
−𝜕𝐷

𝜕𝑡
 

⟹ ∇. 𝐽0 = − 
−𝜕

𝜕𝑡
(∇. 𝑃)     =

−𝜕

𝜕𝑡
                                                              (4.7.4) 

𝐽𝑏 =
−𝜕𝐷

𝜕𝑡
 

⟹ ∇. 𝐽𝑏 = − 
−𝜕

𝜕𝑡
(∇. 𝑃)     =

−𝜕𝜌𝑏

𝜕𝑡
                                                           (4.7.5) 

𝐽𝑑 = 𝑐𝑑∇𝜌 

⟹ ∇. 𝐽𝑑 = −𝑐𝑑∇
2𝜌                                                                                 (4.7.6) 

Thus the divergence of both sides of equation (4.7.3) gives  

∇. 𝐽 =  ∇. 𝐽0 + ∇. 𝐽𝑏 + ∇. 𝐽𝑑                                                                         (4.7.7) 

In view of equations (4.7.4) , (4.7.5) and (4.7.6)  

 ∇. 𝐽 =  − 
𝜕𝜌

𝜕𝑡
+

𝜕𝜌𝑏

𝜕𝑡
− 𝑐𝑑∇

2𝜌                                                                     (4.7.8) 



61 
 

By rearranging the above equation  

∇. 𝐽 =  + 
𝜕𝜌

𝜕𝑡
−

𝜕𝜌𝑏

𝜕𝑡
− 𝑐𝑑∇

2𝜌 = 0                                                              (4.7.9)                                                                         

To find the unknown 𝐺, one uses 

𝜌 =  ∇. 𝐷 = 𝜀. ∇. 𝐸                                                                                  (4.7.10) 

𝜌𝑏 = −∇. 𝑃                                                                                             (4.7.11) 

Taking the divergence of equation (4.7.1), one have           

  ∇. ∇ × 𝐻 = 0 

∇. ∇ × 𝐻 = ∇. 𝐽 + ∇. 𝐺 = 0                                                                 (4.7.12)                

Insert equation (4.7.12) in (4.7.8) yields  

−
𝜕𝜌

𝜕𝑡
−

𝜕𝜌𝑏

𝜕𝑡
− 𝑐𝑑∇

2𝜌 = −∇. 𝐺                                                                 (4.7.13) 

Using equation (4.7.10) and (4.7.11) yields  

−
𝜕𝜌

𝜕𝑡
(∇.𝐷) +

𝜕𝜌

𝜕𝑡
(−∇. 𝑃) − 𝑐𝑑∇. (𝛻𝜌) = −∇. 𝐺                                    (4.7.14)                                                                                  

But            ∇. 𝐷 = 𝜌 

Thus         ∇𝜌 =  ∇. (∇.𝐷)                                                                      (4.7.15) 

Using relations (4.7.10) and (4.7.15) yields  

−
𝜕

𝜕𝑡
(∇. 𝜀𝐸) +

𝜕

𝜕𝑡
(−∇. 𝑃) − 𝑐𝑑∇. (𝛻(∇. 𝐷)) = −∇. 𝐺               

  −
𝜕

𝜕𝑡
(∇. 𝜀𝐸) +

𝜕

𝜕𝑡
(−∇. 𝑃) − 𝑐𝑑∇. (𝛻(∇. 𝜀𝐸)) = −∇. 𝐺     

−𝜀∇.
𝜕𝐸

𝜕𝑡
− ∇.

𝜕𝜌

𝜕𝑡
−  ε𝑐𝑑∇. (𝛻(∇. 𝐸)) = −∇. 𝐺           

Comparing both sides of above equations yields  

𝜀
𝜕𝐸

𝜕𝑡
+

𝜕𝑃

𝜕𝑡
+  ε𝑐𝑑∇ (∇. 𝐸) = 𝐺           
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𝐺 =  ε
𝜕𝐸

𝜕𝑡
+

𝜕𝑃

𝜕𝑡
+  ε𝑐𝑑∇ (∇. 𝐸)                                                                 (4.7.16)  

Thus from equation (I) and the fact that   𝐽 = 𝜎0 𝐸 ,    ∇ × 𝐻 = 𝐽 + 𝐺 

∇ × 𝐻 = 𝜎0 𝐸 + 𝜀
𝜕𝐸

𝜕𝑡
+

𝜕𝑃

𝜕𝑡
+  ε𝑐𝑑∇ (∇. 𝐸)                                              (4.7.17) 

Also from Maxwell's equations we have  

∇ × 𝐸 = −𝜇
𝜕𝐻

𝜕𝑡
 

∇ × ∇ × 𝐸 = −𝜇
𝜕(∇×𝐻)

𝜕𝑡
                                                                           (4.7.18) 

From equation (4.7.16) and (4.7.1) one found that 

∇ × 𝐻 = 𝐽 + 𝜀
𝜕𝐸

𝜕𝑡
+

𝜕𝑃

𝜕𝑡
+  ε𝑐𝑑∇ (∇. 𝐸)                                                    (4.7.19)                   

Multiplying both sides of equation (4.7.19) by 𝜇 and differentiate over time t 

yields  

𝜇
𝜕

𝜕𝑡
(∇ × 𝐻) = 𝜇

𝜕𝐽

𝜕𝑡2
+ 𝜇

𝜕2𝐸

𝜕𝑡
+ ε𝜇𝑐𝑑∇ (∇.

𝜕𝐸

𝜕𝑡
)                                      (4.7.20) 

But            𝐽 = 𝜎𝐸                                                                                   (4.7.21) 

𝜇
𝜕

𝜕𝑡
(∇ × 𝐻) = 𝜇𝜎

𝜕𝐸

𝜕𝑡
+ 𝜇𝜀

𝜕2𝐸

𝜕𝑡2
+ 𝜇

𝜕2𝑃

𝜕𝑡2
+ ε𝜇𝑐𝑑∇ (∇.

𝜕𝐸

𝜕𝑡
)                       (4.7.22)                                          

Also we have               ∇ × ∇ × 𝐸 = −∇2𝐸 + ∇ (∇. 𝐸)                          (4.7.23) 

From equations (4.7.23), (4.7.22) and (18) yields  

−∇2𝐸 + ∇(∇. 𝐸) = 𝜇𝜀
𝜕2𝐸

𝜕𝑡2
+ 𝜇𝜎

𝜕𝐸

𝜕𝑡
+ 𝜇

𝜕2𝐸

𝜕𝑡2
+ ε𝜇𝑐𝑑∇(∇.

𝜕𝐸

𝜕𝑡
)   (4.7.24) 

From Maxwell's equation 

   −∇2𝐸 + 𝜇𝜎
𝜕𝐸

𝜕𝑡
+ 𝜇𝜀

𝜕2𝐸

𝜕𝑡2
+ 𝜇

𝜕2𝑃

𝜕𝑡2
+

m2c2

ℏ2
𝐸 = 0                                    (4.7.25) 
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Neglecting polarization effect and considering the propagation in free space 

where           𝜎 =   0 ,   𝜇 =      𝜇0     ,     𝜀 =      𝜀0           (4.7.26) 

𝜇0𝜀0 =      
1

𝑐2
                                                                                           (4.7.27) 

Where c is speed of light Equation(4.7. 25) reduce to  

−∇2𝐸 + 𝑧𝑒𝑟𝑜 + 𝜇0𝜀0
𝜕2𝐸

𝜕𝑡2
+ 𝑧𝑒𝑟𝑜 +

m2c2

ℏ2
𝐸 = 0                                    (4.7.28) 

−∇2𝐸 + 𝜇0𝜀0

𝜕2𝐸

𝜕𝑡2
+

m2c2

ℏ2
𝐸 = 0 

ℏ2 (−∇2𝐸 + 𝜇0𝜀0
𝜕2𝐸

𝜕𝑡2) + 𝑚2𝑐2𝐸 = 0                                                   (4.7.29) 

inserting equation (4.7.27) in (4.7.29) , one gets  

−ℏ2∇2𝐸 + ℏ2 1

𝑐2

𝜕2𝐸

𝜕𝑡2
+ 𝑚2𝑐2𝐸 = 0   

Multiplying both sides of above equation by𝑐2 

−ℏ2𝑐2∇2𝐸 + ℏ2 𝜕2𝐸

𝜕𝑡2
+ 𝑚2𝑐4𝐸 = 0                                                        (4.7.30) 

If the rest mass equals the relativistic mass,[87] when no potential exist then,  

𝑚 = 𝑚0 (1 −
𝑣2

𝑐2
+

2𝜙

𝑐2
) 

= 𝑚0(1 −
𝑣2

𝑐2
) 

When 𝑣 ≪< 

Thus equation (4.7.30) reduces to   

𝑚 = 𝑚0                                                                                                  (4.7.31) 

−ℏ2 𝜕2𝐸

𝜕𝑡2
= −ℏ2𝑐2∇2𝐸 + 𝑚2𝑐4𝐸                                                            (4.7.32) 
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Replacing E by 𝛹 in equation (4.7.32), one gets  

−ℏ2 𝜕2𝛹

𝜕𝑡2
= −ℏ2𝑐2∇2𝛹 + 𝑚2𝑐4𝛹                                                         (4.7.33) 

This is the ordinary Klein-Gordon Equation  

Schrodinger equation deals only with non-relativistic particles, thus it does 

not take into account the rest mass energy. On contrary Klein-Gordon 

equation can account for rest mass energy but does not have potential energy 

term for fields other than electromagnetic fields. Thus there is a need to find a 

new quantum equation that accounts for rest mass energy, beside potential 

energy. This can be done with the aid of equation (4.7.25), where one uses the 

mass expression of the generalized special relativity which is given by:  

𝑚   =       𝑚0 (1 +
2𝜑

𝑐2
−

𝑣2

𝑐2)
1

2
                                                                 (4.7.34) 

𝑚2    =       𝑚0
2 (1 +

2𝜑

𝑐2
−

𝑣2

𝑐2
) 

𝑚2    =       𝑚0
2 + 2𝑚0 (

𝑚0𝜑

𝑐2 ) −
𝑚0

2𝑣2

𝑐2
                                                  (4.7.35) 

But we have  

𝑚0𝜑    =       𝑉 

𝑚0𝑣    =       𝑉 

Substituting equation (4.7.37) and (4.7.36) in (4.7.35), one gets  

𝑚2    =       𝑚0
2 + 2𝑚0

𝑉

𝑐2
−

𝑃2

𝑐2
                                                               (4.7.38) 

Multiplying both sides of equation (38) by 𝐸𝑐4  

𝑚2𝑐4𝐸 =   𝑚0
2𝐸 + 2𝑚0𝑐

2𝑉𝐸 − 𝑃2𝑐2𝐸                                              (4.7.39) 

But for oscillating electric field  

𝐸 = 𝐸0𝑒
𝑖(𝑘𝑥−𝜔𝑡) 
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𝜕𝐸

𝜕𝑥
= 𝑖𝑘𝐸0𝑒

𝑖(𝑘𝑥−𝜔𝑡) 

∇2𝐸 =
𝜕2𝐸

𝜕𝑥2
= 𝑖2𝑘2𝐸0𝑒

𝑖(𝑘𝑥−𝜔𝑡) 

∇2𝐸 = −𝑘2𝐸 

ℏ2∇2𝐸 = −ℏ2𝑘2𝐸 

ℏ2∇2𝐸 = −𝑝2𝐸                                                                                                (4.7.40)  

Thus equation (4.7.39) becomes  

𝑚2c4𝐸 = 𝑚0
2c4𝐸 + 2𝑚0𝑐

2𝑉𝐸 − 𝑐2ℏ2∇2𝐸                                              (4.7.41) 

By using the identity 𝜇𝜀 =
1

𝑐2
 and inserting equation                             (4.7.41)  

in equation (4.7.25) 

−𝑐2ℏ2∇2𝐸 + −𝑐2ℏ2𝜇𝜎
𝜕𝐸

𝜕𝑡
+ ℏ2 𝜕2𝐸

𝜕𝑡2 + 𝑚0

2

c4𝐸 + 2𝑚0𝑐
2𝑉𝐸 − 𝑐2ℏ2∇2𝐸 = 0  

Replacing 𝐸 by 𝜓 and collecting similar terms leads to the new quantum 

equation of the form  

−𝑐2ℏ2∇2𝜓 + −𝑐2ℏ2𝜇𝜎
𝜕𝜓

𝜕𝑡
+ ℏ2

𝜕2𝜓

𝜕𝑡2
+ 𝑚0

2

c4𝜓 + 2𝑚0𝑐
2𝑉𝜓 − 𝑐2ℏ2∇2𝜓 = 0     (4.7.42) 

4.8 summary and critique 

In all attempts mentioned in this paper the properties of bulk matter in relation 

to the electric field is studied . some of them find is so resistance vanishing 

conditions, while others tries to link electric field to the quantum behavior of 

the system .other attempts tries to relate lasing condition to the relation 

between external and magnetic field. Unfortunately none of them tries to 

study the real nature of internal medium electric field and its role in the 

resistance and conductivity of the medium.  
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Chapter five 

The nature of Internal Field In relation to conductivity 

and Light Amplification 

5.1  introduction: 

This chapter is concerned with the relation between the velocity and current 

generated by an electric field which exerts force an electron It also discusses 

the relation between the electric field generated by an alternating current or an 

oscillating electron with periodic velocityalso Electric conductivity by using 

RLC circuits Relations and using Effective values and using complex 

Representation.[88] 

 5.2  the electric field generated by electric current  

The generation of the electric field is described by Maxwell's equations which 

takes the form[89]  

∇ ×E   =−
∂B

∂t
=𝜇

𝜕𝐻

𝜕𝑡
 

∇  ⃑⃑⃑⃑ ×  H = 𝐽 +
𝜕𝐷

𝜕𝑡
= 𝜎𝐸 + 𝜖

𝜕𝐸

𝜕𝑡
                                                                            (5.2.1) 

Where  B , H  , J ,and D stands for  magnetic flux density  magnetic  field  

intensity , current density  and electric field  intensity respectively ,while 𝜇 

and 𝜖, 𝜎 represents magnetic permeability ,electric permittivity and electric 

conductivity  where  

D= 𝜖 E ,B= 𝜇 H  

The electric charge density  generated the electric field according the relation   

∇  ⃑⃑⃑⃑ . 𝐷 = 𝜌 = 𝑛𝑒,         ∇  ⃑⃑⃑⃑ . 𝐵 = 0 

J =𝜎E  =  𝑛𝑒𝑣 = 𝜌𝑣                                                                                            ( 5.2.2) 
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Hence n stand for the number of electrons per unit volume . 

The magnetic flux density can be defined in terms of a vector potential to be  

B=∇⃑⃑ ×A                                                                                                    (5.2.3) 

In view of (5.2.1) , the curl of E become  

∇  ⃑⃑⃑⃑ ×   𝐸 = −∇⃑⃑ ×
𝜕𝐴

𝜕𝑡
  

Thus   

∇⃑⃑ × ( E +
𝜕𝐴

𝜕𝑡
) = 0 

Hence one can define another scalar potential 𝑉 to be   

E+
𝜕𝐴

𝜕𝑡
= −∇ ⃑⃑  ⃑𝑉 

i.e.  

E=−
𝜕𝐴

𝜕𝑡
− ∇  ⃑⃑⃑⃑ 𝑉                                                                                                     ( 5.2.4) 

A is called magnetic vector potential , while  V is multiplying (5.2.1) by 𝜇 

and using  (5.2.2) yields 

∇⃑⃑ × 𝜇𝐻 = 𝜇𝐽 + 𝜇𝜖
𝜕𝐸

𝜕𝑡
 

∇⃑⃑ ×B=𝜇𝐽 +  𝜇𝜖
𝜕E

𝜕𝑡
 

Using (5.2.3) the above equation become : 

∇⃑⃑ × ∇⃑⃑ × 𝐴 = 𝜇𝜖
𝜕𝐸

𝜕𝑡
+ 𝜇𝐽                                                                                   (5.2.5) 

This expression can be simplified by using the vector identity[90] 

∇⃑⃑ × ∇⃑⃑ × 𝐴 = ∇  ⃑⃑⃑⃑ (∇  ⃑⃑⃑⃑ .A)   - ∇2A                                                                (5.2.6) 

To get                    
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∇  ⃑⃑⃑⃑ (∇  ⃑⃑⃑⃑ .A)   -∇2A  = −𝜇𝜖 [ 
𝜕2𝐴

𝜕𝑡2
 + ∇  ⃑⃑⃑⃑ (

𝜕𝑉

𝜕𝑡
 )  ] + 𝜇𝐽 

∇2A  = 𝜇𝜖
𝜕2𝐴

𝜕𝑡2
+ ∇  ⃑⃑⃑⃑ [  (∇  ⃑⃑⃑⃑ . A) + 𝜇𝜖

𝜕𝑉

𝜕𝑡
  ] − 𝜇𝐽                                               (5.2.7) 

This expression can be simplified by selecting the following gauge  

∇  ⃑⃑⃑⃑ . A + 𝜇𝜖
𝜕𝑉

𝜕𝑡
= 0                                                                                               (5.2.8) 

As  a result equation  (5.2.7) reduce to  

∇2A  - 𝜇𝜖
𝜕2𝐴

𝜕𝑡2
= −𝜇𝐽                                                                                           (5.2.9) 

This equation can solved by assuming A to be in the form  

A=A0𝑠𝑖𝑛 (𝑘𝑥 − 𝜔𝑡 )                                                                                       ( 5.2.10) 

Differentiating  worth  x ant t, one gets 

∇2A  =−𝑘2𝐴                              
𝜕2𝐴

𝜕𝑡2
= −𝜔2𝐴                                               (5.2.11) 

Inserting (5.2.10) and (5.2.11)in (5.2.9) yields 

(−𝑘2 + 𝜇𝜖𝜔2)𝐴 = −𝜇𝐽 

 𝜇𝐽 = (𝑘2 − 𝜇𝜖𝜔2)𝐴                                                                                      (5.2.12) 

The current density is becomes 

 𝜇𝐽 = 𝐴0(𝑘
2 − 𝜇𝜖𝜔2)𝑠𝑖𝑛 (𝑘𝑥 − 𝜔𝑡 )                                                          (5.2.13) 

One can re write  J in the form  

 𝜇𝐽 = 𝐽0𝑠𝑖𝑛 (𝑘𝑥 − 𝜔𝑡 )                                                                                    (5.2.14) 

Where 

𝐽0 =
𝐴0

𝜇
(𝑘2 − 𝜇𝜖𝜔2)                                                                                       (5.2.15) 
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On the other hand the current density can be defined in terms of the velocity v 

in the form  

𝐽 = 𝑛𝑒𝑣 

Where n stands for the number density of electrons. hence  

 V=
𝐽

𝑛𝑒
=

𝐽0

𝑛𝑒
𝑠𝑖𝑛 (𝑘𝑥 − 𝜔𝑡 )                                                                             (5.2.16) 

The velocity v  can thus be rewritten in the form  

v=𝑣0 sin(𝑘𝑥 − 𝜔𝑡 )                                                                                         (5.2.17) 

where  

𝑣0 =
𝐽0
𝑛𝑒

                                                          

Substituting (5.2.10) in (5.2.4) yields 

E=−
𝜕𝐴

𝜕𝑡
− ∇  ⃑⃑⃑⃑ 𝑉                                                                                                    (5.2.18) 

E=+𝜔𝐴0 cos(𝑘𝑥 − 𝜔𝑡 ) − ∇  ⃑⃑⃑⃑ 𝑉                                                                     (5.2.19) 

Utilizing (5.2.8) and (5.2.10) yields: 

𝜇𝜖
𝜕𝑉

𝜕𝑡
= −∇  ⃑⃑⃑⃑ .A 

 𝜇𝜖
𝜕𝑉

𝜕𝑡
= −𝑘𝐴0cos(𝑘𝑥 − 𝜔𝑡 )                                                                       (5.2.20)      

Equation (5.2.20) can be solved by suggesting v to be in the form  

V=V0sin(𝑘𝑥 − 𝜔𝑡 )                                                                                          (5.2.21) 

thus (5.2.20) reads  

−𝜇𝜖𝜔 V0cos(𝑘𝑥 − 𝜔𝑡 ) = −𝑘𝐴0 cos(𝑘𝑥 − 𝜔𝑡 )  

This  requires V0 to be in the form  
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V0 =
𝑘𝐴0

𝜇𝜖𝜔
                                                                                                           (5.2.22) 

Inserting (5.2.21) in (5.2.19) yields 

E=𝜔𝐴0 cos(𝑘𝑥 − 𝜔𝑡 ) – 𝑘V0 cos(𝑘𝑥 − 𝜔𝑡 )                                               (5.2.23) 

Hence  the electric field generated by the current density J becomes  

 E=𝐸0 cos(𝑘𝑥 − 𝜔𝑡 )                                                                                       (5.2.24) 

 Thus the electric field E in equation (5.2.24) generated by the current J in 

equation (5.2.16) due to the motion of charges with velocity v in equation  

(5.2.17) Indicates that the electric field E 900 out of phase w.r.t to J and v. 

This is confirmed by the fact that when : 

𝑣 = 𝑣0 sin(𝑘𝑥 − 𝜔𝑡 )      𝑠𝑒𝑒    (5.2.23) 

𝑚
𝜕𝑣

𝜕𝑡
= 𝑒𝐸 

−𝑚𝑤𝑣0 cos(𝑘𝑥 − 𝜔𝑡 ) = 𝑒𝐸 

Thus                     𝐸 =  
−𝑚𝑤𝑣0

𝑒
cos(𝑘𝑥 − 𝜔𝑡 ) 

This can be explained also by circular motion=𝐸0 cos(𝑘𝑥 − 𝜔𝑡 ) 

Where 𝑣 = 𝑣0 sin(𝜔𝑡 ) 

𝑎 =
𝜕𝑣

𝜕𝑡
= 𝑤𝑣0 cos(𝜔𝑡 ) 

𝐹 = 𝑒𝐸 = 𝑚𝑎 = 𝑚𝑤𝑣0 cos(𝜔𝑡 ) 

The acceleration and force are perpendicular to v 
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5.3 The electric conductivity of Direct and alternating current  

To find the conductivity of any material consider a electron v in an alternative 

medium of coefficient[91]  

𝑚
𝑑𝑣

𝑑𝑡
= −𝑒𝐸 − 𝛾𝑣                                                                                              (5.3.1) 

Far steady state flow the velocity v is constant and the acceleration vanishes 

i.e.   

𝑑𝑣

𝑑𝑡
= 0                                                                                                                   (5.3.2) 

Thus (5.3.1) reads  

𝛾𝑣 = 𝑒𝐸            𝑣 =
𝑒𝐸

𝛾
 

Hence the current density is given by 

𝐽 = 𝑛𝑒𝑣 =
𝑛𝑒2𝐸

𝛾
= 𝜎𝐸                                                                                      (5.3.3) 

Thus the conductivity is given by  

𝜎 =
𝑛𝑒2

𝛾
                                                                                                                (5.3.4) 

In the case when the acceleration does not vanish ,when E is oscillation the 

equation of motion is given by  

𝑚
𝑑𝑣

𝑑𝑡
= −𝑒𝐸0 sin𝜔𝑡 – 𝛾𝑣                                                                                 (5.3.5) 

The solution of this equation ,thus is given by assuming v to be  

𝑣 = 𝑣0 sin(𝜔𝑡 + ∅)   

= 𝑣01
sin𝜔𝑡 + 𝑣02

cos𝜔𝑡                                                                               ( 5.3.6) 

𝑣01
= 𝑣0cos∅ , 𝑣02

= 𝑣0 sin∅ 
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The current density J is given by 

    𝐽 = 𝑛𝑒𝑣 

= 𝑛𝑒(𝑣01
sin𝜔𝑡 + 𝑣02

cos𝜔𝑡)                                                                        (5.3.7) 

The conductivity is defined by in terms of J and E to be  

𝐽 = 𝜎𝐸 = 𝜎𝐸0 sin𝜔𝑡                                                                                          (5.3.8) 

Which is not consistent with relation (5.3.7) thus one needs to redefine the 

conductivity to be in the form 

𝐽 =  𝑛𝑒(𝑣01
sin𝜔𝑡 + 𝑣02

cos𝜔𝑡) 

𝐽 = 𝜎1E0 sin𝜔𝑡 + 𝜎2𝐸0𝑖
cos𝜔𝑡 

𝐽 = 𝜎1𝐸 + 𝜎2𝐸𝑖                                                                                                                  (5.3.9) 

This indicates the existence of internal electric field , which  results in a 

velocity of the form      𝑣 = 𝑣0 sin(𝜔𝑡 + ∅)                                              (5.3.10) 

 

Fig(5.1) external field E and the internal field 𝐸𝑖 



72 
 

But since the external field E and the internal field 𝐸𝑖 are given by equation 

(5.3.9) to be  

𝐸 = 𝐸0 sin𝜔𝑡 

𝐸𝑖 = 𝐸0𝑖
cos𝜔𝑡 

Thus we have two conductivity types , 𝜎1 which reflect the response of 

charges to external field E and 𝜎2 which reflects the response to the internal 

filed 𝐸𝑖 

5.4 amplification conditions on the basis of phase 

relation to the electric susceptibility    

The electric dipole moment P is related to the displacement 𝑥 Between the 

nucleus and electron cloud according to the equation:[92] 

𝑃 = 𝑍𝑒𝑥                                                                                                              (5.4.1) 

Where Z is the atomic number ,thus 𝑍𝑒 is the charge of each dipole the 

displacement  𝑥  is given with  : 

𝑥 = ∫𝑣 𝑑𝑡  =    𝑣˳∫ cos(𝜔𝑡 + ∅) 𝑑𝑡  

𝑥 =
𝑣˳

𝜔
sin(𝜔𝑡 + ∅) 

𝑥 = 𝑥˳ sin(𝜔𝑡 + ∅) , 𝑥˳ =  
𝑣˳

𝜔
                                                                           (5.4.2) 

 Inserting (5.4.2) in (5.4.1) yields  

 𝑃 = 𝑍𝑒𝑥˳ sin (𝜔𝑡 + ∅) 

𝑃 = 𝑍𝑒𝑥˳𝑐𝑜𝑠∅𝑠𝑖𝑛𝜔𝑡 − 𝑍𝑒𝑥˳𝑠𝑖𝑛∅ cos𝜔𝑡                                                     (5.4. .3) 
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The electric dipole moment can also be written in terms of the applied 

external  electric field E and the medium field perpendicular to it Em in the 

form  

𝑝 = 𝑥1𝐸 + 𝑥2 𝐸𝑚 

𝑝 = 𝒳1 𝐸𝑚˳ cos𝜔𝑡 + 𝒳2𝐸˳ sin𝜔𝑡                                                                  (5.4.4) 

Comparing equation  (5.4.3) and (5.4.4) yields : 

𝑥1𝐸0𝑚 = −Z𝑒𝑥0 sin ∅ 

𝑥2𝐸0 = Z𝑒𝑥0 cos ∅                                                                                            (5.4.5) 

The electric dipole moment can be write in a complex form in terms of 𝑥1 and 

𝑥2 to b e  

P=( 𝑥1+𝑗𝑥2)E =( 𝑥1+𝑗𝑥2)𝐸0   𝑒
𝑗𝜔𝑡                                                          (5.4..6) 

But the current generated by p is given by : 

j =
𝑑𝑝

𝑑𝑡
= 𝑥

𝑑𝐸

𝑑𝑡
= 𝑥

𝑑𝐸0   𝑒
−𝑗𝜔𝑡

𝑑𝑡
 

−𝑗𝜔 𝑥E    =−j𝜔(𝑥1+𝑗𝑥2  ) E =( 𝜔𝑥2 − 𝑗𝜔𝑥1)E  

= (𝜔𝑥2 − 𝑗𝜔𝑥1 ) E                                                                                    (5.4.7) 

Since     𝑥 = 𝑥1+𝑗𝑥2  one can write   

   𝑥2 = 𝑥𝑐𝑜𝑠φ , 𝑥1 = 𝑥𝑠𝑖𝑛φ                                                                      (5.4.8) 

The current density J can also be written in terms of σ1  and σ2   to be  

𝐽 = (𝜎1 + 𝑗𝜎2)Ḛ                                                                                                   (5.4.9) 

Thus  comparing (5.4.7) and (5.4.9) yields  

𝜎1 = 𝜔𝑥2   , 𝜎2 = −𝜔𝑥1                                                                                 (5.4.10) 

Thus according to equation for (4.6.13) amplification factor is given by  



74 
 

β =
μ c 𝜔

    𝑛1
 𝑥2                                                                                                      (5.4.11) 

to express β in terms of the phase ∅ , one uses equation (5.4.2)  and(5.4.5) and 

(5.4.8)to get from(5.4.11)  

β =  
μ c𝜔𝑧𝑒𝑥˳  

𝑛1𝐸˳
cos∅                                                     

where   𝑞 = 𝑧𝑒         and  𝑥˳ =  
𝑣˳

𝜔
 

β =  
μ c 𝑞𝑣˳  

𝑛1𝐸˳
cos∅                                                                                           (5.4.12) 

again ,when v and E are in phase ∅ =0 , and  

β =  
μ c 𝑞𝑣˳  

𝑛1𝐸0𝑚

                                                                                                     (5.4.13) 

and amplification takes place , as far as β does not vanish . if ∅ = 90 , β = 0 

and no amplification takes place for ∅ = 𝜋 

β = − 
μ c 𝑞𝑣˳  

𝑛1𝐸0𝑚

 

the incident radiation is absorbed by the medium . 

5.5 Relation between current and electric field in terms of  a Circuit  

Equation (5.3.1)which describes electron motion , under the action of E only 

,indicates  that on electric field E generates  a current J with electrons moving 

with velocity V out of phase w.r.t E by 90 . to see how can this understood on 

the basis of AC electric circuits consider [93]                   

  𝐸 =  𝐸0𝑒
𝑖(𝑤𝑡−𝑘𝑥)         𝑣 =  𝑣0𝑒

𝑖(𝑤𝑡−𝑘𝑥)                                                      (5.5.1) 

Thus the equation of motion(5.3.4)  in the absence of resistive force becomes  

𝑖𝑚𝜔𝑣 = −𝑒𝐸 

Thus :- 
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J= 𝑛𝑒𝑣 = 
−𝑛𝑒2

𝑖𝑚𝜔
𝐸 = 𝜎𝐸                                                                                        (5.5.2) 

The electric current is defined to result from the motion of positive charge 

.therefore we have to replace  – e by e in the equation of motion .thus the 

impendence becomes  

𝑧 =
𝜌𝑑

𝐴
=

𝑑

𝜎𝐴
=

𝑚𝑑

𝐴𝑛𝑒2
𝜔 = 𝜔𝑙                                                                         (5.5.3) 

This solution can describe electron current conductivity for electron generated 

by  thermionic emission 

Thus the material here behaves as an inductor of inductive reactance    

𝑥𝑙 = 𝜔𝑙 = 𝜔 (
𝑚𝑑

𝐴𝑛𝑒2)                                                                                           (5.5.4)        

When the medium becomes resistive ,the equation of motion becomes  

[𝑖𝑚𝜔 + 𝛾]𝑣 = 𝑒𝐸 

Thus 

 𝐽 = 𝑛𝑒𝑣 =  
𝑛𝑒2

(𝛾+𝑖𝑚𝜔)
= 𝜎𝐸 

Thus the impendence becomes  

𝑧 =
𝜌𝑑

𝐴
=

𝑑

𝜎𝐴
=

𝑑  (𝛾 + 𝑖𝑚𝜔)

𝐴𝑛𝑒2
=    

𝑑𝛾

𝐴𝑛𝑒2
+ 𝑖𝜔 (

𝑚𝑑

𝐴𝑛𝑒2
) = 𝑅 + 𝑖𝜔𝑙

= 𝑅 + 𝑖𝑥𝑙                                                                                       (5.5.5) 

This indicates that in the absence of resistive force the electric field generates 

a current out of phase by 90. The medium in this case acts as an inductor. In 

the presence of resistive frictional force in the medium the electric field and 

the velocity becomes  

𝐸 = 𝐸0 sin𝜔𝑡                 𝑣 = 𝑣0 sin(𝜔𝑡 + ∅)                                              (5.5.6) 
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Thus E and V are out of phase by ∅ degree .this situation corresponds to the 

existence of inductor and resistor in series. 

The relation between v and E when E is generated by current is discussed in 

section (5.2).  While E is given by (5.2.4). To find relation between E and V 

beside J in a complex form, one can insert (5.5.1) 1n (5.2.2) and then in 

(5.2.9) by suggesting  

 𝐴 = 𝐴0𝑒
𝑖[𝜔𝑡−𝑘𝑥]                                                                                                 (5.5.7) 

To get      

𝐴0(−𝑘2 + 𝜇𝜖𝜔2) = 𝜇𝐽0                                                                                    (5.5.8) 

5.6 Electric conductivity by using RLCcircuits Relations. 

In resistance, Capacitor and inductor circuit, There is a phase 

difference between currents and voltages . For resistor and coil connected in 

series, the total voltage is given by [94]  

V = 𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖                                                                                            (5.6.1) 

Where the current is given by       𝑖 = 𝑖0 𝑠𝑖𝑛𝜔𝑡 

 Thus  

𝑉 = 𝑤𝑙𝑖0 𝑐𝑜𝑠𝑤𝑡 + 𝑅𝑖0 𝑠𝑖𝑛𝑤𝑡 

= 𝑉0 sin(𝜔𝑡 + ∅) =  𝑥𝐿𝑖𝑐𝑜𝑠𝑤𝑡 + 𝑅𝑖0 𝑠𝑖𝑛𝑤𝑡  

𝑉0 sin𝜔𝑡𝑐𝑜𝑠∅ + 𝑣0𝑐𝑜𝑠∅𝑠𝑖𝑛𝑤𝑡 = 𝑥𝐿𝑖0 𝑐𝑜𝑠𝑤𝑡 = 𝑅𝑖0 𝑠𝑖𝑛𝑤𝑡 

𝑉0𝑠𝑖𝑛𝑤 = 𝑥𝐿𝑖0              𝑣0𝑐𝑜𝑠∅ = 𝑅𝑖0  

𝑉0
2𝑠𝑖𝑛2∅ + 𝑣0

2𝑐𝑜𝑠2∅ = [𝑥𝐿
2 + 𝑅2]𝑖0 

2 

𝑉0 = √𝑥𝐿
2 + 𝑅2  𝑖0                                                                                   (5.6.2) 
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This situation resembles that of the electron vibrating in an 

oscillating electric field The equation of motion of electron is given by  

𝑚
𝑑𝑣

𝑑𝑡
= −𝑒𝐸 − 𝛾𝑚𝑣          𝛾 =   

1

𝜏
                                                              (5.6.3) 

Consider the electron velocity  be in the form  

𝑉 = 𝑣0 sin𝑤𝑡                                                                                            (5.6.4) 

Thus inserting this expression (5.6.4) in (5.6.3) yields 

𝑚𝑤𝑣0 cos𝑤𝑡 = 𝑒𝐸 − 𝛾𝑚𝑣0 sin𝑤𝑡 

𝑚[𝑤𝑣0 cos𝑤𝑡 + 𝛾𝑣0 sin𝑤𝑡] = 𝑒𝐸 

Multiplying both sides by the conductor length α the potential is given by    

𝑚𝑑

𝑛𝑒2
[𝑛𝑒𝑤𝑣0 cos𝑤𝑡 + 𝛾𝑛𝑒𝑣0 sin𝑤𝑡] = 𝐸𝑑 = 𝑉                                       (5.6.5) 

But the maximum current 𝑖0 and current density 𝑗0 are given by   

𝑛𝑒𝑣0 = 𝑗0            𝑖0  = 𝑗0𝐴  

Hence equation(5.6.5)can be re written as  

𝑉 =
𝑚𝑑

𝑛𝑒2𝐴
[
𝑥𝐿

𝐿
𝑖0 cos𝑤𝑡 + 𝛾𝑖0 sin𝑤𝑡]                                                        (5.6.6) 

Where  𝑥𝐿 = 𝑤𝐿 ,thus 

𝑉 = [
𝑚𝑑𝑥𝐿

𝑛𝑒2𝐴𝐿
𝑖0 cos𝑤𝑡 +

𝑚𝑑𝛾

𝑛𝑒2𝐴
𝑖0 sin𝑤𝑡]                                                     (5.6.7) 

Comparing (5.6.6)and(5.6.7) yields  

σ =
𝑛𝑒2𝜏

𝑚
        𝝆 =

1

σ
  =     

𝑚

𝑛𝑒2𝜏
=     

𝑚𝛾

𝑛𝑒2
           𝐿 =

𝑚d

𝑛𝑒2𝐴
 

But  the resistance R and inductive reactance 𝑥𝐿 are given by       

𝑅 =
 𝝆𝑑

𝐴
= 

𝑚𝛾𝑑

𝑛𝑒2𝐴  
                   𝑥𝐿 = 

𝑚𝑑𝑤

𝑛𝑒2𝐴
= 𝑤𝐿                                 (5,6.8) 
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Thus the potential can be written as 

𝑉 = 𝑥𝐿𝑖0𝑐𝑜𝑠𝑤𝑡 + 𝑅𝑖0𝑠𝑖𝑛𝑤𝑡                                                         (5.6.9) 

But one can write  

𝑉 = 𝑉0 sin(𝜔𝑡 + ∅) =𝑣0𝑠𝑖𝑛∅𝑐𝑜𝑠𝑤𝑡 + 𝑣0𝑐𝑜𝑠∅𝑠𝑖𝑛𝑤𝑡               (5.6.10) 

Comparing equation (5.6.9)and (5.6.10)  

𝑉0𝑠𝑖𝑛∅ = 𝑥𝐿𝑖0          𝑉0𝑐𝑜𝑠∅ =   𝑅𝑖0    

There for  

𝑉0
2𝑠𝑖𝑛2∅ + 𝑉0

2𝑐𝑜𝑠2∅ = 𝑉0
2 = [𝑥𝐿

2 + 𝑅2]𝑖0
2 

𝑉0 = √𝑥𝐿
2 + 𝑅2   𝑖0                                                                      (5.6.11) 

Hence the impedance is given by  

𝑍 =
𝑉𝑒
𝑖𝑒

=

𝑉0

√2
𝑖0

√2

=
𝑉0

𝑖0
= √𝑥𝐿

2 + 𝑅2 =
1

𝑦
    

The admittance can thus be given to be  

𝑦 =
𝑖0

𝑉0
=

σ𝐴

𝑑
=

1

√𝑥𝐿
2+𝑅2 

                                                                 (5.6.12) 

Using equation (5.6.8) the total conductivity is given by  

σ =
1

𝜌
=

𝑑

𝐴𝑅
=

𝑑

𝐴𝑍
=

𝑑

𝐴
𝑦 =

𝑑

𝐴

1

√𝑥𝐿
2+𝑅2 

                                            (5.6.13) 

where the potential takes the form [see(5.6.9)and(5.6.10)]  

𝑉 = 𝐸𝑑 = 𝐸0dsin(𝑤𝑡 + ∅)   

= 𝐸0dsin(𝑤𝑡 + ∅) = 𝑣0sin(𝑤𝑡 + ∅)                                         (5.6.14)  

Thus  according to equation (5.6.14) the electric field inside the        

medium is given by 
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 E = 𝐸0sin (𝑤𝑡 + ∅) 

E = 𝐸0sin∅ 𝑐𝑜𝑠𝑤𝑡 + 𝐸0𝑐𝑜𝑠∅𝑠𝑖𝑛𝑤𝑡                                         (5.6.15) 

In view of equation (5.6.5) the part including 𝑤 is related to inductance 

which is proportional 𝑤 thus the internal field is generated electromagnetic 

induction, since the resistive  term in equation (5.6.5) most stand for 

resistance   to the external field E through friction coefficient      

𝑉𝑖 = 𝐿
𝑑𝑖

𝑑𝑡
 

But the current 𝑖 takes the form :  𝑖 = 𝑛𝑒𝐴𝑣 thus the inductive voltage 

is related to the internal generated potential according to the relation  

𝑉𝑖 = 𝐸𝑖𝑑 =
𝑒𝑛𝐴𝐿𝑑𝑣

𝑑𝑡
=

𝑒𝑛𝐴𝐿𝑑(𝑣0𝑠𝑖𝑛𝑤𝑡)

𝑑𝑡
 

= 𝑒𝑛𝐴𝐿𝑣0𝑐𝑜𝑠𝑤𝑡 = 𝑑𝐸0𝑖𝑐𝑜𝑠𝑤𝑡 = 𝑑𝐸𝑖 

Thus the internal field is given by 

  𝐸𝑖 = 𝐸0𝑖𝑐𝑜𝑠𝑤𝑡                                                                                      (5.6.16) 

Hence according to equation (5.6.15)           𝐸𝑖 = 𝐸0sin∅ 𝑐𝑜𝑠𝑤𝑡  

which means that                       

    𝐸0𝑖 = 𝐸0sin∅                                                                                       (5.6.17) 

the external field is thus given by 

  𝐸𝑒 = 𝐸0𝑖sinwt =  𝐸𝑖 = 𝐸0cos∅ 𝑠𝑖𝑛𝑤𝑡                                                (5.6.18) 

Thus σ1 can be found to be from equation (8) to get 

𝑅 =
𝑑

σ1𝐴
=

𝝆1𝑑

𝐴
                                                                               (5.6.19) 

But   𝑥𝐿 = 𝑤𝑙 =
𝑑

σ2𝐴
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𝑥𝐿 =
𝑤𝑚𝑑

𝑛𝑒2𝐴
= c0

𝑑

𝐴
=

1

σ2

𝑑

𝐴
                                                               (5.6.20) 

Thus the conductivity for inductance takes the form  

c0 =
𝑤𝑚

𝑛𝑒2
=  

1

σ2
= 𝝆2                                                                    (5.6.21) 

          σ = (
𝑑

𝐴
) =

1

(
𝑑

𝐴
)√(

1

σ1
)2 + (

1

σ2
)2 

 

thus 

1

σ
= √(

1

σ1
)2 + (

1

σ2
)2                                                                                 (5.6.22) 

Therefore the net resistivity is given by 

𝝆 = √𝝆1
2 + 𝝆2

2                                                                                     (5.6.23) 

5.7  Electric conductivity by using Effective values.  

The electric conductivity can also be found by using directly the concept of 

current density and electric field. The electric field E and current density J are 

related by  

  j𝑒 = σE𝑒                                                                                                  (5.7.1) 

Where J𝑒and E𝑒 are the effective values which are related to the maximum 

values J0 and E0 , thus  

J𝑒 =
J0

√2
 

E𝑒 =
E0

√2
 

  j0 = σE0                                                                                                  (5.7.2) 
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According to equation The electron equation of motion becomes. 

𝑚𝑤𝑣0 cos𝑤𝑡 + 𝛾𝑚𝑣0 sin𝑤𝑡  = 𝑒𝐸0 sin(𝑤𝑡 +∅)                                      (5.7.3)                                           

= 𝑒𝐸0 sin∅cos𝑤𝑡 +𝑒𝐸0𝑐𝑜𝑠∅𝑠𝑖𝑛𝑤𝑡) 

= 𝑒𝐸𝑒0𝑐𝑜𝑠𝑤𝑡 + 𝑒𝐸𝑖0𝑠𝑖𝑛𝑤𝑡                                                                      (5.7.4) 

Where the total electric field is given by  

𝐸 = 𝐸0 sin(𝑤𝑡 +∅)= 𝐸0 sin∅cos𝑤𝑡 +𝐸0𝑐𝑜𝑠∅𝑠𝑖𝑛𝑤𝑡                          (5.7.5) 

Comparing equation (5.7.3)and (5.7.5) yields  

𝑚𝑤𝑣0 = 𝑒𝐸𝑖0 = 𝑒𝐸0sin∅                                                     

𝑚𝛾𝑣0 = 𝑒𝐸𝑒0 = 𝑒𝐸0cos∅                                                                        (5.7.6) 

But the current density is related to the velocity by  

  𝑗0 = 𝑛𝑒𝑣0                                                                                                (5.7.7) 

Using equation (5.7.6) by squaring both sides one gets  

[𝑚2𝑤2 + 𝑚2𝛾2]𝑣0
2 = 𝑒2𝐸0

2[𝑠𝑖𝑛2∅ + cos2∅] = 𝑒2𝐸0
2 

Hence 

𝑒𝐸0 = 𝑚√𝑤2 + 𝛾2 𝑣0                                                                              (5.7.8) 

 𝑣0 =
𝑒𝐸0

𝑚√𝑤2+𝛾2
                                                                                          (5.7.9) 

Inserting equation (5.7.9) in (5.7.7) yields  

𝑗0 =
𝑛𝑒2𝐸0

𝑚√𝑤2+𝛾2
                                                                                          (5.7.10) 

Comparing equations (5.7.10) and (5.7.2)yields  

σ =
1

√𝑚2𝑤2

𝑛2𝑒4 +
𝑚2𝛾2

𝑛2𝑒4

                                                                                       (5.7.11) 

in view of equations (5.6.8) and (5.6.20) 
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σ =
1

√(
1

σ1
)2 + (

1

σ2
)2 

 

1

σ
= √(

1

σ1
)2 + (

1

σ2
)2                                                                  (5.7.12) 

Hence  

𝝆 = √𝝆1
2 + 𝝆2

2                                                                     (5.7.13) 

 

5.8 Electric conductivity using complex Representation 

  Another alternative can be also used to find the total conductivity and 

resistivity by suggesting V to be in a complex form as  

𝑣 = 𝑣0𝑒
𝑖𝜔𝑡                                                                                              (5.8.1) 

But the electron equation in a resistive medium is given by  

𝑚
𝑑𝑣

𝑑𝑡
= −𝑒𝐸 − 𝛾𝑚𝑣                                                                                  (5.8.2)  

Substituting equation (5.8.1) in (5.8.2)yields 

 𝑖𝑚𝑤𝑣 = −𝑒𝐸 − 𝛾𝑚𝑣                                        

(𝑖𝑚𝑤 + 𝛾𝑚)𝑣 = 𝑒𝐸                                                                                 (5.8.3) 

Since external field is related to conductor resistance through V and 𝛾 Which 

recognizes resistance thus 𝐸𝑒 = 𝐸0cos∅ 𝑠𝑖𝑛𝑤𝑡   Which is the real part of E 

stands for external field .Hence   

Let  𝐸 = (𝐸𝑒 + 𝑖𝐸𝑖)𝑒
𝑖𝜔𝑡  

 = (𝐸0𝑐𝑜𝑠∅ + 𝑖𝐸0𝑠𝑖𝑛∅)𝑒𝑖𝜔𝑡 = 𝐸0   𝑒
𝑖(𝜔𝑡+∅)                                            (5.8.4) 

Inserting equation(5.8.4) in equation (5.8.3)yields  
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𝑚(𝑖𝑤 + 𝛾)𝑣0𝑒
𝑖𝜔𝑡 = 𝑒𝐸0   𝑒

𝑖(𝜔𝑡+∅) 

Therefor 

𝑚(𝑖𝑤 + 𝛾)𝑣0   = 𝑒𝐸0   𝑒
𝑖∅ 

𝑚(𝑖𝑤 + 𝛾)𝑣0   = 𝑒𝐸0(𝑐𝑜𝑠∅ + 𝑖𝑠𝑖𝑛∅) 

Hence 

𝑒𝐸0𝑐𝑜𝑠∅ = 𝑚𝛾𝑣0        𝑒𝐸0𝑠𝑖𝑛∅ = 𝑚𝑤𝑣0                                                 (5.8.5) 

Squaring both sides ,gives    

𝑒2𝐸0
2[𝑠𝑖𝑛2∅ + cos2∅] = 𝑚2[𝑤2 + 𝛾2]𝑣0

2 

𝑒𝐸0 =  𝑚√𝑤2 + 𝛾2 𝑣0 

 𝑣0 =
𝑒𝐸0

𝑚√𝑤2 +𝛾2
                                                                                          (5.8.6)   

But the current density is given by  

 𝑗0 =  𝑛𝑒𝑣0 = 𝜎𝐸0                                                                                    (5.8.7) 

Substituting (5.8.6)gives  

 𝑗0 =
𝑛𝑒2𝐸0

𝑚√𝑤2 + 𝛾2
=

𝐸0

√
𝑚𝑤2

𝑛2𝑒4
+

𝑚2

𝑛2𝑒4𝜏2

 

As  a result  

σ𝐸0 =
𝐸0

√𝑚𝑤2

𝑛2𝑒4 +
𝑚2

𝑛2𝑒4𝜏2

                                                                                   (5.8.8) 

thus the view of equation(5.6.8) and (5.6.21)yields  

   σ =
1

√(
1

σ1
)2 + (

1

σ2
)2 
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1

σ
= √(

1

σ1
)2 + (

1

σ2
)2                                                                                  (5.8.9) 

𝝆 = √𝝆1
2 + 𝝆2

2                                                                                     (5.8.10) 

5.9 Travelling wave solution and internal current. 

Conceder travelling wave electric field of the form 

𝐸 = 𝐸0 sin(𝑘𝑥 − 𝑤𝑡) = 𝐸0𝑠𝑖𝑛𝛳(𝑥, 𝑡)                                                     (5.9.1) 

The electron equation of motion is  

𝑚
𝑑𝑣

𝑑𝑡
= −𝑒𝐸 − 𝛾𝑚𝑣                                                                                 (5.9.2) 

The velocity which satisfy this equation must be 

𝑣 = 𝑣0 sin(𝑘𝑥 − 𝑤𝑡 + 𝜑) = 𝑣0sin (𝛳 + 𝜑)                                            (5.9.3) 

Thus  

𝑚
𝑑𝑣

𝑑𝑡
= −𝑤𝑣0cos (𝛳 + 𝜑)                                                                       (5.9.4) 

Inserting equation(5.9.1),(5.9.3),(5.9.4)in(5.9.2)yields 

−𝑚𝑤𝑣0𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝛳 + 𝑚𝑤𝑣0𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝛳 = 

= 𝑒𝐸0𝑠𝑖𝑛𝛳 − 𝑚𝛾𝑣0𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝛳 − 𝑚𝛾𝑣0𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝛳 

Equating coefficients of 𝑐𝑜𝑠𝛳 and 𝑠𝑖𝑛𝛳 an both sides yields  

−𝑚𝑤𝑣0𝑐𝑜𝑠𝜑 = 𝑚𝛾𝑣0𝑠𝑖𝑛𝜑   

𝑚𝑤𝑣0𝑠𝑖𝑛𝜑 = 𝑒𝐸0 − 𝑚𝛾𝑣0𝑐𝑜𝑠𝜑                                                              (5.9.5) 

𝑡𝑎𝑛𝜑 =
𝑤

γ
              𝑠𝑖𝑛𝜑 =   

w

√𝑤2+𝛾2
            𝑐𝑜𝑠𝜑 =

γ

√𝑤2+𝛾2
                      (5.9.6) 

𝑚[𝑤𝑠𝑖𝑛𝜑 + 𝛾𝑐𝑜𝑠𝜑]𝑣0 = 𝑒𝐸0                                                                  (5.9.7) 

𝑚[
𝑤2 

√𝑤2 +𝛾2
+

𝛾2

√𝑤2 +𝛾2
]𝑣0 = 𝑒𝐸0  
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𝑚[
𝑤2 +𝛾2

√𝑤2 +𝛾2
] 𝑣0 = 𝑒𝐸0                                                                               (5.9.8) 

 𝑣0 =
𝑒𝐸0

𝑚√𝑤2 +𝛾2
                                                                                          (5.9.9) 

Using the same procedures as in equation (5.7.8)and (5.8.12),one gets  

𝝆 = √𝝆1
2 + 𝝆2

2                                                                                     (5.9.10) 

This means  that the incidence of travelling electromagnetic wave causes  

electron to travel also with speed shown by equation (5.9.3).The materials 

behaves as inductor and resistor in series . In view of equations (5.9.1)(5.9.3) 

and(5.9.9) one have two currents , the one resulting from the external field 

(5.9.1) and it takes the form   

  J𝑒 = σ𝑒𝐸𝑒 = 𝑛𝑒𝑣0𝑐𝑜𝑠𝜑 sin(𝑤𝑡 − 𝑘𝑥)                                 (5.9.11) 

The other is due to an internally induced electromagnetic field by oscillating 

charge ,and is given by  

   J𝑖 = σ𝑖𝐸𝑖 = 𝑛𝑒𝑣0𝑠𝑖𝑛𝜑 sin(𝑤𝑡 − 𝑘𝑥)                                  (5.9.12) 

  

Such that 

𝐸𝑒𝑜 = 𝑛𝑒𝑣0𝑐𝑜𝑠𝜑 

𝐸𝑖0 = 𝑛𝑒𝑣0𝑠𝑖𝑛𝜑 

 

Fig(5.2) external field E and the internal field 𝐸𝑖andφ  

The resultant field is thus due to the effect of external and internal field. 

5.10 Discussion 

The amplification factor in equation (5.4.12) depends on the angle ∅ between 

The total field or polarization field  see equation (5.4.3 ) on external  field E 

and internal field 𝐸𝑚 as shown by equations (5.4.4) and (5.4.5). It is very 

φ 
 

E→V 

𝐸𝑒𝑜 
 

𝐸𝑖0 
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interesting to note that when the external field is parallel to the polarization 

field, the atom absorb the  incident photon and eremite it , and amplification 

take place (see equation(5.4.13) ) This agrees with the fact that the 

polarization and  external field are in phase thus they are  coherent .But when 

the polarization field and external one are out of phase by 900 no 

amplification takes place , This is due to the fact that the two waves are out of 

phase by 900.This does means that there is no field component the 

polarization field in the direction of external field .Thus the amplitude does 

not increase and remains constant thus no amplification is observed . 

However when the external and polarization field apposes each other β is 

negative which means that the external photon is absorbed by the  polarized 

atom. The  interaction of electromagnetic field with matter resuts in 

generating internal electromagnetic field as equation (5.6.15).The material 

respond to the external field by dissipating energy by friction ,while the 

response to the internal field manifests itself through inducing inductive 

current and inductive  reactance as shown by equation(5.7.6) .The net electric 

field  inside matter subtends an angle φ w.r.t to 𝐸𝑒 as equation(5.7.3) reads. 

The net current flowing inside matter faces a total  resistance resulting from 

friction and induction current. This resistance is that of a resistor and inductor  

connected  in series as shown by equations(5.6.23),(5.7.1) ,(5.7.13) and 

(5.9.9). When friction is neglected equation (5.7.6) indicates that φ is 90,  and 

only induction current and electromotive internal field exists . If 

electromagnetic field is a travelling wave [see equation (5.9.1), this wave 

induces frictional current generated by external field see equation 

(5.9.6),(5.6.10)beside induction current generated by internal field [see 

equation (5.9.6),(5.9.11). 

5.11 Conclusions 

 If one consider the polarization atom to emit two components one is parallel 

to the external applied field and the other to the internal field which is 

perpendicular to the external field, in this case one can predict amplification 
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and absorption process easily in terms of the angle between polarization 

vector and the external field. The  transmition of electromagnetic field 

through amedium induces electromotive internal field ,acting as an inductor. 

The net effect of the interaction corresponds to resistor and inductor 

connected in series. 

5.12 Recommendation 

1. The nature of internal field need to be generalized to be applicable for 

quantum  systems and a Nano scale. 

2. The behavior of the internal field for Nano materials need to beinvestigated 

this can help in fabricating Nano inductors and capacitor . 

3.The role of internal field for plasma and super fluids requires deep studies.  
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