الإستهلال

قال تعالى :

التوبة (105)

صدق الله العظيم

DEDICATION

T₀

Endless love

Our mothers

T₀

Man who teach me to be man

Our fathers

T₀

Our brothers and Sisters

T₀

Our teachers & our colleagues

AKNOWLEDGMENT

First we need to thank our god (Allah) that without his blessing this work would not be complete.

Then all thanks for our supervisor Mr. Adel Akasha to his patience with us and countless hours and valuable efforts to guide and advise us to complete the work in his fair way.

Lastly we need to thank our teachers in electronic engineering school to their efforts in helping and support.

ABSTRACT

This thesis provides a detailed study in Two-way radio interconnection. Two-way radio interconnection refers to the ability of emergency response organizations to talk across disciplines and jurisdictions via radio communications systems when needed.

However there are difficulties that may face the interconnection operation, for example incompatible radio systems, incompatible frequency bands and different protocols that are used in two way radio, prevents the coordination and cooperation between organizations in emergency situations that considered very important in such situations.

In order to overcome the interconnection difficulties, an electrical analog circuit with analog components and relay switch is developed. This circuit works a repeater by applying the repeater concept to achieve the interconnection between public safety organizations with different frequency bands and infrastructure to work as if they are in one network. And this is done using simulation and testing several samples of audio and changing the parameters for analyzing the signals to get results.

المستخلص

تقدم هذه الأطروحة دراسة تفصيلية في الترابط بين انظمة راديو اللاسلكي. هذا الترابط يعني مقدرة منظمات امن و سلامه المجتمع للتحدث عبر في مختلف التخصصات والاختصاصات عن طريق نظم الاتصالات اللاسلكية عند الحاجة.

ولكن هذالك صعوبات قد تواجه عملية الربط، على سبيل المثال الأنظمة الراديوية الغير متوافقة، نطاقات التردد الغير متشابهة والبروتوكولات المختلفة التي تستخدم في راديو اللاسلكي،التي تمنع التنسيق والتعاون بين المنظمات في حالات الطوارئ و الذي يعتبر مهم جدا في مثل هذه الحالات.

من أجل التغلب على هذه الصعوبات، تم عمل دائرة تماثليه كهربيه بمكونات تناظرية والمفتاح المرحل . هذه الدائرة تعمل كمكرر اشارة من خلال تطبيق مفهوم مكرر الاشارة لتحقيق الترابط بين منظمات السلامة العامة ذات نطاقات ترددية و بنية تحتية مختلفة للعمل كما لو أنهم في شبكة واحدة. ويتم ذلك باستخدام المحاكاة واختبار عدة عينات للصوت والقيام بتغيير في معالم الاشارة لتحليل الإشارات و التغيرات التي تطرأ عليها والحصول على نتائج مختلفة.

Table of contents

CHAPTER	TITLE	PAGE
	DECLARATION	I
	DEDICATION	II
	ACKNOWLEDGEMENT	III
	ABASTRACT	IV
	ABSTRACT IN ARABIC	V
	TABLE OF CONTENTS	VI
	LIST OF TABLES	VIII
	LIST OF FIGURES	IX
	LIST OFABBREVIATION	X
1	INTRODUCTION	
	1.1 Preface	1
	1.2 Problem Statement	2
	1.3 Proposed solutions	3
	1.4 Aim and Objectives	3
	1.5 Methodology	3
	1.6 Research Outlines	4
2	LITERAURE REVIEW	
	2.1 Background	5
	2.1.1 Radio Frequency Spectrum	5
	2.1.2 Frequency	6
	2.1.3 Audio Spectrum	11
	2.1.4 Two-Way Radio	12
	2.1.5 RF Repeaters	18
	2.1.6 Relay	21
	2.2 Literature Review	24
	2.2.1 Methods of Interconnection	24

	2.2.2 APCO Project 16 Trunked Radio System	28
	2.2.3 Project 25 (P25)	29
	2.2.4 Terrestrial Trunked Radio (TETRA)	31
3	SYSTEM DESIGN	
	3.1 System Description	33
	3.2 System Implementation	36
	3.2.1 Audio Source	36
	3.2.2 DC Separation	36
	3.2.3 Relay	36
	3.2.4 Control of Signal Flow	37
	3.2.5 Control of Organization 2 MIC	37
	3.2.6 Modulation and Filterization of the Audio Signal	38
	3.2.7 Audio Signal Filterization at the Receiver	39
4	SYSTEM DESCRIPTION AND	
	SIMULATION	
	4.1 System description	40
	4.2 Simulation Process	41
	4.3 Simulation Results	42
	4.3.1 DC Voltage with Audio Signal	42
	4.3.2 Audio From Source and Response Of The Relay	43
	4.3.3 Noise is Added After Passing The Relay	46
	4.3.4 Delay in Signal After Passed From Relay:	47
	4.3 Discussion	48
5	CONCLUSION AND RECOMMENDATION	
	5.1 Conclusion	49
	5.2 Recommendations	49
	REERENCES	50

Appendix 53

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	frequency bands	7
2.2	analog and digital technology	18
4.1	simulation environment parameters	40

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Gateway interconnect system	6
2.2	the audio spectrum	11
2.3	radio network	14
2.4	shows the use of frequencies in a repeater configuration	19
2.5	the voting system	20
2.6	repeater steering	21
2.7	Relay circuit	22
2.8	Relay switch	24
2.9	Gateway interconnect system	26
3.1	Block Diagram	33
4.1	simulation circuit	41
4.2	offset voltage	42
4.3	first sample of audio signal	43
4.4	second sample of audio signal	44
4.5	Third sample of audio signal	45
4.6	noise added from relay	46
4.7	delay from relay	47

LIST OF ABBREVIATIONS

Org Organization

RF Radio Frequency

FCC Federal Communications Commission

SNR Signal to Noise Ratio

APCO Association of Public-Safety Communications Officials

LEAA Law Enforcement Assistance Administration

TIA Telecommunications Industry Association

TETRA Terrestrial Trunked Radio

ETSI European Telecommunications Standards

PMR Professional Mobile Radio

PAMR Public Access Mobile Radio

MoU Memorandum of Understanding

TDMA Time Division Multiple Access

ITU International Telecommunication Union

RR Radio Regulations

ELF Extremely Low Frequency

SLF Super Low Frequency
ULF Ultra Low Frequency

VLF Very Low Frequency

LF Low Frequency

MF Medium Frequency

HF High Frequency

VHF Very High Frequency

UHF Ultra High Frequency
SHF Super High Frequency

EHF Extremely High Frequency

THF Tremendously High Frequency

AM Amplitude Modulation

FM Frequency Modulation

AF Audio Frequency

PTT Push-To-Talk