

CHAPTER THREE

METHODOLOGY

CHAPTER THREE METHODOLOGY

38

3.1 Overview:

 As mentioned in chapter 2, we will use the OpenALPR engine and modify it so

that it will be able to recognize the Arabic numbers used in the Sudan plate. In

order to make the Sudan plates recognizable we will go throw a few steps and use

some utilities to train the OCR.

3.2 OCR training

 Since the classifier is able to recognize English characters easily, it should be

trained to recognize Arabic Numbers as well. We trained the classifier on 20

samples of 38 characters using 2 fonts in 10 pt size and 4 styles (normal, bold,

italic, bold italic), making a total of 6080 training samples. Here are the steps we

gone throw in order to train the OCR.

3.2.1 Creating a Microsoft word Document

 We created a Microsoft office word doc and typed the Arabic numbers using

“Arabic Typesetting” font and 1.5-line spacing, 2 pt character spacing and font size

10 pt. In this doc all the numbers were repeated 20 times; in order to be well

recognized in Tesseract [22].

CHAPTER THREE METHODOLOGY

39

Figure 3-1 Arabic number character tiles

3.2.2 Converting the word document to pdf

 We Saved the word document as:

lsd.ArabicTypeSetting.exp0.pdf (Format:<lang_code>.<font_name>.exp0.pdf 4)

3.2.3 Converting the PDF file to .tif file

 We used the GhostScript utility to convert the pdf file to a tiff image file with

the command:

gswin64c.exe -sOutputFile= lsd.ArabicTypeSetting.exp0..tif -

sDEVICE=tiffg4 -r300x300 -g2550x3300

lsd.ArabicTypeSetting.exp0.pdf

The output was a file named:

lsd.ArabicTypeSetting.tif

3.2.4 Making the box file

CHAPTER THREE METHODOLOGY

40

 Using tesseract.exe with the following command to get the box file:

tesseract.exe lsd.ArabicTypeSetting.exp0.tif

lsd.ArabicTypeSetting.exp0 batch.nochopmakebox

The output was a file named:lsd.ArabicTypeSetting.box

3.2.5 Correcting the misrecognized characters

 We usedjTessBoxEditor utility with the tif and the box file for editing. Gone

through each number character to verify if they match the text-coded character, if

not then the character must be corrected to match the text-coded character. More

corrections increase the OCR accuracy.

 Then we collected character tiles for each character and each font. The

character tiles are slightly different in shape, this is necessary for the OCR training

to understand how to detect characters.

 Figure 3-2 jTessBoxEditor interface

CHAPTER THREE METHODOLOGY

41

 Once we assigned all the characters to its corresponding machine-coded

character, we scanned through the list of characters to make sure that the

assignments match the images. Once we've done this, it was the time to create the

training sheet (the .traineddate file).

3.2.6 Combining the TessData

 In order to get the final .traineddata file we used OpenSerakTrainer to combine

the TessData which are the tif and box file.

 Figure 3.3 SerakTrainorTesseract interface

 Going throw the steps of this program subsequently as shown in figure 3.3 will

result the trained OCR Arabic numbers file.

CHAPTER THREE METHODOLOGY

42

 Finally we have a new file named sd.traineddata. We copied this file into

theruntime_directory (runtime_data/ocr/tessdata/) and it is now ready for the

OpenALPR to use.

3.3Modifying the OpenALPR configuration files

3.3.1 Modifying OpenALPR.conf

 In the previous section we trained the OCR for the Sudan country plates, Now

we have to configure the dimensions of the plate and characters in the

configuration file (openalpr.conf) which is located at the main directory of the

OpenALPR.

We edited the following values:

[width of full plate in mm]

[height of full plate in mm]

[width of a single character in mm]

[height of a single character in mm]

[whitespace between the character and the top of the plate in mm]

[whitespace between the character and the bottom of the plate in mm]

[Minimum size of a plate region to consider it valid.]

[Minimum size of a plate region to consider it valid.]

[name of the OCR language (lsd) -- typically just the letter l followed by your

country code]

3.3.2 Matching the Pattern

 As mentioned in chapter 2 (2.5.8) the OpenALPR is doing a regular expression

matching (Pattern matching) to the plate, then chooses the highest one matching

CHAPTER THREE METHODOLOGY

43

the pattern form the top N results (regardless of its confidence) and marks it as

True.

We created the pattern/sd.conf file to match the Sudan license plate format, which

can be as follows: The license plate containing 5 numbers, The license plate

containing 4 numbers, The license plate containing 3 numbers.

The equivalent of the previous 3 lines using the OpenALPR regular expression:

sd #####

sd ####

sd ###

Since the # symbol represents a number, and the @ symbol represents a letter.

3.4 SQL Database

 Using Microsoft Visual Studio 2015 we created a database to link the extracted

license plate with the owner information.

First we created a new SQL project, added a new table to the Database named

“Table” which was a 6 column Table, filled the table with experimental values

under the names of (Owner Photo, Name, Gender, Owner Address, Phone Number,

License Number).

Finally, we linked the Database to the OpenALPR project using Visual Studio.

CHAPTER THREE METHODOLOGY

44

 Figure 3-4 SQL Database

3.5 GUI

 Visual studio 2015 has a useful utility called “Windows forms application”

which we used to create a Graphical user interface.

From the “New” menu we clicked on “New Project” then “Windows forms

application”, and began dragging and dropping the basic GUI elements (Button,

input fields, etc..) and linking the elements to the code using C# programming

language which was easier to deal with it than using regular C++.

CHAPTER THREE METHODOLOGY

45

 Figure 3-5 The final interface

And now the program is ready to run.

