

I

Sudan University of Science and Technology

College of Engineering

School of Electronics Engineering

Evaluating Dynamic Resource

Management Algorithms In Cloud

Systems

A Research Submitted In Partial fulfillment for the Requirements of the

Degree of B.Sc. (Honors) in Electronics Engineering

Prepared By:

1. Ahmed Yousif Farah

2. Reem Abubekr Eltayb

3. Solafa Mohamed Elhabib

Supervised By:

Dr. Sami H. O. Salih

November, 2016

II

 قال تعالى :

 صدق الله العظيم

سورة طه(111)

III

DEDICATION

This thesis is dedicated to our beloved

mothers and fathers for planting the magic

inside us and uplifting our spirit by

supporting us all the way along. Also,

dedicated to our brothers, sisters, friends

and our supervisor for spending his time

and effort to make this project on its best

way.

IV

ACKNOWLEDGMENT

All praise to Allah, today we fold the days' tiredness and the

errand summing up between the cover of this humble work. To

our mothers, to whom they strive to bless comfort and welfare

and never stint what they own to push us in the success way

who taught us to promote life stairs wisely and patiently, to

our dearest fathers.

To our supervisor Dr. Sami H. O. Salih who supervised, guided,

encouraged and helped us wholeheartedly.

To those who taught us letters of gold and words of jewels of

the utmost and sweetest sentences in the whole knowledge.

Who reworded to us their knowledge simply and from their

thoughts made a lighthouse guides us through the knowledge

and success path, to our honored teachers, thanks very much.

V

ABSTRACT

Network virtualization and network management for cloud computing

systems have become quite active research areas in the last years. More

recently, the advent of the Software-Defined Networks (SDNs) introduced

new concepts for solving these issues, fomenting new research initiatives

oriented to the development and application of SDNs in the cloud.

The goal of this research is to analyze these opportunities, showing how the

SDN technology can be employed to develop, organize and virtualize cloud

networking. Besides discussing the theoretical aspects related to this

integration, as well as the ensuing benefits, we present a practical a case study

based on the integration between Opendaylight (ODL) SDN controller and

CloudStack cloud operating system.

VI

 المستخلص

في ثية النشطة جداأصبحت افتراضية وإدارة الشبكة لأنظمة الحوسبة السحابية من المجالات البح

السنوات الأخيرة. وفي الآونة الأخيرة، ظهور الشبكات المعرفة من قبل البرمجيات أدخلت مفاهيم

جديدة من أجل حل هذه القضايا، بالتحريض على المبادرات البحثية الجديدة الموجهة إلى تطوير

 وتطبيق الشبكات المعرفة من قبل البرمجيات في السحابة.

البحث هو تحليل هذه الفرص، والتي تبين كيف أن تكنولوجيا الشبكات المعرفة من قبل الهدف من هذا

البرمجيات يمكن استخدامها لتطوير وتنظيم المحاكاة الافتراضية الشبكات السحابية. إلى جانب مناقشة

الة عملية ح الجوانب النظرية المتعلقة بهذا التكامل، فضلا عن الفوائد التي تلت ذلك، فإننا نقدم دراسة

على أساس التكامل بين وحدة تحكم الشبكات المعرفة من قبل البرمجيات و نظام تشغيل الحوسبة

 .السحابية

VII

TABLE OF CONTENTS

DEDICATION IIII

ACKNOWLEDGMENT IV

ABSTRACT V

ABSTRACT IN ARABIC VII

TABLE OF CONTENTS VIII

LIST OF TABLES IXI

LIST OF FIGURES X

ABBREVIATIONS XIII

CHAPTER ONE INTRODUCTION 2

1.1 Preface 2

1.2 Problem Statement 4

1.3 Proposed Solution 4

1.4 Research Aims and Objectives 5

1.5 Methodology 5

1.6 Research Outlines 6

VIII

CHAPTER TWO CLOUD COMPUTING AND SOFTWARE 7

 DEFINED NETWORKS APPROACHES

2.1 Hardware Resource Management 8

2.2 Cloud Computing System 9

2.2.1 Exploring The Cloud Computing Stack 9

2.2.2 Cloud Feature 9

2.2.3 Cloud Computing and Resource Virtualization 11

2.2.4 Mechanisms for Network Virtualization 13

2.3 SDN 14

2.3.1 The Role of SDN in Resource Management 14

2.3.2 SDN Advancement 15

2.3.3 SDN Features 17

2.3.4 Data Plane And Control Plane 19

2.3.5 The Open flow Protocol 19

2.3.6 OpenDaylight SDN Controller 20

IX

CHAPTER THREE EMPLOYING SOFTWARE DEFINED 21

 NETWORKS APPROACHES IN CLOUDSTACK

3.1 Cloudstack Cloud Operating System 22

3.2 OpenDaylight Controller 23

3.3 Cloudstack Deployment 24

3.3.1 Mangmement Server 24

3.3.2 Storage Servers 25

3.3.3 Host Servers 25

3.4 OpenDaylight Deployment 26

3.5 Integration Architectures 29

3.6 Deploying Cloud Networking 31

3.6.1 Experments 32

CHAPTER FOUR DEPLOYING CLOUD NETWORKING 33

 WITH CLOUDSTACK AND OPENDAYLIGHT

4.1 cloudstack Deployment 35

4.1.1 Hardware And Software Requirements 35

4.1.2 Cloudstack management server 37

4.1.3 Cloudstack Storage 38

X

4.1.4 Cloudstack Host Servers 39

4.2 OpenDaylight Controller 40

4.3 The Integration 41

4.4 Practical Scenarios 41

4.5 Comparison 43

4.6 Results 44

4.6.1 Throughput Results 45

4.6.2 CPU Utilization Results 46

4.6.3 Latency Results 47

CHAPTER FIVE CONCLUSION AND RECOMENDATION 48

 FOR FUTURE WORK

5.1 Conclusion 49

5.2 Recommendations 50

References 51

Appendix A 56

XI

LIST OF TABLES

TABLE NO. TITLE PAGE

 3-1 Comparison between Different Open Source Cloud 22

Operating System

3-2 Comparison between OpenStack and CloudStack 23

Cloud Operating System

3-3 Comparison Between The main Characteristics 24

Of Open Source SDN Controllers

XII

LIST OF FIGURES

FIGURE NO. TITLE PAGE

3-1 Conceptual View of Basic Deployment 25

3-2 Communication between Producer and Consumer 28

 Plugins Using SAL

3-3 Life of A Package in Open Daylight 29

3-4 SDN Function Incorporated In 30

 Cloud control

3-5 SDN Function Incorporated In Cloud Control 31

 Orchestration Subsystem

4-1 Cloud Infrastructure 35

4-2 Throughput Results 45

4-3 CPU Utilization Results 46

4-4 Latency Results 47

XIII

ABBREVIATIONS

API Application programming interface

ACS Apache CloudStack

DHCP Dynamic host configuration protocol

DPI Deep Packet Inspection

ForCES Forwarding and control element Separation

HTTP Hybrid text transfer protocol

IAAS Infrastructure as-a-service

IDS Instruction Detection System

IT Information Technology

KVM Kernel based virtual machine

NETCONF Network configuration

NFV Network function virtualization

NTP Network timing protocol

ODL Open DayLight

ONF Open Networking Foundation

ONOS Open Network Operating System

OVSDB OpenVswitch database

PAAS Platform as-a-service

SAAS Software as-a-service

SAL Service abstraction layer

SDN Software Defined Networking

XIV

SLA Service level agreement

SR-IOV Single root I/O virtualization

STT Stateless Transport Tunneling

VLAN Virtual local area network

VXLAN Virtual extended LAN

WCDMA Wide Code Division Multiple Access

1

CHAPTER ONE

INTRODUCTION

2

1. INTRODUCTION

1.1 Preface

Cloud computing has ushered the information technology (IT) field and

service providers into a new era, redefining how computational resources and

services are delivered and consumed. With cloud computing, distinct and

distributed physical resources such as computing power and storage space

can be acquired and used in an on-demand basis, empowering applications

with scalability and elasticity at low cost. This allows the creation of different

service models, generally classified as [1]: Infrastructure-as-a-Service (IaaS),

which consists in providing only fundamental computing resources such as

processing, storage and networks; Platform-as-a-Service (PaaS), in which a

development platform with the required tools (languages, libraries, etc.) is

provided to tenants; and Software-as-a-Service (SaaS), in which the

consumer simply uses the applications running on the cloud infrastructure.

Clouds aim to drive the design of the next generation data centers by

architecting them as networks of virtual services (hardware, database, user-

interface, application logic) so that users can access and deploy applications

from anywhere in the world on demand at competitive costs depending on

their QoS (Quality of Service) requirements [2]. Developers with innovative

ideas for new Internet services no longer require large capital outlays in

hardware to deploy their service or human expense to operate it [3].

3

To actually provide cost reductions, the cloud needs to take advantage of

economies of scale, and one key technology for doing so is resource

virtualization. After all, virtualization allows creation of a logical abstraction

layer above the pool of physical resources, thereby enabling a programmatic

approach to allocate resource wherever needed while hiding the complexities

involved in their management [4]. The result is potentially very efficient

resource utilization, better manageability, on-demand and programmatic

resource instantiation, and resource isolation for better control, accounting

and availability.

In any cloud environment, the network is a critical resource that connects

various distributed and virtualized components, such as servers, storage

elements, appliances and applications [5]. For example, it is the network that

allows aggregation of physical servers, efficient virtual machine (VM)

migration, and remote connection to storage systems, effectively creating the

perception of large, monolithic resource pool. Furthermore, it is also the

network that enables delivery of cloud based applications to end users. Yet,

while every component in a cloud is getting virtualized, the physical network

connecting these components is not. Without virtualization, the network is

one physical common network, shared by all cloud end-users and cloud

components [6].

4

1.2 Problem Statement

The major issues with building efficient cloud computing systems are the

system flexibility and the availability, in particularly the resource

management. However, utilizing complex algorithms for resource

management such as hybrid resource management will negatively affect the

system performance. Moreover, the optimum coefficients for resource to be

used is time vary and application dependant. These tradeoffs necessitate a

prototype to pre-evaluate the system optimal operation before installing live

applications to the cloud. Current test-beds are either based on cloud system

operating system, or just addressing the management feature of SDN.

1.3 Proposed Solution

A test-bed is to be implemented to emulate the cloud computing system

behavior when the SDN approach is used in resource management. In this

research OpenDayLight SDN controller is employed to cloud computing

systems to better utilize the resource management using Dynamic algorithm.

Results show that a considerable improvement is achieved in flexibility,

Aailability and system performance.

5

1.4 Aims and Objective

The main objective of this research is to study the Quality of the Services

offered for the end users when benefiting from XaaS packages. This should

be achieved by maximum utilization of the available resource and the

provided side. This has been detailed as follows;

i. Studying the Cloud and the virtualization approaches

ii. Studying the SDN management approaches

iii. Develop a test-bed environment for Cloud Computing

iv. Applying SDN to manage Cloud Computing system resource based on

Dynamic Resource Management algorithm

v. Validate the results

1.5Methodology

A deductive method is used in this research starting from arguing that

employing SDN approaches in resource management of Cloud computing

systems will improve the system flexibility and performance. Then a test-bed

environment is implemented to verify this hypothesis in various scenarios

using dynamic resource management.

6

1.6 Research Outlines

After the introductory chapter, Chapter Two will give a general overview of

resource management concepts especially in cloud computing technology.

Chapter Three and Chapter Four will highlight the SDN management

approaches. The former, presents the methodology with details on the tools

used. While the later, evaluate the results of the applied scenarios. The

research conclusion and recommendation for future work has been drown in

Chapter Five.

7

CHAPTER TWO

CLOUD COMPUTING AND SOFTWARE DEFINED

NETWORKS APROACHES

8

2. Cloud Computing And Software Defined Networks

Approaches

2.1 Hardware Resource Management

resource management is the process of allocating computing, storage,

networking and (indirectly) energy resources to a set of applications, in a

manner that seeks to jointly meet the performance objectives of the

applications, the infrastructure (i.e., data center) providers and the users of

the cloud resources [7]. The objectives of the providers center around

efficient and effective resource use within the constraints of Service Level

Agreements (SLAs) with the Cloud Users. Efficient resource use is typically

achieved through virtualization technologies, which facilitate statistical

multiplexing of resources across customers and applications. The objectives

of the Cloud Users tend to focus on application performance, their

availability, as well as the cost-effective scaling of available resources in line

with changing application demands. Often, these objectives come with

constraints regarding resource dedication to meet non-functional

requirements relating to, for example, security or regulatory compliance.

9

2.2 Cloud Computing systems

2.2.1 Exploring the Cloud Computing Stack

Cloud computing builds on the architecture developed for staging large

distributed network applications on the Internet over the last 20 years. To

these standard networking protocols, cloud computing adds the advances in

system virtualization that became available over the last decade [8].

The cloud creates a system where resources can be pooled and partitioned as

needed. Cloud architecture can couple software running on virtualized

hardware in multiple locations to provide an on-demand service to user-

facing hardware and software. It is this unique combination of abstraction

and metered service that separates the architectural requirements of cloud

computing systems from the general description given for an n-tiered Internet

application.

2.2.2 Cloud feature

The NIST Definition of Cloud Computing that classified cloud computing

into the three service models (SaaS, IaaS, and PaaS) and four cloud types

(public, private, community, and hybrid), also assigns five essential

characteristics that cloud computing Systems must offer [9]:

 On-demand self-service: A client can provision computer resources

without the need for interaction with cloud service provider personnel.

 Broad network access: Access to resources in the cloud is available

over the network using standard methods in a manner that provides

10

platform-independent access to clients of all types. This includes a

mixture of heterogeneous operating systems, and thick and thin

platforms such as laptops, mobile phones.

 Resource pooling: A cloud service provider creates resources that are

pooled together in a system that supports multi-tenant usage. Physical

and virtual systems are allocated or reallocated as needed. Intrinsic in

this concept of pooling is the idea of abstraction that hides the location

of resources such as virtual machines, processing, memory, storage,

and network bandwidth and connectivity.

 Rapid elasticity: Resources can be rapidly and elastically provisioned.

The system can add resources by either scaling up systems (more

powerful computers) or scaling out systems (more computers of the

same kind), and scaling may be automatic or manual. From the

standpoint of the client, cloud computing resources should look

limitless and can be purchased at any time and in any quantity.

 Measured service: The use of cloud system resources is measured,

audited, and reported to the customer based on a metered system. A

client can be charged based on a known metric such as amount of

storage used, number of transactions, network I/O (Input/Output) or

bandwidth, amount of processing power used, and so forth. A client is

charged based on the level of services provided

11

2.2.3 Cloud Computing and Resource Virtualization

Virtualization is not a new concept in computing, having in fact appeared in

the 70’s [7]. The concept of virtualization has evolved with time, however,

going from virtual memory to processor virtualization up to the virtualization

of network resources (e.g., SDN, OpenvSwitch, etc.). With the advent of

cloud computing and the demand of virtualizing entire computing

environments, new virtualization techniques were developed, among them

[8]:

 Full Virtualization or Hardware VM: all hardware resources are

simulated via software.

 Para-Virtualization: the hardware is not simulated, but divided in

different domains so they can be accessed by VMs.

 Para-virtualized drivers (Para+Full Virtualization): a combination of

the previous techniques

Several studies highlight the benefits of virtualization on a computing

environment. Among them, the following can be cited [9]:

 Resource sharing: when a device has more resources than what can be

consumed by a single entity, those resources can be shared among

different users or processes for better usage efficiency [9].

 Resource aggregation: devices with a low availability of resources can

be combined to create a larger-capacity virtual resource.

 Ease of management: one of the main advantages of virtualization is

that it facilitates maintenance of virtual hardware resources.

12

 Dynamics: with the constant changes to application requirements and

workloads, rapid resource reallocation or new resource provisioning

becomes essential for fulfilling these new demands. Virtualization is

a powerful tool for this task, since virtual resources can be easily

expanded, reallocated, moved or removed without concerns about

which physical resources will support the new demands.

 Isolation: multiple users environments may contain users that do not

trust on each other. Therefore, it is essential that all users have their

resources isolated from other users, even if this is done logically (i.e.,

in software).

Despite their benefits, there are also disadvantages of virtualized

environments, such as [10]:

 Performance: even though there is no single method for measuring

performance, it is intuitive that the extra software layer of the

hypervisors leads to higher processing costs than a comparable system

with no virtualization.

 Management: virtual environments abstract physical resources in

software and files, so they need to be instantiated, monitored,

configured and saved in an efficient and auditable manner, which is

not always an easy task.

 Security: whereas isolation is a mandatory requirement for VMs in

many real case scenarios, completely isolating a virtualized resource

from another, or applications running on the physical hardware from

virtualized ones, are involved (if not impossible) tasks.

13

2.2.4 Mechanisms for Network Virtualization

To understand the mechanisms that can implement network virtualization,

first we need to understand which resources can be virtualized in a network.

 Virtualization of NICs: it’s necessary to provide every VM with its

own virtual NIC (vNIC)

 Virtualization of L2 Switches: The number of ports in a typical switch

is limited. To solve this issue, IEEE Bridge Port Extension standard

802.1BR [32] proposes a virtual bridge with a large number of ports

using physical or virtual port extenders (like a vSwitch).

 Virtualization of L2 Networks: In a multitenant data center, VMs in a

single physical machine may belong to different clients and, thus, need

to be in different virtual LANs (VLANs) [12].

 Virtualization of L3 Networks: When the multitenant environment is

extended to a layer 3 network, there are a number of competing

proposals to solve the problem. Examples include: virtual extensible

LANs (VXLANs) [13]; network virtualization using generic routing

encapsulation (NVGRE) [14]; and the Stateless Transport Tunneling

(STT) protocol [15].

 Virtualization of L3 Router: Network Function Virtualization (NFV)

[16] provides the conceptual framework for developing and deploying

virtual L3 routers and other layer 3 network resources

14

2.3 Software Defined Networks

The term SDN originally appeared in [1], referring to the ability of Open-

Flow [2] to support the configuration of table flows in routers and switches

using software. However, the ideas behind SDNs come from the goal of

having a programmable network, whose research started short after the

emergence of the Internet, led mainly by the telecom industry. Today, the

networking industry has shown enormous interest in the SDN paradigm,

given the expectations of reducing both capital and operational costs with

service providers and enterprise data centers with programmable,

virtualizable and easily partitionable networks. These features of SDNs make

them highly valuable for cloud computing systems, here the network

infrastructure is shared by a number of independent entities and, thus,

network management becomes a challenge. Indeed, while the first wave of

innovation in the cloud focused on server virtualization technologies and on

how to abstract computational resources such as processor, memory and

storage, SDNs are today promoting a second wave with network

virtualization [14]. The emergence of large SDN controllers focused on

ensuring availability and scalability of virtual networking for cloud

computing systems (e.g., OpenDayLight [13] and Open-Contrail [30]) is a

clear indication of this synergy between both technologies

2.3.1 The Role of Software Defined Network in resource

management

The software –defined networking (SDN) paradigm has emerged as a

promising Solution to reduce this complexity through the creation of a

unified control plane Independent of specific vendor equipment. However,

15

designing a SDN-based solution for network resource management raises

several challenges as it should Exhibit flexibility, scalability and adaptability.

We will review some of the main challenges associated with SDN-based

solutions and present our recent contributions in that direction. Support for

both static and dynamic resource management applications.

2.3.2 Software Defined Networks Advancement

We can divide the historical advancements that culminated in the SDN

concept into the three different phases [3], as follows:

1. Active Networks (from the mid-1990s to the early 2000s):

This phase follows the historical advent of the Internet, The so-called

“active networks” appeared as a first initiative aiming to turn network

devices (e.g., switches and routers) into programmable elements and, thus,

allow furthers innovations in the area. This programmability could then

allow a separation between the two main functionalities of networking

elements: the control plane, which refers to the device’s ability to decide

how each packet should be dealt with; and the data plane, which is

responsible for forwarding packets at high speed following the decisions

made by the control plane. Specifically, active networks introduced a new

paradigm for dealing with the network’s control plane, in which the

resources (e.g., processing, storage, and packet queues) provided by the

network elements could be accessed through application programming

interfaces (APIs).

16

2. Control- and data-plane separation (from around 2001 to 2007):

After the Internet became a much more mature technology in the late

1990’s, the increasing complexity of network topologies, together with

concerns regarding the performance of backbone networks, led different

hardware manufacturers to develop embedded protocols for packet

forwarding, promoting the high integration between the control and data

planes seen in today’s Internet. The importance of a centralized control

model has become more evident, as well as the need of a separation

between the control and data planes. Among the technological innovations

arising from this phase, we can cite the creation of open interfaces for

communications between the control and data planes such as ForCES

(Forwarding and Control Element Separation) [27], whose goal was to

enable a locally centralized control over the hardware elements distributed

along the network topology [4], [29]. To ensure the efficiency of

centralized control mechanisms, the consistent replication of the control

logic among the data plan elements would play a key role.

3. OpenFlow and Network Operating System (from 2007 to 2010):

 The ever growing demand for open interfaces in the data plane led

researchers to explore different clean slate architectures for logically

centralized network control [6], [7], [8]. In particular, the Ethane project

created a centralized control solution for enterprise networks, reducing

switch control units to programmable flow-tables. The operational

deployment of Ethane in the Stanford computer science department,

focusing on network experimentation inside the campus, was indeed huge

success, and resulted in the creation of OpenFlow protocol [25].

OpenFlow enables fully programmable networks by providing a standard

17

data plane API for existing packet switching hardware. The creation of

the OpenFlow API, on its turn, allowed the emergence of SDN control

platforms such as NOX [9], thus enabling the creation of a wide range of

network applications. OpenFlow led to the vision of a network operating

system that, different from the node-oriented system preconized by active

networks, organize the network’s operation into three layers: (1) a data

plane with an open interface; (2) a state management layer that is

responsible for maintaining a consistent view of the overall network state;

and (3) control logic that performs various operations depending on its

view of network state [10]. Following these advances, solutions such as

Onix and its open-source counterpart, ONOS (Open Network Operating

System) [31], Analyzing this historical perspective, it becomes easier to

see that the SDN concept emerged as a tool for allowing further network

innovation, helping researchers and network operators to solve

longstanding problems in network management and also to provide new

network services. SDN has been successfully explored in many different

research fields, including areas such as network virtualization and cloud

networking.

2.3.3 Software Defined Networks Features

SDN facilitates network virtualization and may, thus, makes it easier to

implement features such as dynamic network reconfiguration (e.g., in

multitenant environments). However, it is important to recognize that the

basic capabilities of SDN technologies do not directly provide these benefits.

Some SDN features and their main contributions to improve network

virtualization are:

18

Control plane and data plane separation: The separation between control

and data planes in SDN architectures, as well as the standardization of

interfaces for the communication between those layers, allowed to

conceptually unify different vendor network devices under the same control

mechanisms.

Network programmability: The programming capabilities introduced by

SDN provide the dynamics necessary to rapidly scale, maintain and configure

new virtual networks. Moreover, network programmability also allows the

creation of custom network applications oriented to innovative network

virtualization solutions.

Logically centralized control: The abstraction of data plane devices

provided by SDN architecture gives the network operating system, also

known as SDN orchestration system, a unified view of the network.

Therefore, it allows custom control applications to access the entire network

topology from a logically centralized control platform, enabling the

centralization of configurations and policy management.

Automated management: the SDN architecture enhances network

virtualization platforms by providing support for automation of

administrative tasks. The centralized control and the programming

capabilities provided by SDN allow the development of customized network

applications for virtual network creation and management. Auto scaling,

traffic control and QoS are examples of automation tools that can be applied

to virtual network environments

19

2.3.4 Data plane and control plane

SDN architecture and its main components, showing that the data and control

planes are connected via a well-defined programming interface between the

switches and the SDN controller.

The data plane: corresponds to the switching circuitry that interconnects all

devices composing the network infrastructure, together with a set of rules that

define which actions should be taken as soon as a packet arrives at one of the

device’s ports.

The control plane: on its turn, is responsible for programming and managing

the data plane, controlling how the routing logic should work. This is done

by one or more software controllers, whose main task is to set the routing

rules to be followed by each forwarding device through standardized

interfaces, called the southbound interfaces. These interfaces can be

implemented using protocols such as OpenFlow 1.0 and 1.3 [13], OVSDB

[14] and NETCONF [15] The control plane concentrates, thus, the

intelligence of the network, using information provided by the forwarding

elements (e.g., traffic statistics and packet headers) to decide which actions

should be taken by them [16].

2.3.5 The OpenFlow Protocol

The OpenFlows protocol is one of the most commonly used southbound

interfaces, being widely supported both in software and hardware, and

standardized by the Open Networking Foundation (ONF). It works with the

concept of flows, defined as groups of packets matching a specific header

[25], which receive may be treated differently depending how the network is

20

programmed. OpenFlow’s simplicity and flexibility, allied to the high

performance at low cost, ability to isolate experimental traffic from

production traffic, and to cope with vendors’ need for closed platforms [25],

are probably among the main reasons for this success.

2.3.6 OpenDaylight Controller

Created in April 2013 as a Linux Foundation collaborative project,

OpenDaylight is an open source OpenFlow controller and also a scalable

SDN framework for the development of several network services, including

data plane protocols. As such, OpenDaylight can be the core component of

any SDN architecture. The OpenDaylight architecture follows the traditional

SDN design, implementing the control layer as well as the northbound and

southbound interfaces.

21

CHAPTER THREE

EMPLOYING SOFTWARE DEFINED NETWORKS

APPROACHES IN CLOUDSTACK

22

3. Employing Software Defined Nnetworks Approaches In

CloudStack

3.1 Cloudstack cloud operating system

CloudStack is an open source IaaS Cloud platform originally developed by

Cloud.com. CloudStack implements the Amazon EC2 and S3 APIs, as well

as the vCloud API, in addition to its own API CloudStack, written in Java, is

designed to manage and deploy large networks of VMs. Cloud-Stack

currently supports VMware, Oracle VM, KVM, Xen Server and Xen Cloud

Platform. CloudStack has a hierarchical structure, which enables

management of multiple physical hosts from a single web-based interface.

Table 3-1 and table 3-2 shows comparison between different open source

cloud operating system.

Table 3-1: Comparison between Different Open Source Cloud Operating System [10]

23

Table 3-2: Comparison between OpenStack and CloudStack Cloud Operating System

[10]

 OpenStack CloudStack

Language Python, Shell script Java, Python, Shell script

Lines of code 210,051 1,270,052

Database tables 83 141

Hypervisor support KVM, XenServer,

Hyper-V, Vmware

KVM, XenServer, Oracle

VM, Hyper-V, Vmware

Monitoring and

billing

No Monitoring(no), billing

(yes)

Control Basic Advanced

Live migration

support

Poor Good

High availability Basic Advanced

Password encryption No Yes

Message passing RabbitMQ(AMQP) Java

Documentation HTML, PDF PDF

3.2 OpenDayLight controller

OpenDaylight is a Java-based SDN controller built to provide a

comprehensive network programmability platform for SDN. OpenDaylight

is little different from the others because it allows for other non-OpenFlow

southbound protocols. Table 3-3 shows comparison between the main

characteristics of open source SDN controllers.

24

Table 3-3: Comparison between the Main Characteristics of Open Source SDN

Controllers [30]

 NOX POX Ryu Floodlight ODL

Language C++ Python Python Java Java

Performance High Low Low High High

Distributed No No Yes Yes Yes

OpenFlow 1.0 1.0 1.2–1.4 1.0, 1.3 1- 1.3

Multi-tenant clouds No No Yes Yes Yes

Learning curves Moderate Easy Moderate Steep Steep

3.3 CloudStack Deployment

CloudStack cloud operating system consist of four components.

Management server, one or more storage servers, and host server.

3.3.1 Management server

Management server responsible of all cloud control including set zones, pods,

cluster, storage servers, and host servers. Besides managing all traffic of the

cloud, and connecting the cloud components to each other. It has a web-based

interface to make the managing process much easier. Figure 3-1shows

conceptual view of basic deployment.

25

Figure 3-1: Conceptual View Of Basic Deployment [23]

3.3.2 Storage servers

Instead of saving data in the host servers that are offered to tenants, in

CloudStack the tenant data are saved in separated server. This will result in

more reliability, and availability, and make a simple way to live migration.

CloudStack at least must have a primary Storage server. And for more

availability one or more secondary storage server.

If the primary storage went down, a secondary storage automatically goes

up and receive all tenant traffic.

3.3.3 Host servers

The host servers are the actual infrastructure that offered to tenants. One

host server may guest more than a tenant, and each tenant will have one or

26

more virtual machine. CloudStack Cloud operating system offers iaas

(infrastructure as a service).

3.4 OpenDayLight Deployment

The OpenDaylight architecture follows the traditional SDN design,

implementing the control layer as well as the northbound and southbound

interfaces. However, differently from the majority of controllers, the

OpenDaylight architecture clearly separates its design and implementation

aspects. The OpenDaylight SDN controller is composed by the following

architectural layers [22]:

Network Applications, Orchestration and Services: Business applications

that make use of the network services provided by the controller platform to

implement control, orchestration and management applications.

Controller Platform: Control layer that provides interfaces for all the

network services implemented by the platform via a REST northbound API.

The controller platform also implements a service abstraction layer (SAL),

which provides a high-level view of the data plane protocols to facilitate the

development of control plane applications.

 Southbound Interfaces and Protocol Plugins: Southbound interfaces

contain the plugins that implement the protocols used for programming the

data plane.

27

Data Plane Elements: Physical and virtual network devices that compose

the data plane and are programmed via the southbound protocol plugins. The

variety of southbound protocols supported by the OpenDaylight controller

allows the deployment of network devices from different vendors in the

underlying network infrastructure.

The service abstraction layer (SAL) is one of the main innovations of the

Open-Daylight architecture to enable communication between plugins, this

message exchange mechanism ignores the role of southbound and

northbound plugins and builds upon the definition of Consumer and Provider

plugins. Providers are plugins that expose features to applications and other

plugins through its northbound API, whereas consumers are components that

make use of the features provided by one or more Providers. This change

implies that every plugin inside OpenDaylight can be seen as both a provider

and a consumer, depending only on the messaging flow between the plugins

involved. In OpenDaylight, SAL is responsible for managing the messaging

between all the applications and underlying plugins. Figure 3-2 shows

communication between producer and consumer plugins using SAL

28

Figure 3-2: Communication Between Producer And Consumer Plugins Using SAL

[22]

In OpenDaylight, SAL is responsible for managing the messaging between

all the applications and underlying plugins. Figure 3-3 shows the life of a

package inside the OpenDaylight architecture, depicting the following steps

[22]:

1. A packet arriving at Switch1 is sent to the appropriate protocol plugin.

2. The plugin parses the packet and generates an event for SAL.

3. SAL dispatches the packet to the service plugins listening for

DataPacket.

4. Module handles the packet and sends is out via the

IDataPacketService.

5. SAL dispatches the packet to the southbound plugins listening for

DataPacket.

6. OpenFlow message sent to appropriate switch.

29

Figure 3-3: Life of a Package In OpenDaylight. [22]

3.5 Integration Architectures

SDNs and clouds display similar designs, with a 3-layer architecture

composed by a Infrastructure Layer with computational resources controlled

by a Control Layer, which in turn is controlled via APIs by applications in an

Application Layer (see Figure 3-4). One simple form of integrating SDNs

and clouds is to run their stacks in parallel, with both technologies being

integrated by the applications themselves. Even though applications can

benefit from both technologies with this strategy, it also brings a significant

overhead to application developers. After all, applications would need to be

SDN-aware and cloud-aware, and accessing APIs for both technologies in an

effective manner, which is prone to complicate their design and

implementation.

30

Figure 3-4: SDN Function Incorporated In Cloud Control [19]

A second and probably preferable is to consider the cloud

control/orchestration system as an SDN application to the SDN controller. In

this scenario, depicted in Figure (3-5) the Cloud Control/Orchestration

subsystem is augmented with modules that translate Cloud Operations to

SDN operations, using existing SDN controllers APIs. This approach brings

the benefits of the previous approach while allowing greater flexibility. It is

possible to evolve both the Cloud and SDN infrastructures separately, with

minimal or no changes to their integration interface. It would also allow the

use of existing SDN solutions without alterations, including proprietary SDN

solutions or hardware-based controllers.

31

Figure 3-5: SDN Function Incorporated In Cloud Control Orchestration Subsystem

[19]

3.6 Deploying Cloud Networking

In what follows, we conduct a simple experiment showing how to build an

architecture that bring the benefits of SDN to cloud computing systems. For

this, we use CloudStack and OpenDaylight, giving a practical example of the

CloudStack networking in an SDN architecture, analyzing the interactions

between CloudStack and the OpenDaylight controller, as well as their

specific roles in this deployment.

32

3.6.1 Experiments

In this Section three practical Scenarios are introduced to show the benefits

of SDN to cloud computing systems. The first one is CloudStack host with

HTTP, And DHCP services based on Static resource allocation. The Second

is CloudStack host with HTTP, And DHCP services based on Dynamic

resource allocation. . The third is CloudStack host with HTTP, And DHCP

services based on Hybrid resource allocation.

Static resource allocation practical example

In this example the resources of the host server will be statically allocated

(fixed amount of resources). Then HTTP, and DHCP services will be setup

on the host server.

Dynamic resource allocation practical example

In this example the resources of the host server will be dynamically allocated

(A pool of shared resources). Then HTTP, and DHCP services will be setup

on the host server.

Hybrid resource allocation practical example

In this example the resources of the host server will be dynamically allocated

(minimum fixed amount of resources, and a pool of shared resources). Then

HTTP, and DHCP services will be setup on the host server.

33

CHAPTER FOUR

Deploying Cloud Networking with CloudStack and

OpenDaylight

34

4. Deploying Cloud Networking with CloudStack and

OpenDaylight

This project has been done on actual hardware resources completely. No

simulations. Actual devices are involved in this evaluation. So the outcome

results are more practical rather than theoretical. All command lines related

to this chapter are included in Appendix A.

The test environment include three laptop are used as hardware

resources, and tow VMware virtual machines are in each of them,

one for the cloud management, one for the cloud primary storage,

one for the cloud secondary storage, and three for the hosts servers.

All VMware virtual machine operating on Centos 6.3 operating

system.

The first laptop contain the management server and a host server, and the

second contain the primary storage server and a host server, and the third

contain the secondary storage server and a host server. Connected to each

other via switch. Figure (4-1) cloud infrastructure.

35

Figure 4-1: Cloud Infrastructure

4.1 CloudStack deployment

CloudStack cloud operating system consist of four components.

Next how to setup and configure all of four components.

4.1.1 Hardware and software requirements for CloudStack

Management Server, Database, and Storage System Requirements

The machines that will run the Management Server and MySQL database

must meet the following requirements.

The same machines can also be used to provide primary and secondary

storage, such as via localdisk or NFS. The Management Server may be

placed on a virtual machine.

36

• Operating system:

– Preferred: CentOS/RHEL 6.3+ or Ubuntu 12.04(.1)

• 64-bit x86 CPU (more cores results in better performance)

• 4 GB of memory

• 250 GB of local disk (more results in better capability; 500 GB

recommended)

• At least 1 NIC

• Statically allocated IP address

• Fully qualified domain name as returned by the hostname command

Host/Hypervisor System Requirements

The host is where the cloud services run in the form of guest virtual

machines. Each host is one machine that meets the following requirements:

• Must support HVM (Intel-VT or AMD-V enabled).

• 64-bit x86 CPU (more cores results in better performance)

• Hardware virtualization support required

• 4 GB of memory

• 36 GB of local disk

• At least 1 NIC

• Latest hotfixes applied to hypervisor software

• When you deploy CloudStack, the hypervisor host must not have any

VMs already running

• All hosts within a cluster must be homogeneous. The CPUs must be of the

same type, count, and feature flags.

37

4.1.2 Cloudstack management server

Setup Management server:

 Configure the interface

 Change the hostname

 Add the CloudStack repository.

Repository content:

[cloudstack]

name=cloudstack

baseurl=http://cloudstack.apt-get.eu/centos/6/4.6/

enabled=1

gpgcheck=0

 Install the next packages:

1. Network Timing Protocol

NTP is required to synchronize the clocks of the servers in the cloud.

Unsynchronized clocks can cause unexpected problems.

2. MYSQL-SERVER

3. CLOUDSTACK-MANAGEMENT

 Stop iptables

 Configure Selinux

Change in /etc/selinux/config the Selinux configuration from enforce to

Permissive

38

CloudStack does various things which can be blocked by security

mechanisms like SELinux. It has to be disabled to ensure the Agent has all

the required permissions.

 Secure the installation of database

 Set up the database

 After the database is set up, finish configuring the OS for the Management

Server.

4.1.3 CloudStack Storage

Cloudstack storage includes primary storage server and one or more

secondary storage server.

Primary Storage

CloudStack is designed to work with a wide variety of commodity and

enterprise-rated storage systems.

Setup Primary Storage server:

 configure the interface

 Change the host name

 Install the NFS package

 Stop iptables

39

Secondary storage

CloudStack is designed to work with any scalable secondary storage system.

The only requirement is that the secondary storage system supports the NFS

protocol.

Setup Secondary Storage Server:

 configure the interface

 Change the host name,

 Install the NFS package

 Stop iptables

4.1.4 CloudStack Host servers

Setup host server:

 configure the interface

 Change the host name

 Install next packages:

1- Network Timing Protocol

NTP is required to synchronize the clocks of the servers in the cloud.

Unsynchronized clocks can cause unexpected problems.

2- CLOUDSTACK-AGENT

3- LIBVIRT

CloudStack uses libvirt for managing virtual machines.

40

 Stop iptables

 Configure Selinux

Change Selinux configuration to Permissive in /etc/selinux

CloudStack does various things which can be blocked by security

mechanisms like AppArmor or SELinux. These have to be disabled to ensure

the Agent has all the required permissions.

Centos 6.3 comes with selinux, and it’s set to enforce by default.

 Connect the components with each other and managing the cloud from

the management web-based user interface.

4.2 OpenDayLight controller

Setup OpenDayLight controller:

 Install ODL package in the management server.

 Run the OpenDaylight SDN controller, which will be used by ACS to

dynamically program the created virtual network bridges. The SDN

controller receives REST requests from the ODL driver, which

implements the methods called by plugins for implementing the layer

2 network services provided by ACS API. To run OpenDaylight, the

commands in Appendix A should be executed on the Network and

Controller node.

41

4.3 The Integration

For the integration between ACS & ODL the second method is used

(CloudStack cloud operating system controller deals directly with

OpenDayLight controller).

 Link the ODL with ACS.

Now that we have the OpenDaylight SDN controller running, we can start

the CloudStack services on the in the management server. These nodes will

then make use of these software resources to create the entire virtual

network infrastructure.

4.4 Practical Scenarios

In what follows, we conduct a simple examples showing the benefits of SDN

to cloud computing systems. For this, we use CloudStack and OpenDaylight,

giving a practical example of the CloudStack hosts in an SDN architecture.

Host based on static resource allocation

In this host server the resources are statically allocated (fixed amount of

resources). The host server resources are:

1. One CPU cores.

2. 512MB of RAM.

3. 10GB of hard disk.

 The host server is running CenOS6.3 operating system, and should be

running HTTP, and DHCP services.

42

Host based on dynamic resource allocation

In this host server the resources are dynamically allocated (A pool of shared

resources). The shared pool resources are:

1. 3 CPU cores.

2. 1.5GB of RAM.

3. 30GB of hard disk.

The host server is running CenOS6.3 operating system, and should be

running HTTP, and DHCP services.

Host based on Hybrid resource allocation

In this host server the resources are dynamically allocated (fixed minimum

amount of resources, and a pool of shared resources). The minimum fixed

resources are:

1. One CPU cores.

2. 512MB of RAM.

3. 10GB of hard disk.

The shared pool resources are:

4. 3 CPU cores.

5. 1.5GB of RAM.

6. 30GB of hard disk.

The host server is running CenOS6.3 operating system, and should be

running HTTP, and DHCP services.

43

HTTP service setup

 Install httpd packages

 Check configuration file

DHCP service setup

 Install dhcpd packages

 Check configuration file

 Check next files existence in /etc/dhcp directory

1. dhcpd.conf

2. dhcpd.leases

3. dhclient/dhclient.conf

 Configure rsyslog service

 Run DHCP service

4.5 Comparison

To show the benefits of SDN to cloud computing systems a comparison

between the three hosts is necessary. The comparison depends on the

performance of the hosts. To find witch host has a better performance, the

throughput, latency, and CPU utilization are measured.

Testing throughput

Using Nload to test the throughput. Nload is a command line tool that allows

users to monitor the incoming and outgoing traffic separately. It also draws

out a graph to indicate the same, the scale of which can be adjusted. Easy and

simple to use, and does not support many options. It’s used when a quick

44

look at the total bandwidth usage without details of individual processes is

needed.

Testing latency

Using ping to test the latency. Ping localhost then compare by pinging all

other computers on the network from the same host.

Testing CPU utilization

Using Iostat to test the CPU utilization. The iostat command (provided via

the sysstat package on CentOS) provides three reports: CPU utilization,

device utilization, and network file system utilization. If you run the

command without options it will display all three reports, specify the

individual reports with the (-c, -d and -h) switches respectively.

4.6 Results

After the three practical scenarios have been completed and the performance

metrics comparison figures have been plotted, some results are achieved.

These are:

45

4.6.1 Throughput Results

The throughput results obtained using the NLoad commandtool. The

results were obtained under the same circuimstances in all hosts.

Then the results were ploted using matlab. Figure 4-2 depicts that

the throughput improved and became better (increased) in the case

of Hybrid and the dynamic hosts due to deploying ODL controller

in the cloud operating system. As observed the result showed that

the host with Hybrid resource management has the highest

throughput. Figure 4-2 shows the throughput for each case

individully:

Figure 4-2: Throughput Results

46

4.6.2 CPU Utilization Results

The CPU utilization results results obtained using the Iostat commandtool.

The results were obtained under the same circuimstances in all hosts. Then

the results were ploted using matlab. Figure 4-3 shows that the CPU

utilization have been improved in the cases of Hybrid and the dynamic hosts

due to deplying ODL controller in the cloud operating system As observed

the result showed that the host with Hybrid resource management has the best

CPU utilization. Figure 4-3 shows the CPU utilization for each case

individully:

Figure 4-3: CPU Utilization Results

47

4.6.3 Latency Results

The latency results results obtained using the ping command. The results

were obtained under the same circuimstances in all hosts. Then the results

were ploted using matlab. Figure 4-4 shows that the latency have been

improved (decreased) in the cases of Hybrid and the dynamic hosts due to

deploying ODL controller in the cloud operating system. As observed the

result showed that the host with Hybrid resource management has the lowest

latency. Figure 4-4 shows the CPU utilization for each case individully:

Figure 4-4: Latency Results

48

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

FOR FUTURE WORK

49

5. Conclusion And Recommendation For Future Work

5.1 Conclusion

In this project we introduced the role of network virtualization on

implementing and delivering cloud computing services. We presented the

available network virtualization mechanisms and describe how they can

address the cloud networking requirements. The advent of SDN introduced

new forms of approaching network virtualization and network control inside

cloud. Cloud systems presents some challenges, such as, efficient resource

management, fast provisioning and scalability. By separating a network’s

control logic from the underlying infrastructure, software defined networking

(SDN) promises an unprecedented simplification in network

programmability. SDN improved cloud network control and accelerated the

provision of innovative network services. To illustrate the feasibility of

integrating both cloud computing and SDN paradigms, we presented a

practical study of the deployment of CloudStack and OpenDaylight. The

practical study included three practical examples, the study were mentioned

to show the benefits of SDN to cloud computing systems. The three hosts

were compared with each other in manner of performance aspect. The

comparison depends on the throughput, CPU utilization, and the latency of

the hosts. The result showed that the host with Hybrid resource management

has the highest throughput, and the best CPU utilization, and has the lowest

latency. Then comes the host with the Dynamic resource management. And

the host with the static resource allocation appeared to have the lowest

throughput, and the worst CPU utilization, and has the highest latency.

50

5.2 .Recommendations for Future Work

After we finished this project, we can provide some recommendations and

research issues for who wants to carry on from the point we stopped on.

Future work on this topic can include:

Insufficient bandwidth can cause significant latency on the interaction

between users and the application, reducing the quality of the service (QoS)

provided to and by cloud tenants. The emergence of control models such as

SDN, together with hardware-assisted virtualization technologies such as

SR-IOV, is expected to improve the control capacity over the shared network

resources.

SDN and NFV appliances can also address the challenges on policy

enforcement complexity. These policies define the configuration of each

virtual and physical resource in the cloud network. Traffic isolation and

access control to end users are among the multiple forwarding policies that

can be enforced by deploying SDN and NFV solutions in the cloud.

51

REFERENCES

[1] Autenrieth, A., Elbers, J.-P., Kaczmarek, P., and Kostecki, P. (2013).

Cloud orchestration with SDN/OpenFlow in carrier transport networks. In

15th Int. Conf. on Transparent Optical Networks (ICTON), pages 1–4.

[2] Yang, L., Dantu, R., Anderson, T., and Gopal, R. (2004). RFC 3746 –

forwarding and control element separation (ForCES) framework.

https://tools. ietf.org/html/rfc3746.

 [3] OpenContrail (2014). OpenContrail: An open-source network

virtualization platform for the cloud. http://www.opencontrail.org/.

Accessed: 2015-02-28.

[4] Feamster, N., Rexford, J., and Zegura, E. (2013). The road to SDN.

Queue, 11(12):20–40.

[5] Caesar, M., Caldwell, D., Feamster, N., Rexford, J., Shaikh, A., and van

der Merwe, J. (2005). Design and implementation of a routing control

platform. In Proc. of the 2nd Symposium on Networked Systems Design &

Implementation, volume 2, pages 15–28. USENIX Association.

[6] Casado, M., Freedman, M., Pettit, J., Luo, J., McKeown, N., and Shenker,

S. (2007). Ethane: Taking control of the enterprise. In Proc. of the 2007

Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communications (SIGCOMM’07), pages 1–12, New York, NY,

USA. ACM.

[7] Greenberg, A., Hjalmtysson, G., Maltz, D. A., Myers, A., Rexford, J.,

Xie, G., Yan, H., Zhan, J., and Zhang, H. (2005). A clean slate 4d approach

to network control and management. ACM SIGCOMM Computer

Communication Review, 35(5):41–54.

https://tools/

52

[8] Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak,

M., and Bowman, M. (2003). PlanetLab: an overlay testbed for broad-

coverage services. ACM IGCOMM Computer Communication Review,

33(3):3–12.

[9] Mell, P. and Grance, T. (2011). The nist definition of cloud computing.

Technical Report 800-145, National Institute of Standards and Technology

(NIST).

[10] Kreutz, D., Ramos, F. M. V., Veríssimo, P., Rothenberg, C. E.

Azodolmolky, S. and Uhlig, S. (2014). Software-defined networking: A

comprehensive survey. CoRR, abs/1406.0440.

[11] Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T.,

Lantz, B., O’Connor, B., Radoslavov, P., Snow, W., and Parulkar, G. (2014).

ONOS: towards an open, distributed SDN OS. In Proc. of the 3rd Workshop

on Hot topics in software defined networking, pages 1–6. ACM.

[12] Ricci, R., and Seskar, I. (2014). GENI: A federated testbed for

innovative network experiments. Computer Networks, 61:5–23

[13] OpenFlow (2012). Specification, openflow switch – v1.3.0

[14] Pfaff, B. and Davie, B. (2013). The Open vSwitch Database

Management Protocol. RFC Editor.

[15] Enns, R., Bjorklund, M., Schoenwaelder, J., and Bierman, A. (2011).

RFC 6241 – network configuration protocol (NETCONF). https://tools.

ietf.org/html/rfc6241.

[16] Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu,

M., amanathan, R., Iwata, Y., Inoue, H., Hama, T., et al. (2010). Onix: A

distributed control platform for large-scale production networks. In OSDI,

volume 10, pages 1–6.

https://tools/

53

[17] Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N.,

and Shenker, S. (2008). NOX: towards an operating system for networks.

ACM SIGCOMM Computer Communication Review, 38(3):105–110.

[18] Koponen, T., Amidon, K., Balland, P., Casado, M., Chanda, A. Fulton,

B. Ganichev, I., Gross, J., Gude, N., Ingram, P., et al. (2014). Network

virtualization in multi-tenant datacenters. In USENIX NSDI.

[19] Jain, R. and Paul, S. (2013b). Network virtualization and software

defined networking for cloud computing: a survey. Communications

Magazine, IEEE, 51(11):24–31.

[20] Amazon (2014). Virtualization Types – Amazon Elastic Compute

Cloud.http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/virtualizatio

n_types.html. Accessed: 2016-04-27.

[21] Menascé, D. A. (2005). Virtualization: Concepts, applications, and

performance modeling. In CMG Conference, pages 407–414.

[22] Al-Shaer, E. and Al-Haj, S. (2010). FlowChecker: Configuration

analysis and verification of federated Openflow infrastructures. In Proc. of

the 3rd ACM Workshop on Assurable and Usable Security Configuration

(SafeConfig’10), pages 37–44, New York, NY, USA. ACM.

[23] CloudStack Installation Documentation, Release 4.6.0. Apache

Software Foundation, November 17, 2015

[24] Greene, K. (2009). TR10: Software-defined networking. Technology

Review (MIT).

[25] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson,

L., Rexford, J., Shenker, S., and Turner, J. (2008). OpenFlow: enabling

innovation in campus networks. ACM SIGCOMM Computer

Communication Review, 38(2):69–74.

54

[26] Kim, D., Gil, J.-M., Wang, G., and Kim, S.-H. (2013). Integrated sdn

and non-sdn network management approaches for future internet

environment. In Multimedia and Ubiquitous Engineering, pages 529–536.

Springer.

[27] Pan, J., Paul, S., and Jain, R. (2011). A survey of the research on future

internet architectures. Communications Magazine, IEEE, 49(7):26–36.

[28] Lin, Y., Pitt, D., Hausheer, D., Johnson, E., and Lin, Y. (2014).

Software-defined networking: Standardization for cloud computing’s second

wave. Computer, 47(11):19–21.

[29] Medved, J., Varga, R., Tkacik, A., and Gray, K. (2014). Open-Daylight:

Towards a Model-Driven SDN Controller architecture. In 2014 IEEE 15th

International Symposium on, pages 1–6. IEEE.

[30] OpenContrail (2014). OpenContrail: An open-source network

virtualization platform for the cloud. http://www.opencontrail.org/.

Accessed: 2016-04-27.

[31] IEEE (2012a). 802.1BR-2012 – IEEE standard for local and

metropolitan area networks–virtual bridged local area networks–bridge port

extension. Technical report, IEEE Computer Society.

[32] IEEE (2012b). IEEE standard for local and metropolitan area networks–

media access control (MAC) bridges and virtual bridged local area networks–

amendment 21: Edge virtual bridging. IEEE Std 802.1Qbg-2012, pages 1–

191.

55

Appendix

Appendix A

Setup Management server

 Add the CloudStack repository.

#vi /etc/yum.repos.d/cloudstack.repo

 Install the next packages:

1- Network Timing Protocol

yum install ntp -y

2- MYSQL-SERVER

yum install mysql-server -y

3- CLOUDSTACK-MANAGEMENT

yum install cloudstack-management -y

 Stop iptables

/etc/init.d/iptables stop

chkconfig iptables off

56

 Configure Selinux

Change in /etc/selinux/config the Selinux configuration from enforce to

Permissive

setenforce permissive

 Secure the installation of database

mysql_secure_installation

 Set up the database

cloudstack-setup-databases cloud:<dbpassword>@localhost

--deploy-as=root:<password>

 After the database is set up, finish configuring the OS for the Management

Server.
#cloudstack-setup-management

This command will set up iptables, and start the Management Server.

CloudStack Storage

Setup Primary Storage server

 Install the NFS package

 # yum install nfs -y

57

 Stop iptables

#/etc/init.d/iptables stop

#chkconfig iptables off

Secondary storage

Setup Secondary Storage Server

 Install the NFS package

yum install nfs -y

 Stop iptables

/etc/init.d/iptables stop

#chkconfig iptables off

CloudStack Host server

Setup host server:

 Install next packages:

1- Network Timing Protocol

yum install ntp -y

2- CLOUDSTACK-AGENT

yum install cloudstack-agent –y

58

3- LIBVIRT

yum install libvirt –y

 Stop iptables

#/etc/init.d/iptables stop

#chkconfig iptables off

 Configure Selinux

Change Selinux configuration to Permissive in /etc/selinux

#setenforce permissive

OpenDayLight controller

Setup OpenDayLight controller:

 Install ODL package in the management server.

#yum install odl -y

 Run the OpenDaylight SDN controller

cd /odl/opendaylight/

/run.sh -XX:MaxPermSize=384m -virt ovsdb -of13

HTTP service setup

 Install httpd packages

#Yum install http –y

59

 Check configuration file

#vi /etc/http/httpd.conf

DHCP service setup

 Install dhcpd packages

#Yum install dhcp -y

 Check configuration file

 #vi /etc/dhcp/dhcpd.conf

 Check next files existence in /etc/dhcp directory

1- dhcpd.conf

2- dhcpd.leases

3- dhclient/dhclient.conf

 Configure rsyslog service

#vi /etc/rsyslog/rsyslog.conf

#service rsyslog restart

 Run DHCP service

#service dhcpd start

60

Testing Throughput

Using Nload to test the throughput.

Testing CPU Utilization

Using Iostat to test the CPU utilization.

