
 

I 
 

Sudan University of Science and Technology 

College of Engineering 

School of Electronics Engineering 

 

Evaluating Dynamic Resource 

Management Algorithms In Cloud 

Systems  

 

A Research Submitted In Partial fulfillment for the Requirements of the 

Degree of B.Sc. (Honors) in Electronics Engineering  

 

Prepared By: 

1. Ahmed Yousif Farah  

2. Reem Abubekr Eltayb 

3. Solafa Mohamed Elhabib 

 

Supervised By: 

Dr. Sami H. O. Salih 

November, 2016 



 

II 
 

 

 قال تعالى :

 

 صدق الله العظيم

سورة طه(111) 



 

III 
 

 

DEDICATION 

 

This thesis is dedicated to our beloved 

mothers and fathers for planting the magic 

inside us and uplifting our spirit by 

supporting us all the way along. Also, 

dedicated to our brothers, sisters, friends 

and our supervisor for spending his time 

and effort to make this project on its best 

way. 

 

 



 

IV 
 

 

ACKNOWLEDGMENT 

 

All praise to Allah, today we fold the days' tiredness and the 

errand summing up between the cover of this humble work. To 

our mothers, to whom they strive to bless comfort and welfare 

and never stint what they own to push us in the success way 

who taught us to promote life stairs wisely and patiently, to 

our dearest fathers. 

 

To our supervisor Dr. Sami H. O. Salih who supervised, guided, 

encouraged and helped us wholeheartedly. 

 

To those who taught us letters of gold and words of jewels of 

the utmost and sweetest sentences in the whole knowledge. 

Who reworded to us their knowledge simply and from their 

thoughts made a lighthouse guides us through the knowledge 

and success path, to our honored teachers, thanks very much. 

 



 

V 
 

ABSTRACT 

 

Network virtualization and network management for cloud computing 

systems have become quite active research areas in the last years. More 

recently, the advent of the Software-Defined Networks (SDNs) introduced 

new concepts for solving these issues, fomenting new research initiatives 

oriented to the development and application of SDNs in the cloud. 

           

The goal of this research is to analyze these opportunities, showing how the 

SDN technology can be employed to develop, organize and virtualize cloud 

networking. Besides discussing the theoretical aspects related to this 

integration, as well as the ensuing benefits, we present a practical a case study 

based on the integration between Opendaylight (ODL) SDN controller and 

CloudStack cloud operating system. 
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 المستخلص

 

في  ثية النشطة جداأصبحت افتراضية وإدارة الشبكة لأنظمة الحوسبة السحابية من المجالات البح 

السنوات الأخيرة. وفي الآونة الأخيرة، ظهور الشبكات المعرفة من قبل البرمجيات أدخلت مفاهيم 

جديدة من أجل حل هذه القضايا، بالتحريض على المبادرات البحثية الجديدة الموجهة إلى تطوير 

 وتطبيق الشبكات المعرفة من قبل البرمجيات في السحابة.

البحث هو تحليل هذه الفرص، والتي تبين كيف أن تكنولوجيا الشبكات المعرفة من قبل  الهدف من هذا

البرمجيات يمكن استخدامها لتطوير وتنظيم المحاكاة الافتراضية الشبكات السحابية. إلى جانب مناقشة 

الة عملية ح الجوانب النظرية المتعلقة بهذا التكامل، فضلا عن الفوائد التي تلت ذلك، فإننا نقدم دراسة

على أساس التكامل بين وحدة تحكم الشبكات المعرفة من قبل البرمجيات و نظام تشغيل الحوسبة 

 .السحابية
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1. INTRODUCTION  

1.1 Preface 

 

Cloud computing has ushered the information technology (IT) field and 

service providers into a new era, redefining how computational resources and 

services are delivered and consumed. With cloud computing, distinct and 

distributed physical resources such as computing power and storage space 

can be acquired and used in an on-demand basis, empowering applications 

with scalability and elasticity at low cost. This allows the creation of different 

service models, generally classified as [1]: Infrastructure-as-a-Service (IaaS), 

which consists in providing only fundamental computing resources such as 

processing, storage and networks; Platform-as-a-Service (PaaS), in which a 

development platform with the required tools (languages, libraries, etc.) is 

provided to tenants; and Software-as-a-Service (SaaS), in which the 

consumer simply uses the applications running on the cloud infrastructure. 

 

Clouds aim to drive the design of the next generation data centers by 

architecting them as networks of virtual services (hardware, database, user-

interface, application logic) so that users can access and deploy applications 

from anywhere in the world on demand at competitive costs depending on 

their QoS (Quality of Service) requirements [2]. Developers with innovative 

ideas for new Internet services no longer require large capital outlays in 

hardware to deploy their service or human expense to operate it [3]. 
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To actually provide cost reductions, the cloud needs to take advantage of 

economies of scale, and one key technology for doing so is resource 

virtualization. After all, virtualization allows creation of a logical abstraction 

layer above the pool of physical resources, thereby enabling a programmatic 

approach to allocate resource wherever needed while hiding the complexities 

involved in their management [4]. The result is potentially very efficient 

resource utilization, better manageability, on-demand and programmatic 

resource instantiation, and resource isolation for better control, accounting 

and availability. 

 

In any cloud environment, the network is a critical resource that connects 

various distributed and virtualized components, such as servers, storage 

elements, appliances and applications [5]. For example, it is the network that 

allows aggregation of physical servers, efficient virtual machine (VM) 

migration, and remote connection to storage systems, effectively creating the 

perception of large, monolithic resource pool. Furthermore, it is also the 

network that enables delivery of cloud based applications to end users. Yet, 

while every component in a cloud is getting virtualized, the physical network 

connecting these components is not. Without virtualization, the network is 

one physical common network, shared by all cloud end-users and cloud 

components [6].  
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1.2 Problem Statement 

The major issues with building efficient cloud computing systems are the 

system flexibility and the availability, in particularly the resource 

management. However, utilizing complex algorithms for resource 

management such as hybrid resource management will negatively affect the 

system performance. Moreover, the optimum coefficients for resource to be 

used is time vary and application dependant. These tradeoffs necessitate a 

prototype to pre-evaluate the system optimal operation before installing live 

applications to the cloud. Current test-beds are either based on cloud system 

operating system, or just addressing the management feature of SDN. 

 

1.3 Proposed Solution  

A test-bed is to be implemented to emulate the cloud computing system 

behavior when the SDN approach is used in resource management. In this 

research OpenDayLight SDN controller is employed to cloud computing 

systems to better utilize the resource management using Dynamic algorithm. 

Results show that a considerable improvement is achieved in flexibility, 

Aailability and system performance. 
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1.4 Aims and Objective 

The main objective of this research is to study the Quality of the Services 

offered for the end users when benefiting from XaaS packages. This should 

be achieved by maximum utilization of the available resource and the 

provided side. This has been detailed as follows; 

i. Studying the Cloud and the virtualization approaches 

ii. Studying the SDN management approaches 

iii. Develop a test-bed environment for Cloud Computing 

iv. Applying SDN to manage Cloud Computing system resource based on 

Dynamic Resource Management algorithm 

v. Validate the results 

 

1.5Methodology 

A deductive method is used in this research starting from arguing that 

employing SDN approaches in resource management of Cloud computing 

systems will improve the system flexibility and performance. Then a test-bed 

environment is implemented to verify this hypothesis in various scenarios 

using dynamic resource management. 

 

 

 

 



 

6 
 

1.6 Research Outlines 

After the introductory chapter, Chapter Two will give a general overview of 

resource management concepts especially in cloud computing technology. 

Chapter Three and Chapter Four will highlight the SDN management 

approaches. The former, presents the methodology with details on the tools 

used. While the later, evaluate the results of the applied scenarios. The 

research conclusion and recommendation for future work has been drown in 

Chapter Five. 
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NETWORKS APROACHES 

 

 

 

 

 

 

 

 



 

8 
 

 
 

 

2. Cloud Computing And Software Defined Networks 

Approaches  

 

 

2.1 Hardware Resource Management  

 

resource management is the process of allocating computing, storage, 

networking and (indirectly) energy resources to a set of applications, in a 

manner that seeks to jointly meet the performance objectives of the 

applications, the infrastructure (i.e., data center) providers and the users of 

the cloud resources [7]. The objectives of the providers center around 

efficient and effective resource use within the constraints of Service Level 

Agreements (SLAs) with the Cloud Users. Efficient resource use is typically 

achieved through virtualization technologies, which facilitate statistical 

multiplexing of resources across customers and applications. The objectives 

of the Cloud Users tend to focus on application performance, their 

availability, as well as the cost-effective scaling of available resources in line 

with changing application demands. Often, these objectives come with 

constraints regarding resource dedication to meet non-functional 

requirements relating to, for example, security or regulatory compliance. 
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2.2 Cloud Computing systems 

2.2.1 Exploring the Cloud Computing Stack 

Cloud computing builds on the architecture developed for staging large 

distributed network applications on the Internet over the last 20 years. To 

these standard networking protocols, cloud computing adds the advances in 

system virtualization that became available over the last decade [8]. 

The cloud creates a system where resources can be pooled and partitioned as 

needed. Cloud architecture can couple software running on virtualized 

hardware in multiple locations to provide an on-demand service to user-

facing hardware and software. It is this unique combination of abstraction 

and metered service that separates the architectural requirements of cloud 

computing systems from the general description given for an n-tiered Internet 

application. 

 

2.2.2 Cloud feature 

The NIST Definition of Cloud Computing that classified cloud computing 

into the three service models (SaaS, IaaS, and PaaS) and four cloud types 

(public, private, community, and hybrid), also assigns five essential 

characteristics that cloud computing Systems must offer [9]: 

 On-demand self-service: A client can provision computer resources 

without the need for interaction with cloud service provider personnel. 

 

 Broad network access: Access to resources in the cloud is available 

over the network using standard methods in a manner that provides 
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platform-independent access to clients of all types. This includes a 

mixture of heterogeneous operating systems, and thick and thin 

platforms such as laptops, mobile phones. 

 

 Resource pooling: A cloud service provider creates resources that are 

pooled together in a system that supports multi-tenant usage. Physical 

and virtual systems are allocated or reallocated as needed. Intrinsic in 

this concept of pooling is the idea of abstraction that hides the location 

of resources such as virtual machines, processing, memory, storage, 

and network bandwidth and connectivity. 

 

 Rapid elasticity: Resources can be rapidly and elastically provisioned. 

The system can add resources by either scaling up systems (more 

powerful computers) or scaling out systems (more computers of the 

same kind), and scaling may be automatic or manual. From the 

standpoint of the client, cloud computing resources should look 

limitless and can be purchased at any time and in any quantity. 

 

 Measured service: The use of cloud system resources is measured, 

audited, and reported to the customer based on a metered system. A 

client can be charged based on a known metric such as amount of 

storage used, number of transactions, network I/O (Input/Output) or 

bandwidth, amount of processing power used, and so forth. A client is 

charged based on the level of services provided 
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2.2.3 Cloud Computing and Resource Virtualization 

Virtualization is not a new concept in computing, having in fact appeared in 

the 70’s [7]. The concept of virtualization has evolved with time, however, 

going from virtual memory to processor virtualization up to the virtualization 

of network resources (e.g., SDN, OpenvSwitch, etc.). With the advent of 

cloud computing and the demand of virtualizing entire computing 

environments, new virtualization techniques were developed, among them 

[8]: 

  

 Full Virtualization or Hardware VM: all hardware resources are 

simulated via software.  

 Para-Virtualization: the hardware is not simulated, but divided in 

different domains so they can be accessed by VMs.  

 Para-virtualized drivers (Para+Full Virtualization): a combination of 

the previous techniques 

 

Several studies highlight the benefits of virtualization on a computing 

environment. Among them, the following can be cited [9]: 

 

 Resource sharing: when a device has more resources than what can be 

consumed by a single entity, those resources can be shared among 

different users or processes for better usage efficiency [9]. 

 Resource aggregation: devices with a low availability of resources can 

be combined to create a larger-capacity virtual resource. 

 Ease of management: one of the main advantages of virtualization is 

that it facilitates maintenance of virtual hardware resources.  
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 Dynamics: with the constant changes to application requirements and 

workloads, rapid resource reallocation or new resource provisioning 

becomes essential for fulfilling these new demands. Virtualization is 

a powerful tool for this task, since virtual resources can be easily 

expanded, reallocated, moved or removed without concerns about 

which physical resources will support the new demands.  

 Isolation: multiple users environments may contain users that do not 

trust on each other. Therefore, it is essential that all users have their 

resources isolated from other users, even if this is done logically (i.e., 

in software).  

 

Despite their benefits, there are also disadvantages of virtualized 

environments, such as [10]:  

 

 Performance: even though there is no single method for measuring 

performance, it is intuitive that the extra software layer of the 

hypervisors leads to higher processing costs than a comparable system 

with no virtualization. 

 Management: virtual environments abstract physical resources in 

software and files, so they need to be instantiated, monitored, 

configured and saved in an efficient and auditable manner, which is 

not always an easy task. 

 Security: whereas isolation is a mandatory requirement for VMs in 

many real case scenarios, completely isolating a virtualized resource 

from another, or applications running on the physical hardware from 

virtualized ones, are involved (if not impossible) tasks. 
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2.2.4 Mechanisms for Network Virtualization  

To understand the mechanisms that can implement network virtualization, 

first we need to understand which resources can be virtualized in a network.  

 

 Virtualization of NICs: it’s necessary to provide every VM with its 

own virtual NIC (vNIC) 

 Virtualization of L2 Switches: The number of ports in a typical switch 

is limited. To solve this issue, IEEE Bridge Port Extension standard 

802.1BR [32] proposes a virtual bridge with a large number of ports 

using physical or virtual port extenders (like a vSwitch). 

 Virtualization of L2 Networks: In a multitenant data center, VMs in a 

single physical machine may belong to different clients and, thus, need 

to be in different virtual LANs (VLANs) [12].  

 Virtualization of L3 Networks: When the multitenant environment is 

extended to a layer 3 network, there are a number of competing 

proposals to solve the problem. Examples include: virtual extensible 

LANs (VXLANs) [13]; network virtualization using generic routing 

encapsulation (NVGRE) [14]; and the Stateless Transport Tunneling 

(STT) protocol [15]. 

 Virtualization of L3 Router: Network Function Virtualization (NFV) 

[16] provides the conceptual framework for developing and deploying 

virtual L3 routers and other layer 3 network resources 
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2.3 Software Defined Networks 

The term SDN originally appeared in [1], referring to the ability of Open- 

Flow [2] to support the configuration of table flows in routers and switches 

using software. However, the ideas behind SDNs come from the goal of 

having a programmable network, whose research started short after the 

emergence of the Internet, led mainly by the telecom industry. Today, the 

networking industry has shown enormous interest in the SDN paradigm, 

given the expectations of reducing both capital and operational costs with 

service providers and enterprise data centers with programmable, 

virtualizable and easily partitionable networks. These features of SDNs make 

them highly valuable for cloud computing systems, here the network 

infrastructure is shared by a number of independent entities and, thus, 

network management becomes a challenge. Indeed, while the first wave of 

innovation in the cloud focused on server virtualization technologies and on 

how to abstract computational resources such as processor, memory and 

storage, SDNs are today promoting a second wave with network 

virtualization [14]. The emergence of large SDN controllers focused on 

ensuring availability and scalability of virtual networking for cloud 

computing systems (e.g., OpenDayLight [13] and Open-Contrail [30]) is a 

clear indication of this synergy between both technologies 

 

2.3.1 The Role of Software Defined Network in resource 

management 

The software –defined networking (SDN) paradigm has emerged as a 

promising Solution to reduce this complexity through the creation of a 

unified control plane Independent of specific vendor equipment. However, 
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designing a SDN-based solution for network resource management raises 

several challenges as it should Exhibit flexibility, scalability and adaptability. 

We will review some of the main challenges associated with SDN-based 

solutions and present our recent contributions in that direction. Support for 

both static and dynamic resource management applications. 

 

2.3.2 Software Defined Networks Advancement 

We can divide the historical advancements that culminated in the SDN 

concept into the three different phases [3], as follows: 

 

1. Active Networks (from the mid-1990s to the early 2000s): 

This phase follows the historical advent of the Internet, The so-called 

“active networks” appeared as a first initiative aiming to turn network 

devices (e.g., switches and routers) into programmable elements and, thus, 

allow furthers innovations in the area. This programmability could then 

allow a separation between the two main functionalities of networking 

elements: the control plane, which refers to the device’s ability to decide 

how each packet should be dealt with; and the data plane, which is 

responsible for forwarding packets at high speed following the decisions 

made by the control plane. Specifically, active networks introduced a new 

paradigm for dealing with the network’s control plane, in which the 

resources (e.g., processing, storage, and packet queues) provided by the 

network elements could be accessed through application programming 

interfaces (APIs).  
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2. Control- and data-plane separation (from around 2001 to 2007): 

After the Internet became a much more mature technology in the late 

1990’s, the increasing complexity of network topologies, together with 

concerns regarding the performance of backbone networks, led different 

hardware manufacturers to develop embedded protocols for packet 

forwarding, promoting the high integration between the control and data 

planes seen in today’s Internet. The importance of a centralized control 

model has become more evident, as well as the need of a separation 

between the control and data planes. Among the technological innovations 

arising from this phase, we can cite the creation of open interfaces for 

communications between the control and data planes such as ForCES 

(Forwarding and Control Element Separation) [27], whose goal was to 

enable a locally centralized control over the hardware elements distributed 

along the network topology [4], [29]. To ensure the efficiency of 

centralized control mechanisms, the consistent replication of the control 

logic among the data plan elements would play a key role.  

 

3. OpenFlow and Network Operating System (from 2007 to 2010): 

 The ever growing demand for open interfaces in the data plane led 

researchers to explore different clean slate architectures for logically 

centralized network control [6], [7], [8]. In particular, the Ethane project 

created a centralized control solution for enterprise networks, reducing 

switch control units to programmable flow-tables. The operational 

deployment of Ethane in the Stanford computer science department, 

focusing on network experimentation inside the campus, was indeed huge 

success, and resulted in the creation of OpenFlow protocol [25]. 

OpenFlow enables fully programmable networks by providing a standard 
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data plane API for existing packet switching hardware. The creation of 

the OpenFlow API, on its turn, allowed the emergence of SDN control 

platforms such as NOX [9], thus enabling the creation of a wide range of 

network applications. OpenFlow led to the vision of a network operating 

system that, different from the node-oriented system preconized by active 

networks, organize the network’s operation into three layers: (1) a data 

plane with an open interface; (2) a state management layer that is 

responsible for maintaining a consistent view of the overall network state; 

and (3) control logic that performs various operations depending on its 

view of network state [10]. Following these advances, solutions such as 

Onix and its open-source counterpart, ONOS (Open Network Operating 

System) [31], Analyzing this historical perspective, it becomes easier to 

see that the SDN concept emerged as a tool for allowing further network 

innovation, helping researchers and network operators to solve 

longstanding problems in network management and also to provide new 

network services. SDN has been successfully explored in many different 

research fields, including areas such as network virtualization and cloud 

networking. 

 

2.3.3 Software Defined Networks Features  

SDN facilitates network virtualization and may, thus, makes it easier to 

implement features such as dynamic network reconfiguration (e.g., in 

multitenant environments). However, it is important to recognize that the 

basic capabilities of SDN technologies do not directly provide these benefits. 

Some SDN features and their main contributions to improve network 

virtualization are: 
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Control plane and data plane separation: The separation between control 

and data planes in SDN architectures, as well as the standardization of 

interfaces for the communication between those layers, allowed to 

conceptually unify different vendor network devices under the same control 

mechanisms.  

 

Network programmability: The programming capabilities introduced by 

SDN provide the dynamics necessary to rapidly scale, maintain and configure 

new virtual networks. Moreover, network programmability also allows the 

creation of custom network applications oriented to innovative network 

virtualization solutions. 

 

Logically centralized control: The abstraction of data plane devices 

provided by SDN architecture gives the network operating system, also 

known as SDN orchestration system, a unified view of the network. 

Therefore, it allows custom control applications to access the entire network 

topology from a logically centralized control platform, enabling the 

centralization of configurations and policy management. 

 

Automated management: the SDN architecture enhances network 

virtualization platforms by providing support for automation of 

administrative tasks. The centralized control and the programming 

capabilities provided by SDN allow the development of customized network 

applications for virtual network creation and management. Auto scaling, 

traffic control and QoS are examples of automation tools that can be applied 

to virtual network environments  
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2.3.4 Data plane and control plane 

SDN architecture and its main components, showing that the data and control 

planes are connected via a well-defined programming interface between the 

switches and the SDN controller. 

  

The data plane: corresponds to the switching circuitry that interconnects all 

devices composing the network infrastructure, together with a set of rules that 

define which actions should be taken as soon as a packet arrives at one of the 

device’s ports.  

 

The control plane: on its turn, is responsible for programming and managing 

the data plane, controlling how the routing logic should work. This is done 

by one or more software controllers, whose main task is to set the routing 

rules to be followed by each forwarding device through standardized 

interfaces, called the southbound interfaces. These interfaces can be 

implemented using protocols such as OpenFlow 1.0 and 1.3 [13], OVSDB 

[14] and NETCONF [15] The control plane concentrates, thus, the 

intelligence of the network, using information provided by the forwarding 

elements (e.g., traffic statistics and packet headers) to decide which actions 

should be taken by them [16]. 

 

2.3.5 The OpenFlow Protocol 

The OpenFlows protocol is one of the most commonly used southbound 

interfaces, being widely supported both in software and hardware, and 

standardized by the Open Networking Foundation (ONF). It works with the 

concept of flows, defined as groups of packets matching a specific header 

[25], which receive may be treated differently depending how the network is 
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programmed. OpenFlow’s simplicity and flexibility, allied to the high 

performance at low cost, ability to isolate experimental traffic from 

production traffic, and to cope with vendors’ need for closed platforms [25], 

are probably among the main reasons for this success. 

 

2.3.6 OpenDaylight Controller 

Created in April 2013 as a Linux Foundation collaborative project, 

OpenDaylight is an open source OpenFlow controller and also a scalable 

SDN framework for the development of several network services, including 

data plane protocols. As such, OpenDaylight can be the core component of 

any SDN architecture. The OpenDaylight architecture follows the traditional 

SDN design, implementing the control layer as well as the northbound and 

southbound interfaces.              
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3. Employing Software Defined Nnetworks  Approaches In 

CloudStack 

3.1 Cloudstack cloud operating system 

 

CloudStack is an open source IaaS Cloud platform originally developed by 

Cloud.com. CloudStack implements the Amazon EC2 and S3 APIs, as well 

as the vCloud API, in addition to its own API CloudStack, written in Java, is 

designed to manage and deploy large networks of VMs. Cloud-Stack 

currently supports VMware, Oracle VM, KVM, Xen Server and Xen Cloud 

Platform. CloudStack has a hierarchical structure, which enables 

management of multiple physical hosts from a single web-based interface. 

Table 3-1 and table 3-2 shows comparison between different open source 

cloud operating system. 

 

Table 3-1: Comparison between Different Open Source Cloud Operating System [10] 
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Table 3-2: Comparison between OpenStack and CloudStack Cloud Operating System 

[10] 

 

 OpenStack CloudStack 

Language Python, Shell script Java, Python, Shell script 

Lines of code 210,051 1,270,052 

Database tables 83 141 

Hypervisor support KVM, XenServer, 

Hyper-V, Vmware  

KVM, XenServer, Oracle 

VM, Hyper-V, Vmware 

Monitoring and 

billing 

No Monitoring(no), billing 

(yes) 

Control Basic Advanced 

Live migration 

support 

Poor Good 

High availability Basic Advanced 

Password encryption No Yes 

Message passing RabbitMQ(AMQP) Java 

Documentation  HTML, PDF PDF 

 

3.2 OpenDayLight controller 

OpenDaylight is a Java-based SDN controller built to provide a 

comprehensive network programmability platform for SDN. OpenDaylight 

is little different from the others because it allows for other non-OpenFlow 

southbound protocols. Table 3-3 shows comparison between the main 

characteristics of open source SDN controllers. 



 

24 
 

Table 3-3: Comparison between the Main Characteristics of Open Source SDN 

Controllers [30] 

 

 NOX  POX  Ryu  Floodlight  ODL 

Language  C++  Python  Python  Java  Java 

Performance  High Low Low High High 

Distributed No No Yes Yes Yes 

OpenFlow  1.0  1.0  1.2–1.4 1.0, 1.3 1- 1.3 

Multi-tenant clouds No No Yes Yes Yes 

Learning curves  Moderate  Easy  Moderate  Steep  Steep 

 

 

3.3 CloudStack Deployment  

CloudStack cloud operating system consist of four components. 

Management server, one or more storage servers, and host server. 

 

3.3.1 Management server 

Management server responsible of all cloud control including set zones, pods, 

cluster, storage servers, and host servers. Besides managing all traffic of the 

cloud, and connecting the cloud components to each other. It has a web-based 

interface to make the managing process much easier. Figure 3-1shows 

conceptual view of basic deployment. 
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Figure 3-1: Conceptual View Of Basic Deployment [23] 

 

3.3.2 Storage servers 

Instead of saving data in the host servers that are offered to tenants, in 

CloudStack the tenant data are saved in separated server. This will result in 

more reliability, and availability, and make a simple way to live migration. 

CloudStack at least must have a primary Storage server. And for more 

availability one or more secondary storage server. 

If the primary storage went down, a secondary storage automatically goes 

up and receive all tenant traffic. 

 

3.3.3 Host servers  

The host servers are the actual infrastructure that offered to tenants. One 

host server may guest more than a tenant, and each tenant will have one or 
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more virtual machine. CloudStack Cloud operating system offers iaas 

(infrastructure as a service).  

 

3.4 OpenDayLight Deployment 

The OpenDaylight architecture follows the traditional SDN design, 

implementing the control layer as well as the northbound and southbound 

interfaces. However, differently from the majority of controllers, the 

OpenDaylight architecture clearly separates its design and implementation 

aspects. The OpenDaylight SDN controller is composed by the following 

architectural layers [22]: 

 

Network Applications, Orchestration and Services: Business applications 

that make use of the network services provided by the controller platform to 

implement control, orchestration and management applications. 

 

Controller Platform: Control layer that provides interfaces for all the 

network services implemented by the platform via a REST northbound API. 

The controller platform also implements a service abstraction layer (SAL), 

which provides a high-level view of the data plane protocols to facilitate the 

development of control plane applications. 

 

 Southbound Interfaces and Protocol Plugins: Southbound interfaces 

contain the plugins that implement the protocols used for programming the 

data plane. 
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Data Plane Elements: Physical and virtual network devices that compose 

the data plane and are programmed via the southbound protocol plugins. The 

variety of southbound protocols supported by the OpenDaylight controller 

allows the deployment of network devices from different vendors in the 

underlying network infrastructure.  

 

The service abstraction layer (SAL) is one of the main innovations of the 

Open-Daylight architecture to enable communication between plugins, this 

message exchange mechanism ignores the role of southbound and 

northbound plugins and builds upon the definition of Consumer and Provider 

plugins. Providers are plugins that expose features to applications and other 

plugins through its northbound API, whereas consumers are components that 

make use of the features provided by one or more Providers. This change 

implies that every plugin inside OpenDaylight can be seen as both a provider 

and a consumer, depending only on the messaging flow between the plugins 

involved. In OpenDaylight, SAL is responsible for managing the messaging 

between all the applications and underlying plugins. Figure 3-2 shows 

communication between producer and consumer plugins using SAL 
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Figure 3-2: Communication Between Producer And Consumer Plugins Using SAL 

[22] 

 

In OpenDaylight, SAL is responsible for managing the messaging between 

all the applications and underlying plugins. Figure 3-3 shows the life of a 

package inside the OpenDaylight architecture, depicting the following steps 

[22]: 

1. A packet arriving at Switch1 is sent to the appropriate protocol plugin. 

2. The plugin parses the packet and generates an event for SAL. 

3. SAL dispatches the packet to the service plugins listening for 

DataPacket.  

4. Module handles the packet and sends is out via the 

IDataPacketService. 

5. SAL dispatches the packet to the southbound plugins listening for 

DataPacket. 

6. OpenFlow message sent to appropriate switch. 
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Figure 3-3: Life of a Package In OpenDaylight. [22] 

 

3.5 Integration Architectures 

SDNs and clouds display similar designs, with a 3-layer architecture 

composed by a Infrastructure Layer with computational resources controlled 

by a Control Layer, which in turn is controlled via APIs by applications in an 

Application Layer (see Figure 3-4). One simple form of integrating SDNs 

and clouds is to run their stacks in parallel, with both technologies being 

integrated by the applications themselves. Even though applications can 

benefit from both technologies with this strategy, it also brings a significant 

overhead to application developers. After all, applications would need to be 

SDN-aware and cloud-aware, and accessing APIs for both technologies in an 

effective manner, which is prone to complicate their design and 

implementation. 



 

30 
 

 

Figure 3-4: SDN Function Incorporated In Cloud Control [19] 

 

A second and probably preferable is to consider the cloud 

control/orchestration system as an SDN application to the SDN controller. In 

this scenario, depicted in Figure (3-5) the Cloud Control/Orchestration 

subsystem is augmented with modules that translate Cloud Operations to 

SDN operations, using existing SDN controllers APIs. This approach brings 

the benefits of the previous approach while allowing greater flexibility. It is 

possible to evolve both the Cloud and SDN infrastructures separately, with 

minimal or no changes to their integration interface. It would also allow the 

use of existing SDN solutions without alterations, including proprietary SDN 

solutions or hardware-based controllers. 
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Figure 3-5: SDN Function Incorporated In Cloud Control Orchestration Subsystem 

[19] 

 

3.6 Deploying Cloud Networking  

In what follows, we conduct a simple experiment showing how to build an 

architecture that bring the benefits of SDN to cloud computing systems. For 

this, we use CloudStack and OpenDaylight, giving a practical example of the 

CloudStack networking in an SDN architecture, analyzing the interactions 

between CloudStack and the OpenDaylight controller, as well as their 

specific roles in this deployment. 
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3.6.1 Experiments  

In this Section three practical Scenarios are introduced to show the benefits 

of SDN to cloud computing systems. The first one is CloudStack host with 

HTTP, And DHCP services based on Static resource allocation. The Second 

is CloudStack host with HTTP, And DHCP services based on Dynamic 

resource allocation. . The third is CloudStack host with HTTP, And DHCP 

services based on Hybrid resource allocation. 

 

Static resource allocation practical example 

In this example the resources of the host server will be statically allocated 

(fixed amount of resources). Then HTTP, and DHCP services will be setup 

on the host server. 

 

Dynamic resource allocation practical example 

In this example the resources of the host server will be dynamically allocated 

(A pool of shared resources). Then HTTP, and DHCP services will be setup 

on the host server. 

 

Hybrid resource allocation practical example 

In this example the resources of the host server will be dynamically allocated 

(minimum fixed amount of resources, and a pool of shared resources). Then 

HTTP, and DHCP services will be setup on the host server. 
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4. Deploying Cloud Networking with CloudStack and 

OpenDaylight 

 

 

This project has been done on actual hardware resources completely. No 

simulations. Actual devices are involved in this evaluation. So the outcome 

results are more practical rather than theoretical. All command lines related 

to this chapter are included in Appendix A. 

 

The test environment include three laptop are used as hardware 

resources, and tow VMware virtual machines are in each of them, 

one for the cloud  management, one for the cloud primary storage, 

one for the cloud secondary storage, and three for the hosts servers. 

All VMware virtual machine operating on Centos 6.3 operating 

system. 

 

The first laptop contain the management server and a host server, and the 

second contain the primary storage server and a host server, and the third 

contain the secondary storage server and a host server. Connected to each 

other via switch. Figure (4-1) cloud infrastructure. 
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Figure 4-1: Cloud Infrastructure  

 

4.1 CloudStack deployment 

CloudStack cloud operating system consist of four components. 

Next how to setup and configure all of four components.  

 

4.1.1 Hardware and software requirements for CloudStack 

Management Server, Database, and Storage System Requirements 

The machines that will run the Management Server and MySQL database 

must meet the following requirements. 

The same machines can also be used to provide primary and secondary 

storage, such as via localdisk or NFS. The Management Server may be 

placed on a virtual machine. 
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• Operating system: 

– Preferred: CentOS/RHEL 6.3+ or Ubuntu 12.04(.1) 

• 64-bit x86 CPU (more cores results in better performance) 

• 4 GB of memory 

• 250 GB of local disk (more results in better capability; 500 GB 

recommended) 

• At least 1 NIC 

• Statically allocated IP address 

• Fully qualified domain name as returned by the hostname command 

 

Host/Hypervisor System Requirements 

The host is where the cloud services run in the form of guest virtual 

machines. Each host is one machine that meets the following requirements: 

• Must support HVM (Intel-VT or AMD-V enabled). 

• 64-bit x86 CPU (more cores results in better performance) 

• Hardware virtualization support required 

• 4 GB of memory 

• 36 GB of local disk 

• At least 1 NIC 

• Latest hotfixes applied to hypervisor software 

• When you deploy CloudStack, the hypervisor host must not have any 

VMs already running 

• All hosts within a cluster must be homogeneous. The CPUs must be of the 

same type, count, and feature flags. 
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4.1.2 Cloudstack management server 

Setup Management server: 

 Configure the interface 

 Change the hostname 

 Add the CloudStack repository. 

 

Repository content: 

[cloudstack] 

name=cloudstack 

baseurl=http://cloudstack.apt-get.eu/centos/6/4.6/ 

enabled=1 

gpgcheck=0 

 

 Install the next packages: 

1. Network Timing Protocol 

NTP is required to synchronize the clocks of the servers in the cloud. 

Unsynchronized clocks can cause unexpected problems. 

2. MYSQL-SERVER  

3. CLOUDSTACK-MANAGEMENT 

           

 Stop iptables           

 Configure Selinux 

Change in /etc/selinux/config the Selinux configuration from enforce to 

Permissive 
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CloudStack does various things which can be blocked by security 

mechanisms like SELinux. It has to be disabled to ensure the Agent has all 

the required permissions. 

 

 Secure the installation of database 

 Set up the database 

 After the database is set up, finish configuring the OS for the Management 

Server. 
 

4.1.3 CloudStack Storage 

Cloudstack storage includes primary storage server and one or more 

secondary storage server. 

 

Primary Storage 

CloudStack is designed to work with a wide variety of commodity and 

enterprise-rated storage systems. 

 

Setup Primary Storage server: 

 configure the interface  

 Change the host name 

 Install the NFS package 

 Stop iptables 
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Secondary storage 

CloudStack is designed to work with any scalable secondary storage system. 

The only requirement is that the secondary storage system supports the NFS 

protocol. 

 

Setup Secondary Storage Server: 

 configure the interface  

 Change the host name, 

 Install the NFS package 

 Stop iptables 

 

4.1.4 CloudStack Host servers 

Setup host server: 

 configure the interface  

 Change the host name 

 Install next packages:  

1- Network Timing Protocol           

NTP is required to synchronize the clocks of the servers in the cloud. 

Unsynchronized clocks can cause unexpected problems. 

2- CLOUDSTACK-AGENT 

3- LIBVIRT 

CloudStack uses libvirt for managing virtual machines. 
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 Stop iptables 

 Configure Selinux 

Change Selinux configuration to Permissive in /etc/selinux 

 

CloudStack does various things which can be blocked by security 

mechanisms like AppArmor or SELinux. These have to be disabled to ensure 

the Agent has all the required permissions. 

Centos 6.3 comes with selinux, and it’s set to enforce by default. 

 

 Connect the components with each other and managing the cloud from 

the management web-based user interface. 

 

4.2 OpenDayLight controller 

Setup OpenDayLight controller: 

 Install ODL package in the management server. 

 Run the OpenDaylight SDN controller, which will be used by ACS to 

dynamically program the created virtual network bridges. The SDN 

controller receives REST requests from the ODL driver, which 

implements the methods called by plugins for implementing the layer 

2 network services provided by ACS API. To run OpenDaylight, the 

commands in Appendix A should be executed on the Network and 

Controller node. 
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4.3 The Integration  

For the integration between ACS & ODL the second method is used 

(CloudStack cloud operating system controller deals directly with 

OpenDayLight controller). 

 Link the ODL with ACS. 

 

Now that we have the OpenDaylight SDN controller running, we can start 

the CloudStack services on the in the management server. These nodes will 

then make use of these software resources to create the entire virtual 

network infrastructure. 

 

4.4 Practical Scenarios 

In what follows, we conduct a simple examples showing the benefits of SDN 

to cloud computing systems. For this, we use CloudStack and OpenDaylight, 

giving a practical example of the CloudStack hosts in an SDN architecture. 

 

Host based on static resource allocation 

In this host server the resources are statically allocated (fixed amount of 

resources). The host server resources are: 

1. One CPU cores. 

2. 512MB of RAM. 

3. 10GB of hard disk. 

          The host server is running CenOS6.3 operating system, and should be 

running HTTP, and DHCP services. 
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Host based on dynamic resource allocation 

In this host server the resources are dynamically allocated (A pool of shared 

resources). The shared pool resources are: 

1. 3 CPU cores. 

2. 1.5GB of RAM. 

3. 30GB of hard disk. 

 

The host server is running CenOS6.3 operating system, and should be 

running HTTP, and DHCP services. 

 

Host based on Hybrid resource allocation 

In this host server the resources are dynamically allocated (fixed minimum 

amount of resources, and a pool of shared resources). The minimum fixed 

resources are: 

1. One CPU cores. 

2. 512MB of RAM. 

3. 10GB of hard disk. 

 

The shared pool resources are: 

4. 3 CPU cores. 

5. 1.5GB of RAM. 

6. 30GB of hard disk. 

The host server is running CenOS6.3 operating system, and should be 

running HTTP, and DHCP services. 
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HTTP service setup 

 Install httpd packages 

 Check configuration file 

 

DHCP service setup 

 Install dhcpd packages 

 Check configuration file 

 Check next files existence in /etc/dhcp directory 

1. dhcpd.conf 

2. dhcpd.leases 

3. dhclient/dhclient.conf 

 Configure rsyslog service 

 Run DHCP service 

 

4.5 Comparison  

To show the benefits of SDN to cloud computing systems a comparison 

between the three hosts is necessary. The comparison depends on the 

performance of the hosts. To find witch host has a better performance, the 

throughput, latency, and CPU utilization are measured. 

 

Testing throughput 

Using Nload to test the throughput. Nload is a command line tool that allows 

users to monitor the incoming and outgoing traffic separately. It also draws 

out a graph to indicate the same, the scale of which can be adjusted. Easy and 

simple to use, and does not support many options. It’s used when a quick 
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look at the total bandwidth usage without details of individual processes is 

needed. 

 

Testing latency 

Using ping to test the latency. Ping localhost then compare by pinging all 

other computers on the network from the same host. 

 

Testing CPU utilization 

Using Iostat to test the CPU utilization. The iostat command (provided via 

the sysstat package on CentOS) provides three reports: CPU utilization, 

device utilization, and network file system utilization. If you run the 

command without options it will display all three reports, specify the 

individual reports with the (-c, -d and -h) switches respectively. 

 

4.6 Results 

After the three practical scenarios have been completed and the performance 

metrics comparison figures have been plotted, some results are achieved. 

These are: 
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4.6.1 Throughput Results      

The throughput results obtained using the NLoad commandtool. The 

results were obtained under the same circuimstances in all hosts. 

Then the results were ploted using matlab. Figure 4-2 depicts that 

the throughput improved and became better (increased) in the case 

of Hybrid and the dynamic hosts due to deploying ODL controller 

in the cloud operating system. As observed the result showed that 

the host with Hybrid resource management has the highest 

throughput. Figure 4-2 shows the throughput for each case 

individully: 

 

 

Figure 4-2: Throughput Results 
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4.6.2 CPU Utilization Results        

The CPU utilization results results obtained using the Iostat commandtool. 

The results were obtained under the same circuimstances in all hosts. Then 

the results were ploted using matlab. Figure 4-3 shows that the CPU 

utilization have been improved in the cases of Hybrid and the dynamic hosts 

due to deplying ODL controller in the cloud operating system As observed 

the result showed that the host with Hybrid resource management has the best 

CPU utilization. Figure 4-3 shows the CPU utilization for each case 

individully: 

 

 

Figure 4-3: CPU Utilization Results 
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4.6.3 Latency Results 

The latency results results obtained using the ping command. The results 

were obtained under the same circuimstances in all hosts. Then the results 

were ploted using matlab. Figure 4-4 shows that the latency have been 

improved (decreased) in the cases of Hybrid and the dynamic hosts due to 

deploying ODL controller in the cloud operating system. As observed the 

result showed that the host with Hybrid resource management has the lowest 

latency. Figure 4-4 shows the CPU utilization for each case individully: 

 

 

Figure 4-4: Latency Results 
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5. Conclusion And Recommendation For Future Work 

5.1 Conclusion 

 

In this project we introduced the role of network virtualization on 

implementing and delivering cloud computing services. We presented the 

available network virtualization mechanisms and describe how they can 

address the cloud networking requirements. The advent of SDN introduced 

new forms of approaching network virtualization and network control inside 

cloud. Cloud systems presents some challenges, such as, efficient resource 

management, fast provisioning and scalability. By separating a network’s 

control logic from the underlying infrastructure, software defined networking 

(SDN) promises an unprecedented simplification in network 

programmability. SDN improved cloud network control and accelerated the 

provision of innovative network services. To illustrate the feasibility of 

integrating both cloud computing and SDN paradigms, we presented a 

practical study of the deployment of CloudStack and OpenDaylight. The 

practical study included three practical examples, the study were mentioned 

to show the benefits of SDN to cloud computing systems. The three hosts 

were compared with each other in manner of performance aspect. The 

comparison depends on the throughput, CPU utilization, and the latency of 

the hosts. The result showed that the host with Hybrid resource management 

has the highest throughput, and the best CPU utilization, and has the lowest 

latency. Then comes the host with the Dynamic resource management. And 

the host with the static resource allocation appeared to have the lowest 

throughput, and the worst CPU utilization, and has the highest latency.  
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5.2 .Recommendations for Future Work 

After we finished this project, we can provide some recommendations and 

research issues for who wants to carry on from the point we stopped on. 

Future work on this topic can include: 

 

Insufficient bandwidth can cause significant latency on the interaction 

between users and the application, reducing the quality of the service (QoS) 

provided to and by cloud tenants. The emergence of control models such as 

SDN, together with hardware-assisted virtualization technologies such as 

SR-IOV, is expected to improve the control capacity over the shared network 

resources. 

 

SDN and NFV appliances can also address the challenges on policy 

enforcement complexity. These policies define the configuration of each 

virtual and physical resource in the cloud network. Traffic isolation and 

access control to end users are among the multiple forwarding policies that 

can be enforced by deploying SDN and NFV solutions in the cloud. 
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Appendix  

Appendix A          

  

Setup Management server 

 Add the CloudStack repository. 

#vi /etc/yum.repos.d/cloudstack.repo 

 

 Install the next packages: 

1- Network Timing Protocol 

# yum install ntp -y 

 

2- MYSQL-SERVER  

# yum install mysql-server -y 

 

3- CLOUDSTACK-MANAGEMENT 

# yum install cloudstack-management -y 

 

 Stop iptables 

# /etc/init.d/iptables stop 

# chkconfig iptables off 
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 Configure Selinux 

Change in /etc/selinux/config the Selinux configuration from enforce to 

Permissive 

# setenforce permissive 

 

 Secure the installation of database 

# mysql_secure_installation 

 

 Set up the database 

# cloudstack-setup-databases cloud:<dbpassword>@localhost 

--deploy-as=root:<password>  

 

 After the database is set up, finish configuring the OS for the Management 

Server. 
#cloudstack-setup-management 

This command will set up iptables, and start the Management Server. 

 

CloudStack Storage 

Setup Primary Storage server 

 Install the NFS package 

 # yum install nfs -y 
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 Stop iptables 

#/etc/init.d/iptables stop 

#chkconfig iptables off 

 

Secondary storage 

Setup Secondary Storage Server 

 Install the NFS package 

# yum install nfs -y 

 

 Stop iptables 

# /etc/init.d/iptables stop 

#chkconfig iptables off 

 

CloudStack Host server 

Setup host server: 

 Install next packages:  

1- Network Timing Protocol  

# yum install ntp -y 

 

2- CLOUDSTACK-AGENT 

# yum install cloudstack-agent –y 
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3- LIBVIRT 

# yum install libvirt –y 

 

 Stop iptables 

#/etc/init.d/iptables stop 

#chkconfig iptables off 

 

 Configure Selinux 

Change Selinux configuration to Permissive in /etc/selinux 

#setenforce permissive 

 

OpenDayLight controller 

Setup OpenDayLight controller: 

 Install ODL package in the management server. 

#yum install odl -y 

 

 Run the OpenDaylight SDN controller  

# cd  /odl/opendaylight/ 

# /run.sh  -XX:MaxPermSize=384m  -virt ovsdb  -of13 

 

HTTP service setup 

 Install httpd packages 

#Yum install http –y 
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 Check configuration file 

#vi /etc/http/httpd.conf 

 

DHCP service setup 

 Install dhcpd packages 

#Yum install dhcp -y 

 

 Check configuration file 

   #vi /etc/dhcp/dhcpd.conf 

 

 Check next files existence in /etc/dhcp directory 

1- dhcpd.conf 

2- dhcpd.leases 

3- dhclient/dhclient.conf 

 

 Configure rsyslog service 

#vi /etc/rsyslog/rsyslog.conf 

#service rsyslog restart 

  

 Run DHCP service 

#service dhcpd start 
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Testing Throughput 

Using Nload to test the throughput. 

 

 

Testing CPU Utilization 

Using Iostat to test the CPU utilization.  

 

 

 


