Chapter 1
Locally Compact Groupoids

We show a first step toward extending the theory of Fourier-Stieltjes
algebras from groups to groupoids. If G is locally compact (second
countable) groupoid, we show that B(G), the linear span of the Borel
positive definite functions on G, is a Banach algebra when represented as an
algebra of completely bounded maps on a C*-algebra associated with G.
This necessarily involves identifying equivalent elements of B(G). An
example shows that the linear span of the continuous positive definite
functions need not be complete.

Section (1.1): Background of Groupoids

As suggested by the title, this section connects two lines of earlier
work, and we begin with an abbreviated history of each of these lines, in
order of appearance. After the history, we will state our main results and
outline the body of the section. We mention here that some basic definitions
can be found and that we assume locally compact spaces are second
countable. More background on groupoi-ds is available.The necessary
background on Fourier- Stieltjes algebras can be obtained.
Introduced the notion of virtual group as a tool and context for several kinds
of problems in analysis and geometry.Virtual groups are (equivalence
classes of) groupoids having suitable measure theoretic structure and the
property of ergodicity. Ergodicity makes agroupoid more group-like, but
many results on groupoids do not require ergodicity. Among the structures
which fit naturally into the study of groupoids are groups, group actions,
equivalence relations (including foliations), ordinary spaces, and examples
made from these by restricting to a part of the underlying space.

The original motivation for studying groupoids was provided by
Mackey's theory of unitary representations of group extensions.The idea
has been applied to that subject. In his original section, Mackey also

showed the relevance of the idea for ergodic group actions in general , and a
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number of applications have been made there.

Most uses of groupoids have been in the study of operator algebras,
another approach to understanding and exploiting symmetry. Several
pioneering section should be mentioned. Hahn proved the existence of
Haar measures for measured groupoids, whether ergodic or not, and used
this to make convolution algebras and study von Neumann algebras (is to
define them as weakly closed *-algebras of bounded operators (on aHilbert
space) containing the identity. In this definition the weak (operator)
topology can be replaced by many other common topologies including the
strong, ultrastrong or ultraweak operator topologies. The *-algebras of
bounded operators that are closed in the norm topology are C*-algebras, so
in particular any von Neumann algebra is a C*-algebra) [4] associated with
measured groupoids. Feldman and Moore made a thorough analysis of
ergodic equivalence relations that have countable equivalence classes,
showing that the von Neumann algebras attached to them are exactly the
factors that have Cartan subalgebras Connes introduced a variation on the
approach of Mackey, particular by working without a chosen invariant
measure class. This approach has some advantages for applications to
foliations and to C*-algebras. Renault studied C*-algebras generated by
convolution algebras on locally compact groupoids endowed with Haar
systems, not using invariant measure classes. That measured groupoids may
be assumed to have locally compact topologies. Thus the study of operator
algebras associated with groupoid symmetry can always be confined to
locally compact groupoids, whether one is interested in C*-algebras or von
Neumann algebras.

Basically one can say that locally compact groupoids occur in situations
Where there is symmetry that is made evident by the presence of an
equivalence relation. Many of these are associated either with group actions

or foliations. It can be surprising how group-like both group actions and



foliations can be. In particular, some of the section mentioned above have
included information about the unitary representations of groupoids.
However, there is no treatment of duality theory for groupoids. and we
intend to make a beginning here.

Introduced Fourier and Fourier-Stieltjes algebras for non-commutative
locally compact groups. Roughly, the Fourier—Stieltjes algebra of a locally
compact group, G, denoted B(G), is the unitary representation theory of G
equipped with some additional algebraic and geometric structure. More
precisely, B(G) is the set of finite linear combinations of continuous
positive definite functions on G equipped with a norm, which makes B(G) a
commutative Banach algebra. The elements of B(G) are exactly the matrix
entries of unitary representations of G. A primary source of intuition is the
fact that when G is abelian, B(G) is the isometric, inverse Fourier
—Stieltjes transform of M(G),the convolution, Banach algebra of finite,
regular Borel measures on G,the dual group(of characters) of G. Thus B(G),
as a Banach algebra, “is” M(G).The fact that B(G) exists (as acommutative
Banach algebra) when G is not abelian leads one to hope that a useful
duality theory exists for non-abelian groups which is in spirit similar to the
application rich Pontriagin—Van Kampen duality for abelian locally
compact groups. That such a duality theory exists has been established by
walter by proving
that
(i) B(G) is a complete invariant of G, i.e., B(G1) and B(G:) are isometrically
isomorphic as Banach algebras, if and only if G1 and G2 are topologically
isomorphic as locally compact groups, and
(i) There is an explicit process for recovering G given its “dual object”,
B(G). Exactly how useful this theory will remains to be seen since all
but a few of the hoped important applications await rigorous proof.

For various reasons it turns out that it may be more fruitful to look at
B(G) from a broader perspective than that afforded by the category of
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locally compact groups. Namely, it is seen that there is a natural duality
theory for a “large” collection of Banach algebras that extends in a

precise way the Pontriagin duality for abelian groups as well as the above-
mentioned duality for non-abelian groups. The theory of C*-algebras plays
a large role both technically and intuitively in this duality theory.

In an effort to understand this new duality theory better, as well as to
generate meaningful applications and examples of a concrete nature, in this
section we have answered affirmatively the question: Does a locally
compact groupoid G have a Fourier—Stieltjes algebra? For groupoids, than
one candidate for the Fourier—Stieltjes algebra, and the details are more
technical than for groups, but there is an affirmative answer.

The existence of a Fourier—Stieltjes algebra augurs well for future
applications. In particular, one example suggests an interesting possibility:
the algebra of continuous functions on X vanishing at infinity, Co(X), is the
Fourier algebra of a locally compact space X. This opens up an entire "dual”
approach to the currently exploding subject of non-commutative geometry,
which at the moment is regarded more or less exclusively in terms of the
associated C*-algebras (not the Fourier—Stieltjes algebras).

As for groups, the Fourier-Stieltjes algebra of a groupoid is the linear
span of the positive definite functions and the algebra structure is given by
pointwise operations. To provide the Banach space structure, we use C*-
algebras attached to G, but we use them in a different way from Eymard,
and also use C*-algebras associated with the equivalence relation that G
induces on X.

To describe the various algebras, let us begin with the space M¢(G) of
compactly supported bounded Borel functions on G, and its subspace
C:(G). Both are algebras under convolution, which is defined by using the
Haar system, and have involutions. If R is the equivalence relation on X
induced by G, defining 8(y) = (r(y),s(y)) gives a continuous homomorp-

hism of G onto R using the relative product topology on R. The quotient
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topology on R has some advantages: for example, if 6 is one-to-one then 6
is a homeomorphism. (G is said to be principal). Under the quotient
topology R is c-compact and we can provide it with a Borel measurable
Haar system, which allows us to make a convolution*- algebra of the space
Moc(R) of bounded Borel functions on R that are supported by the image of
some compact set in G. we show how to make an algebra on G that contains
a copy of the space M(X) of bounded Borel functions on X as well as
Mc(G), and this algebra is denoted by MG, X).The analog for R is
denoted by Mo(R, X). Let X denote the one-point compactification of
X.Then C(X) € M(X) so +Mc(G,X) contains both C¢(G) and C(X).The span
of these two subalgebras is denoted C¢(G, X) .

If @ is the universal representation of G, then o carries each convolution
algebra on G to an algebra of operators and thereby provides the contion
algebra with a norm.The closures of the algebras of operators or the
completions under the norms are useful in various ways, so we have
notation for them: C*(G) is the completion of C¢(G),C*(G,X) is the
complication of C¢(G,X) , M"(G) is the completion of Mc(G), and M*(G, X)
is the completion of M¢(G, X). Likewise for R we get M*(R) and M*(R, X)
from Moc(R) and Moc(R, X). The algebra B(G) is isomorphic to a Banach
algebra of completely bounded operators on M*(G), but the functions also
correspond to completely bounded bimodule mappings from C*(G,X) to
M*(R, X) as bimodules over C(X).
we define a bounded Borel function p on a locally compact groupoid G with

Haar System A to be positive definite if
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for every f € C¢(G). The set of these is denote P(G) and by definition the set
B(G) is the linear span of P(G). In both sets two elements that agree except

on a negligible set need to be identified, though we find it convenient to



indulge in the usual carelessness about maintaining the distinction. The
primary result is
(i) B(G) is a Banach algebra. Results needed to prove this are:
(if) Each p € P(G) can be represented in terms of a unitary representation of
G and a cyclic “vector” for the representation.
(iii) Multiplication by a b € B(G) defines a completely bounded operator on
M*(G) whose norm is at least the supremum norm of b.
(IV) The set of operators arising from elements of P(G) is closed in the
space of completely bounded operators on M*(G).

In fact, B(G) is a Banach algebra of completely bounded operators on
M*(G), and the elements of P(G) occur as completely positive operators.
In order to prove the completeness of B(G), we introduce an auxiliary
groupoid. Let T,denote the transitive equivalence relation on the two point
set {1, 2}, so that functions on T,are 2 x 2 matrices. Thus functions on
G x T, can be regarded as 2 x 2 matrices of functions on G. Then each
b € B(G) appears as a corner entry of a positive definite function on G x T,
whose completely bounded norm is the same as that of b. Furthermore, such
a corner entry is always in B(G). Combining these facts with the
completeness of P(G x T,) is what allows us to finish the proof of
completeness of B(G).

The material can be outlined as follows which is devoted to Background
material on three topics: locally compact groupoids,
convolution algebras attached to them, and representations of groupoids and
the algebras.
We give the definition of “positive definite function” and establish the
connection between such functions and cyclic unitary representations of G.

We show that multiplication by a positive definite function is a
completely positive operator on M*(G),using the main result. Also includes
the proof that a positive definite function gives rise to a completely positive
operator from C*(G,X) to M*(R,X).



All of these operators are bimodule maps over C(X), the algebra of
continuous functions on the one-point compactification of the space of units
of G. contains results about completely bounded bimodule maps.
Finally we are able to complete the proof that the linear combinations of
positive definite functions constitute a Banach algebra, contains some
counter examples.

The purpose is to give a source of some essential information about
analysis on groupoids needed.

Much of our motivation comes from the fact that group actions give rise
to groupoids, and that case was important in the development of the subject.
However, we want to present a definition that has a different motivation,
hoping to make the idea easier to grasp. Effros suggested this approach.

Start with two sets, X and G, and suppose that X is the set of vertices
and G the set of edges of a directed graph. If the structure we are about to
describe is present, we say that G is a groupoid on X. Suppose that we have
a mapping taking values in G and defined on the set of pairs of edges for
which the first edge starts from the vertex where the second edge
terminates. For a groupoid of mappings, we want the operation to be
composition and we want the right hand factor to be applied first. We want
the operation to be associative and to have units and inverses.

To describe this in more detail, we use two functions r and s from G
onto X, such that each y € G is an edge from s(y) to r(y). Then for y and y'
in G, the element yy' of G is defined iff s(y) = r(y'). We write G® = {(y,
¥) e G x G :s(y) =r(y)}. We also assume there is given a mapping x—i,
of X into G and an involution y— ¥~ on G. Then we require the following
properties:

(i) (associativity) If s(y;) = r(y2), then s(y; v2) =s (v2), and r(y; v2) =
r(y1)- If, also, s(y2) = r(ys), then (v1 v2) ¥3=v1(v2 v3)-
(ii) (units) If x € X, thenr(i,) =s(iy) =x. Ify e G, thenyis =i, YV =7.

(iii) (inverses) r(y ™1 =s(y), sy D =r¥), vy =iy, and y "ty = is ).
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Examples (1.1.1) [1]: (i) Suppose a group H acts on a set X (on the left).
Set g= H x X, identify X with {e} x X, and define r(h, x) = hx, s(h,x) = x .
Then we can define (hq, x1) (hy , x3) = (hihy, xy) if x1= hy x5, i, = (€,X)
and (h,x)71= (h™1, hx), to make a groupoid. (Right actions work better for
left Haar measures as we see below, and then we have s(x, h) = xh,r(x,h) =
X).

(ii) To make a groupoid from an equivalence relation R on a set X, identify
X with the diagonal in X x X, define r(x, y) = x, s(x, y) =V, (x, y)(V, 2) =
(x, z) and (x,y) 1= (y,x).

(iii) Let X be the set of open sets in R", and let G be the set of
diffeomorphisms between elements of X. For y € G, let s(y) be the domain
of the mapping and let r(y) be its range. Let the product be function
composition and let the inverse be the inverse of functions.

Every groupoid determines a natural equivalence relation on its set of
units, namel x ~ y iff there is a y: x—Yy. The equivalence class of x is
denoted [x] and is called its orbit. As a subset of X x X, this equivalence
relation is R={(r(y), s(y)) : y € G}. The function 6 = (r, s) mapping G to R is
a groupoid homomorphism and G is called principal iff 0 is one-one, i.e G
is isomorphic to an equivalence relation. If G arises from a group action G
is principal iff the action is free (the only element of the group that has any
fixed points is the identiy).

If G is a groupoid on X, and YEX is non-empty, we call r~1(Y) N
s~ 1(y) the restriction of G to Y, and write G | Y for it. In terms of graphs,
G|Y is the set of all edges in G that connect points of Y. G|Y is a
subgroupoid of G, and a groupoid on Y. For eachx € X, G |{x} IS a group
called the stabilizer of x or the isotropy of x.

If A and B are subsets of a groupoid G, we define the product AB of the
twosetstobe {yy' :y €A, y eB,r(y') =s(y)}. If Ahas a single element



Yo, we write yoB for AB. Thus YGY=G | Y and xGx = G | {x} if YEX and
x € X. We also use the sets 7 ~1(x) = xG and s~1(x) = Gx when x € X.

A groupoid G is a Borel groupoid if G has a Borel structure, X is a Borel
set when regarded as a subset of G, and r, s, ()~tand multiplication are
Borel functions. We will consider only Borel groupoids which are at least
analytic, and then X={ y: r(y) = y} is Borel if r is Borel. A groupoid G is
topological if it has a topology such that X is closed, and r, s,()~ and
multiplications are continuous, while r and s are open. Again these proper-
ties are not independent. It is necessary for r to be open in order to prove
that AB is open whenever A and B are open.

We write M(G) for the space of bounded Borel measurable functions on
G, whenever G is a Borel groupoid. If G has a topology in which it is
compact (a countable union of compact sets), we write M¢(G) for the
subspace of M(G) of functions having compact support .

If G is an analytic Borel groupoid, we say a measure p on G is
quasisymmetric if it has the same null sets as its image (u)~*under ()71,
Thus p and (u)~tare in the same measure class, and the measure class [p]
(set of measures with the same null sets as p) is invariant under()~1. For
measures on G, this global symmetry is just the same as if G were a group.
We give the definitions for groupoids that extend the notions of invariance
and quasi-invariance of measures under translation on a group or under
other actions of the group.

Because translation on the left by a groupoid element y makes sense only on
s(y)G, and similarly for right translation, the notions of invariance and
quasi-invariance are more complicated for groupoids than for groups .

Following Connes we say that the kernel is a function v assigning a
o-finite (positive) measure v*on G to each x € X, so that these two
statements are true:

() v*(G\ xG) is always 0. One may say that v* concentrated on xG.
(@i)) If f e M(G), and f >0, the function v(f) : X— [x, o] defined by
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v(f)(x) =v*(f) = [ f dv*is Borel.

Given an element y € G, the mapping y'— y y' is a Borel isomorphism of
s(y)G onto r(y)G and thus maps v*")to a measure yv*" on r(y)G, for
every kernel v. A kernel v is called left invariant provided v™")= yv50) for
all y € G.1t is called (left) quasiinvariant if v and yv°®are equivalent
forall y € G.

A left invariant kernel, A, on a Borel groupoid G is called a Borel Haar
system. Then defining A,to be the image of A*under inversion produces a
right Borel Haar system. A Borel Haar system X on a locally compact
groupoid is called a Haar system if supp( A*) is always xG and A(f) € Cc(X)
for each f € Cc¢(G). In particular, each A* is a Radon measure. For discussi -
ons of Haar systems .

When A is a Haar system, it can be convenient to have a left quasi kernel
A, consisting of probability measures equivalent to the measures A*. It is
not difficult to show that there is a continuous, strictly positive, function f
on G such that for every x € X, [ fdA* =1. We choose one such f and
write A7 for the measure fA*. We also write uf for the probability measure
s(A7) on X; these measures also depend on x in a Borel way.

If X is a Borel Haar system on a Borel groupoid G and p is probability
measure on X, we can form a measure

v= 2 du(x): [ fdv = [ [ f(y)dA* (y)du(x) (2)

We often write A* for this measure v. Suppose that G = X x H, where X is
a right H-space, and give G the groupoid structure that comes from the
group action. Let X be a left Haar measure on H. For each x € X, let £* be
the point mass at x, and define A*= &* x A, to get a Borel left Haar system.
If uis a o-finite measure on X for this gropoid , then v=A* =p x X and the
class [v] is symmetric iff u is quasi-invariant under the group action,i.e., for
every Borel set E [ X and every group element h,u(E) = 0 iff u(Eh) = 0.

The fact that if p is quasi-invariant under almost all elements of the group ,
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then it is quasi-invariant. Hence, on a general Borel groupoid with Borel
Haar system A, a o-finite measure p on X is called quasi-invariant iff A* is
quasisymmetric. In that case, a result of Peter Hahn, combined with shows
that there is a Borel homomorphism 4, of G to the multiplicative positive

real numbers such that

_daH
W= aan ®)

This homomorphism is called the modular function by analogy with locally
compact groups. If u is quasi-invariant, and Y is a p-conull Borel set in X,
the restriction G | Y is called in essential.

We often refer to the set of all quasi-invariant o-finite measures on X,
and will denote that set by Q. We say a Borel set N 1 X is Q-null provided
w(N)= 0 for every u € Q. It follows from the existence, and uniqueness upto
equivalence, of a quasi-invariant o-finite measure on each orbit.That N is
Q-null iff 2*(GN) is always 0.The measures uf introduced above are in this
class, and any measure in Q equivalent to such a measure is called transitive
because it is concentrated on a single orbit. For a Borel set N[JG, we say N
is A2-null iff A*(N) = 0 whenever p € Q. A function f on X is Q-essentially
bounded iff the restriction of f to the complement of some Q-null set is
bounded, and then||f || is defined to be the smallest element of
{B: | f |§ B p-almost everywhere for every p € Q}.The space of Q -
essentially bounded functions on X will be denoted by L*( Q). A similar
definition is used for the space L*(A2) of A%-essentially bounded functions
on G, except that the measures p*are used.

Examples (1.1.2) [1]: (i) If G = X x H, where X and H are locally
compact and H is a group, let £*denote the unit point mass at x for x ¢ X
and let A be a left Haar measure on H. Then A*= &* x A defines a Haar

system for G.
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(i) If E is an analytic equivalence relation on X and each equivalence class
is countable, we can let A* be counting measure on {x} x [x] to get a left
invariant system of measures.

(iii) Here is an example of a locally compact groupoid that has a Borel
Haar system but no Haar system. Let G = [0, 1/2] x {0} v [1/2, 1] x Z/2.
This is a field of groups. To get a Borel Haar system, we can make each
A*a multiple of the Haar measure on {0} or Z/2.Then

AY2({1/2,0}) =2AY2({1/2,1}) > 0 and if we let f be the characteristic
function of [1/2,1] x {1} then the function A(f) has a jump at 1/2. We could
easily change to another locally compact topology on this G and get a Haar
system. In general, it may be necessary to change the topology on G and
pass to an in essential restriction in order to get a Haar system.

We use several convolution algebras, and will introduce
them here. There are two basic convolutions, a convolution of functions that
can be defined in the presence of a Borel Haar system, and a convolution of
kernels that does not depend on any such system. If the groupoid is locally
compact and the Haar system is continuous, then C¢(G) is an algebra under
the convolution of functions. We will see that convolution of functions can
be subsumed under convolution of kernels by replacing each function by
the kernel obtained by multiplying the Haar system by the Function.

First, let G be a Borel groupoid with a Borel Haar system A. If f, g are
non-negative Borel functions on G, then [f(y;) g(y2) dA™" (y,) is a
Borel function of y; , so by taking linear combinations and monotone limits
we see that whenever F is a non-negative Borel function on G x G the
integral [F(yy, v2) dA"(y,) depends on y, in a Borel manner. Then for
non negative f, g € M(G), we can let F(y; , v2) = f(r1) 9(v1~t ;) when

r(y2) = r(y1) and F(yy, v,) = 0 otherwise, and see thatf f(y1) 9(y1 ™" v2)
dA"¥2(y,) is a Borel function of y,. Denote this function by f * g,
provided that it is always finite valued. Then f * g € M(G). The function
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f * g is called the convolution of f and g. Convolution can be extended to
more general function using linearity .

Define the space I(G,\) to be { f e M(G) : & (| f |) is bounded}, and
give it a norm by letting | f||ir be the sup norm of the Borel function
A (| f | )-We can define an involution on M(G) by letting £2(y) = f(y ) for
f e M(G), y € G. If we set I[(G,)) = I(G,A)N( L-(G,1))°, then we can define
| £ ||+ to be the maximum of || ||.rand || £2]| 1 for f € (G, ), obtaining a
normed algebra on which the involution is an isometry.

If G is locally compact and A is a Haar system, then C¢(G) is a *-sub-
algebra of I(G, ). In the inductive limit topology, Cc(G) is a topological
algebra.

The second kind of convolution can be introduced after the objects are
defined: A complex kernel is a function v assigning a complex measure v*
on G so that
(i) v*is always concentrated on xG .

(ii) if f € M(G), the function v( f) taking x € X to v*(f) is Borel.

We define K(G) to be the space of bounded complex kernels on G, i.e
those for which the total variation of v*is a bounded function of x.

If y € G and v € K(G) we can map v to a measure on r(y)G, via left
translation by yv¥(). If vi,v2 € K(G) we can define the convolution v = vi*v2
by v*= [ yv5® dv¥(y), as we do in defining Haar systems. Denote this
measure by yv¥®.If vi,v2 € K(G) we can define the convolution v = v1 * v2
by v* = yv2*() dvi(y). We can also define an action of K(G) on I(G,}) as
follows If v e K(G), f € I.(G, X) and y' € G set

L@@ =[G y)dv () (4)
It is not difficult to verify that L(v) is a bounded operator whose norm is at
most the essential supremum of the total variation norms of the signed

measures v* If vi and vz are in K(G) and f € I,.(G, 1), then we can calculate
(LEDL@IN)G) = [L@)f Griy)dv, P (1)
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- f f FOrzt v P () dv V()
= f f Fz Vav;? Gty dv] Y ¢rr) (5)

- f F3 1) * 1) D ()

showing that L takes convolution to composition of operators. Since L is
faithful, K(G) is an algebra under convolution. If f, g € I.(G,)) it is not
difficult to verify that fA e K(G) and L(fA)g=f *g:

LA () = f IO G)AT D (1, ©)

Since L is faithful and convolution is associative, it follows that

fA* gh= (f*Q)A. Thus I.(G, A) A = { fA: f I.(G, L)} is a subalgebra of K(G)
isomorphic to I.(G, A). If G is locally compact and has a Haar system A, the
calculations just made also show that C¢(G) A is a subalgebra of K(G)
isomorphic to C¢(G).

Next we want to enlarge C¢(G) A to a subalgebra of K(G) that contains a
copy of C¢(X). We denote the one-point compactification of X by X .The
mapping f—f |X takes C(X) one-one onto the algebra of continuous
function on X that have a limit at infinity. We identify C(X) with that sub-
algebra of C(X) but continue to write C(X). Notice that there is also a sub-
algebra of K(G) isomorphic to C(X), obtained as follows. First define ¢ to
be the kernel that assigns the point mass at x to each x ¢ X, which we
denote by &* as above. Next notice that K(G) is closed under multiplication
by any bounded Borel function on G, so if h € M(X) and v € K(G), we can
define hv to be (h o r)v, and vh = (h o s)v. (These agree with the
naturally defined left and right multiplication of M(X) on I.(G, 1) when the
latter is regarded as a space of kernels). Then M(X)e is a subalgebra of
K(G) isomorphic to M(X), and that algebra includes C(X)e,which is
isomorphic to C(X).
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If we write Cc(G,X) for the sum of C(X)e and C¢(G) A as subspaces of
K(G), it can be seen that Cc(G, X) is a subalgebra. Also the involution on
Cc(G) extends in a natural way to C¢(G, X). We need the algebra C¢(G,X)
because it generates a C*-algebra that contains C(X) as a subalgebra
enabling us to apply a result on completely bounded bimodule mappings.

On the other hand, the algebra C¢(G) has an approximate. In order to
state the existence theorem, we need to introduce some of their
terminology. They call a set L in G r-relatively compact if KL is relatively
compact for every compact set KEX. There exists a decreasing sequence
Uy, U, , ...of open r-relatively compact sets whose intersection is X. There
also exists an increasing sequence of compact sets in X, K; , K, , . . . whose
interiors exhaust X. These come from the second countability of G, and
they allow us to make a sequence that is an approximate unit (instead of a
more general net). We call a function f in Cc(G) symmetric if f2=f.
Theorem (1.1.3) [1]: There is a sequence e;, e, ... of symmetric
function in CF(G) such that for
each n we have
(i) supp(e,) € U,,, and
(i) fe(y)dA*(y)>1—n"tforx €K, ,and<1forall x e X.

Such a sequence is a two-sided approximate unit for C¢(G) in its inductive
limit topology, i.e., for uniform convergence on compact sets.

A (unitary) representation of a locally compact groupoid G is given by a
Hilbert G-bundle K over X, the unit space of G; this means we have two
functions that have some properties:
(i) a Hilbert space K(x) for each x. We form I, ={(x, v): x € X, v € K(x)},
called the graph of K, and require that Iy have astandard Borel structure
such that the projection onto X is Borel and there is a countable set of Borel
sections of Iy such that for each x the set of their values at x is dense in
K(x).

(ii) a Borel homomorphism = of G into the unitary groupoid of the bundle
15



K, i.e., for each y, n (y) :K(s(y))—=K(r(y)) is unitary, and = is a Borel
function.

This can also be said as follows: (K, =) is a Borel function on G taking
values in the category of Hilbert spaces.

Given a representation = of G, and a measure p € @, we can obtain from
them a = -representation of M¢(G). Before describing the representation, we
need another item of above and define vo=A4~2v, obtaining a symmetric
measure. Next we make a Hilbert space, L?(u;K), of square integrable
sections of K. For f € Mc(G) we define #(f) on L?(u;K) by setting

@ (NEM) = [ IM(n(E°sty)|n ° r(y))dv, () (7
For & 1 € L?(w;K). Then m# s a * -representation of Mc(G) with 7# || (f) || <
| f | so its restriction to Co(G) has the same property.We denote the
restriction by the same symbol, depending on context to distinguish the
two. Later we will also use another method of integrating a unitary
representation of G, one that is due to Hahn and does not use the
symmetrized measure.

It can be convenient to choose p to be finite, say a probability measure
so we need to know that p' ~ p implies ##' is unitarily equivalent to m#.To
prove this implication, take p to be a positive Borel function whose square
is the Radon- Nikodym derivative of p' with respect to p.Then

s _da¥

peer=—0 (8)
and
_a@eyt
p2 o S§= d(/l“)‘l (9)
So
(%o 1A, = (p*e s) Ay (10)

Hence we can define V: L% (1',K)— L(u, K) by VE = p& to get the necessary
unitary equivalence. To see that it is indeed an intertwining operator,

compute to see that the inner products are equal:
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(@ () VE | Vi) = (' () €| m).

It is natural to ask whether every continuous representation of C. (G)
can be obtained by integrating a unitary representation of G, as is true for
groups. An affirmative answer to this question was provided by an
ingenious argument due to Renault, and it follows that every representation
of Mc(G) bounded by || |1 can be obtained by integrating a unitary
representation of G. Another discussion of this result Renault's theorem is:
Theorem (1.1.4) [1]: Let G be a locally compact groupoid that has a
Haar system, and let Ho be a dense subspace of a (separable) Hilbert space
H. suppose that L is representation of C(G) by operators on H, such that
(i) L is non-degenerate;

(i) L is continuous in the sense that for every pair of vectors &, n € Hy , the
linear functional L; ,, defined by L¢, (f) =(L(f) & | 1) is continuous relative
to the inductive limit topology on Cc(G);

(iii) L preserves the involution, i.e.,(§ | L(fP)n) = (L(f)E | n) for&,n e
Hyand f € Cc(G).

Then the operators L(f) are bounded. The representation of C(G) on H
obtained from L is equivalent to one obtained by integrating a unitary
representation of G using a probability measure u € Q. In particular, L is
continuous relative to || ||

Renault defined a norm on Cc(G) by || || =sup {||L( f)||: L is a bounded
representation of C¢(G)}. Theorem (1.1.5) shows that we could get the
same norm Dby using the representations m*in place of the L's. The
completion of Cc(G) with respect to the norm just defined is a C*-algebra
denoted C*(G). Every positive linear functional of norm one on a C*-
algebra gives rise to a representation of the algebra and a cyclic vector in
the Hilbert space of the representation. The direct sum of all these cyclic
representations is called the universal representation of the C*-algebra. We
will denote this representation by . For C*(G), we know that every one of

the cyclic representations is of the form #, so o can also be regarded as a
17



representation of Mc(G). We will write M*(G) for the operator norm
closure of w(M¢(G)). Since o is an isomorphism on C*(G), we can regard
C*(G) as a subalgebra of M*(G). We will also refer to » as the universal
representation of G itself.

In proving that L can be obtained by integration, Renault shows that
there is a representation of C¢(X), say ¢ associated with L such that for
f € C¢(G) and h € Cc(X) we have

L((hor)f) = $p(R)L(f) (11)
and
L(f(hes)) = L(f)$(h) (12)
Then ¢ extends in the obvious way to a unital representation of C(X) and
can be used to extend L to a representation of C¢(G, X):
L(fA+ ge) = L(f) + ¢(g) (13)
We can verify, easily, that this defines a unital representation of
C¢ (G, X). We extend o to C(G, X) in this way, and also to Mc(G, X).
Then we define C*(G, X) to be the operator norm closure of o(C¢(G, X))
and
M*(G, X) to be the closure of ®(Mc(G,X)).
For some computations we need another norm. Let p € 9, let f € M¢ (G)

and define

171, =sup{[ 17029 2 1R e s [ 8, 00720200 (14

the supremum being taken over unit vectors g, h € L?(p). Then define
| £l to be sup {||f]lmu: 1€ Q} Three facts about this norm should be
mentioned. The first is that if 7z is a unitary representation of G, then ||7r“
O < Il -Thus [JoH)|< | £In, because || o(f) || = sup {]|=#(f)||: =
is a unitary representation.and p € Q}. Next, if = is the one dimensional
trivial representation and f >0 then ||#(f)||=]| f || wx - It follows that if
0 <f € Mc(G) then
loN=1lln (15)
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A third fact is this : if b e L(12) and f € Mc(G) then for any p € Qwe have

1o s < (o[£ 1] 1 (16)
So

o llw=lelle I £l (17)
Lemma (1.1.5) [1]: if 0 < f € Mc(G) and b € L*(AR ), then||a(bf)]| <
ol llo(n .
Proof:

Using the three properties of || || i,, mentioned just above, we have
lo®A | < sup{llbfll,, ;nea}

< sup{ bl I£1l,,,0 1€ 0] (18)
=[5l [
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Section (1.2): Measure and Positive Definite Functions

A basic lemma is needed for our construction of positive definite func-
tions from completely positive maps. After proving that lemma, we also
need to prepare some detailed information about Haar systems on locally
compact groupoids and how they relate to Borel Haar systems on the
associated equivalence relations. Most of that information .

As preparation for the proof of the lemma in question, we recall a basic
fact about measures and function spaces. Suppose that (X, B) is a set with
algebra and that A is asubalgebra of B that generates B as algebra. Let p be
any finite measure defined on B. The measure of the symmetric difference
between two sets is the same as the distance between their characteristic
functions in L' (), and hence provides a (pseudo) metric on B. The closure
of A in B is o- algebra that contains A and hence is B. For us, it is
important that the fact of density is independent of u. This implies similar
properties for the set S(A), our notation for the set of linear combinations of

characteristic functions of sets in A using coefficients from Q[i], which is Q

with v —1 adjoined. By looking first at simple functions, it is easy to show

that S(A) is always dense in L(n). In the same way, we see that for any
fe LMW,

I71l, = sup{ | [ fodul:o €S@and [o] <1} (19
which is a supremum indexed by a family independent of p. When A can be
taken to be countable, as is the case when X is a standard Borel space, these
facts are particularly useful.

A similar situation arises if X is locally compact. In that case, there is a
countable dense subset S(X) of C¢(X) that is an algebra over Q[i], and any
such S(X) is dense in L1 () for every finite measure p on X .

The next lemma is a generalization of the fact that for two measure
spaces, functions on the product and functions from one measure space to

the functions on the other can be identified. In our setting, the measure on
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the image space must be allowed to vary.
Lemma (1.2.1) [1]: Let X and Y be standard Borel spaces and let x
v* be aBorel function from X to finite Borel measures on Y. Suppose that f
is a function on X selecting an element f(x) of L'(v*) for each x € X so
that the function x—f(x) v*& x is Borel, taking values in the space of
complex valued Borel measures. Then there is a Borel function F on X x Y
such that for every x € X the function F(x , .) is integrable relative to v*and
in the class f(x). The function F can be chosen so that if f(x) € L™ (v¥).
then F(x, .) is bounded by || f (x) |- - It is possible to choose F meeting those
conditions and so that if v* = v* and f(x) = f(x') then F(x , .) = F(x', .)
(every where on y).
Proof:
For the proof we must have a way, that does not depend on x directly, to
choose representatives of classes approximating f(x). For this we choose
first a countable algebra, A, of Borel sets in Y that generates the c- algebra
of Borel sets, so we can use the facts mentioned before the statement of the
lemma. List S(A) as a sequence, s1, S2, ... . For convenience, let us write
x ~ x' to mean that v* = v* and f(x) = f(x"), and say that such points are
equivalent .

Now we are ready to describe the basic step which will be used
repeatedly in the proof. If ¢ > 0 and x € X define j(x, €) to be the least

element of {i : || f(x)—si], < ¢}. It is clear that j(. , €) takes the same

@)
valueat equivalent points of X, and we will show that j(.,¢) is Borel
function. This will follow if we can show that for each bounded Borel

function h on Y, {x:|| f(x)—h]|| i1y < €} is a Borel set. We can get that

from the fact that norms can be computed as, suprema, because for each
¢ € S(A), [f(x)—h)e dv*is a Borel function of x and hence so is its absolute

value.
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If we define g(x) = Sjx ¢ (as an element of L*(v*)) and G(x, y) = Sjx, ¢
(y), then g(x) = g(x") and G(x,.) = G(x',.) (everywhere on Y) when ever
x ~ x'. Also, both these functions are Borel.

Apply this process first to f with ¢ =271 to obtain G1 and g;. Then
apply it to f—g, with € = 27%to obtain G,and g,, etc. For each n the value
of the function f—(g,+...+g,) at a point x is an element of L!(v*) having
norm < 27™ Thus for n > 2, || g,(x) |1 < 3(2™™). It follows that for each x
the sum X,,51 | Gn(x, y) | is finite for almost all y. Inductively, we see that
Go(x,) = Go(x',) if x ~ x".The set N={(x,y) € X x Y: Y. | Golx,
) | =0} is a Borel set in X x Y and the slices of N over x and x' are the
same set if x ~ x'. Now change each G,to be 0 on N. Then the sum is
always finite and we still have G, (x,.) = G, (x', .) if x ~ x.

Define F(x,y) Xns1 Gn(x,y) .Then F is Borel and satisfies the first and
last conclusions of the theorem. Thus the slice of the Borel set {(x, y) :
| F(x, y) | > ]| f () || -} over every point of X is of measure 0 and the slices
of this set are the same over equivalent points of X. Change F to be on that
set, and all the desired conditions are satisfied .

Now we are going to present some results on the fine structure of the
Haar system, as developed by Renault. Renault decomposes the Haar
system A over a Borel Haar system a on R, by studying the action of G on a
special group bundle, and we summarize the results here. Recall that the
isotropy group bundle of G, denoted by G/, is defined to be {y € G : r(y) =
s(y)} = U {xGx: x ¢ X}. This closed in G and hence locally compact, so the
space of closed subsets of G’ is a compact space in the Fell topology. Let
>0 be the space of closed subgroups of the fibers in G, which is a closed
subset of the space of closed subsets. Then the set Y={(H, y) ¢ Y@ x G’ | y
e H} is called the canonical group bundle of >©. G acts on Y and on Y@ by
conjugation: if (H1, y1) € >, y € G, and s(y1) = r(y), then

(Huya)y =y *Hyy "ty ) (20)
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while if H e Y©, say H € xGx, and r(y) = x, then H. y =y ~1Hy. We want
to make a Borel choice of Haar measures on the groups xGx. One way to
do this is to choose a continuous function Fo on G that is non-negative, 1 at
each x € X and has compact support on each xG. Then for each x ¢ X
choose a left Haar measure p* on xGx so the integral of Fo with respect to
p*isl. Likewise, choose a function F on Y that is non-negative, 1 at each
point (H, e), and has support that intersects every {H} % H in a compact set,
and make a similar choice of Haar system on Y, .

Form the groupoid >© x G = {(H, vy) : s(H) = r(y)} arising from the
action of G on Y