
Sudan University of Science and Technology 

College of Engineering 

School of Electronics Engineering 

 

 

 

Implementation of SDN in a Campus NAC Use 

Case 

Research Submitted in Partial fulfillment for the Requirements of the Degree of 

B.Sc. (Honors) in Electronics Engineering 

Prepared by: 

Mohammed Adil Abdelwahab Mohammed 

Mohammed Omar Mohammed AL-Hassan Akoud 

Mugahed Izzeldin Osman HajAhmed 

Mustafa Khalid Mustafa Abdelrahim     
 

 

 

Supervised by: 

Dr. Ahmed Abdalla Mohamed Ali Abdalla 

 

 

October 2016 



 

ii 

 

 

 

 

 

 

 

  



 

iii 

 

 

Dedication 

 

 

To Our caring parents... 

To our beloved ones... 

To each of those who supported us financially and morally... 

To whom we spent with the most beautiful moments (Our Colleagues) 

... 

  We thank you all 

 

 

 

  



 

iv 

 

 

Acknowledgement 

 

 

First of all, we would like to thank GOD for blessing us and giving 

us the power to work and complete this thesis. 

We would like to thank our supervisor Dr. Ahmed Abdalla 

Mohamed Ali for his advice and support during the writing of this 

thesis. His knowledge and dedication and opinion were useful in 

completing this research. 

We would also like to thank everyone who supported us 

academically regardless of that support. 

Most important of all, thanks to our families for their great 

support all the time. 

  



 

v 

 

 

Abstract 

 

 

Software defined networks aim to provide high flexibility to 

modify network state and behavior, conventional networks are fixed and 

lack such features. This project introduces and demonstrates how to 

implement software defined networking concept within a campus 

network taking Sudan University of Science and Technology network as 

an example. The project uses Mininet emulation environment, and 

OpenDayLight as a controller to control this environment, the emulation 

components are integrated together to construct the system. The output 

of this project is an SDN based network controlled by the OpenDayLight 

controller. Which is using OpenFlow protocol to communicate between 

the controller and the switches. 

 

  



 

vi 

 

 

 المستخلص

 

 

بالبرمجيات تهدف الى إضافة قدر عالي من المرونة لتعديل حالة  الشبكات المعرفة

هذا  .تفتقر لهذه الخواصكات التقليدية الشبكة وسلوكياتها في توجيه البيانات، حيث ان الشب

بالبرمجيات على شبكات  الشبكات المعرفةالمشروع يطرح ويبين كيفية تطبيق مفهوم 

 يستخدم هذا المشروع للعلوم والتكنولوجيا كمثال لذلك. المجمعات، آخذا شبكة جامعة السودان

للمتحكمات. كنموذج {OpenDayLight}الأجهزة الحقيقية، ومتحكم لمحاكاة {Mininet} بيئة

مخرجات هذا  أجزاء بيئة المحاكاة تم تجميعها من أجهزة مختلفة لتشكل منظومة المحاكاة.

بالبرمجيات، ويتم التحكم بها باستخدام  معرفةشبكة تعتمد على الشبكات الالمشروع عباره عن 

 متحكم خاص. وتستخدم بروتوكول يقوم بعملية التخاطب بين المحولات والمتحكم.

  



 

vii 

Table of Contents 

     Dedication..................................................................................................... iii 

     Acknowledgement ..........................................................................................iv 

     Abstract ..........................................................................................................v 

     Abstract in Arabic ...........................................................................................vi 

     List of Figures                                                                                                                       x  

    List of abbreviations                                                                                                         xiii 

1. INTRODUCTION .........................................................................................2 

1.1 Preface: .....................................................................................................3 

1.2 The problem statement: .............................................................................4 

1.3 Aim and objectives: ....................................................................................4 

1.4 Thesis outlines:...........................................................................................5 

2. LITERATURE REVIEW ..................................................................................7 

2.1 Introduction ...............................................................................................8 

2.2 What is software-defined networking? ........................................................8 

2.2.1 SDN definition: .....................................................................................9 

2.2.2 Control plane and data plane separation: ............................................ 10 

2.2.3 Why SDN? And the need for Data plane and control plane separation: .. 12 

2.3 Active networks:....................................................................................... 14 

2.4 Network operating system (NOS):.............................................................. 17 

2.5 SDN functional architecture: ..................................................................... 18 



 

viii 

2.6 SDN controllers: ....................................................................................... 19 

2.7 OpenFlow API:.......................................................................................... 22 

2.7.1 Understanding open flow messages: ................................................... 23 

2.8 SDN in the campus environment: .............................................................. 26 

2.8.1 Challenges of today’s campus network: ............................................... 27 

2.8.2 SDN in the campus network: ............................................................... 29 

2.8.3 The role of SDN and OpenFlow:........................................................... 30 

2.8.4 Campus network use cases: ................................................................ 31 

2.9 SDN Migration: ......................................................................................... 34 

2.9.1 SDN Migration Considerations: ........................................................... 34 

2.9.2 Stanford university legacy-to-hybrid migration:.................................... 35 

3. METHODOLOGY....................................................................................... 39 

3.1 Introduction: ............................................................................................ 40 

3.2 Research activities: ................................................................................... 41 

3.2.1 Studying SDN concepts ....................................................................... 42 

3.2.2 Choosing the topology ........................................................................ 42 

3.2.3 Choosing the suitable environment ..................................................... 45 

3.2.4 Choosing the emulator ....................................................................... 45 

3.2.5 Choosing the controller ...................................................................... 45 

3.3 Proposed system block diagram: ............................................................... 46 

3.4 Environment tools and technology: ........................................................... 47 



 

ix 

3.4.1 Oracle VM VirtualBox ......................................................................... 47 

3.4.2 Mininet network emulator .................................................................. 48 

3.4.3 OpenDayLight controller ..................................................................... 48 

3.4.4 Wireshark .......................................................................................... 49 

3.5 Configuration and Software....................................................................... 49 

3.5.1 The controller .................................................................................... 49 

3.5.2 The server.......................................................................................... 59 

3.5.3 The physical Host ............................................................................... 62 

4. RESULTS .................................................................................................. 68 

4.1 Controller to switches Communication: ..................................................... 69 

4.2 Topology Connectivity .............................................................................. 71 

4.3 HTTP connectivity ..................................................................................... 72 

4.4 FTP Connectivity ....................................................................................... 74 

5. CONCLUSION AND FUTURE WORK ............................................................ 77 

5.1 Conclusion ............................................................................................... 78 

5.2 Future work ............................................................................................. 79 

REFERENCES ............................................................................................ 80 

 

  



 

x 

List of Figures 

Figure 2-1: (a)Networking the old way  (b)Networking the SDN way.................... 13 

Figure 2-2: SDN functional architecture illustrating the infrastructure, control, and 

application elements of which the network is comprised.  .................................................. 18 

Figure 2-3: Examples of the most well-known SDN controllers ............................ 20 

Figure 2-4: OpenFlow Messages ......................................................................... 23 

Figure 2-5: OpenFlow Negotiation ...................................................................... 23 

Figure 2-6: Message Types-Feature request ......................................................... 24 

Figure 2-7: Message Types-Feature reply ............................................................ 24 

Figure 2-8: Message Types-Set Config ................................................................ 25 

Figure 2-9: Message Types-Multipart Request ..................................................... 26 

Figure 2-10: Campus network architecture........................................................... 28 

Figure 2-11: LEFT: A typical university network today. RIGHT: An SDN-based 

architecture.................................................................................................................... 32 

Figure 2-12 Migration steps ................................................................................ 35 

Figure 3-1: Research Activities  ........................................................................... 41 

Figure 3-2: SUST’s Campus Network Topology .................................................. 43 

Figure 3-3: Simplified Topology in Mininet......................................................... 44 

Figure 3-4: System Block Diagram ..................................................................... 46 

Figure 3-5: Updating packages in Ubuntu ............................................................ 50 

Figure 3-6: Installing JVM ................................................................................. 51 

Figure 3-7: downloading a clone of the OpenDayLight controller’s source code..... 54 

Figure 3-8: OpenDayLight Installation Command ................................................ 55 



 

xi 

Figure 3-9: Downloading Packages for Opendaylight’s Controller Installation ....... 56 

Figure 3-10: Running the Controller.................................................................... 57 

Figure 3-11: OSGi running ................................................................................. 58 

Figure 3-12: GUI of the controller....................................................................... 58 

Figure 3-13: Roles on the windows 2008 server ................................................... 59 

Figure 3-14: Web server (IIS) HTTP Service ....................................................... 60 

Figure 3-15: FTP Server Configuration ............................................................... 61 

Figure 3-16: DNS Server Configuration .............................................................. 62 

Figure 3-17: Host IP Address and preffered DNS server assignment ...................... 63 

Figure 3-18: Command-Default route adding ....................................................... 63 

Figure 3-19 Active routes before adding default route .......................................... 64 

Figure 3-20 Active networks after adding the default route ................................... 64 

Figure 3-21: Browsing the FTP site on the Host Browser...................................... 65 

Figure 3-22: Browsing the Default webpage using IP address ............................... 65 

Figure 3-23 Browsing the Default webpage using the domain name  ...................... 66 

Figure 4-1: Displaying the Openflow packets in Wireshark................................... 69 

Figure 4-2: Content of Openflow message types .................................................. 70 

Figure 4-3: Different Areas of the Topology( DMZ, Internet, Internal Area) .......... 71 

Figure 4-4: Successful ICMP Ping from Internal Area to DMZ ............................. 72 

Figure 4-5: Blocked ICMP ping from internet host to internal Area ....................... 72 

Figure 4-6: Testing Connectivity from Physical Host to HTTP Server ................... 73 

Figure 4-7: Testing Connectivity from Physical Host to HTTP Server via URL ..... 73 



 

xii 

Figure 4-8: HTTP Verification in Wireshark ........................................................ 74 

Figure 4-9: NSLOOKUP verifying DNS Server ................................................... 74 

Figure 4-10: Host Accessing the FTP server ........................................................ 75 

Figure 4-11: FTP Verification in Wireshark ......................................................... 75 

 

  



 

xiii 

List of abbreviations: 

SDN   Software Defined Networking 

WAN   Wide Area Network 

NVF   Network Virtualization Function 

NAT   Network Address Translation 

DNS   Domain Name service 

NAC   Network Access Control 

LAN   Local Area Network 

WLAN  Wireless Local Area Network 

API   Application Program Interface 

GPS   Global Positioning System 

ONF   Open Network Foundation 

RCP   Rich Client Platform 

BGP   Border Gateway Protocol 

IETF   Internet Engineering Task Force 

ForCES  Forwarding and Control Element Seperation 

PCE   Path Computation Element 

MPLS  Multiprotocol Label Switching 

GMPLS  Generalized Multiprotocol Label Switching 

RIP   Routing Internet Protocol 

OSPF   Open Shortest Path Forwarding 

NOS   Network Operating System 

Cisco ASR  Cisco Aggregation Service Router 

ACL   Access Control List 



 

xiv 

QoS   Quality of Service 

AN   Active Network 

CPU   Central Processing Unit 

OS   Operating System 

PCEP   Path Computation Element Protocol 

JVM   Java Virtual Machine 

TCP   Transmission Control Protocol 

TLS   Total Logistic Services 

BYOD  Bring Your Own Device 

CLI   Command Line Interface 

VLAN  Virtual Local Area Network 

VRF   Virtual Routing and Forwarding 

IP   Internet Protocol 

AP   Access Point 

TCO   Total Cost ownership 

IEEE   Institute of Electrical and Electronics Engineers 

WiMAX  Worldwide Interoperability for Microwave Access 

ISP   Internet Service Provider 

DMZ   Demilitarized Zone 

FTP   File Transfer Protocol 

DHCP  Dynamic Host Configuration Protocol 

OVS   Open View Switch 

ODL   OpenDayLight 

USB   Universal Serial Bus 



 

xv 

VM   Virtual Machine 

GUI   Graphical User Interface 

NFV   Network Function Virtualization 

PPA   Personal Package Archives 

POM   Project Object Model 

MVN   Maven 

OSGi   open Service Gateway Initiative 

HTTP  Hypertext Transfer Protocol 

IIS   Internet Information services 

ICMP   Internet Control Message Protocol 

URL   Uniform Resource Locator 

CAPEX  Capital expenditure 

OPEX  Operational expenditure  

  



 

 

CHAPTER ONE 

 

 

INTRODUCTION  

 

  



Chapter One  Introduction 

 

2 

Chapter One 

1. INTRODUCTION 

1.1  Preface 

1.2  The problem statement 

1.3  Aim and objectives 

1.4  Thesis outlines 

 

 

  



Chapter One  Introduction 

 

3 

This chapter provides a brief overview of the literature review, 

problem definition, Methodology, aim and objectives, in addition to 

thesis outline. 

1.1 Preface: 

Software-defined networks (SDN): Is a modern architectural 

approach that optimizes and simplifies network operations by more 

closely binding the interaction (i.e., provisioning, messaging, and 

alarming) among applications and network services and devices, whether 

they are real or virtualized. Its common deployment model is by 

employing a point of logically centralized network control which then 

orchestrates, mediates, and facilitates communication between 

applications wishing to interact with network elements and wishing to 

convey information to those applications. The controller then exposes 

and abstracts network functions and operations via modern, application-

friendly and bidirectional programmatic interfaces. 

Among many benefits, SDN eliminates the rigidity present in 

traditional network and make it easier to build application for enterprise 

networks, data centers, internet exchange points, home networks and 

backbone/WAN. basically because it enables customizing the data plane 

to perform functions other than match-action like traffic shaping. 

SDN changes the way of designing, configuring and managing 

networks. By decoupling the control plane from the data plane the 

chance of creating secure network is increased. And with a centralized 

controller the overall view and management of a network is becoming 

much easier. While SDN discusses the centralization of the controller, 

Network Virtualization Function (NVF) in contrast discusses the 



Chapter One  Introduction 

 

4 

centralization of Services. It offers a new way to design, deploy and 

manage networking services. NFV couples the network functions, such 

as network address translation (NAT), firewalling, intrusion detection, 

domain name service (DNS), and caching in a unified device that may be 

a real hardware or a virtualized device (controller). SDN & NVF work in 

parallel to make an open source environment that support innovation.  

Campus NAC (Campus Network Access Control) is the ability to 

control access as well as service quality to LAN and WLAN for 

employees, contractors and visitors based on their roles and privileges in 

an organization. [1] 

1.2 The problem statement: 

To enable employees, contractors and visitors to access different 

services based on their privilege using Network Access Control in an 

SDN network. 

1.3 Aim and objectives: 

The aim of this project is to test and examine the behavior of 

different types of packets (control packets, Data packets, … etc.) within 

SDN environment.  

The objectives of this project are:  

 To make a brief implementation of SDN on a campus network. 

 To Implement NAC policies on the SDN network. 

 To test and evaluate. 



Chapter One  Introduction 

 

5 

1.4 Thesis outlines: 

This thesis approaches the aforementioned issues starting from the 

motivation of this thesis and a broader definition of technologies and 

introduction to the context, followed by a proposed system design, 

description of the implementation tools and measurements analysis. 

Hereby, the work has been structured in four main chapters as follows: 

Chapter 2: A theoretical background of the proposed work is 

presented. Also this chapter presents some SDN-related concepts that is 

relevant to this thesis, and gives an overview of the related work and 

research performed on those aspects.it also explores some technologies 

and concepts that forms the road map of SDN. 

Chapter 3: Describes the tools and technologies used in the 

implementation phase. Both network virtualization and SDN tools were 

used. The test cases scenarios are presented with explanation of the 

commands used and detailed overview of the controller architecture. In 

this chapter, all the steps taken to implement the network are included, 

from obtaining information to configuring the network to use SDN.  

Chapter 4: Shows the results obtained from the use case network. 

This chapter introduces the expectations regarding the SDN benefits to 

the applied use case. 

Chapter 5: Aims to draw the final remarks and conclusions of the 

presented work. Proposed optimizations and complementary future work 

are also presented. 



 

 

CHAPTER TWO 

 

 

LITERATURE REVIEW 

 

 

  



Chapter Two  Literature Review 

 

7 

2. LITERATURE REVIEW 

2.1  What is software-defined networking? 

2.2  Active networks 

2.3  Network operating system (NOS) 

2.4  SDN functional architecture 

2.5  SDN controllers 

2.6  OpenFlow API 

2.7  SDN in the campus environment 

2.8  SDN Migration 

 

 

  



Chapter Two  Literature Review 

 

8 

2.1 Introduction 

The concept of Software-Defined Networking is not new and 

completely revolutionary; rather it arises as the result of contributions, 

ideas, and developments in research networking. 

SDN changes the behavior of the network from configurability to 

programmability. Although most projects in this field focus on finding 

the implementation of basic services. Not a lot of work conducted the 

implementation of Network Access Control (NAC) in a SDN 

environment. However, our research will focus in this area.  

In this chapter we discuss previous researches related to the 

context of this thesis. It covers architectural themes in networking where 

Software-defined networking originated, recent work on SDN, as well as 

network management and control, as well as the need for network 

security. 

 

2.2 What is software-defined networking? 

The term software-defined networking (SDN) has been coined in 

recent years. However, the concept behind SDN has been evolving since 

1996, driven by the desire to provide user-controlled management of 

forwarding in network nodes. Implementations by research and industry 

groups include Ipsilon (proposed General Switch Management protocol, 

1996), The Tempest (a framework for safe, resource-assured, 

programmable networks, 1998) and Internet Engineering Task Force 

(IETF) Forwarding and Control Element Separation, 2000, and Path 

Computation Element, 2004. Most recently, Ethane (2007) and 



Chapter Two  Literature Review 

 

9 

OpenFlow (2008) have brought the implementation of SDN closer to 

reality. Ethane is a security management architecture combining simple 

flow-based switches with a central controller managing admittance and 

routing of flows. OpenFlow enables entries in the Flow Table to be 

defined by a server external to the switch. SDN is not, however, limited 

to any one of these implementations, but is a general term for the 

platform. [2] 

2.2.1 SDN definition: 

SDN is described with the Open Networking Foundation (ONF)[3] 

as “Software-Defined Networking (SDN) is an emerging network 

architecture where network control is decoupled from forwarding and is 

directly programmable”. 

Per this definition, SDN is defined by two characteristics, namely 

decoupling of control and data planes, and programmability on the 

control plane. Nevertheless, neither of these two signatures of SDN is 

totally new in network architecture, as detailed in the following: 

 First, several previous efforts have been made to promote network 

programmability. One example is the concept of active networking 

that attempts to control a network in a real-time manner using 

software. Similarly, software routing suites on conventional PC 

hardware, such as Click [4], XORP [5], Quagga [6], and BIRD [7], 

also attempt to create extensible software routers by making 

network devices programmable. Behavior of these network 

devices can be modified by loading different or modifying existing 

routing software. 

 Second, the spirit of decoupling between control and data planes 

has been proliferated during the last decade. Caesar et al. first 



Chapter Two  Literature Review 

 

10 

presented a Routing Control Platform (RCP) in 2004[8], in which 

Border Gateway Protocol (BGP) inter-domain routing is replaced 

by centralized routing control to reduce complexity of fully 

distributed path computation. In the same year, IETF released the 

Forwarding and Control Element Separation (ForCES) framework, 

which separates control and packet forwarding elements in a 

ForCES Network [9] – [10]. In 2005, Greenberg et al. proposed a 

4D approach [11] – [12], introducing a clean slate design of the 

entire network architecture with four planes. These planes are 

“decision”, “dissemination”, “discovery”, and “data”, respectively, 

which are organized from top to bottom. In 2006, the Path 

Computation Element (PCE) architecture was presented to 

compute label switched paths separately from actual packet 

forwarding in MPLS and GMPLS networks [13]. In 2007, Casado 

et al. presented Ethane, where simple flow-based Ethernet 

switches are supplemented with a centralized controller to manage 

admittance and routing of flows [14] – [15]. In this latest 

development, the principle of data-control plane separation has 

been explicitly stated. Commercial networking devices have also 

adopted the idea of data-control plane separation. For example, in 

the Cisco ASR 1000 series routers and Nexus 7000 series 

switches, the control plane is decoupled from the data plane and 

modularized, allowing coexistence of an active control plane 

instance and a standby one for high fault tolerance and transparent 

software upgrade. 

2.2.2 Control plane and data plane separation: 

SDN focuses on four key features: 

 Separation of the control plane from the data plane. 



Chapter Two  Literature Review 

 

11 

  A centralized controller and view of the network. 

 Open interfaces between the devices in the control plane 

(controllers) and those in the data plane. 

 Programmability of the network by external applications. 

Before diving on the concept of separating control plane from data 

plane we should first understand the difference between them. 

What is control plane? 

 Makes decisions about where traffic is sent. 

 Control plane packets are destined to (like telnet) or 

locally originated by the router itself. 

 The control plane functions include the system configuration, 

management, and exchange of routing table information. 

 The route controller exchanges the topology information with 

other routers and constructs a routing table based on a routing 

protocol, for example, RIP, OSPF or BGP. 

 Control plane packets are processed by the router to update the 

routing table information. 

 It is the Signaling of the network. 

 Since the control functions are not performed on each arriving 

individual packet, they do not have a strict speed constraint and 

are less time-critical. 

What is Data plane? 

 Also known as Forwarding Plane. 

 Forwards traffic to the next hop along the path to the selected 

destination network according to control plane logic. 



Chapter Two  Literature Review 

 

12 

 Data plane packets go through the router. 

 The routers/switches use what the control plane built to dispose of 

incoming and outgoing frames and packets. 

2.2.3 Why SDN? And the need for Data plane and control plane 

separation: 

The fundamental purpose of the communication network is to 

transfer information from one point to another. Within the network the 

data travels across multiple nodes, and efficient and effective data 

transfer (forwarding) is supported by the control provided by network 

applications/ services. 

 

2.2.3.1 NETWORKING THE OLD WAY: 

In traditional networks, as shown in 10Figure 2-1, the control and 

data planes are combined in a network node. 

The control plane is responsible for configuration of the node and 

programming the paths to be used for data flows. Once these paths have 

been determined, they are pushed down to the data plane. Data 

forwarding at the hardware level is based on this control information. 

In this traditional approach, once the flow management 

(forwarding policy) has been defined, the only way to make an 

adjustment to the policy is via changes to the configuration of the 

devices. 

This has proven restrictive for network operators who are keen to 

scale their networks in response to changing traffic demands, increasing 

use of mobile devices, and the impact of “big data.” 



Chapter Two  Literature Review 

 

13 

 

2.2.3.2 NETWORKING THE SDN WAY: 

From these service-focused requirements, SDN has emerged.  

Control is moved out of the individual network nodes and into the 

separate, centralized controller. SDN switches are controlled by a 

network operating system (NOS) that collects information using the API 

shown in 10Figure 2-1 and manipulates their forwarding plane, 

providing an abstract model of the network topology to the SDN 

controller hosting the applications. 

The controller can therefore exploit complete knowledge of the 

network to optimize flow management and support service-user 

requirements of scalability and flexibility. For example, bandwidth can 

be dynamically allocated into the data plane from the application. 

 

 

10Figure 2-1: (a)Networking the old way  (b)Networking the SDN way 



Chapter Two  Literature Review 

 

14 

SDN holds great promise in terms of simplifying network 

deployment and operation along with lowering the total cost of managing 

enterprise and carrier networks by providing programmable network 

services. However, a number of challenges remain to be addressed. [2] 

 

2.3 Active networks: 

The basic goals of active networking (AN) are to create 

networking technologies that, in contrast to current networks, are easy to 

evolve and which allow application specific customization. To achieve 

these goals, AN uses a simple idea, that the network would be easier to 

change and customize if it were programmable. [16] 

Conventional networks are not "programmable" in any meaningful 

sense of the word.  The concepts of software data plane and 

programmable nodes were introduced with active networks where the 

nodes of this "active" network are programmed to perform custom 

operations on the messages that pass through the node. For example, a 

node could be programmed or customized to handle packets on an 

individual user basis or to handle multicast packets differently than other 

packets.  "Smart packets" use a special self-describing language that 

allows new kinds of information to be carried within a packet and 

operated on by a node.  

Active networks have been implemented as overlay networks due 

to their architecture; it is composed of execution environments, a node 

operating system capable of supporting one or more execution 

environments. It also consists of active hardware, capable of routing or 

switching as well as executing code within active packets. This differs 



Chapter Two  Literature Review 

 

15 

from the traditional network architecture which seeks robustness and 

stability by attempting to remove complexity and the ability to change its 

fundamental operation from underlying network components. Network 

processors are one means of implementing active networking concepts.  

Although Active Networks have the high-level goals of improving 

evolve-ability and customizability, there are a number of low-level 

concerns that must be balanced to achieve these high-level goals. 

The first of these concerns is flexibility .AN systems aim to 

significantly improve the flexibility with which we can build networks. 

The second concern is safety and security. It is crucial that while adding 

flexibility, we not compromise the safety or security of the resulting 

system. The third concern is performance. If adding flexibility results in 

a system that cannot achieve its performance goals, it will be pointless. 

The final concern is usability. It is important that the resulting system not 

be so complex as to be unusable. The other main perspective we wish to 

develop is how the combination of disciplines discussed above come 

together to help address these concerns. 

 

Active networks and SDN have the same motivation which is: 

 Accelerating innovation:  traditional networks have the drawback 

that intermediate nodes (e.g., routers, switches) are vertically 

integrated closed systems whose functions are rigidly built into the 

embedded software and hardware by intermediate node vendors 

therefore the development and deployment of new services in such 

networks requires a long standardization process.  Moreover, the 



Chapter Two  Literature Review 

 

16 

range of these services is limited because they can't anticipate and 

provide support for all future applications. 

 The decision to provide a well-designed and architecturally open 

platform –efforts had already been going on to achieve this–. 

 To gain the benefits of being able to put application and network 

knowledge in the same place. This can be extremely beneficial to 

the network. Stock quotes and online auctions are typical 

examples. In online auctions the server collects and processes 

client bids for available items. This server also responds to clients 

for request for current price of a specific item. Because of the 

network delay experienced by a packet responding to such a 

query, its information may be out of date by the time it reaches the 

client.  In active networks, when a server 'senses' that is it heavily 

loaded, it can activate filter in nearby nodes to drop bids lower 

than the latest bid and periodically update them with current price 

of the item by sending active packets. 

 To provide an integrating mechanism for security, authentication 

and monitoring.  Thus eliminating the need for multiple 

security/authentication systems that operate independently at each 

communication layer protocol. 

 

Saying that, it is clear that active networks offered some 

intellectual contributions that relates to SDN, the three main 

contributions are: 

 Programmable functions in the network that lowers the barrier 

to innovation. 



Chapter Two  Literature Review 

 

17 

 Network virtualization and the ability to de-multiplex software 

programs based on packet headers. 

 The vision of a unified architecture for middle-box 

orchestration. 

 

2.4 Network operating system (NOS): 

Modern network devices are complex entities composed of both 

hardware and software. Thus, designing an efficient hardware platform is 

not, by itself, sufficient to achieve an effective, cost-efficient and 

operationally tenable product.  The control plane plays a critical role in 

the development of features and in ensuring device usability.  Thus the 

need for networking operating system arises.  Developing a flexible, 

long-lasting and high-quality network OS provides a foundation that can 

gracefully evolve to support new needs in its height for up and down 

scaling, width  

for adoption across many platforms, and depth for rich integration 

of new features and functions. 

Network Operating Systems extend the facilities and services 

provided by computer operating systems to support a set of computers, 

connected by a network. The environment managed by a network 

operating system consists of an interconnected group of machines that 

are loosely connected. By loosely connected, we mean that such 

computers possess no hardware connections at the CPU – memory bus 

level, but are connected by external interfaces that run under the control 

of software. Each computer in this group run an autonomous operating 

system, yet cooperate with each other to allow a variety of facilities 



Chapter Two  Literature Review 

 

18 

including file sharing, data sharing, peripheral sharing, remote execution 

and cooperative computation. Network operating systems are 

autonomous operating systems that support such cooperation. 

Network operating systems (specifically those in routers) have 

been through several generations starting from Monolithic architecture 

going through the control plane modularity phase and as new challenges 

started to appear on the surface in the last decade the need for enhanced 

flexibility, scalability and continuous operation led to the creation of 

third generation network operating system. [17] 

2.5 SDN functional architecture:  

 

Figure 2-2: SDN functional architecture illustrating the infrastructure, control, 

and application elements of which the network is comprised. 

The future SDN architecture is described in Figure 2-2. This 

architecture encompasses the complete network platform. The bottom 

tier of Figure 2-2 involves the physical network equipment including 

Ethernet switches and routers. This forms the data plane. The central tier 



Chapter Two  Literature Review 

 

19 

consists of the controllers that facilitate setting up and tearing down 

flows and paths in the network. The controllers use information about 

capacity and demand obtained from the networking equipment through 

which the traffic flows. The central tier links with the bottom tier via an 

application programming interface (API) referred to as the southbound 

API. Connections between controllers operate with east and westbound 

APIs. The controller application interface is referred to as the northbound 

API. Functional applications such as energy-efficient networking, 

security monitoring, and access control for operation and management of 

the network are represented at the top of Figure 2-2 highlighting the user 

control/management separation from the data plane. The transition from 

the traditional network to the state of the art in SDN today is presented. 

[2] 

 

2.6 SDN controllers: 

 In this section an overview of some basic SDN controllers is 

given. SDN controllers differ in their basic architecture, programming 

model, and other concepts. Every controller has its own ideal situation 

and the choice of the controller is affected by many considerations like 

the choice of programming language which can sometimes affect 

performance, the learning curve of the controller can get steep sometimes 

so this should be taken into consideration as well. The user base and 

community support is also a factor. Finally, focus should be considered 

before making this choice in terms of Southbound and Northbound 

interfaces (policy layer) they support and whether it is used for 

education, research or production environments. 



Chapter Two  Literature Review 

 

20 

 

Figure 2-3: Examples of the most well-known SDN controllers 

Some examples of the most well-known SDN controllers are 

NOX/POX, Ryu, OpenDayLight, and Floodlight. 

  NOX:  is a first-generation OpenFlow controller, it’s one of the 

most widely used controllers because it is stable, open source and it 

supports OpenFlow. It is available in two versions either NOX-Classis 

which is implemented in C++ or Python but is no longer supported. Or 

either, a newer supported version of NOX which is implemented in C++ 

only but with a cleaner code base and better performance.  

 POX:  is essentially the same as NOX but it’s implemented in 

Python only and it’s relatively easier to deal with it in terms of writing 

and reading codes.it is a good choice if the performance is not an issue. 

  Ryu:  is an open-source Python controller that supports 

OpenFlow and Openstack.it had relatively poor performance with respect 

to other commercial grade controllers. 



Chapter Two  Literature Review 

 

21 

 Floodlight is an open-source Java controller that supports 

OpenFlow and is maintained by Big Switch Networks. It’s considered 

the optimum choice for multi-tenant’s cloud environment because is 

supports OpenStack and this type of implementation, it is also suitable 

when production level performance is needed and it is well documented, 

however, it has a steep learning curve. 

  OpenDayLight: The OpenDayLight Project is a recent open-

source project founded by some of the big vendors such as: Big Switch 

Networks, Brocade, Cisco, Citrix, Ericsson, HP, IBM, Juniper Networks, 

Microsoft, NEC, Red Hat and VMware. OpenDayLight is developed as a 

modular, pluggable, and flexible controller platform. This controller is 

completely programmed and it is integrated within its own Java Virtual 

Machine (JVM). Hereby, it can be deployed on any hardware and 

operating system platform that has Java environment installed. Chapter 3 

Background 22 Table 2-1 shows a summary of some properties of some 

controllers. 

  



Chapter Two  Literature Review 

 

22 

Table 2-1: Summary of some properties of some controllers 

 

2.7 OpenFlow API: 

Before the emergence of OpenFlow, the ideas underlying SDN 

faced a tension between the vision of fully programmable networks and 

pragmatism that would enable real-world deployment. OpenFlow struck 

a balance between these two goals by enabling more functions than 

earlier route controllers and building on existing switch hardware 

through the increasing use of merchant-silicon chipsets in commodity 

switches.  Although relying on existing switch hardware did somewhat 

limit flexibility, OpenFlow was almost immediately deployable, 

allowing the SDN movement to be both pragmatic and bold. The 

creation of the OpenFlow API51 was followed quickly by the design of 

controller platforms such as NOX37 that enabled the creation of many 

new control applications. 

 

 

 



Chapter Two  Literature Review 

 

23 

2.7.1 Understanding open flow messages: 

 

Figure 2-4: OpenFlow Messages 

The switch initiates a standard TCP (or TLS) connection to the 

controller. When an OpenFlow connection is established, each entity 

must send an OFPT_HELLO message with the protocol version set to 

the highest OpenFlow protocol version supported by the sender. In 

Figure 2-5, we can see that OpenFlow version 1.3 has been negotiated. 

 

Figure 2-5: OpenFlow Negotiation 

  



Chapter Two  Literature Review 

 

24 

Feature Request – Reply 

After successfully establishing a session, the controller sends an 

OFPT_FEATURES_REQUEST message. This message only contains an 

OpenFlow header and does not contain a body. 

 

Figure 2-6: Message Types-Feature request 

 

Figure 2-7: Message Types-Feature reply 

The switch responds with an OFPT_FEATURES_REPLY message. 

Notice the Data path ID and the switch capabilities sent as part of the 

Feature reply message. 



Chapter Two  Literature Review 

 

25 

Set Configuration 

Next, the controller sends the OFPT_SET_CONFIG message to 

the switch. This includes the set of flags and Max bytes of packet that the 

data path should send to the controller. 

 

Figure 2-8: Message Types-Set Config 

 

Multipart Request – Reply 

The controller may request state from the data path using the 

OFPT_MULTIPART_REQUEST message. The message types handled 

by this message include various statistics (FLOW/ TABLE/ PORT/ 

QUEUE/METER etc.) or description features (METER_CONFIG/ 

TABLE_FEATURES/ PORT_DESC etc.). In our simple_switch_13.py, 

RYU internally sends a MULTIPART_REQUEST to request port 

description. 



Chapter Two  Literature Review 

 

26 

 

Figure 2-9: Message Types-Multipart Request 

The switch replies with the PORT_DESCRIPTION of all active 

ports in the switch. Note: in OF 1.0, the port descriptions were returned 

as part of the FEATURE_REPLY message. Now this is handled 

separately as MULTIPART_* in OF 1.3. [18] 

 

2.8 SDN in the campus environment: 

Today’s campus networks are facing major challenges. Mobile 

clients, BYOD, video, and the ever-growing number of connected 

devices and applications are rapidly changing the network landscape, no 

matter whether the campus is corporate or educational. These dramatic 

changes tax the ability of current solutions to deliver agility, 

performance, and seamless user experience. One of the primary reasons 

for these challenges is that network technology evolution is simply not 

keeping pace with evolving demands. Software Defined Networking 



Chapter Two  Literature Review 

 

27 

(SDN) can alleviate these challenges, offering flexibility and the ability 

to develop new capabilities quickly and cost-effectively. 

Over the past few years, IT organizations at enterprises and 

educational institutions have come under increasing pressure from end 

users to provide access to applications and data from anywhere and at 

any time. As mobile devices such as smartphones and tablets proliferate 

in campus environments, users increasingly access and store sensitive 

data on these devices—which are often owned by the user, not the 

organization. Not only must campus networks be secure, scalable, and 

manageable, they must also maintain isolation among an ever-increasing 

diversity of users, applications, services, devices, and access 

technologies. Consequently, networks that serve campuses must evolve 

to address these changing requirements. [19] 

 

2.8.1 Challenges of today’s campus network: 

Typical campus network architectures are structured into three 

layers—core, aggregation/distribution, and access—that connect diverse 

endpoints, as shown in Figure 2-10. Typically, Layer 2 is used for the 

access layer, and Layer 3 is used for the core layer. This not only 

increases management costs and complexity (because wired and wireless 

networks are separate), it also precludes a seamless user experience 

(because the two networks provide different capabilities and feature 

sets). 

 



Chapter Two  Literature Review 

 

28 

 

Figure 2-10: Campus network architecture 

Because campus networks are by nature heterogeneous, they are 

often difficult to manage, leading to excess costs along with scalability 

and reliability problems. Network configuration changes are subject to 

lengthy provisioning times and configuration errors because network 

devices must be configured individually, typically through the CLI or 

proprietary element management systems. 

Organizations are presently addressing these challenges in a 

fragmented fashion with wireless LAN controllers and Wi-Fi access 

points, VLANs for Layer 2 isolation, and Virtual Routing and 

Forwarding (VRF) for Layer 3 traffic isolation. These strategies might be 

efficient for specific circumstances, but often at the cost of scalability 

and flexibility.  



Chapter Two  Literature Review 

 

29 

An OpenFlow-enabled Software Defined Network offers a much 

simpler approach to traffic isolation and unified management. By 

separating the control, management, and service layers from the data-

plane layer, OpenFlow eliminates the limitations and operational 

overhead of VLANs and VRFs. [19] 

2.8.2 SDN in the campus network: 

An OpenFlow based SDN network architecture simplifies the 

campus network while offering significantly greater flexibility.  

• Rapid service deployment and tear down without impacting other 

logical networks, thanks to network virtualization.  

• Improved service availability because alternate paths can be pre-

computed, which also improves responsiveness compared with 

traditional network convergence upon topology changes.  

• Traffic isolation of logical networks at both Layer 2 and Layer 3.  

• Optimal resource utilization, because management, services, and 

applications are virtualized to maximize utilization while minimizing 

space and power consumption.  

OpenFlow-based SDN introduces the multi-layer flow paradigm, 

which provides a higher level of control. By virtualizing the campus 

network in slices, granular policies can be applied to individual and/or 

groups of flows at the centralized controller, decoupling policy from 

hardware. For instance, access policies can be enforced for different 

departments, different types of access (wireless vs. wired), or even 

remote versus local users. Such policies are much simpler to enforce, 

especially for the increasingly mobile workforce. [19] 



Chapter Two  Literature Review 

 

30 

 

2.8.3 The role of SDN and OpenFlow: 

OpenFlow-based SDN can overcome the limitations with existing 

campus networks. Typically, a logical network is created by associating 

a physical port of a switch or VLAN to a specific logical network ID, 

with its own routing protocol instance and forwarding table. Whenever a 

packet needs to be forwarded, it will be associated with the logical 

network based on the port it arrived on or the VLAN ID. This approach 

has several limitations. A port or a VLAN can belong to only one logical 

network and therefore cannot support multiple flows that terminate on 

different logical networks. In addition, these methods are proprietary and 

cannot interoperate with each other.  

With SDN, the controller can determine the logical network for 

every flow, then tunnel the traffic to the end of the logical network. It 

becomes easier to define logical networks as needed, avoiding the need 

to create a routing protocol instance in every router for each logical 

network. This approach is scalable and much more flexible than 

VLAN/VRF approaches. In addition, SDN-based logical networks can 

easily be created, updated, and terminated based on dynamic 

requirements. By programming the traffic forwarding rules across the 

data forwarding devices, it becomes easy to reorder service execution 

and implement service chaining.  

Another advantage is that with SDN, one can easily deploy 

policies across logical networks to enable traffic across these networks.  

[19] 



Chapter Two  Literature Review 

 

31 

2.8.4 Campus network use cases: 

2.8.4.1 Traffic isolation: 

In this example, the campus is that of an educational institution. A 

typical university network serves diverse tenants, including faculty, 

students, medical facilities, libraries, a police department, restaurants, 

and bookstores. These individual tenants may need private addressing 

schemes that may overlap. This requires the university network to isolate 

traffic among multiple tenants and operate logical networks over a single 

physical network.  

SDN enables policies to be enforced per application, which in turn 

allows access only to specific network resources (or a specific share of 

network resources). Figure 2-11 depicts a typical university network 

where a single physical network is shared by many diverse entities in a 

single location. 

Campus networks require logically partitioned networks, each 

with its own policy. Currently, solutions such as MPLS or VRF-Lite are 

used to create logical network slices over a single physical network. 

Deploying and managing these technologies is static, time-consuming, 

and very cumbersome. SDN/OpenFlow-enabled switches enable these 

logical networks to be created on demand in a matter of minutes instead 

of weeks. These switches can also enforce flexible policies to control and 

limit interaction among the logical networks. [20]   



Chapter Two  Literature Review 

 

32 

 

Figure 2-11: LEFT: A typical university network today. RIGHT: An SDN-

based architecture. 

2.8.4.2 Security and policy enforcement: 

Most of the security policies today are limited to a VLAN or an 

interface. These are statically configured without considering the context 

of an application. Though there are enhancements using 802.1x dynamic 

policies and identity management systems, these still do not offer 

flexible security policy management and enforcement. In a SDN 

environment, the SDN controller understands the context of a flow (user, 

device, location, time, application, and potentially other external factors) 

and enables network admins to configure fine granular policies and 

enforce these at the access or at any intermediate switch as needed. [20] 

 

https://www.opennetworking.org/working-groups/market-education


Chapter Two  Literature Review 

 

33 

2.8.4.3 BYOD and seamless mobility: 

Employees are bringing their own devices and applications, and 

are expecting seamless connectivity and mobility. Though there are 

several solutions to achieve this, many of these are developed by 

vendors, and provide limited flexibility. With ever-growing number of 

types of devices, operating systems and software patches, vendors cannot 

catch up quickly enough to meet customers’ needs. Organizations need 

the ability to program their own policies without waiting for vendors to 

release software upgrades. SDN allows organizations to develop their 

own enhancements to BYOD applications to meet their particular 

requirements. 

Today, mobility is achieved either using tunneling among WLAN 

controllers or mobile IP technology. While controller-based mobility 

works, this mode will change as customers are demanding unified wired 

and wireless solutions. The data plane will be local to an AP. The mobile 

IP mechanism works but cannot scale and has other limitations. With 

SDN, a centralized controller knows end-user devices and application 

flows. It would be able to program the network to forward the traffic 

appropriately without hair-pinning the traffic on an anchor AP. [20] 

2.8.4.4 Video streaming and collaboration applications: 

Video and collaboration applications have become critical for the 

success of an organization. Most of these applications typically are more 

efficient when they use multicast technology. IP multicast technology is 

mature and available, but it is still difficult to deploy and troubleshoot. It 

is not as widely deployed as IP unicast technology, and it has forced 

many organizations to deploy video applications using other mechanisms 



Chapter Two  Literature Review 

 

34 

based on IP unicast forwarding. SDN is an ideal solution for these types 

of applications, as the SDN controller knows the topology, sources and 

listeners, and can build an efficient multicast topology and program the 

network on an on-demand basis. [20] 

 

2.9 SDN Migration:  

Open Software-Defined Networking (SDN) has been well 

accepted by the networking industry as the way to transform enterprise, 

data center, service provider, carriers and campus networks. The 

objective of this SDN transformation is to enable differentiated new 

services faster than ever before, simplify the network, and lower the total 

cost of ownership (TCO). The key attributes for a network that has been 

migrated to SDN are programmability, openness, heterogeneity, and 

maintainability. SDN will also facilitate the re-architecture required to 

address the increasing demand on the network due to dynamic 

connectivity. [21] 

 

2.9.1 SDN Migration Considerations: 

    In SDN migration a number of challenges must be confronted, 

including cost, performance, service availability, management, and 

security. Addressing security vulnerabilities is among the highest 

priorities for network operators. 

The key steps involved in an SDN migration are:  

 



Chapter Two  Literature Review 

 

35 

• Identify and prioritize core requirements of the target 

network. Not all requirements of the traditional starting 

network may be met, at least initially, by the target 

software-defined network.  

• Prepare the starting network for migration. The starting 

network might need to be moved to a clean intermediate 

standard state from which the rest of the migration can 

proceed.  

• Implement a phased network migration. Migrating 

individual devices will necessitate   device-specific drivers 

and methods. 

• Validate the results. Once migration is completed, the 

target network must be validated against a documented set 

of requirements or expectations. [21] 

 

Figure 2-12 Migration steps 

2.9.2 Stanford university legacy-to-hybrid migration: 

One of Stanford University’s primary motivations for SDN 

migration was to gain better insight into and verification of OpenFlow as 

a viable technology. Stanford deployed a fully functional SDN network 

using OpenFlow controllers over part of its campus. This migration was 



Chapter Two  Literature Review 

 

36 

focused initially on wireless users, followed by select wired users 

spanning two independent buildings. This migration encompassed 

several IEEE 802.1q VLANs, which were interconnected—as is 

commonly done—with a Layer 3 router.  

In one of the buildings, Stanford deployed six 48-port 1GE 

OpenFlow-enabled switches from various vendors. The second building 

deployed one 48-port OpenFlow-enabled switch. One Layer 2 domain 

was used at each building to support about 34 Wi-Fi access points. These 

access points supported 802.11g interfaces running Linux-based 

switching software and one WiMAX base station in one of the buildings. 

The target campus deployment specified network availability to 

exceed 99.9% with a fail-safe scheme to revert back to the legacy 

network in case of significant outages. In addition, network performance 

was specified to be comparable to the legacy network benchmarks 

without any impact to user experience. 

The migration was accomplished in five phases. The first phase 

exposed traffic visibility to facilitate network configuration changes for 

selected users. In phase 2, VLANs and users were migrated to 

OpenFlow-based SDN through the following steps: 

1- Deployed OpenFlow support on relevant hardware via a 

software update. 

2- Verified OpenFlow support on switches for the configured 

VLANs and to test endpoint reachability. 

3- Migrated users to the OpenFlow-enabled network. 



Chapter Two  Literature Review 

 

37 

4- Enabled OpenFlow for the new subnet by configuring the 

OpenFlow controller. 

5- Validated migration objectives for reachability, performance, 

and stability using network management tools. [21] 



 

 

CHAPTER THREE 

 

 

METHODOLOGY 

 

 

  



Chapter Three  Methodology 

 

39 

3. METHODOLOGY 

3.1  Introduction 

3.2  Research activities 

3.3  Proposed system block diagram 

3.4  Environment tools and technology 

3.5  Configuration and Software 

  



Chapter Three  Methodology 

 

40 

3.1 Introduction: 

This chapter demonstrates how to implement basic SDN in a 

campus network using network emulator and OpenDayLight controller. 

First, Mininet emulator -which works based on Linux operating system, 

will be used. The data plane and control plane will be separated, All the 

devices involved in the data plane have basic similar features in their 

design, there is a specialized hardware for the packet processing, and 

over the hardware resides an operating system that receives information 

from the hardware and runs a software application. The software usually 

contains thousands lines of complex code to determine the next hop for 

the packet arriving to reach its destination. These codes are usually 

follow a certain standard protocol or determined by the vendor, the 

functions of the control plane will be carried out by the central controller 

(Open daylight). The controller will be programmed using python 

programming language.  

To give a better understanding of how this project works this 

chapter is divided into two sections, the first section gives an abstraction 

of what was done throughout the project; the second section gives the 

proposed topology and the environment in which the project is 

implemented. 



Chapter Three  Methodology 

 

41 

3.2 Research activities: 

 

Figure 3-1: Research Activities 

Figure 3-1 describes a general overview of how this project was 

assembled, in order to bring out the final implementation of the SDN 

topology within a campus network. 

  



Chapter Three  Methodology 

 

42 

 

3.2.1 Studying SDN concepts 

 This part includes different activities and wide research, by 

attending different workshops, studying Nick Feamester course, and 

consulting many experts in the SDN area, enough information has been 

gathered in order to start the implementation. 

The rehearsed researches revealed that most of the implementation 

of the SDN technology was applied on data centers and service providers 

rather than campus or enterprise networks. 

Based on this literature review both emulator, controller and other 

necessary tools has been selected, these tools will be discussed later. 

 

3.2.2 Choosing the topology 

First of all, multiple networks were thought-out to be the network 

implemented in this project, eventually SUST network was selected to be 

simplified and tested. Secondly, a clearance was needed in order to get 

information about Sudan University of Science and Technology (SUST) 

network topology, once this clearance was acquired, several visits has 

been scheduled to the university’s main network department and data 

center, the result of it was acquiring the main SUST’s campus network 

topology. As shown in Figure 3-2: 

 



Chapter Three  Methodology 

 

43 

Figure 3-2: SUST’s Campus Network Topology 

 

The university network contains main router connected to the 

Internet Service Provider (ISP). This router is connected to the main 

firewall, the firewall has 3-legs connected to three areas; the DMZ area, 

trusted internal area and the untrusted outside internet, inside the DMZ 

area we find the data center that include mail server, web server 

containing the university website www.sustech.edu , in addition to an 

FTP server.  

  

http://www.sustech.edu/


Chapter Three  Methodology 

 

44 

Inside the trusted area each college is connected to a core switch 

through a layer 3 switch, near colleges are connected with fiber optic 

cables, and far ones are connected with antennas. Each college contains 

two servers: Proxy server and DHCP server.   

This topology was simplified in order to give clear implementation 

of SDN concept, the simplified topology contain basic three leg topology 

that have three areas, The DMZ area, The trusted area, and the untrusted 

area. This topology will be explained in more details later. As shown in 

Figure 3-3 below. 

 

Figure 3-3: Simplified Topology in Mininet 

  



Chapter Three  Methodology 

 

45 

3.2.3 Choosing the suitable environment 

After studying different operating systems, Ubuntu as a stable, 

reliable operating system was chosen to run the virtual topology using 

Mininet (the emulator). 

  

3.2.4 Choosing the emulator 

Three emulators were under consideration (Mininet, NS-3, 

Estinet). Mininet was chosen because it provides multiple namespaces 

for each OpenVswitch and host, in addition to that it is widely used in 

research.  

Mininet is an SDN emulator that runs virtual switches that support 

OpenFlow protocol -explained in the next section- Which is used for 

constructing our topology. 

 

3.2.5 Choosing the controller 

There is a collection of SDN controllers available to implement 

OpenFlow protocol to control the switches and act as the aggregated 

control plane, this collection includes OpenDayLight, POX, NOX, 

Floodlight… Etc. the comparison between all these controllers is 

discussed in chapter two of this project, the output of this comparison led 

to choosing OpenDayLight.  

  



Chapter Three  Methodology 

 

46 

3.3 Proposed system block diagram: 

 

Figure 3-4: System Block Diagram 

The system block diagram is composed of a main computer 

containing the Mininet emulator as shown in Figure 3-4; this topology is 

the output of Miniedit which is an extension of Mininet that creates 

visual topologies from codes. Part of the topology- which is a server 

containing Windows server 2008 and a host with windows operating 

system- are departed from the emulation environment in order to be 

represented as physical devices, all of the Open Virtual Switches 

(OpenVswitch- OVS) are connected with the main controller through 

OpenFlow protocol. The controller used is OpenDayLight (ODL). 

The server is connected directly to the laptop containing the 

emulation environment with Ethernet connection, also the physical host 

is connected to an external Ethernet adapter, this adapter is attached to 



Chapter Three  Methodology 

 

47 

the main laptop with USB port, the controller is connected to the main 

laptop with the wireless adapter. 

 

3.4 Environment tools and technology: 

 Brief information of the tools and technologies, and how they are 

used and deployed is presented. 

3.4.1 Oracle VM VirtualBox 

VirtualBox is a cross-platform virtualization application. For one 

thing, it installs on the existing Intel or AMD-based computers, whether 

they are running Windows, Mac, Linux or Solaris operating systems. 

Secondly, it extends the capabilities of the computer so that it can run 

multiple operating systems (inside multiple virtual machines) at the same 

time. Here Oracle VM VirtualBox is used to run Ubuntu operating 

system in the Laptop that represents the controller. 

 

  



Chapter Three  Methodology 

 

48 

3.4.2 Mininet network emulator 

Mininet is a network emulator. It runs a collection of end-hosts, 

switches, routers, and links on a single Linux kernel. Mininet tool allows 

complex topology testing without any physical connections, only using 

Python Application Programming Interface (API) and it also includes a 

Command Line Interface (CLI) which is topology-aware. 

One feature of Mininet is Miniedit; it allows editing and 

configuring the topology through graphical user interface (GUI).  

Mininet is used in the project as the emulation environment, it 

installs in the main laptop and it acts as the emulation of the topology.  

  

3.4.3 OpenDayLight controller  

The OpenDayLight Project is a collaborative open source project 

hosted by The Linux Foundation. The goal of the project is to accelerate 

the adoption of software-defined networking (SDN) and create a solid 

foundation for Network Functions Virtualization (NFV). The software is 

written in Java.  

OpenDayLight acts as the controller that is able to configure the 

switches, it can manipulate and redirect the flows on each switch using 

OpenFlow protocol, the controller can be thought of as an aggregation 

of all the control planes of the switches. 

The controller here is installed on a separate individual laptop; 

it connects to the main laptop containing Mininet through the 

wireless adapter.  



Chapter Three  Methodology 

 

49 

3.4.4 Wireshark 

Wireshark is a network protocol analyzer for windows and UNIX; 

it offers several benefits that make it appealing for everyday use. It is 

aimed at both the journeyman and the expert packet analyst, and offers a 

variety of features to entice each. 

 

3.5 Configuration and Software 

In this part all steps to build and integrate the system will be 

explained in details. 

 

3.5.1 The controller 

The controller is written in java language thus in order to 

install it the first step is to install java virtual machine (JVM), to 

install JVM on Ubuntu operating system the following commands on 

Figure 3-5 and Figure 3-6 should be executed: 



Chapter Three  Methodology 

 

50 

 

Figure 3-5: Updating packages in Ubuntu 

This command -highlighted with red- on Figure 3-5 downloads 

the package lists from the repositories and "updates" them to get 

information on the newest versions of packages and their 

dependencies. It will do this for all repositories and PPAs.  

From  http://linux.die.net-/man/8/apt-get. After this command 

downloads all the dependences, the following command is executed: 

http://linux.die.net-/man/8/apt-get


Chapter Three  Methodology 

 

51 

 

Figure 3-6: Installing JVM 

This command installs JVM version 7, Apache maven should 

be installed to manage the controller objects. 

Apache Maven is a software project management and 

comprehension tool. Based on the concept of a project object model 

(POM), Maven can manage a project's build, reporting and 

documentation from a central piece of information . 

  



Chapter Three  Methodology 

 

52 

To install Maven, the following steps should be taken:  

1. Download Apache Maven 3.0.4 binary from repository using 

the following command: 

2. Unzip the binary with tar:  

3. copy the application directory to /usr/local: 

4. Make a soft link in /usr/bin for universal access of mvn: 

5. Verify mvn installation: 

  

 wget http://archive.apache.org/dist/maven/binaries/apache-

maven-3.0.4-bin.tar.gz 

tar -zxf apache-maven-3.0.4-bin.tar.gz  

sudo cp -R apache-maven-3.0.4 /usr/local  

sudo ln -s /usr/local/apache-maven-3.0.4/bin/mvn /usr/bin/mvn 

mvn –version  

             Apache Maven 3.0.5 …Etc.     

http://archive.apache.org/dist/maven/binaries/apache-maven-3.0.4-bin.tar.gz
http://archive.apache.org/dist/maven/binaries/apache-maven-3.0.4-bin.tar.gz


Chapter Three  Methodology 

 

53 

OpenDayLight maintains its own repositories outside of 

Maven Central, which means maven, cannot resolve OpenDayLight 

artifacts by default. Since OpenDayLight is organized as multiple 

inter-dependent projects, building a particular project usually means 

pulling in some artifacts. In order to make this work, your maven 

installation needs to know the location of OpenDayLight repositories 

and has to be taught to use them. 

This is achieved by making sure ~/.m2/settings.xml looks 

something like the one on the GitHub project: 

https://github.com/opendaylight/odlparent/blob/master/settings.xml 

You can do that quickly with the following commands: 

 

After maven has been successfully installed, the next step is to 

install Git to be able to download the source code of the 

OpenDayLight controller. Using this command: 

 

Git is an open source, distributed version control system 

designed to handle everything from small to very large projects with 

cp -n ~/.m2/settings.xml{,.orig} ; \wget -q -O - 

https://raw.githubusercontent.com/opendaylight/odlparent/master/

settings.xml > ~/.m2/settings.xml       [22] 

 

sudo apt-get install git 

https://github.com/opendaylight/odlparent/blob/master/settings.xml


Chapter Three  Methodology 

 

54 

speed and efficiency. Every Git clone is a full-fledged repository 

with complete history and full revision tracking capabilities, not 

dependent on network access or a central server. 

After installing git the following command is executed to 

download a clone of the OpenDayLight controller’s source code. As 

shown in Figure 3-7. 

 

Figure 3-7: downloading a clone of the OpenDayLight controller’s source 

code 

After downloading the source code, specific parameters should 

be sent to the JVM, this can be done by going to (.mvn) folder and 

editing the (jvm.config) file: 

 

  

cd ~/Desktop/controller-release-heluim-sr2/.mvn 

 

 



Chapter Three  Methodology 

 

55 

In the jvm.config file write the following parameters: 

These parameters extends the permgen memory of jvm to 

512MB. After modifying the JVM parameters, from the root folder 

of OpenDayLight controller we execute using the installation 

command in Figure 3-8 below:  

 

Figure 3-8: OpenDayLight Installation Command 

The installation process takes time because it downloads 

packages, as seen in the Figure 3-9, the total number of downloads is 

538MB. 

          -XX:+CMSClassUnloadingEnabled  

-XX:+CMSPermGenSweepingEnabled  

-XX:+UseConcMarkSweepGC 

-XX:PermSize=256m  

-XX:MaxPermSize=512m 

 -Xms512m  

-Xmx1024m  



Chapter Three  Methodology 

 

56 

 

Figure 3-9: Downloading Packages for Opendaylight’s Controller Installation 

After the controller is successfully downloaded, simple steps 

are taken to run it as shown in Figure 3-10, go to the OpenDayLight 

folder: 

 

cd ~/Desktop/controller-release-helium-

sr2/opendaylight/distribution/opendaylight/target/distribution.op

endaylight-osgipackage/opendaylight/  



Chapter Three  Methodology 

 

57 

And then run the ./run.sh command: 

 

Figure 3-10: Running the Controller 

 

The controller runs on OSGi (Open Service Gateway 

Initiative) which is a Java framework for developing and deploying 

modular software programs and libraries. OSGi has a specification 

for modular components called bundles, which are commonly 

referred to as plug-ins. 

sudo ./run.sh  



Chapter Three  Methodology 

 

58 

 

Figure 3-11: OSGi running 

The next step is to open the local host in the browser using the 

URL http://localhost:8080 to use the GUI of the controller. 

 

Figure 3-12: GUI of the controller 

http://localhost:8080/


Chapter Three  Methodology 

 

59 

3.5.2 The server  

The server that was used had three services installed, DNS service, 

HTTP and FTP services as shown in Figure 3-13. The webserver (IIS) 

role contains both the HTTP and the FTP services. 

The HTTP server contains the webpage of SUST as a default 

webpage ( http://sustech.edu  ) as shown in Figure 3-14. The site design 

and configuration was taken as an example from the original sustech.edu 

page. So it is for demonstration purposes only.  

 

 

Figure 3-13: Roles on the windows 2008 server 

http://sustech.edu/


Chapter Three  Methodology 

 

60 

 

Figure 3-14: Web server (IIS) HTTP Service 

 

As for the FTP service, a default FTP site was made including 

several folders as shown in Figure 3-15, configuration of the FTP role 

included configuring the IP address of the server and selecting the 

default FTP site which is (ftp://192.168.20.2 ) and locating that file in the 

containing folder in our server disk ( C://ftp/ ).  

ftp://192.168.20.2/


Chapter Three  Methodology 

 

61 

 

Figure 3-15: FTP Server Configuration 

 

Several steps were performed in order to configure the DNS 

server, setting up the forward lookup zone with the domain name, which 

is in this case (m4.net) coupled with the IP address of the server. Then 

configuring the reverse lookup zone which is the IP address of the server 

(20.168.192.in-addr.arpa). That’s all that was needed to configure a 

simple DNS service for the purpose of presenting a working environment 

of a client-server connection with several services in action. 



Chapter Three  Methodology 

 

62 

 

Figure 3-16: DNS Server Configuration 

 

3.5.3 The physical Host 

A laptop was used as our host connected directly to the computer 

that contains the Mininet emulator environment via a USB to Ethernet 

convertor. First the IP address of the host was configured as 

(192.168.10.1) and the preferred DNS server as the IP of the server that 

was used for the DMZ services including the DNS server (192.168.20.2). 

As shown in Figure 3-17: 



Chapter Three  Methodology 

 

63 

 

Figure 3-17: Host IP Address and preffered DNS server assignment 

 

A default route was configured using the command in Figure 

3-18to tell packets where to go by default. If the host was connected 

directly to the device containing the Mininet emulation environment 

without using this command, packets wouldn’t know the default gateway 

and wouldn’t see the virtual network that contains the rest of the devices. 

And the known networks would only be the host itself and the loop back, 

as shown in Figure 3-18. But after adding the route to the virtual network 

all packets sent to that network would know how to get there. 

 

Figure 3-18: Command-Default route adding 

The added route is the one with the low metric which has a 

destination network of (0.0.0.0 with network mask 0.0.0.0) which means 

any unknown networks. Figure 3-19 and Figure 3-20 show the routing 



Chapter Three  Methodology 

 

64 

table of the host before and after adding the default route leading to the 

emulation environment. 

 

Figure 3-19 Active routes before adding default route 

 

 

Figure 3-20 Active networks after adding the default route 



Chapter Three  Methodology 

 

65 

After configuring the host with IP address, preferred DNS server 

and default route, it shall be able to connect to the emulation 

environment and DMZ servers. 

It can now connect and display the folders in the FTP site using 

the URL ftp://192.168.20.2 (IP of the server) as shown in Figure 3-21: 

 

Figure 3-21: Browsing the FTP site on the Host Browser 

And it can also browse the default webpage using either the IP 

address of the server or the domain name of the webpage 

(http://192.168.20.2 or http://m4.net ) as shown in Figure 3-22 and 

Figure 3-23 below: 

 

Figure 3-22: Browsing the Default webpage using IP address  

ftp://192.168.20.2/
http://192.168.20.2/
http://m4.net/


Chapter Three  Methodology 

 

66 

 

Figure 3-23 Browsing the Default webpage using the domain name 

 



 

 

 

CHAPTER FOUR   

 

 

RESULTS 

 

 

 

 

 

 

 

  



Chapter Four  Results 

 

68 

4. RESULTS 

4.1  Controller to switches Communication 

4.2  Topology Connectivity 

4.3  HTTP connectivity 

4.4  FTP Connectivity 

  



Chapter Four  Results 

 

69 

This chapter verifies the pervious setup and checks the limitations 

of the proposed topology. The verification process will start by analyzing 

the communication between the controller and the OpenV Switches, then 

a simple connectivity test will be held from various nodes to another, as 

topology designed, there is no open reachability between hosts, some 

hosts may not reach another ones, the policies used will be showed in 

this chapter ,this connectivity test will be followed by checking the 

HTTP protocol configuration on the server, and also capturing a sample 

of HTTP packets traveling from one of the hosts to the HTTP server, and 

also the same process will be repeated for the FTP server. The DNS 

verification will be embedded on HTTP verification. The last part of this 

chapter will be showing a sample of how the controller is configured to 

drop traffic based on specific policies.  

 

4.1 Controller to switches Communication: 

The switch initiates a standard TCP (or TLS) connection to the 

controller. When an OpenFlow connection is established, each entity 

must send a hello message; an OFPT_HELLO message with the protocol 

version set to the highest OpenFlow protocol version supported by the 

sender. The hello message is  followed by a reply 

OFPT_ECHO_REPLY. 

 

Figure 4-1: Displaying the Openflow packets in Wireshark 

This figure is a capture from Wireshark packet capturing 

application, the source here is a single IP address that describes the 



Chapter Four  Results 

 

70 

emulation environment, which means this link between 192.168.43.167 

and 192.168.43.3 carries the traffic between all the switches and the 

single controller. As seen in Figure 4-1 above the protocol used is 

OpenFlow, and the message type is an OFPT_ECHO_REPLY. 

Here as seen below in Figure 4-2 is a closer look at the content of 

one of the OpenFlow message types, OFPT_PACKET_OUT, which can 

be seen as an instruction from the controller to the switch. 

 

Figure 4-2: Content of Openflow message types 

This instruction is an OpenFlow packet sent from the controller to 

all the switches, it is a broadcast packet, this can be seen on the 

highlighted red boxes on Figure 4-2, additional information that can be 

seen from the figure is the OpenFlow protocol version which is version 

1.0, also the type of OpenFlow message is OFPT_PACKET_OUT, 

which is a request to send packet out of specific port, here as mentioned 

it is a broadcast. 



Chapter Four  Results 

 

71 

4.2 Topology Connectivity  

To verify the connectivity in this topology first a demonstration on 

the policies should be provided, Figure 4-3 shows three different areas, 

the internal area (GREEN area in the figure), the DMZ area (RED area in 

the figure), and the internet (BLACK area in the figure), devices within a 

single area can communicate without any restrictions. Also internal 

devices and internet devices can reach the server on the DMZ area. Only 

one devices of the internet area can reach the internal area, and the other 

one is rejected. 

 

Figure 4-3: Different Areas of the Topology( DMZ, Internet, Internal Area) 

The following figure, Figure 4-4 shows a successful ICMP echo 

and echo reply messages (ICMP ping) sent from the inside area (device 

IP 192.168.30.1) to the server in the DMZ (IP 192.168.20.2). 



Chapter Four  Results 

 

72 

 

Figure 4-4: Successful ICMP Ping from Internal Area to DMZ 

Figure 4-5 shows a blocked ICMP messages from the internet host 

2.2.2.2 to the internal area. 

 

Figure 4-5: Blocked ICMP ping from internet host to internal Area 

 

4.3 HTTP connectivity  

The initial configuration of the HTTP server configuration 

demonstrated in chapter 3, here a simple test is made from the physical 

host to the server, by opening a web browser in the host and typing the 

IP address of server. 



Chapter Four  Results 

 

73 

The first test is done without involving domain name system 

(DNS). 

 

Figure 4-6: Testing Connectivity from Physical Host to HTTP Server 

Figure 4-6 shows the first test were only the IP address is used. 

 

Figure 4-7: Testing Connectivity from Physical Host to HTTP Server via 
URL 



Chapter Four  Results 

 

74 

Figure 4-7 shows the second test where a uniform resource locator 

(URL) is used instead of IP address. 

HTTP protocol can also be verified from Wireshark as in Figure 

4-8 below 

 

Figure 4-8: HTTP Verification in Wireshark 

All the above can verify the HTTP protocol connectivity, The 

DNS system can also be verified further by using NSLOOKUP tool in 

the host. 

Figure 4-9 shows NSLOOKUP tool which tells the IP address 

corresponding to m4.net.  

 

Figure 4-9: NSLOOKUP verifying DNS Server 

4.4 FTP Connectivity 

File transfer protocol FTP can also be verified from the web 

browser of the physical host; Figure 4-10 shows a successful FTP access 

from host to server. 



Chapter Four  Results 

 

75 

 

Figure 4-10: Host Accessing the FTP server 

Also a Wireshark can provide a better resolution that shows the 

source IP and the destination IP. Figure 4-11 shows the Wireshark 

capture. 

 

Figure 4-11: FTP Verification in Wireshark  



 

CHAPTER FIVE 

 

CONCLUSION AND FUTURE WORK 

 

 

  



Chapter Five  Conclusion and Future Work 

 

77 

5. CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

5.2 Future work 

  



Chapter Five  Conclusion and Future Work 

 

78 

5.1 Conclusion 

This thesis explores the implementation of SDN in a campus 

network, and the migration from a traditional to SDN based network. 

The process starts with gathering information about the traditional 

campus network, its design, implementation, configuration, and 

deployment. From that information, a sample from the network is taken 

to transition it to an SDN based network, the sample consists of the 

major parts of the network connecting to the ISP (the main router, the 

firewall, and the DMZ), and two departments to represent their 

connection to the main router. The topology is deployed in a Miniedit 

emulator. The network is configured (as detailed in chapter 3) by 

configuring the OpenDayLight controller for all the policies needed. 

The presented work also highlights the problems of dynamic 

networks in terms of configurability and the need to look at SDN as an 

approach or architecture to not only simplify the network but also make 

it more reactive to the requirements of workload and services placed in 

the network. One of the main questions addressed was to demonstrate 

that SDN presents a smooth solution for controlling and programming 

dynamic networks. 

As the simulation environment is set and running a few network 

access control polices (NAC) has been performed on different locations 

on the network to demonstrate an aspect of network security on the 

network. These polices are verified through several tests that testify 

reachability, the reachability test is done on different protocols including 

(ICMP, HTTP, FTP). 



Chapter Five  Conclusion and Future Work 

 

79 

To test and evaluate the system functionality as a whole a group of 

packet capturing has been performed on the data plane and the control 

plane separately, the control plane capturing is performed to verify 

OpenFlow functionality, and the packet capturing on the data plane is 

performed to verify normal dataflow based on the packet eligibility to 

reach the destination. 

5.2 Future work 

Although SDN is rapidly evolving to provide a solid foundation 

for future network solutions, especially in the field of increasing 

flexibility and support for event-based dynamic network control there is 

always a room for future work. 

This thesis gave a base for migration from traditional to SDN 

based network, we believe that future work should include using 

different types of controllers which has advantages over the 

OpenDayLight to compare which type is better for campus networks. 

Also we think that a thorough comparison between a traditional 

network and an SDN based network is very important to observe the 

differences and the best choice for campuses.  

Another important implementation is to add a redundant controller 

to the network. Redundancy is crucial for SDN controllers to achieve 

lossless and low delay performance. So the number of OpenFlow 

switches managed by one controller should be limited. Also redundancy 

provides higher availability, so if one controller is down, the network 

will keep running normally. Therefore, we can argue that adding a 

redundant controller or even several controllers is one of the important 

issues (if not the most important) that should be focused on in the future.



 

 

80 

REFERENCES 

[1] Software Defined Networking [Video file]. (2014, June 10). In 

www.youtube.com. Retrieved January 15, 2016, from 

https://www.youtube.com/playlist?list=PLpherdrLyny-

OTgZzlLTcbMIDtLdNuXcT 

[2] Sakir Sezer, Sandra Scott-Hayward, P. K. Chouhan, et al. “Are we 

ready for SDN?”  Implementation challenges for software-defined 

networks Communications Magazine, IEEE, Vol. 51, No. 7. July 2013. 

[3] Palo Alto. “Software-defined networking: The new norm for 

networks,” White Paper, Apr. 2012. 

[4] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek, “The 

click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3,pp.263–

297,Aug. 2000. 

[5] M. Handley, O. Hodson, and E. Kohler, “XORP: An open platform 

for network research,” ACM SIGCOMM Computer 

.Commun.Rev.,vol.33,no. 1, pp. 53–57, Jan. 2003. 

 [6] Quagga Routing Software Suite. [Online]. Available:  

http://www.nongnu.org/quagga/ 

[7] The BIRD Internet Routing Daemon. [Online]. Available: 

 http://bird.network.cz/ 

[8] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. van der 

https://www.youtube.com/playlist?list=PLpherdrLyny-OTgZzlLTcbMIDtLdNuXcT
https://www.youtube.com/playlist?list=PLpherdrLyny-OTgZzlLTcbMIDtLdNuXcT
http://www.nongnu.org/quagga/
http://bird.network.cz/


 

 

81 

Merwe, “The case for separating routing from routers,” in Proc. ACM 

SIGCOMM Workshop FDNA, 2004, pp. 5–12. 

[9] L. Yang, R. Dantu, T. Anderson, and R. Gopal, Forwarding and 

Control Element Separation (ForCES) Framework, Apr. 2004, RFC 

3746.[Online]. Available: 

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns7

05/ns827/white_paper_c11-481360.pdf 

[10] A. Doria et al., Forwarding and Control Element Separation 

(ForCES) Protocol Specification, Mar. 2010, RFC 5810. [Online]. 

Available: 

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns7

05/ns827/white_paper_c11-481360.pdf 

[11] J. Rexford et al., “Network-wide decision making: Toward a wafer-

thin control plane,” in Proc. HotNets, 2004, pp. 59–64. 

[12] H. Yan et al., “Tesseract: A 4D network control plane,” in Proc. 4th 

USENIX Conf. NSDI, 2007, p. 27. 

[13]A. Farrel, J.-P. Vasseur, and J. Ash, A Path Computation Element 

(PCE)-Based Architecture, Aug. 2006, RFC 4655. [Online]. Available: 

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns7

05/ns827/white_paper_c11-481360.pdf 

[14] M. Casado et al., “SANE: A protection architecture for enterprise 

networks,” in Proc. 15th Conf. USENIX-SS, Berkeley, CA, USA, 2006 

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf


 

 

82 

[15]M. Casado et al., “Rethinking enterprise network control,” 

IEEE/ACM Trans. Netw., vol. 17, no. 4, pp. 1270–1283, Aug. 2009.vol. 

15, p. 10. 

[16] Smith, J. M., & Nettles, S. M. (2014, January 30). Active 

networking : one view of the past, present, and future. IEEE Transactions 

on Systems, Man, and Cybernetics, Part C, 34(1), 4–18. 

[17] J. Networks, “Network Operating System Evolution,” Juniper 

Networks, 2010. 

[18] OpenFlow version 1.3 tutorial | SDN Hub. Retrieved October 10, 

2016, from http://sdnhub.org/tutorials/openflow-1-3/ 

[19] SDN in the Campus Environment   ONF Solution Brief September 

30, 2013 

[20] @sdxcentral. (2013, July 2). Six Campus Networks SDN Use Cases 

That You Need to Know About. Retrieved October 18, 2016, from 

https://www.sdxcentral.com/articles/contributed/sdn-use-cases-campus-

networks/2013/07/ (website) 

[21] SDN Migration Considerations and Use Cases ONF Solution Brief 

November 21, 2014 ONF TR - 506 

 [22] Getting Started: Development Environment Setup. Retrieved April 

25, 2016, from 

https://wiki.opendaylight.org/view/gettingstarted:development_environm

ent_setup#edit_your_.7e.2f.m2.2fsettings.xml 

 

http://sdnhub.org/tutorials/openflow-1-3/
https://wiki.opendaylight.org/view/gettingstarted:development_environment_setup#edit_your_.7e.2f.m2.2fsettings.xml
https://wiki.opendaylight.org/view/gettingstarted:development_environment_setup#edit_your_.7e.2f.m2.2fsettings.xml

