

1

CHAPTER ONE

INTRODUCTION

1.1. Introduction:

 The rising of human demand for machines capable of doing his work

autonomously and precisely in most of his modern life’s needs,

manufacturing, aviation, military and transportation...etc. has inspired

scientists and engineers to develop autonomous control systems.Autonomous

control has become a fascinating field for its endless applications which work

in difficult areas that need a very precise and careful control scenario[1].

 One of the promising applications of the autonomous control systems is

the quadcopter. The quadcopter is a multi-rotor helicopter that is lifted and

propelled by four rotors. It represents an excellent platform for the

autonomous control because it is a small, agile and maneuverable robot.

 Quadcopterunmanned aerial vehicles areused in many civilian and

military applications. They are considered as the best solution for intelligence,

surveillance and reconnaissance by military and law enforcement agencies, as

well as their use in suicidal missions. In addition they have lots of civilian

applications such as search and rescue missions, precision agriculture/remote

farming, inspection and transportation [2].

1.2. Problem Statement:

There are many limitations in the current methodof controlling the

quadcopter manually by human using radio controller (RC). RC has a

limited range which makes it impossible to control the quadcopter out of

https://en.wikipedia.org/wiki/Multirotor
https://en.wikipedia.org/wiki/Helicopter
https://en.wikipedia.org/wiki/Helicopter_rotor

2

that range. Human ability to control the quadcopter is limited especially

when dealing with a dangerous situation or flying in a complex

environment.

1.3. Proposed Solution:

The advances in the capabilities of microcomputer boards as well as

the growing in the development of affordable and high precision state

sensors such as inertial measurement unit and GPS sensor made it possible

to develop an autonomous control system for the quadcopter that is able to

drive the quadcopter in higher range and precisely in complex

dynamicenvironments.

1.4. Methodology:

1.4.1. Quadcopter Dynamic:

The quadcopter consists of four rotors that are mounted at the end of

two perpendicular axes. Rotors at opposite ends of an arm turn in the same

direction while rotors on a perpendicular axis rotate in the opposite

direction. When all four motors are spinning at the same speed, the rotors

create thrust that lifts the quadcopter into the air. As there are pairs of rotors

spinning in opposite directions, the torque produced in each direction

around the yaw axis cancels out and the yaw angle remains constant[2].

1.4.2The Control Architecture:

 Perception and Data Fusion:

There are different sensors used to give the quadcopter information

about the environment. The first one is IMU (9 DOF) motion sensors, their

readings are integrated (fused) by Kalman filter to measure the orientation

3

of the robot in form of three angles (yaw, Roll and Pitch). The second one is

the GPS sensor which is used to localize the position of the robot in outdoor

environments. The last one is the ranging sensors which are used to

measure distances from the robot to the nearby objects [3].

 Localization:

The localization process consists of a number of steps that use the

environment to update the position of the robot. Since the odometery (the

dynamic model) of the robot is often erroneous SLAMdoesn’t rely directly on

it. It also usessensors’ measurements to correct the position of therobot. This

is accomplished by extracting featuresfrom the environment and re-observing

them while the robot is exploring the environment [3].

 Motion Planning:

Motion planning breaks down a desired movement task (goal state) into

discrete motions that satisfy movement. Motion planning first calculates the

direction to goal. After that it checks whether this direction is clean from

potential collision or not; if it is clean then it sends this direction to the motion

controller to drive the quadcopter toward that direction, but if it is not the

motion planning finds an alternative path that drives the quadcopter away

from collision [3].

 Motion Control:

The motion control calculates a suitable motion to follow every sub-goal.

Then sends these calculations to the Electronic Speed Controller (ESC) of

each motor as PWM signal to alter the speed of the motors in a way making it

perform the required motion [3].

PID controllers are responsible for the calculation. The control scheme is the

cascaded control where the outer loop is a position controller and the inner

4

loop is an attitude controller. The position controller receives the current

position from the GPS sensor and the sub-goal position from motion planning

then it computes the angles for the attitude controller which is then try to

stabilize at these angels [3].

 On-board Computer:

Raspberry Pi 3 is used as the on-board computer; it has a built-in Wi-Fi

that will be used to receive the goal state. Pythonis considered as the main

programming language in the project.

1.5. Aim and Objectives:

The main aim of this project is to design an autonomous quadcopter that

can go from a current location to a desired location autonomously and safely.

Where the stated objectives are:

 To design a navigation system capable of acting rationally within complex

environments.

 To develop a control system using a cascaded PID controller.

 To design a ground station for sending goal locations to the quadcopter as

well as making the user able to monitor the quadcopter flight data.

 To implement a prototype model for the system using Raspberry Pi 3 that

has high computational power and tests its ability to process a number of

autonomy algorithms gracefully to satisfactorilydrive the model.

 To simulate the different autonomy components in a quadcopter on Virtual

Robot Experimentation Platform (V-REP).

5

1.6. Research Outlines:

Chapter one is an introduction that gives a background about the

project, its aims and objectives, the problem statement and proposed

solutions. It also gives a brief description on how to achieve those goals in

the methodology.

Chapter two is the literature review that first gives an overall look on

the mobility management schemes. The second part of the chapter is related

works which include the analysis of several papers that were in the field of

mobility management highlighting the pros and cons of each.

Chapter three is the system design (Methodology) contains all the

methods and steps in great details that were undertaken to achieve the

project's objectives.

Chapter four is results include simulation parameters, a discussion of

the simulation and the resulted outcome from it, which are also justified.

Chapter five the conclusion and recommendation is the achieved goals

from the project and the recommendations for future studies.

6

CHAPTER TWO

LITERATURE REVIEW

2.1 Background:

This section introduces the basic knowledge needed before starting the

dissertation. Here the used concepts throughout this document are explained

in details. The concepts of the autonomous navigation in dynamic

environments are explained first which are: perception, localization and

mapping, planning, and navigation. After thatthe autonomous quadcopter will

be explained too.

2.1.1 Autonomous navigating in dynamic environments:

 Autonomous mobile robots design follows four-layer architecture design

paradigm [1]which ensures a modular architecture by default. A layer is

defined as repository of software and hardware components that serves a very

well defined function; these layers are:

Figure 2-1: Conceptual architecture block diagram

7

 The system is designed in a layer-based architecture so that each layer

contains one or more algorithm that do a specific function. This way if we

change the algorithm used in one layer the other layer would not be affected.

Belowis a detailed description of the different layers.

 Perception:

One of the most important tasks of the autonomous system of any kind is

to acquire knowledge about its environment. This is done by taking

measurements using various sensors andthen extracting meaningful

information from those measurements[4].

There are a wide variety of sensors used in mobile robots. Some sensors are

used to measure simple values like the internal temperature of a robot’s

electronics or the rotational speed of the motors. Other, more sophisticated

sensors can be used to acquire information about the robot’s environment or

even to directly measure a robot’s global position. We classify sensors using

two important functional axes;proprioceptive/exteroceptive and

passive/active. The proprioceptive sensors measure values internal to the

system (robot) while exteroceptive sensors acquire information from the

robot’s environment; for example, distance measurements, light intensity,

sound amplitude. Hence exteroceptive sensor measurements are interpreted by

the robot in order to extract meaningful environmental features.

8

Table2-1: Sensor classification

A or P
PC or

EC

Sensor

Sensor system

General classification

(typical use)

P

A

A

EC

EC

EC

Contact switches, bumpers

Optical batteries

Noncontact proximity sensor

Tactile sensors

(detection of physical contact

or closeness; security switches)

P

P

A

A

PC

PC

PC

PC

Burch encoder

Potentiometer

Optical encoders

capacitive encoders

Wheel/ motor sensors

(wheel/motor speed and

position)

P

P

A/P

EC

PC

EC

Compass

Gyroscopes

inclinometer

Heading sensors

(orientation of the robot in

relation to a fixed reference

frame)

A

A

A

A

EC

EC

EC

EC

GPS

Active optical or RF beacons

Active ultrasonic beacons

Reflective beacons

Ground-based

beacons(localization in a fixed

reference frame)

A

A

A

EC

EC

EC

Reflectivity sensors

Ultrasonic sensor

Laser range finder

Active ranging(reflectivity

,time-of-light ,and geometry

triangulation)

A

A

EC

EC

Doppler radar

Doppler sound

Motion/speed sensor

(speed relative to fixed or

moving objects)

P EC

CCD/CMOS camera(s)

Visual ranging packages

Vision-based sensors(visual

ranging, whole-image analysis

A=active; P=passive; P/A=passive active; PC=proprioceptive; EC=

exteroceptive.

9

The perception of nearby objects distance is done using ultrasonic sensors by

triggering it. Then the estimation of the distance is done from the time

elapseduntil receiving the echo signal using the following equation:

� =
�∗�

�
[2.1]

Where D is the distance, S is sound speed and T is round trip time between the

sensor and the object.

The perception of the altitude is done using the barometer sensorfrom the

measured pressureby the following international barometric formula:

�������� = 44330 ∗ �1 − �
�

��
�

�

�.���
�[2.2]

Where P is current pressure and P� is sea level pressure.

Thus, a pressure change of ∆p= 1hPa corresponds to 8.43m at sea level.

 Localization and mapping:

Localization is the main issue that is needed in order to perform

autonomous navigation. The robot needs to know its global locationrelative to

some landmarks and should be able to recalculate (re-localize) its position

during the navigation[4].

Localization has different techniques depending on the characteristics of the

robot. The techniques that work fine for one robot in one environment may

not work well or at all for another robot or in another environment. For

example, localizations which work well in an outdoors environment using

GPS signal may be useless indoors where there is poor or no signal. In general

all localization techniques provide two basic pieces of information:

10

 The current location of the robot in some environment: X, Y and Z.

 The robot's current orientation in that same environment: Roll, Yaw

and Pitch.

Mapping is needed in autonomous mobile robots (AMRs) to integrate the

information gathered with the robot's sensors into a given representation so

that it can be useful in the planning process. There are different types of

mapping schemes;

 Topological maps:

A topological map describes the environment based on its utility to the

robot, i.e. what in the scope of the robot operations can be performed there.

The maps are seen as a graph where; nodes represent places, such as rooms;

edges represent links between places like hallways or doors. Moreover, each

node contains a description of the place or its abilities. A room may, for

example, contain a printer; this would augment the respective node with the

ability to give access to a printer. This kind of maps is clearly very useful for

high level deliberation. It is easy to plan for a goal on this description.

However when computing the trajectory from A to B (where A and B refer to

spatial coordinates) these maps are not enough, as they do not contain

geometric information about the environment.

 Feature maps:

A feature map is a list of features extracted from the environment and

with known positions, this mapping technique offers a good geometric

description of the environment as, by observing a feature and computing its

relative position, it is possible to calculate the global position of the robot. The

short coming here are three: the number of unique features may be too small,

i.e. the environment may be too simplistic; the difference from one feature to

11

another may not be enough for the sensors to understand; the feature

themselves do not give any more information about the environment like the

topological maps might give.

 Grid maps:

A grid map divides the map into subspaces, each position is either

occupied or free and the robot calculates his position by evaluating the grid

around. This approach has the advantage of reducing the path-planning

problem to a search and trajectory smoothing algorithm, however the updating

process to the entire grid is very computational intense and the grid usually fill

a lot of memory.

Simultaneous Localization and Mapping (SLAM) is the main concept

which is used in localization[5]. SLAM is concerned with the problem of

building a map of an unknown environment by a mobile robot while at the

same time navigating the environment using the same map. It consists of

multiple parts; Landmark extraction, data association, state estimation, state

update and landmark update.

Landmarks are features that can be easily re-observed and distinguished

from the surroundings. They are used by the robot to find out where it is.

Landmarks should be easily re-observable, distinguishable from each other,

plentiful in the environment and stationary.

Data association is used to match observed landmarks with ones existing in

the map. State estimation is the process of estimating the state (position) of the

robot from odometry data and landmark observations. There are different

methods for estimating the state i.e. Extended Kalman Filter.

12

 Motion planning

The movement of an object seems easy, but finding the path to move

through is much more complex. Motion planning is the process of breaking

down a desired movement task into discrete motions that satisfy movement

constraints and possibly optimize some aspect of the movement.

Motion planning task is to produce a continuous motion that connects a

start configuration S and a goal configuration G, while avoiding collision with

nearby obstacles. Motion planning can be divided from three different

perspectives; from the time of the data that used in the planning process to

online planning and offline planning. Online planning uses just the current

state data and the surrounding objectsdata fused from different sensors to

calculate the next movement, while offline planning usesa saved version of

the data about previously visited locations[6].

From the goal seeking perspective motion planning is divided into path

planning in which the planner seeks for the path that leads to the goal and

obstacle avoidance in which the planner ignores the goal and seeks for the

occurrence of objects near the quadcopter only and calculate an avoidance

action. From the location of the motion planning in the control loop it is

divided into dynamic planning in which the motion planner is inside the

control loop supervising the execution of the motion by re-planning the path

every motion-executioniteration and static planning in which the planned

motion should be executed completely before starting a new planning process.

Modern algorithms have been fairly successful in addressing hard instances of

the basic geometric problem and a lot of effort is devoted to extend their

capabilities to more challenginginstances[7]. The below summary discusses

some of these algorithms:

13

 A* search algorithm:

Is a computer algorithm that is widely used in path-finding and graph

traversal, the process of plotting an efficiently traversable path between

multiple points is called nodes. Noted for its performance and accuracy, it

enjoys widespread use. However, in practical travel-routing systems, it is

generally outperformed by algorithms which can pre-process the graph to

attain better performance, although other work has found A* to be superior

to other approaches.

 Rapidly exploring random tree (RRT):

Is an algorithm designed to efficiently search non-convex, high-

dimensional spaces by randomly building a space-filling tree. The tree is

constructed incrementally from samples drawn randomly from the search

space and is inherently biased to grow towards large unsearched areas of

the problem.

 Probabilistic roadmap (PRM):

Is a motion planning algorithm in robotics, which takes random samples

from the configuration space of the robot, testing them for whether they are

in the free space, and use a local planner to attempt to connect these

configurations to other nearby configurations. The starting and goal

configurations are added in, and a graph search algorithm is applied to the

resulting graph to determine a path between the starting and goal

configurations.

 Attractive and repulsive: is a mixture of path planning and obstacle

avoidance which consists of an attractive component and a repulsive

component. The attractive potential pulls the robot toward the goal but the

repulsive potential pushes the robot away from the obstacles.It is

14

considered very robust against control and sensing errors and quite an

efficient algorithm.

 Navigation and Control

Given partial knowledge about its environment and a goal position or

series of positions, navigation encompasses the ability of the robot to act

based on its knowledge and sensor values so as to reach its goal positions as

efficiently and as reliably as possible[4].

There are two types of the navigation systems: GPS navigation system and

inertial navigation system (INS). The former uses the received GPS

positions during the navigation to both localize and correct robot’s position.

The INS integrates the IMU measurements to produce position, velocity,

and attitude estimates. INSs are self-contained and are not sensitive to

external signals. Since an INS is an integrative process, measurement errors

within the IMU can result in navigation errors that will grow without

bound. INS errors (and calibrations) can be corrected through a well-

designed data fusion procedure.

Despite the huge literature of the mobile robot navigation, the

development of intelligent robots able to navigate in unknown and dynamic

environment is still a challenging task [8]. Therefore, developing

techniques for robust navigation of mobile robots is both important and

needed.

The control of the robot is forcing the equipped hardware to take an

action that is required of the robot, to move between the planned points.

Effective control of a robot’s hardware faculties and making use of sensor

feedback are extremely important.

15

There are many types of controllers in robotics vary depending on the

characteristics of the robot actuating system; LQG, PID …etc. There are

five properties should be existed in the good controller:

 Stability and Robustness.

 Tracking and Optimality.

 Disturbance rejection.

The most famous controller is the Proportional-Integral-Derivative controller

(PID). Although it is relatively simple, it can provide a satisfactory

performance in many process control tasks. The PID controlcommand can be

calculated from the error between the desired state and the current state using

the following equation:

� = �� ∗ �(�) + �� ∗ ∫ �(�) ��
�

�
+	�� ∗

�

��
	�(�)[2.3]

Where��, ��	���	��proportional, integral and derivative are

gains respectively and �(�) is the process error at time (t).

2.2 Related Works:

 This section describes the history and methodology used intwo

long running projects. Both of them already had many researches

achievements and have contributed enormously in the development

of autonomous quadcopters.

 Flying Machine Arena (FMA) [7]is a part of Swiss Federal

Institute of Technology in Zürich. The project intended to allow the

quadcopter to localize itself indoor by fusing the information from

the on-board sensors and a vision system installed on the room; this

16

project was never implemented but was an idea. Many years passed

and the (FMA) researchers were stillresearching but at a slower rate,

until (2007) when D’Andrea returned to the academic world

andpushed FMA forward. Starting from (2009), we can identify

many important research results in quadcopters control and autonomy

such as Iterative Learning Control(ILC)[8] that allows a quadcopter

to perform aggressive maneuvers without the need to precisely model

the entire environment as such would be too costly. This algorithm

was light enough to runonline on the robot and was tested in the

FMA quadcopters. At the time, during tests, researchers found that

the vision-based localization system used in the FMA gave some

misalignments due to impacts or hand manipulating of the

quadcopters. With this in mind they developed a system that could

recalibrate the system automatically even when there are multiple

robots[9].

 Two years later FMA published an article where they report

the successful co-ordination of a group of quadcopter in catching and

throwing a ball[10]. In the same year another paper was published, it

describes a controller to safeguard mechanical failures in the

quadcopters or the vision system[11]. As this technology is getting

more public such measures are needed to prevent disastrous events.

 Another related work that has been getting much attention in

the last years is the GRASPLab at the University of Pennsylvania.

They also have a broad range of subjects but focus their applications

to quadcopters. In (2010), they published a paper describing amethod

to control quadcopters landing on difficult situation, like upside down

platforms[12]. During their research they found that this method also

17

allows the quadcopters to pick up objects withthe use of a claw. But

what is more important is that although the global localization is

given by a vision system, the quadcopters have to identify the landing

surfaces on their own and thusstarting a path to autonomy.

 By (2012) Daniel Mellinger reported methods to both single

and multiple quadcopter systems, which allowed the quadcopters to

generate and follow aggressive trajectories[13]. Lastly in [14]a fleet

of small quadcopters flies in formation with less than a body length

of separation, they overcome obstacles without ever crashing into

each other or theenvironment.

CHAPTER THREE

18

METHEDOLOGY

In this chapter the proposed architecture and its implementation will be

described in details in addition to the ground station that handles the interface

with the user. For a better understanding, it should be noted that software

architecture refers to the idle design of the system, while hardware

architecture refer to the actual implementation based on the available

components in the market.

3.1 The Design of the Autonomous Quadcopter:

The quadcopter can be implemented to be an autonomous robot through

the explained design architecture and can be utilized to do several jobs in both

civilian and military applications.

 The focus of this thesis is to design the quadcopter for civilian

applications, specifically for search and rescue missions. In the past ten years

there have been a large number of urban disasters throughout the world due to

weather and earthquakes Hurricane Katrina in (2005), the (2010) Haiti

earthquake, or the (2011) Tohoku earthquake and tsunami. In urban disaster

scenarios, USAR (Urban Search and Rescue) teams respond to find and save

victims. Unfortunately, rescue teams typically have less than 48 hours to

rescue victims before their chance of survival decreases dramatically. The

quadcopter may be the most effective solution for such time constrained and

dangerous rescue missions.

 Quadcopter dynamics:

19

 The quadcopter consists of four rotors that are mounted at the end of

two perpendicular axes driven by a DC brushless electric motor.

 The quadcopter has two configuration of rotors’ rotation:

 Plus configuration (+): where rotors at opposite ends of an arm turn in the

same direction and rotors on a perpendicular axis rotates in the opposite

direction. This concept is illustrated in Figure 3-1.

Figure 3-1: Plus quadcopter schematic.

 When all four motors spine at the same speed, the rotors create thrust

that lifts the quadcopter into the air [9]. As there are pairs of rotors spinning in

opposite directions, the torque produced in each direction around the yaw axis

cancels out and the yaw angle remains constant. To change the pitch attitude,

the speed of motor (1) is reduced while the speed of motor (3) is increased, or

vice versa, creating a non-zero pitch angle. As both motor (1) and motor (3)

are rotating in the same direction the total counteracting torque provided is not

changed so the quadcopter maintains its yaw angle. The roll attitude is

adjusted in a similar manner. To adjust the yaw angle the speed of motors (1)

and (3) are increased while the speed of motors (2) and (4) are decreased, or

vice versa. This creates imbalance in the total torque in the yaw axis and so

the quadcopter will change yaw angle.

1

2

3

4

20

 The quadcopter should maintain a relatively constant thrust during yaw

and the height of the aircraft should remain constant.

 X configuration: is quite similar to the plus configuration in everything except

that the pitch movement is achieved by increasing the speed of motor (1) and

(2) at the same time and decreasing the speed of motor (3) and (4) or vice

versa; the roll movement is achieved by increasing the speed of motor (2) and

(3) at the same time and decreasing the speed of motor (4) and (1) or vice

versa.

 X configuration is preferred when using a camera because the camera

will have enough space to take clear photos without interfering with the rotors

Figure 3-2: X quadcopter schematic.

 While the above description provides a simplified overview of how a

quadcopter maneuvers, the dynamics of the quadcopter are complex and

tightly coupled. These dynamics make it extremely difficult for a human to

control the quadcopter without an onboard flight augmentation system to

reduce the unwanted response down to an acceptable level.

 Quadcopter control:

 Roll, pitch, and yaw dynamics are controlled by increasing or decreasing

the speed of four motors by the controller to achieve the desired value.

1 2

3 4

21

Different control strategies of the quadcopter have been studied in

commercial, academic, and military platforms such as PD-PID controller,

inverse control, back stepping control, and sliding mode control [4].

 Four rotors increase the maneuverability of the vehicle. Having four

rotors increases load carrying capacity, on the other hand, constrains it to

consume more energy.

 The quadcopter design consideration:

 Take-off throttle:

 It is the throttle that should be applied to every motor to make the quadcopter

leave the ground. Take-off throttle can be calculated from the basic static laws

of beams; which state that the beam will remain static if the resulting forces in

the opposite directions are the same. For example (figure3-3) if the beam in

the ground the downward force of it is its weight which can be calculated

from the equation[3.1] [10]:

� = � ∗ �[3.1]

Where w is the weight, m is the mass of the beam and g is earth

gravity. To make the beam move in up direction, the resulting

upward force should exceed the weight.

Figure 3-3: Illustration of the forces on a beam

W

F F

22

 In the quadcopter the total forces generated by the motors should

exceeds its weight in order to take off from the ground. Every motor has a

specification of the maximum thrust that can be generated (in grams) written

in the data sheet of the manufacturer. The thrust of the motors is controlled as

a percentage of the maximum thrust. For example sending (40%) throttle

means that the motor will generate (40%) of the maximum thrust. And the

take-off throttle in percentage can be calculated according to the following

equation:

����	���	�ℎ������ =
�����	����	��	�ℎ�	����������

4∗�������	�ℎ����	��	�ℎ�	�����
∗100% [3.2]

 The center of the gravity:

 It is the point in the body of an object that the object rotates

around. For example when throwing a spoon in the air it rotates

around a fixed point that point is the center of gravity [9].

Figure 3-4: The center of the gravity of a spoon

 Around the center of gravity the mass is distributed equally. If

the center of gravity is in the middle of the body then applying equal

23

forces in the corners of the body will not rotate it because the

resulting rotation momentum is zero;

Rotation momentum = Force*Length/2 – Force*Length/2 = 0.

Figure 3-5: Illustration of the rotation momentum

 Adjusting the center of gravity position to match it with the center of the

body is very important to make the quadcopter stable and not making any

rotation when sending equal throttle to all the motors. It is done by suspending

the quadcopter from its body center and adjusting the distance of the

components from the center until the body agrees with the horizontal plane.

 The advantages of the quadcopter:

 Despite the complex control systems required for a quadcopter aircraft,

there are many benefits to this aircraft over other platforms. Having four

rotors as opposed to a single rotor in a traditional helicopter allows each of the

rotors on a quadcopter to be smaller and lighter, hence carrying less kinetic

energy [2]. This is advantageous when working within indoor environments.

For example, in the undesired case of a blade striking an object, due to the

 L

F F

24

design of a quadcopter, much less damage will result when compared to a

helicopter in the same situation. It is also possible to mount the rotors within a

duct or shroud to protect both the aircraft and any object if contact occurs.

The mechanics of the quadcopter are relatively simple and the aircraft is able

to use fixed pitch propellers. This reduces setup, maintenance, and

manufacturing costs and time associated with a quadcopter. The relatively

simple mechanical setup of a quadcopter also leads to limited vibration

making it a friendly environment for inertial sensors and cameras.

3.2 Software architecture:

The software architecture should be modular and flexible to allow researchers

to change only certain parts of the system and still get a working

deployment[1]. The overall design architecture is presented in Figure 3-6.

a

25

Figure 3-6: Main software algorithm

a

26

3.2.1 Perception layer:

 The perception of nearby objects is done using four ultrasonic sensors.

The maximum measurement rate of the ultrasonic sensor is (15) readings per

second; reading above this rate causes ultrasonic buffer to overflow[4]; ten

readings per second is found satisfactory and chosen for the fusion algorithm.

Figure 3-7: Ultrasonicfusion algorithm

GPS sensor also has a low measurement rate so the above algorithm is used

for its readings too.

27

3.2.2 Localization/map building layer:

Localization in outdoor environments gives the position of the robot using

GPS sensor readings[1]. The proposed implementation does not use any

algorithm like SLAM-based algorithms for localization.

3.2.3 Cognition/planning layer:

 In planning layer there are two main algorithms, attitude planner and

attractive and repulsive obstacle avoidance planner. The path to the goal

position is calculated by an attitude planner then if there is nearby obstacles

the attractive and repulsive planner calculates the best movement that keep the

quadcopter away from collision and at same time tracking its goal[14].

Attitude planner first finds the quarter that the goal is in assuming an x, y

Cartesian axes that the quadcopter is the center of it as shown in figure (3-3).

Then it calculates the angle to the goal by the method explained in the

algorithm flowchart (figure 3-9). Attractive and repulsive working mechanism

is also explained in the algorithm flowchart (figure 3-10).

Figure 3-8: Calculating the quarter

28

Figure 3-9: Attitude algorithm

29

Figure 3-10: Obstacle avoidance algorithm

30

3.2.4 Motion control layer:

Because of the difficulties of designing all the controllers from scratch a flight

controller is used to do the final stabilization control but the attitude and

altitude controllersas well as the position controller will be designed as

acascaded loop P-controller in the on-board computer.

Attitude and altitude inner loop controller receives the current altitude

from the barometer and attitude from the IMU sensor fusionthen it calculates

the error between the current and desired values and calculates the control

command to decrease that error[3]. If all the errors become below deified

thresholds for every process then the controller declares completing the

mission (static planning) but the thresholds is going to be selected large so

that to reduce dramatically the number of the correction iterations (semi-

dynamic planning). Figure 3-11 illustrates the attitude and altitude controller

loop.

31

Figure 3-11:Attitude and altitude controller algorithm

32

3.3 Hardwarearchitecture:

This section describes the system hardware thatthe quadcopter is made of

which has been classified into four categories: sensors, actuating system,

power system and processing units.

3.3.1 Sensors

The quadcopter has a set of sensors that help in identifying its state and

the environments around it. These sensors are: ultrasonic, barometer, IMU,

GPS sensor and a camera.

 Ultrasonic sensor (HC-SR04 Module)

Ultrasonic distance sensors are designed to measure distance between the

source and target using ultrasonic waves. It uses sonar to measure distance

with high accuracy and stable readings.

Five ultrasonic sensors are used in order to measure the obstacles distance

from five directions: down, right, left, forward and backward to help the

quadcopter to avoid obstacles.

Ultrasonic ranging module (HC-SR04) provides (2cm – 400cm) non-contact

measurement function, the ranging accuracy is(3mm). The module includes

ultrasonic transmitters, receiver and control circuit. The transmitter transmits

short bursts which gets reflected by target and are picked up by the receiver.

The time difference between transmission and reception of ultrasonic signals

is calculated. Using the speed of sound and (‘Speed = Distance/Time’)

equation, the distance between the source and target can be easily calculated.

The basic principles of work:

(1) Using IO trigger for at least (10us) high level signal;

(2) The Module automatically sends eight (40 kHz) anddetect whether there is

a pulse signal back.

33

(3) If the signal back, through high level, time of high output IO duration is

the time from sending ultrasonic to returning.

Test	distance	 =
high	level	time × speed	of	sound	(340m/s)		

2

Table 3-1:Ultrasonic (HC-SR04) distance sensor module pins

Name Function

VCC 5V, input power

TRIG Trigger Input

ECHO Echo Output

GND Ground

The ECHO output is of (5V). The input pin of Raspberry Pi GPIO is rated at

(3.3V). So (5V) cannot be directly given to the unprotected (3.3V) input pin.

Therefore, we use a voltage divider circuit to bring down the voltage to

(3.3V).

Figure 3-12: Interfacing Raspberry Pi with ultrasonic (HC-SR04)

https://electrosome.com/ultrasonic-sensors-distance-proximity/
https://electrosome.com/raspberry-pi/

34

 Barometer (BMP180)

The barometer sensor is used to measure the altitude from sea level.

An I2C bus is used to control the sensor, to read calibration data from the

EEPROM and to readthe measurement data when A/D conversion is finished.

SDA (serial data) and SCL (serialclock) have open-drain outputs. TheI2C is a

digital two wire interface and has Clock frequencies up to (3.4Mbit/sec).

Pin configuration of BMP180 is shown in below table:

Table 3-2: Pin configuration of Barometer (BMP180)

Name Function

CSB* Chip Select

VDD Power Supply

VDDIO Digital Power Supply

SDO* SPI output

SCL I2C serial bus clock input

SDA I2C serial bus data (or SPI input)

GND Ground

A pin compatible product variant with SPI interface is possible upon

customer’s request. For I2C (standard case) CSB and SDO are not used, they

have to be left open.

 IMU (MPU-9250)

An inertial-measurement unit (IMU) is an electronic device that measures and

reports a body's specific force, angular rate, and sometimes the magnetic field

surrounding the body, using a combination of accelerometer, gyroscope and

35

magnetometer. The accelerometer measures acceleration and also force, so the

downwards gravity will also be sensed. The gyroscope measures angular

velocity, in other words the rotational speed around the three axes.A

magnetometer measures the directions and strength of the magnetic field. This

magnetic sensor can be used to determine which way is south and north. The

pole locations are then used as a reference together with the Yaw angular

velocity around from the gyroscope, to calculate a stable Yaw angle.

(MPU-9250) features three 16-bit analog-to-digital converters (ADCs) for

digitizing the gyroscope outputs, three 16-bit ADCs for digitizing the

accelerometer outputs, and three 16-bit ADCs for digitizing the magnetometer

out puts.

Figure 3-13: Pin out Diagram for IMU (MPU-9250)

36

Table 3-3:IMU (MPU-9250) pin layout

Pin number Pin name Pin description

1 RESV Reserved, connected to VDDIO.

7 AUX_CL I2C master serial clock(external sensors)

8 VDDIO Digital I/O supply voltage

9 ADO/SDO I2C Slave address (AD0);SPI serial data o/p

10 REGOUT Regulator filter capacitor connection

11 FSYNC Frame Synchronization digital input

12 INT Interrupt digital output

13 VDD Power supply voltage and digital I/O voltage

18 GND Power supply ground

19 RESV Reserved, do not connect

20 RESV Reserved connect to GND

21 AUX_DA I2C master serial data (external sensors)

22 n-CS Chip select (SPI mode only)

23 SCL/SCLK I2C serial clock(SCL);SPI serial clock(SCLK)

24 SDA/SDI I2C serial data (SDA);SPI serial data input(SDI)

2-6, 14-17 NC Not internally connected.

 GPS (NEO-6)

The GPS module retrieves the location information from the near

satellites. The (NEO-6) module series brings the high performance of the (u-

blox 6) position engine to the miniature (NEO) form factor. (U-blox 6) has

been designed with low power consumption and low costs.

The main components of (NEO-6) module are EEPROM to save the setting

and enable Display Data Channel (DDC) mode, backup battery to allow the

system to warm start and antenna for communications purpose. The I2C

compatible (DDC) interface can be used either to access external devices with

a serial interface EEPROM or to interface with a host CPU.

37

Table 3-4:GPS (NEO-6) pin layout

Pin name Function

VCC Power supply

TX Digital pin for Transmit data

RX Digital pin for receive data

GND Ground

 The camera

 The camera was used to stream image capturesfrom the

environment that the quadcopter navigates.

3.3.2 Actuating system:

The Actuating systemis responsiblefor performing the movement by

adjusting the forces and the torques around the quadcopter, it consists of three

components: brushless motors, electronic speed controllers (ESCs) and

propellers.

 Brushless motors

Brushless DC motors provide the necessary thrust to the

propellers. Each rotor needs to be controlled separately by a speed

controller.

Brushless motors are a bit similar to normal DC motors in the way that

coils and magnets are used to drive the shaft. Though the brushless motors do

not have a brush on the shaft which takes care of switching the power

direction in the coils, and this is why they are called brushless. Instead the

brushless motors have three coils on the inner (center) of the motor, which is

fixed to the mounting. On the outer side it contains a number of magnets

38

mounted to a cylinder that is attached to the rotating shaft. So the coils are

fixed which means wires can go directly to them and therefor there is no need

for a brush.

Generally brushless motors spin in much higher speed and use less power

at the same speed than DC motors. Also brushless motors don’t lose power in

the brush-transition like the DC motors do, so it’s more energy efficient.

Brushless motors come in many different varieties, where the size and the

current consumption differ. To select brushless motor the KV-rating,weight,

thrust per motor, size, type of propeller should be put in consideration.

 Electronic Speed Controller (ESC)

The brushless motors are multi-phased, normally 3 phases, so direct supply of

DC power will not turn the motors on. That where the Electronic Speed

Controllers (ESC) comes into play. The ESC generates three high frequency

signals with different but controllable phases continually to keep the motor

turning. The ESC is also able to source a lot of current as the motors can draw

a lot of power.It has three input ports (two for the battery and one for the

PWM) and three output ports to the motor as shown in below Figure.

Figure 3-14: Typical Electronic Speed Controller

 The propellers:

ESC

39

A propeller is a type of fan that transmits power by converting rotational

motion into thrust. A pressure difference is produced between the forward and

rear surfaces of the airfoil-shaped blade, and a fluid (such as air or water) is

accelerated behind the blade.

The propellers come in different diameters and pitches (tilting) according to

the frame size and the type of the motors.

3.3.3 The Power System:

Power system supplies the different components with power it consists

of: (11.1V) battery, a power distribution board and a buzzer.

 The battery:

Lithium-polymer battery (11.1V 2200mAh)is used to supply the power.

Lithium batteries are batteries that have lithium as an anode. They stand apart

from other batteries in their high charge density (long life) and high cost per

unit. Depending on the design and chemical compounds used, lithium cells

can produce a voltage of(3.7 V)per cell.

 The power distribution board:

It is used to distribute the power of the battery to the motors. It has two

(5V)voltage regulator outputsone of them is used to supply the on-board

computer.

 The buzzer:

The buzzer is used to measure the voltage of the battery and make alarm when

battery cells are below a critical voltage level (specified by the user).

40

3.3.4 TheProcessing units:

Three processing units are used, the first one is Raspberry Pi 3 for

performing the top level computation and control,the second one is CC3D

flight controllerto perform the down level control by stabilizing the system at

inputs pushed by the RaspberryPi 3 and last oneis Arduino which acts as an

intermediate communication unit to pass the inputs to the flight controllerfrom

the Raspberry Pi.

 Raspberry Pi:

The Raspberry Pi is a single-board small computer that has

computational power could be compared with the big PCs. It is used to

perform the top level perception, localization, planning and control tasks.

 Arduino:

Arduino is used as a PWM generator because it has 6 stable PWM pins

which is a limitation of the Raspberry Pi which has only one and the

(CC3D) needs at least 4 PWM inputs to perform the stabilization process.

The board features serial communication interfaces such as Universal Serial

Bus (USB) which will be used for the communication with the Raspberry Pi.

 Flight controller (CC3D):

CC3D flight controller is used to stabilize the movement of the quadcopter by

stabilizing at the Raspberry Pi commands and compensating for any unusual

movement caused by the air currents or any other external force.

41

3.4 The ground station system

It is used to form the interface between the user and the autonomous

quadcopter in which the user canmonitor the state of the quadcopter (GPS

coordinates, altitude and attitude); also he can access the quadcopter camera to

see what the autonomous quadcopter sees.

In addition the ground station allows the user to send the goal GPS

coordinates to the quadcopter.The communication is done via Wi-Fi, and the

packets are sent over a TCP connection to/from the ground station.

Ground station Quadcopter

Port1 goal coordinates port1

Port2request: images port2

Port3 coordinates port3

Figure 3-15: The communication architecture between the ground station and the

quadcopter.

3.5 The simulation

 This section contains a description of the environment used to

simulate the autonomous quadcopter, the simulation parameters, the

simulation process as well as a brief discussion about the results.

3.5.1 The simulation environment

 The Virtual Robot Experimentation Platform (V-REP) simulation

environment was used to simulate the movement of the autonomous

quadcopter in an indoor environment. V-REP is a general purpose robot

simulator with integrated development environment. Lots of sensors,

Planner

Camera

GPS sensor

Trigger goal

Show video

Area map

42

mechanisms and robots packages can be added to the environment and the

whole systems can bemodeled and simulated in various ways. It has many

advantages such as fast prototyping and verification, easy to use, fast

algorithm development, and its compatibility with different programing

languages such as C, C++, Lua and python.

Table 3-5: Illustrates the simulation environment parameters

The parameter Comment

The sensors
8 proximity sensors and 3 line following

sensors

The robot X configuration quadcopter

The environment
Indoor environment with a plant and 3

cylinders

The view of the environment

4 room cameras; a left side, right side,

upper side and a moving camera. 1 front

robot camera

The goal of the robot Following a black line drawn in the floor

Path planning algorithm Stay-on-the line algorithm

Obstacle avoidance algorithm Attractive and repulsive algorithm

The programming language Lua programming language

The safe distance 0.16*(size factor of the robot body)

43

3.5.2 The simulation process:

 The simulation uses four cameras (1-4) to monitor the movement of

the quadcopter in a 3D indoor environment. The quadcopter different

sensors and its front camera are monitored too in (5). A black line path with

some obstacles in it is drawn in the floor in a form of a closed loop. The

quadcopter should be able to navigate within the line using the line

following sensors while avoiding the collision with the plant and the

cylinders in that path.

Figure 3-16: The autonomous quadcopter simulation

 The quadcopter finds the line by using three line following sensors

that return ‘True’ when detecting a black line. If the middle sensor sees the

line this is an indication that the quadcopter is within the path and the path

planner command the quadcopter to continue the movement without

steering, but if the right sensor sees the line this is an indication that the

quadcopter is in the left to the line and the path planner command the

quadcopter to steer to the right and vice versa.

3

1 2

4

5

1 2

3 4

5

44

 The attractive and repulsive obstacle avoidance then reads the

distances of eight sensors distributed around the quadcopter’s body and

compares these distances to a safe distance. In case all the eight

measurements is above the safe distance the path planner command is

passed to the motor controller to execute the path, but if there is a

measurement or more below the safe distance an avoidance path is

calculated based on the measurement that is function of the collision

distance and the path to the goal.

Figure 3-17:Detection of an obstacle shown in the five views

45

3.6 Prototype Implementation

This section describes the implementation of the proposed model of

the quadcopter described in the previous sections.

3.6.1 Frame design

 The frame is designed in a form of layers that contain the main

components. Our main focus was to make the frame as small and light as

possible. The components dimensions have been measured to compute the

spacing between every two layers in addition to the diameter of each layer

considering our main focus. The layer diameters as well as the spacing

between every two layers are chosen based on components’ dimensions to

allow the component to be put conveniently.

Table 3-6: The specifications of the Quadcopter components

Component Length/cm Width/cm Height/cm

Arduino 6.8 5.8 1.2

Raspberry pi 8.8 5.8 1.8

CC3D 3.5 3.5 1.7

Ultrasonic 4.6 2.0 2.0

Camera 2.5 2.4 1.0

Battery 10.5 3.3 2.4

Buzzer 3.5 2.4 1.1

GPS sensor 3.5 2.5 0.5

Power distribution board 5.2 5.2 0.2

46

Table 3-7: Dimensions of the Quadcopter components

Components Dimensions(cm)

Layer1 diameter 11.5

Layer2 diameter 9.7

Layer3 diameter 9.7

Spacing between layer1 and layer2 3

Spacing between layer2 and layer3 3

 Polycarbonate-molds are used to fabricate the layers for their small

weight and their strength. Layers have been cut by a laser cutting machine

and connected together by copper spacers. A plastic cover is attached to the

upper layer which contains the CC3D flight controller for protection

purposes.

3.6.2 Prototype design phases

 Phase 1:

 After doing the frame dimension calculations and having the layers

cut, we marked the layers in the places we want to place the components at

and the places we want to connect them to each other. After that we drilled

the layers and assembled everything together.

47

Figure 3-18: Drilling the layers

\

Figure 3-19(A and B):Connecting everything together

 Phase 2:

 All the motors, ESCs and processing units have been tested, and

verified that everything within the frame is working fine without any power

or space problems.

A

B

48

Figure 3-20: Testing the different components

49

CHAPTER FOUR

RESULTS

 Thischapter discusses the results related to the implemented design

including the hardware calibration and the building and testing phases.

4.1 Results of the simulation:

An experiment has been done to the autonomous quadcopter to evaluate the

performance of path planning and attractive and repulsive obstacle

avoidance algorithms using V-REP in an indoor environment. The indoor

environment has been designed as shown in Figure 4-1.

Figure 4-1: Show the quadcopter in the designed indoor environment

50

The path planner read the readings of the three line following

sensors, the leftmost sensor returned ‘True’. The planner then

successfully commanded the quadcopter to adjust the movement toward

the left. After the execution of the movement the path has been tracked

again as shown in Figure 4-2

Figure 4-2: The quadcopter succeeded to adjust its path in a turn

 Along the path an obstacle has been observed by one of the left

proximity sensors. The obstacle avoidance algorithm calculated the

avoidance action and commanded the qaudcopter to turn into the right.

The quadcopter successfully avoided the collision with the obstacle as

shown in Figure 4-3

Inclination
 Point

Figure 4-3:

4.2 Hardware calibration:

 Motors calibration

All Motors have been calibrated to f

motor which is shown in the following table

Table 4-1: Motors calibration

Motor NO.

1

2

3

4

51

 The quadcopter successful to read and avoid obstacle

calibration:

Motors calibration

All Motors have been calibrated to figure out the stating throttle

ch is shown in the following table.

calibration

Motor NO. Starting duty cycle

1116 us

1116 us

1116 us

1116 us

read and avoid obstacle

igure out the stating throttle of each

52

 IMU calibration:

The IMU has been calibrated to find the minimum and the maximum values

of the magnetic field in the three axes measured by the compass and the

minimum and maximum values of the rate of change of the velocity in the

three axis measured by the accelerometer.

 The calibration data is saved in a file and supplied to the fusion

algorithm to calculate the angles of the quadcopter in the three axes with

respect to the world. Table (4-2) and Table (4-3)show the calibration data.

Table 4-2: Compass calibration

Compass axis Value

CompassMinX -3.063191

CompassMinY -74.754135

CompassMinZ -52.087727

CompassMaxX 75.672134

CompassMaxY 2.896713

CompassMaxZ 19.115725

Table 4-3:Accelerometer calibration

Accelerometer axis Value

Accelerometer Min X -1.153897

Accelerometer Min Y -1.066652

Accelerometer Min Z -1.111786

Accelerometer Max X 1.259294

Accelerometer Max Y 1.099110

Accelerometer Max Z 1.032464

53

4.3 Prototype testing

 The response of the quadcopter controller has been tested while

following the required safety procedures by connecting the quadcopter

by four ropes from four different sides to pull it in case it does any

unusual behavior and by wearing gloves to protect the tester.

Figure 4-4: The quadcopter test bed

Figure 4.4:The quadcopter test bed

4.4 ComponentsReliability

4.4.1 Sensors

After testing all the sensors we found that:

 IMU: was reliable under all testing circumstances and

provided accurate readings

 GPS: our first GPS sensor (u-blox NEO 6M) was reliable and

giving accurate readings outdoor. But the current one (APM

2.6 GPS module) is unreliable and giving inaccurate readings.

 Ultrasonic: our first ultrasonic sensors were reliable under all

circumstances and giving accurate readings for different

54

objects. But the current are unreliable and giving inaccurate

readings for some objects.

 Barometer: our first and second barometer sensors were

unreliable at all and give totally false readings.

4.4.2 Actuating system

Our first actuating system (A2212 brushless motors, 30 A ESCs

and (1045) propellers) was unreliable, motors stop spinning above 40%

throttle and ESCs were responding differently to the PWM signal.

Propellers were easy to crash.

 Our second one (Elite 2204-2300KV brushless motors, 12 A ESCs and

(6045)three wings propellers) was unreliable too but when we have

changed the motors to Emax-MT2204-2300KV and the propellers to

(6045) two wings propellers the actuating system became reliable and

responsive.

4.4.3 Power system

Along the project we had many issues with the power system. First

we had problems providing the processing and sensing units with

sufficient power when we was using (7805-5V) linear regulator. Issue

has been resolved using the power distributing board regulator.

The second issue was the power failure due to the insufficient

motors current delivered by an impaired battery. Issue has been

resolved by changing the battery.

The current power system reliability is acceptable.

55

4.4.4 The processing units

The processing units were totally reliable and provide acceptable

performance under all circumstances.

4.5 System stability

 The final flight system was unstable due to three contributing factors:

 The difficulty of matching the center of gravity with the body

center.

 The difficulty of leveling the flight controller with the horizontal

plane of the actuating system.

 The difficulty of tuning the PID controllers using trial and error

method

4.6 The ground station testing

The ground station has been tested to evaluate its performance against

its range and the result shows that the performance of the

communication between the ground station and the quadcopter is

pre�y good (up to 50m).

56

CHAPTER FIVE

CONOCLUTION AND RECOMONDITATION

 In this chapter we will take some conclusions about the developed

project, the chosen path, andthe problems faced throughout this thesis.

5.1 Final Remarks:

 After studying a lot about robotics and autonomous agents it is clear

that the modular architecture is the best solution to designing autonomous

mobile robots because it enables the designer to modify completely any part

of the system without affecting the other parts. Also it allows the

researchers to focus their effort on only one part of the autonomous system

components (perception, localization, planning or control).

 After a comprehensive study about different algorithms in the

different autonomous system layers we made a trade-off between the

complexity and the performance when choosing the suitable algorithm in

each layer for our model.

 in the localization layer we have studied lots of algorithms and we

found that all of them are complex, have too many parameters need to be

adjusted to reach satisfactory performance so we used the direct GPS sensor

measurement to localize our platform but we compensated for the GPS

measurement noise by a powerful obstacle avoidance algorithm, Attractive

57

and repulsive obstacle avoidance algorithm which found very robust and

simple at the same time.

 The control loop we have designed is a semi-dynamic planning and

control loop in which the planner may be considered part of the control

loop. The control loop is basically static which means it should execute the

planned path completely before planning again but we have adjusted the

thresholds of the controller to return to the planner quickly which increased

the supervision of the planner.

 The following table shows the things which were helpful to achieve

our goals and the things which have found harmful to achieve our goals

Table 5-1: Different remarks about the project

Helpful things Harmful things

The modular system architecture
Developing our own PID rate

stabilizer

CC3D flight controller
Power failures due to insufficient

power

The safety procedures Using complex control commands

The test platform Using sensors without calibration

58

5.2 Recommendations:

 The main purpose of this project was to launch a quadcopter platform

that uses 4 ultrasonic sensors to detect potential collision; we recommend

using laser range finding sensor for future implementations because it has a

wide angle of detection (up to 360⁰) and can detect any number of objects

within its angle of view.

 Also we canceled the use of any localization algorithm in the

localization layer due to the time constraint, we recommend using large

scale direct monocular SLAM (LSD-monocular SLAM) because of its high

performance in building large map of the environment using a single

camera and at low computational power compared to its counterparts.

59

 References

[1] I. Nourbaskhsh and R. Siegwart, "Introduction to autonomous mobile robots," The MIT
Press, Cambridge, Massachuse�s, England, ISBN 0, vol. 262, pp. 142-150, 2004.

[2] A. Güçlü, "Attitude and altitude control of an outdoor quadrotor," ATILIM UNIVERSITY,
2012.

[3] S. S. Ge, Autonomous mobile robots: sensing, control, decision making and applications
vol. 22: CRC press, 2006.

[4] S. Riisgaard and M. R. Blas, "SLAM for Dummies," A Tutorial Approach to Simultaneous
Localization and Mapping, vol. 22, p. 126, 2003.

[5] Y. B. Sebbane, Planning and decision making for aerial robots: Springer, 2014.
[6] S. S. Ge and Y. J. Cui, "New potential functions for mobile robot path planning," IEEE

Transactions on robotics and automation, vol. 16, pp. 615-620, 2000.
[7] S. Lupashin, A. Schöllig, M. Hehn, and R. D'Andrea, "The flying machine arena as of

2010," in Robo�cs and Automa�on (ICRA), 2011 IEEE Interna�onal Conference on,
2011, pp. 2970-2971.

[8] O. Purwin and R. D. Andrea, "Performing aggressive maneuvers using iterative learning
control," in Robo�cs and Automa�on, 2009. ICRA'09. IEEE Interna�onal Conference on,
2009, pp. 1731-1736.

[9] G. Ducard and R. D. Andrea, "Autonomous quadrotor flight using a vision system and
accommodating frames misalignment," in Industrial embedded systems, 2009. SIES'09.
IEEE international symposium on, 2009, pp. 261-264.

[10] R. Ritz, M. W. Muller, M. Hehn, and R. D'Andrea, "Cooperative quadrocopter ball
throwing and catching," in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, 2012, pp. 4972-4978.

[11] M. W. Mueller and R. D'Andrea, "Critical subsystem failure mitigation in an indoor UAV
testbed," in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Interna�onal
Conference on, 2012, pp. 780-785.

[12] D. Mellinger, M. Shomin, and V. Kumar, "Control of quadrotors for robust perching and
landing," in International Powered Lift Conference, 2010, pp. 5-7.

[13] D. W. Mellinger, "Trajectory genera�on and control for quadrotors," 2012.
[14] A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, "Towards a swarm of agile micro

quadrotors," Autonomous Robots, vol. 35, pp. 287-300, 2013.

60

Appendix A

The Main Quadcopter Code (python)

import Adafruit_BMP.BMP085 as BMP085
import serial
import time
import math

ser = serial.Serial('/dev/ttyACM0', 115200)
ch1,ch2,ch3,ch4,ch5=1500,1500,1000,1500,1500
th1,th2,th3,th4=
hang_flag=0
setpoint_alt,setpoint_roll,setpoint_pitch=
floor_alt=sensor.read_altitude()
outside scripts connections
hostName='127.0.0.1'
socket_goal = socket.socket(AF_INET, SOCK_DGRAM) # connect
with the Ground station goal_sender
socket_goal.bind(('0.0.0.0', 5010))
socket_imu = socket.socket(AF_INET, SOCK_DGRAM) # connect
with IMU fusion
socket_imu.bind((hostName, 5005))
socket_GPS = socket.socket(AF_INET, SOCK_DGRAM) # connect
with GPS fusion
socket_GPS.bind((hostName, 5055))
socket_fr = socket.socket(AF_INET, SOCK_DGRAM) # connect
with the front ultrasonic fusion
socket_fr.bind((hostName, 5015))
socket_bc = socket.socket(AF_INET, SOCK_DGRAM) # connect
with the back ultrasonic fusion
socket_bc.bind((hostName, 5020))
socket_rs = socket.socket(AF_INET, SOCK_DGRAM) # connect
with the right ultrasonic fusion
socket_rs.bind((hostName, 5025))
socket_ls = socket.socket(AF_INET, SOCK_DGRAM) # connect
with the left ultrasonic fusion
socket_ls.bind((hostName, 5015))

receive the goal from the ground station goal_sender
goal, addr = socket_goal.recvfrom(1024)
start_time=time.time()
desired_la=float(goal[0:goal.find(',')])
desired_lo=float(goal[goal.find(','+1:)])

61

def
stabilize(setpoint_roll,setpoint_pitch,setpoint_alt,setpoint_yaw
):
 while True:

 # Read current values
 data, addr = sock_imu.recvfrom(1024)
 current_pitch=int(data[6:data.find(',')])

current_roll=int(data[data.find("roll")+5:data.find(',',data.fin
d('r'))])
 current_yaw=int(data[data.find("yaw")+4:])
 current_alt=sensor.read_altitude()-floor_alt # to read
the altitude with respect to the ground

 if setpoint_yaw==365:
 setpoint_yaw=current_yaw

 # Calculate the processes errors
 alt_error=setpoint_alt-current_alt
 pitch_error=setpoint_pitch-current_pitch
 roll_error=setpoint_roll-current_roll
 yaw_error=setpoint_yaw-current_yaw

 # Calculate the correction
 if alt_error>th1 and pitch_error>th2 and
roll_error>th3 and yaw_error>th4:
 additive_throttle=kp*alt_error #kp is detirmined
experimentally
 additive_pitch=kp*pitch_error
 additive_roll=kp*roll_error
 additive_yaw=kp*yaw_error

 # Calculate the final channels values
 ch1+=int(round(additive_roll))
 ch2+=int(round(additive_pitch))
 ch3+=int(round(additive_throttle))
 ch4+=int(round(additive_yaw))

 # send corrections to Arduino
 ser.write(str(ch1)+str(ch2)+str(ch3)+str(ch4))
 time.sleep(.01)
 else :
 break

def
get_goal_attitude(current_la,current_lo,desired_la,desired_lo):
 if (desired_la-current_la>0)and(desired_lo-current_lo>0):
 goal_attitude=90-math.atan((1.03754*abs(desired_la-
current_la))/abs(desired_lo-current_lo))*180/math.pi #
multiplying by (180/pi) because the angle is returned in radian
 elif (desired_la-current_la>0)and(desired_lo-current_lo<=0):

62

 goal_attitude=270+math.atan((1.03754*abs(desired_la-
current_la))/abs(desired_lo-current_lo))*180/math.pi
 elif (desired_la-current_la<=0)and(desired_lo-current_lo<0):
 goal_attitude=270-math.atan((1.03754*abs(desired_la-
current_la))/abs(desired_lo-current_lo))*180/math.pi
 else:
 goal_attitude=90+math.atan((1.03754*abs(desired_la-
current_la))/abs(desired_lo-current_lo))*180/math.pi
 return int(round(goal_attitude))

def goal_reached(current_la,current_lo):

 if (abs(current_la-desired_la)<=.00005)and(abs(current_lo-
desired_lo)<=.00005):
 return True
 else:
 return False
def
obs_avoidance(goal_attitude,front_obstacle,back_obstacle,Rside_o
bstacle,Lside_obstacle):
 if hang_flag==0:
 if (front_obstacle<170)and(Rside_obstacle>170):
 yaw=goal_attitude+int(round(((170-
front_obstacle)/170)*90))
 if yaw>360:
 yaw=yaw-360
 return "steer "+str(yaw)
 elif
(front_obstacle<170)and(Rside_obstacle<170)and(Lside_obstacle>17
0):
 yaw=goal_attitude-int(round(((170-
front_obstacle)/170)*90))
 if yaw<0:
 yaw=yaw+360
 return "steer "+str(yaw)
 elif
(front_obstacle<170)and(Rside_obstacle<170)and(Lside_obstacle<17
0):
 hang_flag=1
 return "back"
 elif
(front_obstacle>170)and(Rside_obstacle<30)and(Lside_obstacle>150
):
 return "left"
 elif
(front_obstacle>170)and(Rside_obstacle>170)and(Lside_obstacle<30
):
 return "right"
 else:
 if Rside_obstacle>170:
 hang_flag=0
 return "right"

63

 elif Lside_obstacle>170:
 hang_flag=0
 return "left"
 else:
 return "back"

taking-off
ser.write('1500150012501500')
stabilize(0,0,sensor.read_altitude()-floor_alt,365)
stabilize(0,0,200,365)

main control an planning loop
while True:
 # Read GPS coordinates
 current_location, addr = socket_GPS.recvfrom(1024)

current_la=float(current_location[0:current_location.find(',')])

current_lo=float(current_location[current_location.find(','+1:)]
)
 # Calculate the goal attitude

goal_attitude=get_goal_attitude(current_la,current_lo,desired_la
,desired_lo)

 # Read Ultrasonic sistances
 front, addr = socket_fr.recvfrom(1024)
 back, addr = socket_bc.recvfrom(1024)
 right, addr = socket_rs.recvfrom(1024)
 left, addr = socket_ls.recvfrom(1024)

 # is there nearby obstacles
 if front<170 or back<170 or right<170 or left<170:

avoidance_data=obs_avoidance(goal_attitude,front,back,right,left
) # Obstacle avoidance calculation
 obst_flag=1
 else:
 yaw=goal_attitude
 obst_flag=0

 # motion excuter
 if obst_flag==1:
 if avoidance_data[0]=='s':
 yaw=int(avoidance_data[6:])
 stabilize(0,setpoint_pitch/2,setpoint_alt,yaw)
 elif avoidance_data[0]=="b":
 stabilize(0,-setpoint_pitch,setpoint_alt,365) #
send 365 in yaw to indicate stablize at the current yaw
 elif avoidance_data[0]=="l":
 stabilize(-setpoint_roll,0,setpoint_alt,365)

64

 else:
 stabilize(setpoint_roll,0,setpoint_alt,365)
 else:
 stabilize(0,setpoint_pitch,setpoint_alt,yaw)

 # is goal reached

 if goal_reached(current_la,current_lo):
 break
 else:
 continue

Landing
ser.write('1500150012501500')
time.sleep(1)
ser.write('1500150011001500')
time.sleep(1)
ser.write('1500150010001500')

65

Appendix B

Arduino Code (C)

#include <Servo.h>
String readString, ch_input1, ch_input2, ch_input3, ch_input4;
Servo ch1;
Servo ch2;
Servo ch3;
Servo ch4;
Servo ch5;

void setup() {
 Serial.begin(115200);
 ch1.attach(5); //attaching PWM pins
 ch2.attach(6);
 ch3.attach(9);
 ch4.attach(10);
 ch5.attach(11);

 Serial.println("Arming motors ./.");
 delay(1000);
 ch1.writeMicroseconds(1500); // Arming the motors
 ch2.writeMicroseconds(1500);
 ch3.writeMicroseconds(1000);
 ch4.writeMicroseconds(2000);
 ch5.writeMicroseconds(1500);
 delay(1000);

 Serial.println("Arming done");

}

void loop() {

 while (Serial.available()) {
 delay(3); //delay to allow buffer to fill
 if (Serial.available() >0) {
 char c = Serial.read(); //gets one byte from serial
buffer
 readString += c; //makes the string readString
 }
 }

66

 if (readString.length() >0) {
 Serial.println(readString); //see what was received

 // expect a string like 07002100 containing the two
ch_input positions
 ch_input1 = readString.substring(0, 4); //get the first
four characters
 ch_input2 = readString.substring(4, 8); //get the next
four characters
 ch_input3 = readString.substring(8, 12); //get the next
four characters
 ch_input4 = readString.substring(12, 16); //get the next
four characters

 Serial.println(ch_input1); //print to serial monitor to
see parsed results
 Serial.println(ch_input2);
 Serial.println(ch_input3);
 Serial.println(ch_input4);

 int n1 = ch_input1.toInt();
 int n2 = ch_input2.toInt();
 int n3 = ch_input3.toInt();
 int n4 = ch_input4.toInt();

 ch1.writeMicroseconds(n1); // sending the PWM commands to
CC3D
 ch2.writeMicroseconds(n2);
 ch3.writeMicroseconds(n3);
 ch4.writeMicroseconds(n4);

 readString=""; // emptying the buffer for the next command
 }
}

67

Appendix C

The Ground Station Communication Codes (python)

1. Streaming video server:

import socket
import cv2
import numpy

def recvall(sock, count):
 buf = b''
 while count:
 newbuf = sock.recv(count)
 if not newbuf: return None
 buf += newbuf
 count -= len(newbuf)
 return buf

TCP_IP = '0.0.0.0'
TCP_PORT = 5050

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((TCP_IP, TCP_PORT))
s.listen(True)
conn, addr = s.accept()

length = recvall(conn,16)
stringData = recvall(conn, int(length))
data = numpy.fromstring(stringData, dtype='uint8')
s.close()

decimg=cv2.imdecode(data,1)
cv2.imshow('SERVER',decimg)
cv2.waitKey(0)
cv2.destroyAllWindows()

68

2. Streaming video client:

import socket
import cv2
import numpy

def recvall(sock, count):
 buf = b''
 while count:
 newbuf = sock.recv(count)
 if not newbuf: return None
 buf += newbuf
 count -= len(newbuf)
 return buf

TCP_IP = '0.0.0.0'
TCP_PORT = 5050

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((TCP_IP, TCP_PORT))
s.listen(True)
conn, addr = s.accept()

length = recvall(conn,16)
stringData = recvall(conn, int(length))
data = numpy.fromstring(stringData, dtype='uint8')
s.close()

decimg=cv2.imdecode(data,1)
cv2.imshow('SERVER',decimg)
cv2.waitKey(0)
cv2.destroyAllWindows()

3. Receiving current position and showing it on a map

import numpy as np
import matplotlib.pyplot as plt
from scipy.misc import imread
from socket import socket, gethostbyname, AF_INET,
SOCK_DGRAM
import sys
PORT_NUMBER = 5000
SIZE = 1024

hostName = '0.0.0.0'

69

mySocket = socket(AF_INET, SOCK_DGRAM)
mySocket.bind((hostName, PORT_NUMBER))

np.random.seed(0)
x =977 #np.random.uniform(0.0,15.0,20)
y =619 #np.random.uniform(0.0,15.0,20)
edge_lo=32.498085
edge_la=15.542107
lo_range=0.07596
la_range=0.046385
while True:
 #Show that data was received:
 (data, addr) = mySocket.recvfrom(SIZE)
 lo=float(data[:data.find(',')])
 la=float(data[data.find(',')+1:])
 plotted_lo=int(round((lo-edge_lo)*x/lo_range))
 plotted_la=y-int(round((la-edge_la)*y/la_range))

 img = imread("map.png")
 plt.scatter(plotted_lo,plotted_la,zorder=1)
 plt.imshow(img,zorder=0)
 plt.show()

70

Appendix D

The Simulation Code (Lua)

-- This is the autonomous quadcopter principal control
script. It is threaded
actualizeLEDs=function()
 if (relLedPositions==nil) then
 relLedPositions={{-0.0343,0,0.0394},{-
0.0297,0.0171,0.0394},{0,0.0343,0.0394},

{0.0297,0.0171,0.0394},{0.0343,0,0.0394},{0.0243,-
0.0243,0.0394},
 {0.006,-0.0338,0.0394},{-0.006,-
0.0338,0.0394},{-0.0243, -0.0243,0.0394}}
 end
 if (drawingObject) then
 simRemoveDrawingObject(drawingObject)
 end

type=sim_drawing_painttag+sim_drawing_followparentvisibilit
y+sim_drawing_spherepoints+

sim_drawing_50percenttransparency+sim_drawing_itemcolors+si
m_drawing_itemsizes+

sim_drawing_backfaceculling+sim_drawing_emissioncolor

drawingObject=simAddDrawingObject(type,0,0,bodyElements,27)
 m=simGetObjectMatrix(ePuck,-1)
 itemData={0,0,0,0,0,0,0}
 simSetLightParameters(ledLight,0)
 for i=1,9,1 do
 if
(ledColors[i][1]+ledColors[i][2]+ledColors[i][3]~=0) then
 p=simMultiplyVector(m,relLedPositions[i])
 itemData[1]=p[1]
 itemData[2]=p[2]
 itemData[3]=p[3]
 itemData[4]=ledColors[i][1]
 itemData[5]=ledColors[i][2]
 itemData[6]=ledColors[i][3]

simSetLightParameters(ledLight,1,{ledColors[i][1],ledColors
[i][2],ledColors[i][3]})
 for j=1,3,1 do
 itemData[7]=j*0.003

simAddDrawingObjectItem(drawingObject,itemData)

71

 end
 end
 end
end

getLightSensors=function()
 data=simReceiveData(0,'EPUCK_lightSens')
 if (data) then
 lightSens=simUnpackFloats(data)
 end
 return lightSens
end

threadFunction=function()
 while
simGetSimulationState()~=sim_simulation_advancing_abouttost
op do
 st=simGetSimulationTime()
 velLeft=0
 velRight=0

opMode=simGetScriptSimulationParameter(sim_handle_self,'opM
ode')
 lightSens=getLightSensors()
 s=simGetObjectSizeFactor(bodyElements) -- make sure
that if we scale the robot during simulation, other values
are scaled too!
 noDetectionDistance=0.16*s

proxSensDist={noDetectionDistance,noDetectionDistance,noDet
ectionDistance,noDetectionDistance,noDetectionDistance,noDe
tectionDistance,noDetectionDistance,noDetectionDistance}
 for i=1,8,1 do
 res,dist=simReadProximitySensor(proxSens[i])
 if (res>0) and (dist<noDetectionDistance) then
 proxSensDist[i]=dist
 end
 end
 if (opMode==0) then -- We wanna follow the line
 if (math.mod(st,2)>1.5) then
 intensity=1
 else
 intensity=0
 end
 for i=1,9,1 do
 ledColors[i]={intensity,0,0} -- red
 end
 -- Now make sure the light sensors have been
read, we have a line and the 4 front prox. sensors didn't
detect anything:
 if lightSens and
((lightSens[1]<0.5)or(lightSens[2]<0.5)or(lightSens[3]<0.5)

72

) and
(proxSensDist[2]+proxSensDist[3]+proxSensDist[4]+proxSensDi
st[5]==noDetectionDistance*4) then
 if (lightSens[1]>0.5) then
 velLeft=maxVel
 else
 velLeft=maxVel*0.25
 end
 if (lightSens[3]>0.5) then
 velRight=maxVel
 else
 velRight=maxVel*0.25
 end
 else
 velRight=maxVel
 velLeft=maxVel
 if
(proxSensDist[2]+proxSensDist[3]+proxSensDist[4]+proxSensDi
st[5]==noDetectionDistance*4) then
 -- Nothing in front. Maybe we have an
obstacle on the side, in which case we wanna keep a
constant distance with it:
 if
(proxSensDist[1]>0.25*noDetectionDistance) then

velLeft=velLeft+maxVel*braitSideSens_leftMotor[1]*(1-
(proxSensDist[1]/noDetectionDistance))

velRight=velRight+maxVel*braitSideSens_leftMotor[2]*(1-
(proxSensDist[1]/noDetectionDistance))
 end
 if
(proxSensDist[6]>0.25*noDetectionDistance) then

velLeft=velLeft+maxVel*braitSideSens_leftMotor[2]*(1-
(proxSensDist[6]/noDetectionDistance))

velRight=velRight+maxVel*braitSideSens_leftMotor[1]*(1-
(proxSensDist[6]/noDetectionDistance))
 end
 else
 -- Obstacle in front. Use Braitenberg
to avoid it
 for i=1,4,1 do

velLeft=velLeft+maxVel*braitFrontSens_leftMotor[i]*(1-
(proxSensDist[1+i]/noDetectionDistance))

velRight=velRight+maxVel*braitFrontSens_leftMotor[5-i]*(1-
(proxSensDist[1+i]/noDetectionDistance))
 end
 end

73

 end
 end
 if (opMode==1) then -- We wanna follow something!
 index=math.floor(1+math.mod(st*3,9))
 for i=1,9,1 do
 if (index==i) then
 ledColors[i]={0,0.5,1} -- light blue
 else
 ledColors[i]={0,0,0} -- off
 end
 end
 velRightFollow=maxVel
 velLeftFollow=maxVel
 minDist=1000
 for i=1,8,1 do

velLeftFollow=velLeftFollow+maxVel*braitAllSensFollow_leftM
otor[i]*(1-(proxSensDist[i]/noDetectionDistance))

velRightFollow=velRightFollow+maxVel*braitAllSensFollow_rig
htMotor[i]*(1-(proxSensDist[i]/noDetectionDistance))
 if (proxSensDist[i]<minDist) then
 minDist=proxSensDist[i]
 end
 end

 velRightAvoid=0
 velLeftAvoid=0
 for i=1,8,1 do

velLeftAvoid=velLeftAvoid+maxVel*braitAllSensAvoid_leftMoto
r[i]*(1-(proxSensDist[i]/noDetectionDistance))

velRightAvoid=velRightAvoid+maxVel*braitAllSensAvoid_rightM
otor[i]*(1-(proxSensDist[i]/noDetectionDistance))
 end
 if (minDist>0.025*s) then minDist=0.025*s end
 t=minDist/(0.025*s)
 velLeft=velLeftFollow*t+velLeftAvoid*(1-t)
 velRight=velRightFollow*t+velRightAvoid*(1-t)
 end
 simSetJointTargetVelocity(leftMotor,velLeft)
 simSetJointTargetVelocity(rightMotor,velRight)
 actualizeLEDs()
 simSwitchThread() -- Don't waste too much time in
here (simulation time will anyway only change in next
thread switch)
 end
end

-- Initialization:

74

simSetThreadSwitchTiming(200) -- We will manually switch in
the main loop
bodyElements=simGetObjectHandle('ePuck_bodyElements')
leftMotor=simGetObjectHandle('ePuck_leftJoint')
rightMotor=simGetObjectHandle('ePuck_rightJoint')
ePuck=simGetObjectHandle('ePuck')
ledLight=simGetObjectHandle('ePuck_ledLight')
proxSens={-1,-1,-1,-1,-1,-1,-1,-1}
for i=1,8,1 do
 proxSens[i]=simGetObjectHandle('ePuck_proxSensor'..i)
end
maxVel=120*math.pi/180
ledColors={{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0},
{0,0,0},{0,0,0},{0,0,0}}

-- Braitenberg weights for the 4 front prox sensors
(avoidance):
braitFrontSens_leftMotor={1,2,-2,-1}
-- Braitenberg weights for the 2 side prox sensors
(following):
braitSideSens_leftMotor={-1,0}
-- Braitenberg weights for the 8 sensors (following):
braitAllSensFollow_leftMotor={-3,-1.5,-0.5,0.8,1,0,0,-4}
braitAllSensFollow_rightMotor={0,1,0.8,-0.5,-1.5,-3,-4,0}
braitAllSensAvoid_leftMotor={0,0.5,1,-1,-0.5,-0.5,0,0}
braitAllSensAvoid_rightMotor={-0.5,-0.5,-1,1,0.5,0,0,0}

-- Execute the thread function:
res,err=xpcall(threadFunction,function(err) return
debug.traceback(err) end)
if not res then
 simAddStatusbarMessage('Lua runtime error: '..err)
end

-- Clean-up:

for i=1,9,1 do
 ledColors[i]={0,0,0} -- no light
end
actualizeLEDs()

75

Appendix E

Simulation Circuit Diagram:

Prototype Circuit Diagram:

	CHAPTER ONE
	1.1. Introduction:
	1.2. Problem Statement:
	1.3. Proposed Solution:
	1.4. Methodology:
	1.4.1. Quadcopter Dynamic:
	1.4.2The Control Architecture:

	1.5. Aim and Objectives:
	1.6. Research Outlines:

	CHAPTER TWO
	2.1 Background:
	2.1.1 Autonomous navigating in dynamic environments:

	2.2 Related Works:
	3.1 The Design of the Autonomous Quadcopter:
	The mechanics of the quadcopter are relatively simple and the aircraft is able to use fixed pitch propellers. This reduces setup, maintenance, and manufacturing costs and time associated with a quadcopter. The relatively simple mechanical setup of a quadcopter also leads to limited vibration making it a friendly environment for inertial sensors and cameras.
	3.2 Software architecture:
	/
	Figure 3-6: Main software algorithm
	3.2.1 Perception layer:
	3.2.2 Localization/map building layer:
	3.2.3 Cognition/planning layer:
	3.2.4 Motion control layer:

	3.3 Hardwarearchitecture:
	3.3.1 Sensors
	3.3.2 Actuating system:
	3.3.3 The Power System:
	3.3.4 TheProcessing units:

	3.4 The ground station system

	4.4 ComponentsReliability
	CHAPTER FIVE
	CONOCLUTION AND RECOMONDITATION

