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CHAPTER ONE 

INTRODUCTION 
 
 
 

1.1. Introduction: 

 The rising of human demand for machines capable of doing his work 

autonomously and precisely in most of his modern life’s needs, 

manufacturing, aviation, military and transportation...etc. has inspired 

scientists and engineers to develop autonomous control systems.Autonomous 

control has become a fascinating field for its endless applications which work 

in difficult areas that need a very precise and careful control scenario[1]. 

 One of the promising applications of the autonomous control systems is 

the quadcopter. The quadcopter is a multi-rotor helicopter that is lifted and 

propelled by four rotors. It represents an excellent platform for the 

autonomous control because it is a small, agile and maneuverable robot.  

 Quadcopterunmanned aerial vehicles areused in many civilian and 

military applications. They are considered as the best solution for intelligence, 

surveillance and reconnaissance by military and law enforcement agencies, as 

well as their use in suicidal missions. In addition they have lots of civilian 

applications such as search and rescue missions, precision agriculture/remote 

farming, inspection and transportation [2]. 

1.2. Problem Statement: 

There are many limitations in the current methodof controlling the 

quadcopter manually by human using radio controller (RC). RC has a 

limited range which makes it impossible to control the quadcopter out of 

https://en.wikipedia.org/wiki/Multirotor
https://en.wikipedia.org/wiki/Helicopter
https://en.wikipedia.org/wiki/Helicopter_rotor
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that range. Human ability to control the quadcopter is limited especially 

when dealing with a dangerous situation or flying in a complex 

environment.  

1.3. Proposed Solution: 

The advances in the capabilities of microcomputer boards as well as 

the growing in the development of affordable and high precision state 

sensors such as inertial measurement unit and GPS sensor made it possible 

to develop an autonomous control system for the quadcopter that is able to 

drive the quadcopter in higher range and precisely in complex 

dynamicenvironments. 

1.4. Methodology: 

1.4.1. Quadcopter Dynamic: 

The quadcopter consists of four rotors that are mounted at the end of 

two perpendicular axes. Rotors at opposite ends of an arm turn in the same 

direction while rotors on a perpendicular axis rotate in the opposite 

direction. When all four motors are spinning at the same speed, the rotors 

create thrust that lifts the quadcopter into the air. As there are pairs of rotors 

spinning in opposite directions, the torque produced in each direction 

around the yaw axis cancels out and the yaw angle remains constant[2].  

 

1.4.2The Control Architecture: 

 Perception and Data Fusion:  

There are different sensors used to give the quadcopter information 

about the environment. The first one is IMU (9 DOF) motion sensors, their 

readings are integrated (fused) by Kalman filter to measure the orientation 
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of the robot in form of three angles (yaw, Roll and Pitch). The second one is 

the GPS sensor which is used to localize the position of the robot in outdoor 

environments. The last one is the ranging sensors which are used to 

measure distances from the robot to the nearby objects [3]. 

 Localization: 

The localization process consists of a number of steps that use the 

environment to update the position of the robot. Since the odometery (the 

dynamic model) of the robot is often erroneous SLAMdoesn’t rely directly on 

it. It also usessensors’ measurements to correct the position of therobot. This 

is accomplished by extracting featuresfrom the environment and re-observing 

them while the robot is exploring the environment [3].  

 Motion Planning: 

Motion planning breaks down a desired movement task (goal state) into 

discrete motions that satisfy movement. Motion planning first calculates the 

direction to goal. After that it checks whether this direction is clean from 

potential collision or not; if it is clean then it sends this direction to the motion 

controller to drive the quadcopter toward that direction, but if it is not the 

motion planning finds an alternative path that drives the quadcopter away 

from collision [3]. 

 Motion Control: 

The motion control calculates a suitable motion to follow every sub-goal. 

Then sends these calculations to the Electronic Speed Controller (ESC) of 

each motor as PWM signal to alter the speed of the motors in a way making it 

perform the required motion [3]. 

PID controllers are responsible for the calculation.  The control scheme is the 

cascaded control where the outer loop is a position controller and the inner 
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loop is an attitude controller. The position controller receives the current 

position from the GPS sensor and the sub-goal position from motion planning 

then it computes the angles for the attitude controller which is then try to 

stabilize at these angels [3].  

 On-board Computer: 

Raspberry Pi 3 is used as the on-board computer; it has a built-in Wi-Fi 

that will be used to receive the goal state. Pythonis considered as the main 

programming language in the project. 

1.5. Aim and Objectives: 

The main aim of this project is to design an autonomous quadcopter that 

can go from a current location to a desired location autonomously and safely. 

Where the stated objectives are: 

 To design a navigation system capable of acting rationally within complex 

environments. 

 To develop a control system using a cascaded PID controller. 

 To design a ground station for sending goal locations to the quadcopter as 

well as making the user able to monitor the quadcopter flight data. 

 To implement a prototype model for the system using Raspberry Pi 3 that 

has high computational power and tests its ability to process a number of 

autonomy algorithms gracefully to satisfactorilydrive the model. 

 To simulate the different autonomy components in a quadcopter on Virtual 

Robot Experimentation Platform (V-REP). 
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1.6. Research Outlines: 

Chapter one is an introduction that gives a background about the 

project, its aims and objectives, the problem statement and proposed 

solutions. It also gives a brief description on how to achieve those goals in 

the methodology. 

Chapter two is the literature review that first gives an overall look on 

the mobility management schemes. The second part of the chapter is related 

works which include the analysis of several papers that were in the field of 

mobility management highlighting the pros and cons of each. 

Chapter three is the system design (Methodology) contains all the 

methods and steps in great details that were undertaken to achieve the 

project's objectives. 

Chapter four is results include simulation parameters, a discussion of 

the simulation and the resulted outcome from it, which are also justified. 

Chapter five the conclusion and recommendation is the achieved goals 

from the project and the recommendations for future studies. 
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CHAPTER TWO 

LITERATURE REVIEW 

 
 
 

2.1 Background: 

This section introduces the basic knowledge needed before starting the 

dissertation. Here the used concepts throughout this document are explained 

in details. The concepts of the autonomous navigation in dynamic 

environments are explained first which are: perception, localization and 

mapping, planning, and navigation. After thatthe autonomous quadcopter will 

be explained too. 

2.1.1 Autonomous navigating in dynamic environments: 

        Autonomous mobile robots design follows four-layer architecture design 

paradigm [1]which ensures a modular architecture by default. A layer is 

defined as repository of software and hardware components that serves a very 

well defined function; these layers are: 

 

 

Figure 2-1: Conceptual architecture block diagram 
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          The system is designed in a layer-based architecture so that each layer 

contains one or more algorithm that do a specific function. This way if we 

change the algorithm used in one layer the other layer would not be affected. 

Belowis a detailed description of the different layers. 

 

 Perception: 

One of the most important tasks of the autonomous system of any kind is 

to acquire knowledge about its environment. This is done by taking 

measurements using various sensors andthen extracting meaningful 

information from those measurements[4]. 

There are a wide variety of sensors used in mobile robots. Some sensors are 

used to measure simple values like the internal temperature of a robot’s 

electronics or the rotational speed of the motors. Other, more sophisticated 

sensors can be used to acquire information about the robot’s environment or 

even to directly measure a robot’s global position. We classify sensors using 

two important functional axes;proprioceptive/exteroceptive and 

passive/active. The proprioceptive sensors measure values internal to the 

system (robot) while exteroceptive sensors acquire information from the 

robot’s environment; for example, distance measurements, light intensity, 

sound amplitude. Hence exteroceptive sensor measurements are interpreted by 

the robot in order to extract meaningful environmental features. 
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Table2-1: Sensor classification 

A or P 
PC or 

EC 

Sensor 

Sensor system 

General classification 

(typical use ) 

P 

A 

A 

EC 

EC 

EC 

Contact switches, bumpers 

Optical batteries 

Noncontact proximity sensor 

Tactile sensors 

(detection of physical  contact 

or closeness; security switches) 

P 

P 

A 

A 

PC 

PC 

PC 

PC 

Burch encoder 

Potentiometer 

Optical encoders 

capacitive encoders 

Wheel/ motor sensors 

(wheel/motor speed and 

position) 

P 

P 

A/P 

EC 

PC 

EC 

Compass 

Gyroscopes 

inclinometer 

 

Heading sensors 

(orientation  of the robot in 

relation to a fixed reference 

frame) 

A 

A 

A 

A 

EC 

EC 

EC 

EC 

GPS 

Active  optical or RF beacons 

Active ultrasonic beacons 

Reflective beacons 

Ground-based 

beacons(localization in a fixed 

reference frame) 

A 

A 

A 

EC 

EC 

EC 

Reflectivity sensors 

Ultrasonic sensor 

Laser range finder 

Active ranging(reflectivity 

,time-of-light ,and geometry 

triangulation) 

A 

A 

EC 

EC 

Doppler radar 

Doppler sound 

Motion/speed sensor 

(speed relative to fixed or 

moving objects) 

P EC 

CCD/CMOS camera(s) 

Visual ranging packages 

 

Vision-based sensors(visual 

ranging, whole-image analysis 

A=active; P=passive; P/A=passive active; PC=proprioceptive; EC= 

exteroceptive. 
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The perception of nearby objects distance is done using ultrasonic sensors by 

triggering it. Then the estimation of the distance is done from the time 

elapseduntil receiving the echo signal using the following equation: 

 

� =
�∗�

�
[2.1] 

 

 

Where D is the distance, S is sound speed and T is round trip time between the 

sensor and the object. 

The perception of the altitude is done using the barometer sensorfrom the 

measured pressureby the following international barometric formula: 

 

�������� = 44330 ∗ �1 − �
�

��
�

�

�.���
�[2.2] 

 

Where P is current pressure and P� is sea level pressure. 

Thus, a pressure change of ∆p= 1hPa corresponds to 8.43m at sea level. 

 

 Localization and mapping: 

Localization is the main issue that is needed in order to perform 

autonomous navigation. The robot needs to know its global locationrelative to 

some landmarks and should be able to recalculate (re-localize) its position 

during the navigation[4]. 

Localization has different techniques depending on the characteristics of the 

robot. The techniques that work fine for one robot in one environment may 

not work well or at all for another robot or in another environment. For 

example, localizations which work well in an outdoors environment using 

GPS signal may be useless indoors where there is poor or no signal. In general 

all localization techniques provide two basic pieces of information: 
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 The current location of the robot in some environment: X, Y and Z. 

 The robot's current orientation in that same environment: Roll, Yaw 

and Pitch. 

Mapping is needed in autonomous mobile robots (AMRs) to integrate the 

information gathered with the robot's sensors into a given representation so 

that it can be useful in the planning process. There are different types of 

mapping schemes; 

 Topological maps: 

A topological map describes the environment based on its utility to the 

robot, i.e. what in the scope of the robot operations can be performed there. 

The maps are seen as a graph where; nodes represent places, such as rooms; 

edges represent links between places like hallways or doors. Moreover, each 

node contains a description of the place or its abilities. A room may, for 

example, contain a printer; this would augment the respective node with the 

ability to give access to a printer. This kind of maps is clearly very useful for 

high level deliberation. It is easy to plan for a goal on this description. 

However when computing the trajectory from A to B (where A and B refer to 

spatial coordinates) these maps are not enough, as they do not contain 

geometric information about the environment. 

 Feature maps: 

A feature map is a list of features extracted from the environment and 

with known positions, this mapping technique offers a good geometric 

description of the environment as, by observing a feature and computing its 

relative position, it is possible to calculate the global position of the robot. The 

short coming here are three: the number of unique features may be too small, 

i.e. the environment may be too simplistic; the difference from one feature to 
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another may not be enough for the sensors to understand; the feature 

themselves do not give any more information about the environment like the 

topological maps might give. 

 Grid maps: 

A grid map divides the map into subspaces, each position is either 

occupied or free and the robot calculates his position by evaluating the grid 

around. This approach has the advantage of reducing the path-planning 

problem to a search and trajectory smoothing algorithm, however the updating 

process to the entire grid is very computational intense and the grid usually fill 

a lot of memory.  

Simultaneous Localization and Mapping (SLAM) is the main concept 

which is used in localization[5]. SLAM is concerned with the problem of 

building a map of an unknown environment by a mobile robot while at the 

same time navigating the environment using the same map. It consists of 

multiple parts; Landmark extraction, data association, state estimation, state 

update and landmark update. 

Landmarks are features that can be easily re-observed and distinguished 

from the surroundings. They are used by the robot to find out where it is. 

Landmarks should be easily re-observable, distinguishable from each other, 

plentiful in the environment and stationary. 

Data association is used to match observed landmarks with ones existing in 

the map. State estimation is the process of estimating the state (position) of the 

robot from odometry data and landmark observations. There are different 

methods for estimating the state i.e. Extended Kalman Filter. 
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 Motion planning 

The movement of an object seems easy, but finding the path to move 

through is much more complex. Motion planning is the process of breaking 

down a desired movement task into discrete motions that satisfy movement 

constraints and possibly optimize some aspect of the movement. 

Motion planning task is to produce a continuous motion that connects a 

start configuration S and a goal configuration G, while avoiding collision with 

nearby obstacles. Motion planning can be divided from three different 

perspectives; from the time of the data that used in the planning process to 

online planning and offline planning. Online planning uses just the current 

state data and the surrounding objectsdata fused from different sensors to 

calculate the next movement, while offline planning usesa saved version of 

the data about previously visited locations[6].  

From the goal seeking perspective motion planning is divided into path 

planning in which the planner seeks for the path that leads to the goal and 

obstacle avoidance in which the planner ignores the goal and seeks for the 

occurrence of objects near the quadcopter only and calculate an avoidance 

action. From the location of the motion planning in the control loop it is 

divided into dynamic planning in which the motion planner is inside the 

control loop supervising the execution of the motion by re-planning the path 

every motion-executioniteration and static planning in which the planned 

motion should be executed completely before starting a new planning process. 

Modern algorithms have been fairly successful in addressing hard instances of 

the basic geometric problem and a lot of effort is devoted to extend their 

capabilities to more challenginginstances[7]. The below summary discusses 

some of these algorithms: 
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 A* search algorithm: 

Is a computer algorithm that is widely used in path-finding and graph 

traversal, the process of plotting an efficiently traversable path between 

multiple points is called nodes. Noted for its performance and accuracy, it 

enjoys widespread use. However, in practical travel-routing systems, it is 

generally outperformed by algorithms which can pre-process the graph to 

attain better performance, although other work has found A* to be superior 

to other approaches. 

 Rapidly exploring random tree (RRT): 

Is an algorithm designed to efficiently search non-convex, high-

dimensional spaces by randomly building a space-filling tree. The tree is 

constructed incrementally from samples drawn randomly from the search 

space and is inherently biased to grow towards large unsearched areas of 

the problem. 

 Probabilistic roadmap (PRM):  

Is a motion planning algorithm in robotics, which takes random samples 

from the configuration space of the robot, testing them for whether they are 

in the free space, and use a local planner to attempt to connect these 

configurations to other nearby configurations. The starting and goal 

configurations are added in, and a graph search algorithm is applied to the 

resulting graph to determine a path between the starting and goal 

configurations. 

 Attractive and repulsive: is a mixture of path planning and obstacle 

avoidance which consists of an attractive component and a repulsive 

component. The attractive potential pulls the robot toward the goal but the 

repulsive potential pushes the robot away from the obstacles.It is 
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considered very robust against control and sensing errors and quite an 

efficient algorithm. 

 Navigation and Control 

Given partial knowledge about its environment and a goal position or 

series of positions, navigation encompasses the ability of the robot to act 

based on its knowledge and sensor values so as to reach its goal positions as 

efficiently and as reliably as possible[4]. 

There are two types of the navigation systems: GPS navigation system and 

inertial navigation system (INS). The former uses the received GPS 

positions during the navigation to both localize and correct robot’s position. 

The INS integrates the IMU measurements to produce position, velocity, 

and attitude estimates. INSs are self-contained and are not sensitive to 

external signals. Since an INS is an integrative process, measurement errors 

within the IMU can result in navigation errors that will grow without 

bound. INS errors (and calibrations) can be corrected through a well-

designed data fusion procedure. 

Despite the huge literature of the mobile robot navigation, the 

development of intelligent robots able to navigate in unknown and dynamic 

environment is still a challenging task [8]. Therefore, developing 

techniques for robust navigation of mobile robots is both important and 

needed. 

The control of the robot is forcing the equipped hardware to take an 

action that is required of the robot, to move between the planned points. 

Effective control of a robot’s hardware faculties and making use of sensor 

feedback are extremely important. 
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There are many types of controllers in robotics vary depending on the 

characteristics of the robot actuating system; LQG, PID …etc. There are 

five properties should be existed in the good controller: 

 Stability and Robustness.  

 Tracking and Optimality. 

 Disturbance rejection. 

The most famous controller is the Proportional-Integral-Derivative controller 

(PID). Although it is relatively simple, it can provide a satisfactory 

performance in many process control tasks. The PID controlcommand can be 

calculated from the error between the desired state and the current state using 

the following equation: 

 

� = �� ∗ �(�) + �� ∗ ∫ �(�) ��
�

�
+	�� ∗

�

��
	�(�)[2.3] 

 

Where��, ��	���	��proportional, integral and derivative are 

gains respectively and  �(�) is the process error at time (t). 

 

2.2 Related Works: 

 This section describes the history and methodology used intwo 

long running projects. Both of them already had many researches 

achievements and have contributed enormously in the development 

of autonomous quadcopters. 

 Flying Machine Arena (FMA) [7]is a part of Swiss Federal 

Institute of Technology in Zürich. The project intended to allow the 

quadcopter to localize itself indoor by fusing the information from 

the on-board sensors and a vision system installed on the room; this 
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project was never implemented but was an idea. Many years passed 

and the (FMA) researchers were stillresearching but at a slower rate, 

until (2007) when D’Andrea returned to the academic world 

andpushed FMA forward. Starting from (2009), we can identify 

many important research results in quadcopters control and autonomy 

such as Iterative Learning Control(ILC)[8] that allows a quadcopter 

to perform aggressive maneuvers without the need to precisely model 

the entire environment as such would be too costly. This algorithm 

was light enough to runonline on the robot and was tested in the 

FMA quadcopters. At the time, during tests, researchers found that 

the vision-based localization system used in the FMA gave some 

misalignments due to impacts or hand manipulating of the 

quadcopters. With this in mind they developed a system that could 

recalibrate the system automatically even when there are multiple 

robots[9]. 

 Two years later FMA published an article where they report 

the successful co-ordination of a group of quadcopter in catching and 

throwing a ball[10]. In the same year another paper was published, it 

describes a controller to safeguard mechanical failures in the 

quadcopters or the vision system[11]. As this technology is getting 

more public such measures are needed to prevent disastrous events. 

 Another related work that has been getting much attention in 

the last years is the GRASPLab at the University of Pennsylvania. 

They also have a broad range of subjects but focus their applications 

to quadcopters. In (2010), they published a paper describing amethod 

to control quadcopters landing on difficult situation, like upside down 

platforms[12]. During their research they found that this method also 
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allows the quadcopters to pick up objects withthe use of a claw. But 

what is more important is that although the global localization is 

given by a vision system, the quadcopters have to identify the landing 

surfaces on their own and thusstarting a path to autonomy. 

 By (2012) Daniel Mellinger reported methods to both single 

and multiple quadcopter systems, which allowed the quadcopters to 

generate and follow aggressive trajectories[13]. Lastly in [14]a fleet 

of small quadcopters flies in formation with less than a body length 

of separation, they overcome obstacles without ever crashing into 

each other or theenvironment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER THREE 
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METHEDOLOGY 

 
 
 

In this chapter the proposed architecture and its implementation will be 

described in details in addition to the ground station that handles the interface 

with the user. For a better understanding, it should be noted that software 

architecture refers to the idle design of the system, while hardware 

architecture refer to the actual implementation based on the available 

components in the market. 

 

3.1  The Design of the Autonomous Quadcopter: 

The quadcopter can be implemented to be an autonomous robot through 

the explained design architecture and can be utilized to do several jobs in both 

civilian and military applications. 

        The focus of this thesis is to design the quadcopter for civilian 

applications, specifically for search and rescue missions.  In the past ten years 

there have been a large number of urban disasters throughout the world due to 

weather and earthquakes Hurricane Katrina in (2005), the (2010) Haiti 

earthquake, or the (2011) Tohoku earthquake and tsunami. In urban disaster 

scenarios, USAR (Urban Search and Rescue) teams respond to find and save 

victims. Unfortunately, rescue teams typically have less than 48 hours to 

rescue victims before their chance of survival decreases dramatically. The 

quadcopter may be the most effective solution for such time constrained and 

dangerous rescue missions. 

 

 Quadcopter dynamics: 
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          The quadcopter consists of four rotors that are mounted at the end of 

two perpendicular axes driven by a DC brushless electric motor. 

         The quadcopter has two configuration of rotors’ rotation:  

  Plus configuration (+): where rotors at opposite ends of an arm turn in the 

same direction and rotors on a perpendicular axis rotates in the opposite 

direction. This concept is illustrated in Figure 3-1. 

 

 

 

 

 

 

Figure 3-1: Plus quadcopter schematic. 

         When all four motors spine at the same speed, the rotors create thrust 

that lifts the quadcopter into the air [9]. As there are pairs of rotors spinning in 

opposite directions, the torque produced in each direction around the yaw axis 

cancels out and the yaw angle remains constant. To change the pitch attitude, 

the speed of motor (1) is reduced while the speed of motor (3) is increased, or 

vice versa, creating a non-zero pitch angle. As both motor (1) and motor (3) 

are rotating in the same direction the total counteracting torque provided is not 

changed so the quadcopter maintains its yaw angle. The roll attitude is 

adjusted in a similar manner. To adjust the yaw angle the speed of motors (1) 

and (3) are increased while the speed of motors (2) and (4) are decreased, or 

vice versa. This creates imbalance in the total torque in the yaw axis and so 

the quadcopter will change yaw angle.  

1 

2 

3 

4 
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         The quadcopter should maintain a relatively constant thrust during yaw 

and the height of the aircraft should remain constant. 

 X configuration: is quite similar to the plus configuration in everything except 

that the pitch movement is achieved by increasing the speed of motor (1) and 

(2) at the same time and decreasing the speed of motor (3) and (4) or vice 

versa; the roll movement is achieved by increasing the speed of motor (2) and 

(3) at the same time and decreasing the speed of motor (4) and (1) or vice 

versa. 

         X configuration is preferred when using a camera because the camera 

will have enough space to take clear photos without interfering with the rotors 

 

 

 

 

 

Figure 3-2: X quadcopter schematic. 

 

     While the above description provides a simplified overview of how a 

quadcopter maneuvers, the dynamics of the quadcopter are complex and 

tightly coupled. These dynamics make it extremely difficult for a human to 

control the quadcopter without an onboard flight augmentation system to 

reduce the unwanted response down to an acceptable level. 

 Quadcopter control: 

        Roll, pitch, and yaw dynamics are controlled by increasing or decreasing 

the speed of four motors by the controller to achieve the desired value. 

1 2 

3 4 
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Different control strategies of the quadcopter have been studied in 

commercial, academic, and military platforms such as PD-PID controller, 

inverse control, back stepping control, and sliding mode control [4]. 

        Four rotors increase the maneuverability of the vehicle. Having four 

rotors increases load carrying capacity, on the other hand, constrains it to 

consume more energy.  

 The quadcopter design consideration: 

 Take-off throttle: 

  It is the throttle that should be applied to every motor to make the quadcopter 

leave the ground. Take-off throttle can be calculated from the basic static laws 

of beams; which state that the beam will remain static if the resulting forces in 

the opposite directions are the same. For example (figure3-3) if the beam in 

the ground the downward force of it is its weight which can be calculated 

from the equation[3.1] [10]: 

� = � ∗ �[3.1] 

Where w is the weight, m is the mass of the beam and g is earth 

gravity. To make the beam move in up direction, the resulting 

upward force should exceed the weight.  

 

 

 

 

 

 

 

Figure 3-3: Illustration of the forces on a beam 
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       In the quadcopter the total forces generated by the motors should 

exceeds its weight in order to take off from the ground. Every motor has a 

specification of the maximum thrust that can be generated (in grams) written 

in the data sheet of the manufacturer. The thrust of the motors is controlled as 

a percentage of the maximum thrust. For example sending (40%) throttle 

means that the motor will generate (40%) of the maximum thrust. And the 

take-off throttle in percentage can be calculated according to the following 

equation: 

 

����	���	�ℎ������ =
�����	����	��	�ℎ�	����������

4∗�������	�ℎ����	��	�ℎ�	�����
∗100%   [3.2] 

 The center of the gravity: 

         It is the point in the body of an object that the object rotates 

around. For example when throwing a spoon in the air it rotates 

around a fixed point that point is the center of gravity [9].  

 

 

 
 

 

 
 

 

 

 

Figure 3-4: The center of the gravity of a spoon 
 

 Around the center of gravity the mass is distributed equally. If 

the center of gravity is in the middle of the body then applying equal 
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forces in the corners of the body will not rotate it because the 

resulting rotation momentum is zero; 

Rotation momentum = Force*Length/2 – Force*Length/2 = 0. 

 

 

 

 

 

 

 

 

Figure 3-5: Illustration of the rotation momentum 

        Adjusting the center of gravity position to match it with the center of the 

body is very important to make the quadcopter stable and not making any 

rotation when sending equal throttle to all the motors. It is done by suspending 

the quadcopter from its body center and adjusting the distance of the 

components from the center until the body agrees with the horizontal plane. 

 

 

 The advantages of the quadcopter: 

         Despite the complex control systems required for a quadcopter aircraft, 

there are many benefits to this aircraft over other platforms. Having four 

rotors as opposed to a single rotor in a traditional helicopter allows each of the 

rotors on a quadcopter to be smaller and lighter, hence carrying less kinetic 

energy [2]. This is advantageous when working within indoor environments. 

For example, in the undesired case of a blade striking an object, due to the 

 L 

F F 
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design of a quadcopter, much less damage will result when compared to a 

helicopter in the same situation. It is also possible to mount the rotors within a 

duct or shroud to protect both the aircraft and any object if contact occurs.  

The mechanics of the quadcopter are relatively simple and the aircraft is able 

to use fixed pitch propellers. This reduces setup, maintenance, and 

manufacturing costs and time associated with a quadcopter. The relatively 

simple mechanical setup of a quadcopter also leads to limited vibration 

making it a friendly environment for inertial sensors and cameras. 

3.2 Software architecture: 

The software architecture should be modular and flexible to allow researchers 

to change only certain parts of the system and still get a working 

deployment[1]. The overall design architecture is presented in Figure 3-6. 

 

 

 

 

 

 

a 
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Figure 3-6: Main software algorithm 

 

a 
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3.2.1 Perception layer: 

     The perception of nearby objects is done using four ultrasonic sensors. 

The maximum measurement rate of the ultrasonic sensor is (15) readings per 

second; reading above this rate causes ultrasonic buffer to overflow[4]; ten 

readings per second is found satisfactory and chosen for the fusion algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7: Ultrasonicfusion algorithm 

GPS sensor also has a low measurement rate so the above algorithm is used 

for its readings too. 



 
27 

3.2.2 Localization/map building layer: 

Localization in outdoor environments gives the position of the robot using 

GPS sensor readings[1]. The proposed implementation does not use any 

algorithm like SLAM-based algorithms for localization. 

3.2.3 Cognition/planning layer: 

 In planning layer there are two main algorithms, attitude planner and 

attractive and repulsive obstacle avoidance planner. The path to the goal 

position is calculated by an attitude planner then if there is nearby obstacles 

the attractive and repulsive planner calculates the best movement that keep the 

quadcopter away from collision and at same time tracking its goal[14].  

Attitude planner first finds the quarter that the goal is in assuming an x, y 

Cartesian axes that the quadcopter is the center of it as shown in figure (3-3). 

Then it calculates the angle to the goal by the method explained in the 

algorithm flowchart (figure 3-9). Attractive and repulsive working mechanism 

is also explained in the algorithm flowchart (figure 3-10). 

 

 

 

 

 

 

 

 

 

Figure 3-8: Calculating the quarter 
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Figure 3-9: Attitude algorithm 
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Figure 3-10: Obstacle avoidance algorithm 
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3.2.4 Motion control layer: 

 

Because of the difficulties of designing all the controllers from scratch a flight 

controller is used to do the final stabilization control but the attitude and 

altitude controllersas well as the position controller will be designed as 

acascaded loop P-controller in the on-board computer.  

Attitude and altitude inner loop controller receives the current altitude 

from the barometer and attitude from the IMU sensor fusionthen it calculates 

the error between the current and desired values and calculates the control 

command to decrease that error[3]. If all the errors become below deified 

thresholds for every process then the controller declares completing the 

mission (static planning) but the thresholds is going to be selected large so 

that to reduce dramatically the number of the correction iterations (semi-

dynamic planning). Figure 3-11 illustrates the attitude and altitude controller 

loop. 
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Figure 3-11:Attitude and altitude controller algorithm 
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3.3  Hardwarearchitecture: 

This section describes the system hardware thatthe quadcopter is made of 

which has been classified into four categories: sensors, actuating system, 

power system and processing units. 

3.3.1 Sensors 

The quadcopter has a set of sensors that help in identifying its state and 

the environments around it. These sensors are: ultrasonic, barometer, IMU, 

GPS sensor and a camera. 

 Ultrasonic sensor (HC-SR04 Module) 

Ultrasonic distance sensors are designed to measure distance between the 

source and target using ultrasonic waves. It uses sonar to measure distance 

with high accuracy and stable readings. 

Five ultrasonic sensors are used in order to measure the obstacles distance 

from five directions: down, right, left, forward and backward to help the 

quadcopter to avoid obstacles.   

Ultrasonic ranging module (HC-SR04) provides (2cm – 400cm) non-contact 

measurement function, the ranging accuracy is(3mm). The module includes 

ultrasonic transmitters, receiver and control circuit. The transmitter transmits 

short bursts which gets reflected by target and are picked up by the receiver. 

The time difference between transmission and reception of ultrasonic signals 

is calculated. Using the speed of sound and (‘Speed = Distance/Time’) 

equation, the distance between the source and target can be easily calculated. 

The basic principles of work:  

(1) Using IO trigger for at least (10us) high level signal; 

(2) The Module automatically sends eight (40 kHz) anddetect whether there is 

a pulse signal back.  
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(3) If the signal back, through high level, time of high output IO duration is 

the time from sending ultrasonic to returning.  

 

Test	distance	 =
high	level	time × speed	of	sound	(340m/s)		

2
 

 

Table 3-1:Ultrasonic (HC-SR04) distance sensor module pins 

Name Function 

VCC 5V, input power 

TRIG Trigger Input 

ECHO Echo Output 

GND Ground 

 

The ECHO output is of (5V). The input pin of Raspberry Pi GPIO is rated at 

(3.3V). So (5V) cannot be directly given to the unprotected (3.3V) input pin. 

Therefore, we use a voltage divider circuit to bring down the voltage to 

(3.3V). 

 

 

Figure 3-12: Interfacing Raspberry Pi with ultrasonic (HC-SR04) 

https://electrosome.com/ultrasonic-sensors-distance-proximity/
https://electrosome.com/raspberry-pi/
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 Barometer (BMP180) 

The barometer sensor is used to measure the altitude from sea level.      

An I2C bus is used to control the sensor, to read calibration data from the 

EEPROM and to readthe measurement data when A/D conversion is finished. 

SDA (serial data) and SCL (serialclock) have open-drain outputs. TheI2C is a 

digital two wire interface and has Clock frequencies up to (3.4Mbit/sec).  

 

Pin configuration of BMP180 is shown in below table: 
 

Table 3-2: Pin configuration of Barometer (BMP180) 

Name Function 

CSB* Chip Select 

VDD Power Supply 

VDDIO Digital Power Supply 

SDO* SPI output 

SCL I2C serial bus clock input 

SDA I2C serial bus data (or SPI input) 

GND Ground 

 

A pin compatible product variant with SPI interface is possible upon 

customer’s request. For I2C (standard case) CSB and SDO are not used, they 

have to be left open.  

 IMU (MPU-9250) 

An inertial-measurement unit (IMU) is an electronic device that measures and 

reports a body's specific force, angular rate, and sometimes the magnetic field 

surrounding the body, using a combination of accelerometer, gyroscope and 
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magnetometer. The accelerometer measures acceleration and also force, so the 

downwards gravity will also be sensed. The gyroscope measures angular 

velocity, in other words the rotational speed around the three axes.A 

magnetometer measures the directions and strength of the magnetic field. This 

magnetic sensor can be used to determine which way is south and north. The 

pole locations are then used as a reference together with the Yaw angular 

velocity around from the gyroscope, to calculate a stable Yaw angle. 

(MPU-9250) features three 16-bit analog-to-digital converters (ADCs) for 

digitizing the gyroscope outputs, three 16-bit ADCs for digitizing the 

accelerometer outputs, and three 16-bit ADCs for digitizing the magnetometer 

out puts. 

 

 

Figure 3-13: Pin out Diagram for IMU (MPU-9250) 
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Table 3-3:IMU (MPU-9250) pin layout 

Pin number Pin name Pin description 

1 RESV Reserved, connected to VDDIO. 

7 AUX_CL I2C master serial clock(external sensors)  

8 VDDIO Digital I/O supply voltage 

9 ADO/SDO I2C Slave address (AD0);SPI serial data o/p 

10 REGOUT Regulator filter capacitor connection  

11 FSYNC Frame Synchronization digital input 

12 INT Interrupt digital output 

13 VDD Power supply voltage and digital I/O voltage 

18 GND Power supply ground 

19 RESV Reserved, do not connect 

20 RESV Reserved connect to GND 

21 AUX_DA I2C master serial data (external sensors) 

22 n-CS Chip select (SPI mode only) 

23 SCL/SCLK I2C serial clock(SCL);SPI serial clock(SCLK) 

24 SDA/SDI I2C serial data (SDA);SPI serial data input(SDI) 

2-6, 14-17 NC Not internally connected.  

 

 GPS (NEO-6) 

The GPS module retrieves the location information from the near 

satellites. The (NEO-6) module series brings the high performance of the (u-

blox 6) position engine to the miniature (NEO) form factor. (U-blox 6) has 

been designed with low power consumption and low costs. 

The main components of (NEO-6) module are EEPROM to save the setting 

and enable Display Data Channel (DDC) mode, backup battery to allow the 

system to warm start and antenna for communications purpose. The I2C 

compatible (DDC) interface can be used either to access external devices with 

a serial interface EEPROM or to interface with a host CPU. 
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Table 3-4:GPS (NEO-6) pin layout 

Pin name Function 

VCC Power supply 

TX Digital pin for Transmit data 

RX Digital pin for receive data 

GND Ground 

 

 The camera 

      The camera was used to stream image capturesfrom the 

environment that the quadcopter navigates. 

 

3.3.2 Actuating system: 

The Actuating systemis responsiblefor performing the movement by 

adjusting the forces and the torques around the quadcopter, it consists of three 

components: brushless motors, electronic speed controllers (ESCs) and 

propellers. 

 Brushless motors 

Brushless DC motors provide the necessary thrust to the 

propellers. Each rotor needs to be controlled separately by a speed 

controller. 

Brushless motors are a bit similar to normal DC motors in the way that 

coils and magnets are used to drive the shaft. Though the brushless motors do 

not have a brush on the shaft which takes care of switching the power 

direction in the coils, and this is why they are called brushless. Instead the 

brushless motors have three coils on the inner (center) of the motor, which is 

fixed to the mounting. On the outer side it contains a number of magnets 
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mounted to a cylinder that is attached to the rotating shaft. So the coils are 

fixed which means wires can go directly to them and therefor there is no need 

for a brush. 

Generally brushless motors spin in much higher speed and use less power 

at the same speed than DC motors. Also brushless motors don’t lose power in 

the brush-transition like the DC motors do, so it’s more energy efficient. 

Brushless motors come in many different varieties, where the size and the 

current consumption differ. To select brushless motor the KV-rating,weight, 

thrust per motor, size, type of propeller should be put in consideration. 

 

 Electronic Speed Controller (ESC) 

The brushless motors are multi-phased, normally 3 phases, so direct supply of 

DC power will not turn the motors on. That where the Electronic Speed 

Controllers (ESC) comes into play. The ESC generates three high frequency 

signals with different but controllable phases continually to keep the motor 

turning. The ESC is also able to source a lot of current as the motors can draw 

a lot of power.It has three input ports (two for the battery and one for the 

PWM) and three output ports to the motor as shown in below Figure. 

 

 

 

 

Figure 3-14: Typical Electronic Speed Controller 

 

 

 The propellers: 

ESC 
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A propeller is a type of fan that transmits power by converting rotational 

motion into thrust. A pressure difference is produced between the forward and 

rear surfaces of the airfoil-shaped blade, and a fluid (such as air or water) is 

accelerated behind the blade.  

The propellers come in different diameters and pitches (tilting) according to 

the frame size and the type of the motors. 

 

3.3.3 The Power System: 

Power system supplies the different components with power it consists 

of: (11.1V) battery, a power distribution board and a buzzer. 

 The battery: 

Lithium-polymer battery (11.1V 2200mAh)is used to supply the power. 

Lithium batteries are batteries that have lithium as an anode. They stand apart 

from other batteries in their high charge density (long life) and high cost per 

unit. Depending on the design and chemical compounds used, lithium cells 

can produce a voltage of(3.7 V)per cell. 

 The power distribution board: 

It is used to distribute the power of the battery to the motors. It has two 

(5V)voltage regulator outputsone of them is used to supply the on-board 

computer. 

 The buzzer: 

The buzzer is used to measure the voltage of the battery and make alarm when 

battery cells are below a critical voltage level (specified by the user). 
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3.3.4 TheProcessing units: 

Three processing units are used, the first one is Raspberry Pi 3 for 

performing the top level computation and control,the second one is CC3D 

flight controllerto perform the down level control by stabilizing the system at 

inputs pushed by the RaspberryPi 3 and last oneis Arduino which acts as an 

intermediate communication unit to pass the inputs to the flight controllerfrom 

the Raspberry Pi. 

 Raspberry Pi: 

The Raspberry Pi is a single-board small computer that has 

computational power could be compared with the big PCs. It is used to 

perform the top level perception, localization, planning and control tasks. 

 Arduino: 

Arduino is used as a PWM generator because it has 6 stable PWM pins 

which is a limitation of the Raspberry Pi which has only one and the 

(CC3D) needs at least 4 PWM inputs to perform the stabilization process. 

The board features serial communication interfaces such as Universal Serial 

Bus (USB) which will be used for the communication with the Raspberry Pi. 

 

 Flight controller (CC3D): 

CC3D flight controller is used to stabilize the movement of the quadcopter by 

stabilizing at the Raspberry Pi commands and compensating for any unusual 

movement caused by the air currents or any other external force. 
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3.4 The ground station system 

It is used to form the interface between the user and the autonomous 

quadcopter in which the user canmonitor the state of the quadcopter (GPS 

coordinates, altitude and attitude); also he can access the quadcopter camera to 

see what the autonomous quadcopter sees. 

In addition the ground station allows the user to send the goal GPS 

coordinates to the quadcopter.The communication is done via Wi-Fi, and the 

packets are sent over a TCP connection to/from the ground station. 

 

Ground station                                                             Quadcopter 

Port1 goal coordinates     port1        

Port2request: images      port2        

Port3  coordinates          port3 

 

Figure 3-15: The communication architecture between the ground station and the 

quadcopter.  

 

3.5 The simulation 
 

 This section contains a description of the environment used to 

simulate the autonomous quadcopter, the simulation parameters, the 

simulation process as well as a brief discussion about the results. 

3.5.1 The simulation environment 

 The Virtual Robot Experimentation Platform (V-REP) simulation 

environment was used to simulate the movement of the autonomous 

quadcopter in an indoor environment. V-REP is a general purpose robot 

simulator with integrated development environment. Lots of sensors, 

Planner 

Camera 

GPS sensor 

Trigger goal 

Show video 

Area map 
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mechanisms and robots packages can be added to the environment and the 

whole systems can bemodeled and simulated in various ways. It has many 

advantages such as fast prototyping and verification, easy to use, fast 

algorithm development, and its compatibility with different programing 

languages such as C, C++, Lua and python. 
 

Table 3-5: Illustrates the simulation environment parameters 

The parameter Comment 

The sensors 
8 proximity sensors and 3 line following 

sensors 

The robot X configuration quadcopter 

The environment 
Indoor environment with a plant and 3 

cylinders 

The view of the environment 

4 room cameras; a left side, right side, 

upper side and a moving camera. 1 front 

robot camera 

The goal of the robot Following a black line drawn in the floor 

Path planning algorithm Stay-on-the line algorithm 

Obstacle avoidance algorithm Attractive and repulsive algorithm 

The programming language Lua programming language 

The safe distance 0.16*(size factor of the robot body) 
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3.5.2 The simulation process: 

 The simulation uses four cameras (1-4) to monitor the movement of 

the quadcopter in a 3D indoor environment. The quadcopter different 

sensors and its front camera are monitored too in (5). A black line path with 

some obstacles in it is drawn in the floor in a form of a closed loop. The 

quadcopter should be able to navigate within the line using the line 

following sensors while avoiding the collision with the plant and the 

cylinders in that path.  

 

Figure 3-16: The autonomous quadcopter simulation 

 The quadcopter finds the line by using three line following sensors 

that return ‘True’ when detecting a black line. If the middle sensor sees the 

line this is an indication that the quadcopter is within the path and the path 

planner command the quadcopter to continue the movement without 

steering, but if the right sensor sees the line this is an indication that the 

quadcopter is in the left to the line and the path planner command the 

quadcopter to steer to the right and vice versa. 

3 

1 2 

4

5 

1 2 

3 4 

5 
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 The attractive and repulsive obstacle avoidance then reads the 

distances of eight sensors distributed around the quadcopter’s body and 

compares these distances to a safe distance. In case all the eight 

measurements is above the safe distance the path planner command is 

passed to the motor controller to execute the path, but if there is a 

measurement or more below the safe distance an avoidance path is 

calculated based on the measurement that is function of the collision 

distance and the path to the goal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-17:Detection of an obstacle shown in the five views 
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3.6 Prototype Implementation 

This section describes the implementation of the proposed model of 

the quadcopter described in the previous sections. 

 

3.6.1 Frame design 

 The frame is designed in a form of layers that contain the main 

components. Our main focus was to make the frame as small and light as 

possible. The components dimensions have been measured to compute the 

spacing between every two layers in addition to the diameter of each layer 

considering our main focus. The layer diameters as well as the spacing 

between every two layers are chosen based on components’ dimensions to 

allow the component to be put conveniently. 

 

Table 3-6: The specifications of the Quadcopter components 

Component Length/cm Width/cm Height/cm 

Arduino 6.8 5.8 1.2 

Raspberry pi 8.8 5.8 1.8 

CC3D 3.5 3.5 1.7 

Ultrasonic 4.6 2.0 2.0 

Camera 2.5 2.4 1.0 

Battery 10.5 3.3 2.4 

Buzzer 3.5 2.4 1.1 

GPS sensor 3.5 2.5 0.5 

Power distribution board 5.2 5.2 0.2 
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Table 3-7: Dimensions of the Quadcopter components 

Components Dimensions(cm) 

Layer1 diameter 11.5 

Layer2 diameter 9.7 

Layer3 diameter 9.7 

Spacing between layer1 and layer2 3 

Spacing between layer2 and layer3 3 

 

         Polycarbonate-molds are used to fabricate the layers for their small 

weight and their strength. Layers have been cut by a laser cutting machine 

and connected together by copper spacers. A plastic cover is attached to the 

upper layer which contains the CC3D flight controller for protection 

purposes. 

 

3.6.2 Prototype design phases 
 

 Phase 1: 

 After doing the frame dimension calculations and having the layers 

cut, we marked the layers in the places we want to place the components at 

and the places we want to connect them to each other. After that we drilled 

the layers and assembled everything together. 
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Figure 3-18: Drilling the layers 

 
\ 
 

 

 

 

 

 

 

 

Figure 3-19(A and B):Connecting everything together 

 

 

 Phase 2: 

 All the motors, ESCs and processing units have been tested, and 

verified that everything within the frame is working fine without any power 

or space problems.  

 

A 

B 
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Figure 3-20: Testing the different components 
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CHAPTER FOUR 

RESULTS 

 

 

 Thischapter discusses the results related to the implemented design 

including the hardware calibration and the building and testing phases. 

4.1 Results of the simulation: 

An experiment has been done to the autonomous quadcopter to evaluate the 

performance of path planning and attractive and repulsive obstacle 

avoidance algorithms using V-REP in an indoor environment. The indoor 

environment has been designed as shown in Figure 4-1. 

  

 

Figure 4-1: Show the quadcopter in the designed indoor environment 
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The path planner read the readings of the three line following 

sensors, the leftmost sensor returned ‘True’. The planner then 

successfully commanded the quadcopter to adjust the movement toward 

the left. After the execution of the movement the path has been tracked 

again as shown in Figure 4-2 

 

 

Figure 4-2: The quadcopter succeeded to adjust its path in a turn 

 

 Along the path an obstacle has been observed by one of the left 

proximity sensors. The obstacle avoidance algorithm calculated the 

avoidance action and commanded the qaudcopter to turn into the right. 

The quadcopter successfully avoided the collision with the obstacle as 

shown in Figure 4-3 

Inclination 
 Point 



Figure 4-3: 

 

4.2 Hardware calibration:

 Motors calibration

All Motors have been calibrated to f

motor which is shown in the following table

 

Table 4-1: Motors calibration

Motor NO.

1 

2 

3 

4 
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 The quadcopter successful to read and avoid obstacle

calibration: 

Motors calibration 

All Motors have been calibrated to figure out the stating throttle 

ch is shown in the following table. 

calibration 

Motor NO. Starting duty cycle 

1116 us 

1116 us 

1116 us 

1116 us 

 

read and avoid obstacle 

igure out the stating throttle of each 
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 IMU calibration: 

The IMU has been calibrated to find the minimum and the maximum values 

of the magnetic field in the three axes measured by the compass and the 

minimum and maximum values of the rate of change of the velocity in the 

three axis measured by the accelerometer. 

 The calibration data is saved in a file and supplied to the fusion 

algorithm to calculate the angles of the quadcopter in the three axes with 

respect to the world. Table (4-2) and Table (4-3)show the calibration data. 

Table 4-2: Compass calibration 

Compass axis Value 

CompassMinX -3.063191 

CompassMinY -74.754135 

CompassMinZ -52.087727 

CompassMaxX 75.672134 

CompassMaxY 2.896713 

CompassMaxZ 19.115725 

 

Table 4-3:Accelerometer calibration 

Accelerometer axis Value 

Accelerometer Min X -1.153897 

Accelerometer Min Y -1.066652 

Accelerometer Min Z -1.111786 

Accelerometer Max X 1.259294 

Accelerometer Max Y 1.099110 

Accelerometer Max Z 1.032464 
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4.3 Prototype testing 

       The response of the quadcopter controller has been tested while 

following the required safety procedures by connecting the quadcopter 

by four ropes from four different sides to pull it in case it does any 

unusual behavior and by wearing gloves to protect the tester. 

 

 

 

 

 

Figure 4-4: The quadcopter test bed 

 
Figure 4.4:The quadcopter test bed 

 

4.4 ComponentsReliability 

4.4.1 Sensors 

After testing all the sensors we found that: 

 IMU: was reliable under all testing circumstances and 

provided accurate readings 

 GPS: our first GPS sensor (u-blox NEO 6M) was reliable and 

giving accurate readings outdoor. But the current one (APM 

2.6 GPS module) is unreliable and giving inaccurate readings. 

 Ultrasonic: our first ultrasonic sensors were reliable under all 

circumstances and giving accurate readings for different 
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objects. But the current are unreliable and giving inaccurate 

readings for some objects. 

 Barometer: our first and second barometer sensors were 

unreliable at all and give totally false readings. 

4.4.2 Actuating system 

Our first actuating system (A2212 brushless motors, 30 A ESCs 

and (1045) propellers) was unreliable, motors stop spinning above 40% 

throttle and ESCs were responding differently to the PWM signal. 

Propellers were easy to crash. 

 Our second one (Elite 2204-2300KV brushless motors, 12 A ESCs and 

(6045)three wings propellers) was unreliable too but when we have 

changed the motors to Emax-MT2204-2300KV and the propellers to 

(6045) two wings propellers the actuating system became reliable and 

responsive. 

4.4.3 Power system 

Along the project we had many issues with the power system. First 

we had problems providing the processing and sensing units with 

sufficient power when we was using (7805-5V) linear regulator. Issue 

has been resolved using the power distributing board regulator. 

The second issue was the power failure due to the insufficient 

motors current delivered by an impaired battery. Issue has been 

resolved by changing the battery. 

The current power system reliability is acceptable. 

 

 



 
55 

4.4.4 The processing units 

The processing units were totally reliable and provide acceptable 

performance under all circumstances. 

 

4.5 System stability  

   The final flight system was unstable due to three contributing factors: 

 

 The difficulty of matching the center of gravity with the body 

center. 

 The difficulty of leveling the flight controller with the horizontal 

plane of the actuating system. 

 The difficulty of tuning the PID controllers using trial and error 

method 

 
4.6 The ground station testing 

The ground station has been tested to evaluate its performance against 

its range and the result shows that the performance of the 

communication between the ground station and the quadcopter is 

pre�y good (up to 50m). 
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CHAPTER FIVE 

CONOCLUTION AND RECOMONDITATION 
 
 
 
 
 

 In this chapter we will take some conclusions about the developed 

project, the chosen path, andthe problems faced throughout this thesis. 

 

5.1 Final Remarks: 

 After studying a lot about robotics and autonomous agents it is clear 

that the modular architecture is the best solution to designing autonomous 

mobile robots because it enables the designer to modify completely any part 

of the system without affecting the other parts. Also it allows the 

researchers to focus their effort on only one part of the autonomous system 

components (perception, localization, planning or control).  

 After a comprehensive study about different algorithms in the 

different autonomous system layers we made a trade-off between the 

complexity and the performance when choosing the suitable algorithm in 

each layer for our model.  

 in the localization layer we have studied lots of algorithms and we 

found that all of them are complex, have too many parameters need to be 

adjusted to reach satisfactory performance so we used the direct GPS sensor 

measurement to localize our platform but we compensated for the GPS 

measurement noise by a powerful obstacle avoidance algorithm, Attractive 
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and repulsive obstacle avoidance algorithm which found very robust and 

simple at the same time. 

  The control loop we have designed is a semi-dynamic planning and 

control loop in which the planner may be considered part of the control 

loop. The control loop is basically static which means it should execute the 

planned path completely before planning again but we have adjusted the 

thresholds of the controller to return to the planner quickly which increased 

the supervision of the planner. 

 The following table shows the things which were helpful to achieve 

our goals and the things which have found harmful to achieve our goals 

 

Table 5-1: Different remarks about the project 

Helpful things Harmful things 

The modular system architecture 
Developing our own PID rate 

stabilizer 

CC3D flight controller 
Power failures due to insufficient 

power 

The safety procedures Using complex control commands 

The test platform Using sensors without calibration 
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5.2 Recommendations: 

 The main purpose of this project was to launch a quadcopter platform 

that uses 4 ultrasonic sensors to detect potential collision; we recommend 

using laser range finding sensor for future implementations because it has a 

wide angle of detection (up to 360⁰) and can detect any number of objects 

within its angle of view.  

 Also we canceled the use of any localization algorithm in the 

localization layer due to the time constraint, we recommend using large 

scale direct monocular SLAM (LSD-monocular SLAM) because of its high 

performance in building large map of the environment using a single 

camera and at low computational power compared to its counterparts. 
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Appendix A  
 

The Main Quadcopter Code (python) 

 
import Adafruit_BMP.BMP085 as BMP085 
import serial 
import time 
import math 
 
ser = serial.Serial('/dev/ttyACM0', 115200) 
ch1,ch2,ch3,ch4,ch5=1500,1500,1000,1500,1500 
th1,th2,th3,th4= 
hang_flag=0 
setpoint_alt,setpoint_roll,setpoint_pitch= 
floor_alt=sensor.read_altitude() 
# outside scripts connections 
hostName='127.0.0.1' 
socket_goal = socket.socket( AF_INET, SOCK_DGRAM ) # connect 
with the Ground station goal_sender 
socket_goal.bind( ('0.0.0.0', 5010) ) 
socket_imu = socket.socket( AF_INET, SOCK_DGRAM )  # connect 
with IMU fusion 
socket_imu.bind( (hostName, 5005) ) 
socket_GPS = socket.socket( AF_INET, SOCK_DGRAM )   # connect 
with GPS fusion 
socket_GPS.bind( (hostName, 5055) ) 
socket_fr = socket.socket( AF_INET, SOCK_DGRAM )   # connect 
with the front ultrasonic fusion 
socket_fr.bind( (hostName, 5015) ) 
socket_bc = socket.socket( AF_INET, SOCK_DGRAM )   # connect 
with the back ultrasonic fusion 
socket_bc.bind( (hostName, 5020) ) 
socket_rs = socket.socket( AF_INET, SOCK_DGRAM )   # connect 
with the right ultrasonic fusion 
socket_rs.bind( (hostName, 5025) ) 
socket_ls = socket.socket( AF_INET, SOCK_DGRAM )   # connect 
with the left ultrasonic fusion 
socket_ls.bind( (hostName, 5015) ) 
 
 
 
# receive the goal from the ground station goal_sender 
goal, addr = socket_goal.recvfrom(1024) 
start_time=time.time() 
desired_la=float(goal[0:goal.find(',')]) 
desired_lo=float(goal[goal.find(','+1:)]) 
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def 
stabilize(setpoint_roll,setpoint_pitch,setpoint_alt,setpoint_yaw
): 
    while True: 
 
        # Read current values 
        data, addr = sock_imu.recvfrom(1024)  
        current_pitch=int(data[6:data.find(',')]) 
        
current_roll=int(data[data.find("roll")+5:data.find(',',data.fin
d('r'))]) 
        current_yaw=int(data[data.find("yaw")+4:]) 
        current_alt=sensor.read_altitude()-floor_alt   # to read 
the altitude with respect to the ground 
 
        if setpoint_yaw==365: 
            setpoint_yaw=current_yaw 
 
        # Calculate the processes errors 
        alt_error=setpoint_alt-current_alt 
        pitch_error=setpoint_pitch-current_pitch 
        roll_error=setpoint_roll-current_roll 
        yaw_error=setpoint_yaw-current_yaw 
 
        # Calculate the correction 
        if  alt_error>th1 and pitch_error>th2 and  
roll_error>th3 and  yaw_error>th4: 
            additive_throttle=kp*alt_error #kp is detirmined 
experimentally 
            additive_pitch=kp*pitch_error 
            additive_roll=kp*roll_error 
            additive_yaw=kp*yaw_error 
 
            # Calculate the final channels values 
            ch1+=int(round(additive_roll)) 
            ch2+=int(round(additive_pitch)) 
            ch3+=int(round(additive_throttle)) 
            ch4+=int(round(additive_yaw)) 
 
            # send corrections to Arduino 
            ser.write(str(ch1)+str(ch2)+str(ch3)+str(ch4)) 
            time.sleep(.01) 
        else : 
            break 
 
def 
get_goal_attitude(current_la,current_lo,desired_la,desired_lo): 
    if (desired_la-current_la>0)and(desired_lo-current_lo>0): 
        goal_attitude=90-math.atan((1.03754*abs(desired_la-
current_la))/abs(desired_lo-current_lo))*180/math.pi # 
multiplying by (180/pi) because the angle is returned in radian 
    elif (desired_la-current_la>0)and(desired_lo-current_lo<=0): 
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        goal_attitude=270+math.atan((1.03754*abs(desired_la-
current_la))/abs(desired_lo-current_lo))*180/math.pi 
    elif (desired_la-current_la<=0)and(desired_lo-current_lo<0): 
        goal_attitude=270-math.atan((1.03754*abs(desired_la-
current_la))/abs(desired_lo-current_lo))*180/math.pi 
    else: 
        goal_attitude=90+math.atan((1.03754*abs(desired_la-
current_la))/abs(desired_lo-current_lo))*180/math.pi 
    return int(round(goal_attitude)) 
 
def goal_reached(current_la,current_lo): 
 
    if (abs(current_la-desired_la)<=.00005)and(abs(current_lo-
desired_lo)<=.00005): 
        return True 
    else: 
        return False 
def 
obs_avoidance(goal_attitude,front_obstacle,back_obstacle,Rside_o
bstacle,Lside_obstacle): 
    if hang_flag==0: 
        if (front_obstacle<170)and(Rside_obstacle>170): 
            yaw=goal_attitude+int(round(((170-
front_obstacle)/170)*90)) 
            if yaw>360: 
                yaw=yaw-360 
            return "steer "+str(yaw) 
        elif 
(front_obstacle<170)and(Rside_obstacle<170)and(Lside_obstacle>17
0): 
            yaw=goal_attitude-int(round(((170-
front_obstacle)/170)*90)) 
            if yaw<0: 
                yaw=yaw+360 
            return "steer "+str(yaw) 
        elif 
(front_obstacle<170)and(Rside_obstacle<170)and(Lside_obstacle<17
0): 
            hang_flag=1 
            return "back" 
        elif 
(front_obstacle>170)and(Rside_obstacle<30)and(Lside_obstacle>150
): 
            return "left"  
        elif 
(front_obstacle>170)and(Rside_obstacle>170)and(Lside_obstacle<30
): 
            return "right" 
    else: 
        if Rside_obstacle>170: 
            hang_flag=0 
            return "right" 
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        elif Lside_obstacle>170: 
            hang_flag=0 
            return "left" 
        else: 
            return "back" 
 
 
# taking-off 
ser.write('1500150012501500') 
stabilize(0,0,sensor.read_altitude()-floor_alt,365) 
stabilize(0,0,200,365) 
 
# main control an planning loop 
while True: 
    # Read GPS coordinates 
    current_location, addr = socket_GPS.recvfrom(1024) 
    
current_la=float(current_location[0:current_location.find(',')]) 
    
current_lo=float(current_location[current_location.find(','+1:)]
) 
    # Calculate the goal attitude 
    
goal_attitude=get_goal_attitude(current_la,current_lo,desired_la
,desired_lo) 
 
    # Read Ultrasonic sistances 
    front, addr = socket_fr.recvfrom(1024) 
    back, addr = socket_bc.recvfrom(1024) 
    right, addr = socket_rs.recvfrom(1024) 
    left, addr = socket_ls.recvfrom(1024) 
 
    # is there nearby obstacles    
    if front<170 or back<170 or right<170 or left<170:                      
        
avoidance_data=obs_avoidance(goal_attitude,front,back,right,left
)  # Obstacle avoidance calculation 
        obst_flag=1 
    else: 
        yaw=goal_attitude 
        obst_flag=0 
 
    # motion excuter 
        if obst_flag==1:   
            if avoidance_data[0]=='s': 
                yaw=int(avoidance_data[6:]) 
                stabilize(0,setpoint_pitch/2,setpoint_alt,yaw) 
            elif avoidance_data[0]=="b": 
                stabilize(0,-setpoint_pitch,setpoint_alt,365) # 
send 365 in yaw to indicate stablize at the current yaw 
            elif avoidance_data[0]=="l": 
                stabilize(-setpoint_roll,0,setpoint_alt,365) 
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            else: 
                stabilize(setpoint_roll,0,setpoint_alt,365) 
        else: 
            stabilize(0,setpoint_pitch,setpoint_alt,yaw) 
 
    # is goal reached 
 
    if goal_reached(current_la,current_lo): 
        break 
    else: 
        continue 
 
# Landing 
ser.write('1500150012501500') 
time.sleep(1) 
ser.write('1500150011001500') 
time.sleep(1) 
ser.write('1500150010001500') 
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Appendix B 
 

Arduino Code (C) 

 

#include <Servo.h> 
String readString, ch_input1, ch_input2, ch_input3, ch_input4; 
Servo ch1;    
Servo ch2; 
Servo ch3; 
Servo ch4; 
Servo ch5; 
 
void setup() { 
  Serial.begin(115200); 
  ch1.attach(5);  //attaching PWM pins 
  ch2.attach(6); 
  ch3.attach(9); 
  ch4.attach(10); 
  ch5.attach(11);    
 
 
  Serial.println("Arming motors ./."); 
  delay(1000); 
      ch1.writeMicroseconds(1500); // Arming the motors 
      ch2.writeMicroseconds(1500); 
      ch3.writeMicroseconds(1000); 
      ch4.writeMicroseconds(2000); 
      ch5.writeMicroseconds(1500); 
   delay(1000); 
 
   Serial.println("Arming done");  
 
 
 
 
} 
 
void loop() { 
 
  while (Serial.available()) { 
    delay(3);  //delay to allow buffer to fill  
    if (Serial.available() >0) { 
      char c = Serial.read();  //gets one byte from serial 
buffer 
      readString += c; //makes the string readString 
    }  
  } 
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  if (readString.length() >0) { 
      Serial.println(readString); //see what was received 
 
      // expect a string like 07002100 containing the two 
ch_input positions       
      ch_input1 = readString.substring(0, 4); //get the first 
four characters 
      ch_input2 = readString.substring(4, 8); //get the next 
four characters  
      ch_input3 = readString.substring(8, 12); //get the next 
four characters  
      ch_input4 = readString.substring(12, 16); //get the next 
four characters  
 
 
      Serial.println(ch_input1);  //print to serial monitor to 
see parsed results 
      Serial.println(ch_input2); 
      Serial.println(ch_input3); 
      Serial.println(ch_input4); 
 
      int n1 = ch_input1.toInt(); 
      int n2 = ch_input2.toInt(); 
      int n3 = ch_input3.toInt(); 
      int n4 = ch_input4.toInt(); 
 
 
      ch1.writeMicroseconds(n1); // sending the PWM commands to 
CC3D 
      ch2.writeMicroseconds(n2); 
      ch3.writeMicroseconds(n3); 
      ch4.writeMicroseconds(n4); 
 
 
    readString="";  // emptying the buffer for the next command 
  }  
} 
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Appendix C 

 

The Ground Station Communication Codes (python) 

 

1. Streaming video server: 

import socket 
import cv2 
import numpy 
 
def recvall(sock, count): 
    buf = b'' 
    while count: 
        newbuf = sock.recv(count) 
        if not newbuf: return None 
        buf += newbuf 
        count -= len(newbuf) 
    return buf 
 
TCP_IP = '0.0.0.0' 
TCP_PORT = 5050 
 
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
s.bind((TCP_IP, TCP_PORT)) 
s.listen(True) 
conn, addr = s.accept() 
 
length = recvall(conn,16) 
stringData = recvall(conn, int(length)) 
data = numpy.fromstring(stringData, dtype='uint8') 
s.close() 
 
decimg=cv2.imdecode(data,1) 
cv2.imshow('SERVER',decimg) 
cv2.waitKey(0) 
cv2.destroyAllWindows() 
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2. Streaming video client: 

import socket 
import cv2 
import numpy 
 
def recvall(sock, count): 
    buf = b'' 
    while count: 
        newbuf = sock.recv(count) 
        if not newbuf: return None 
        buf += newbuf 
        count -= len(newbuf) 
    return buf 
 
TCP_IP = '0.0.0.0' 
TCP_PORT = 5050 
 
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
s.bind((TCP_IP, TCP_PORT)) 
s.listen(True) 
conn, addr = s.accept() 
 
length = recvall(conn,16) 
stringData = recvall(conn, int(length)) 
data = numpy.fromstring(stringData, dtype='uint8') 
s.close() 
 
decimg=cv2.imdecode(data,1) 
cv2.imshow('SERVER',decimg) 
cv2.waitKey(0) 
cv2.destroyAllWindows()  
 
 

3. Receiving current position and showing it on a map 

import numpy as np 
import matplotlib.pyplot as plt 
from scipy.misc import imread 
from socket import socket, gethostbyname, AF_INET, 
SOCK_DGRAM 
import sys 
PORT_NUMBER = 5000 
SIZE = 1024 
 
hostName = '0.0.0.0' 
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mySocket = socket( AF_INET, SOCK_DGRAM ) 
mySocket.bind( (hostName, PORT_NUMBER) ) 
 
np.random.seed(0) 
x =977 #np.random.uniform(0.0,15.0,20) 
y =619 #np.random.uniform(0.0,15.0,20) 
edge_lo=32.498085 
edge_la=15.542107 
lo_range=0.07596 
la_range=0.046385 
while True: 
    #Show that data was received: 
    (data, addr) = mySocket.recvfrom( SIZE ) 
    lo=float(data[:data.find(',')]) 
    la=float(data[data.find(',')+1:]) 
    plotted_lo=int(round((lo-edge_lo)*x/lo_range)) 
    plotted_la=y-int(round((la-edge_la)*y/la_range)) 
 
    img = imread("map.png") 
    plt.scatter(plotted_lo,plotted_la,zorder=1) 
    plt.imshow(img,zorder=0) 
    plt.show() 
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Appendix D 

The Simulation Code (Lua) 

 

-- This is the autonomous quadcopter principal control 
script. It is threaded 
actualizeLEDs=function() 
    if (relLedPositions==nil) then 
        relLedPositions={{-0.0343,0,0.0394},{-
0.0297,0.0171,0.0394},{0,0.0343,0.0394}, 
                    
{0.0297,0.0171,0.0394},{0.0343,0,0.0394},{0.0243,-
0.0243,0.0394}, 
                    {0.006,-0.0338,0.0394},{-0.006,-
0.0338,0.0394},{-0.0243, -0.0243,0.0394}} 
    end 
    if (drawingObject) then 
        simRemoveDrawingObject(drawingObject) 
    end 
    
type=sim_drawing_painttag+sim_drawing_followparentvisibilit
y+sim_drawing_spherepoints+ 
        
sim_drawing_50percenttransparency+sim_drawing_itemcolors+si
m_drawing_itemsizes+ 
        
sim_drawing_backfaceculling+sim_drawing_emissioncolor 
    
drawingObject=simAddDrawingObject(type,0,0,bodyElements,27) 
    m=simGetObjectMatrix(ePuck,-1) 
    itemData={0,0,0,0,0,0,0} 
    simSetLightParameters(ledLight,0) 
    for i=1,9,1 do 
        if 
(ledColors[i][1]+ledColors[i][2]+ledColors[i][3]~=0) then 
            p=simMultiplyVector(m,relLedPositions[i]) 
            itemData[1]=p[1] 
            itemData[2]=p[2] 
            itemData[3]=p[3] 
            itemData[4]=ledColors[i][1] 
            itemData[5]=ledColors[i][2] 
            itemData[6]=ledColors[i][3] 
            
simSetLightParameters(ledLight,1,{ledColors[i][1],ledColors
[i][2],ledColors[i][3]}) 
            for j=1,3,1 do 
                itemData[7]=j*0.003 
                
simAddDrawingObjectItem(drawingObject,itemData) 
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            end 
        end 
    end 
end 
 
getLightSensors=function() 
    data=simReceiveData(0,'EPUCK_lightSens') 
    if (data) then 
        lightSens=simUnpackFloats(data) 
    end 
    return lightSens 
end 
 
threadFunction=function() 
    while 
simGetSimulationState()~=sim_simulation_advancing_abouttost
op do 
        st=simGetSimulationTime() 
        velLeft=0 
        velRight=0 
        
opMode=simGetScriptSimulationParameter(sim_handle_self,'opM
ode') 
        lightSens=getLightSensors() 
        s=simGetObjectSizeFactor(bodyElements) -- make sure 
that if we scale the robot during simulation, other values 
are scaled too! 
        noDetectionDistance=0.16*s 
        
proxSensDist={noDetectionDistance,noDetectionDistance,noDet
ectionDistance,noDetectionDistance,noDetectionDistance,noDe
tectionDistance,noDetectionDistance,noDetectionDistance} 
        for i=1,8,1 do 
            res,dist=simReadProximitySensor(proxSens[i]) 
            if (res>0) and (dist<noDetectionDistance) then 
                proxSensDist[i]=dist 
            end 
        end 
        if (opMode==0) then -- We wanna follow the line 
            if (math.mod(st,2)>1.5) then 
                intensity=1 
            else 
                intensity=0 
            end 
            for i=1,9,1 do 
                ledColors[i]={intensity,0,0} -- red 
            end 
            -- Now make sure the light sensors have been 
read, we have a line and the 4 front prox. sensors didn't 
detect anything: 
            if lightSens and 
((lightSens[1]<0.5)or(lightSens[2]<0.5)or(lightSens[3]<0.5)
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) and 
(proxSensDist[2]+proxSensDist[3]+proxSensDist[4]+proxSensDi
st[5]==noDetectionDistance*4) then 
                if (lightSens[1]>0.5) then  
                    velLeft=maxVel 
                else 
                    velLeft=maxVel*0.25 
                end 
                if (lightSens[3]>0.5) then  
                    velRight=maxVel 
                else 
                    velRight=maxVel*0.25 
                end 
            else 
                velRight=maxVel 
                velLeft=maxVel 
                if 
(proxSensDist[2]+proxSensDist[3]+proxSensDist[4]+proxSensDi
st[5]==noDetectionDistance*4) then 
                    -- Nothing in front. Maybe we have an 
obstacle on the side, in which case we wanna keep a 
constant distance with it: 
                    if 
(proxSensDist[1]>0.25*noDetectionDistance) then 
                        
velLeft=velLeft+maxVel*braitSideSens_leftMotor[1]*(1-
(proxSensDist[1]/noDetectionDistance)) 
                        
velRight=velRight+maxVel*braitSideSens_leftMotor[2]*(1-
(proxSensDist[1]/noDetectionDistance)) 
                    end 
                    if 
(proxSensDist[6]>0.25*noDetectionDistance) then 
                        
velLeft=velLeft+maxVel*braitSideSens_leftMotor[2]*(1-
(proxSensDist[6]/noDetectionDistance)) 
                        
velRight=velRight+maxVel*braitSideSens_leftMotor[1]*(1-
(proxSensDist[6]/noDetectionDistance)) 
                    end 
                else 
                    -- Obstacle in front. Use Braitenberg 
to avoid it 
                    for i=1,4,1 do 
                        
velLeft=velLeft+maxVel*braitFrontSens_leftMotor[i]*(1-
(proxSensDist[1+i]/noDetectionDistance)) 
                        
velRight=velRight+maxVel*braitFrontSens_leftMotor[5-i]*(1-
(proxSensDist[1+i]/noDetectionDistance)) 
                    end 
                end 
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            end 
        end 
        if (opMode==1) then -- We wanna follow something! 
            index=math.floor(1+math.mod(st*3,9)) 
            for i=1,9,1 do 
                if (index==i) then 
                    ledColors[i]={0,0.5,1} -- light blue 
                else 
                    ledColors[i]={0,0,0} -- off 
                end 
            end 
            velRightFollow=maxVel 
            velLeftFollow=maxVel 
            minDist=1000 
            for i=1,8,1 do 
                
velLeftFollow=velLeftFollow+maxVel*braitAllSensFollow_leftM
otor[i]*(1-(proxSensDist[i]/noDetectionDistance)) 
                
velRightFollow=velRightFollow+maxVel*braitAllSensFollow_rig
htMotor[i]*(1-(proxSensDist[i]/noDetectionDistance)) 
                if (proxSensDist[i]<minDist) then 
                    minDist=proxSensDist[i] 
                end 
            end 
 
            velRightAvoid=0 
            velLeftAvoid=0 
            for i=1,8,1 do 
                
velLeftAvoid=velLeftAvoid+maxVel*braitAllSensAvoid_leftMoto
r[i]*(1-(proxSensDist[i]/noDetectionDistance)) 
                
velRightAvoid=velRightAvoid+maxVel*braitAllSensAvoid_rightM
otor[i]*(1-(proxSensDist[i]/noDetectionDistance)) 
            end 
            if (minDist>0.025*s) then minDist=0.025*s end 
            t=minDist/(0.025*s) 
            velLeft=velLeftFollow*t+velLeftAvoid*(1-t) 
            velRight=velRightFollow*t+velRightAvoid*(1-t) 
        end 
        simSetJointTargetVelocity(leftMotor,velLeft) 
        simSetJointTargetVelocity(rightMotor,velRight) 
        actualizeLEDs() 
        simSwitchThread() -- Don't waste too much time in 
here (simulation time will anyway only change in next 
thread switch) 
    end 
end 
 
-- Initialization: 
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simSetThreadSwitchTiming(200) -- We will manually switch in 
the main loop 
bodyElements=simGetObjectHandle('ePuck_bodyElements') 
leftMotor=simGetObjectHandle('ePuck_leftJoint') 
rightMotor=simGetObjectHandle('ePuck_rightJoint') 
ePuck=simGetObjectHandle('ePuck') 
ledLight=simGetObjectHandle('ePuck_ledLight') 
proxSens={-1,-1,-1,-1,-1,-1,-1,-1} 
for i=1,8,1 do 
    proxSens[i]=simGetObjectHandle('ePuck_proxSensor'..i) 
end 
maxVel=120*math.pi/180 
ledColors={{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0},
{0,0,0},{0,0,0},{0,0,0}} 
 
-- Braitenberg weights for the 4 front prox sensors 
(avoidance): 
braitFrontSens_leftMotor={1,2,-2,-1} 
-- Braitenberg weights for the 2 side prox sensors 
(following): 
braitSideSens_leftMotor={-1,0} 
-- Braitenberg weights for the 8 sensors (following): 
braitAllSensFollow_leftMotor={-3,-1.5,-0.5,0.8,1,0,0,-4} 
braitAllSensFollow_rightMotor={0,1,0.8,-0.5,-1.5,-3,-4,0} 
braitAllSensAvoid_leftMotor={0,0.5,1,-1,-0.5,-0.5,0,0} 
braitAllSensAvoid_rightMotor={-0.5,-0.5,-1,1,0.5,0,0,0} 
 
-- Execute the thread function: 
res,err=xpcall(threadFunction,function(err) return 
debug.traceback(err) end) 
if not res then 
    simAddStatusbarMessage('Lua runtime error: '..err) 
end 
 
-- Clean-up: 
 
for i=1,9,1 do 
    ledColors[i]={0,0,0} -- no light 
end 
actualizeLEDs() 
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Appendix E 

Simulation Circuit Diagram: 

 

Prototype Circuit Diagram: 
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