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Chapter 4 

Abel-TauberTheorems for Fourier-Stieltjes Coefficients 

The result in the cosine case can be applied to stationary time series with long – 
time memory. The analogues for Fourier – Stieltjes transforms are also given. 

Section (4.1): Proof of Theorems 

We are concerned with relations between the asymptotics of a function and its 
Fourier-Stieltjes coefficients, and the results are Abel-Tauber Theorems of this type. 
The results in which we pass from the Fourier-Stieltjes coefficients to the original 
function are Abelian, while the results in the converse direction are Tauberian.The 
class 0]ܸܤ, :݂ is that of all right-continuous [ߨ [0, [ߨ →  that have bounded ࡾ
variation on [0, ܨ For .[ߨ ∈ ,0]ܸܤ  we define its Fourier-Stieltjes cosine [ߨ
coefficients (FS cosine coefficients). 

ܽ௡ ∶=
2
ߨ න cos ߠ݊

[଴,గ]
݊)(ߠ)ܨ݀ = 1,2, … ) ,  ∶=

(ߨ)ܨ
ߨ

(݊ = 0),                    (1) 

where ݀{0}ܨ =  .(0)ܨ

We write ܴ଴ for the class of slowly varying functions at infinity: the class of 
positive, measurable ݈, defined on some neighbourhood [ܺ, ∞) of infinity, such that 

ߣ∀ > 0,     lim
௫→ஶ

(ݔߣ)݈ ⁄(ݔ)݈ = 1. 

For ݈ ∈ ܴ଴ the class Π௟  is the class of measurable g, defined on some 
neighbourhood [ܺ, ∞) of infinity, satisfying 

ߣ∀ > 0,     lim
௫→ஶ

{g(ݔߣ) − g(ݔ)} ⁄(ݔ)݈ → ܿ log  ߣ

with ܿ ∈  . called the ݈-index of g ࡾ

A real sequence (ܿ௡) is called slowly decreasing if 

lim
ఒ↓ଵ

lim inf
௡→ஶ

inf
௡ஸ௠ஸఒ௡

(ܿ௠ − ܿ௡) ≥ 0   (hences = 0), 

slowly increasing if (−ܿ௡) is slowly decreasing. A real sequence (ܽ௡) is said to 
satisfy the Tauberian condition (T) if 

  (ܽ௡)is eventually positive, and (log ܽ௡) is either slowly 

decreasing or slowly increasing. 
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For example, (ܽ௡) satisfies (T)ifܽ௡ = ݊ఘܿ௡, where ߩ ∈  and (ܿ௡) is eventually ࡾ
positive and monotone. 

Definition (4.1.1)[4]:For ݈ ∈ ܴ଴ and ܿ ∈ is in Π௟ (௡ܽ) ,ࡾ  with ݈-index ܿ if for any 
ߣ > 0. 

൫ܽ[ఒ௡] − ܽ௡൯ ݈(݊)⁄ → ܿ log ߣ (݊ → ∞). 

Lemma (4.1.2)[4]:Let ݈ ∈ ܴ଴ and ܿ ∈ If (ܽ௡) is in Π௟ .ࡾ  with ݈-index ܿ, 
then (ܽ௡ିଵ − ܽ௡) ݈(݊)⁄ → 0 as ݊ → ∞. 

Proof:Choose an irrational number ߣ > 1, say, ߣ = √2. Then [[݊ߣ] ⁄ߣ ] = ݊ − 1 for 
݊ = 1,2, …. Since ݈([݊ߣ]) ݈(݊)⁄ → 1 as ݊ → ∞ by the uniform convergence Theorem 

ܽ௡ିଵ − ܽ௡

݈(݊) =
൫ܽ[[ఒ௡] ఒ⁄ ] − ܽ[ఒ௡]൯

([݊ߣ])݈ ⋅
([݊ߣ])݈

݈(݊) +
ܽ[ఒ௡] − ܽ௡

݈(݊)  

              → ܿ log(1 ⁄ߣ ) + ܿ log ߣ = 0     (݊ → ∞), 

whence the Lemma. 

Theorem (4.1.3)[4]:Let ݈ ∈ ܴ଴ and ܿ ∈ Then (ܽ௡) is in Π௟ .ࡾ  with ݈-index ܿ if and 
only if the function ݂(ݔ) ∶= ܽ[௫] is in ߨ௟ with ݈-index ܿ. 

Proof:Suppose(ܽ௡) is in Π௟  with ݈-index ܿ. For ߣ > 0, we write 

(ݔߣ)݂ − (ݔ)݂
(ݔ)݈ =

ܽ[ఒ௡] − ܽൣఒ[௡]൧

݈(݊) +
ܽൣఒ[௡]൧ − ܽ[௫]

(ݔ)݈ . 

Since ݈([ݔ]) ⁄(ݔ)݈ → 1as ݔ → ∞, the second term on the right tends to ܿ log  as ߣ
ݔ → ∞. Now 0 ≤ [ݔߣ] − ൧[ݔ]ߣൣ < ߣ + 1, so repeated application of Lemma (4.1.2) 

gives ቀܽ[ఒ௫] − ܽൣఒ[௫]൧ቁ ൗ(ݔ)݈ → 0 as ݔ → ∞, hence ݂ is in Π௟with ݈-index ܿ. The 
converse is trivial. 

Theorem (4.1.4)[4]:Let ݈ ∈ ܴ଴ and ܿ ∈ ௡ݏ We write .ࡾ ∶= ∑ ܽ௞
௡
௞ୀ଴ for ݊ = 0,1,2, …. 

Then 

ܽ௡ ~ ܿ݊ିఈ݈(݊)(݊ → ∞)                                              (2) 

implies 

(௡ݏ) ∈ Π௟with ݈ − index ܿ.                                            (3) 

Conversely, (3) implies (2) if (ܽ௡) satisfies (T). 

We omit the proof, since it is almost the same as that of the function case. 
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Theorem (4.1.5)[4]:Let ݈ ∈ ܴ଴0, ߩ > −1, and ܿ ∈  .be as above (௡ݏ) and let ,ࡾ
Assume the series (ݔ)ܤ ∶= ∑ ܽ௡݁ି௡ ௫⁄ஶ

௡ୀ଴  absolutely converges for ݔ > 0. Then (16) 
implies 

ܤ                                                    ∈ Π௟with ݈ − index ܿ.                                             (4) 

Conversely, (17) implies (16) if ܽ௡ ≥ 0 for all sufficiently large ݊. 

Proof:We write ܸ(ݔ) = ݔ for{௫}ݏ ≥ 0. By Theorem (4.1.2), (4) holds if and only if ܸ 
is in Π௟  with ݈-index ܿ. Let ෠ܸ  be the Laplace-Stieltjes transform of ܸ: 

෠ܸ(ݔ) ∶= න ݁ି௧௫

[଴,ஶ)
(ݐ)ܸ݀ = ݔ න ݁ି௫௧ܸ(ݐ)

ஶ

଴
ݔ)      ݐ݀ > 0). 

Then (ݔ)ܤ = ෠ܸ(1 ⁄ݔ )for ݔ > 0, and so the implication (3) ⇒ (4)follows from the 
argument  Conversely, since ݁ି௡ (ఒ௫)⁄ − ݁ି௡ ௫⁄ = ݔ ൯as(ݔ)൫݈݋ → ∞ for any ߣ > 0, 
we may assume ܽ௡ ≥ 0 for all ݊.Therefore, (4) gives (3) by de Haan’s Theorem. 

Next we consider stability of ߎ-variation under change of variables. 

Lemma (4.1.6)[4]:Let ݈ ∈ ܴ଴ and ܿ ∈ :߶ Assume .ࡾ (ܺ, ∞) → (ܻ, ∞) is measurable 
and satisfies ߶(ݔ) ~ݔߙ, ߙ > 0, as ݔ → ∞ If the measurable function ݂ ∶ (ܻ, ∞) →
is in Π௟ ࡾ  with ݈-index ܿ, then ݂ ∘ ߶ is also in Π௟  with ݈-index ܿ. 

Proof:Since߶(ݔߣ) ⁄(ݔ)߶ → ݔ asߣ → ∞, the uniform convergence theorem for Π௟  due 
to Balkema. Gives 

݂൫߶(ݔߣ)൯ − ݂൫߶(ݔ)൯
݈൫߶(ݔ)൯

→ ܿ log ߣ ݔ) → ∞), 

while by the uniform convergence theorem for ܴ଴, ݈൫߶(ݔ)൯ ⁄(ݔ)݈  tends to 1 as ݔ →
∞. Combining, 

݂൫߶(ݔߣ)൯ − ݂൫߶(ݔ)൯
(ݔ)݈ → ܿ log ߣ ݔ) → ∞), 

hence the Lemma. 

Proposition (4.1.7)[4]:Let ݈ ∈ ܴ଴, ܿ ∈ :ܣ and ,ࡾ (0, 1) →  be measurable.Write ࡾ
(ݔ)ܤ ∶= ൫݁ିଵܣ ௫⁄ ൯for ݔ > 0 and (ݔ)ܥ ∶= ݔ))ܣ − 1) ݔ) + 1)⁄ )for ݔ > 1. Then ܤ is 
in Π௟  with ݈-index ܿ if ܥ is in Π௟  with ݈-index ܿ. 

Proof:For 
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߶ଵ(ݔ) ∶=
1 + ݁ିଵ ௫⁄

1 − ݁ିଵ ௫⁄ ݔ) > 0). 

we have ܤ ∘ ߶ଵ. Since ߶ଵ(ݔ)~ ݔ2  as  ݔ → ∞, we obtain the assertion by Lemma 
(4.1.7). 

Proposition (4.1.8)[4]:Let ݈ ∈ ܴ଴, ܿ ∈ (ݔ)߶ and ,ࡾ ∶= 1 {2 arctan(1 ⁄ݔ )}⁄ for ݔ > 0. 
If the function ݂: (1 ⁄ߨ , ∞) → is in Π௟ ࡾ  with ݈-index ܿ, then ݂ ∘ ߶ is also in Π௟  with 
݈-index ܿ. 

Proof: Since ߶(ݔ)~ ݔ 2  ⁄ as ݔ → ∞, the assertion follows from Lemma 
(4.1.7).Theorem (4.1.9)[4]: Let ݈ ∈ ܴ଴ and 0 < ߙ < 1. Let ܨ ∈ ,0]ܸܤ  with [ߨ
 cosine coefficients (ܽ௡). Then ܵܨ

ܽ௡~ ݊ିఈ݈(݊)(݊ → ∞)                                                (5) 

implies 

ఈ݈(1ߠ~(ߠ)ܨ                     ⁄ߠ ) ⋅
ߨ

2Γ(ߙ + 1) cos(ߙߨ 2⁄ )
ߠ) → 0 +).                         (6) 

Conversely, (3) implies (2) if (ܽ௡) satisfies (T). 

Proof : 

Since 

                           1 + 2 ෍ ௡ݎ cos ߠ݊
ஶ

௡ୀଵ

=
1 − ଶݎ

1 − ݎ2 cos ߠ + ଶݎ |ݎ|) < 1),                     (7) 

Fubini’s Theorem yields 

෍ ܽ௡ݎ௡
ஶ

௡ୀ଴

=
1
ߨ

න
1 − ଶݎ

1 − ݎ2 cos ߠ + ଶݎ
[଴,గ]

|ݎ|)(ߠ)ܨ݀ < 1)                    (8) 

First we prove (2) implies (3). Since (2) implies ܽ௡ → 0as ݊ → ∞, 

(1 − (ݎ ෍ ܽ௡ݎ௡
ஶ

௡ୀ଴

→ ݎ)      0 ↑ 1). 

But 

න
1 − ଶݎ

1 − ݎ2 cos ߠ + ଶݎ
[଴,గ]

 (ߠ)ܨ݀
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= (0)ܨ + න
1

1 + 1)ݎ2} − cos (ߠ (1 − ⁄ଶ(ݎ }[଴,గ]
(ߠ)ܨ݀ → ݎ)(0)ܨ ↑ 1), 

Whence (8) gives  (0)ܨ = 0. 

Since ∑ |ܽ ݊⁄ |ஶ
௡ୀଵ < ∞, we may write 

(ߠ)ܥ ∶= ܽ଴ + ෍
ܽ௡

݊
sin ߠ݊

ஶ

௡ୀଵ

ߠ) ∈ [0,  .([ߨ

Clearly (ߨ)ܨ =  ܨ are continuity points of ݕ and ݔ By the inversion formula, if .(ߨ)ܥ
such that 0 < ݔ < ݕ < (ݕ)ܨ then ,ߨ − (ݔ)ܨ = (ݕ)ܥ −  Take two sequences of .(ݔ)ܥ
continuity points (ݔ௡), ௡ݔ such that (௡ݕ) ↓ 0, ௡ݕ ↓ ߠ ∈ [0, ݊ as[ߨ → ∞. Letting 

(ߠ)ܨ                                       = ܽ଴ߠ + ෍
ܽ௡

݊
sin ߠ݊

ஶ

௡ୀଵ

(0 ≤ ߠ ≤  (9)                          ,(ߨ

where we used (0)ܨ = 0. Therefore, by an Abelian result due to Vuilleumier and 
others,(3) follows. 

Next we prove (3) with (T) implies (5). By (6), we have ݀{0}ܨ = 0.We write 

(ݔ)ܴ ∶=
ݔ − 1
ݔ + 1

ݔ) > 1).                                             

Θ(ߦ) ∶= 2 arctan ߦ (0 ≤ ߦ < ∞).                            

(ߠ݀)ߤ ∶= ଴,గ)ܫ ଶ⁄                                            ,(ߠ)ܨ݀(ߠ)[

(ߦ)ଵܨ ∶= න ଶݐ) + ߤ(1 ∘ Θ(݀ݐ)
(଴,క]

(0 < ߦ < ∞), 

(ݔ)ଵܨ ∶= ଵ(1ܨݔ ⁄ݔ )(0 < ݔ < ∞),                            

݇ଵ(ݔ) ∶=
2
ߨ

⋅
ଶݔ

(1 + ଶ)ଶݔ (0 < ݔ < ∞).                       

Since ܨଵ(ߦ) = ߦ ଵ(1) for allܨ > ,ଵ is bounded on each interval (0ܨ ,1 ܽ]. 

For ݔ > 1and ߠ ∈ ߨ) 2⁄ ,  ,[ߨ

1 − (ݔ)2ܴ cos ߠ + ଶ(ݔ)ܴ ≥ 1 +  ,ଶ(ݔ)ܴ

hence 
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ቤන
1 − ଶ(ݔ)ܴ

(ݔ)2ܴ cos ߠ + ଶ(ݔ)ܴ (ߠ)ܨ݀
(గ ଶ⁄ ,గ]

ቤ ≤
1 − ଶ(ݔ)ܴ

1 + ଶ(ݔ)ܴ ߨ)൫|ܨ݀| 2⁄ , ൯[ߨ

= ݔ)(ଵିݔ)ܱ → ∞).                           (10) 

where|݀ܨ| is the total variation measure of ܨ. 

Since cos Θ(ߦ) = (1 − (ଶߦ (1 + ⁄(ଶߦ , 

1 − ଶ(ݔ)ܴ

1 − (ݔ)2ܴ cos Θ(ߦ) + ଶ(ݔ)ܴ =
ଶߦ)ݔ + 1)
ଶݔଶߦ + 1

ݔ) > 1, ߦ > 0), 

and so, for ݔ > 1, 

1
ߨ

න
1 − ଶ(ݔ)ܴ

1 − (ݔ)2ܴ cos ߠ + ଶ(ݔ)ܴ
(଴,గ ଶ⁄ ]

 (ߠ)ܨ݀

=
1
ߨ න

ଶߦ)ݔ + 1)
ଶݔଶߦ + 1(଴,ஶ)

ߤ ∘ Θ(݀ߦ) 

=
1
ߨ

න
ݔ

ଶߦଶݔ + 1(଴,ஶ)
        .(ߦ)ଵܨ݀

By integration by part, the right-hand side is 

1
ߨ

න
ଶݔߦ2

ଶݔଶߦ) + 1)ଶ (ߦ)ଵܨ
ஶ

଴
ߦ݀ = ݇ଵ ∗ 0)(ݔ)ଵܨ < ݔ < ∞), 

where ݇ଵ ∗  :ଵܨ ଵ denotes the Mellin convolution of ݇ଵ andܨ

݇ଵ ∗ (ݔ)ଵܨ ∶= න ݇ଵ(ݔ ⁄ݐ (ݐ)ଵܨ(
ஶ

଴
ݐ݀ ⁄ݐ (0 < ݔ < ∞). 

This with (8) and (10) gives 

෍ ܽ௡ܴ(ݔ)௡
ஶ

௡ୀ଴

= ݇ଵ ∗ (ݔ)ଵܨ + ݔ)(ଵିݔ)ܱ → ∞).                             (11) 

The Mellin transform 

෰݇ଵ(ݖ) ∶= න (ݐ)௭݇ଵିݐ
ஶ

଴
ݐ݀ ⁄ݐ =

2
ߨ

න
ଶି௭ݐ

(1 + ଶ)ଶݐ

ஶ

଴
 ݐ݀

converges absolutely for −1 < ॉ௭ < 3, and is equal to 



75 
 

1
ߨ ߁ ൬

3 − ݖ
2 ൰ Γ ൬

1 + ݖ
2 ൰. 

Now 

(ߦ)ଵܨ = ൯(ߦ)൫Θܨ + න tanଶ(ߠ 2⁄ )
(଴,஀(క)]

0)(ߠ)ܨ݀ < ߦ ≤ 1),                    (12) 

and the integral on the right is 

                              ܱ ቆߦଶ න |(ߠ)ܨ݀|
(଴,஀(క)]

ቇ = ߦ)(ଶߦ)݋ → 0 +).                                (13) 

Hence (3) gives 

ఈ݈(1ߦ~ ൯(ߦ)൫Θܨ~ (ߦ)ଵܨ ⁄ߦ )
2ఈିଵߨ

Γ(ߙ + 1) cos(ߙߨ 2⁄ ) ߦ) → 0 +) 

or 

(ݔ)ଵିఈ݈ݔ~ (ݔ)ଵܨ
2ఈିଵߨ

Γ(ߙ + 1) cos(ߙߨ 2⁄ ) ݔ) → ∞). 

So by Arandelovicᇱ’s Theorem, we obtain 

݇ଵ ∗ ~ (ݔ)ଵܨ ෰݇ଵ(1 − 2ఈିଵΓ(1(ݔ)ଵିఈ݈ݔ~ (ݔ)ଵܨ(ߙ − ݔ)(ߙ → ∞). 

Referring back to (18), this gives 

෍ ܽ௡ܴ(ݔ)௡
ஶ

௡ୀ଴

2ఈିଵΓ(1(ݔ)ଵିఈ݈ݔ~  − ݔ)(ߙ → ∞) 

or 

෍ ܽ௡ݎ௡
ஶ

௡ୀ଴

 ~ ൬
1 + ݎ
1 − ݎ

൰
ଵିఈ

݈ ൬
1 + ݎ
1 − ݎ

൰ 2ఈିଵΓ(1 −  (ߙ

                          ~ (1 − ఈିଵ݈(ݎ ൬
1

1 − ݎ
൰ Γ(1 − ݎ)(ߙ ↑ 1). 

Since individual terms ܽ௡ݎ௡are 1))݋ − ఈିଵ), we may assume ܽ௡(ݎ > 0 for all ݊, 
which gives by Karamata’s Tauberian Theorem for power series , 

෍ ܽ௞

௡

௞ୀ଴

 ~
݊ଵିఈ݈(݊)

1 − ߙ
(݊ → ∞).                                            (14) 
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Finally, (T) corresponds to (1.7.10'')(see[4]), whence it gives (2).                   
Theorem (4.1.10)[4]:Let ݈ ∈ ܴ଴ and ܨ ∈ ,0]ܸܤ  .cosine coefficients(ܽ௡) ܵܨ with [ߨ
We write ܨത(ݔ) ∶= 1)ܨݔ ⁄ݔ )for ݔ ≥ 1 ⁄ߨ . Then 

ܽ௡~ ݊ିଵ݈(݊)(݊ → ∞)                                               (15) 

implies 

തܨ ∈ Π௟with ݈ − index 1.                                            (16) 

Conversely, (5) implies (4) if (ܽ௡) satisfies (T). 

The Theorems above can be applied to stationary time series. Let ܺ =
(ܺ(݊): ݊ ∈  be a real, weakly stationary time series with expectation zero, and let (ࢆ
ܴ be its correlation function: ܴ(݊) = for݊[(0)ܺ(݊)ܺ]ܧ ∈  By the spectral .ࢆ
representation Theorem for correlation functions, 

ܴ(݊) = න cos ߠ݊
[଴,గ]

݊)(ߠ)ܨ݀ ∈  (ࢆ

with non-decreasing ܨ ∈ ,0]ܸܤ  called the spectral distribution functionof ܺ. Now [ߨ
ܺ is called long-time memory or long-range dependent if it exhibits the property 

∑ |ܴ(݊)|ஶ
௡ୀିஶ = ∞ The prototype of such correlation functions is ܴ with 

ܴ(݊)~ ݊ିఈ݈(݊)(݊ → ∞), 

where0 < ߙ < 1 and ݈ ∈ ܴ଴. The boundary case a ߙ = 1 is delicate; the value of 
∑ |ܴ(݊)|ஶ

௡ୀିஶ  is infinite if and only if ∫ ஶ(ݐ)݈ ݐ݀ ݈⁄ = ∞. The Theorems above 
characterize such ܴ in terms of ܨ rather than the spectral density of ܺ, which does not 
always exist, under the weak condition (T). 

To consider the analogues of the Theorems above for sine coefficients, it will be 
convenient to restrict the class of functions. The class ܰ0]ܸܤ,  is the subclass of [ߨ
,0]ܸܤ (0)ܩ that are normalized by ܩ consisting of all [ߨ = 0. For ܩ ∈ ,0]ܸܤܰ  we [ߨ
define its Fourier-Stieltjes sine coefficients (ܵܨ sine coefficients) 

ܾ௡ =
2
ߨ න sin ߠ݊

[଴,గ]
݊)(ߠ)ܩ݀ = 1,2, … ).                                (17) 

 

Proof: First we prove (17) implies (18). In the same way as above, (17) gives (9).  

Write (ݔ)ܣ ∶= ∑ ௝ܽ
[௫]
௝ୀ଴ for ݔ > 0. Then for ݔ > 0 
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(ݔ)ܨ − (ݔ)ܣ = න ଵ݂(ݔ, (ݐ)ଵ݈(ݐ
ஶ

଴
ݐ݀ + න ଶ݂(ݔ, (ݐ)ଵ݈(ݐ

ஶ

଴
 ,ݐ݀

where for ݔ > 0 and ݐ > 0, 

ଵ݂(ݔ, (ݐ ∶=
1

[ݐ] ቆ
sin([ݐ] ⁄ݔ )

[ݐ]) ⁄ݔ ) − 1ቇ (1 ≤ ݐ < [ݔ] + 1), 

≔ 0(otherwise),                                   

ଶ݂(ݔ, (ݐ ∶=
1

[ݐ] ⋅
sin([ݐ] ⁄ݔ )

[ݐ]) ⁄ݔ )
[ݔ]) + 1 ≤ ݐ < ∞),          

≔ 0(0 < ݐ < [ݔ] + 1),                        

݈ଵ(ݐ) ∶= ܽ[௧] ⋅ 1)[ݐ] ≤ ݐ < ∞) ,    ∶= 1(0 < ݐ < 1). 

If 0 < ߜ < 2, then as ݔ → ∞, 

න |ఋିݐ ଵ݂(ݔ, |(ݐ
௫

଴
ݐ݀ ≤ ෍

1
݆ଵାఋ

௝ஸ௫

ቆ1 −
sin(݆ ⁄ݔ )

(݆ ⁄ݔ ) ቇ 

                                       = ܱ ቌ෍
(݆ ⁄ݔ )ଶ

݆ఋାଵ
௝ஸ௫

ቍ = ܱ൫ିݔఋ൯. 

Also 

න ଵ݂(ݔ, (ݐ
ஶ

଴
ݐ݀ =

1
ݔ ෍

1
(݆ ⁄ݔ )

଴ழ௝ ௫⁄ ஸଵ

ቆ
sin(݆ ⁄ݔ )

(݆ ⁄ݔ ) − 1ቇ 

                                        → ܿଵ ∶= න
1
ݑ ൬

sin ݑ
ݑ − 1൰

ଵ

଴
ݔ)       ݑ݀ → ∞). 

So by Vuilleumier’sTheorem, (17) gives 

න ଵ݂(ݔ, (ݐ)ଵ݈(ݐ
ஶ

଴
ݔ)(ݔ)ଵ݈ܿ ~ (ݔ)ଵ݈ଵܿ ~ ݐ݀ → ∞). 

Similarly, if 0 < ߜ < 1, then there exists ܥ > 0 such that for ݔ ≥ 1 andܯ ≥ 1, 

න |ఋݐ ଶ݂(ݔ, |(ݐ
ஶ

ெ௫
ݐ݀ ≤ 2ఋݔ ෍

1
݆ଶିఋ

௝ஹெ௫

= ఋݔఋିଵܯܥ .                            (18) 
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Choose ߳ > 0 small enough; then for large enough ܯ and all ݔ ≥ 1, the right-hand 
side with ߜ = 0 is less than ߳, while 

න ଶ݂(ݔ, (ݐ
[ெ௫]ାଵ

଴
ݐ݀ =

1
ߨ

෍
sin(݆ ⁄ݔ )
(݆ ⁄ݔ )ଶ

଴ழ௝ ௫⁄ ஸெ

 

→ න
sin ݑ

ଶݑ

ெ

ଵ
ݔ)     ݑ݀ → ∞), 

hence 

න ଶ݂(ݔ, (ݐ
ஶ

଴
ݐ݀ → ܿଶ ∶= න

sin ݑ
ݑ

ஶ

ଵ
ݔ)     ݑ݀ → ∞). 

This and (18) with ܯ = 1 imply that the conditions of Vuilleumier’s Theorem are 
satisfied, hence 

න ଶ݂(ݔ, (ݐ)ଵ݈(ݐ
ஶ

଴
ݔ)(ݔ)ଶ݈ܿ ~ (ݔ)ଶ݈ଵܿ ~ ݐ݀ → ∞). 

Combining, 

൛(ݔ)ܨ − ൟ(ݔ)ܣ ൗ(ݔ)݈ → ܿଵ + ܿଶ(ݔ → ∞). 

Since ݈ ∈ ܴ଴, this gives for any ߣ > 0, 

൛(ݔߣ)ܨ − ൟ(ݔߣ)ܣ ൗ(ݔ)݈ → ܿଵ + ܿଶ(ݔ → ∞). 

Subtract and use Theorems (4.1.5) and (4.1.6): 

൛(ݔߣ)ܨ − ൟ(ݔ)ܨ ൗ(ݔ)݈ → log ߣ ݔ) → ∞), 

which gives (5). 

Next we prove (5) with (T) implies (17). we findหܨห ∈ ܴ଴, and so ݀{0}ܨ =
(0)ܨ = 0. Hence as above, we obtain (11). Write 

(ݔ)ܦ ∶=
൫Θ(1ܨ ⁄ݔ )൯

Θ(1 ⁄ݔ )
ݔ) > 0), 

(ݔ)ܽ ∶= Θ(1ݔ ⁄ݔ ݔ)( > 0).      

Then by (12) and (13), 

(ݔ)ଵܨ = (ݔ)ܦ(ݔ)ܽ + ݔ)(ଵିݔ)݋ → ∞).                                   (19) 
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Proposition (4.1.9) shows that ܦ ∈ Π௟  with ݈-index 1, so that in particular|ܦ| ∈ ܴ଴. 
Hence, since ܽ(ݔ) → 2 as ݔ → ∞ and there exists ܥ > 0 such that for all ߣ > 1 and 
ݔ ≥ 2 

(ݔߣ)ܽ| − |(ݔ)ܽ ≤ ܥ
(1 − (ଵିߣ

ݔ
, 

we have 

(ݔߣ)ܦ(ݔߣ)ܽ} − {(ݔ)ܦ(ݔ)ܽ ⁄(ݔ)݈ = (ݔߣ)ܽ
(ݔߣ)ܦ − (ݔ)ܦ

(ݔ)݈ + (ݔߣ)ܽ} − {(ݔ)ܽ
(ݔ)ܦ
(ݔ)݈

→ 2 log ߣ ݔ) → ∞). 

So, by (19), ܨଵ is in Π௟  with ݈-index 2. 

Since ෰݇ଵ(0) = 1 2⁄ ,݇ଵ ∗ ଵis in Π௟ܨ  with ݈-index .This and (11) imply that 
∑ ܽ௡ܴ(⋅)௡ஶ

௡ୀ଴  is in Π௟  with ݈-index 1, hence by Proposition (4.1.8) the function 
∑ ܽ௡݁ି௡ ௫⁄ஶ

௡ୀ଴  in ݔ is also in Π௟  with ݈-index1. Applying Theorem (4.1.6) to this, 
ܽ௡ > 0 for all sufficiently large ݊ then shows 

൭෍ ܽ௞

௡

௞ୀ଴

൱ ∈ Π௟with ݈ − index 1.                                          (20) 

Finally, under (T), Theorem (4.1.5) gives (17). 

Theorem (4.1.11)[4]: Let ݈ ∈ ܴ଴ and 0 < ߙ < 2. Let ܩ ∈ ,0]ܸܤܰ  sine ܵܨ with [ߨ
coefficients (ܾ௡). Then 

ܾ௡~ ݊ିఈ݈(݊)(݊ → ∞)                                                (21) 

implies 

ఈ݈(1ߠ~(ߠ)ܥ                     ⁄ߠ ) ⋅
ߨ

2Γ(ߙ + 1) sin(ߙߨ 2⁄ )
ߠ) → 0 +).                          (22) 

Conversely, (22) implies (21) if (ܾ௡) satisfies (T). 

Proof:First we prove (7) implies (8). As above, the inversion formula gives 

(ߠ)ܩ                                  = ෍ ܾ௡ ⋅
1 − cos ߠ݊

݊

ஶ

௡ୀଵ

(0 ≤ ߠ <  (23)                                 ,(ߨ

hence for ݔ > 0, 
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1)ܩఈݔ ⁄ݔ ) = න g଴(ݔ, (ݐ)ଶ݈(ݐ
ஶ

଴
 ,ݐ݀

where for ݔ > 0 and ݐ > 0, 

g଴(ݔ, (ݐ ∶=
1

[ݐ] ⋅
1 − cos([ݐ] ⁄ݔ )

[ݐ]) ⁄ݔ )ఈ (1 ≤ ݐ < [ݔ] + 1) ,  ∶= (otherwise), 

݈ଶ(ݐ) ∶= ఈ[ݐ] ⋅ ܾ[௧](1 ≤ ݐ < ∞) ,    ∶= 1(0 < ݐ < 1).                       

By an argument similar to that, Vuilleumier’s Theorem gives 

න g଴(ݔ, (ݐ)ଶ݈(ݐ
ஶ

଴
ݔ)(ݔ)ଷ݈ܿ ~ (ݔ)ଷ݈ଶܿ ~ ݐ݀ → ∞) 

with 

ܿଷ ∶= න
1 − cos ݑ

ఈାଵݑ

ஶ

଴
 .ݑ݀

Since 

ܿଷ =
1
ߙ

න
sin ݑ

ఈݑ

ஶି

଴
ݑ݀ =

ߨ
2Γ(ߙ + 1) sin(ߙߨ 2⁄ ), 

We obtain (29). 

Next we prove (29) with (T) implies (28). Differentiating both sides of (28) in ߠ, 

෍ ௡݊ݎ sin ߠ݊
ஶ

௡ୀଵ

=
1)ݎ − (ଶݎ sin ߠ

(1 − ݎ2 cos ߠ݊ + ଶ)ଶݎ |ݎ|) < 1), 

hence by Fubini’s Theorem, 

෍ ܾ݊௡ݎ௡
ஶ

௡ୀଵ

=
2
ߨ න

1)ݎ − (ଶݎ sin ߠ
(1 − ݎ2 cos ߠ݊ + ଶ)ଶݎ

(଴,గ]
|ݎ|)(ߠ)ܩ݀ < 1).              (24) 

Let ܴ(ݔ)and (ߦ) . Then 

ቤන
1}(ݔ)ܴ − {ଶ(ݔ)ܴ sin ߠ

{1 − (ݔ)2ܴ cos ߠ݊ + ଶ}ଶ(ݔ)ܴ (ߠ)ܩ݀
(గ ଶ⁄ ,గ]

ቤ ≤
1}(ݔ)ܴ − {ଶ(ݔ)ܴ

{1 + ଶ}ଶ(ݔ)ܴ ߨ)൫|ܩ݀| 2⁄ , ൯[ߨ

= ݔ)(ଵିݔ)ܱ → ∞).              (25) 

We write 

(ߠ݀)ߥ ∶= ଴,గ)ܫ ଶ⁄  ,(ߠ)ܩ݀(ߠ)[
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(ߦ)ଵܩ ∶= න ଶݐ) + ߥ(1 ∘ Θ
(଴,క]

0)(ݐ݀) < ߦ < ∞), 

(ݔ)෨ଵܩ ∶= ଵ(1ܩଶݔ ⁄ݔ )(0 < ߦ < ∞), 

݇ଵ(ݔ) ∶=
1
ߨ ⋅

ହݔ3 − ଷݔ

(1 + ଶ)ଷݔ (0 < ߦ < ∞). 

Since ܩଵ(ߦ) = ߦ ଵ(1) for allܩ > ,෨ଵis bounded on each interval (0ܩ ,1 ܽ]. 

Since cos Θ(ߦ) = (1 − (ଶߦ (1 + ⁄(ଶߦ , sin Θ(ߦ) = ߦ2 (1 + ⁄(ଶߦ , we find, for ݔ >
1, 

1}(ݔ)ܴ − {ଶ(ݔ)ܴ sin Θ(ߦ)
{1 − (ݔ)2ܴ cos Θ(ߦ) + ଶ}ଶ(ݔ)ܴ =

ଷݔ) − (ݔ
2

⋅
ଶߦ)ߦ + 1)

ଶݔଶߦ) + 1)ଶ ݔ) > 1, ߦ > 0), 

so that 

2
ߨ

න
1}(ݔ)ܴ − {ଶ(ݔ)ܴ sin θ

{1 − (ݔ)2ܴ cos θ + ଶ}ଶ(ݔ)ܴ
(଴,గ ଶ⁄ ]

 (ߠ)ܩ݀

=
ଷݔ) − (ݔ

ߨ
න

ଶߦ)ߦ + 1)
ଶݔଶߦ) + 1)ଶ

(଴,ஶ)
ߥ ∘  (ߦ݀)߆

=
ଷݔ) − (ݔ

ߨ න
ߦ

ଶݔଶߦ) + 1)ଶ
(଴,ஶ)

 .(ߦ)ଵܩ݀

By integration by parts, the right-hand side is 

ଷݔ) − (ݔ
ߨ න

ଶߦଶݔ3) − 1)
ଶݔଶߦ) + 1)ଷ (ߦ)ଵܩ

ஶ

଴
ߦ݀ = (1 − ଶ)݇ଶିݔ ∗ 0)(ݔ)෨ଵܩ < ݔ < ∞), 

where ݇ଶ ∗  ෨ଵ. Henceܩ ෨ଵ is the Mellin convolution of ݇ଶ andܩ

෍ ܾ݊௡ܴ(ݔ)௡
ஶ

௡ୀଵ

= (1 − ଶ)݇ଶିݔ ∗ (ݔ)෨ଵܩ + ݔ)(ଵିݔ)ܱ → ∞).              (26) 

The Mellin transform ෰݇ଶ(ݖ) converges absolutely for −1 < ॉ௭ < 3, and is equal to 

1
ߨ න ଶି௭ݐ ଶݐ3 − 1

ଶݐ) + 1)ଷ

ஶ

଴
ݐ݀ =

1
ߨ න ଶି௭ݐ

ஶ

଴

݀
ݐ݀ ൜−

ݐ
ଶݐ) + 1)ଶൠ ݐ݀ =

(2 − (ݖ
ߨ න

ଶି௭ݐ

ଶݐ) + 1)ଶ

ஶ

଴
 ݐ݀

=
(2 − (ݖ

ߨ2
Γ ൬

3 − ݖ
2

൰ Γ ൬
1 + ݖ

2
൰.          
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Now as ߦ → 0 +. 

(ߦ)ଵܩ = ൯(ߦ)൫Θܩ + න tanଶ(ߠ 2⁄ )
(଴,஀(క)]

(ߠ)ܩ݀ = ൯(ߦ)൫Θܩ +  (27)          ,(ଶߦ)݋

hence by (29), 

൫Θ(1ܩଶݔ~ (ݔ)෨ଵܩ ⁄ݔ )൯ ~ݔଶିఈ݈(ݔ)
2ఈିଵߨ

Γ(ߙ + 1) sin(ߨ 2⁄ ) ݔ) → ∞). 

By Arandelovicᇱ's  theorem, 

݇ଶ ∗ ~ (ݔ)෨ଵܩ ෰݇ଶ(2 − 2ఈିଶΓ(2(ݔ)ଶିఈ݈ݔ~ (ݔ)෨ଵܩ(ߙ − ݔ)(ߙ → ∞). 

Referring back to (26), this gives 

෍ ܾ݊௡ܴ(ݔ)௡
ஶ

௡ୀଵ

2ఈିଶΓ(2(ݔ)ଶିఈ݈ݔ ~  − ݔ)(ߙ → ∞) 

or 

෍ ܾ݊௡ݎ௡
ஶ

௡ୀଵ

 ~ (1 − ఈିଶ݈(ݎ ൬
1

1 − ݎ
൰ Γ(2 − ݎ)(ߙ ↑ 1). 

Therefore by Karamata’s Tauberian Theorem for power series, 

෍ ܾ݇௞

௡

௞ୀଵ

 ~ 
݊ଶିఈ݈(݊)

2 − ߙ
ݔ) → ∞). 

Since the series (ܾ݊௡) also satisfies gives (26). 

Theorem (4.1.12)[4]: Let ݈ ∈ ܴ଴, and ܩ ∈ ,0]ܸܤܰ  .sine coefficients (ܾ௡) ܵܨ with [ߨ
We write ܩ෨(ݔ) ∶= (1 ⁄ݔ )for ݔ ≥ 1 ⁄ߨ . Then 

ܾ௡~ ݊ିଶ݈(݊)(݊ → ∞)                                               (28) 

implies 

ܩ̅ ∈ Π௟with ݈ − index 1 2⁄ .                                            (29) 

Conversely, (29) implies (28) if (ܾ௡) satisfies (T). 

If ܿ௡ decreases to zero as ݊ → ∞, then the Fourier cosine series ݂(ߠ) ∶=
∑ ܿ௡ cos ஶߠ݊

௡ୀ  converges for any ߠ ∈  For this, we have Abel-Tauber .(ߨ0,2)
Theorems which link the asymptotics of (ܿ௡) and ݂(1 ⋅⁄ ), and similarly for Fourier 
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sine series; see Aljanc෬icᇱ et aland Yong.Here monotonicity of (ܿ௡) fills the two roles 
of a sufficient condition for convergence and a Tauberian condition. However, 
though monotonicity is simple, it is far from best-possible in each of these conditions. 
In contrast,[T] is a consequence of each of the final assertions, hence it does not 
restrict the class of ܵܨ coefficients that the Theorems cover;  We refer to Bingham  
for Tauberian Theorems for Fourier and Jacobi series with such weak Tauberian 
conditions.  

First we consider ߎ-variation for sequences. For ݔ ∈  for its [ݔ] we write ,ࡾ
integer part. In what follows, (ܽ௡)௡ୀ଴

ஶ  is a real sequence. 

Proof: First we prove (9) implies (10). In the same way as above, (9) gives (23). 
Write (ݔ)ܤ ∶= ଵ

ଶ
∑ ݆ ௝ܾ

[௫]
௝ୀଵ for ݔ > 0. Then for ݔ > 0, 

(ݔ)෨ܩ − (ݔ)ܤ = න gଵ(ݔ, (ݐ)ଶ݈(ݐ
ஶ

଴
ݐ݀ + න gଶ(ݔ, (ݐ)ଶ݈(ݐ

ஶ

଴
 ,ݐ݀

where for ݔ > 0 and ݐ > 0, 

gଵ(ݔ, (ݐ ∶= (ݐ)(ଵ,[௫]ାଵ]ܫ ⋅
1

[ݐ] ⋅
1 − (1 2⁄ [ݐ])( ⁄ݔ )ଶ − cos([ݐ] ⁄ݔ )

[ݐ]) ⁄ݔ )ଶ , 

gଶ(ݔ, (ݐ ∶= (ݐ)ାଵ,ஶ൯[௫]ൣܫ ⋅
1

[ݐ] ⋅
1 − cos([ݐ] ⁄ݔ )

[ݐ]) ⁄ݔ )ଶ ,                                

݈ଶ(ݐ) ∶= ଶ[ݐ] ⋅ ܾ[௧](1 ≤ ݐ < ∞) ,     ∶= (0 < ݐ < 1).               

By Vuilleumier’s Theorem, 

න gଵ(ݔ, (ݐ)ଶ݈(ݐ
ஶ

଴
ݔ)(ݔ)ଶ݈ܿ ~ (ݔ)ଷ݈ଶܿ ~ ݐ݀ → ∞), 

where 

ܿଷ ∶= න
1 − (1 2⁄ ଶݑ( − cos ݑ

ଷݑ

ଵ

଴
ݔ)     ݑ݀ → ∞). 

Similarly, 

න gଶ(ݔ, (ݐ)ଶ݈(ݐ
ஶ

଴
ݔ)(ݔ)ସ݈ܿ ~ (ݔ)ସ݈ଶܿ ~ ݐ݀ → ∞), 

where 
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ܿସ ∶= න
1 − cos ݑ

ଶݑ

ஶ

଴
 .ݑ݀

Combining, 

൛ܩ෨(ݔ) − ൟ(ݔ)ܤ ⁄(ݔ)݈ → ܿଷ + ܿସ(ݔ → ∞), 

which implies (3). 

Next we prove (3) with (T) implies (2). We set ሚ݈(ݔ) ∶= หܩ෨(ݔ)หforݔ > 1 ⁄ߨ . 
Then(3)shows ሚ݈ ∈ ܴ଴. By integration by parts, for some ܥ > 0 and all ߦ ∈ (0,1), 

ቤන tanଶ(ߠ 2⁄ )
(଴,஀(క)]

ቤ(ߠ)ܩ݀ = ቤߦଶܩ൫Θ(ߦ)൯ − න
sin(ߠ 2⁄ )

cosଷ(ߠ 2⁄ ) (ߠ)ܩ
(଴,஀(క)]

 ቤߠ݀

                                                     ≤ ଶ(ߦ)ଶΘߦ ሚ݈(1 Θ(ߦ)⁄ ) + ܥ න ଷߠ ሚ݈(1 ⁄ߠ )
(଴,஀(క)]

 ,ߠ݀

which is ܱ(ߦଷ) as ߦ → 0. Write 

(ݔ)ܧ ∶=
൫Θ(1ܩ ⁄ݔ )൯

Θ(1 ⁄ݔ )ଶ ݔ) > 0), 

(ݔ)ܾ ∶= ଶΘ(1ݔ ⁄ݔ )ଶ(ݔ > 0). 

Then by the estimate above 

(ݔ)෨ଵܩ = (ݔ)ܧ(ݔ)ܾ + ݔ)(ଵିݔ)ܱ → ∞). 

By Proposition (4.1.12), ܧ is in Π௟  with ݈-index 1 2⁄ , hence, arguing , ܩ෨ଵ is in Π௟  with 
݈-index 2. Since ෰݇ଶ(0) = 1 2 ⁄ shows that ݇ଶ ∗ ෨ଵ is in Π௟ܩ  with ݈-index 1. By (26), this 
implies that ∑ ܾ݊௡ܴ(⋅)௡ஶ

௡ୀଵ  is in Π௟  with ݈-index 1. So under (T), Proposition 
(4.1.11) and Theorems (4.1.9) and (4.1.8) give(2). 
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Section (4.2):Fourier-Stieltjes Transforms 
In this section, we show the analogues of Theorems (4.1.1)-(4.1.4) for Fourier-

Stieltjes transforms. The classes 0] ܸܤ, ∞) and ܰ0] ܸܤ, ∞) are defined similarly. In 
particular, each function in 0] ܸܤ, ∞) is bounded on[0, ∞).For ܨ ∈ ,0] ܸܤ ∞), we 
define its Fourier-Stieltjes cosine transform (ܵܨ cosine transform) 

(ݐ)݂ ∶=
2
ߨ

න cos ߦݐ
[଴,ஶ)

0)(ߦ)ܨ݀ ≤ ݐ < ∞). 

where as above ݀{0}ܨ = ܩ Similarly, for .(0)ܨ ∈ ,0]ܸܤܰ ∞), we define its Fourier-
Stieltjes sine transform (ܵܨ sine transform) 

g(ݐ) ∶=
2
ߨ න sin ߦݐ

[଴,ஶ)
0)(ߦ)ܩ݀ ≤ ݐ < ∞). 

The function ℎ: [0, ∞) →  is called slowly decreasing if ࡾ
lim
ఒ↓ଵ

lim inf
௫→ஶ

inf
௧∈[ଵ,ఒ]

൫ℎ(ݔݐ) − ℎ(ݔ)൯ ≥ 0   (hences = 0), 

slowly increasing if −ℎ is slowly decreasing. The function ݂: [0, ∞) →  issaid toࡾ
satisfy the Tauberian condition (T) if ݂ is eventually positive, and log ݂ is either 
slowly decreasing or slowly increasing . First we consider the cosine case. 
Theorem (4.2.1)[4]:Let ݈ ∈ ܴ଴and 0 < ߙ < 1. Let ܨ ∈ ,0]ܸܤ ∞) with ܵܨ cosine 
transform ݂. Then 

ݐ)(ݐ)ఈ݈ିݐ ~ (ݐ)݂                                                    → ∞)                                               (30) 
implies 

ఈ݈(1ߦ~(ߦ)ܨ                     ⁄ߦ ) ⋅
ߨ

2Γ(ߙ + 1) cos(ߙߨ 2⁄ )
ߦ) → 0 +).                         (31) 

Conversely, (31) implies (30) if ݂ satisfies (T). 
Theorem (4.2.2)[4]:Let ݈ ∈ ܴ଴. Let ܨ ∈ ,0]ܸܤ ∞) with ܵܨ cosine transform ݂. 

We write (ݔ)ܨ ∶= 1)ܨݔ ⁄ݔ ) for  ݔ > 0. Then 
ݐ)(݊)ଵ݈ିݐ ~ (ݐ)݂                                                   → ∞)                                               (32) 

implies 
തܨ ∈ Π௟with ݈ − index 1.                                                (33) 

Conversely, (33) implies (32) if ݂ satisfies (T). 
The Theorems above can be applied to stationary processes. Let ܺ =

:(ݐ)ܺ) ݐ ∈  be a real, centered, weakly stationary process with correlation function(ࡾ
(ݐ)ܴ ∶=  :ܨ and spectral distribution function [(0)ܺ(ݐ)ܺ]ܧ

(ݐ)ܴ = න cos ߦݐ
[଴,ஶ)

ݐ)(ߦ)ܨ݀ ∈  .(ࡾ

Then the Theorems above link the asymptotics of ܴ and  1)ܨ ⋅⁄ ). 
Next we consider the sine case. 
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Theorem (4.2.3)[4]:Let ݈ ∈ ܴ଴and 0 < ߙ < 2. Let ܩ ∈ ,0]ܸܤܰ ∞) with ܵܨ sine 
transform g. Then 

g(ݐ) ~ ିݐఈ݈(ݐ)(ݐ → ∞)                                             (34) 
implies 

ఈ݈(1ߠ ~ (ߦ)ܥ                      ⁄ߦ ) ⋅
ߨ

2Γ(ߙ + 1) sin(ߙߨ 2⁄ ) ߦ) → 0 +).                        (35) 

Conversely, (35) implies (34) if g satisfies (T). 
Theorem (4.2.4)[4]:Let ݈ ∈ ܴ଴ and ܩ ∈ ,0]ܸܤܰ ∞) with ܵܨ sine transform g. We 
write ܩ෨(ݔ) ∶= 1)ܩଶݔ ⁄ݔ ) for  ݔ > 0. Then 

g(ݐ)~ ିݐଶ݈(ݐ)(ݐ → ∞)                                                (36) 
implies 

෨ܩ ∈ Π௟with ݈ − index 1 2⁄ .                                             (37) 
Conversely, (37)implies (36) if g satisfies (T). 

The proofs of the Theorems above are similar to and even easier than those of 
Theorems (4.1.1)-(4.1.4), hence we omit the details. We only note that the following 
equalities are keys to the proofs: 

න ݁ି௫௧݂(ݐ)
ஶ

଴
ݐ݀ =

2
ߨ

න
ݔ

ଶݔ + ଶߦ
[଴,ஶ)

 ,(ߦ)ܨ݀

න ݁ି௫௧ݐg(ݐ)
ஶ

଴
ݐ݀ =

4
ߨ

න
ߦݔ

ଶݔ) + ଶ)ଶߦ
(଴,ஶ)

 .(ߦ)ܩ݀
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