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Chapter 3 

Locally Compact Groupoids 

For groupoids , the best analog of fact is to be found in representation of B(G) as a 
Banach space of completely bounded maps from a C*- algebra  associated with G to 
a C*-algebra  associated with the equivalence relation induced by G. 

Section (3.1): Complete Positivity 

In this section we introduce second and third ways to view elements ofP(ܩ), namely 
in terms of completely positive mappings. Theorem (3.1.1) is a first step toward getting 
Banach algebras of completely bounded maps on(ܩ)∗ܯ and on (ܩ)∗ܥ. In we obtained 
 and defined ߱ to be the direct sum of the (cyclic) ,(ܩ)ܥby completing (ܩ)∗ܥ
representations of(ܩ)∗ܥ that arise from normalized positive linear functionals on (ܩ)∗ܥ. 
LetHఠ be the Hilbert space of ߱. By a theorem of Renault, that stated,each 
representation of ܥ(ܩ) can be gotten by integrating a unitary representation of ܩ. Thus 
 ఓ. The process of integrationߨ is also a direct sum of certain representations (ܩ)ܥ|߱
allows us to regard each ߨఓ, and hence ߱, as a representation of either M (ܩ)  or ܥ(ܩ). 
We call ߱ the universal representation of ܩ. We also defined (ܩ)∗ܯ to be the 
operatornorm closure of ߱(M (ܩ) ), and notice that (ܩ)∗ܥ is isomorphic to the norm 
closure of ߱ ൫ܥ(ܩ)൯. If ܩ is a group, of course (ܩ)∗ܯ =  but these two algebras ,(ܩ)∗ܥ
can be different for groupoids. 

Theorem (3.1.1)[3]:Let  be a positive definite function on ܩ. Let ߱ be the universal 
representation of ܩ, and define ܶ൫߱(݂)൯ = ݂ for (݂)߱ ∈M (ܩ) . Then ܶ extends to a 
completely positive map of (ܩ)∗ܯ to (ܩ)∗ܯ with completely bounded norm equal to 
the ࣫-essential supremum of {(ݔ): ݔ ∈ ܺ}. 

Proof : We remind the reader that this ࣫-essential supremum is the infimum of 
:ܤ} if ߤ ∈ ࣫, then  ≤ ߤ ܤ − a. e. }. Also, in working with ߱ we will use its construction 
as adirect sum. 

We will need to find a formula for ܶ, in order to prove that the map-ping is 
completely positive. For this we begin with two vectors ߦ, in one summand of Hఠ ߟ  
given by an integrated representation ߨఓ. This means that we begin with a measure ߤ ∈
࣫ and a Hilbert bundle K over ܺ. The subspace of Hఠ  in question is ܮଶ(ߤ;K  ), and 
the restriction of ߱ to this subspace is the integrated form of a representation, ߨ, of ܩ. 
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We are using Renault's form here, as described take ߥ = ∫ ௫ߣ ߥand (ݔ)ߤ݀ = ⊿ఓ
ିଵ ଶ⁄  .ߥ

Then for ݂ ∈M (ܩ) , 

൫ ܶ߱(݂)ߦหߟ൯ =  (ߟ|ߦ(݂)߱)

= න(ߛ)݂(ߛ) ቀߦ(ߛ)ߨ൫(ߛ)ݏ൯หߟ൫(ߛ)ݎ൯ቁ  (ߛ)ߥ݀

=                                                           .(ߟ|ߦ (݂)ఓߨ)

By theorem(2.2.7) there are a Hilbert bundle K   on ܺ, a (unitary) Borel 
representation ߨ of ܩ on K   and a bounded Borel section ߦ of K   such that 

(ߛ) = ቀߨ(ߛ)ߦ  ∘ ߦห(ߛ) ݏ  ∘ ߛ .ఓ-a.eߣ ቁ for(ߛ)ݎ ∈   isߨ ,By Theorem (2.2.8) .ܩ

unique, and the section ߦ is determined ࣫-a.e. Thus we can continue the calculation 
from above as follows: 

= න݂(ߛ) ቀߨ(ߛ)ߦ  ∘ ߦห(ߛ)ݏ  ∘ ቁ(ߛ)ݎ ൫ߦ ∘ ∘ ߟ|(ߛ)ݏ ൯(ߛ)ݎ  (ߛ)ߥ݀

  = න݂(ߛ) ൬ቀߦ ቁ(ߛ)ߨ⊗  ൫ߦ  ⊗ ൯ߦ ∘ ቚ(ߛ)ݏ ൫ߦ  ⊗ ൯ߟ  ∘ ൰(ߛ)ݎ  (ߛ)ߥ݀

= ൫൫ߨ ߦ൯(݂)൫ߨ⊗ ⊗ ߦ൯หߦ ⊗  ൯ߟ

= ൫൫ߨ −߱൯(݂)൫ߦ  ⊗ ߦ൯หߦ  ⊗                                                             .൯ߟ

Here ߦ ⊗ ߦ and ߦ ⊗ K;ߤ)ଶܮ are in ߟ  ⊗K   ). In summary we have 

൫ ܶ߱(݂)ߦหߟ൯ = (൫ߨ ⊗߱൯(݂) ܸ,ఓ,K  ߦห ܸ,ఓ,K ߟ), 

where ܸ,ఓ,K  ∶ (K;ߤ)ଶܮ → K    ;ߤ)ଶܮ ⊗K   )is defined by ܸ,ఓ,Kߦ = ߦ ⊗  This is a.ߦ
bounded operator because the section ߦ is bounded and the usual techniques for 
multiplication operators apply. If we let ܸ be the directsum of the operators ܸ,ఓ,Kover 
all pairs (ߤ,K   ), we have ܶ߱(݂) = ܸ

∗൫ߨ ⊗߱൯(݂) ܸ . A theorem of Stinespring,  

shows that ܶ is completely positive with completely bounded norm equal to ฮ ܸฮ
ଶ
. But 

ܸis given by a tensor multiplication which behaves like a scalar multiplication operator, 
so 

ฮ ܸฮ
ଶ

= ess sup ቄฮߦ(ݔ)ฮ
ଶ

: ݔ ∈ ܺቅ = ess sup{(ݔ): ݔ ∈ ܺ}. 
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The proof of Theorem (3.1.1) also proves this: 

Theorem (3.1.2)[3]:Let  be a positive definite function on ܩ, let ߤ ∈ ࣫ and let ߨ be a 
representation of ܩ. Define ܶ

ᇱ൫ߨఓ(݂)൯ = ݂ for (݂)ఓߨ ∈M (ܩ) . Then ܶ 
ᇱ extends to a 

completely positive map of the norm closure of ߨఓ(M (ܩ) ) to itself, this being the 
quotient of the ܶ defined in Theorem (3.1.1). The completely bounded norm of ܶ as an 
operator on cl(ߨఓ(M (ܩ) )) is the ߤ-essential supremum of {(ݔ): ݔ ∈ ܺ}. 

Although the norm on the Fourier-Stieltjes algebra of a groupoid comes from its 
representation by completely bounded maps rather than as the Banach space dual of the 
 algebra as it does for groups, the latter fact has a remnant. Here we prove just one-∗ܥ
lemma regarding that remnant. 

Lemma (3.1.3)[3]:Let  be a positive definite function on ܩ, and let ߤ be a probability 
measure in ࣫. Define ߰,ఓ൫߱(݂)൯ = ∫ (ߛ)(ߛ)݂ ݂ for(ߛ)ߥ݀ ∈ ߥ where ,(ܩ)ܥ =
∫ ௫ߣ  whose norm is (ܩ)∗ܥ Then ߰,ఓ extends to a positive linear functional on . (ݔ)ߤ݀
at most the ࣫-essential supremum of . 

Proof:From the definition of ߨఓ in (See[3]), it follows that the integral in question is 
equal to ൫ߨఓ(݂)ߦหߦ൯, where ߨ is the unitary representation of ܩ derived from  and ߦ is 
the associated of the Hilbert bundle.Thus this linear functional is clearly positive, and its 
norm is at most ‖ߦ‖ଶ,the square of the norm of ߦ in H(ߤ), but this is at most‖ߦ‖ஶଶ which 
is the ࣫-essential supremum of . 

Next we present a third way to think about P(ܩ). It depends on using the 
decomposition described of the Haar system of ܩ over the equivalence relation ܴ 
associated to ܩ. This decomposition is relative to the mapping ߠ = ,ݎ)  .ܴ ontoܩ of (ݏ
Since ܩ is ߪ-compact it follows that ܴ is ߪ-compact in the quotient topology. The 
decomposition of the Haar system involves two families of measures. First of all there is 
a measure ߚ௬

௬concentrated on ݕܩݔ for every pair (ݔ, ௬ߚ in ܴ, such that each(ݕ
௬is a Haar 

measure on ݕܩݕ and ߚ௬௫ is a translate of ߚ௬
௬. Then there is a Borel Haar system ߙ for ܴ 

so that for every ݔ ∈ ܺ we have 

௫ߣ = නߚ௬௭ ,ݖ)௫ߙ݀  .(ݕ

There is a Borel homomorphism ߜ from ܩ to the positive reals such that for every ߤ ∈ ࣫ 
the modular homomorphisms ⊿ఓ for ܩ and ⊿ఓ for ܴ satisfy⊿ఓ = ఓ⊿ߜ ∘ ݔ For each .ߠ ∈
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ܺ let ߤ௫ be the measure on ܺ so that ߙ௫ = ௫ߝ × ௫ߤ impliesݕ ~ ݔ ௫.Thenߤ =  ௬. Thusߤ
ఓೣߙ = ௫ߤ × ௫, so ⊿ఓೣߤ = 1. 

Let M (ܴ)ை  be the space of bounded Borel functions on ܴ supported on images 
under ߠ of compact subsets of ܩ. Then M (ܴ)ை  is a ∗-algebra under convolution, using 
the Borel Haar system .We also extend this algebra to include M(ܺ), as done for M (ܩ)  
and M(ܺ), obtaining M (ܴ,ܺ)ை  in this case. 

If ߤ is a quasi-invariant measure on ܺ, i.e., ߤ ∈ ࣫, earlier we introduced the notation 
∫ ఓ forߣ ௫ߣ  ఓ similarly. Now we want to shorten the notation, soߙ and we define (ݔ)ߤ݀
we write ߥ = ߥ,ఓߣ = ⊿ ,ఓߙ = ⊿ఓ, and ⊿ = ⊿ఓ. 

To integrate a unitary representation of ܩ relative to ߤ to make a∗-representation of 
M (ܺ,ܩ) , we use the measure ߥ = ⊿ିଵ ଶ⁄  and to integrate a representation of ܴ we ߥ
use the measure ߥ = ⊿ିଵ ଶ⁄  . For example, in the first case we haveߥ

(ߟ |ߦ (݂)ఓߨ) = න݂(ߛ)൫ߦ (ߛ)ߨ ∘ ߟ|(ߛ)ݎ ∘ ൯(ߛ)ݏ  (ߛ)ߥ݀

whenever ݂ ∈M (ܩ)  and ߦ,  This is the .ܩ represents  ߨ ଶ  of the bundle on whichܮ are ߟ
formulation of (see[3]). From what we have above,it follows that ߥ =
∫ ଵିߜ ଶ⁄ ௬௫ߚ  .so there is a convenient relationship between the two measures ,(ݕ,ݔ)ߥ݀

For each unitary representation ߨof ܴ, and each ߤ ∈ ࣫(ܴ), we can ask whether the 
representation ߨఓ is cyclic, and we can define ߱ to be a directsum formed using for 
summands one representative from each equivalence class of a cyclic ߨఓ. Then we can 
write ܯ∗(ܴ) for the norm closure of ߱(M (ܴ)ை ). These ߨఓ 's extend to M (ܴ,ܺ)ை , so ߱ 
does also, and we let ܯ∗(ܴ,ܺ) be the norm closure of ߱(M (ܴ,ܺ)ை ). As stated before, 
the algebra ܯ∗(ܴ,ܺ) is present only for its utility in proving results about ܩ, and the 
slightly strange definition is just suited to that purpose. 

If  ∈P(ܩ), we define a pairing of  with an element ݂ ∈M (ܩ)  to givea function 
on ܴ by 

〈݂, ,ݔ)〈 (ݕ = න݂ିߜଵ ଶ⁄ ௬௫ߚ݀ . 

Since  and ିߜଵ ଶ⁄  are Borel functions and bounded on compact sets, we always have 
〈,݂〉 ∈M (ܴ)ை . We must show that this mapping is determined by the equivalence 
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class of . If  = ,ݔ) ఓ-almost every pairߙ then for ,࣫ߣ ᇱ a.e. relative to  the functions (ݕ
݂ ௬௫, so for everyߚ ᇱ agree a.e. with respect to and  ∈M (ܩ)  we have 〈݂, 〈 = 〈݂,  〈ᇱ
a.e. with respect to ߙఓ.Furthermore, we represent  and ᇱ as matrix entries, and these 
have restrictions to ܺ that agree a.e. with respect to ࣫. We will show that the mapping of 
݂ to 〈݂,  .(ܴ)∗ܯ to(ܩ)∗ܯ gives rise to a completely positive map ܵ from 〈

There is another property of ܵ we use, and its statement requires a little background. 
Recall that ܥ(ܩ) and M (ܩ)  are bimodules over ܥ൫ܺ൯, where ℎ ∈  ൫ܺ൯ acts viaܥ
multiplication by ℎ ∘ and ℎ ݎ ∘  of the ∗-algebra ߨ Recall also that every representation .ݏ
(ℎ݂)ߨ (ܺ) such thatܥ has an associated representation ߮ of (ܩ)ܥ = ߮(ℎ) ߨ(݂) and 
(ℎ݂)ߨ =  is a bimodule map. Hence every ߨ for all ݂and ℎ, i.e., so that(ℎ)߮ (݂)ߨ
representation of M (ܩ)  also has such an associated representation of ܥ(ܺ). We can 
extend ߮ to M(ܺ), getting a representation that preserves monotone limits and hence 
maintaining the bimodule property. 

We notice that M(ܺ) also has natural actions defined the same way onM (ܴ)ை  and 
by pointwise multiplication on each ܮଶ(ߤ; K   ), rendering ߱ ෦bimodule map from 
M (ܴ)ை to ܯ∗(ܴ). The main properties of ܵ are established in the next theorem. 

Theorem (3.1.4)[3]:If  ∈P(ܩ), there is a completely positive operator ܵ:(ܩ)∗ܯ →
that extends the operator defined by ܵ൫߱(݂)൯ (ܴ)∗ܯ = ߱(〈݂,〉) for ݂ ∈M (ܩ) . This 
mapping is anM(ܺ)-bimodule map. If we define ܵ൫߱(gߝ)൯ = ߱(gߝ) for g ∈M(ܺ) and 
use linearity, we get an extension of the original ܵ to a completely positive M(ܺ)-
bimodule map of ܯ∗൫ܩ,ܺ൯ to ܯ∗൫ܴ,ܺ൯ that takes ߱(ߝ) to an element of ߱(M(ܺ)). The 
completely bounded norm of ܵ is equal to ‖‖ஶ. 

Proof:We need another formula for ܵ, first on M ൫ܩ,ܺ൯ . To find one, we first work 
with a subrepresentation of ߱ acting on a space of the form ܮଶ(ߤ;K   ). 

The positive definite function p determines a unitary representation ߨ of ܩ on a 
Hilbert bundle K  over ܺ, as well as a bounded section ߦ of K   for which we have 

(ߛ) = ቀߨ(ߛ)ߦ ∘ ߦห(ߛ)ݏ  ∘  Then we may .࣫ߣ relative to ߛ ቁ for almost all(ߛ)ݎ

replace  by the matrix entry. Indeed, we must make that replacement in order to make 
sense of the values of   on ܺ. Suppose that ߦ and ߟ are in ܮଶ(ߤ,K   ), and compute 
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൫ܵ൫߱(݂)൯ߦหߟ൯ = ( ߱(〈݂,  (ߟ|ߦ(〈

         = න〈݂, ,ݔ)〈 ൫(ݕ ߱(ݔ, ൯(ݔ)ߟ |(ݔ)ߦ(ݕ)(ݕ ,ݔ)ߥ݀  (ݕ

                                     = ඵ݂(ߛ)(ߛ)ߜ(ߛ)ିଵ ଶ⁄ ൫ ߱ ∘ ൯(ݔ)ߟ |(ݕ)ߦ(ߛ)ߠ ,ݔ)ߥ݀ (ߛ)௬௫ߚ݀  (ݕ

           = න݂(ߛ) ቀߨ(ߛ)ߦ ∘ ߦห(ߛ)ݏ ∘ ቁ(ߛ)ݎ ൫ ߱ ∘ ߦ (ߛ)ߠ ∘ ߟ |(ߛ)ݏ ∘ ൯(ߛ)ݎ  (ߛ)ߥ݀

= ቀቀ൫ߨ ⊗ ߱ ∘ ൯(݂)ቁߠ ߦ ⊗ ቚߦ ߦ ⊗                                                          .ቁߟ

We also have 

( ߱(gߝ) ߟ |ߦ) =  (ߟ |ߦg)

                                        = නቀߦ(ݔ)หߦ(ݔ)ቁ g(ݔ)൫(ݔ)ߟ |(ݔ)ߦ൯  (ݔ)ߤ݀

                            = ൫൫ߨ ⊗ ߱ ∘ ߦ(ߝg)൯ߠ ⊗ ߦหߦ ⊗  .൯ߟ

Now define ܸ,ఓ,K  ∶ (    K;ߤ)ଶܮ → K  ;ߤ)ଶܮ ⊗K   ) by ܸ,ఓ,K  ߦ = ߦ ⊗  ܸ and letߦ
be the direct sum of all the operators ܸ,ఓ,K. The calculations just done show that for all 
݂ ∈M (ܩ)  and g ∈M(ܺ) we have 

ܵ൫߱(݂ߣ + gߝ)൯ = ܸ∗ ቀ൫ߨ ⊗ ߱ ∘ ߣ݂)൯ߠ + gߝ)ቁܸ. 

Since ߨ ⊗ ߱ ∘  is a ∗-representation, Stinespring's Theorem shows that ܵ is ߠ
completely positive. This representation also gives a formula for the extension of ܵ to 
 and shows that it is an extension by continuity. It is not difficult to show that (ܺ,ܩ)∗ܯ
the norm of ܵ is the essential supremum norm of ߦ, and that is the same as ‖‖ஶ. 

From the definition of ܸ we see that it intertwines the natural actions ofM(ܺ) on 
K ;ߤ)ଶܮ and (K;ߤ)ଶܮ  ⊗K   ). The restrictions of these natural actions to ܥ(ܺ)are 
the representations of ܥ(ܺ) associated with the give nrepresentations of ܥ(ܩ) in the 
proof of Renault's Theorem. This makes it clear that ܵ is also a bimodule map. 

Now we want to prepare the way for the proof of the converse of the last theorem. 
We need less hypothesis than we had conclusion, namely we only need to deal with the 
transitive quasiinvariant measures on ܺ. 
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We use the measures ߤ௫ on ܺ such that ߙ௫ = ௫ߝ ×  we ݔ ௫, as described. For eachߤ
have ߙఓೣ = ௫ߤ × ௫, which is symmetric, so ⊿ఓೣ is trivial. That means that ⊿ఓೣߤ =  .ߜ
Since these modular functions are all the same, we will denote them by the single letter 
⊿. 

Let ߩ௫ be the representation of (ߙ,ܴ)ܫ gotten by integrating the trivial representation 
of ܴ on the one-dimensional bundle, relative to the measureߤ௫. Since M (ܴ)ை ⊆
௫ can be restricted toMߩ the representation ,(ߙ,ܴ)ܫ (ܴ)ை , and we denote the restriction 
the same way. Define ߩ௫ on M(ܺ)to be the representation by multiplication on ܮଶ(ߤ௫). 

We combine these two definitions to get a representation ߩ௫ of M ൫ܴ,ܺ൯ை  on H ௫ . Let 
߱௧denote the direct sum of all these ''transitive'' representations ߩ௫, so the representation 
space of ߱௧ is H  , the direct sum of all the Hilbert spacesH ௫ . Write ܯ௧

∗൫ܴ,ܺ൯ for 

the norm closure of the image of M ൫ܴ,ܺ൯ை  under ߱௧. Then ܯ௧
∗(ܴ,ܺ) is a quotient of 

 We also write .(ܺ,ܴ)∗ܯ ൫ܺ൯-bimodule, as well as a compression ofܥ as a (ܺ,ܴ)∗ܯ
௧ܯ
∗(ܴ) for the closure of the image of M (ܴ)ை . 

It is not true that every completely bounded map is a linear combination of 
completely positive maps, unless the range algebra is injective. In our setting, the 
domain and range are closely related and very special. We can circumvent the problems 
caused by lack of injectivity, but to do so and even to deal with completely positive 
maps themselves, we need to think of ܯ௧

∗(ܴ,ܺ) as acting on a space of Borel sections. 
We now begin to arrange that. 

Observe that the Hilbert spaces H ௫  are the fibers in a Hilbert bundle over ܺ, i.e., 
the graph of H, ߁H, has a natural Borel structure with all the necessary properties. In 
fact, for each ݔ the space H ௫  is easily identifiable with ܮଶ(ߙ௫), and we simply 
transport the usual Borel structure for the latter bundle to H. 

If g ∈M (ܴ)ை , define a section of ΓH by letting ξ(x) be the class of g(x,⋅)in Lଶ(μ୶). 
Countably many of these sections can be chosen so that their values at a point ݔ always 
form a dense set in H ୶ . Thus we can also choose a countably generated subalgebra of 
M(ܺ) so that the module of sections over it generated by the countably many ߦ's 
determines the Borel structure on ߁H. Note also that ݕ ~ ݔ implies that ߤ௫ =  ௬ soߤ
H ௫ =H  ௬  . 
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Theorem (3.1.5)[3]:Let ߰ be a completely positive ܥ൫ܺ൯-bimodule map fromܥ∗൫ܩ,ܺ൯ 
to ܯ∗(ܴ,ܺ), and suppose that ߰൫߱(ߝ)൯หH  ∈ ߱௧(M(ܺ)). Then there is a  ∈P(ܩ) 
such that ߰ = ܵ, and ‖‖ஶ ≤ ‖߰‖.. 

Proof: There is no loss of generality in taking ߰ to have completely bounded norm at 
most 1. Next we restrict ߰ ∘ ߱to ܥ൫ܩ,ܺ൯, getting a completely positive map, ߰ᇱ of 
ݔ For each .(ܺ,ܴ)∗ܯ ൯ intoܺ,ܩ൫ܥ ∈ ܺ,݂ ∈ and g ,(ܩ)ܥ ∈ ൫ܺ൯, define ߰௫ᇱܥ ߣ݂) +
gߝ) = ߰ᇱ(݂ߣ + gߝ)|H ௫ . For each ݔ,߰௫ᇱ  is a completely positive bimodule map into 
L(H ௫ ) of completely bounded norm at most 1, and ݕ ~ ݔ implies ߰௫ᇱ = ߰௬ᇱ . 

The proof consists mainly of accumulating sufficient information about the mappings 
߰௫ᇱ  and objects constructed from them to assemble the desired positive definite function 
 Using the Stinespring Theorem for completely positive maps and analyzing the .
equipment it provides enables us to show that each ߰௫ᇱ  is of the form ܵೣ. Then it is 
necessary to merge the separate ௫ 's into one , using the fact that ݔ ~ ݔᇱ implies ߰௫ᇱ =
߰௫ᇲ
ᇱ  from which we prove that ௫ =  ௫ᇲ a.e. Several more improvements in the behavior

of the functions ௫ finally allow us to produce a matrix entry that serves as the desired 
function . We hope that naming the major steps in the proof will help the organization 
of the proof. 

Step (1):TheBorel Behavior of ݔ ⟼ ߰௫௫ 

If f, ℎ ∈M (ܴ)ை  we want to see that 

ݔ ⟼  ൯(ݔ)ߦ௫(݂)൫ߩ

is a Borel section of ߁H. To do this it is sufficient to show that if ݂,ℎ,݇ ∈M (ܴ)ை  then 
the function ݔ ⟼ ൫ߩ௫(݂)ߦ(ݔ)|ߦ(ݔ)൯ is Borel. Such an inner product is given by an 
integral, according to the definition of ߩ௫,namely 

ඵ݂(ݕ, ,ݔ)ℎ (ݖ (ݖ ത݇(ݕ,ݔ)  .(ݕ)௫ߤ݀

This integral defines a Borel function of ݔ since the measures ߤ௫ ×  in a ݔ ௫depend onߤ
Borel manner. By the definition of ܯ௧

∗(ܴ), every ߩ௫ is defined on ܯ௧
∗(ܴ) and for ܽ ∈

௧ܯ
∗(ܴ) the function ݔ ⟼ ݔ ௫(ܽ) is a uniform limit of functions of the formߩ ⟼  (݂)௫ߩ

for ݂ ∈M (ܴ)ை . Hence for ܽ ∈ ௧ܯ
∗(ܴ) and ℎ ∈M (ܴ)ை  the sectionݔ ⟼  ൯ is(ݔ)ߦ௫(ܽ)൫ߩ

Borel. 
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If we define ߰ to be the direct sum of all the ߰௫ᇱ 's, then ߰ is also the compression of 
߰ᇱ to H  . Thus ߰ maps ܥ൫ܩ,ܺ൯ into ܯ௧

∗(ܴ,ܺ) andߩ௫ ∘ ߰ = ߰௫ᇱ . From this it follows 
that if ݂ ∈ and ℎ (ܩ)ܥ ∈M (ܴ)ை  then the section  ݔ ⟼ ߰௫ᇱ (݂)൫ߦ(ݔ)൯ of ߁H   is Borel. 
If g ∈ ൫ܺ൯ there is a functiongଵܥ ∈M(ܺ) such that ߰(gߝ) = ߱௧(gଵ) because ߰(ߝ) ∈
߱௧(M(ܺ)) and ߰ is a ܥ൫ܺ൯-bimodule map. Hence for ܽ ∈ ൯ and ℎܺ,ܩ൫ܥ ∈M (ܴ)ை  the 
section  x ⟼ ߰௫ᇱ (ܽ)൫ߦ(ݔ)൯ is Borel. 

The fact that ߰ maps into ܯ௧
∗(ܴ,ܺ), and the Borel property derived above are 

essential for completing the proof. 

Step (2):TheStinespring Construction. 

For each ݔ we represent ߰௫ᇱ  by Stinespring's Theorem: We get a representation ߨ௫ of 
൯ on a Hilbert space Kܺ,ܩ൫ܥ ௫  and an operator ௫ܸfrom H ௫  to K ௫ , such that for 
ܽ ∈  ൯ we haveܺ,ܩ൫ܥ

߰௫ᇱ (ܽ) = ௫ܸ
(ܽ)௫ߨ∗ ௫ܸ . 

We will use the details of the construction, so we repeat it here. For Stinespring's proof, 
it suffices to have the domain of the completely positive map to be a ∗-algebra with 
identity, so ܥ൫ܩ,ܺ൯ can be used. The spaceK ௫  is taken to be the Hilbert space 
constructed from the algebraic tensor product ܥ൫ܩ,ܺ൯⊗H ௫  using the semi-inner 
product whose value on twoelementary tensors is given by (ܽ ⊗ ܾ| ߦ ⊗ (ߟ =
(߰௫ᇱ ൯⊗Hܺ,ܩ൫ܥ ௫ be the quotient map fromݍ Let .(ߟ|ߦ(ܽ∗ܾ) ௫  to its quotient 
modulo vectors of norm 0. The image of ݍ௫ is identified with a dense subspace of 
K ௫ . (Sinceܥ൫ܩ,ܺ൯ and H ௫  are separable, so is K ௫ ). The representation ߨ௫ is 
determined by having ߨ(ܽ)൫ݍ(ܾ ⊗ ൯(ߦ = ܾܽ)௫ݍ ⊗ ,ܽ for (ߦ ܾ ∈  ൯ܺ,ܩ൫ܥ
and ߦ ∈H ௫ . The operator ௫ܸ is determined by setting ௫ܸ(ߦ) = ௫(1ݍ ⊗  (ߦ
for ߦ ∈H ௫ . A calculation of inner products shows that ‖ ௫ܸ‖ଶ = ‖߰௫ᇱ (1)‖. 

Since ߰௫,ߨ௫,K ௫  and ௫ܸ are Borel in ݔ and constant on equivalence classes, we get 
a Hilbert bundle over ܺ that is constant on equivalence classes. The pair (ߨ௫ , ௫ܸ) is 

minimal in the sense that ߨ௫ ቀܥ൫ܩ,ܺ൯ቁ ௫ܸ(H ௫ ) is dense in K ௫ . 

Step (3):Getting௫ from the Stinespring Representation. 
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Now we study this structure for a fixed ݔ ∈ ܺ. By Theorem (2.1.4) we know that ߨ௫ 
can be obtained by integrating a representation, ߨ௫ᇱ , of ܩ on a bundle K ௫  relative to a 
quasiinvariant measure ߤ௫, i.e., K ௫ = ௫;Kߤ)ଶܮ ௫ ). Let ߮௫ be the representation of 
൫ܺ൯ on Kܥ ௫  associated with ߨ௫ as a representation of ܥ൫ܩ,ܺ൯. In terms of the 
representation of K ௫ , ߮௫ is the natural representation by multiplication  ofK ௫  . We 
also have ߮௫ =  ൯.Weܺ,ܩ൫ܥ ൫ܺ൯ is regarded as a subalgebra ofܥ ൯, whereܥ൫ܥ |௫ߨ
denote the natural representation of ܥ൫ܺ൯ on H ௫  by ߠ௫; again this is a representation 
by multiplication. 

We need to show that ߤ௫ can be taken to be ߤ௫. The first step is to show that ௫ܸ 
intertwines ߠ௫and ߮௫. Take ℎ ∈ ܾ ,൫ܺ൯ܥ ∈ ,ߦ ൯, andܺ,ܩ൫ܥ ߟ ∈H ௫ .Then the 
definition of the inner product and the fact that ߰௫ᇱ  is aܥ൫ܺ൯-bimodule map gives 

(1 ⊗ℎߦ| ܾ ⊗ (ߟ = (߰௫ᇱ (ܿ∗)ℎߟ |ߦ) 

                                 = (߰௫ᇱ (ܾ∗ℎ)ߟ |ߦ) 

                                   = (ℎ ⊗ ܾ |ߦ ⊗  .(ߟ

Hence ݍ௫(ℎ ⊗ (ߦ = ௫(1ݍ ⊗ℎߦ). Using the bimodule property of ߰௫ᇱ , the definition of 
௫, and the inner product on Kߨ ௫ , we compute that 

൫ ௫ܸ(ℎߦ)|ݍ௫(ܾ ⊗ ൯(ߟ = ൫ݍ௫(ℎ ⊗ ܾ)௫ݍ|(ߦ ⊗  ൯(ߟ

                                                      = ൫ߨ௫(ℎߝ)ݍ௫(ܫ ⊗ ܾ)௫ݍ|(ߦ ⊗  .൯(ߟ

Hence, ௫ܸ(ℎߦ) = ߮௫(ℎ) ௫ܸ(ߦ). 

From the theory of representations of ܥ(ܺ) or of projection valued measures based 
on ܺ, there is a bounded section of K ௫ , which we denote by ߞ௫, such that for 
ߦ ∈H ௫ , the pointwise product ߞߦ௫ is a section of K ௫ representing the element ௫ܸ(ߦ) 
in K ௫ . Such a section can be gotten as follows: let g be any strictly positive Borel 
function on ܺ that represents an element of H ௫ , let ߞଵ be a section that represents 
௫ܸ(g), and setߞ௫ = (1 g⁄  ௫ need not be a square integrable section, but will beߞ ଵ. Thenߞ(

if ߤ௫ is finite so that the function 1 is an element of H ௫ . 

We can write ௫ܸ(ߦ) =  ௫, using the usual identification of functions with theirߞߦ
equivalence classes. Then for ߦ ∈H ௫  we have 
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න|ߦ|ଶ|ߞ௫|ଶ ௫ߤ݀ ≤ න|ߦ|ଶ  ௫,                                                (5)ߤ݀

because ‖ ௫ܸ‖ ≤ 1. It follows that ߤ௫ is not singular relative to ߤ௫, so that ߤ௫ gives 
positive measure to [ݔ]. It also follows that |ߞ௫| is zero a.e. off[ݔ], so that ߞଵ = gߞ௫ is in 
the subspace of K ௫ = ௫;Kߤ)ଶܮ ௫ ) consisting of functions that vanish off [ݔ]. By 
the way we integrate representations of ܩ to get representations of ܥ(ܩ), we see that 
this latter subspace is invariant for ܥ(ܩ) and hence for ܥ൫ܩ,ܺ൯. From the fact that g is 
cyclic in H ௫ , it follows that gߞ௫ = ௫ܸ(g) is cyclic for ܥ൫ܩ,ܺ൯ inK ௫ , so the 
subspace under discussion is in fact all of K ௫ . That implies that ߤ௫ is in fact 
equivalent to ߤ௫, so we may as well take ߤ௫ to be equal to ߤ௫. That may require 
multiplying the original ߞ௫ by some positive function, but now we assume that to have 
been done. We write ߥ௫for ߣఓೣ , getting a measure concentrated on[ݔ]|ܩ. 

In this situation, the inequality (5) implies that |ߞ௫| is bounded by 1. We define 

(ߛ)௫ = ቀߨ௫ᇱ  ൯ቁ(ߛ)ݎ௫൫ߞ|(ߛ)ݏ௫ߞ(ߛ)

getting a positive definite function on [ݔ]|ܩ. Now the sup-norm of ߞ௫ is the same as the 
operator norm of ௫ܸ, and that is the same as the square root of the completely bounded 
norm of ߰௫ᇱ , so the sup-norm of ௫ is atmost the completely bounded norm of ߰௫ᇱ . 

Step (4):௫ Gives Rise to ߰௫ᇱ . 

We know that ݕ ~ ݔ implies ߰௫ᇱ = ߰௬ᇱ , so ߨ௫ = ௬ and ௫ܸߨ = ௬ܸ . Hence ߨ௫ᇱ (ߛ) =
௬ᇱߨ (ݖ)௫ߞ and ,ߛ ௫-almost everyߥ for (ߛ) = ௫ so that,ݖ ௫-almost everyߤ for (ݖ)௫ߞ =  ௬
a.e. relative to ߥ௫, and their restrictions to ܺ agree a.e.relative to ߤ௫. 

To see that ߰௫ᇱ  is the compression of ܵೣ  to H ௫ , we begin by settingߥ௫ =  ఓೣandߣ
௫ߥ = ఓೣ, as above, so that ⊿ߙ = 1 and ⊿ = ݂ Then we calculate for .ߜ ∈  and ,(ܩ)ܥ
,ߦ ߟ ∈H ௫ : 

(߰௫ᇱ (ߟ | ߦ(ݔ) = (݂)௫ߨ) ௫ܸߦ | ௫ܸߟ) 

                                           = න݂(ߛ) ቀߨ௫(ߛ)(ߞߦ௫)൫(ߛ)ݏ൯ห(ߞߟ௫)൫(ߛ)ݎ൯ቁ ⊿ିଵ ଶ⁄  (ߛ)௫ߥ݀(ߛ)

                              = ඵ݂(ߛ)௫(ߛ)ିߜଵ ଶ⁄ ௭ߚ݀(ߛ)
௬(ߛ) ߥ݀(ݕ)ߟ̅(ݖ)ߦ௫(ݕ,  .(ݖ
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This shows that ߰௫ᇱ (݂) = ܵೣ(݂)หH ௫ . Next we find a formula for ߰௫ᇱ  by computing (ߝ)

(߰௫ᇱ (ߟ |ߦ(ߝ) = (ߝ)௫ߨ) ௫ܸߦ | ௫ܸߟ) 

            =  (௫ߞߟ |௫ߞߦ)

                                         = න௫(ݕ) (ݕ)ߟ̅(ݕ)ߦ  (ݕ)௫ߤ݀

from which it follows that ߰௫ᇱ (ߝ) = Since ߰௫ᇱ .(ܺ |௫)௫  is a ܥ൫ܺ൯-bimodule map, we 
see that ߰௫ᇱ (gߝ) = for g(௫g)௫ ∈ ൫ܺ൯. This completes the proof that ߰௫ᇱܥ is the 
compression of ܵೣ  to H ௫ . 

Step (5): Applying Lemma (2.2.1) to the Functions ௫. 

Take functions ℎ, ݇ ∈M (ܴ)ை  from which we make sections ߦ and ߦ ofH. Let ߦ =
ߟ and (ݔ)ߦ = in the calculations above to see that if g (ݔ)ߦ ∈  then ,(ܩ)ܥ

൫߰௫ᇱ (g)ߦ(ݔ)൯ = න g(ߛ)௫(ߛ)ℎ൫ݔ, ൯(ߛ)ݏ ത݇൫ݔ, ଵିߜ൯(ߜ)ݎ ଶ⁄ (ߛ)  .(ߛ)௫ߥ݀ 

If ߝ is the identity in ܥ൫ܺ൯, we also get 

൫߰௫ᇱ ൯(ݔ)ߦ|(ݔ)ߦ(ߝ) = න௫(ߛ) ℎ(ݔ, (ݕ ത݇(ݔ, (ݕ  .(ݕ )௫ߤ݀ 

Here it is important that the functions of ݔ on the left hand sides of these two formulas 
are Borel functions. 

To apply Lemma (2.2.1) as it is formulated, we must have a Borel family of finite 
measures. We begin by considering a compact set ܭ contained in ܩ.The function ݕ ⟼
ݔ is bounded on ܺ, and for every (ܭ)௬ߣ ∈ ܺ we have  ߤ௫൫(ܭݔ)ݏ൯ < ∞. Hence, for ݔ ∈
ܺ the measure given by the integral 

න (߯ߣ௬)
௦(௫,)

 (ݕ )௫ߤ݀

is finite. 

Notice that a pair (ݔ, (ݕ ∈ ܺ × ܺ is in (ܭ)ߠ iff ݔ ∈ ݕ iff(ݕܭ)ݎ ∈  If ℎ is the .(ܭݔ)ݏ
characteristic function of (ܭ)ߠ, it follows that ℎ൫ݔ, ൯(ߛ)ݎ = 1 iff  (ߛ)ݎ ∈  and ,(ܭݔ)ݏ
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ℎ൫ݔ, ൯(ߛ)ݏ = 1 iff (ߛ)ݏ ∈ ,ݔ)defined to be൛ ,ܮ Thus the set .(ܭݔ)ݏ (ߛ ∈ ܺ × ߛ :ܩ ∈
,ݔand ℎ൫ ܭ ,ݔ൯ℎ൫(ߛ)ݏ ൯(ߛ)ݎ = 1ൟ is a Borel set in ܺ × ,ݔ)} and the same as,ܩ (ߛ ∈ ܺ ×
ߛ :ܩ ∈ ,ܭ (ߛ)ݏ ∈ (ߛ)ݎ and(ܭݔ)ݏ ∈  From the preceding paragraph, it follows .{(ܭݔ)ݏ
that every ݔ-section ܮ௫ of ܮ has finite measure for ߥ௫. 

Choose compact sets ܭଵ ⊂ ଶܭ ⊂ ⋯ whose union is ܩ, and for each ݊ define ℎ =
߯ை() and then ܮ = ,ݔ)} (ߛ ∈ ܺ × ߛ :ܩ ∈ ,ܭ (ߛ)ݏ ∈ (ߛ)ݎ and (ܭݔ)ݏ ∈  .{(ܭݔ)ݏ
Define ܦଵ = ݊ ଵ and forܮ ≥ 2, let ܦ = ݊ ିଵ. For eachܮ\ܮ ∈ ℕ and ݔ ∈ ܺ, let ߥ௫ =
൫߯()ೣ൯ߥ

௫. This gives a Borel family of finite measures on ܩ. Notice that the sets Dn 
partition {(ݔ, (ߛ ∈ ܺ × ߛ :ܩ ∈  .{[ݔ]| ܩ

Now define ௫݂ on ܩ for ݔ ∈ ܺ by ௫݂(ߛ) = ଵିߜ(ߛ)௫ ଶ⁄ ߛfor (ߛ) ∈  and 0 for [ݔ]| ܩ
other ߛ's. If g ∈ ݔ and(ܩ)ܥ ∈ ܺ, then 

න g(ߛ) ௫݂(ߛ) (ߛ)௫ߥ݀  = ቀ߰௫ᇱ (g)ߦ(ݔ)หߦ(ݔ)ቁ, 

which is a Borel function of ݔ. Hence there is a Borel function ܨ on ܺ ×  such that for ܩ
each ܨ ,ݔ(ݔ,⋅) = ௫݂ a.e. relative to ߥ௫. Set 

ܨ =∶ ߯ܨ
ஹଵ

. 

Then ܨ is Borel and for each ݔ ∈ (⋅,ݔ)ܨ ,ܺ = ௫݂ a.e. relative to ߥ௫. 

A similar analysis using ߤ௫ shows that we can also choose ܨ so that ݔ)ܨ, (ݕ = ௫݂(ݕ) 
for ߤ௫-almost every ݕ. 

Hence there is a Borel function ܲ on ܺ × (⋅,ݔ)we haveܲ ݔ such that for every ܩ =  ௫
a.e. Also, ݕ ~ ݔ implies that ܲ(ݔ,⋅) =   ௫ orߥ a.e. relative to either (⋅,ݕ)ܲ
 .ܺ ௬ when restricted toߤ ௫orߤ ௬ (these are the same measure) and also relative to eitherߥ
Furthermore, |ܲ(ݔ,⋅)| is bounded by the completely bounded norm of ߰௫ᇱ , so |ܲ| is 
bounded by 1. 

Step (6):Improving the Behavior of ܲ 

Recall the probability measures ߤଵ௫ =  on ܺ obtained from the Borel family of (ଵ௫ߣ)ݏ
normalized Haar measures on ܩ. We have ߤଵ௫ ~ ߤଵ

௬. Define a new function ଵܲ on ܺ ×  ܩ
by 
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ଵܲ(ݔ, (ߛ = නܲ(ݕ, (ߛ  .(ݕ )ଵ௫ߤ݀ 

Make a function of three variables from ܲ and use the Borel character of ܲ and the 
measures ߤଵ௫to show that ଵܲ is also Borel. We need to know that ଵܲ also essentially 
replicates every function ௫, and is even more invariant than ܲ under changing ݔ to an 
equivalent point of ܺ. 

To begin with we limit ourselves to one orbit, and denote it by ܵ. We write ߤௌ for a 
choice of one of the measures ߤଵ

௫బfor ݔ ∈ ܵ. We know that for ݔ and ݕ in ܵ the 

functions ܲ(ݔ,⋅) and ܲ(ݕ,⋅) agree a.e. relative to ߣఓೄ ,so they agree a.e. relative to ߣ௭ for  
 .agree a.e (⋅,ݕ)ܲ and (⋅,ݔ)ܲ ,ଵ௭ have the same null setsߣ ௭ andߣ Since .ݖ ௌ-almost everyߤ
relative to ߣ௭ iff the complex measures ܲ(ݔ,⋅)ߣଵ௭ and ܲ(ݕ,⋅)ߣଵ௭ are the same. We have 
two Borel mappings from ܵଷ to the standard Borel space of complex Borel measures on 
ܺ, so the set ܧௌ on which they agree is Borel, allowing us to use Fubini arguments. 

Hence, for every ݔ ∈ ܵ, the set {(ݕ, (ݖ ∈ ܵଶ: ܲ(ݕ,⋅) = .a(⋅,ݔ)ܲ e.݀ߣ௭} is a Borel set 
whose complement has measure 0 for ߤௌ ×  ௌ. Therefore, there is a conull Borel set ܼ௫ߤ
of points ݖ in ܵ such that for ߤௌ-almost every y we have ܲ(ݕ,⋅) =   a.e. relative to (⋅,ݔ)ܲ
ݖ ௭. Thus, forߣ ∈ ܼ௫ it is true that for ߣ௭-almost every ߛ we have ܲ(ݕ, (ߛ = ,ݔ)ܲ  for (ߛ
ݖ It followsthat if .ݕ ௭-almost everyߣ ∈ ܼ, then ଵܲ(ݔ, (ߛ = ,ݔ)ܲ  ௭-almost everyߣ for (ߛ
ݔHence, for every .ߛ ∈ ܵ we have ܲ(ݔ,⋅) =  a.e. In particular, ଵܲ also replicates (⋅,ݔ)ܲ
every௫, since ܵ is a general orbit. 

In the last paragraph, we enountered points ߛ ∈ ,ݕ)ܲ for which ܩ  is essentially (ߛ
constant in ݕ because it is almost always equal to a particular ܲ(ݔ,  We need to know .(ߛ
more about the set ܪ = ߛ} ∈ ݕ :ܩ ⟼ ,ݕ)ܲ  is essentially constant}. If A is a(ߛ
countable algebra that generates the Borel sets in ܥ, it is not difficult to show that 

ܪ = ሩ ൜ߛ ∈ ଵߤ :ܩ
(ఊ) × ൯(ܣ)ఊ൫ܲିଵߝ ∈ {0, 1}ൠ

∈ࣛ

. 

Thus ܪ is a Borel set. Hence the set ܥ = ݔ} ∈ (ܪ)ଵ௫ߣ :ܺ = 1} is also a Borelset. From 
the preceding paragraph, it follows that ܥ is conull in every orbit. For ݖ ∈  the ,ܥ
function ଵܲ(⋅, ߛ ௭-almost everyߣ is constant for (ߛ ∈ ݖ In particular, for.ܩݖ ∈  it is true ܥ
that ݔ, ݕ ∈ ଵ௭ߣ(⋅,ݔ)implies that ଵܲ [ݖ] =  .ଵ௭ߣ(⋅,ݕ)ܲ

The last conclusion is the additional invariance needed, and now we change notation 
and simply write ܲfor ଵܲ, since it does everything we need. 
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Step (7):Making a Borel Family of Representations from ܲ. 

Again, take a particular orbit, ܵ, in ܺ. For every pair (ݕ,ݔ) ∈ ܵଶ, we have ܲ(ݔ,⋅) =
ݖ Take an arbitrary .ݖ ௌ-almost everyߤ ௭ forߣ a.e. relative to (⋅,ݕ)ܲ ∈ ܵ. Then for ߣ௭-
almost every ߛଶit is true that ܲ(ݔ,⋅) = ଶିଵߛ a.e. relative to(⋅,ݕ)ܲ ⋅ ௭ߣ =  ௦(ఊమ). Henceߣ
,ݔ)ܲ (ଵߛଶିଵߛ = ,ݕ)ܲ ௭ߣ ଵ) forߛଶିଵߛ × ,ଵߛ) ௭-almost every pairߣ  ଶ). (The mapping takingߛ
the pair to ߛଶିଵߛଵcarriesߣଵ௭ ×  .(ఓߣଵ௭to a measure equivalent toߣ

Now return to studying general points of ܺ. For ݂, g ∈ (ݕ,ݔ)and (ܩ)ܥ ∈ ܴ, define 

(݂|g)(௫,௬) = ඵ݂(ߛଵ)gത(ߛଶ) ܲ(ݔ,  .(ଶߛ)௬ߣ݀(ଵߛ)௬ߣ݀(ଵߛଶିଵߛ

The formula defines an inner product on ܥ(ܩ), and we write K(ݔ,  for the resulting (ݕ
Hilbert space. For each ݂, g ∈ ,ݔ) the function (ܩ)ܥ (ݕ ⟼ (݂ |g)(௫,௬) is a Borel 
function on ܴ that is constant on sets of the form[ݕ] ×  so K defines a Hilbert bundle ,{ݕ}
on ܴ that is constant on the same sets. For ݂ ∈  denote the section of K (݂)ߪ let ,(ܩ)ܥ
(or ߁K) that it determines. 

For each ݔ, the bundle K (ݔ,⋅) supports a unitary representation: here we denote it by 
× ݔ (௫,⋅). We know thatߨ ௫ rather thanߨ ௫ߨ ᇱimplies thatݔ  =  ௫ᇲ, which means that forߨ
ߛ ∈ (ߛ)௫ߨ we have [ݔ]| ܩ =  We want to show that .(they are on the same space) (ߛ)௫ᇲߨ
,ݔ) (ߛ ⟼ ܺ is Borelon(ߛ)௫ߨ ×ᇱ ܩ = ,ݔ)} (ߛ ∶ ߛ  ∈  It will help to look at .{[ݔ]| ܩ
ܴ ×ᇱ ܩ = ,ݕ,ݔ)} ߛ (ߛ ∈  The function .{[ݔ]| ܩ

,ݕ,ݔ) (ߛ ⟼ඵ݂(ିߛଵߛଵ)gത(ߛଶ) ܲ(ݔ,  (ଶߛ)௬ߣ݀ (ଵߛ)௬ߣ݀(ଵߛଶିଵߛ

Is Borel on ܴ ×ᇱ ,ݔ) so ,ܩ (ߛ ⟼ ቀߨ௫(ߛ)ߪ(݂)൫ݔ, ,ݔ൫(g)ߪ ൯ห(ߛ)ݏ  ൯ቁ is Borelon(ߛ)ݎ

ܺ ×ᇱ  .ܩ

Step (8):Finding a Borel That Represents ܲ. 

Let ܦ be the set of pairs (ݔ, (ݕ ∈ ܴ for which the linear functional ݂ ⟼  ൯(⋅,ݔ)௬൫݂ܲߣ
is bounded relative to the seminorm ‖(ݕ,ݔ)(݂)ߪ‖ on ܥ(ܩ).The boundedness can be 
tested using a countable dense subset of ܥ(ܩ), so ܦ is Borel, and hence so is the set 
ݔ For each .ܥܦ ∈ ܺ, we have ܦݔ = {ݔ} ×  .௫ߙ is conull with respect to ܦݔ ௫ so thatܦ
Notice that ݔ ~ ݓ implies that ܥ ∩ ௫ܦ = ܥ ∩  .௪, and this set is conull in the orbitܦ
Hence ܥܦݔ and ܥܦݓ have the same conull image in [ݔ]under ݏ. 
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Now, for (ݔ, (ݕ ∈ ,ݔ)ߞ define ܦ ,ݔ) to be the vector in K (ݕ  such (ݕ
that ൫ݔ)(݂)ߪ, ,ݔ)ߞ |(ݕ ൯(ݕ = ݂ ൯ for every(⋅,ݔ)௬൫݂ܲߣ ∈ ,ݔ) and for ,(ܩ)ܥ (ݕ ∉  let,ܦ
,ݔ)ߞ (ݕ = 0. The formula makes it clear that ߞ is Borel. 

If ݕ ∈ ,ݓ) then ,ݕ ~ ݔ ~ ݓ andܥ (ݕ ∈ (ݕ,ݔ) iff ܦ ∈ ݕ so ,ܦ ∈ ݕܦ implies that ܥ =
[ݕ] − ,ݓ ,Also .{ݕ} ݔ ∈  ௬ߣ agree a.e.with respect to (⋅,ݔ)ܲ and (⋅,ݓ)ܲ implies that [ݕ]
and that K(ݕ,ݓ) =K(ݕ,ݔ). Together, these imply that (ݕ,ݓ)ߞ = ,ݔ)ߞ  Then for .(ݕ
every ߛ ∈  ,[ݕ]|ܩ

,ݔ൫ߞ (ߛ)௫ߨ) ,ݔ൫ߞ ൯ห(ߛ)ݏ ൯(ߛ)ݎ = ,ݓ൫ߞ (ߛ)௪ߨ) ,ݓ൫ߞ ൯ห(ߛ)ݏ  .൯(ߛ)ݎ

Thus both of these functions agree a.e. on [ݔ]|ܩ with  ܲ(ݔ,⋅). Thus we can define 

(ߛ) = ቀߨ௦(ఊ)(ߛ)ߞ൫(ߛ)ݏ, ,(ߛ)ݏ൫ߞ ൯ห(ߛ)ݏ  ൯ቁ(ߛ)ݎ

for ߛ ∈  .that agree sa.e ܩ s to get a Borel function on'ߛ and 1 for other (ܥܦ)ଵିߠ
with ܲ(ݔ,⋅) on [ݔ]|ܩ. 

From Step (4) it follows that ߰ and the compression of ܵ to H   are the same. 

Step (9): The Compression Map from L  (Hఠ ) to L  (H  ). 

To complete the proof, need to show that the compression map ܥ fromL  (Hఠ ) to 

L  (H  ) is one-one when restricted to ߱(M ൫ܴ,ܺ൯ை ). Then it will follow that ߰ and 

ܵ agree on ܥ൫ܩ,ܺ൯, forcing them to be the same. 

Suppose that ݂ߙ + gߝ ∈M (ܴ,ܺ)ை and ߱(݂ߙ + gߝ) ≠ 0. Then there is a 
representation ߨ of ܴ and a probability measure ߤ ∈ ࣫ such that ߨఓ(݂ߙ + gߝ) ≠ 0.We 
need to use this to find a ݖ ∈ ܺ such that ߩ௭(݂ߙ + gߝ) ≠ 0, which will imply ߱௧(݂ߙ +
gߝ) ≠ 0. There is no loss of generality in assuming that there is a probability measure ߤᇱ 
on ܺ such that ߤ = ∫ ଵ௫ߤ ܣSet .(ݔ)ᇱߤ݀ = ,ݔ)} (ݕ ∈ ܴ ∶ ݔ ≠ ,ݕ and ݂(ݔ, (ݕ ≠ 0}, and 
consider two cases: ߙఓ(ܣ) = 0 and ߙఓ(ܣ) ≠ 0. In the first case, ߨఓ(݂) = 0 unless 
(ܺ)ఓߙ > 0, in which case we have ݂ߙ = ఓ. Thus there is an ℎߙ relative to ߝ݂ ∈M(ܺ) 
such that 0 ≠ ߙ݂)ఓߨ + gߝ) = ℎ})ߤ Then .(ߝℎ)ఓߨ ≠ 0}) > 0 so there is a ݖ ∈ ܺ such 
that ߤ௭({ℎ ≠ 0}) > 0, and it is easy to show that ߩ௭(ℎߝ), i.e. ߩ௭(݂ߙ + gߝ) ≠ 0.In the 
second case, there is a ݖ ∈ ܺ such that ߙఓ(ܣ) > 0, and we will show that ߩ௭(݂ߙ +
gߝ) ≠ 0. Recall that ߙఓ = ௭ߤ × ௭. Set ܴߤ = ,ݔ)}\ܴ (ݔ ∶ ݔ  ∈ ܺ}.Then sets of the form 
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ܧ) × (ܨ ∩ ܴ, where ܧ and ܨ are disjoint Borel sets in ܺ, generate the Borel sets in ܴ, 
so there must be such a pair for which 

0 < න ௭ߤ)݂݀ × (௭ߤ
ா×ி

< ∞. 

If we set ℎଵ = ߯ி and ℎଶ = ߯ா we get elements of M(ܺ) which we think of as elements 
ofH ௭ , and then the displayed integral is (ߩ௭(݂)ℎଵ|ℎଶ). On the otherhand, 
(ℎଵ|ℎଶ(ߝg)௭ߩ) = 0because gℎଵℎതଶ = 0. Thus ߩ௭(݂ߙ + gߝ) ≠ 0, as needed. 
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Section (3.2):Completely Bounded Bimodule Maps 

Recall that B(G) is defined to be the linear span of P (ܩ). Because we know that 
P (ܩ) consists of diagonal matrix entries of unitary representations we can form direct 
sums of representations to show that elements ofB (ܩ) are also matrix entries that need 
not be diagonal. We will provide B (ܩ) a normed algebra structure. One way to 
compute the norm of an element ܾ of B(ܩ) is in terms of the positive definite functions 
on a larger groupoid for which b can appear as an "off diagonal part.'' This is the 
groupoid version of the well known 2 × 2 matrix method, and has been exploited by 
Renault for the same purpose. This permits usingthe completeness of P (ܩ) for a 
general locally compact groupoid to provethe completeness of B (ܩ). 

We can also formulate B(ܩ) as an algebra of completely bounded ܥ൫ܺ൯-bimodule 
maps on M*(G), and as a space of completely bounded ܥ൫ܺ൯-bimodule maps from 
 Since the completely positive elements in the latter set are all .(ܺ,ܴ)∗ܯ ൯ toܺ,ܩ൫∗ܥ
given by positive definite functions,and the completely positive bimodule maps form a 
complete set, we get one way to show that B (ܩ) is complete. 

Recall that ω is the direct sum of all cyclic representations of (ܩ)∗ܥ. We can 
construct each cyclic representation as an integrated representation of  ܩ, and, as such, it 
can be taken as a representation of M (ܩ) , and we use the same notation. For each ܽ ∈
‖(ܽ)߱‖,(ܩ)∗ܥ = ‖ܽ‖ is the same 

as sup  {‖ߨ :‖(ܽ)ߨ is a cyclic representation of (ܩ)∗ܥ}. Also recall, that the norms 
‖ ‖ூூ,ఓ and ‖ ‖ூூ  and their properties. 

Theorem (3.2.1)[3]:If ܾ ∈B (ܩ), the operator ܶ, taking ߱(݂) to ߱(ܾ݂) 
for ݂ ∈M (ܩ) , extends to a completely bounded map of (ܩ)∗ܯ to itself and‖ ܶ‖ ≥
‖ܾ‖࣫. 

Proof: ByTheorem (3.1.1), if  ∈P (ܩ) then ܶ is completely positive, so for ܾ ∈B(ܩ) 
the operator ܶ is completely bounded. Set ܯ = ‖ܾ‖࣫and suppose 0 < ߙ < 1. Since : is 
arbitrary, the proof will be complete if we find an ݂ ∈M (ܩ)  such that ߱(݂) ≠ 0 and 
‖ ܶ߱(݂)‖ ≥ ߤ ଶ‖߱(݂)‖. To find such an f first notice that there is aߙܯ ∈ ࣫ such that 
the ܮஶ(ߣఓ)-norm of ܾis greater than ߙܯ, so there exist a ܾ ∈ ℂ and ߟ > 0 such that the 
setܣ = (ߛ)ܾ| :ߛ} − ܾ| < |ఓ and |ܾߣ has positive measure for {ߟ − ߟ >  Then there.ߙܯ
is a compact set ܥ ⊆ (ܥ)ఓߣ such that ܣ > 0. We take ݂ = ߯. 
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By the definition of ‖ ‖ூூ , there is a ߤᇱ ∈ ࣫ such that ‖݂‖ூூ,ఓᇲ >  ூூ. By the‖݂‖ߙ
properties of ‖ ‖ூூ , if ߨ is the one-dimensional trivial representation of ܩ, we have 
ฮߨఓᇲ(݂)ฮ > ߪ Now let .‖(݂)߱‖ߙ = ఓߨ ఓᇲߨ⊗ . We have ‖ߪ(݂)‖ ≥ ฮߨఓᇲ(݂)ฮ >
 .‖(݂)߱‖ߙ

We can find gଵ and gଶin ܥ(ܺ),≥ 0, and > 0 on (ܥ)ݎ ∪  These can be regarded .(ܥ)ݏ
as sections of the bundle for ߨ, and it is clear that(ߨఓ(݂)gଵ⌋gଶ) > 0 from the integral 
formula for the inner product. Thus  ߨఓ(݂) ≠ 0, so ߪ(݂) ≠ 0and ߱(݂) ≠ 0. 

Since ߪ(ܾ݂) = ܾߪ(݂), it will suffice to show that ‖ߪ(ܾ − ܾ)݂‖ ≤
|because then we get (|ܾ,‖(݂)ߪ‖ߟ − ‖(݂)ߪ‖(ߟ ≤ |so (|ܾ ,‖(݂ܾ)ߪ‖ − ‖(݂)߱‖ߙ (ߟ ≤
‖(݂ܾ)ߪ‖ ≤ ‖߱(ܾ݂)‖ = ฮ ܶ൫߱(݂)൯ฮ, giving the desired inequality. Now ݂ is a 
characteristic function, so (ܾ − ܾ) ݂ = ൫(ܾ − ܾ) ݂൯ ݂. Also, ‖(ܾ − ܾ) ݂‖ஶ ≤  so,ߟ
the inequality we wanted on ߪ can be obtained by applying the second inequality before 
Lemma (2.1.6) to both ߤ and ߤᇱ. Thus the proof is complete. 

Again we use the algebra ܥ൫ܺ൯ to study B(ܩ), and need the one-one correspondence 
between its representations and those of ܥ(ܩ) and hence those of ܩ. We still use ߱ for 
the direct sum of all cyclic representations of ܥ൫ܩ,ܺ൯, each of them given as an 
integrated representation of ܩ. We use ߱ for the direct sum of all the cyclic 
representations of M (ܴ,ܺ)  that can be obtained by integrating a representation of ܴ. 

Recall that ܥ∗൫ܩ,ܺ൯ is the operator norm closure of ߱ ቀܥ൫ܩ,ܺ൯ቁ and ܯ∗൫ܴ,ܺ൯ is the 

operator norm closure of ߱(M (ܴ,ܺ) ). If ݔ ∈ ܺ, use H ௫  for ܮଶ(ߤ௫) as before, and 
H  for the direct sum of all the H ௫ 's. Let ߱௧be the subrepresentation of ߱ ෦obtained 
by restricting to H  . 

Theorem (3.2.2)[3]:Let ܾ ∈B(ܩ). There is a completely bounded ܥ൫ܺ൯-bimodule map 
ܵ:ܥ൫ܩ,ܺ൯ → such that ܵ൫߱(݂)൯ (ܺ,ܴ)∗ܯ = ߱(〈݂, ܾ〉) for ݂ ∈  and (ܩ)ܥ
ܵ൫߱(gߝ)൯ = ߱(ܾgߝ)for g ∈  ൫ܺ൯. For this operator we haveܥ

‖ܵ‖ ≥ ‖ܾ‖࣫ , 

and 

ܵ൫߱(ߝ)൯หH  ∈ ߱௧(M(ܺ)). 
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Proof:The operator ܵ is a linear combination of four operators ܵfor  ∈P (ܩ), and 
these are completely positive bimodule maps byTheorem (3.1.4). 

For the norm inequality, we proceed as in the proof of Theorem (3.2.1). Let ܯ =
‖ܾ‖࣫and 0 < ߙ < 1. It will suffice to find ݂ ∈M (ܩ)  such that ߱(݂) ≠ 0and 
‖ܵ(݂)‖ ≥ ,ߤ ଶ‖߱(݂)‖. Chooseߙܯ ܾ, ݂ as in Theorem (3.2.1),and take ܥ and ܣ,ߟ =
߯. 

We take ߨ to be the trivial one-dimensional representation, and choose ߤᇱ and ߪ as 
before. The proof that ߱(݂) ≠ 0 used before works here also. 

Let ߨ  denote the one-dimensional trivial representation of ܴ, and form its integral 
with respect to ߨ,ߤఓ. Likewise form ߨఓᇲ, and let ߪ = ఓߨ  ఓᇲ. It will suffice to proveߨ⊗
that ‖ߪ(〈݂, 1〉)‖ >  .‖(݂)߱‖ߙ

For this purpose, we need to see that ‖〈݂, 1〉‖ூூ,ఓ = ‖݂‖ூூ,ఓ. This follows from the 
fact that ݂ ≥ 0 together with the relationship between ߥ and ߥ.Then we see that 

‖〈݂, ܾ − ܾ〉‖ூூ,ఓ ≤ ‖(ܾ − ܾ) ݂‖࣫‖݂‖ூூ,ఓ <  ூூ,ఓ‖݂‖ߟ

using the fact that ݂ is a characteristic function. 

Both the equality and the inequalities also hold for ߤᇱ, and since ߨ and ߨ  are the one-
dimensional trivial representations, they transfer to the corresponding equality and 
inequalities for ߪ and ߪ. Hence 

‖ ߱(〈݂, ܾ〉)‖ ≥ ,݂〉)ߪ‖ ܾ〉)‖ 

                                                             ≥ ‖(〈݂,ܾ〉)ߪ‖ − ,݂〉)ߪ‖ ܾ − ܾ〉)‖ 

                                                           ≥ |ܾ|‖ߪ(〈݂, 1〉)‖ − ,݂〉)ߪ‖ߟ 1〉)‖ 

                              ≥ ,݂〉)ߪ‖ߙܯ 1〉)‖ 

                          ≥  .‖(݂)߱‖ଶߙܯ

In order to provide the norm on B(ܩ) in a way that will be convenient for proving 
completeness, we introduce a way to enlarge the groupoid ܩ asit was done. Write ଶܶ for 
the transitive equivalence relation on the two element set {1,2}, so that ଶܶ has four 
elements. It will be convenient to have a shorter notation for matrix coefficients: If ߨ is a 
unitary representation of ܩ and ߦ and ߟ are bounded Borel sections of the bundle H  on 
which ߨ acts, we can write [ߨ, ,ߦ  for the matrix coefficient, namely [ߟ
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,ߨ] ,ߦ (ߛ)[ߟ = ൫ߦ (ߛ)ߨ ∘ ߟ |(ߛ)ݏ ∘  .൯(ߛ)ݎ

Theorem (3.2.3)[3]:A bounded Borel function ܾ on ܩ is in B(ܩ) if and only if there is 
a function ᇱ ∈P(ܩ × ଶܶ) such that for ߛ ∈ (ߛ)ܾ we have ܩ = ,ߛᇱ൫ (1, 2)൯. The 
function b can be expressed as a matrix coefficient using sections of sup norm at most 1 
if and only if there is an associated ᇱ that can be expressed as a diagonal matrix 
coefficient using a section of sup norm at most 1. 

Proof:The proof of the first assertion will be given in terms of matrix coefficients and 
will include the proofs of the facts about sup norms. Letܺᇱ = ܺ × {1,2} be the unit space 
of ܩ ᇱ = ܩ × ଶܶ. 

Suppose that ߨ is a unitary representation of ܩ on a bundle H  and that ߦ and ߟ are 
Borel sections of H of sup norm at most 1 such that ܾ = ,ߨ] ,ߦ  Define a Hilbert .[ߟ
bundle H ᇱ  over ܺᇱ by setting H ,ݔ) ݅)ᇱ =H(ݔ)for ݅ = 1,2. For ߛᇱ = ൫ߛ, (݅, ݆)൯ in ܩ ᇱ 
notice that ݏ(ߛᇱ) = ,(ߛ)ݏ) ݆) andݎ(ߛᇱ) = ,(ߛ)ݎ) ݅). That means that we can define a 
representation ߨᇱ of ܩ ᇱ onH ᇱ by ߨᇱ(ߛᇱ) = ᇱ of HߞDefine a section .(ߛ)ߨ ᇱ  by 
setting ߞᇱ(ݔ, ݅) = when݅ (ݔ)ߟ = 1 and ߞᇱ(ݔ, ݅) = ݅  when (ݔ)ߦ = 2. Then the sup norm 
of ߞᇱ is at most 1 and for every ߛ ∈ (ߛ)ܾ we have ܩ = ,ᇱߨ] ,ᇱߞ ,ߛᇱ]൫ߞ (1, 2)൯ as required. 

For the converse, suppose we begin with H ᇱ ݔ ᇱ. Then forߞ ᇱ, andߨ ∈ ܺ define 
H(ݔ) =H   ′(ݔ, 1) ⊕H   ′(ݔ, 2) and set (ݔ)ߟ = ,ݔ)ᇱߞ) 1), 0)and (ݔ)ߦ = ൫0, ,ݔ)ᇱߞ 2)൯. 
For ߛ ∈ ,ଵߦ) to take (ߛ)ߨ define ܩ  ଶ) toߦ

൫ߨᇱ൫ߛ, (1, 1)൯ߦଵ + ,ߛᇱ൫ߨ (1, 2)൯ߦଶ,ߨᇱ൫ߛ, (2, 1)൯ߦଵ + ,ߛᇱ൫ߨ (2, 2)൯ߦଶ൯, 

thus acting as a matrix by left multiplication on column vectors. The sections ߦ and ߟ 
have sup norm at most 1, and we have ܾ = ,ߨ] ,ߦ  .[ߟ

Because of the results we can now complete the task. Recall that for ܾ ∈B (ܩ), ܶ is 
the operator on (ܩ)∗ܯ determined by multiplication by b on M (ܩ) , and that we 
sometimes work withB (ܩ) as an algebra of functions, even though the elements are 
actually equivalence classes. 

Theorem (3.2.4)[3]:B (ܩ) is a Banach algebra with pointwise operations for the 
algebraic structure and with the norm defined by 

‖ܾ‖ = ‖ ܶ‖ 

for ܾ ∈B(ܩ). 
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Proof: Theorem(2.2.9) shows that B (ܩ) is an algebra under pointwise operations, and 
equals P (ܩ)−P (ܩ) + ݅P (ܩ) − ݅P (ܩ). Any function that is 0 for ࣫ߣ-almost every 
point of G represents the 0 element of (ܩ)∗ܯ, so for ܾ ∈B (ܩ) the operator ܶ depends 
only on the equivalence class of ܾ. Thus ܾ ↦ ܶ is well defined from the space of 
equivalence classes of functions inB(ܩ) to the space of completely bounded operators 
on (ܩ)∗ܯ. Since‖ ܶ‖ ≥ ‖ܾ‖ஶ, we see that ܾ ⟼ ܶ is also one-one. Thus the norm 
makesB(ܩ) a commutative normed algebra. 

To prove that B(ܩ) is complete, let ܾଵ, ܾଶ, … be a sequence in B(ܩ)such that the 
norms ฮ ܶฮ are summable. Then Theorem (3.2.3) says that we can construct positive 

definite functions ଵᇱ , ଶᇱ , … on the groupoid ܩ ᇱ = ܩ × ଶܶ such that for every ߛ ∈  and ܩ
every ݊ we have ܾ(ߛ) = ᇱ ൫ߛ, (1, 2)൯, and for every n we have ‖ᇱ ‖ஶ = ‖ܾ‖ஶ. Two 
forms of the completeness of P (ܩ ᇱ) can be used to complete the proof. We let ܿ =
ܾଵ + ⋯+ ܾ. 

In the first proof, we notice that the sequence ܵభᇲ , ܵమᇲ , … of completely positive 

ܥ ቀܺ
ᇱ
ቁ-bimodule maps from ܥ∗ ቀܩ ᇱ,ܺ

ᇱ
ቁ to ܯ∗(ܴᇱܺᇱ)is summable.The sum is also a 

completely positive ܥ ቀܺ
ᇱ
ቁ-bimodule map, so by Theorem (3.1.5) it is of the form ܵᇲ 

for a ᇱ ∈P(ܩ ᇱ). Then the function ܾ defined on ܩ by ܾ = ,⋅ᇱ൫ (1, 2)൯ is in B (ܩ) by 
Theorem (3.2.3). We also getฮܵᇲିᇲฮ ≥ ฮܵିฮ ≥ ‖ܿ − ܾ‖ஶ by Theorem 

(3.2.3) and Theorem (3.2.2), so‖ܿ − ܾ‖ஶ → 0. We need to prove that ‖ܿ − ܾ‖ → 0as 
݊ → ∞. 

To do this begin with ݂ ≥ 0 in M (ܩ) . Then Lemma (2.1.6) says that 

ฮ߱൫(ܿ − ܾ)݂൯ฮ ≤ ‖ܿ − ܾ‖ஶ‖߱(݂)‖. 

Hence ܶ൫߱(݂)൯ → ܶ൫߱(݂)൯in (ܩ)∗ܯ. The ݂'s span a dense set in (ܩ)∗ܯ,and the 

ܶ 's are uniformly bounded, so it follows that ܶ → ܶ pointwise on (ܩ)∗ܯ. Now the 
fact that the completely bounded operators on (ܩ)∗ܯare complete implies that the 
sequence ܶ has a limit, ܶᇱ in the completely bounded sense, which is automatically 
also a pointwise limit on (ܩ)∗ܯ.Hence ܶᇱ = ܶ, so that ฮ ܶିฮ → 0, and by 

Theorem (3.2.1) that is equivalent to saying ‖ܿ − ܾ‖ → 0 as ݊ → ∞. 

For the other proof of completeness, we notice that ଵᇱ , ଶᇱ , … is summable in the ࣫-
essential supremum norm as functions on ܩ ᇱ. Hence there is a Borel function ᇱ that is 
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the sum in that norm. By the Dominated Convergence Theorem, ᇱ ∈P (ܩ ᇱ). Again we 
take ܾ = ,⋅ᇱ൫ (1,2)൯. Theorems (3.2.3) and (3.2.2) once again show that ‖ܿ − ܾ‖ஶ →
0, and we complete the proof as before. 

Since B (ܩ)is a Banach algebra, any closed subalgebra of it is a Banach algebra. 
Convergence in the completely bounded norm implies convergence in ܮஶ(࣫ߣ), so 
certain subalgebras are easily seen to be closed. Among these are (ܩ)ܤ, defined to be 
{ܾ ∈B (ܩ) ∶ ܾ is continuous}, and B (ܩ,ܺ), defined to be the set of elements 
ܾ ∈B (ܩ) such that ܾ | ܺ is continuous and vanishes at ∞. The subalgebra (ܺ,ܩ)ܤ is 
defined to be (ܩ)ܤ ∩B (ܩ,ܺ). 

Theorem (3.2.5)[3]:(ܩ)ܤ,B (ܩ,ܺ), and (ܺ,ܩ)ܤ are closed subalgebras of B (ܩ) and 
hence Banach algebras. 

The first example is a groupoid on which the linear span of the continuous positive 
definite functions is not complete and there exist continuous elements of B (ܩ) that 
cannot be expressed as a difference of continuous positive definite functions. 

Let  ܺ = ൛(ݔ, (ݕ ∶ ,ݎ)has polar coordinates (ݕ,ݔ) with 0(ߠ ≤ ݎ ≤ ߠ,1 ∈
{0, 1, 1 2⁄ , 1 3⁄ , … . }ൟ and set ܩ = ܺ × ℤ. This is a bundle of groups, and(ݔ,݊) +
ݔ is defined iff (ᇱ,݊ᇱݔ) = ,ݔ) ᇱ, and then it equalsݔ ݊ + ݊ᇱ). WriteP (ܩ) for the set of 
Borel positive definite functions on G and P (ܩ) for the set of continuous elements of 
P (ܩ). Let B(ܩ) be the linear span of P(ܩ), let ܤଵ(ܩ) be the linear span of P (ܩ) and 
let B(ܩ) be the set of continuous elements of B (ܩ). A bounded function  is in P (ܩ) 
iff it is a Borel function and ݎ),  is positive definite on ℤ for each point of ܺ. Since (⋅,ߠ
positive definite functions on ℤ are in one-one correspondence with positivemeasures on 
ॻ via the Fourier transform, we can also think of P (ܩ)as consisting of Borel functions 
from ܺ to the positive measures on ॻ. 

Define 

,ݎ) (݊,ߠ = ൜݁
ை(ଵା) if ݎ > 0

0 if ݎ = 0
 

and 

,ݎ)ݍ ,ߠ ݊) = ൜݁
ை(ଵି) if ݎ > 0

0  if ݎ = 0.
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We can also think of these as taking values that are point masses at ݁ை(ଵା)and ݁ை(ଵି), 
or the 0 measure at the origin. We have  − ݍ ∈ ݑ Suppose that .(ܩ)ܤ ∈  and (ܩ)ܲ
ݑ− ≤  − ݍ ≤  where the inequalities indicate the pointwise order in the space of ݑ
measure-valued functions. This is the same as the natural order in B (ܩ) in which 
elements of P (ܩ) are positive. Since ൫(ݎ, (ߠ ⋅൯ is the point mass at ݁ை(ଵା), ݎ)ݑ,  (⋅,ߠ
dominates the point mass at that point. By continuity, (⋅,0,0)ݑ dominates the point mass 
at ݁ை. This means that (⋅,0,0)ݑ has infinite norm, so there is no such ݑ. Thus we have a 
continuous element of B (ܩ) that is not a difference of continuous positive definite 
functions. 

With more effort, a worse example can be made. Choose ݊ angles, and begin with  
and ݍ restricted to the radii with those angles. The limit at the origin of both of them 
exists, the limits are the same, and it is a sum of ݊ point masses. To make elements of 
 we take that value at the origin and at all other points of ܺ. Let ܾ be the difference (ܩ)ܲ
of these elements of ܲ(ܩ). Any element of ܲ(ܩ) that dominates ܾ must have a value at 
the origin that dominates that sum of ݊ point masses. Observe that ܾ is 0 except on the 
original chosen radii, and that the total variation norm of each value of ܾ is at most 2. 

Now partition the angles in ܺ into sets with 2 elements, for  ݇ = 1,2, …,and use the 
construction just described to make elements ܾ in ܤଵ(ܩ). Then let ܾ = ∑ 2ିܾஶ

ୀଵ . 
This converges in the completely bounded norm since each ܾ has completely bounded 
norm 2. Hence it also converges in uniform norm, so that ܾ ∈  Also ܾ is in the .(ܩ)ܤ
closure of ܤଵ(ܩ). However,the domination arguments used above show that ܾ is not in 
 .(ܩ)ଵܤ

The next example shows that locally compact groupoids can have unitary 
representations that are Borel but not continuous. 

Consider an action of the integers on the circle by an irrational rotation,and form the 
transformation group groupoid, ܩ = ॻ × ℤ. If ݑ is a unitary valued Borel function on ॻ, 
there is a unitary representation ܷ such that for all ߬ ∈ ॻ, (߬)ݑ = ܷ(߬, 1). If ݑ is not 
continuous, neither is ܷ. 


