Chapter 3
Locally Compact Groupoids

For groupoids, the best analog of fact is to be found in representation of B(G) as a
Banach space of completely bounded maps from a C*- algebra associated with G to
a C*-algebra associated with the equivalence relation induced by G.

Section (3.1): Complete Positivity

In this section we introduce second and third ways to view elements ofP(G), namely
in terms of completely positive mappings. Theorem (3.1.1) is a first step toward getting
Banach algebras of completely bounded maps onM*(G) and on C*(G). In we obtained
C*(G) by completingC.(G), and defined w to be the direct sum of the (cyclic)
representations ofC*(G) that arise from normalized positive linear functionals on C*(G).
LetH, be the Hilbert space of w. By a theorem of Renault, that stated,each
representation of C.(G) can be gotten by integrating a unitary representation of G. Thus
w|C.(G) is also a direct sum of certain representations w#. The process of integration
allows us to regard each #, and hence w, as a representation of either M .(G) or C.(G).
We call w the universal representation of G. We also defined M*(G) to be the
operatornorm closure of w(M .(G)), and notice that C*(G) is isomorphic to the norm
closure of w (C.(G)). If G is a group, of course M*(G) = C*(G), but these two algebras
can be different for groupoids.

Theorem (3.1.1)[3]:Let p be a positive definite function on G. Let w be the universal
representation of G, and define Tp(w(f)) = w(pf) for f €M .(G). ThenT, extends to a
completely positive map of M*(G) to M*(G) with completely bounded norm equal to
the Q-essential supremum of {p(x): x € X}.

Proof : We remind the reader that this Q-essential supremum is the infimum of
{B:ifu € Q,thenp < B u — a.e. }. Also, in working with w we will use its construction
as adirect sum.

We will need to find a formula for T,, in order to prove that the map-ping is

completely positive. For this we begin with two vectors &, in one summand of H

given by an integrated representation #. This means that we begin with a measure u €
Q and a Hilbert bundle K over X. The subspace of H,, in question is L?(u;K ), and
the restriction of w to this subspace is the integrated form of a representation, m, of G.

45



We are using Renault's form here, as described take v = [ A* du(x) andv, = 4;1/ 2y,

Then for f eM (G),

(Tyw(HE[n) = (w@fHEM)
= [ 11 ) (rE )G )) dvo)
= (n(pf) &In).

By theorem(2.2.7) there are a Hilbert bundle K, on X, a (unitary) Borel
representation m,, of ¢ on K, and a bounded Borel section ¢, of K, such that

p(y) = (np(y)fp os (N|&y or(y)) for A#-a.e. y € G. By Theorem (2.2.8), m, is
unique, and the section ¢,, is determined Q-a.e. Thus we can continue the calculation
from above as follows:

= jf(y) (np(y)fp o s()|é, °r(y)) (& os)n or(y)) dvo(y)

= [ 1) ((& ®70) & ® D) 25| (& @) °r))dvo®)

= ((mp, @ M) (A&, ® E)|E, @ 1)
= ((”p - “))(f)(fp ® €)|€p ®n).

Here &, ® ¢ and &, @ n are in LZ(M;KP QXK ). In summary we have

(Tyo(F)E[) = (mp @ @) (I, i €[V k1),

whereV, , k + L*(u;K) - L*(u; K, ®K )is defined by V;, , k€ = &, ® &.This is a
bounded operator because the section &, is bounded and the usual techniques for
multiplication operators apply. If we let V, be the directsum of the operators V}, , <over
all pairs (u,K ), we have T,w(f) =V, (m, ® w)(f)V,. A theorem of Stinespring,
shows that T,, is completely positive with completely bounded norm equal to ||Vp||2. But
V,is given by a tensor multiplication which behaves like a scalar multiplication operator,
SO

I%1° = ess sup {[l&, ()] *: x € x} = ess sup{p(x):x € x}.
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The proof of Theorem (3.1.1) also proves this:

Theorem (3.1.2)[3]:Let p be a positive definite function on G, let u € Q and let = be a
representation of G. Define Té(n“(f)) = (pf) for f €M .(G). Then T, extends to a

completely positive map of the norm closure of m#(M .(G)) to itself, this being the
quotient of the T, defined in Theorem (3.1.1). The completely bounded norm of T, as an

operator on cl(m*(M .(G))) is the u-essential supremum of {p(x): x € X}.

Although the norm on the Fourier-Stieltjes algebra of a groupoid comes from its
representation by completely bounded maps rather than as the Banach space dual of the
C*-algebra as it does for groups, the latter fact has a remnant. Here we prove just one
lemma regarding that remnant.

Lemma (3.1.3)[3]:Let p be a positive definite function on G, and let u be a probability
measure in Q. Define ¥, ,(w(f)) = [FfWply) dv(y)for f € C.(G), wherev =
[ 2% du(x) . Then Yp . extends to a positive linear functional on C*(G) whose norm is
at most the Q-essential supremum of p.

Proof:From the definition of 7, in (See[3]), it follows that the integral in question is
equal to (nﬂ(f)ﬂf), where 7 is the unitary representation of G derived from p and ¢ is
the associated of the Hilbert bundle.Thus this linear functional is clearly positive, and its
norm is at most ||&||?,the square of the norm of & in H(w), but this is at most||&||2,which
Is the Q-essential supremum of p.

Next we present a third way to think about P(G). It depends on using the
decomposition described of the Haar system of G over the equivalence relation R
associated to G. This decomposition is relative to the mapping 6 = (r,s) of Gonto R.
Since G is o-compact it follows that R is o-compact in the quotient topology. The
decomposition of the Haar system involves two families of measures. First of all there is
a measure [?33,’ concentrated on xGy for every pair (x,y)in R, such that each [?33,’ Is a Haar
measure on yGy and g5 is a translate of [?33,’. Then there is a Borel Haar system « for R
so that for every x € X we have

M= jﬁf da*(z,vy).

There is a Borel homomorphism § from G to the positive reals such that for every u € 9
the modular homomorphisms 4, for G and 4, for R satisfy4, = 64, o 6. For each x €
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X let u* be the measure on X so that a® = &* x u*.Then x ~ yimplies u* = u”. Thus
a*’ = p* x u*, so Ay =1,

Let M,.(R) be the space of bounded Borel functions on R supported on images
under 6 of compact subsets of G. Then M,.(R) is a *-algebra under convolution, using
the Borel Haar system .We also extend this algebra to include M(X), as done for M .(G)
and M(X), obtaining M,.(R, X) in this case.

If i is a quasi-invariant measure on X, i.e., u € Q, earlier we introduced the notation
A* for [ 2* du(x) and we define a* similarly. Now we want to shorten the notation, so
wewritev =A* 7 =ak, 4=4,,and 4 = 4,.

To integrate a unitary representation of G relative to u to make ax-representation of
M (G, X), we use the measure v, = 4~%/2v and to integrate a representation of R we
use the measure 7, = Z~1/2%. For example, in the first case we have

(" (F) €] ) = j FO ) € 0@ o sG)) dve(@)

whenever f €M .(G) and &, 77 are L? of the bundle on which 7 represents G. This is the
formulation of (see[3]). From what we have above,it follows that v, =
[ 6‘1/2[?3’,‘ dv,(x,y), so there is a convenient relationship between the two measures.

For each unitary representation wof R, and each u € Q(R), we can ask whether the
representation m* is cyclic, and we can define @ to be a directsum formed using for
summands one representative from each equivalence class of a cyclic m#. Then we can

write M*(R) for the norm closure of @(M,.(R)). These *'s extend to M,.(R, X), s0 &

does also, and we let M*(R, X) be the norm closure of @(M,.(R,X)). As stated before,
the algebra M*(R, X) is present only for its utility in proving results about G, and the
slightly strange definition is just suited to that purpose.

If p eP(G), we define a pairing of p with an element f eM .(G) to givea function
on R by

(o) = [ oo g

Since p and §~1/2 are Borel functions and bounded on compact sets, we always have

(f,p) EMy.(R). We must show that this mapping is determined by the equivalence
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class of p. If p = p’ a.e. relative to A2, then for a#-almost every pair (x, y) the functions
p and p’ agree a.e. with respect to 8, so for every f €M .(G) we have (f,p) = {f,p")
a.e. with respect to a*.Furthermore, we represent p and p’ as matrix entries, and these
have restrictions to X that agree a.e. with respect to Q. We will show that the mapping of
f to {f,p) gives rise to a completely positive map S,, from M*(G)to M*(R).

There is another property of S,, we use, and its statement requires a little background.

Recall that C.(G) and M .(G) are bimodules over C(X), where h € C(X) acts via
multiplication by h o r and h o s. Recall also that every representation m of the *-algebra
C.(G) has an associated representation ¢ of C.(X) such that m(hf) = @(h) n(f) and
n(fh) = n(f) p(h)for all fand h, i.e., so that = is a bimodule map. Hence every

representation of M .(G) also has such an associated representation of C.(X). We can
extend ¢ to M(X), getting a representation that preserves monotone limits and hence
maintaining the bimodule property.

We notice that M(X) also has natural actions defined the same way onM,.(R) and
by pointwise multiplication on each L?(u; K ), rendering @ bimodule map from
Mo(R)to M*(R). The main properties of S,, are established in the next theorem.

Theorem (3.1.4)[3]:If p €P(G), there is a completely positive operator S,,: M*(G) —
M*(R) that extends the operator defined by S,(w(f)) = @((f,p)) for f eM .(G). This
mapping is anM(X)-bimodule map. If we define S, (w(ge)) = @(pge) for g eM(X) and
use linearity, we get an extension of the original S, to a completely positive M(X)-

bimodule map of M*(G,X) to M*(R,X) that takes w(e) to an element of &(M(X)). The
completely bounded norm of S, is equal to [|p||c.

Proof:We need another formula for S, first on M C(G,)_(). To find one, we first work
with a subrepresentation of @ acting on a space of the form L?(u;K ).

The positive definite function p determines a unitary representation m,, of G on a
Hilbert bundle K, over X, as well as a bounded section ¢, of K, for which we have

p(y) = (np(y)fp os(y)|€p or(y)) for almost all y relative to A2. Then we may

replace p by the matrix entry. Indeed, we must make that replacement in order to make
sense of the values of p on X. Suppose that & and n are in L2(u,K ), and compute
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(Sp(w())Eln) = @USf, pEIM
= [¢£. P ) (@ NI 16)) dio(x.)

= [| rp 60 2(@ 2 6)EW () a5 (1) )

= j F&) (mo@)&p o sWEp o 7)) (@2 04 € 0 sW)Im 07 (1)) dvo(y)

- (((”p ® “7°9)(f)) $p ® €|€p ®n).
We also have

(@(pge) ¢l m) = (pgél )
= [ (5@l @) s @I @) dutx)

- ((T[p X o 9)(g€)€p X €|€p X 77)

Now define V, , x : L*(u;K ) > L*(w;K , Q@K )by, ,«k & =¢§, ® &and let V
be the direct sum of all the operators V, , . The calculations just done show that for all
f eM .(G) and g eM(X) we have

Sp(w(FA+ge)) = V" ((m, ® @ 6)(fA+ge)) V.

Since m, @ @O is a =-representation, Stinespring’s Theorem shows that S, is
completely positive. This representation also gives a formula for the extension of S, to
M*(G, X) and shows that it is an extension by continuity. It is not difficult to show that
the norm of S, is the essential supremum norm of &, and that is the same as [|p|| .

From the definition of V we see that it intertwines the natural actions ofM(X) on
L*(u;K) and L?(u; K, @K ). The restrictions of these natural actions to C.(X)are
the representations of C.(X) associated with the give nrepresentations of C.(G) in the
proof of Renault's Theorem. This makes it clear that S, is also a bimodule map.

Now we want to prepare the way for the proof of the converse of the last theorem.
We need less hypothesis than we had conclusion, namely we only need to deal with the

transitive quasiinvariant measures on X.
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We use the measures u* on X such that a* = &* x u*, as described. For each x we
have a** = p* x p*, which is symmetric, so 4, is trivial. That means that 4,x = 6.

Since these modular functions are all the same, we will denote them by the single letter
A.

Let p, be the representation of I(R, a) gotten by integrating the trivial representation
of R on the one-dimensional bundle, relative to the measureu®. Since M,.(R) <

I(R, @), the representation p, can be restricted toM,.(R), and we denote the restriction
the same way. Define p, on M(X)to be the representation by multiplication on L?(u*).

We combine these two definitions to get a representation p,. of MOC(R,)_() onH, .Let
@ denote the direct sum of all these "transitive" representations p,., so the representation
space of @, is Hy , the direct sum of all the Hilbert spacesH ,, . Write M; (R, X) for

the norm closure of the image of MOC(R,)_() under @,. Then M;(R,X) is a quotient of

M*(R,X) as a C(X)-bimodule, as well as a compression of M*(R,X). We also write
M/ (R) for the closure of the image of M,.(R).

It is not true that every completely bounded map is a linear combination of
completely positive maps, unless the range algebra is injective. In our setting, the
domain and range are closely related and very special. We can circumvent the problems
caused by lack of injectivity, but to do so and even to deal with completely positive
maps themselves, we need to think of M/ (R, X) as acting on a space of Borel sections.
We now begin to arrange that.

Observe that the Hilbert spaces H, are the fibers in a Hilbert bundle over X, i.e.,
the graph of H, I'y, has a natural Borel structure with all the necessary properties. In

fact, for each x the space H, s easily identifiable with L?(a*), and we simply
transport the usual Borel structure for the latter bundle to H.

If g EMy(R), define a section of I'H by letting &,(x) be the class of g(x,-)in L2 (uX).
Countably many of these sections can be chosen so that their values at a point x always

form a dense set in H . . Thus we can also choose a countably generated subalgebra of
M(X) so that the module of sections over it generated by the countably many ¢&'s

determines the Borel structure on I'n. Note also that x ~y implies that u* = u” so
H, =H,
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Theorem (3.1.5)[3]:Let v be a completely positive €(X)-bimodule map from¢*(G, X)
to M*(R,X), and suppose that Y(w(e))[Hy € @ (M(X)). Then there is a p €P(G)
such that = S, and [Iplle < lIYllcp-

Proof: There is no loss of generality in taking y to have completely bounded norm at
most 1. Next we restrict i o wto CC(G,)_(), getting a completely positive map, ¥’ of
C.(G,X) into M*(R,X). For each x € X,f € C.(G), and g € C(X), define Y,(f1+
ge) =y¥'(fA+ge)|H, . For each x,ip;, is a completely positive bimodule map into
L(H, ) of completely bounded norm at most 1, and x ~ y implies 1, = 1.

The proof consists mainly of accumulating sufficient information about the mappings
Y, and objects constructed from them to assemble the desired positive definite function
p. Using the Stinespring Theorem for completely positive maps and analyzing the
equipment it provides enables us to show that each i, is of the form S, . Then it is
necessary to merge the separate p, 's into one p, using the fact that x ~ x’ implies ¥, =
.. from which we prove that p, = p,+ a.e. Several more improvements in the behavior

of the functions p, finally allow us to produce a matrix entry that serves as the desired
function p. We hope that naming the major steps in the proof will help the organization
of the proof.

Step (1):TheBorel Behavior of x +—

If f,h eM,.(R) we want to see that

x = pr(F(Er(x))

is a Borel section of I'n. To do this it is sufficient to show that if f, h, k €M,.(R) then
the function x — (p,(f)é, ()| (x)) is Borel. Such an inner product is given by an
integral, according to the definition of p,,namely

[ 102 ke R ) ),

This integral defines a Borel function of x since the measures u* < u*depend on x in a
Borel manner. By the definition of M;(R), every p, is defined on M;(R) and for a €
M/ (R) the function x +— p,(a) is a uniform limit of functions of the form x +— p,.(f)
for f €My.(R). Hence for a € M (R) and h €M,.(R) the sectionx — p,(a)(&,(x)) is
Borel.
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If we define i to be the direct sum of all the y.'s, then 1 is also the compression of
Y toHy . Thus ¥ maps C.(G,X) into M;(R,X) andp, o ¥ = ;. From this it follows
that if f € C.(G) and h eM,.(R) then the section x +— lp,’c(f)(fh(x)) of 'y is Borel.
If g € C(X) there is a functiong; eM(X) such that {¥(ge) = @.(g,) because () €
@;(M(X)) and 1) is a C(X)-bimodule map. Hence for a € C.(G,X) and h éM(R) the
section x — 5 (a)(&,(x)) is Borel.

The fact that ) maps into M;(R,X), and the Borel property derived above are
essential for completing the proof.

Step (2):TheStinespring Construction.

For each x we represent v, by Stinespring's Theorem: We get a representation m, of
CC(G,)_() on a Hilbert space K, and an operator V,fromH, to K, , such that for
a € C.(G,X) we have

Yr(a@) = Vym (@)l

We will use the details of the construction, so we repeat it here. For Stinespring's proof,
it suffices to have the domain of the completely positive map to be a x-algebra with
identity, so CC(G,)_() can be used. The spaceK , is taken to be the Hilbert space
constructed from the algebraic tensor product C.(G,X) ®H ,  using the semi-inner
product whose value on twoelementary tensors is given by (a®¢&|bQ®n) =
(5 (b*a)éln). Let g, be the quotient map from C.(G,X) ®H , to its quotient
modulo vectors of norm 0. The image of g, is identified with a dense subspace of
K, . (SinceCC(G,)_() and H, are separable, so is K, ). The representation m, is
determined by having m,(a)(q(b ® §)) =q,(ab® &) for a,b € C(G,X)
andé eH, . The operator V, is determined by setting V,(¢§) =q,(1Q &)
for £ eH, . A calculation of inner products shows that ||V, [|? = |lyL(D)]l.

Since y,.,m,,,K , and V, are Borel in x and constant on equivalence classes, we get
a Hilbert bundle over X that is constant on equivalence classes. The pair (m,,V,) is

minimal in the sense that 7, (CC(G,)_()) V.(H, )isdenseinK ,

Step (3):Gettingp, from the Stinespring Representation.
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Now we study this structure for a fixed x € X. By Theorem (2.1.4) we know that i,
can be obtained by integrating a representation, ., of G on a bundle K* relative to a

quasiinvariant measure pu,, i.e., K, = L?(u,;K* ). Let ¢, be the representation of
C(X) on K, associated with m, as a representation of C.(G,X). In terms of the
representation of K, , ¢, is the natural representation by multiplication ofK * . We
also have ¢, =m,| C(C), where C(X) is regarded as a subalgebra of C.(G,X).We

denote the natural representation of C(Y ) onH , Dby 6,; again this is a representation
by multiplication.

We need to show that u, can be taken to be u*. The first step is to show that V,
intertwines 0,and ¢,. Take he C(X), b€ C.(G,X), and &ne€H, .Then the
definition of the inner product and the fact that v, is aC (X)-bimodule map gives

(1 ® ¢l b ® n) = (x(c RS n)
= (W (b"h)¢| 1)
=(h®¢lIbQn).
Hence q,.(h ® ¢) = q,,(1 ® hé). Using the bimodule property of iy, the definition of
m,, and the inner product on K ,, , we compute that
(i (h)lax(b @ 1)) = (qx(h ® O)lgx(b @ n))
= (1 (he) g (I @ &)g(b ® n)).

Hence, V, (h§) = @, ()1, (§).

From the theory of representations of C.(X) or of projection valued measures based
on X, there is a bounded section of K* , which we denote by {,, such that for

& eH , , the pointwise product ¢, is a section of K* representing the element V. (¢)
in K, . Such a section can be gotten as follows: let g be any strictly positive Borel

function on X that represents an element of H, , let * be a section that represents
V..(g), and set{,, = (1/g)¢*. Then ¢, need not be a square integrable section, but will be
if u* is finite so that the function 1 is an element of H

We can write V,.(§) = &C,., using the usual identification of functions with their
equivalence classes. Then for £ eH , we have
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j 121,12 duy < j €12 du )

because |[V,|| < 1. It follows that u, is not singular relative to u*, so that u, gives
positive measure to [x]. It also follows that |{,| is zero a.e. off[x], so that {* = g{, is in
the subspace of K, = L?(u,;K* ) consisting of functions that vanish off [x]. By
the way we integrate representations of G to get representations of C.(G), we see that

this latter subspace is invariant for C.(G) and hence for C.(G,X). From the fact that g is
cyclic in H, , it follows that g¢, = V,(g) is cyclic for C.(G,X) inK, , so the

subspace under discussion is in fact all of K, . That implies that u, is in fact
equivalent to u*, so we may as well take u, to be equal to u*. That may require
multiplying the original ¢, by some positive function, but now we assume that to have

been done. We write v*for A*", getting a measure concentrated onG|[x].

In this situation, the inequality (5) implies that |, | is bounded by 1. We define

P() = (s (r()))

getting a positive definite function on G|[x]. Now the sup-norm of (, is the same as the
operator norm of V., and that is the same as the square root of the completely bounded
norm of 1., so the sup-norm of p,. is atmost the completely bounded norm of ;..

Step (4):p, Gives Rise to ;..

We know that x ~y implies ¥, =y, so m, =m, and V, =V,. Hencem,(y) =
my,(y) for v*-almost every y, and {,(z) = {,(z) for u*-almost every z,s0 that p, = p,
a.e. relative to v*, and their restrictions to X agree a.e.relative to u*.

To see that 1 is the compression of S, to H, , we begin by settingv* = ¥ and
7% = q*", as above, so that Z =1 and 4 = &. Then we calculate for f e c.(G), and

$&nEH

WL COE 1) = (e (FILE Vo)
= [ £ (R EI @I 0))) 4720 av*()

= j f(Y)Px(Y)5_1/2(y) dﬁzy(y) S((Z)ﬁ(y)dﬁx(y, 7).
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This shows that . (f) = pr(f)|H » - Next we find a formula for ¥, (&) by computing

W ()¢l n) = (my()Vi € [Vem)
= (£0xndy)

- j 2. () £ du* ()

from which it follows that 15, () = p,(px| X). Since vy, is a C(X)-bimodule map, we
see that ¥}(ge) = p,(gp,)for g € C(X). This completes the proof that ipyis the
compression of S, toH

Step (5): Applying Lemma (2.2.1) to the Functions p,.

Take functions h, k eM,.(R) from which we make sections &;, and &, ofH. Let & =
&, (x) and n = &, (x) in the calculations above to see that if g € C.(G), then

(@6 ) = [ 9IRS, 7(@)872) av ().
If  is the identity in C(X), we also get

(L) ()16 (%)) = j pe () R, Y)R(x,y) du* ().

Here it is important that the functions of x on the left hand sides of these two formulas
are Borel functions.

To apply Lemma (2.2.1) as it is formulated, we must have a Borel family of finite
measures. We begin by considering a compact set K contained in ¢.The function y +—
A¥(K) is bounded on X, and for every x € X we have p*(s(xK)) < oo. Hence, for x €
X the measure given by the integral

(xxAY) du*(y)
s(x,K)
is finite.
Notice that a pair (x,y) € X x X is in 0(K) iff x € r(Ky)iff y € s(xK). If his the
characteristic function of 6(K), it follows that h(x,r(y)) = 1 iff r(y) € s(xK), and
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h(x,s(y)) =1 iff s(y) € s(xK). Thus the set L, defined to be{(x,y) EXxG:y €
K and h(x,s(y))h(x,r(y)) = 1} is a Borel set in X x G,and the same as {(x,y) € X x

G:y € K,s(y) € s(xK)and r(y) € s(xK)}. From the preceding paragraph, it follows
that every x-section L, of L has finite measure for v*.

Choose compact sets K; € K, < --- whose union is G, and for each n define h, =
Xow,) and then L, ={(x,y) EXxG.y € Ky,s(y) € s(xK,) and r(y) € s(xK,)}.
Define D, =L, and forn > 2, let D,, = L,\L,,_;. Foreachn € Nand x € X, let v;; =
(x,),)v*. This gives a Borel family of finite measures on G. Notice that the sets Dn
partition {(x,y) € X x G:y € G |[x]}.

Now define f, on G for x € X by f,.(y) = p,(¥)8~1/2(y) fory € G |[x] and O for
other y's. If g € C.(G)and x € X, then

[ 90A®) i) = (W@, ], ).

which is a Borel function of x. Hence there is a Borel function F, on X x G such that for
each x, E,(x,") = f, a.e. relative to v;¥. Set

F =: ZXDnFn'
n=1
Then F is Borel and for each x € X, F(x,") = f, a.e. relative to v*.

A similar analysis using u* shows that we can also choose F so that F(x,y) = f,(y)
for u*-almost every y.

Hence there is a Borel function P on X x G such that for every x we haveP(x,") = p,
a.e. Also, x~y implies that P(x,-) = P(y,) ae. relative to either v* or
vY (these are the same measure) and also relative to either u*or u” when restricted to X.
Furthermore, |P(x,-)| is bounded by the completely bounded norm of v, so |P]| is
bounded by 1.

Step (6):Improving the Behavior of P

Recall the probability measures ui = s(A7) on X obtained from the Borel family of
normalized Haar measures on G. We have uy ~ ui’. Define a new function P, on X X G
by
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Py(x,y) = j PGy) duf ().

Make a function of three variables from P and use the Borel character of P and the
measures pito show that P; is also Borel. We need to know that P; also essentially
replicates every function p,, and is even more invariant than P under changing x to an
equivalent point of X.

To begin with we limit ourselves to one orbit, and denote it by S. We write u° for a
choice of one of the measures ui°for x, € S. We know that for x and y in S the

functions P(x,-) and P(y,-) agree a.e. relative to 4 50 they agree a.e. relative to 1% for
uS-almost every z. Since A% and AZ have the same null sets, P(x,") and P(y,) agree a.e.
relative to A% iff the complex measures P(x,-)A5 and P(y,-)A% are the same. We have
two Borel mappings from S3 to the standard Borel space of complex Borel measures on

X, so the set Eg on which they agree is Borel, allowing us to use Fubini arguments.

Hence, for every x € S, the set {(y,z) € S?: P(y,”) = P(x,-)a.e.dA?} is a Borel set
whose complement has measure 0 for u5 x pS. Therefore, there is a conull Borel set Z,
of points z in S such that for u5-almost every y we have P(y,-) = P(x,) a.e. relative to
A%. Thus, for z € Z,, it is true that for A%-almost every y we have P(y,y) = P(x,y) for
A%-almost every y. It followsthat if z € Z, then P;(x,y) = P(x,y) for A%-almost every
y. Hence, for everyx € S we have P(x,”) = P(x,”) a.e. In particular, P; also replicates
everyp,, since S is a general orbit.

In the last paragraph, we enountered points y € G for which P(y,y) is essentially
constant in y because it is almost always equal to a particular P(x,y). We need to know
more about the set H ={y € G:y +— P(y,y)is essentially constant}. If A is a
countable algebra that generates the Borel sets in C, it is not difficult to show that

H= ﬂ {y e G: 1" x &7 (P71(4)) € {0, 1}}.

AEA

Thus H is a Borel set. Hence the set C = {x € X: Af(H) = 1} is also a Borelset. From
the preceding paragraph, it follows that C is conull in every orbit. For z € C, the
function P, (-,y) is constant for A%-almost every y € zG.In particular, for z € C it is true
that x, y € [z] implies that P, (x,-)A = P(y,")A%.

The last conclusion is the additional invariance needed, and now we change notation
and simply write Pfor P;, since it does everything we need.
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Step (7):Making a Borel Family of Representations from P.

Again, take a particular orbit, S, in X. For every pair (x,y) € S?, we have P(x,-) =
P(y,) a.e. relative to A? for uS-almost every z. Take an arbitrary z € S. Then for A%-
almost every y,it is true that P(x,”) = P(y,)a.. relative to y; - A% = 25(2) Hence
P(x,v3y1) = P(y,y5 yy) for A% x A%Z-almost every pair (y4,7,). (The mapping taking
the pair to y; y;carriesd? x A%to a measure equivalent to1%).

Now return to studying general points of X. For f,g € C.(G) and(x, y) € R, define

(106 = [[ FO802) Py va) 22 G2 ).

The formula defines an inner product on C.(G), and we write K(x,y) for the resulting
Hilbert space. For each f,g € C.(G) the function (x,y) — (f |9)(.y) is a Borel
function on R that is constant on sets of the form[y] x {y}, so K defines a Hilbert bundle
on R that is constant on the same sets. For f € C.(G), let a(f) denote the section of K
(or I'k) that it determines.

For each x, the bundle K (x,-) supports a unitary representation: here we denote it by
1, rather than mp(, ). We know that x x x’implies that ,, = m,,, which means that for
Y € G |[x] we have m,(y) = m,,(y) (they are on the same space). We want to show that
(x,v) — m,(y)is Borelon X x' G ={(x,y): y € G|[x]}. It will help to look at
R x'"G ={(x,y,v) y € G |[x]}. The function

(x,y,7) — f f fry)aly) P(x,vs tye) d2% (v1) A2 (y2)

Is Borel on R x'G, so (x,y)r—>(nx(y)a(f)(x,s(y))|a(g)(x,r(y))) is Borelon
X x'aG.

Step (8):Finding a Borel That Represents P.

Let D be the set of pairs (x,y) € R for which the linear functional f +— A7 (fP(x,"))
is bounded relative to the seminorm [la(f)(x,y)|| on C.(G).The boundedness can be
tested using a countable dense subset of C.(G), so D is Borel, and hence so is the set
DC. For each x € X, we have xD = {x} x D,, so that xD is conull with respect to a*.
Notice that w ~ x implies that ¢ n D, = C n D,,, and this set is conull in the orbit.
Hence xDC and wDC have the same conull image in [x]under s.
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Now, for (x,y) € D define {(x,y)to be the wvector in K(x,y) such

that (o (f)(x, y)| {(x,¥)) = ¥ (fP(x,")) for every f € C.(G), and for (x,y) & D,let
{(x,y) = 0. The formula makes it clear that ¢ is Borel.

If y € Cand w ~x ~ y, then (w,y) € D iff (x,y) € D, so y € C implies that Dy =
[y] — {y}. Also, w,x € [y] implies that P(w,-) and P(x,") agree a.e.with respect to 1
and that K(w,y) =K(x,y). Together, these imply that {(w,y) = {(x,y). Then for
every y € G|[yl,

() ¢(x, s)| ¢(x, 7)) = (@, ) C(w,s)| {(w, ().

Thus both of these functions agree a.e. on G |[x] with P(x,-). Thus we can define

p@) = (msn (W), s L (s@). 7))

fory € 671(DC) and 1 for other y's to get a Borel function on G that agree sa.e.
with P(x,-) on G|[x].

From Step (4) it follows that i) and the compression of S, to Hy are the same.
Step (9): The Compression Map fromL (H, )toL (Hy ).

To complete the proof, need to show that the compression map € fromL (H, ) to
L (Hy ) is one-one when restricted to a’F(MOC(R,)_()). Then it will follow that ¢ and

S, agree on C.(G, X), forcing them to be the same.

Suppose that fa +ge EMy.(R,X)and @&(fa +ge) #0. Then there is a
representation 7 of R and a probability measure u € Q such that 7#(fa + ge) # 0.We
need to use this to find a z € X such that p,(fa + ge) # 0, which will imply @, (fa +
ge) # 0. There is no loss of generality in assuming that there is a probability measure '
on X such that u = [ufdu'(x). SetA ={(x,y) €R:x # y,and f(x,y) # 0}, and
consider two cases: a#(4) =0and a*(A) # 0. In the first case, m*(f) = 0 unless
a*(X) > 0, in which case we have fa = f¢ relative to a*. Thus there is an h eM(X)
such that 0 # n#(fa + ge) = mw#*(he). Then u({h # 0}) > 0 so there is a z € X such
that u*?({h # 0}) > 0, and it is easy to show that p,(he), i.e. p,(fa + ge) # 0.In the
second case, there is a z € X such that a* (4) > 0, and we will show that p,(fa +
ge) # 0. Recall that a#” = u? x u?. Set R, = R\{(x, x) : x € X}.Then sets of the form
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(E x F) n Ry, where E and F are disjoint Borel sets in X, generate the Borel sets in R,
so there must be such a pair for which

0 <j Fd(u? x u?) < oo,
EXF

If we set h; = yr and h, = yr we get elements of M(X) which we think of as elements
ofH , , and then the displayed integral is (p,(f)h,|h;). On the otherhand,
(p,(ge)h,|h,) = Obecause gh,h, = 0. Thus p,(fa + ge) # 0, as needed.
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Section (3.2):Completely Bounded Bimodule Maps

Recall that B(G) is defined to be the linear span of P (G). Because we know that
P (G) consists of diagonal matrix entries of unitary representations we can form direct
sums of representations to show that elements ofB (G) are also matrix entries that need
not be diagonal. We will provide B (G) a normed algebra structure. One way to
compute the norm of an element b of B(G) is in terms of the positive definite functions
on a larger groupoid for which b can appear as an "off diagonal part." This is the
groupoid version of the well known 2 x 2 matrix method, and has been exploited by
Renault for the same purpose. This permits usingthe completeness of P (G) for a
general locally compact groupoid to provethe completeness of B (G).

We can also formulate B(G) as an algebra of completely bounded C()_()-bimodule
maps on M*(G), and as a space of completely bounded C()_()-bimodule maps from
C*(G,Y) to M*(R,X). Since the completely positive elements in the latter set are all

given by positive definite functions,and the completely positive bimodule maps form a
complete set, we get one way to show that B (G) is complete.

Recall that o is the direct sum of all cyclic representations of C*(G). We can
construct each cyclic representation as an integrated representation of G, and, as such, it

can be taken as a representation of M .(G), and we use the same notation. For each a €
C*(G),||lw(a)|l = |la]| is the same

as sup {llm(a)|l: m is a cyclic representation of C*(G)}. Also recall, that the norms
I Il andll |l and their properties.

Theorem (3.2.1)[3]:If b eB (G), the operator T,, taking w(f) to w(bf)

for f €M .(G), extends to a completely bounded map of M*(G) to itself and|| T ||, =
lIbllg-

Proof: ByTheorem (3.1.1), if p €P (G) then T}, is completely positive, so for b eB(G)
the operator T, is completely bounded. Set M = ||b||gand suppose 0 < a < 1. Since : is

arbitrary, the proof will be complete if we find an f €M (G) such that w(f) # 0 and
IT,w(F)I| = Ma?||lw(f)]|. To find such an f first notice that there is a u € Q such that
the L*(A*)-norm of bis greater than Ma, so there exist a b, € C and n > 0 such that the
setA = {y: |b(y) — byl < n} has positive measure for A* and |b,| — n > Ma.Then there
is a compact set C < A such that A*(C) > 0. We take f = y.
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By the definition of || ||, there is a u" € Q such that ||fll;;, = allfll;. By the
properties of || ||, if m is the one-dimensional trivial representation of G, we have
74 ()| = allw(Il. Now let ¢=n*Qnr*. We have [la(A)l = ||z ()| =
allw(H)Il.

We can find g; and g,in C.(X),= 0, and > 0 on r(C) U s(C). These can be regarded
as sections of the bundle for 7, and it is clear that(z*(f)g,]g9,) > O from the integral
formula for the inner product. Thus ©#(f) # 0, so o(f) # Oand w(f) # O.

Since a(byf) = boo(f), it will suffice to show that [la(b—by)f|l <
nllo(f)ll.because then we get (|bg| — mIla (Il < lla(bf)II, so (Ibol — 1) allw(f)Il <
oA < lw®A)Il = ||Tp(w(F))||, giving the desired inequality. Now f is a
characteristic function, so (b —by) f = ((b —bo) f) f- Also, |[(b —bg) fllew < 7,50
the inequality we wanted on o can be obtained by applying the second inequality before
Lemma (2.1.6) to both p and u'. Thus the proof is complete.

Again we use the algebra C ()_( ) to study B(G), and need the one-one correspondence
between its representations and those of C.(G) and hence those of G. We still use w for
the direct sum of all cyclic representations of C(G,X), each of them given as an
integrated representation of G. We use @ for the direct sum of all the cyclic
representations of M (R, X) that can be obtained by integrating a representation of R.

Recall that C*(G,X) is the operator norm closure of w (C(G,)_()) and M*(R,X) is the

operator norm closure of @(M (R, X)). If x € X, use H,  for L?2(u*) as before, and
H , for the direct sum of all the H , 's. Let @;be the subrepresentation of @ obtained
by restricting to H

Theorem (3.2.2)[3]:Let b €B(G). There is a completely bounded € (X )-bimodule map
Sp:C(G,X) > M*(R,X) such that S,(w(f))=@&(f b)) for fecC/(G) and
Sy(w(ge)) = @(bge)for g € C(X). For this operator we have

ISpllen = 1IBllg,

and

Sp(w(E)[Hx € &(M()).
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Proof:The operator S, is a linear combination of four operators S,for p €P (G), and
these are completely positive bimodule maps byTheorem (3.1.4).

For the norm inequality, we proceed as in the proof of Theorem (3.2.1). LetM =
Ibllgand 0 <a < 1. It will suffice to find f €M .(G) such that w(f) # Oand
IS, (DIl = Ma?||lw(f)||. Choose u, by, 1, A and C as in Theorem (3.2.1),and take f =
Xc-

We take 7 to be the trivial one-dimensional representation, and choose u’ and o as
before. The proof that w(f) # 0 used before works here also.

Let = denote the one-dimensional trivial representation of R, and form its integral
with respect to u, T#. Likewise form 7' and let & = 74 @ &' It will suffice to prove

that [|5((f, INIl > allw(F)II.

For this purpose, we need to see that |[{f, 1)|[;;, = Ifl;;,. This follows from the
fact that f > O together with the relationship between v, and ¥,.Then we see that

I<f b = boMlir < 1B = bo) fllolfllir < nllf i
using the fact that f is a characteristic function.

Both the equality and the inequalities also hold for u', and since m and 7 are the one-
dimensional trivial representations, they transfer to the corresponding equality and
inequalities for o and 6. Hence

la((f, DI = ll6((f, bY)II
= I6((f, boD Il = I6({f, b — b))
> |bolllg({f, IV — nlla({f, NI
= Mallg((f, I
> Ma?|lw (I

In order to provide the norm on B(G) in a way that will be convenient for proving
completeness, we introduce a way to enlarge the groupoid G asit was done. Write T, for
the transitive equivalence relation on the two element set {1,2}, so that T, has four
elements. It will be convenient to have a shorter notation for matrix coefficients: If r is a
unitary representation of G and ¢ and n are bounded Borel sections of the bundle H on

which 7 acts, we can write [, &, ] for the matrix coefficient, namely
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[, &nl(y) = (r(y) Eos(¥)ner(y)).

Theorem (3.2.3)[3]:A bounded Borel function b on G is in B(G) if and only if there is
a function p’ €P(G % T,) such that for y € G we have b(y) =p'(y,(1,2)). The
function b can be expressed as a matrix coefficient using sections of sup norm at most 1
if and only if there is an associated p’ that can be expressed as a diagonal matrix
coefficient using a section of sup norm at most 1.

Proof:The proof of the first assertion will be given in terms of matrix coefficients and
will include the proofs of the facts about sup norms. LetX’ = X x {1,2} be the unit space
of G' =G % T,.

Suppose that mr is a unitary representation of G on a bundle H and that & and n are
Borel sections of H of sup norm at most 1 such that b = [, &,n]. Define a Hilbert
bundle H ' over X’ by setting H '(x,i) =H(x)for i = 1,2. For y' = (y,(i,j)) in G’
notice that s(y') = (s(y),j) andr(y') = (r(y),i). That means that we can define a
representation ' of G’ onH ' by 7'(y') = n(y). Define a section{’ of H' by
setting {'(x,i) = n(x) wheni =1 and {'(x,i) = é(x) when i = 2. Then the sup norm
of ¢’ is at most 1 and for every y € G we have b(y) = [n’, ', (’](y, (1, 2)) as required.

For the converse, suppose we begin with H ' =’, and ¢’. Then for x € X define

H(x) =H '(x,1) ®H '(x,2) and set n(x) = ({'(x,1),0)and &(x) = (0,{'(x,2)).
For y € G define m(y) to take (¢;,&,) to

(' (v, (1, 1))é + 7' (v, (1,2) &, 7' (v, (21)) & + 7' (v, (2, 2)) &),

thus acting as a matrix by left multiplication on column vectors. The sections ¢ and 7
have sup norm at most 1, and we have b = [, &, n].

Because of the results we can now complete the task. Recall that for b €B (G), T}, is

the operator on M*(G) determined by multiplication by b on M .(G), and that we
sometimes work withB (G) as an algebra of functions, even though the elements are
actually equivalence classes.

Theorem (3.2.4)[3]:B (G) is a Banach algebra with pointwise operations for the
algebraic structure and with the norm defined by

11l = 11T llcp

for b eB(G).
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Proof: Theorem(2.2.9) shows that B (G) is an algebra under pointwise operations, and
equals P (G) —P (G) + iP (G) — iP (G). Any function that is O for 12-almost every
point of G represents the 0 element of M*(G), so for b €B (G) the operator T, depends
only on the equivalence class of b. Thus b ~ T, is well defined from the space of
equivalence classes of functions inB(G) to the space of completely bounded operators
on M*(G). Since||Tyllcp = l|Pllo, We see that b — T, is also one-one. Thus the norm
makesB (G) a commutative normed algebra.

To prove that B(G) is complete, let by, b,, ... be a sequence in B(G)such that the
norms ||T, || are summable. Then Theorem (3.2.3) says that we can construct positive
definite functions pq, p5, ... on the groupoid G' = G % T, such that for every y € G and
every n we have b, (y) = p;, (v, (1,2)), and for every n we have ||p}, |l = [[bnllco- TWO

forms of the completeness of P (G') can be used to complete the proof. We let ¢,, =
by + -+ b,.

In the first proof, we notice that the sequence S,,S,;, ... of completely positive

C()_(’)-bimodule maps from C*(G’,)_(’) to M*(R'X")is summable.The sum is also a

—

completely positive C (X )-bimodule map, so by Theorem (3.1.5) it is of the form S
for a p’ €P(G’). Then the function b defined on G by b =p'(+,(1,2)) is in B (G) by
Theorem (3.2.3). We also get||Sp; | , = [[Sc, bl , = llcn — blle; by Theorem
(3.2.3) and Theorem (3.2.2), so||c,, — b||« = 0. We need to prove that ||c,, — b|| — Oas

n — oo,
To do this begin with f = 0in M .(G). Then Lemma (2.1.6) says that
lox(Cen = DI < llen = Bllollw (P

Hence T, (w(f)) - Tp(w(f))in M*(G). The f's span a dense set in M*(G),and the
T, 's are uniformly bounded, so it follows that T, — T, pointwise on M*(G). Now the

fact that the completely bounded operators on M*(G)are complete implies that the
sequence T, has a limit, T" in the completely bounded sense, which is automatically

also a pointwise limit on M*(G).Hence T'=T,, so that ||T,,-,|| , -0, and by
Theorem (3.2.1) that is equivalent to saying ||c,, — b|| = 0 asn — oo,
For the other proof of completeness, we notice that py, p3, ... is summable in the Q-

essential supremum norm as functions on G'. Hence there is a Borel function p’ that is
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the sum in that norm. By the Dominated Convergence Theorem, p’ €P (G'). Again we
take b = p'(+,(1,2)). Theorems (3.2.3) and (3.2.2) once again show that ||c, — bl —
0, and we complete the proof as before.

Since B (G)is a Banach algebra, any closed subalgebra of it is a Banach algebra.
Convergence in the completely bounded norm implies convergence in L*(19), so
certain subalgebras are easily seen to be closed. Among these are B(G), defined to be
{b €B (G) : biscontinuous}, and B (G,X), defined to be the set of elements
b €B (G) such that b | X is continuous and vanishes at co. The subalgebra B(G, X) is
defined to be B(G) NB (G, X).

Theorem (3.2.5)[3]:B(G),B (G, X), and B(G, X) are closed subalgebras of B (¢) and
hence Banach algebras.

The first example is a groupoid on which the linear span of the continuous positive
definite functions is not complete and there exist continuous elements of B (G) that
cannot be expressed as a difference of continuous positive definite functions.

Let X = {(x,y) : (x,y) has polar coordinates(r,0)with0 < r < 1,0 €
{0,1,1/2,1/3,...}} and set G = X x Z. This is a bundle of groups, and(x,n) +
(x',n") is defined iff x = x’, and then it equals (x,n +n'). WriteP (G) for the set of
Borel positive definite functions on G and P (G) for the set of continuous elements of
P (G). Let B(G) be the linear span of P(G), let B,(G) be the linear span of P (G) and
let B(G) be the set of continuous elements of B (G). A bounded function p is in P (G)
iff it is a Borel function and p(r, 8,-) is positive definite on Z for each point of X. Since
positive definite functions on Z are in one-one correspondence with positivemeasures on
T via the Fourier transform, we can also think of P (G)as consisting of Borel functions
from X to the positive measures on T.

Define

io(1+r)n ifr>0

0.m) =1{ |
p(r.6.n) 0 ifr=0

and

(r,6,n) = {eio(l_r)n ifr >0
0 ifr=0.
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We can also think of these as taking values that are point masses at e!?(1*"and (17,
or the 0 measure at the origin. We have p — q € B(G). Suppose that u € P(G) and
—u < p —q < u where the inequalities indicate the pointwise order in the space of
measure-valued functions. This is the same as the natural order in B (G) in which
elements of P (G) are positive. Since p((r,8) -) is the point mass at e?®*+7 u(r, 8,
dominates the point mass at that point. By continuity, «(0,0,-) dominates the point mass
at e!©. This means that 1(0,0,-) has infinite norm, so there is no such u. Thus we have a

continuous element of B (G) that is not a difference of continuous positive definite
functions.

With more effort, a worse example can be made. Choose n angles, and begin with p
and g restricted to the radii with those angles. The limit at the origin of both of them
exists, the limits are the same, and it is a sum of n point masses. To make elements of
P(G) we take that value at the origin and at all other points of X. Let b be the difference
of these elements of P(G). Any element of P(G) that dominates b must have a value at
the origin that dominates that sum of n point masses. Observe that b is O except on the
original chosen radii, and that the total variation norm of each value of b is at most 2.

Now partition the angles in X into sets with 2% elements, for k = 1,2, ...,and use the
construction just described to make elements by, in B;(G). Then let b = Y32, 27%p,.
This converges in the completely bounded norm since each b, has completely bounded
norm 2. Hence it also converges in uniform norm, so that b € B(G). Also b is in the
closure of B;(G). However,the domination arguments used above show that b is not in
B,(G).

The next example shows that locally compact groupoids can have unitary
representations that are Borel but not continuous.

Consider an action of the integers on the circle by an irrational rotation,and form the
transformation group groupoid, G = T x Z. If u is a unitary valued Borel function on T,
there is a unitary representation U such that for all T € T,u(z) = U(z,1). If u is not
continuous, neither is U.
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