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Abstract

An asymptotic measure expansiveness is introduced and its relationship
with dominated splitting is considered. We show recurrence and multiple
recurrence results for topological dynamical systems indexed by an arbitrary
directed partial semigroup with respect to acoideal basis suitable for this
semigroup, but otherwise arbitrary.Extending the work of Cuntz and
Vershik, we develop ageneral notion of independence for commuting group
endomorphisms. Based on this concept, we initiate the study of irreversible
algebraic dynamical systems, which can be thought of as irreversible
analogues of the dynamical systems considered by Schmidt. We show a
version of uniqueness theorem for Cuntz-Pimsner algebras of discrete

product systems over semigroups of Ore type.
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Chapter 1

Diffeomorphisms of Asymptotic Measure Expansive

It is proved that if a diffeomorphism admits a co-dimension one
dominated splitting then it is asymptotic measure expansive. Also, a
diffeomorphism with a homoclinic tangency can be perturbed to a non-

asymptotic measure expansive diffeomorphism
Proposition (1.1)[1]:

For a diffeomorphism f having a dominated splittingE' €@ F there exist
two continuous maps @°: M — Emb(D;,M) and @“ : M — Emb(D{, M)
such that for W55.(x) = 85 (x)(DE) and WS.(x) = 0% (x)(DE) we have.

* T, Wi5e(x) = E(x)and T, W5 (x) = F(x);
s WS .(x) N WSL(y) is exactly one point denoted by {x, y}.

In the case of a partially hyperbolic splitting ES @ F, the submanifold
W¥integrating E“®inherits the same behavior. Thus, for any y,z€
W .(x)and any positive n,d(f™ (y),f™(z)) <A*.In fact, backward
iterations of the local stable manifolds makes a foliation of the ambient
manifold behaving as a contraction on the leaves with respect to the induced
Riemannian metric . Any partially hyperbolic diffeomorphism is measure
expansive. The idea of proof is quite simple. Take y € I's(x), with § small
enough. If y & W¥(x), then, the backward iterations go away from the §
neighborhood. Hence, y € Wg*(x), and therefore Ts(x) < Wg*(x).This
implies that Leb(I's(x)) = 0. To prove Theorem (1.3), we need two simple

(D)




observations. Time first follows from the differentiability of f and the
second straightforwardly from the fact that the angles between unit vectors
of the two bundles of a dominated splitting are uniformly bounded away
from zero. For y € T's(x) the projection of y on W (x) along the cu-leaves

is denoted by yE. yFis similarly defined. In fact yE = [x,y] and yF =
[y, x].

Lemma (1.2)[1]:
Ifdis sufficiently small, then for any y € s (X) , there is M such that

A(F"(). S GE)) _
AF G0N

Proof: Let us consider a positive number § such that for any y,z € Mwith

mMaA"

d(y,z) < éwe have |Dfg(,l|/ ||DfF(Z)||co < 1). In particular, for any

two points y, zwith d(f™ (z), f™ (y)) < &, foreveryn € Z

||DfEn(y)|| /||DfEn(Z)||CO < A" foreveryn €7 D

AsyE =[x.y] and d(f"(x),f* (WE)) < &, f" (E) = [f"(x),f"(y)] and the
same holds for yF. Let y and # be the curves of minimal length connecting
f™(x) to, f*(yE ) and f™(x) to, f™(yF )respectively.Choose curves y,and
N, With f*(y,,) = yand f™(n,,)= n. We should point out that the curves y,
and n,, are simply the perimages underf™of y and 7 respectively. Now, we

have

(2)
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< f IDF ™ (7 () )y () || At/ f IDF™(1.() )0 (®) || dt

= f ||Dfn(yn(t))|5|| v ()||dt

d(x,yE)

/[ 1077, | @l = i 52

last inequality holds by (1.1) and the fact that E is one dimensional.
Theorem (1.3)[1]:

If £ € Diff1(M) admits a co-dimension one dominated splitting, then f is

asymptotic measure expansive.

Since the existence of a dominated splitting is an open property in
Dif f1(M), the above result implies that every diffeomorphism admitting a
dominated splitting is contained in the C! interior of the asymptotic measure

expansive diffeomorphisms.

We complete by showing that asymptotic measure expansiveness is far

from homoclinic tangency.

Proof: As a result of the above lemma, one can deduce that fory €
Ty d (f™(x), f"(yE))tends to O exponentially fast. Now, given >0 ,

choose 7 in such a way that the set

()



p= | wao

YEBy(fn(x))

S WS ("G

Fig. 1.The local set D,,

has Lebesgue measure less than €. By the above lemma and the continuity of
center-unstable manifolds, for large n,f"(I's(x)) c D,(see Fig.1). In

particular,

Leb (f"(T5(x))) < Leb(Dy)

and the proof follows.
Theorem (1.4)[1]:

1f f € Dif f*(M) has homoclinic tangency, then f can be perturbed in

C!-topology to a diffeomorphism that is not asymptotic measure expansive.

Consequently, time Cl-interior of the asymptotic measure expansive
difthomorphisms is formed by diffeomnorphismns far from hornoclinic

tangencies.
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Proof: It is worth noting that we are working in the C!-topolor. Bowen,
proved that C?-diffeomorphisms have no horseshoes with positive Lebesgue
measure, however, he constructed a C!-horseshoe with positive Lebesgue
measure. In the proof of Theorem (1.4) we benefit from this construction

and the modifications done.

Suppose that f has a periodic point p whose stable and unstable
manifolds tangentially intersect each other in a homoclinic point x. The
proof will be done straightforwardly using two classic steps borrowed
essentially from [1].First, a fiat connection between the stable and unstable

manifolds of p at a tangential intersection point is produced;
Lemma (1.5)[1]:

With the assumptions above, there is a diffeomorphisrnf;sufficiently
Cl-closed to f such that p is again a periodic point for f;and there is a
smooth submanifold C, with dim(C) = min{dim(W*(p)),dim (W* (p))} such
that x € C c W5(p, f1) N WH(p, f1).

In the second step, using Bowen’s construction, a sequence of invariant
horseshoes of positive Lebesgue measure are produced. Anon-asymnptotic

expansive diffeornorphism is created.
Proposition (1.6)[1] :

There is a Cl-diffeomorphism f, arbitrarily near f;(f;as in the above
lemma), producing a sequence of horseshoes H,, near C with the following

properties:

()



(i) for some fired k, ¥ (H,) = H,,, for arty n;
(ii) Leb(H,) >0;

(iii) Diarn(Hy,y — 0, asn — o,

Now, put p, € Hn,§,, = Diarn(H,)and n, = Leb(H,). Since H, C

I, (pn, f5)one deduces that for any m.

Leb (f;™(Ts,(pn))) = Leb (Hp) = nn.

This means that f,is not asymptotic measure expansive.




Chapter 2

Nets and Topological Dynamical Systems

These results are then applied to topological dynamical systems indexed
by semigroups possessing digital representation. The theory includes
recurrence and multiple recurrence results for topological dynamical
systems, indexed by natural numbers, or by finite non-empty subsets of

natural numbers.
Section (2.1): Coideal Bases with the (D)-Property:

We introduce the (D)-property of a coideal basis on an infinite directed
set (A, <) and we will prove, in Theorem (2.1.7) below, that every net
(x3)2ea In a compact metric space has a convergent subnet of the form
(%) 2ea, Where A is an element of an arbitrary coideal basis 3 on A with the
(D)-property. Moreover, we will locate A to be a subset of a given element
B of the coideal basis 3. This result will be the starting point in order to
prove later recurrence results for topological systems of continuous maps
from a compact metric space into itself indexed by an infinite directed set

with respect to a coideal basis with the (D)-property.

A coideal on the set of natural numbers appears in [2] and elsewhere.
This extended from the set of natural numbers to an arbitrary infinite

directed set as follows:




Definition (2.1.1)[2]:

Let A be a non-empty infinite set and < a relation on A satisfying the

following conditions:

(M) If A, A, €A withdy < A,, thenk; # A,
(i)If A, A, A3 €A withd; <X, and A, < A5z, theni; < As.

(iii) For every A;,A, € A there exists A; € A such that ;<
Az and A, < Az

Then (A, <) is a directed set.
Definition (2.1.2)[2]:

Let (A, <) be an infinite directed set, A subset / of [A]* is a coideal on

(X, <) ifitsatisfies the following three properties:

(i) Forevery A€ H and A, € A there exists A, € A such that A, <
Ay

(i) FAUB € H, theneitherA e H orB € H.

(i) If AeH andAc BCc X then B € H.
Let (A, <) be an infinite directed setand let A € A and A € A. Then,

A-r={ZeA: 1<z}




Definition (2.1.3)[2]:

Let (A, <) be an infinite directed set. A subset 3 of [A]® is a coideal

basis on (A, <) if it satisfies the following two properties:

(i) Forevery A € Rand A; € A there exists 4, € A such thath; < A,.

(i) If AU B €3, then there exists C € 3such that either C < A or
C € B.

Obviously, a coideal on (A,<)is a coideal basis on (A ,<). The
connection between coideals and coideal bases is given in the following

proposition.
Proposition (2.1.4)[2]:

Let (A, <) be an infinite directed set. A family H < [A]® is a coideal on
(A, <) if and only if there exists a coideal basis B S [A]* such
that

H =Lz={A € X: thereexists B € Bwith B € A}.
Definition (2.1.5)[2]:

Let (A, <) be an infinite directed set. A coideal basis 3 S [A]™ on (A, <)
has the (P)-property if for every sequence (A, )nen, With A, € Band A; 2

A, 2..., thereexists A € 3 such that A \ 4,, is a finite set for every n € N.

We will introduce now a weaker property than the (P)-property of a

coideal basis on an infinite directed set, which we call (D)-property.

()




Definition (2.1.6)[2]:

Let (A, <) be an infinite directed set. A coideal basis 3 S [A]* on (A, <
) has the (D)-property iffor every sequence (4, )nen, With 4, € Band A; 2

A, 2... there exists A € [3 such that for every n € Nthere exists K,, € NU
{0} satisfying

K, = max{k € N: there exist A1,..., A, € A/A, with, < - <A}
Examples (2.1.7)[2]:

(i) The set [N]* is a coideal on N with the usual order, according to the
pigeon-hole principle, and obviously has the (P)-property and
consequently the (D)-property.

(ii) Let [N]f: be the set of all the finite non-empty subsets of N. For
Fi,F, € [NIS, we define F, <Fif max F, < minF,. Then

(IN]S, , <) is an infinite directed set.

For a sequence (F)neny S [N]f: such that E, < F,, ., for every n € N we

set FU((Ey)nen) = {Uieq Fi: a € [NIS, }. The family
= {FU((Fn)nEN): (Fn)nEN c [N]§:° with Fi <F, < }

Is a coideal basis on ([N]f:, <) , according to the fundamental theorem of

Hind- man.

This coideal basis has not the (P)-property, but it has the (D)-property.

Indeed, let a sequence (Ap)ken: With A e Band A; 2 A, 2 ... If A=




FU ((FE)HEN)’ where (Ff)nen S [NIS, with Ff < FF < - for every k €

N, thenwe set4 = FU ((F,f)neN).Then A € B and for every k € N.
k —1= max{n € N: there exist F; < -+ <F, € A\A, with F;, < --- < E,}.

(iii) Let ¥ = {oy,0,,..} be an infinite countable alphabet and k =

(k)neny € N an increasing sequence. The set of w-located words

over Y dominated by K is

L(Z,E) = {W =Wy, .. Wp lEN N <--<n €Nw,

€ {afl, ...,akni} foralll<i< l}

Let v ¢ X be a variable. The set of variable w-located wordsover

¥ dominated by the sequence K is:

L(Z,E; v) = {W =Wy, Wy lENN <--<n eNw,
€ {v, aq, ... ,akn‘} foralll <i<land thereexists1l <i

<l with Wnin}

Let L(Xu {v},k) = L, k) UL, k;v).

Ifw=w, ...w, €LEU{v} k) then the set dom w = {ng ...y
the domain of w For w,u €L(Zu{v}k)we define w < uif
max dom, (w) < min dom(u). Then L(Tu {v}, k) <), (L, k),<) and

(L2, k. v), <) are infinite directed sets.

€




FOr w=wy ,....Wp, , U= Up ..., Uy, € L(ZU{v},E) withw <u Wwe

define the concatenating word w* u = wy .. Wy, , Uy, ... Uy, €

L(Xu{v}.k).

Forw = wy, ,...,wy,, € L(Tu {v}, k)L(Z, k;v) and p € N U {0} we set
w(0) =wand, for p € N,

w(P) = Up ..., Uy, € L(Z,E)

where, for 1<i<lu, =wyifw, €Y u, =a, ifw,, =vandp <

kn;and finally u, = ay if w, =vandp >k, . Let

L°(z, K; v) = {(W)neny € L(Z, K; v)}:wy, < wyyq forevery n€N

We will define now the extracted (variable) w-located words of a

sequence @ = (W) ey € L2 (3, k, v) . An extracted variablew-located word

of runhas the form

Wy, (p1) * ... x wy, (py) € L(Z, k. v),

Where A, eN,n; <--<nm €N and p;,.., p1 ENU{O}with 0 <p; <
kn, forevery 1 <i< Aand 0€{py,.., pa}. The set of all the extracted

variable w-located words of w is denoted by EV ().

An extractedw-located word of whas the form

Wi, (91) * .. % Wy, (p2) € L(Z, k),

(2)



Where A€ N,n; <--<m €N and p,,.., pyp € Nwith 0 <p; <k,
forevery 1 <i < A . The set of all the extracted w-located words of w is
denoted by E (). The families

R ={E(®): @ = {(Wp)ney € L®(Z. k; v)}and
Ry = {EV(&): @ = {Wp)nen € L°(Z. k; 1)}

are coideal bases on (L(Z, k), <) and (L(Z, k; v), <) respectively, according
to a fundamental partition theorem of Carlson proved in [2] for the particular

case of a finite alphabet.

These coideal bases have not the (P)-property, but they have the (D)-
property. Indeed, let a sequeoce (Ay)nen, With Ap = E(wy), where w, =
W )nen € L2 (T, k;v)and Ay 2 4, 2 - letd = (W) pew € LY, k; v)

We set A = E(w) . Then A € . Moreover, for every k € N,

k —1 =max {n € N: there exist w;,...,w,, € A\A,withw; < -+ <wy,}.
Hence, 3 has the (D)-property. Analogously, it can be proved that 13, has the
(D)-property.

We give more examples of coideal bases on directed sets with the (D)-
property.

After the definition of the coideal bases on directed sets with the
(D)property. It is well known that every net (x;),eain @ compact metric
space has a convergent subnet. We will prove, in the following theorem, that

this suibnet can have the form (x;)ics, Where A is an element of an
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arbitrary coideal basis 3 on A with the (D)-property, and moreover A can be

a subset of a given element B of R.

Let (A, <) be an infinite directed set and (x;),cp € X be a net in a

topological space X. For x, € X ,we write

limx,; =x,,
AeA A 0

If  (x3)ieaconverges to xg.i.e. if for any neighborhood V ofx,,there
existshy = Ao(V) € A such that x; € V for everyA € A with A, < A.

Analogously, we write for an element A of a coideal basis RBon (A, <)
and x; €X

lim x; =x,,
dea AT 70

If the net (x;),ea CONverges to x,, i.e. if for any neighborhood Vof x,, there

exists Ay = A(V) € A such that x, € V forevery 1 € A with Ay < A.
Theorem (2.1.8)[2]:

Let X, d be a compact metric space, (A, <) an infinite directed set and let
(x1)2ea € X be anet in X. For every coideal basis 3 on (A, <) with the
(D)-property and every B € [3 there exists A € B with A € B such that the

subnet (x;) 1e4 Of (1) 1e4 to converge to some element of X.

Proof: Let 3 be a coideal basis on (A, <) with the (D)-property and B € 3.
We set B(x,e) ={y € X:d(x,y) < €} for every x € X and € > 0. Since




m

(X.d) is a compact metric space, we have that X = U, B (xil,%)for some

axg, .., Xm, €X.

Let A; = B. Since 4; = U}~ C; where C; = {/1 €A :x, €EB (x}%)}
and 13 is a coideal basis, there exist A, € 3,4, € A;and 1 < i; < m,such
that A, € C;, and consequently {x; : 1 € A,} € B (x}lg) We continue
analogously. Since B (x}l,%) is a compact space, there exist x7, ... xp, € X,
such that ’B(x}lg) c U?fll?(xizz,i) and consequently there exist A; €

B,As S Asand 1 <ip<mysuch that {xy:2€A;}SB(x},2)n
PN 1
B (xlzz,z)

Inductively, we construct a sequence(A4,),cn, With 4, € B and A4; 2
A2+ and also closed balls B (x[]‘i) for n €N, such that

2J

k, = max{k € N : there exist A;,...,A; € C\A, withd; < - < A }.

This implies that C \ A; does not contain an element of 3. So, Since C € 3
and C = (C\A;) Uu(C NnA,), there exists AeB,ASCN A;. Then A S
C,Ae B AC B = A;andforeveryne N,n> 1 there exists g, € NU
{0} such that

qn = max{k € N : there exist A,,...,A; € A\A, withAd; < -+ <A}

We will prove that /%lETZ X3 =xp Indeed, for € > 0 pick n, € N. such that

1\2" < e Then d(xj,xo) < 1\2" <e for every A€ A4, ., . Let

Ay A eA\Aqnoﬂwithll1 << Aqno+18ince does not exist A€

M ng+1




with A such

Ang+1 Ang+1

A\A <A1 ,and A €3, there exists Ao EANA

No4q

that 4 < Ay. Hence, for every A € A withh, < A we have that A €

Ang+1

A and consequently that d(x,,x,) < 1\2™ < ¢ . This finishes the

No4q
proof.
The particular case of Theorem (2.1.8) for the directed set ([N]<:, <) and
the coideal basis 3 referred in Example (2.1.7) (ii) was proved by

Furstenberg and Weiss .

Also, the particular case of Theorem (2.1.8) for the directed set
(L(Z, k; v), <)of w-located words and the coideal basis B referred in
Example (2.1.7) (iii) was proved by Farmaki and Koutsogiannis.
Section (2.2): Topological Dynamical Systems Indexed by a
Directed Partial Semigroup and Applications to Semigroups

with Digital Representation:

We will introduce the notion of a directed partial semigroup and
consequently the suitable coideal bases on a directed partial semigroup and
the topological dynamical systems indexed by a directed partial semigroup.
We show recurrence results for topological dynamical systems indexed by a
directed partial semigroup with respect to a suitable coideal basis for this
semigroup extending the recurrence theorem of Birkhoff, Purstenberg-

Weiss.

We start with the following

Definition (2.2.1)[2]:




Let (A, <) be an infinite directed set and let for every A4, ,4, € A with
M < A, is defined a unique element A, x A, € A. If forevery 1;,1, , 43 € A
Wlth}\.1<}\,2 <>\.3 hOId }\.1<}\.2 *)\.3,)\.1 *)\.2 <}\,3and(}\.1 *}\.2)*}\.3:

A * (A, *Az),than (A, <) s called a directed partial semigroup.
We will define the suitable coideal bases on a directed partial semigroup.
Definition (2.2.2)[2]:

Let (A,<) be a directed partial semigroup. A coideal basis
3 on (A,<) is suitable for (4,<,x) if every B € B has the property that
M *A, €B foreveryr;, A, €B with); <A,.

Obviously, if a coideal basis 3 is suitable for the directed partial
semigroup (A4, <,*), then (B,<,*) is also a directed partial semigroup for

ever B € B.

We will define a topological dynamical system indexed by a directed

partial semigroup.
Definition (2.2.3)[2]:

Let (A,<,*) be a directed partial semigroup. A family {T*}ca

of continuous functions from a compact metric space X into itself is
a A-topological dynamical system of X if T4 o T4 = T4*%2 for every
AL A, EA withA; <A, .

Obviously, if 3 is a suitable coideal basis for (4, <,x)and B € B, then the

family {T*},cgis also a topological dynamical system of X.

€)




Examples (2.2.4)[2]:
Let X be a compact metric space.

(i) Let T : X - X be a continuous map. Then {T"},.en IS @ N-topological

dynamical system of X.

(ii) According to Example (2.1.7)(2), ([N]<:°,<)is an infinite directed
set. So, ([N]<Z°, <,U) s a directed partial semigroup and the coideal
basis 13 defined there is a suitable coideal basis for this semigroup. For

eachneN, let T,: X - X be a continuous map from a compact

metric space X into itself.

ForF={n, <--<nyg}e [N];Zo weset TF =T, o..oT, Then

{TF}Fe[N]<°° is a [N]izo-topological dynamical system of X. In

>0
particular, we can replaceT,,, with T" for every n € N, Where T :

X — X isacontinuous map.

(iii) Let Y ={a;,ay,..} S N be an infinite countable alphabet and
k= (kn)nen € N an increasing sequence. According to Example
(2.2.7)(3), (L(Z,E) <,x) is a directed partial semigroup and the
coideal basis 13 defined there is a sinkable coideal basis for this

semigroup. Let {T,,},,ey be a sequence of continuous maps from X

into itself and let {L,},en € N. For w = wy, ... w, € L(Z, k) let

ln w ln w
W — 1Wny A7 1A
T®=T," " o. 0T,




Then {T“} . LR isan L(2, E)-topological dynamical system of X.

We define the recurrent points of a topological dynamical system indexed
by a directed partial semigroup, with respect to a suitable coideal basis for
the semigroup. Consequently, using Theorem (2.1.8), we prove the existence

of such points in case the coideal basis has the (D)-property.
Definition (2.2.5)[2]:

Let (A,<,*) be a directed partial semigroup,{ T*},<, a A-topological
dynamical system of a compact metric space (X,d),3 a suitable coideal

basis on (4, <,*) and let B € 3. An element x, of X is called B- recurrent if

/llig}qT’l (x0) = xg, for some A € Bwith A € B

Theorem (2.2.6)[2]:

Let (A, <,*) be a directed partial semigrup, {T*}, e, a A-topological
dynamical system of a compact metric space (X,d),3 a suitable coideal
basis for (A,<,*) with the (D)-property and let B € 3. Then X contains

B-recurrent points.

Proof: Letx € X. According to Theorem (2.1.8), there exist A € 3,A € B

and .x, € X such that
i A =
/lllg}qT (x) = x,.

Let £ > 0. Then, there exists A, € A such that d(T*(x),x,) < /2 for
every A€ A with A, <A We fix A; € A with A, <A;. Since T is a




continuous function on X, there exists & >0 such that if y € X with
d(y,x,) <& then (Tkl(y),Tkl(xo)) < &/2 . Since /lliér}1 T4 (x) = x, , there
exists A, €AN <A,  such  that  d(T*(x),x) <6.  Then

d (Th (1%2(x)) (y),Th(xO)) <e/2 and consequently d (T%:#2(x), T (xp) ) <
/2. Since A, A, € A and A, < A;.A, , we have that d (TAM2 ), (xo)) <e/2.

It follows that d (T"W12 (x), (xo)) <e. Hence,/lligz1 T+ (x4) = xp.

The particular case of this theorem, where A =N,R =[N]* and the
topological dynamical system has the form {T"},ey Where T is a
continuous function from a compact metric space (X,d) to itself, is
Birkhoff’s recurrence theorem (Let T : X — X be a homeomorphism, then

there exist a point x € X such thatlimiogfd(Tnx,x) = 0[5)).

Corollary (2.2.7)[2]:

(Birkhoffs theorem)[5]: Let X be a compact metric space and T:X - X
a continuous function. There exists x, € X and a sequence (ny)xenin N

R _
such that /lllérI%IT (x0) = xq.

We locate recurrent points of a topological dynamical system indexed by
a directed partial semigroup, with respect to a suitable coideal basis for this
semigroup, in a given subset of the space. Firstly, we will look for almost

recurrent points, as their class is wider than the class of recurrent points.

Defection (2.2.8)[2]:




Let (A, <,*) be a directed partial semigroup, { T}, <, a A- topological
dynamical system of a compact metric space (X,d),3 a suitable coideal
basis for (A,<,*) and let B € 3. An element x, of X is called B-almost
recurrent if for every € > 0and A, € A, there exist A € B and 1, < 4 such
that

d(T*(xg),x0) < €

A closed subset F of X is called B-almost recurrent setif for every ¢ >

0,1y € Aand x € F there exist, y € F ,andA € BA, < A such that
d(T’l(y),x) <e¢

In the following example we will point out a way to locate almost

recurrent subsets of a compact metric space.
Example (2.2.9)[2]:

Let (X,d) be a compact metric space, (A,<,x) a directed partial
semigroup, 3 a suitable coideal basis on (4, <) with the (D)-property and let
B € 3. Let F(X) he the set of all nonempty closed subsets of X endowed

with the Hausdorff metric d, where
d(K, M) = max{sup, cx d(x, M), sup, ¢y d(x, K)}.

Then (F(X), d) is a compact metric space. Let { T*}, ¢, be a A-topological
dynamical system of (X,d). We define T : F(X) - F(X) with T4(K) =
TA(K). Then {T*},¢, is a A-topological dynamical system of (F(X),d).
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According to Theorem (2.2.6), there exist A€ 3,4 € B and K € F(X)
such that

. T A —
,l1lg}4T (K) =K.

Then K is a B-recurrent element of F(X) and K is a B-almost recurrent
subset of X.

We prove now that every almost recurrent subset of X contains almost

recurrent elements of X.
Proposition (2.2.10)[2]:

Let (A, <,*) he a directed partial semigroup, { T*}, e a A-topological
dynamical system of a compact metric space (X.d),3 a suitable coideal
basis on (A4,<,*) and let B € 3. Every B-almost recurrent subset F of X

contains B-almost reccirrent elements of X.

Proof: Let F be a B-almost recurrent subset of X. We fix e > 0and A, € A.
Inductively, we will construct a sequence (x,),ey S Fa sequence
(A )neny € B with 4, < 1,,.7and a sequence (&,),eny With 0 < ¢, < &/2,
which satisfy d(T*+1(xp,1),%,) < €41 and d(T*(x),%p_1) < &,

whenever x € X andd(x, x,, foreveryn € N.

Indeed, since F is B-almost recurrent, for x, € Fand &; = &/2there exist

A1 € B with Ay < 4; and x; € F such that d(T*1(x;), x,) < &;.

Let there exist x4, x1,....,x, € FAq,..,A, € Bwith 1; <+ <1, and 0 <

£1,€, - En < &/2 such that d(T%(x;),x;_,) < &. for every i =1,..,n.

(2)




Since T*ris a continuous function, there exists 0 < ¢,,,; < &, such that if

x€ X and  d(x,x,)<e,4q, then d (T’ln(x),T’ln(xn)) <eg —

d (T’ln (x), (xn_l)). So, whenever d(x, x,,)<&,+, We have that

d (T4 (x), (en-1)) < d (TH ), T () ) + d (TP (), Genon)) <

Since F is B-almost recurrent there exists 4,,,4 € B with 4, < 4,,1 and
Xny1 € F such that d(T*+1(xp4q),%,) < &npyq. This finishes the

construction.
We will prove that if i, j,€ Nand i < j, then

d(TH 2 (o)) < €41

Indeed, since d(T%(x;)x;.,) <e We have that (T’lf-1 (T’lf(xj)),xj_z) <
g_1, and, since A;_; <A we have that d(TH 4 (x;),x_,) < &_1.
Repeating the same procedure we obtain that d(T%+**i(x;),x;) <

Eiy1 <& = €/2

Since Xis a compact space, there exist i,j,€ N with i < j, such
that d(xi,xj) < &/2.Then,
d(T’li+1*“'*’11'(xj),xi) < d(T’li+1*“'*’11'(xj),xi) + d(xi,xj) <¢

For x=xjand A=4;.1*..x4;€B we have that A,<4 and

d(T*(x),x) <e
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We define the recurrent subsets of a compact metric space with respect to
a topological dynamical system indexed by a directed partial semigroup, in

order to locate recurrent elements in them.
Definition (2.2.11)[2]:

Let (A4, <,*) he a directed partial semigroup, {T*},<, a A-topological
dynamical system of a compact metric space (X, d) and 3 a suitable cojdeal
basis on (4, <,*) .A closed subset F of X is called B-recurrent for B € 3 if
forevery e>0and x € F, there exist A € R with A € B and y € F such
that

d(T*(y),x) <&, for every L€ A

A closed subset F of X is called recurrentifitis B-recurrent for every B €

Obviously, a B-recurrent subset of X, for B € (3, is B-almost recurrent
and, according to Proposition (2.2.10), it contains B-almost recurrent points.
As we will prove in Proposition (2.2.18) below, we can locate B-recurrent
points in a homogenous B-recurrent subset of X toward Proposition (2.2.18),
we will give the appropriate definitions starting from the definition of a

minimal topological dynamical system.
Definition (2.2.12)[2]:

Let X be a compact metric space, (A, <,x) a directed partial semigroup
and {T%}, c,a A-topological dynamical system of (X,d). This system is

minimalif no proper closed subset Y c XisT*-invariant for every 1 € 4 .




Using Zorn’s lemma (Let S be a partially ordered set. If every totally
rderedsubset of S has an upper bound, then S contains a maximal element.
[6]), can be proved that there exists a closed non-empty subset Y of X such
that the system { T2}, restricted to Y to be minimal. There exists the
following characterization of minimality in case A is a semigroup.

Proposition (2.2.13)[2]:

Let X be a compact metric space, G a semigroup and let {T9},c; be
a G-topological dynamical system of X. The dynamical system {T9}, ¢ is
minimal if for every open subset U of X, there exist finitely many

elementsgy, g5, ..., gn € G such that
n
| Jaoyrwy=x.
i=1

We give a homogenous subset of X with respect to a set {T;}; ¢ oOf

transformations acting on X, which introduced by Furstenberg as follows:
Definition (2.2.14)[2]:

Let X be a compact metric space and F a closed subset of X. Then F is
called homogeneous with respect to a set of transformations { T;}; ¢;acting
on X if there exists a group of homeomorphisms G of X each of which
commutes with each T; and such that G leaves F invariant and (F,G) is

minimal (no proper closed subset of F is invariant under the action of G).

We prove that a homogeneous subset of X is recurrent if satisfies a

weaker condition than that in Definition (2.2.11).

Proposition (2.2.15)[2]:
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Let (A4, <,*) be a directed partial sernigroup, { T}, <, a A-topological
dynamical system of a compact metric space (X,d),3 a suitable coideal
basis on (4, <,*) and let B € 3. If a closed subset F of X is homogeneous
with respect to the system { T}, <, and for every £>0 there exist .x,y € F
and A € 3, A € B such that

d(T*(y),x)<e foreveryd€A
then, F is B-recurrent.

Proof: Since F is a homogeneous set with respect to the system { 7%}, 4

there exists a group G of homeomorphisms each of which commutes with

each T*and such that G leaves F invariant and (F, G) is minimal.

We claim that for every &> 0 there exists a finite subset G, of G such that,

forevery x,y € F,mingeq d(g(x),y) < e/2.

Indeed, let{U;}¥_, be a finite covering of F by open sets of diameter <
e/2. According to Proposition (2.2.13), we can find a finite set {gi, ..., gin,}
for every 1< i <k such that U (g{)™'U; = F. Let Gy ={g:1< i <
k1< j<k< mi}. Then for every x,y € F we have that y € U;
forsomei, € {1,...,x} and x € (gj.Z)‘lUio for some j, € {1,..,m; }. Then

gj.Z(x)e U, and, since U; has diameter <e/2, we have that

mingeq,d(g(x),y) < d (gj.Z(x),y) < &/2. This proves the claim.

Let €0 and z € F There exists 6> 0 such that if x;,x, € X and

d(xq,x,) < 6. then d(g(x;), g(x,)) < /2 for every g € G,. According to




our hypothesis, there exist x,y€F and A€ ,A € B such that
d(T*(y),x) < & for ever 1 € A. Then d(g(T*(»)), g(x)) < &/2 for every
g € Gy.and A € A. Since each g € G, commutes with each T4 we have that

d(T*(g()), g(x)) = d(g(T*()),g(x)) < /2 for every g € G, and A €
A.

According to our claim, there exists g € G, such that d(g(x),z) < /2.
Then d(T*(g(¥)).z) < d(T*(g(y)),g(x)) +d(g(x),z) < e for every
A€ A. Hence F is B-recurrent, since A€ef3,A € B and g(y) €F.

Inthesequel of the previous proposition we have the following:
Proposition (2.2.16)[2]:

Let (A, <,*) be a directed partial, semigroup, {T*},4a A-topological
dynamical system of a compact metric space (X,d),3 a suitable coideal
basis on (A,<,x) and let B € 3. If a subset F of X is homogeneous with
respect to the system, { T*},c and B-recurrent, then for every £>0 there

exist an element x, € F and A € 3, A € B such that
d(T*(xg)xo) <&, foreveryd€A

Proof: Since F is a homogeneous set with respect to the system { T}, e,
there exists a group G of homeomorphisms each of which commutes with
each T# and such that G leaves F invariant and (F, G) is minimal. Using the
homogeneity as in the previous proposition, we have that for every &> 0
there exists a finite subset G, of G such that, for every x;,x, €

F,mingeq, d(g(xq), x;) < &/2.
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Let £ > 0. There exists § > 0 such that if x;,x, € X and d(x;,x,) <6,
then d(g(x;),g9(x;)) <e&/2 for every g € G,. Let x € F. Since F is
B-recurrent, there exist A € RBwithA € B and y€F such that

d(T*(y),x) < §. forevery 1 € A.

Then, since each g € G, commutes with each T#, we have that

d(T*g()).9(0)) = d(g(T*1)).g(x)) < /2

forevery g € G, and 4 € A.

Let g € G, such that d(g(x), g(y)) < &/2. Then for every 2 € A we have
d(THg») 9)) < d (TH(g()).9@)) + d(g(x). g»)) < &

Setxy, = g(y) €F.

We will prove, in Proposition (2.2.18) below that, in case the coideal
basis R has the (D)-property and the set {T*: 1 € A} is equicontinuous, the
set of all the B-recurrent elements of a homogeneous recurrent subset F of X,

for B € 3, is a dense subset of F.
Definition (2.2.17)[2]:

We say that a set {T;}; ¢ ;0f continuous functions from a compact metric
space (X, d) to itself is equicontinuous, iffor every € > 0 there exists § > 0
such that if x,y € X with d(x,y) <4, then d(T'(x),T'(y)) <& for

everyi € I.

Proposition (2.2.18)[2]:




Let (4,<,*) be a directed partial semigroup,{T*},c.a A-topological
dynamical system of a compact metric space (X, d) which is equicontniuous,
[3 a suitable coideal basis on (4, <,*) with the (D)-property and let B € 3.
Then every recurrent homogeneous subset F of X contains B-recurrent
points. Moreover the set of all the B-recurrent points of F is a dense subset
of F.

Proof: Let V he an open subset of X such that V N F # @. There exists an
open set V'such that V' € V, V' nF # @ and 6> 0 such that if x € X and
d(x,V') < 6,thenx € V.

Since F is homogeneous with respect to the system { T*}, ¢4, there exists
a group G of homeomorphisms commuting with { T*}, ¢,such that G leaves
F invariant and (F, G) is minimal. According to Proposition (2.2.13), there

exists a finite subset G, of G such that F € Ugeq, 9~ (V).

Lete > O such that if x;,x; € Xwith d(xq, x,) < &, then d(g(x,),9(xz) <6
for every g € G,. Since F is a recurrent and homogeneous subset of X,
according to Proposition (2.2.16), there exist an element x, € F and A €
3,A € B such that

d(T*(x), %) < €, for everyd € A
Let g € G, such that g(x,) € V'. Then d(T*(g(x,).9 (x,)) < & for every
A € A. Since g(x,) € V', we have that d(T*(x,) € V) for every 1 € A.
Hence, for each open set V with V.n F + @ there exist A € 3,A € B and
x' = g(xy) € Vn Fsuchthat TA(x') € V forevery 1 € A.




Consequently, since { T*}, ¢4 is equicontinuous, for every open set V

withV n F + @ there exist A € 3,A < B and an open set V; such that
Vi N F+ @V, cVandTA(V,) €V foreveryd € A

Let V, be an open subset of X such that V, n F # @. Inductively we
construct a sequence ( V), ey Of open sets and also a sequence (A,), ey S

3, with B 2 A; 2 A, 2 --- such that for every n € N
VeV, 1, Vu N F=0 and T*(V)) S V,_, foreveryl€A,

We can also suppose that the diameter of 1, tends to 0. Let N, ey, N F =

{x,} Then x, € V, and we will prove that x, is a B-recurrent element of F.

Indeed, since the coideal basis 3 has the (D)-property, there exists C € 3,

such that for every n € N there exists k,, € N U {0} such that
k, = max{k € N:thereexistA,,...,A; € C/A,, withAl; < -+ < A}

This implies that C/A, does not contain an element of 3. So, since C € 3,
there existsA € B,A € C NnA;. ThenA € C,A € 3,A € A; < Band for

everyn € N,n > 1 there exists g,, € N U {0} such that
qn = max{k € N: thereexistA,, ..., € A/A,, withd; < - < A;}.

We will prove that /lliér}1 T+ (x,) = x,. Let £ > 0. Since the diameter of V,

tends to 0, pick ny € N,ny > 1 such that the diameter of 17, to be less

thane. Let 44,...,4 € A\Ay, 4 withd; < -+ <1 . Then there exists

' Mng+1 Ang+1

Ao € A N Ay 4qSuch that ’1qn0+1 < Ay. Forevery 1 € A with 4, < 1 we have




that A € An A, ,1and consequently that TH(x,) € Vo, Since xq €V, , we

have that d(T*(x,), x,) < € for every 1 € A with 1, < 1. Hence, x, is a B-

recurrent element of F and x, € V,, This finishes the proof.

Finally, using the previous proposition, we will prove, under some
additional hypotheses, a multiple recurrence theorem analogous of the
starting Theorem (2.2.6).

Theorem (2.2.19)[2]:

Let (A, <,*) be a directed partial semigroup, I3 a suitable coideal basis on
(A,<,*)  with  the  (D)-property, m € N, {T%},c1 ..., {TA},eqbe
A-topological dynamical systems of a compact metric space (X,d) all
contained in o commatative group G of homeomorphisms of X, and let the
systems {T} e, {(T#) "1} 1e4be equicontinuous for eachi = 1,...,m . Then,

forevery B € 3 there exist A € Bwith A € B and x, € X such that
,l1ig}4 T (xo) = xo foreveryl <i<m.

Proof: We can assume without loss of generality that (X.G) is minimal,
otherwise we can replace X by a G-minimal subset of X. We proceed by
induction on m. For m = 1 the theorem is valid from Theorem (2.2.6).
Assume that the theorem holds for some meN. Let BeR and
{TH e - {TA 13 1eabem + 1A-topological dynamical systems satisfying

the hypotheses of the theorem. We set

SP=TAo{TA, .} foralll <i<m,.
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We note that, since G is a commutative group, s/***2 = s 57 for every
A1, A, € Bwith 4; < 4, and 1 < i < m. Hence, {S{}ien, ... . {SA}1ca are A-
topological dynamical systems of (X,d) satisfying the hypotheses of the
theorem. Applying the induction hypothesis, we have the existence of y, €
X and A € Bwith A € B such that:

/lligqui’l (yo) = yoforeveryl <i<m.
Lete > 0. Foreachi =1,...,m there exists A; € Asuch that
d (Ti’1 <(T,;11+1)_1(y0)) ,yo) =d(5}(y,),70) < /2 foreveryl € Awithl; < A.

Let 4o € A with A4, ..., 4,,, < A,. Then for every 1 € A with 1, < 4 we have
that

d (Ti'1 ((Trlrll+1)_1(y0)) ,yo) < g foreveryi=1,. m+1

According to Theorem (2.1.8), there exist y; € X and A, € 3,4; S A such
that

. -1
Jim (Thea)  O0) =1

Since {Ti’l},le,l,forizl,...,m+1. are equicontinuous systems, there

exists6 >0 such that if x,y € Xwith d(x,y)<d8 then

d (Ti’1 (x),Ti’l(y))) <e/2 forevery AeAdand i=1,.. m+1let A €

A; with A, < 4; such that d((T,ﬁ+1)_1(y0),y1)<5, for every 1€

(2)



A;with 1; < 1. Hence,d (Ti’1 <(T,;11+1)_1(y0)),Ti’1(y1)> < /2, for every 1€

Ajwith 4y < Aandeveryi=1,..,m+ 1. So, for every 1 € A;withi; < 4

andeveryi=1,..,m+ 1 we have

d(TA (1) y0) < d (Tﬂ(yl), T} ((TT%H)_I(yo))) +d (Tﬂ((TT%ﬂ)_l(yo)) Vo) <€
LetC €3, €A, —1; S BThen
max{d(Ti’l(yl),yo):i =1,..,m+1} < eforeveryl € C
Let the compact metric space (X™*1, d), where

d(()’u v Yma1) (g, o axm+1)) =max{d(y; x;),i =1,.., m+1}

and the A-topological dynamical system {T%},c, of X™*1 where T4 =
T{ x ... x T2, which is equicontinuous. Let A™" 1= {(x,...,x):x € X} €
X™*1 be the diagonal subset of X™*1, We can assume that G acts onx™*1
by replacing each g € G with g x ... x g. Then the functions 7* , for 1 €
A, commute with the functions of G, G leaves A™*!invariant and (A™*1, )

is minimal. Hence,A™*1 is a homogeneous set with respect to { T4} 4.

According to Proposition (2.2.18), in order to prove the theorem, it will
suffice to prove that A™*1 is B-recurrent. Hence, according to Proposition
(2.2.15), it is enough for a givene> 0 to find x,y e Xand C € 3,C € B
such that
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{& (’T"1 (v, ..., (x, ... ,x)) = max {d(Ti’l(y),x) :i=1,.,m+ 1}

< gforeveryl € C

But we have already proved that, for a given ¢ > 0 there exist y;,y, € X
and C € 3, C < B such that

max{d(Ti’l(yl),yo) :i=1,..,m+1} < eforeveryl € C.
Hence, A™*1 is a recurrent set. This finishes the proof.
Corollary (2.2.20)[2]:

Let (A, <,*) be a directed partial semigroup, I3 a suitable coideal basis on
(A,<,*) with the (D)-property, m € Nand {T{}ien ... {TA}1ea be
A-topological dynamical systems of a, compact metric space (X,d) all
contained in a commutative group G of homeomorphisms of X and let
{THea {(TH1},e4be equicontinuous for each i =1,...,m. For every
non-empty open subset U of X and B € 3, there exists C € 3 with C € B
such that

ﬂ(TiA)_l(U) +@ foreveryl€C
i=1

Proof: Since G acts minimally on X, according to Proposition (2.2.13), there
exists a finite subset G, of G such that X = gEGOg‘l(U). According to
Theorem (2.2.19), there exist x, € Xand A € B with A € B such that




,11”7}1 TA(x,) =xoforevery 1 <i <m.
€

Let g € G, such that x, € g~1(U). Then, there exists 1, € A such that
TA(x,) € g~ (U)for every 1 € A with 1, < A and for every 1 < i < m, Let

C €ER,C S A—19 S B.Hence, g(x,) € N (TH) (V) for everyd € C

We will indicate a way to apply the recurrence results for topological
dynamical systems or nets proved to systems or nets indexed by sernigroups
with digital representation. So, we will define a relation on a semigroup with
digital representation in order to make it a directed partial semigroup. In
order to define a suitable coideal basis satisfying the (D)-property on a
semigroup with digital representation < D; >;,we will introduce the
(D;);e;-located words. Hence, the recurrent results for topological dynamical
systems or nets proved can be applied to systems or nets indexed by (D;);¢;-

located words or semigroups with digital representation.

The notion of a semigroup with digital representation introduced by

Ferri, Hindman and Strauss as follows:
Definition (2.2.21)[2]:

A semigroup (X,+) has a digital representation< D; >, ;, where | is a
linearly ordered set and D; is a non-empty finite subset of X for every i € I,
if each element of X is uniquely representable as a sum )};cy x;, where H is a
finite subset of I, x; € D; D for every i € H and sums are taken in increasing

order of indices. If X has an identity O,, then we set 0, = X;cp X; .
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In order to make an infinite semigroup (X,+) with a digital
representation < D; >; c; a directed partial semigroup, we will endow the set

[1]=<°of all the finite subsets of | with an appropriate relation.
Definition (2.2.22)[2]:

Let | be an infinite linearly ordered set. A relation <p on the set |I|<®of

all the finite subsets of | is called a proper relation on|I|<%if satisfies:

i) O<gpHH<g® foreveryH € |I|SY.
>0

(i) If H, , H, € |I|SY and H, <y H,, then, for each i € H,, either

[ > maxH, ori < minH, .

(i) (JI]=*,<g, V) is a directed partial semigroup.

Let a semigroup (X, +) with a digital representation < D; >; ¢; where | is

an infinite linearly ordered set, and let <y a proper relation on |I|<*.
We define for sy = Yien, X;i ,S2 = Xien, X; € X Where H; ,H, € |I[=,
s1<gpS,©H; <gp H,

Moreover, for s; = Yien, Xi, Sz = Xien, Xi € X With s; <p s,we define the

concatenation

S1 %8y, = E X; .
i€H, UH,

The following proposition holds:

Proposition (2.2.23)[2]:




Let a semigroup (X, +) with a digital representation < (D;) >;c; Where 1 is

an infinite linearly ordered set, and let <, a proper relation on |I|<%.

Then (X, <p ,x) is a directed partial semigroup.

We will give some examples of semigroups with digital representation.

We denote by Z the set of the integer numbers, by Z~ the set of the negative

integer numbers and by Q the set of the rational numbers.

Examples (2.2.24)[2]:

(i)

(i1)

(i)

(iv)

Let p € N,p > 1. The semigroup (N, +) has a digital representation
< (D,) >pen, Where D, ={ip" %1 <i<p-1} For H, ,H, €
IN|SE, we define H; <g H, if and only if maxH,; < minH, . Then

(N, <p ,x) is a directed partial semigroup.

Let a sequence (k,,)nen OF natural numbers. Accordingly, the semi-
group (Z,+) has a digital representation< (D,,) >,cyWhere, D; =
{1} and for each n € N,n > 2,D,, = {i(—1)"**(k; + 1) ... (k,,_{ +
1):1<i<k,} If <gis the relation on |N|<* defined in the

previous example, then (Z, <g ,x) is a directed partial semigroup.

More general, if a semigroup (X,+) has a digital representation
< (D;) >;¢;, Where | is an infinite linearly ordered set and for every
i €1 there exists i € I with i <j, then, defining H, <iz H,, for
H,,H, € |I|ISy, if and only if max H,;< min H,, we can make

(X, <g ,*) adirected partial semigroup.

The semigroup (Q, +), has a digital representation < (D,,) >,,c7.

(@)



where D, ={i(-1)"(n+1)l:1<i <n+1} for n € NuU{0} and,

_ (. (=) M
for neZ™,D, = {l —

1<i< —n}. For H, H, € |Z|52,
we define H; <z H, ifandonly if H, = A; U A, with A; 4, # 0
and max A; < min H,;, max H;< min A,, Then (Q,<z*) is a

directed partial semigroup.

In order to define a suitable coideal basis satisfying the (D)-property on a
semigroup (X, +) with digital representation < (D;) >;¢; we will introduce

the (D;);¢;-located words.
Definition (2.2.25)[2]:

Let an arbitrary alphabet X , an infinite linearly ordered set (1, <)and, for
each i € I, let D; = {dy;, ..., dy;}, be a non-empty finite subset of T with
cardinality k; € N. We define the set of (constant) (D;);¢;-located words as

follows:
L((Di)iel) ={w = Wi, o ,Wilil eENi <<

€ I and Wij’Dijv 1 S] < l}

Letm € Nand ¥ = (vq,...,v,,), Where vy, ...,v,, € X be the variables. We

define the set of variable (D;);¢;-located words as follows:




L((DY)iers Wy, -, V)
— {W — Wil,...,Wil:l € N,il <. < il €l ,Wij

€D;; U {vi, .., v}V 1 <j <land there exist 1 <ji,..,jm

< lwith Wi, = U1 e Wi = vm}.

Let L = L((Dy)ier) VU L((D;)ier; V).

For w=w;_,..,w;, €L, the set dom(w) ={i; <--<ij} €I is the

domain of w.

We assume that there exists a proper relation <gzon the set |I|<* of all

the finite, subsets of I. Then we define for w,u € L the relation
w<p usdom(w) <gp dom(u)

and also for two words w = w; ... w;,u = Uy .. Uy € L withw <g u we

define the concatenating word
Wx U= 2z .. Zq € L,
Where

1 < < qpy; = dom(w) U dom(u), z; = w;ifi € dom(w)andz; =

u;ifi € dom(u).

So, the following proposition holds




Proposition (2.2.26)[2]:

Let an arbitrary alphabet X , aninfinite linearly orderedset (I,<),m €
N, vy, ..., v, € Zand let D; be a non-empty finite subset of Xforeach i€
I. If <i is a proper relation on the set [I|<®, then
(L((D)ier, 1y v V), <g*x) and also  (L((D;)ie), <g,x) are directed

partial semigroups.

Let w= Wi1 Wil € L((Dl-)ie,;vl, ,Um), Where Di = {dl,il vy dki,i}’
where k; € N. For (py,...,p) € N"U{(O,...,0)} we setw(0,..,0) =w
and for (pq,...,p;y) € N™

w(py, o Pm) = Wy, - wy; € L((Dy)ien),
where, for 1 <j <1 Ui, = Wi, if wi, € D uy; = dpr,ij ifwl-j = v,, for
1<r<m,andp, < kij and finally u;, = dkij,ij, if Wi, = vy, forl<r<
m, and p, > kij. We set
L°((DDiers v1, - vm) ={W = Wn)nen : Wn € L((Dp)ier; V1, - V)
and w, <g Wy, foreveryn € N}

We fix an increasing sequence (FE,), ey Of non-empty finite subsets of N™

such that U, yF, = N™. Let a sequence w = W, )nen € L°((Di)icr; V1, - s Vpn)-

An extracted variable(D;);¢;- located word of w has the form

U= Wi (B1) % % Wy (52) € LADieri V1. e V),




whered € N,n; <--<n; €N,p; € F,, U{(0,..,0)} for every 1<i<A2
and (0,...,0) € {p,,...,p,}. The set of all the extracted variable (D;);¢;-

located words of w is denoted by EV (w).

An extracted (D;);cs-located word of w has the form

zZ = Wnl(ﬁ1) *ok Wn,l(ﬁa) € L((Dy)ier),
whered € N, n; < <n,; € Nandp; € F,, foreveryl <i < A. The set of

all the extracted (D;);¢;-located words of w is denoted by E™(w).

Theorem (2.2.27)[2]:

Let an arbitrary alphabet );,an infinite linearly ordered set (I, <), a proper
relation <gon the set |I|<* ,m € N,v,,...,v,, & Y, D;, a non-empty finite
subset of Y, for each i € I, and let an increasing sequence (E,),, ex Of NoNn-

empty finite subsets of N™ such that U,, cyF, = N™. The families
By ={EW) : W € L°((D)iers v1, - Vi) Yand
R= {EV(W) . W € Lw((Di)iEI; Vi) ,Um)}

are suitable coideol bases on  L((D;)ieri V1, Um), <g,*) and

(L((Dy)ier) <gr,*) respectively, and satisfy the (D)-property.

Proof: Let w € L°((D;)ier; V1, Vi), and let EV(W) = A, UA, and
E(w) = B, U B,. Firstly, we will define an order on the set N™. For p €
N™we set i(p)to be the least n € N such that (p) € E,and then we define
p1 < p, for p;, p, € N™ if and only if either i(p,) < i(p,) ori(p;) =i(p,)
and p, is less than p,in the lexicographical ordering.




Let N ={B; <, f, <. B3 <. ..}.Foreachn €N, let §, € N™ be the

greatest element of E, in the lexicographical ordering. Then k= (Ky)nen S

Nis an increasing sequence. We set Y, ={B,: n € N} = N™ and we

define the function h: L(Z, E) U L(Z,, k: v) > EW) U EV(W)with

h(ty, - tn,) = wn, (01, .. Dm) * .. x wy, (1. ... PR),

where, for 1<i<a(pl...pL)=(,..00 if ¢, =v and

i

(Ph, .. ph) =ty € {ﬁl,...,ﬁkni}iftnie »,. The function h is onto E(W) U

EV (W) and moreover h (L(Zl, E)) = E(W) and h(L(Z,, k: v)) = EV(W).

According to Carlson’s theorem(If f(z) regular and of the form o(e*#!)
where k <, for R[z] =0, and if f(z) =0 for z=0,1,..., then f(2) is
identically zero)[7], there exist a sequence § = (s,)n ey € L%(Z4, k;v) and
ip € {1,2}, jo € {1,2} such that EV(5) € h™"(4;,) and E(5) € h™'(B;,). Set
u, = h(s,) e EV(w) for every neN and U= u,)peyE€
L°((Dy)ic; V1, V). Then EV(d) € h(EV(S)) € 4;, and E() <
h(E(S)) € B;,. Hence, B; and B are coideal bases on on
(L(Diers v1, - V), <g*) and  (L((Dy)ier), <gr,*) respectively,  and
obviously they are suitable. Analogously to Example (2.1.7) (iii), can be

proved that [3; and 13 satisfy the (D)-property.

We will go back to semigroups with digital representation. Let a
semigroup (X,+) has a digital representation < D; >;c;and let <gpbe a
proper relation on the set [I|<*. According to Proposition (2.2.24),(X, <g,*)
Is a directed partial semigroup. Let g: L((D;);e; = X\{0,} in case (X,+)
has an identity O,. or g: L((D;);e; = X otherwise, with




g(wi, o wyy) = wy + -+,

The function g is one-to-one, onto, preserves the order and for w,u €
L((D;);e;) with w <z u we have g(w x u) = g(w) * g(u). So, using the
previous theorem, we can define a suitable coideal basis for (X,<g,x)

satisfying the (D)-property, via the function g.
Theorem (2.2.28)[2]:

Let a sew semigroup (X,+) with a digital representation < D; >;¢;
and let a proper relation <gon the set |I|<®. Fixing an increasing sequence
(E.)neny Of non-empty finite subsets of N™, for m € N, such that
U, ey B, = N™ | the family

B={g(EW):w € (L*((Di)ier; V1, -, Vm)}
Is a suitable coideal basis on (X, <g,*) satisfying the (D)-property.

Hence, the recurrent results for topological dynamical systems or nets
proved can be applied to systems or nets indexed by (D;);¢; -located words

or semigroups with digital representation.




Chapter 3

Irreversible Algebraic Dynamical Systems on C”-Algebras

To each irreversible algebraic dynamical system, we associate a universal
C*-algebra and show that it is a UCT Kirchberg algebra. We discuss the
structure of the core subalgebra, which turns out to be closely related to
generalised Bunce-Deddens algebras. We also construct discrete product
systems of Hilbertbimodules for irreversible algebraic dynamical systems
which allow usto view the associated C*-algebras as Cuntz-Nica-Pimsner
algebras. Besides,we show a decomposition theorem for semigroup crossed
products of unital C*-algebras by semi direct products of discrete, left can

cellativemonoids.

Section (3.1): Irreversible Algebraic Dynamical Systems and
Structure of the Associated C*-Algebras:

We familiarize with the primary object of interest called irreversible

algebraic dynamical system in itsmostgemieral form.

A dynamical system is given by a countably infinite, discrete group G and at
most countably many commuting injective, non-surjective group
endomorphisms (6;);¢; of G that are independent in the sense that the
intersection of their images is as small as possible. Additionally, we will
introduce a minimality condition stating that the intersection of the images
of the group endomorphisms from the semigroup generated by (6;);c;is
trivial. In other words, the group endomorphisms (6;);¢; separate the points

in G. At a later stage, this condition is shown to be intimately connected to




simplicity of the C*-algebra O [G, P, 0] associated to such a dynamical

system.

The following observation is an extension of the concept of independence
introduced. We will require neither the group G to be abelian nor the

cokernels of the injective group endomorphism’s of G to be finite.
Proposition (3.1.1)[3]:

Suppose G is a group. Consider the following statements for two commuting

injective group endomorphism’s 8, and 8, of G:

(i) 6:(6)0,(G)=¢G.

(i) The map 6,(G)/(6.,(G) N 6,(G)) = G/6,(G) induced by the
inclusian 6,(G) < G is a bijection.

(iti) The map 6,(G)/(6,(G) N 6,(G)) — G/6,(G) induced by the

inclusiam, 6,(G) < G is a bijection.

(iv) 61(G) N62(G) = 6,60,(G).

Then (i), (ii), and (iii) are equivalent and imply (iv). If either of the
subgroups 6,(G) or 6,(G) is of finite index in G, then (i) - (iv) are
equivalent.

Proof: Note that we always have 6,(G)0,(G) c G and 6,(G) N 6,(G) >
6.0,(G). Moreover, in condition (ii), the inclusion 8,(G) < G induces an
injective map 6,(G)/(6,(G) n6,(G)) - G/6,(G). The corresponding

statement holds for (iii).




If (i) holds true, then G 3 g = 6,(g,) 9,(g,) for suitable g; € G. Hence, the

left-coset of 8, (g,) maps to the left-coset of g and (ii) follows.

Conversely, suppose (ii) is valid and pick g € G. Then there is g; € G
such that 8,(g,) (6:(G) N 6,(G)) — g0O,(G) via the map from (ii). But
since tins map comes from the inclusion 6,(G) < G, we have g8,(G) =
0.(g1) 0,(G). Thus, there is g, € G suchi that g = 6,(g,) 6,(g,) showing
(). The equivalence of (i) and (iii) is obtained from the previous argument by

swapping 6, and 6,. Given (ii), that is,
f1:60:(G)/(6.(G) N 6,(G)) » G/6,(G)
is a bijection (induced by 6,(G) © G), composing f,~ "with the bijection
fo: 0:.(G)/(60,0,(G)) — G/6,(G)
obtained from injectivity of 6, yields a bijection

fi” f2:61(G)/(6162(6)) ~ 6,(6)/(61(G) N 6,(G)).

Let us assume 6,6,(G) & 0:(G) n 6,(G). This means, that there is g €
0.(G) such that g6,0,(G) # 6,6,(G) but g8,(G) NnB,(G) =6,(G) N
0,(G). Noting that f,”'f, maps a left-coset g'6,6,(G) to g'6,(G) n
0,(G), this contradicts injectivity of f, ' f,. Hence, we must have 8;(G) n
0,(G) 6,0,(G). Similarly, (iv) follows from (iii).

Finally, suppose (iv) holds. By injectivity of 6,, we have

0.(6)/(6:(G) N 6,(G)) = 60:(G)/ 6:6,(G) = G/6,(G).




So if {G: 0,(G)} is finite, then the injective map from (ii) is necessarily

a bijection. If {G : 8,(G)} is finite, we get (iii) in the same manner.
Deflnition (3.1.2)[3]:

Let G be a group and 64, 8, commuting, injective group endomnorphisins
of G. Then 6, and 6, are said to be independent, if they satisfy condition (iv)
from Proposition (3.1.1) 8, and 6, are said to be strongly independent, if

they satisfy the condition (i) from Proposition (3.1.1).

Note that (strong) independence holds if 8, or 6, is an autoinorphism.
Lemma (3.1.3)[3]:

Let G be a group and suppose 8, 8-, 65 are commuting, injective group
endomorphisms of G. 6, is (strongly) independent of 8,6, if and only if 6,
Is (strongly) independent of both 6, and 65.

Proof: If 6, and 6,65 are strongly independent, then

6,(G) 62(G) > 0:(G) 62(65(G)) =G

shows that 8, and 6, are strongly independent. As 6, and 65 commute, 6, is
also strongly independent of 85. Conversely, if 8, is strongly independent of
both 6, and 65 then

G = 0:(6)0,(G) — 91(6)92(91(6)93(6))

= 0,(G6,(G)) 6,(65(G)) < 0,(G)0,05(G) ,




so 6, and 6,65 are strongly independent since the reverse inclusion is trivial.
If 6, and 6,05 are independent, then comninutativity of 6,, 8, and 65 in

comnbination with injectivity of 8;yield

6,(G) N 6,(G) = 657(6:6:(G) N 6,03(G) < 63 (61(G) N 6,63(G)
= 051(016,05(G)) = 616,(G).

Since the reverse inclusion is always true, we conclude that 6, and 6, are
independent. Exchanging the role of 6, and 65 shows independence of 6,

and 65. Finally, if 8, is independent of both 6, and 85, we get
01(G) N 6,05(G) = 6:(G) N 6,(G) N 6,05(G) = 0,0,(G) N 6,03(G)
= 0,(60.(G) N63(G)) =6,6,05(G).

by infectivity of 6,. Thus 8, and 6,65 are independent.

If (P,<)is a lattice-ordered monoid with unit 1, we shall denote the least
common multiple and the greatest common divisor of two elements p,q € P
by p vV q and p A q, respectively. p and q are said to be relatively prime (in
P) if pAq = 1, or, equivalently, p vV q = pq. Simple examples of such
monoids are countably generated free abelian monoids since such monoids

are either isomorphic to N*for some k € N or @y N.
Definition (3.1.4)[3]:
An irreversible algebraic dynamical system (G, P, 0) is:

(i) acountably infinite, discrete group G with unit 1,

(if) a countably generated, free abelian monoid P with unit 1, and




(iii) a P-action 6 on G by injective group endomorphisms for which 6,

and 6, are independent if and only if p and g are relatively prime.
An irreversible algebraic dynamical system (G, P, 8) is said to be

(i) minimal, if fl N,ep 0, (G) = {16},
(i) commutative, if G is commutative,
(iif) of finite type, if [G : 6, (G)] is finite for all p € P and

(iv) ofinfinite type, if [G¢ : 6, (G)] is infinite for all p # 1,,.
Examples (3.1.5)[3]:

There are various examples for commutative irreversible algebraic
dynamical systems and most of them are of finite type. Let us recall that it
suffices to check independence of the endomorphisms on the generators of P

according to Lemma (3.1.3).

(i) Choose a family (p;)ie; € Z°\Z* = Z\{O,*x1}and let p =
|(p:)icr) act on G = Z by 6, (g) = p;g. Since Z is an integral
domain, each 8, is an injective group endomorphisin of G with
[G:0,(G)] = p; . For i #j,0, and 6, are independent if and
only if p; and p; are relatively prime in Z. Thus, we get a
commutative irreversible algebraic dynamical system of finite type
if and only if (p;);e; consists of relatively prime integers. Since the

number of factors in its prime factorization is finite for every

integer, such irreversible algebraic dynamical systems are

automatically minimal.




(i) Let I ¢ N, choose relatively prime integers {q} U (p;);e; € Z*\

Z*and let G = Z[1/g]. As Z[1/g] = “—r>nZ with connecting maps
given by multiplication with g, and q is relatively prime to each p;,
the arguments from (i) carry over almost verbatim. Thus we get
minimal commutative irreversible algebraic dynamical systems of
finite type (G, P, 0).

(if) Let KK be a countable field and let ¢ = K[T] denote the
polynomial ring in a single variable T over K. Choose non-
constant polynomials p; € K[T],i € I . Multiplying by p; defines
an endomorphism 6, of G with [G: 6, (G)] = [K|49®PD), where
deg(p;) denotes the degree of p; € K[T]. Thus, if we let p :=
|(9i)ier), then the index of 8, (G) in G is finite for all p € P if and
only if K is finite. It is clear that 6,,_ and 6, are independent if and
only if (p;) N (p;) = (pip;) holds for the principal ideals
(whenever i#j ). Since every g € K[T] has finite degree,
(G, P,0) is automatically minimal. Thus, provided (p;);e;has been
chosen accordingly, we obtain a minimal commutative irreversible
algebraic dynamical system which is of finite type if and only if K
Is finite.

Example (3.1.6)[3]:
For G = Z% with d > 1, the monoid of injective group endomorphisms
of G is isomorphic to the monoid of invertible integral matrices M;(Z) n

Gl;(Q). For each such endomorphismn, the index of its image in G is given

by the absolute value of the determinant of the corresponding matrix. In




particular, their images always have finite index in G and an endomorphism
of G is not surjective precisely if the absolute value of the determinant of the
matrix exceeds 1. So let (T;)i; € My(Z) n Gl;(Q) be a family of
commuting matrices satisfying |det T;] > 1 for all i €l and set P =
|(T));e)as well as 6;(g) = T;g.For i #j, it is easier to check strong
independence of 6; and 6; instead of independence. Indeed, since we are
dealing with a finite type case, the two conditions are equivalent and strong
independence takes the form T;(Z%) + T;(Z?%) = Z¢, see Proposition (3.1.1).
This condition can readily he checked. Moreover, minimality is related to
generalised eigenvalues and we note that, in the case where P is singly

generated, the generating integer matrix has to be a dilation matrix.

Example (3.1.5)(i) Can be generalised to the case of rings of integers.
Example (3.1.7)[3]:

LetRbetheringof integers in a number field and denote by R = R\{04}
the multiplicative subsemnigroup as well as by R* c R*the group of units
in R Take G =R and choose a (countable) family (P;);; € R* c R".
Ifwe set p = [(p;);e;), then this monoid acts on G by multiplication, i.e.
6,(g) =pg for g€ G,p € P. For i+ j,6, and 6, areindependent if and
only if the principal ideals (p;) and (p;) in R have no common prime ideal.
If this is the case, (G, P, 8) constitutes a commutative irreversible algebraic
dynamical system of finite type. Since the number of factors in the (unique)
prime ideal factorization of (g) in R is finite for every g € G , minimality is

once again automatically satisfied.

(L)



As a matter of fact, the construction from Example (3.1.7) is applicable to
Dedekind domains R. Next, we would like to mention the following
example even though, having singly generated P, it has nothing to do with
independence. The reason is that Joachim Cuntz and Anatoly Vershik, that
the C™-algebra O[G, P, 8] associated to this irreversible algebraic dynamical

system is isomorphic to O,,.
Ecample (3.1.8)[3]:

Forn = 2 ,consider the unilateral shift 6; acting on G =@y Z/
nZ by (go . 91,---) — (0,90 ,91,...). Since 6; is an injective group
endomnorphismn with [G:6,(G) ] = n, (G, P,8)with p = 16,) is a minimal

commutative irreversible algebraic dynamical system of finite type.
Example (3.1.9)[3]:

Generalising Example (3.1.8), suppose P is as required in condition (ii)
of Definition (3.1.4) and let G, he a countable group. Let us assume that G,
has at least two distinct elements. Then Padmits a shift action 8 on G :=
@p Gogiven by (0,((g4)q € P))r = Xp,P(r)g, ' r for all ,r€P. It is
apparent that 6,0, = 6,0, holds for all p,q € Pand that 6, is an
injective group endomnorphismn for all p € P. The index [G:GP(G)] IS
finite for p € P\{1,} if and only if G, is finite and P is singly generated.
Indeed, if p # 1p, then each element of @ ¢p\,» Go Yields a distinct left-
coset in G/6,(G). Clearly, this group is finite if and only if G, is finite and
Pis singly generated. Given relatively prime pand g in P\
{15},6,(G)6,(G) # G since g,,-1¢ forall (g,),cp € 0,(G)0,(C) as 1, &

(52)




pP U gP . Thus, unless P is singly generated, 8 does not satisfy the strong

independence condition. However, the independence condition is satisfied
because g = (gr)rep € 0,(G) N 6,(G) implies that g, # 15 only if r €
p? N q” = pq® and thus g € 6,,,(G).

We have seen in Example (3.1.9) that one cannot expect strong
independence for irreversible algebraic dynamical systems of infinite type in
general. On the other hand, there are some examples where the subgroups in
question have infinite index and the endomorphisms are strongly

independent:
Example (3.1.10)[3]:

Given a family (G®,P,0®),.y of irreversible algebraic dynamical
systems, we can consider G :=@;cy 6. If Pacts on G component-wise, i.e.
0,(90)ien = (657(9))ien, then (G,F,6) is an irreversible algebraic
dynamical system and [G: 8, (G)]is infinite unless p = 1,,. G is commutative
if and only if each GWis, and (G,F,6)is minimal if and only if each
(GO, P,0M) is minimal. If each (G®W,P,8®) satisfies the strong

independence condition, then 8 inherits this property as well.

As a final example, we provide more general forms. These examples are

neither commutative irreversible algebraic dynamical systems nor of finite

type.




Example (3.1.11)[3]:

For 2<n<oo, let [F,, be the free group in n generators
(ax)1<k<n fix 1<d<n and choose for each 1 <i <d an n-tuple

(Mik)1<k<n C N™ such that

(i) there exists k such that m;; > 1 foreach1l <i <d , and

(ii) m; and m; . are relatively prime forall i # j,1 < k < n.

Then 0;(ay) = a,Ti'kdefinesagroupendomorphismofIFn, foreachl<i<d.
Noting that the length of an element of F,, in terms of the generators
(ax)1 <k <n, and their inverses is non-decreasing under 8;, we deduce that 9;
is injective. It is clear that 6;6; = 6;6;holds for all i and j. Forevery 1 <i <
d, the index [F,:0;(F,)] is infinite. Indeed, take 1 < k <n such that
m;, > 1 according to 1) and pick 1 < £ < n with £ # k. Then the family
((aia,)’) j=1 yields pairwise distinct left-cosets in IF,,/6;(IF,)since reduced
words of the form aga,b . .. with b # a;'are not contained in 6;(F,). A
similar argument shows that 6;and 6; are not strongly independent for (i #
jiby 1), there are 1 < k,£ < n such that m;, > 1 and m;j, >1 . This
forces aya, ¢ 6;(FF,)0;(IF,). Nonetheless, 6;and 6; are independent due to
2). Thus, G =T, and P = [(6;)1<;<q), acting on G in the obvious way
constitutes an irreversible algebraic dynamical system which is neither
commutative nor of finite type. Minimality of such irreversible algebraic

dynamical systems can easily be characterized by:

(iif)For each 1 < k < n, there exists 1 < i < d satisfyingm;, > 1 .




In addition to the presented spectrum of examples, we would like to mention
that there are also examples of minimal, commutative irreversible algebraic

dynamical systems of finite type arising from cellular automata.

We have lemmas which are relevant for the C™-algebraic
considerations. The first lemma reflects a crucial feature of the independence

assumption
Lemma (3.1.12)[3]:
If (G, P,0) is an irreversible algebraic dynamical system,

{90,()8pq(G)  if g™'h € 6,(6)0,(G)

99,(6) N 104(6) = | " o

holds for all g,h € G,p,q € P. where h’ is uniquely determined by
g0,(R’) € h8,(G) up to mnultiplicatiorl from the right by elements from

Qp‘l(qu)(G)'

Proof: If there exist g;, g, € G such that g6,(g,) = h6,(g,), then 6~ *h =
ep(gl)eq(ggl) € 0,(G)6,(G) .follows because G is group. Now suppose
that gs;, g4 € G satisfy g6,(gs) = h6,(gs) as well. Since this implies
0,(91%9:) = 0,(g7'g9s) we deduce  6,(g7'gs) € 6,y4(G).Using
injectivity of 6,, this is eqiuvalent to g7 g3 € 6,-1(5y)(G). Therefore, B’ =

g1 is unique lip to right multiplication by elements from 6,,-1(,4)(G).

For the proof of Theorem (3.1.46), we will need the following auxiliary

result, which relies on irreversibility of the dynamical system:

(%)




Lemma (3.1.13)[3]:

Suppose (G, P, 0) is an irreversible algebraic dynamical system and we

have n€N,g; € G,p; € P\{1p} for 0 <i <n.Then. there exist g€
900,0(G), p € pyP satisfying

99,6 < 6\ | (gi f ep;n(a)>

1<isn meN

Proof: We proceed by induction starting with n = 1. As p; # ewe can find
m € N such that p, € p™p. Thus we have p,Vp" Z p,. By Lemma
(3.1.12),

(900p,(G)) N (910, (G))

— {goepo(gl)epovz)’l"(a) if go_lgl € on(G)Qpin(G)},
1) else,

whereg; is uniquely determined up to 6, y(@). While g:= g, works

o - (Povrl
in the second case, we need g € (go8,,(G)\gobp,(d1)0p,vpm(G) in the first
case. Note that such a g exists as py V p]* £ p, by the choice of m and we

setp:=po Vpi*.

The induction step from n to n = 1 is just a verbatim repetition of tile
first step: Assume that the statement holds for fixed n. This means that there

exist h € go6,,(G) and q € pyP such that

h6,(G) < G\ U <gi U 0,m (G))

1<isn meN




As p, .1 # e, we can find m € N such that g & p];P. In other words, we

have q V p'.; & q . Recall that

(h64(G) N (gn+16py,, (G)

— {heq(gn"‘l)quP#H(G) ifh§:+1 ¢ Qq(G)QP#ﬂ(G)}’
1) else,

where g1 is uniquely determined up to 6,-1¢4vpm )(G). In the second
case, take g:=h. For the first case, we choose g € (h6,(G))\
h84(gn+1)0qvpm , (G). Note that such a g exists as q vV pyy, = q by the

choice of m. Finally, let p:=gqVvpJ.,. Then, it is clear from the

construction that we indeed have

96,(@) < 6\ | (giﬂep;n(a)>

1<isn+1 meN

We focus to commutative irreversible algebraic dynamical systems
(G, P,0): Injective group endomnorphisins 6,, of a discrete ahelian group G
correspond to surjective group endornorphisms ép of its Pontryagin dual G,
which is a compact abelian group. Moreover, the cardinality of ker ép IS
equal to the index [G: 6, (G)]. Via duality, we arrive at a definition of

(strong) independence for commuting surjective group endornorphisms

n,and n,of an arbitrary group K.

We then recast the conditions for an irreversible algebraic dynamical

system(G, P, O)with commutative G in terms of its dual model (G, P, ). This

provides a new perspective on irreversible algebraic dynamical systems: If G

(&)




Is comnmnutative and (G, P,0) is of finite type, it can be regarded as an
irreversible topological dynamical system. It arises from surjective local

homeomorphisms 8, of the compact Hausdorff space G.

Recall that a character y on a locally compact abelian group G is a
continuous group homomorphism y:G — T.The set of characters on G forms

a locally compact abelian groupGwhen equipped with the topology of

uniform convergence on compact subsets of G. Pontryagin duality states that

G = G. For this result, we interpret g € G as a character on G via g(y) =

x(g). If G is discrete, then G is compact and vice versa.
Definition (3.1.14)[3]:

Let G he a locally compact abelian group. For a subset H c G, the

annihilator of H is given by H* := {x € G|x|y; =1}
Lemma (3.1.15)[3]:

Let G be a locally compact abelian group and n = G - G a group
endomorphism. Then 7(x)(g) := x o n(g) defines a group endomorphisrn

fi: G — G which is continuous if and only if nis and we have:

i) 7=n.
(ii) n(G)* = ker.
(iii) A(G) < G is dense if and only if n is injective.

(iv) ker 7 = coker n if  (G) is closed.




In particular, if G is discrete, then ii) states that 7: G — Gis surjective if and
only if n = G- G is injective. Moreover, n(G)is always closed. If, in

addition, coker 1 is finite, then ker 7 = ker# = coker n follows from iv).
Lemma (3.1.16)[3]:
If G is a locally compact abelian group and H,, H, € G are subgroups, then:

() (Hy-Hy)*= HiNH;y.

(i) (H, n Hy)* = H{ - HF holds if H; and H, are closed.
Proposition (3.1.17)[3]:

Let G be a discrete abelian group and 6,6, he commuting, injective

endomorphisms of G. Then the following statements hold:

(i) 6, and 6,are strongly independent if and only if ker 8;and ker

6,intersect trivially.

(i) 6, and 6, are independent if and only if ker 8, ker 8,= ker 8,6,.

Proof. For strong independence, we compute

0:(6)8,)* G118 Dg, () 16, (6)* G119 (D kerg, 1 kerd,

Therefore, 6,(G)6,(G) =G is equivalent to kerd; n kerd, = {1;}.

Similarly, we get

6:(6) n 6,G))* GOy, )+ g,6)+ 3119 erg, - kerd,




On the other hand, Lemma (3.1.15)(ii) gives ker8,6, = 6,6,(G) *.

This motivates the following:
Definition (3.1.18)[3]:

Two commuting, surjective group endomorphisms n;and n,of a group
K are said to be strongly independent, if ker n; and ker n,intersect trivially.

n,and n,are called independent, if ker n; - ker n, = ker nyn,.
It is clear that we have an equivalence between the statements:

(i) n, and n,are strongly independent.
(if) n4is an injective group endornorphism of ker 7,.

(iii) n,is an injective group endornorphismn of ker n;.

If both kern,; and ker n, are finite, then strong independence and
independerice coincide. Therefore, this definition is consistent with, where
the case of endomorphisms (of a compact abelian group K) with finite
kernels is treated. Note that there is no conflict with (strong) independence
for injective group endomorphisms, see Definition (3.1.2), as all these

conditions are trivially satisfied by group automorphemes.

With the observations from Lemma (3.1.15) and Lemma (3.1.16) at
hands, we can now translate the setup from Definition (3.1.4) for

commutative irreversible algebraic dynamical systems:




Proposition (3.1.19)[3]:

For a discrete abeliani group G, a triple (G, P,8) is a commutative :

irreversible algebraic dynamical system if and only if :

(i) G is a compact abelian group,
(if) P is a countably generated, free, abelian monoid (with unit 1,),and

(iii) @ is an action of P on G by surjective group endomorphisms with the
property that ,, and 8, are independent if and only if p and q are

relatively prime in P.

(G,P,0) is minimal if and only if U,ep kerép c G is dense. It is of finite

(infinite) type if and only if kerép, is (infinite) finite forall p € P,p # 1.

Proof: Conditions (i) and (ii) of this characterization follow directly from

Lemma (3.1.15). Moreover, for any p € P, the equation (ker@p)l =
im@)yields an isomorphism between coker 6,, and the Pontryagin dual of
kerép. Combining Lemma (3.1.15) (iii) and Proposition (3.1.17) yields (iii).
Note that we have 6,(G) c 6,(G) and, correspondingly, kerép c keréq
whenever g € pP. Since P is directed, Lemma (3.1.16)(i) and Lemma
(3.1.15)(ii) yield the equivalence between minimality of (G,P,0) and
Upep kerép, being dense in G. For the last claim, we recall that a locally
compact abelian group is finite if and only if its dual group is finite. Thus

kerép is finite if and only if coker 6, is finite.

We will now revisit some of the examples from this section to present their

dual models.




Examples (3.1.20)[3]:
The following list corresponds to the one in Example (3.1.5).

(i) For G = Z, a family of relatively prime numbers (p;);e; € Z*\Z*
generates a monoid P = |(p;);e;) © Z* which acts by 6,.(g) = p;g.

In tins case, G = T and ép(t) =tPforallt e Tand p € P.

(i) For ITcN,0€l,letq,(p)ic © Z*\Z*, be relatively prime
numbers and set P = |(p;)ie;) as Well as G = Z[1/q] = lim Z with

connecting maps given by multiplication with g. Then this constitutes

a minimal commutative irreversible algebraic dynamical system of
finite type, see Example (3.1.5)(ii). Then G is the solenoid Lq =

limZ /q*Z , on which ép Is given by multiplication with p.

(iii) For a finite field K, let p; € K[T],i € I (for an index set I) be
polynomials in G = K[T] with the property that (p;) N (p;) =
(pip;) holds for all i # j. Then the action 6 of P = |(p;);e/)given

by multiplication with the polynomial itself yields a commnutative

irreversible algebraic dynamical system of finite type, see Example
(3.1.5) (iii). Then G is the ring of formal power series K[[T]] over K,
and 8, is given by multiplication with p in K[[T]].

Example (3.1.21)[3]:

Recall that, in Example (3.1.6), we considered G = Z¢ for some d > 1,
a family of pairwise commuting matrices (T;);e; € My(Z) N GL,;(Q)
satisfying det|det T;| > 1 for all i € Iand set P = |(T;);¢;) With 87,(g) =




T;g In this case, we have G = T¢ and the endomorphism ép Is given by the
matrix corresponding to 6,, interpreted as an endomnorphismn of R*/Z¢ =

T4,
Example (3.1.22)[3]:

The dual model for the unilateral shift on ¢ =@y Z/nZ forn > 2
from Example (3.1.8) is given by the shift (x,)ren — (Xks+1)keny 0N G =
(Z/nZ)N. The discussion for Example (3.1.9) with the restriction that G, be

ahelian is analogous, where N is replaced by P and Z/nZ by G,.
Example (3.1.23)[3]:

In the situation of Example (3.1.10), where we will now require
that(G,, P,0®);ey be a family of commutative irreversible algebraic
dynamical systems, G =@®;ey G;turns into G = [[;ey G;. For each p € P,
the group endornorphism ép Is given by applying Géi)to the i-th component
of G. Ker 8, is infinite for all p € P\{1,}. If each 6 satisfies the strong

independence condition from Definition (3.1.2), fsatisfies the strong

independence condition from Definition (3.1.18) due to Proposition (3.1.17).

We associate a universal C*-algehra O[G, P, 0]to every irreversible
algebraic dynamical system (G, P, 8).The general approach is inspired by
the methods for the case of a single group endomorphism with finite
cokernel of a discrete ahelian group. Note however, that we are going to use

a different spanning family than the one used.




We will examine structural properties of O[G, P, 6] as well as of two
nested subalgebras: the core F and the diagonal D. In Lemma (3.1.31), a
description of the spectrum G4 of the diagonal D is provided, which allows
us to regard Gy as a completion of G with respect to 8 in the case where
(G, P,0) is minimal.

Based on the description of Gy, the action T of G on Ggcoming from
Tg(eh’p) = egnp IS shown to he always minimal. Moreover, we prove that
topological freeness of 7 corresponds to minirnality of (G,P,0), see
Proposition (3.1.34). As an immediate consequence we deduce that D %, G
is simple if and only if (G, P, 0) is minimal and £ is amenable, see Corollary

(3.1.35). This crossed product is actually isomorphic to F, see Corollary
(3.1.39).

The strategy of proof differs because we start by establishing an
iIsomorphism between O[G,P,08]and D x (G %4 P), by Theorem (3.2.15),
we deduce that O[G, P, 8] is isomorphic to the semigroup crossed product

F x P. So we get
O[G,P,0] =D x (G *xgP)=FxP

One advantage of this strategy is that we are able to establish these
isomorphisms in greater generality, i.e. without minimality of (G, P, 8)and

amenability of £ which would give simplicity of both F and O[G, P, 8].

Similarly, we conclude that, whenever (G, P, 8) is minimal and the C-
action £ on Gy is amenable, the C’-algebra O[G,P,6]is a unital UCT
Kirchherg algebra, see Theorem (3.1.46) and Corollary (3.1.48). Thus




O[G, P, 8]is classified by its K-theory in this case due to the important

classification results of Christopher Phillips and Eberhard Kirschberg.

(G,P,0) will represent an irreversible algebraic dynamical system

unless specified otherwise. Let ({;)4eq denote the canonical orthonormal

basis of £2(G). For g € G and p € P, define operators Ugand S, on £2(G)by
Ug(8g): = Eggr and $p(8g7) = So,gnf0r 9" €G. Then (Ug) . is a
unitary representation of the group G and S;(&,/) = Xgp(G)(g,)fgz;l(g,) for

g' € G, s0 (Sp)pep is a representation of the semigroup Pby isometries.

Furthermore, these operators satisfy

(CNP 1) SpUg(fg') = fep(gg’) = Uep(g)sp(fg’)’

and

CNPR = > Eyy(6) =&y if[6:6,(6)] <
[91€G78, (6)

where Eg, = UyS,S,Ug. In fact, (CNP 3) holds also in the case of an

infinite index [G: 6,,(G)], as (Xg1er Egp) converges to the identity

FCG/6,(G)
on£2(G)asF 7 G/0,(G) with respect to the strong operator topology. But
this convergence does not hold in norm because each Ej,, is a non-zero

projection. In motivation to construct a universal C*-algebra based on this

model, it is therefore reasonable to restrict this relation to the case where

[G: 6,(G)] is finite.




As the numbering indicates, we are interested in an additional relation
(CNP 2) which will increase the accessibility of the universal model: If G
was trivial, this would simply be the condition that S, and S,doubly
commute for all relatively prime p and q in P, ie. S§;5,=S5,S,. This
condition has been employed successfully for quasi-lattice ordered groups,
for more information. But as G is an infinite group, this will not be

sufficient.

We want to ensure that, within the universal model to be built, an
expression corresponding to S,U,S, belongs to C*(G). This property has
been used extensively of semigroup crossed products involving transfer

operators.

We aim for a better understanding of the structure of the commutative
subalgebra C*({ E;,lg € G,p € P}) inside £(#2(G)). In a much more
general framework, this has been considered by X in Li, and resulted in a
new definition of semigroup C’-algebras for discrete left calculative
semigroups with identity. One particular strength is the close connection

between amenability of semigroups and nuclearity of their C*-algebras.

All of these three instances suggest that a closer examination of the
terms S;U,S, is in order. For g = 6,(g1)0,(g2)with g;, g, € G we get
SpUgSq = Ugls(p,\q)_lqs(*p,\q)_lpng.Onthe other hand, g & 6,(G)84(G)
is equivalent to g6,(G) N 6,(G) = ¢, which forces S;U,S, = 0. Thus we
get

(CNP 2) S;U,S, = {Ugﬁ(pAq)-qu(*pAq)_lpng if g = 6,(g1)8,(g2)
0

else




for all g € G,p,q € P. These observations motivate the following

definition.
Definition (3.1.24)[3]:

O[G,P,8] is the universal C’-algebra generated by a unitary
representation (ugy),eq Of the group G and a representation (s,),ep0f the

semigroup P by isometries subject to the relations:
(CNP 1)Spug - ugp(g)Sp

(CNP 2) SplySq

_ {ugls(pAq)—qu&kpAq)_lpugz if g = 0,(91)04(g2),
0, else
(CNP3) 1= Z egp if [G:6,(G)] < oo,
[91€676,(G)

Where e, = ugs,spuy.
We have the following immediate consequence.
Proposition (3.1.25)[3]:

O[G, P, 8] has acanonical non-trivial representation on £2(G) given by

ug - Uy, s, & S, Inparticular, O[G, P, 8] is non -zero.
Lemma (3.1.26)[3]:

The linear span of (uys,Squp) g neepqep 1S dense in O[G, P, 6].




Lemma (3.1.27)[3]:

The projections(ey ) gecpep COMmMute. More precisely, for g, h € G,
and p,q € P we have

€ eng = {eng(h )ypva if g7h € 6,(6)0,(6),
e 0 else,

where h' € G is determined uniquely up to multiplication from the right by
elements of Gp-l(pvq) (G) by the condition that g&,(h’) € h8,(G).

Proof: Forg, h € Gandp,q € P, the product ey ,epq is non-zero only if
g th € 6,(G)6,(G) by (CNP 2). Solet us assume that g~+h € 6,(G)0,(G)
holds. Then there are g’,h’ € G such that g~ th = 0,(h")8,(g9"). AsGis a
group, this is equivalent toh8,(g")~" = g8, (h"). Thus weget

€gp€hq — ug@p(h’)szos(pvcz)‘lqS*(pvcz)‘lpséuh@q(g’)-1 — €g6,(h")pvq
Clearly, this also proves that the two projections commute. The uniquemless

assertion follows from (CNP 2).

Definition (3.1.28)[3]:

The C”-subalgehra D of O[G, P, 8] generated by the commuting projections
(egp)gecpep is called the diagonal. In addition, let D, :== C*({e, 4|[g] €

G/6,(G)p € qP}) denote the C*-subalgebra of D corresponding to p € P

We have the following.




Lemma (3.1.29)[3]:

For allp,q € P,p € qP implies D, cD,. D is the closure of
Upep Dy, if [G : 8, (G)] is finite, then

D, = span{e,,|lg] € G/6,(G)} = CL60p(G)]

Let us make the following non-trivial observation:

Lemma (3.1.30)[3]:

Suppose g € G,p € P and a finite subset Fof GxP are chosen in such a

way that ey, [I(n.q)er)(1 — enq) is Non-zero. Then there exist g° € Gand

p' € Psatisfying ey y < ey [(ng)er)(1 — €ng)

Proof: If Fis empty, then [[(xq)er)(1 — enq) = 1 by convention, so there is
nothing to show. Now let F be non-empty. For (h, q) € F) let us decompose
q uniquely as g = qU™q"where [G : 6, ¢m(G)] is finite and we
require that, for eachr € P with g € rP, finiteness of [G : 6,.(G)] implies
qU™ € rP. In other words, [G : 6,(G)] is infinite for every r = 1,with

g € rP Using (CNP 3) for gV and Lemma (3.1.27), we compute
1- eh,q = (1 — eh’q(fin)eh’q(inf)) z ek’p(fin)
[k]EG/Gq(fin)(G)
= ep q(fin) (1 — eh’q(inf)) + z ep i)

[kleG/ 0 (rin) (@)
[k]#[n]

Therefore, we can rewrite tine initial product as




€g.q 1_[ (1-engq) = z g5 1_[ (1 —eng).

(h,q)EF (g p)EF (h.Q)EF 1)

where

(i) F is a finite subset of G x P,

(i) eg5 < 24, forall (§,p) € F,,

(iii) the projections (eg ) (4.5)eF are mutually orthogonal,

(iv) for each (§,5) € F,F(4 5 is a finite subset of G < P, and
(V) each (h, q) € F(4 5) satisfies g = qD and p ¢ qP.

Since the producte, , [T(n.q)er(1 — en, 4, )0N the left hand side is non-zero,
there is(g,,p,) € F suchthate, ,, H(h,q)ep(goypo)(l — epq)iS  NON-zero.
Without loss of generality, we may assume that e;_, e 4iS non-zero for all
(h,q) € Fy, p,y- Consider Fp ={p, V ql(h,q) € F,,_ 5, for someh € G}.
Pick p; € Fpwhich is minimal in the sense that for any other r € Fp,p; € rP
implies » =p; Let (hy,q1), ... .(hn.qy) € F(y,p,) denotethe elements
satisfying po V q; = p;. According to Lemma (3.1.27), we have

— - ! .
€0 10Chiq; = ©€g,0p,(gl)p, FOF @ sUitable g; € G(fori= 1,..,n).

Note that py'p; # 1, and g, = ¢, € pg'p,P, so [G : 0,p-1,,(G)] is

infinite. Hence there exists g; € go6,, With

€g,01 S €gop, N €, pEhyq, =0 fori=1...n




Setting

Flg,p) = {(h’ q) € Fg,po)lenqgp, # O}EF(go,po)’

we observe that

€y . p, = | ] (1 — eh,q) =0
(h'Q)EF(ng)

follows from the initial statement for (g, p,)and F,_, since we have
chosen p; in a minimal way. Indeed, if the product was trivial, then there

would be (h,q) € Fg,pyWith en g = €4, . By Lemma (3.1.27), this would

force p; € gP and therefore p; € (p, vV Q)P < (py, V q)P, which cannot

be true since p; was chosen in a minimal way.

Thus, we can iterate the process used to obtain (g,,p;) and Fg, 5,y for
(go:po)and F, ,.y. After finitely many steps, we arrive at an element
(gn:pn) = (g’ p"with the property that ey, ,, < ey, p,) IS Orthogonal to

en,q forall (h, q) € F(g, p,,- This establishes the claimn.

The possibility of passing to smaller subprojections that avoid finitely
many defect projections provided through Lemma (3.1.30) will be crucial
for the proof of pure infiniteness and simplicity of O[G, P, 6], see Theorem
(3.1.46) and in particular Lemma (3.1.45). A first application of this

observation lies in the determination of the spectrum of D.

(L)



Lemma (3.1.31)[3]:

The spectrum of D, denoted by Gy, is a totally disconnected, compact
Hausdorff space. A basis for the topology on Gg is given by the cylinder’

sets

Wheren e N, g, hq,...,h,, € Gand p,qy,...,q, € P. Moreover,

defines a map ¢: G » Ggwith dense image. s injective if and only if
(G, P,0) is minimal.

Proof.Gy is a totally disconnected, compact Hausdorif space since Dis a
unital C™-algebra generated by commuting projections. The statement
concerning the basis for the topology on Ggfollows from Lemma (3.1.29).
To see that thas dense image, let y € Gg. As the cylinder sets form a basis
for the topology of Gg4, every open neighbourhood of y containsacylinder set
Z(90).(h1.a1) vuCnany WIh X € Z(g ) (ny.q1) (). THIS means  that
egp [1i=1(1 — ep, q,) is non-zero. Hence we can apply Lemma (3.1.30) to
obtain (g',p') € Gx P satisfying ey, < ey, [Ti=1(1 — ep,q,)- In other
words, 1(9") € Z(g.p).(hy.a1) ...(hyar,) SO U(G)is a dense subset of Go. Now
given g,h€ G, we observe that ((g) =u(h) is equivalent to
9~ hNpep B, (G) because the cylinder sets form a basis of the topology on

the Hausdorif space Gg. Therefore tis injective precisely if (G,P,0)is

(72)

minimal.




Definition (3.1.32)[3]:

Let X be a topological space and G a group. A G-action on X is said
to be topologically free, if the set X9 = {x € X| g.x = x} has empty
interior for g € G \ {1;}.

Definition (3.1.33)[3]:

Let X be a topological space and G a group. A G-action on X is said to
be minimal, if the orbit O(x) = {g.x | g € G} is dense in X for every x €
X.

Equivalently, an action is minimal if the only invariant open (closed)
subsets of X are ¢ and X.

Proposition (3.1.34)[3]:

If (G,P,0) is an irreversible algebraic dynamical system, then the
action G-action ton Ggisminimal. Itistopologicallyfree if and only if
(G, P,0) is minimal.

Proof: On «(G) , which is dense in Gg by Lemma (3.1.31), Tis simply given
by translation from the left. Hence £ is minimal. For the second part, we note
that 7, = idp holds for every g € N, cpB,(G). Thus, if (G, P,0) is not
minimal, there is g # 1, such that Gég = Ggp, SO T Is not topologically free.
If (G,P,0) is minimal, then £ acts freely on «(G) because ¢ is injective and
G is left-calculative. Since «(G) is dense in Gy, we conclude that 7 is

topologically free.

(72)



Corollary (3.1.35)[3]:

The crossed product D %, G is simple if and only if (G,P,0) is

minimal and 7 is amenable.
Definition (3.1.36)[3]:
The core is the C"-subalgebra of O[G, P, 6] generated by D and (i) 4e6-

Lemma (3.1.37)[3]:

The linear span of (ugspSqup)gnrecpep IS dense in  F.

Proposition (3.1.38)[3]:

Let (V(g.p))(g.p)e6x,pdENCLE the family of isornetries in D x (G xg P)
implementing the action of the semnigroup G xg P on D given by
(9.P) e,y = €g0,(n)pg:  thAL IS \V(gp)enqV(gp) = €go,(n)pq: - THEN the

map

016, P,6]15Dx (G %9 PYugs, =  Vigy)
IS an isomorphism.

Proof: Recall from Definition (3.1.24) that O[G, P, 6] is the universal C*-
algehra generated by a unitary representation (u,)4¢0f the group G and a
semi- group of isometries (s,),ecp Subject to the relations (CNP1)-(CNP3).
Hence, in order to show that ¢ defines a surjective *-homomorphism, it
suffices to show that for every g € G, the isometry v, 4,)is a unitary, and

that the families (v(4.1,)) gec: (V(14p))pep Satisfy (CNP 1)-(CNP 3):




V(g1 V(g 1) = V(g 1p)g 1 1p) = V(161p) = 1
(CNP 1)v(14,0)V(9,15) = V(16)(9.1p) = V(6,(0)0) = V(6,(9)1p)V15.p)
(CNP 2)v(1_ ) V(g15)V(16.0) = X6,(6)84(6) DV (g, prna) D V(g5 (parg)1p)
where g = 6,(91)604(92)
= Ve Ve P@aVgns  X6,@0,@ 9V (0, (00)0va)V (g6, (g5 )pra)
& €1,pCg.q= Xep(G)Hq(G)(g)e(QGq(gz‘l),pVQ)

as g = 6,(91)0,(g1) gives 0,(g1) = geq(gz'l) This last equation holds
by Lemma (3.1.27), so (CNP 2) is satisfied as well. (CNP 3) is a relation that
Is encoded inside D, so it is satisfied as the range projection of the isometry

V(gp) COinCides with e, . Injectivity of ¢ follows from the fact that the
isometrics ugs,satisfy the covariance relation for the action of G, P on D
since ugspen q(Ugsp)™ = €go, (h)pq = (g.p).enq- Indeed, in this case there
is a surjective *-homomorphism from D x (G x4 P) to O [G, P, 6]sending
V(g.p)t0 Uys, and the two *- homomorphism are mutually

inverse, so ¢ is an isornorphisrn.

This description of O[G,P,0] allows us to deduce several relevaimt

properties of O[G, P, 0]and its core subalgebra F.
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Corollary (3.1.39)[3]:

The isomorphism ¢ from Proposition (3.1.38) restricts to an
isomorphism between F and D x G. In particular, we have a canonical
isomorphism O [G,P,0] = F x P.

Proposition (3.1.40)[3]:

If the G-action 7 on G, is amenable, then both F and OI[G, P, 8] are nuclear
and satisfy the universal coefficient theorem (UCT,) (Let B be a right R-
module. Take a projective resolution of B

dn dn €
.—> P->P,_4—>Py>B —0 (D)

Then tensor with D to obtain
d,®1 d,;®1 €®1
.— BbB®D —P,_ 1D — ---—P,®D —B®D — 0 (2)
Since
im(d,+1®1) < ker(d,®1),(d,®1) o (d,4+1®1) = (d,®1)(im(d,+1®1)) = 0)[8].

Proof : As F =D x_.G by Corollary (3.1.39) and 7 is amenable, F is
nuclear by results of Claire Aniatharaman-Delaroche. Similarly, amenability
of T passes to the corresponding transformation groupoid G. Thus, we can
rely on results of Jean-Louis Tu, to deduce that F = D >, G = C*(G)
satisfies the UCT. The class of separable nuclear C*-algebras that satisfy the
UCT is closed under crossed products by N and inductive limits. Recall that
either P = N* for some k € N or P =@y N according to condition (ii) of
Definition (3.1.4). Hence the claims concerning O[G,P,0] follow from
O[G,P,0] = F x P, see Corollary (3.1.39).




Corollary (3.1.41)[3]:

The map E,(ugs,squr):= 8;ney,, defines a conditional expectation

E,:F — D which is faithful if and only if 7 is amenable.

Proof: Due to Corollary (3.1.39), F is canonically isomorphic to D x, G .
Since G is discrete, the reduced crossed product D ., G has a faithful
conditional expectation given by evaluation at 1, The map E, is nothing but

the composition of

evy
F=zDX;G»DXX,,.G—D
The canonical surjection D <, G - D X, G is an isomorphism if and only

if T is amenable.

Corollary (3.1.42)[3]:

The map E(ugs,squs,):= 8,,0,ney5, defines a conditional

expectation E: O [G, P, 0] —» D which is faithful if and only if T is amenable.

Proof: Clearly, E =E, oE;,, so the result follows from
Corollary (3.1.41) .

Note that if G happens to be amenable, the faithful conditional expectationE
can he obtained directly by showing that the left Ore semigroup G x4 P has
an amenable enveloping group. Before we can turn to simplicity of

O[G, P, 6], we need the following general observations:

)



Definition (3.1.43)[3]:

Given a family of commuting projections (E;);¢; in a unital C*-algebra
B and finite subsets A c F of I, let

ok, | |E | [a-£.

i€EA IEF\A

Products indexed by @ are treated as 1 by convention.

Lemma (3.1.44)[3]:

Suppose (E;);e; is a family of commuting projections in a unital
C*-algebra 1 B,A c F are finite subsets of I. Then each Qf 4is a projection,

Yaer QF =1 and, forall , 4; € C,i € F, we have

z NE; = z <z /11') QF 4 and z AEf|| = max z A
i€eF ACF \i€A ieF QIL«E,Aio i €A

Proof: Since the projections E; commute, QE,Ais a projection. The second
assertion is obtained via 1= [[;er(E;+1—E;) =Y,crQf4 The two

equations from the claim follow immediately from this.
Lemma (3.1.45)[3]:

For d=3" ey p €D with A; €Cand (g;,p;) € G x P, there

exist (g,p) € G x P satisfying de; ,, = ||d||eg’p.




Proof: d is contained in C*({Qf 414 € F ={(g;,p;)| 1 < i < n}}), which
Is commutative by Lemma (3.1.27). Then Lemma (3.1.44) says that there
exists A c F such that Qf 4is non-zero and dQf 4, = ”d”Qﬁ,A' In particular,
[l(g.p)ca €gp is NON-zero, so Lemma (3.1.27) implies that there exist g, €
G and py € P suchthat [[gpyeaeqp = €g,p,- THUs, We can apply Lemma
(3.1.30) to ey, p, [Tngera(l —eng) =Qf4# 0 and the proof is

complete.

Note that the hard part of the proof for Lemma (3.1.45)is hidden in Lemma
(3.1.30).

Theorem (3.1.46)[3]:

If (G,F,0) is minimal and the action 7 is amenable, then O[G,P,60] is

purely infinite and simple.

Proof: The linear span of (ugsps;u,’; Pis dense in O[G,P,0]

g.heGpqe

according to Lemma (3.1.26). Every element z from this linear span is of the

form
mil ma2 m3
— * * * *
zZ= z Cigp; T z Cillg;Sp;Sq;Un; + z Cillg;Sp;Sq;Un;
where ¢; € C,

(i) g; # hiform; +1<i<m,and

(i)p; # qiformy +1 < i <ms.




By Corollary (3.1.42), we have E(z) = %2} cieg,p; € D . If we assume z to

be non-zero and positive, which we will do from now on, then E(z) >
Oas E is a faithful conditional expectation. Applying Lemma (3.1.45) to
E(z) yields (g,p) € G x P such that

(iii) E(2)eg, = lE(2)llegp

In order to prove simplicity and pure infiniteness of O[G, P, 8], it suffices to

establish the following claim: There exist (§,p)G x P satisfying

() egp <egp
(i) eg plg,Sp;Sq,Un,55 = 0 for my + 1 < i <m, and

(i) eg 5Ug,Sp,Sq,Un.gp = 0 for my + 1 < i <mj.
Indeed, if this can be done, then we get

es 525 S Ves 5E(2)es 5 2V E(2)lles 5

Now for x € O[G, P,60] positive and non-zero, let € > 0 and choose a
positive, non-zero element z, which is a finite linear combination of elements
ugrSprSS,u,’;,to approximate x up to . Then ||E(z)]| is a non-zero positive
element of D. Thus, choosing e;zas above, we see that
Eg’ﬁZg’ﬁ = ||E(Z)||3g’ﬁ|3 invertible in Eg’ﬁ O[G,P,Q]Eg’ﬁ If ”x—Z” IS
sufficiently small, this implies that e; 5 xe; 5 is positive and invertible in
&-0
e55 O[G,P,6]e; 5 as well because ||[E(2)|| — [|E(x)Il > 0. Hence, if we

denote its inverse by y, then




1 * 1
(yi UgSﬁ) €5 pX€5p (yi UgSﬁ) = 1.
We claim that there is a pair e (§,p) € G x Psatisfying (i)-(iii). Let
(9'.p)€96,(G)xpP and my+ 1 <i<m, Noting that

* * - -
Ug,Sp;Sp;Un; = Ug.n,~1€n,p,LEMMa (3.1.27) implies

€g'p'Ug;n; ' C€hip;€g'p’ = €g'p'Ug;n; " Chyip;
— NnN—1 -1
=X0,,)((9) 7 gihi "9 Vg n 189 pren;p,

According to (i), we have (g') 'g;h;"'g’ # 1;. Thus, minimality of
(G, P,8)provides p; € pP with the property that (g')"*g;h;"'g’ ¢ 0,1(G).

m;
l=m1+1

So if we take p® =V p;, then (i) and (ii) of the claim hold for all

m;

(g'.p") € g6,(G) x p™P . Let us assume that p' = p® v V{22 . p;V

q;andg’ € g6,/(G). Then condition (iii) holds for (g’,p") if and only if
0= S;’u(g')_lgispiséiuhi_lg,SP'
14

— n— -1 *
= X6, (9D 9)x0, ) (hi” g )Spi—lp'uegil((g’)‘lgi)egﬁ(hi‘lg’)sqi—l :

is valid for all m, + 1 < i < mgs. This is precisely the case if at least one of

the conditions

(i) (g")7'g: €6,,06),
(i) (g')"*h; € 64,(G), or

(i) 6;,"((9") 71964, (h " g") € O(pvqp-1p' (G)




fails for each i. Suppose, we have an index i for which the first two
conditions are satisfied. Using injectivity of 6, 4 the third condition is
equivalent to 6, ((9) " 9:)6r, (h;""g') € 6,/(G) where 1, = (p; A q;) '
and 1, = (p; Aq;) 'q;. Condition b) implies 1, Ar, =1p # 1,1,

Moreover, we have
0,,((9') ' 9:)6r, ("' g") = 1 © 6,,(9")6,,(9') " = 6, (9)6r, (R ).

Let us examine the range of the map f;:G — G that is defined by g »

erq(g)erp(g)-l. Note that f; need not be a group homomorphism unless G
Is abelian, in which case the following part can be shortened. If k;,k, € G
have the same image under f;, then 6, (k3 k)= 0y, (k3 k). By (C1)
from Definition (3.1.4), this gives k; 'k, € 6, (G) N Hrq(G) = Grprq(G) But
if k;lk, = 0y, (k3) holds for some ks € G, then Hrp(kz‘lkl) =
Grq(kz‘ 1k,) implies that Grp(kg) = Grq(kg) holds as well because P is
commutative and 6, 14,, is injective. By induction, we get k;lk, €

nnEN e(rprq)n (G)

Hence ﬁ-'l(erp(hi)erq(gi‘l)) is either empty, in which case there is
nothing to do, or it is of tile form g; Npnen 0,1 )2 (G) for a suitable g; € G .

But for the collection of those i for which the preimage in question is non-

empty, we can apply Lemma (3.1.13) to obtain g € g6,/(G) such that
fi(§) # Grp(hi)erq(gi‘l) for all relevant i.




By condition (C2) from Definition (3.1.4), we can choose p = p' large
enough so that these elements are still different modulo 6, 4.y-15(G) for all

I. In this case, we get

Qﬁl(g_lgi)eqi(hi_lg) € 0(pvg)-1p(G) forall m, +1 <i<mj,
so (g, p)satisfies (iii). In other words, we have proven that the pair (g, p)

satisfies (i)-(iii). Thus, O[G, P, 9] is purely infinite and simple.

From this result, we easily get tile following corollaries:
Corollary (3.1.47)[3]:

If (G,P,0) is minimal and Tis amenable, then the representation A :
O[G, P, 6] —» L(£%(G))from Proposition (3.1.25) is faithful.

Proof. This follows readily from Proposition (3.1.25) and simplicity of
o[aG,P,0].

Combining Lemma (3.1.26), Theorem (3.1.46) and Proposition (3.1.40),we
get:

Corollary (3.1.48)[3]:

If (G,P,6) is minimal and Tis amenable, then O[G,P,8] is a unital
UCT Kirchherg algebra.

Thus, minimal irreversible algebraic dynamical systems (G, P, 8)for which
the action 7 is amenable yield C*-algebraic O[G, P, @]that are classified by

their K-theory. Let us come back to some of the examples from this section




and briefly describe the structure of the C*-algebraic obtained in the various

Ccases.
Examples (3.1.49)[3]:

(i) Let G = Z,(p;)ie; © Z\{O,x£1} be a family of relatively prime
integers, and set P = |(p;)ie;) € Z™, which acts on G by 6;(g) =
p;g. We know from the considerations in Example (3.1.5) (i) that
(G,P,0) is minimal, so O[G, P, #] is a unital UCT Kirchberg algebra.
If we denote p := [[;/|pil € N U {0}, then G4 can be identified with
the p-adic completion Z,, = Iiin(Z/qZ, 64)qep of Z. Moreover, F is the

Bunce-Deddens algebra of type p® for the classification of Bunce-

Deddens algebras by supernatural numbers.

(ii) Let I N, choose {q}VU (p;);c; € Z\Z relatively prime, P =
|(9i)icr), set G = Z[1/q], and let 8,(g) = pg for g € G,p € P. As
in (i), O[G, P, 0] is a UCT Kirchberg algebra by the considerations in
Example (3.1.5) (ii) and Corollary (3.1.48). If p:= [liglpil ENU
{0}, then G4 can be thought of as a p-adic completion of Z[1/q] and
we obtain F = G(Gy) >, Z[1/q].

Eample (3.1.50)[3]:

We have seen in Example (3.1.8) that for n > 2, the dynamnical
system given by the unilateral shift on G = @y Z/nZ is a minimal
commutative irreversible algebraic dynamical system of finite type. It has
been observed that O[G, P, 8]is isomorphic to0O,, in a canonical way: If e ; =

(1,0,0,...,) € G,s € O[G,P,0] denotes the generating isometry for P




and sq,...,s, are the generating isometries of O, then this isomorphism is
given by uye s = s fork = 1,...,n. Inparticular, F is the UHF algebra
of type n*™ and Gy is homeomorphic to the space of infinite words using the
alphabet {1, ... ,n}.

Ecample (3.1.51)[3]:

Given a family (G®,p,0W),cy, where each (G6®,p,60W)
an irreversible algebraic dynamical system, we can consider G =
@;en 6P, on which Pacts component-wise. Assume that each
(GD,p,60) and hence (G,P,6) is minimal, compare Example (3.1.10).
We have Gg = [[;¢; Géi()i). Thus the G-action 7 on Gy is amenable if and only

if each G;-action 7; on Géi()i) Is amenable. As G is commutative (amenable) if

and only if eac-h G@ is, there are various cases where amenability of ¢is for

granted. In such situations, O[G, P, 6] is a unital UCT Kirchberg algebra.
Example (3.1.52)[3]:

For the examples arising from free group F,, with2 <n < oo, see
Example (3.1.11), we are able to provide criteria (i)-(iii) to ensure
that we obtain minimal irreversible algebraic dynamical systems. Hence Gg
can be interpret as a certain completion of [F,, with respect to 8. Now F,,, is
far from being amenable, but the action tcould still be amenable: The free
groups are known to be exact. By a famous result of Narutaka Ozawa,
exactness of a discrete group is equivalent to amenability of the left
translation action on its Stone-Cech compactification . Recently, Mehrdad

Kalantar and Matthew Kennedy have shown that exactness of a discrete




group is also determined completely by amenability of the natural action on
its Furstenberg boundary. The latter space is usually substantially smaller
than the Stone-Cech compactification and their methods may give some

insights into the question of amenability of the examples presented here. -

Section (3.2): A product Systems Perspective and Cross
Prouducts by Semidirect Products:

We provide a more detailed presentation of the case where (G, P, 6)is
of finite type. We exhibit additional structural properties of the spectrum Gy
of the diagonal D in O[G, P,8] . The assumption that 6,,(G) c G is normal
for every p € P causes Gy to inherit the group structure from G. This turns
Gy into a profinite group. If, in addition, (G,P,8) is minimal and G is
amenable, then F falls into the class of generalised Bunce-Deddens algebras
they belong to a large class of C*-algebras that can be classified by K-

theory.

We are particularly interested in the case where G is abelian. For such
dynamical systems, the situation is significantly easier as 6,(G) c G is
normal for all p € P and the action 7 is always amenable. In fact, the
structure of D and F is quite similar to the one discovered in the singly
generated case: Gg is a compact abelian group and we have a chain of
isomorphisms  F = C(Gg) %, G = C(G) %, Gg. We will assume that

(G,P,0) is an irreversible algebraic dynamical system of finite type.




Proposition (3.2.1)[3]:

Suppose (G,P,0) is minimal and G is amenable. Then F is a

generalised Bunce-Deddens algebra.

Proof: This follows directly from the construction of the generalised Bunce
Deddens algebras presented: Choose an arbitrary, increasing, cofinal
sequence (p,)neny € P, where cofinal means that, for every q € P there
exists ann € N such that p,, € gP. Then (8, (G))nen is a family of nested,
normal subgroups of finite index in G. This family is separating for G by
minimality of (G, P, 8).

These assumptions force F to be unital, nuclear, separable, simple,
quasidiagonal, and to have real rank zero, stable rank one, strict comparison
for projections as well as a unique tracical state. As the combination of real
rank zero and strict comparison for projections yields strict comparison, so
F also has finite decomposition rank. This establishes the remaining step to

achieve classification of the core F by means of its Elliott invariant
(Ko(F), Ko(F)+, [17] K1 (F) .

Corollary (3.2.2)[3]:

Let (G;, P;,0;) he minimal and G; be amenable for i = 1,2. If 7, and F,

denote the respective cores, then F, = F, holds if and only if

(Ko(F1) Ko (F1)+, [17,1 . K1 (F1)) = (Ko (F2), Ko(F2)+. [15,]1, K1 (F2)).

We presenting an intriguing isomorphism of group crossed products on the

level of F.




Corollary (3.2.3)[3]:

Let (G, P, 8) be commutative and minimal. Then there is a Gg-action ¢

on C(G) for which F = C(Gg)«,G = C(G), Go.

Proof: The first isomorphism has been achieved in Corollary 3.19. For the

second part, let T, (x)(9) = xo((9))x(g) for xo € Gg,x € Gand g €
G. Since t: G — Gy is a group homomorphism, £, (x) defines a character
of G. Clearly % is compatible with the group structure on G4. The group
homomorphism ¢ identifies G with a dense subgroup of Gg. In this case the
characters on Gg are in one-to-one correspondence with the characters on G.
Note that this correspondence is precisely given by regarding characters on
Gy as characters on G using t. Therefore, tdefines an action of Gy by
homneornorphisms of the compact space G. Once we know that tdefines an
action, we readily see that there is a canonical surjective *-hornomnorphism
C(Gg) ¥: G » C(G) x; Gg. As C(Gy) %z G is simple, this map is an

isomorphism.

We provide a product system of Hilbert bimodules for each irreversible
algebraic dynamical system (G, P, 0). The features of (G, P, 8) result in a
particularly well-behaved product system y. Therefore, it is possible to
obtain a concrete presentation of Oy. from the data of the dynamical system.
In the case of irreversible algebraic dynamical systems of finite type, this

algebra is shown to be isomorphic to O[G, P, 61].

The corresponding result in the general case, that is, allowing for the

presence of group endomorphisms 6,0f G with infinite index, requires a




more involved argument. The reason is that the prerequisites are not met, so
one has to deal with Nica covariarice of representations. Since this is more
closely related to the Nica-Toeplitz algebra T, we will only treat the finite
type case for the strategy in the general case. More precisely, it shows that,
for xassociated to (G, P, ), Nica covariance boils down to its original form.
A representation ¢ of the product system y is Nica covariant if and only if
©p(Lc)) and @4(1c(6)) are doubly commuting isometrics whenever p

and q are relatively prime in P.

We start with a brief recapitulation of the necessary definitions for

product systems and Cuntz-Nica-Pimnsner covariance.
Definition (3.2.4)[3]:

A product system of Hilbert bimodules over a monoid P with
coefficients in a C*-algebra A is a monoid x together with a monoidal

homomorphism p: x — P such that:
(i) x, = p~1(p) is a Hilbert bimodule over A for eachp € P,
(i) *1, = qAiqdS Hilbert himnodules and

(iii) for all p,q EP we have x, ®,x, = x,,if p+ 1p,and

%1, Q4 xq = Pg(A)xy.
Definition (3.2.5)[3]:

Let H be a Hilbert bimodule over a C*- algebra A and. (&;);¢; € H

Consider the following properties:




(|) (Elif]) - (Silefor all l,] €l

(i) n = Xier&iéium) foralln € H.

If (§;);¢,satisfies (i) and (ii), it is called an orthonormal basis for # .
Lemma (3.2.6)[3]:

Let ' be a Hilbert bimodule. If (§)ie; € H is an orthonormal
basis, then (GEi,s‘j)i,jEI is a system of matrix units and };¢; 0z, ¢, = L) if

H admits a finite orthonormal basis, then K (#) = L(H).

This lemma is a reformulation implies that product systems whose fibres
have finite orthonormal bases are compactly aligned. An explicit proof of

this fact is presented .
Definition (3.2.7)[3]:

Let y be a product system over P and suppose B is a C*-algebra. A map

@ : x = B, whose fibre maps y,, — B are denoted by ¢,, is called a Toeplitz
representation of y, if :

(1) @1, is a *-homnomnorphisrn.

(ii) @y, is linear for all p € P.

(i) 9, (§) (1) = @1, (€, m)) forallp € P and &,n € x,.

(V)@ () pg() = @pq(én) forallp,qg € Pand € € x,, .1 € x4

A Toeplitz representation will be called a representation whenever there is

no ambiguity. Given a representation ¢ of y in B, it induces




*-homomorphisms ¥,,,: K(x,) = B for p € P characterised by ¢, -

(&))" If x is compactly aligned, the representation ¢ is said to be

Nica covariant, if ¥, (kp) ¥, q(kq) = Yo pvg (Lqu(kp)tqu(kq))holds for
all pg€e P and k, € K(x,) kg € K(x,). Concerning the choice of an

appropriate notion of Cuntz-Pimnsner covariance for product systems, there

have been multiple attempts:
Definition (3.2.8)[3]:

Let B be a C*-algebra and suppose y is a compactly aligned product

system of Hubert bimodules over P with coefficients in A.

(CPg) A representation ¢:y — B is called Cuntz-Pimsner covariant

in the sense of [3], if it satisfies

Yop(Dp(a)) = ¢1,(a) forallp e Panda € 0, (K(x,)) € A.

(CP) A representation ¢: y — B s called Cuntz-Pimsner covariant, if the

following holds:

Suppose F c P is finite and we fix k, € K(x,) for each p € F. If,

for every r € P, there is s > r such that

> ib(k,) = Oholds forall ¢ > s,

pEF

then z Yop(k,) = Oholds true.

pEF




(CNP) A representation ¢:y - B is said to be Cuntz-Nica-Pimsner’

covariant, if it is Nica covariant and (CP)-covariant.

Fortunately, it was observed that the different notions are closely related

that (CPz) implies Nica covariance in the cases of interest to us.
Proposition (3.2.9)[3]:

Suppose (G,P,0) is an irreversible algebraic dynamical system. Let

(ug)gec denote the standard uniaries generating C*(G) and a be the action
of P on C*(G) induced by 8,i.e.ap(u,) = ugp(g)for p€ Pand g €G.
Then xp: = C*(G)y,, With left actiong,given by multiplication in C*(G)and
inner product (ugup), = X@p(G)(g_lh)ugz;l(g—lh)iS an essential Hilbert
bimodule. The union of all y,, forms a product system y over P with

coefficients in C*(G). y is a product system with orthonormal bases. it is of

finite type if (G, P, 8) is of finite type.

Proof: It is straightforward to show that y defines a product system of
essential Hilbert bimodules and we omit the details. For p € P, we claim
that every complete set of representatives (g;);e;for G/6,(G) gives rise to
an orthonormal basis of x,,. Indeed, if we fix such a transversal (g;);e; and
pick g € G, then (ug,,ugy), = )(gp(G)(gi'lg)uegl(gi—lg) equals 0 for all but
one j € I, namely the one representing the left-coset [g] in G/6,,(G). Thus,
the family (ug,)ie; © X, consists of orthonormnal elemnents with respect to

(., )psand ug a, ((ug, ug)) = 8;uy SO (ug,);er satisfies (3.2.5) (2).




Lemma (3.2.10)[3]:

Suppose (G,P,0) is an irreversible algebraic dynamical system and y

denotes the associated product system from Proposition (3.2.9). Then the

rank-one projection @, ., € K (xp)depends only on the equivalence class

of g in G/6,(G). Moreover, if ¢ is a Nica covariant ant representation of y,

then

Vo (Gugl’ugl) Voq (Gugz'ugz)

— {%,qu (Gugg,ugg) if 91'92 = 0,(g3)0,(gs)for some gz, g4 € G,
0 else.

holds forall g,,g, € G and p,q € P.

Proof: If g, = g0,(g,)for some g, € G, then

(Wn) = X0,(6)(8p(92 D9 h)un = Yoy (97 WIun = Oy, (un)

UgyUgq

for all h € G and hence Ouy, uy, = Ougu,- FO the second claim, Nica

covariance of Loximplies

Vo (Gugrum) Yoq (Gugz'ugz) = Vop (tqu (Gugrum) Lqu (ngzvugz))'

If we denote p’ := (pAq) pandq’ := (p Aq) 1q,then

prVaq —
'p (nglvugl)— Z Oy, 0,(93)6,05(95) € £ (Xpva)

(9516676 4/(6)




and

pVq -
'p (ngzyugz) = Ouy,0,(g4)ug,0405) € £ (Xpvq)
[941€G76.,,1(G)

hold. We observe that

Oy, 05(9)11g,05(92) Oy, 0(94)11g,604(d4)
is non-zero if and only if [g160,(93)] = [9204(g4)] € G/0,y4(G). In
particular, this is always zero if g;lg, ¢ 0,(G)0,4(G) . Let us assume that

there are g3, ..., gg € G such that
0p(95 )91 9204(9a) = Opvq(g7)
and
0p(95 )91 9204(96) = Opvq(9s)

Rearranging the first equation to insert it into the second, we get

05(95 ' 93)0pvq(97) 0492 96) = Opvq(gs)
By injectivity of 6,4 this is equivalent to

Gp'(g5_1g3)9(pAq)‘1(qu)(g7) Qq’(gzl_lg6) — G(pAq)‘l(qu)(QB)

From this equation we can easily deduce gs'g; € 6,(G) and g;'gs €
6,/(G) from independence ofé,,and 6, , see Definition (3.1.4)(iii). Thus, if
there are g3, g4 € G such that 6,(g5 )97 '920,(gs) € 6pv4(G), then they

are unique up to 6,/(G) and 6,/ (G) respectively. This completes the proof.




Theorem (3.2.11)[3]:

Let (G, P, 0) be an irreversible algebraic dynamical system of finite type

and yx the product system from Proposition (3.2.9). Then wugs, —

Loxyp(ug) defines an isomnorphisms ¢: O[G, P, 0] - O,

Proof: The idea is to exploit the respective universal property on both sides.

We begin by showing that (LOx,lP(ug))gEGis a unitary representation of G
and (Loxyp(lc*(a)))pep Is a representation of the inonoid P by isomnetries
satisfying (CNP1)-(CNP3), compare Definition (3.1.24). Lo, 1p Is a *-

homomorphism, so we get a unitary representation of G. In addition,

0,p(Le' (@) to,p(le'@) = 0,1, (e Lev@)P) = to,1,(Leve))

= 10}(

and

LOX,p(]-C*(G))LOX,q(1C*(G)) — o, pq (16*(6))ap(16*(6)) — loxypq(lc*(c))

show that we have a representation of P by isometries. (CNP 1) follows from

Lox'p(lc*(G))tox'lP (ug) —loyp (uep(g)) = loy1p (uep(g)) LOXvP(lc*(G))

Let p,q € P and g € G. Then (CNP 2) follows easily from applying Lemma
(3.2.10) to




LOX,p(]'C*(G))*LOX,lp (ug)‘OX,q(lc*(G))

— LOX,p(]-C*(G)) lptoxyq(gl.l)lptoxyq (@ug,ug) LOX,q(ug)-
Finally, we observe that,

Lo, 1p (ug)‘(?x,p(16*(G))‘Ox,p(lc*(G))*LOXJp(ug)* = l/)LOX,p (@ug,ug)

and tile computation

l/)LoX’p (@ug,ug) — lptoxyp(lﬁ(x)) — l/)LoX’p (Q)p(lc*(G)))

[941€G76,,/(G)

=1,1,(1c @) = 1o,

yield (CNP 3). Thus we conclude that ¢:0[G,P,0] - 0, defines a

surjective *-hornomnorphismn. For the reverse direction, we show that
@cnp X — O[G,P,6]
$p.g ™ UgSp

defines a (CNP)-covariarit representation of y, where &, denotes the
represeritative for u, in y,. To do so, we have to verify (i)-(iv) from
Definition (3.2.7) and the (CNP)-covariance condition. (i) and (ii) are
obvious. Using (CNP 2) to compute

Pcnpp (S(p,gl)*‘PCNP,p (S(p,gz) = Spllgrig,Sp

= X0,6) (91" 92)Ug51(g72g,)




= (pCNP,lp(Ep,gli S(p,gz)
we get (iii). (iv) follows from (CNP 1) as
Pcnpp(8p.g.)Penp.a(Sa.g,) = g, Sptlg,Sq
= ug,0p(92)spq
= enppa(€p.g, % ($a..))

Thus, we are left with the (CNP)-covariance condition. But since y is a
product system of finite type, see Proposition (3.2.9), we only have to show

that @cnp IS (CPr)-covariant due to [3]. Noting that

oyt (k()(p)) = C*(G)for all p € P, we obtain

l/)(PCNP,p (¢p (ug)) = l/)(PCNP,p ( Z G)ughvuh>
[r]1€G/6,(G)

[R]1€G70,(G)
=Ug = Pcnpr1p (f1p,g)-

Thusep yp 1S a (CNP)-covariant representation of y. By the universal
property of O, there exists a *-homomorphism @cyp: 0, — O[G, P, 8] such

that @-np © O, = Pcnp- It is apparent that ¢.yp and ¢ are inverse to each

other, so ¢ is an isomorphism.




We establish a result about viewing a crossed product of a C™-algebra by a
semidirect product of discrete, left cancellative monoids as an iterated
crossed product, see Theorem (3.2.15). This extends the well-known result
for semidirect products of locally compact groups in the discrete case and is

essential for the proof of Corollary (3.1.39).

We restrict our attention to the case of unital coefficient algebras and
include the basic definitions for semigroup crossed products based on

covariant pairs of representations.

All semigroups will be left cancellative and discrete. In the following,

let Isom (B) denote the semigroup of isometries in a unital C*-algebra B.
Definition (3.2.12)[3]:

Let S be a semigroup and A a unital C*-algebra with an S-action a by
endomorphisms. A covariant pair (r, , g ) for (4, S, a) is given by a unital
C"-algebra B together with a unital C*-homomorphism 7,:4 - B and a
sernigroup homomorphism m,:S — Isom (B) subject to the covariance

condition:
ng(s)my(a) ny(s)* = my(as(a)) foralla € A,s€S
Definition (3.2.13)[3]:

Let S be a semnigroup and A a unital C*-algebra with an S-action «
by endomorphisms. The crossed product for (A, S, «), denoted by A %, S, is
the C*-algebra generated by a covariant pair (i, tg) Which is universal in the

sense that whenever (m,,mg) is a covariant pair for (A, S, a), it factors




through  (i4,t). That is to say, there is a surjective
C*-homomorphism . A, S - C*(m4(A),ms(S)) satisfying m, =7 o,
and my = motg. AX,S is uniquely determined up to canonical

iIsomorphism by this universal property.

This crossed product may be 0. But it is known that the coefficient
algebra A embeds into Ax,S provided that S acts by injective

endoimorphisms and is right-reversible, i.e. Ss N St += @ forall ,t € S.

Suppose that T is a semigroup which acts on another semnigroup S by
semigroup homomorphisms 6;. Then we can form the semidirect product
S g T, which is the semigroup given by § x T with ax + b-composition

rule;

(s,0)(s',t") = (sO.(s"), tt")

Now suppose further that S and T are monoids and that « is an action of
S g T on a unital C*-algebra A. Then the semigroup crossed product 4 x,,

(S xg T) is given by a unital *~homomorphism
Ly, SXgT:A—> AX, (SxgT)
and a semigroup homomorphism

lsaprS Mg T = Isom(A Xy (S %9 T))
Of course, we can also consider AsysS given by a unital *-
homomorphism 145! A - A S and a homomorphism ts :S—

Isom(A X 45 S). A natural question in this situation is whether a and 6 give




rise to a T-action & on A X4 s S. The next lemma provides a positive answer
for the case where «a satisfies {14 — a(s1,)(14)| s € S} € Neer ker ag o).
For the sake of readability, let pe sy = a5 (@(s1)(14)) for s € S;t € T
and we will simply write p; for p(;.). We observe that the aforementioned

condition is equivalent to p(g,(s)) = p foralls € S, t € T.

Lemma (3.2.14)[3]:

Suppose that S and T are monoids with a T-action 8 on S by semigroup
homomorphisms. Let a be an action of S X4 T on a unital C*-algebra A by

endomorphisms. Fort € T, let

At (tas(@)is(s)) = tas(a(1,,)(@))is(0:(s)) fora € A;s € S

d.is an endomorphism from A4 x4 § — pt(A Mgls S)pt provided that

14— ags1,)(14) € kerag yy foralls€ S

In particular, if this holds forall t € T, i.e.

1a— ag1,)(14) € ﬂ kerag ) foralls€S.
teT

therm & defines an action of T on A X5 S.

Proof: Note that &;(15(s)) = &;(ta s(L4)t5(s) = pts(6:(s)) is valid for all

s € S,t € T since , 5 is unital. Suppose t € T satisfies

14— ag1,)(14) € kerag yy foralls €S




This is equivalent to p(,(s)r) = pe- Hence, p.commutes with 15(6,(s))

since

LS(Ht(s))pt = LS(Ht(S))ptLS(Ht(S))*LS(Ht(S)) = p(6.(s), t)LS(Ht(s)) = ptLS(Ht(s)).

To prove that &, is an endomorphism of A>g,sS we show that

(lA,s ° A(14,t) Pt(ls o 0, (. )))

is a covariant pair for (4, S, «|S ).Itis then easy to see that the induced map

coming from the universal property of the crossed product is precisely &;

and maps A 45 S onto the corner p,(A X 45 S)pe.

las © A(14,¢) 1S @ unital *-homomorphism from A to pt(A Mg|s S)pt In

addition, p;(ts © 6:(.)) maps S to the isomnetries in p, (A 45 S)p; because
Peis(8:(5)) Pets(6:(5)) = t5(8:(5)) Pets(6:()) = 15(6:(5)) 15(6:(5))pe = pr.
This map turns out to be a semigroup homomorphism as
pttS(Qt(sl))ptLS(et(SZ)) = Ptzls(et(31))ls(9t(52)) = Ptls(et(5152))-
Finally, fora € A and s € S , we compute
Ptls(Qt(S))lA,s(O(us,t)(a))(Ptls(Qt(S)))* — Ptlas (a(et(s),t)(a)) Pt

=ty s(aq, 11 (@).
Thus, (45 ° a(1,.n)Pe(ts © 6:(.))) forms a covariant pair for (4,S,a|S). In

particular, the induced map & is an endomnorphism of A X5 S.




Conversely, assume that @, defines an endomorphism of A s S.
Then (&; o 45, @, °ts) forms a covariant pair for (4,S,a|S) mapping A
and S tothe C*-algebra B := @;(A x5 S). Note that the unit inside this

C*-algebra is p;. In particular, we have a semi group homomorphism &; o

lg:S = Isom(B). This forces

pe = @(15(s)) @ (15(s)) = LS(Qt(S)) Ptls(et(s)) = P.(s).t)
forall s € S, which is equivalent to
{1A - a(sle)(lA)| S E S} C ker a(ls’t)

Since a|T and fare semigroup homomorphisms , & defines an action of T on

A X g5 S provided that the imposed condition holds for every t € T.

Theorem (3.2.15)[3]:

Suppose S and T are monoids together with a T-action 6 on S by semigroup
homomorphisms, and an action a of S xg T on a urtital C*-aigebra A by

endomorphisms. If

{1A - a(sle)(lA)| S E S} C ﬂ ker a(ls’t)

teT

holds true, then there is a canonical isomorphism

s
A X (S Ng T) - (A x‘a|S S) N T ’LA,SXQT(a) = lUYxs © LA,s(a)

tsxgr($:8) = (taxs © 1) ()ir(t)




where @ is given by @;(t4,5(a)is(s)) = tu(a(1,,0(a))is(8:(s))

Proof : Recall that (14, S g T, t5x,T), (taSts) and (taxs, t7) denote the
uiversal covariant pairs for (4,5 », T, @) , (4,S,alS) and (A X4 s S, T, @),

respectively. The strategy is governed by the following claims:

(1) Ctases © tas (tass®ts) < 1) forms acovariant pair for (4,5 %, T, @).

(ii)(tA’SNBT x LSN9T|S, LSN9T|T) forms acovariant pair for (4 x5 S, T, &).

If we assume (i) and (ii), then (i) and the universal property of

A >, (8§ xg T) give a *-homomorphism

s
A x]a (S ><19 T)_»(A x‘a|5 S) x’d TLA,SX@T(a) > lgxs © LA,s(a)

LT (S, 1) = (Laxs © ts) ($)ir (t)

Since S and T both have an identity, the induced map equals 7 . Note that the
pair from (ii) is the natural candidate to provide an inverse for . Indeed, if
(ii) is valid, then the two induced *-homomorphisms are mutually inverse on
the standard generators of the C*-algebras on both sides. Thus it remains to
establish (i) and (ii).

For step (i), note that 4, © t45iS a unital *-homomorphism and
Lusas © Lg defines a semigroup homomorphism from S to the isometries in

(A 245 S) ¥z T. The covariance condition for (T, @) yields

tr (D) tass © 1s(s) = @(taxs © ts(S)ir(t) = tans © 1:(8:(5))ir (2).




Therefore, (t4.s ©ts) * tr is well-behaved with respect to the semnidirect

product structure on S x T coming from 0, so we get a semigroup
homomorphism (455 © ts) X t71 Sx, T = Isom ((A Xgs S) ¥z T). Now let

a€A,s€S andt € T. Then we compute

((leus 0 15) X lT)(S, t)asas © ta,s(@) ((taxs © tas) X tr)(s,t)"

= Lsas © Ls(S) () tases OLA,S(a)LT(t)*LAxS o 15(s)”

= taxs © Ls(S)taxs © las (0‘(1“)(“)) taxs © ts(s)”

= lyxs ©las (a(s,t)(a))’

which completes (i). For part (ii), we remark that (i4 s 7. tsx,7]S) IS @
covariant pair for (4,5, alS). Since 14 s.,7 and 14 ¢ are unital, the induced
map is unital as well. Moreover, i, 7|T is a semigroup homomorphism

mapping T to the isometries inA x, (S xg T)). Thus, we are left with the
covariance condition. Note that it suffices to check the covariance condition
on the standard generators of A >, cS. Fora € A,s€S andt €T, we
get

LS><|9T(1S,t)LA,S><|9T(a)LS><|9T(Sa 1T)ls><|9T(1S,t)

= lS><|9T(1s,t)lA,s><|9T(a)ls><|9T(1S,t) LSXIQT(]'S,t)LSXIQT(Sa 1T)ls><|9T(1S,t)
= lA,5%pT (0‘(1“) (a)) tssagr (8¢ (5), 11)py

= l4,SxgT (0‘(1“) (a)) lsxagr(0:(s), 1)

= (LA,SXIQT(a)LSXIQT(S’ 1T))

Hence (i) and (ii) are both valid, so the proof is complete.




Chapter 4

Product Systems over Semigroups of Ore Type

We introduce Doplicher-Robertspicture of Cuntz-Pimsner algebras, and
the semigroup dual to a product system of ’regular’ C*-correspondences.
Under a certain aperiodicity condition on the latter, we obtain the
uniquenesstheorem and a simplicity criterion for the algebras. These results
generalize thecorresponding ones for crossed products by discrete groups,
we give interesting conditionsfor topological higher rank graphs and P-
graphs, and apply to the new Cuntz C*-algebra Qyarising from the "ax +

b"-semigroup over N.

Section (4.1): Regular Product Systems of
C*-Correspondences and their C*-Algebras with Dual Objects

We first introduce and discuss certain product systems of C*-
correspondences satisfying additional regularity conditions, and then
construct their associated Cimtz-Pimnsner algebras and their reduced
versions in the spirit of the Doplicher-Roberts algebras. The construction
involves an object that may be viewed as a right tensor C*-precategory over
P. Regular product systems introduced and their C*-algebras will play a

central role.

Regular product systems and their right tensor C*-precategories.




Definition (4.1.1)[4]:

Let X be a C*-correspondence with coefficients in A. We say X is

regular if its left action is injective and via compact operators, that is
ker = {0} and ©(A) € k(X). 1)

We say that a product system X := [[,cp X, over a semigroup P is regular

if each fiber X, ,p € P, is a regular C*-correspondence.

The notions of regularity and tensor product are compatible in the sense
that the tensor product of two regular C*-correspondences is automatically

regular below. We will need the following .

Lemma (4.1.2)[4]:

Let Y he a regular C*-corresponderice with coefficients in A and let X,
Z be right Hilbert A-modules.

(i)  Foreach x € X, the mapping

Tx
Yoy - x®y € XQY
is compact, that is T, € k(y,X®Y). Furthermore, we have||T,| =
llx]l.

(i) For each S € k(X,Z) we have S®1, € k(X®Y,ZQ®Y) and the
mapping

k(X,Z) 3 S — S®1, € k(X®Y, ZQY) 2)




Is isometric. It is surjective whenever @y: A — k(Y) is.
Proposition (4.1.3)[4]:

Tensor product of regular C*-correspondences is a regular
C*-correspondence.
Proof: If X and Y are C*-correspondences over A then the left action of A
oNnXQ®Y is Bygy = Ox®1y. Hence if X and Y are regular, then @ygy is

injective and acts by compacts, by Lemma (4.1.2) part (ii).

Now, let X be a regular product system over P. The family

ky = {K(Xq, Xp)}p,qep

forms in a natural manner a C*-precategory. We will describe a right
tensoring structure on kyx by introducing a family of mappings

bt k(Xq, Xp) = k(Xqr Xpr).p,q,7 € P, which extends the standard

famlly of diagonal homomorphisms Lgp defined . If ¢ # e we put
pr qr(T)(xy) = (Tx)y, wherex € X;,y €X, and T € k(Xq,Xp)

Note that under the canonical isomorphisrn X,, = X,®,X, operator
b (T) corresponds to T®1y . Hence by part (i) of Lemma
(4.1.2),5 .7 (T) € k(Xqr, Xpr) and ¢, 7" is isometric. Similarly, in the case

g = e, the formula

prr(tx)(y) =Xy, where y € X, and t, € k(X,,Xp), x € X,




yields a well defined map. By Lemma (4.1.2)part(i), this is an isometry from

k(Xe, Xp) into k(X,, X, ). Note that (57F" =7 .

Definition (4.1.4)[4]:

The C*-precategory k, = {K(Xy, Xp)}pqer equipped with the family

of maps {u ;7" }, 4. ep defined above is called a right tensor C*-precategory

associated to the regular product system X.
Lemma (4.1.5)[4]:

Let ¢ be a representation of a regular product system X over a
semigroup P in a C*-algebra B. For each p,q € Pwe have a contractive

linear map v, ,: K (X4, X,) — B determined by the formula
¥pq(Oxy) = Yp ()P, (¥) forx € X,y € X, 3)
Mappings {¥,q}, ., satisfy

Vg v, (T) =y, (ST)fors € K(Xq:Xp), T €K(X Xg) PG TEP ()
and are all isometric if 1 is injective. If ¥ is Cuntz-Pimsner covariant, then

Vpa(S) = Yprgr (507 (S)) forallp,q.r € PandS € K(X5.X,)  (5)

Proof: It is not completely trivial but quite well known that (3) defines a
linear contraction which is isometric if Y, is injective. One readily sees that
(4) holds for ‘rank one operators S =0,, T =0, ,and thus it holds

ingeneral. Suppose that ¥ is Cuntz-Pimsner covariant representation on




Hilbert space H and let p,q,r € P. To see (5), it suffices to consider the
case when S = 0, ,with x € X,,, and y € X,. We may writing x = x'a

where x" € X,, anda € A. We get

Pp,q(S) = P (x )@y g (v)* = P (X WP (B (a)) g ()"
€ l/)pr,qr(K(era Xpr))

Hence both 1, ,(S) and ¥, 4 (0,7 (S)) act as zero on the orthogonal

complement of the space ¥, (X, )H = 9 (K(X,))H. Since the linear
span of elements of the form y,,-(xo¥o)h, xo € X4, Y0 € X,-, h € H, is dense

in ¥, (X, )H, (5) follows from the following computation:

Yorar (‘g,rdqr(@x,y)) Yar(0¥0) = Ypr(1p)g" (Oxy)%0¥0)
— l/)pr((@x,yxo)yo) — I/Jpr(x()”xo)YO)
— l/)p(X)l/)q(y)*l/)q(xo)l/)r(yo) — l/)p,q(@x,y)l/)qr(xoyo)-

Doplicher-Roherts picture of a Cuntz-Pimsner algebra and its reduced
version .

We assume that X is a regular product system over a semigroup of Ore type.

We need the following lemma.
Lemma (4.1.6)[4]:

Suppose ¥ is a Cuntz-Pimsner covariant representation of a regular

product system X over a semigroup P of Ore type.




(i) Forallx € X,y €X,and s = p,q we have

P ()P (v) € Span{y(NIP(h)": f € Xp-1s, f € Xg14)
(i)  We have the equality

span{p ()Y () :x,y € X,[d(x),d(y)] = [p,q]} =
span{y ()Y (y)*:x € Xpr Yy € Xgr , T € P}.

(i) C*(¥(X)) = span{p (x)p(y)*: x,y € X}.

Furthermore, there is a dense subspace of C*(l/)(X)) consisting of elements

of the form

VO(S) + ) ¥pa(Sna) (6)

pPEF
where g € Pand F < P isafinite setsuchthat g ~, pforallp € F.

Proof: Ad(i). Write x = Sx’ with S € K(X,,) and x" € X, and similarly y €
Ty'withT € K(X;),y' € X,. Then we get

W (0) P ) = P, () PP(S YD (TP, (v)
= P, (YYD S (SDS (TP, (v")

Since $(S*)5(T) € K(Xs) we may approximate ¥ (:5(S*)5(T)) with
finite sums of operators of the form Y (f'f)yY,(h'h)* where f' € Xp, f €
Xp-15and h' € X, h € X -15. Hence ¥, (x) ", (y) can be approximated by

finite sums of elements of the form




lpp(x,)*lps(f,f)lps(h,h)*lpq(y,) = l/)p‘ls((x,’f,)pf)l/)q‘ls((y,’ h')h)*
This proves claim (i).

Ad(ii).  Clearly, span{y(x)y"(y):x,y € X,[d(x),d(¥)] = [p, ql}
contains  span{y(x)Y(y)*:x € X,,,y € X, ,7 € P}. To see the converse
inclusion, we use the mappings introduced in Lemma (4.1.5) and assume
that [p’,q']1 = [p,q] that is p'r' =pr and q'r' = qr for some r,r’' € P.
Then for T € K(X 7, X,) we have

l/)pr’qr(T) = l/)p’r’,q'r'(lgr;l,'q r (T)) = l/)pT,qr(LZI’:I;q r (T))

€ W{lp(x)lp(y)*: X € Xpr, Yy € Xgr }

which proves our claim.

Ad (iii). Part (i) implies that C*(y(X))is the closure of elemnents of the

form

D, (1) Y, 01" ()

where p;,q; € P,x; € X,,y; € Xg,1 = 1,..,n. Moreover, taking any
qo € P that dominates all g;,i = 1,...,n, and writing y; =y, a; with y; €

Xq, @i € A, we get

V00 Yo 0" = W GOWT0) (0020, @) g, 01, 1= 1m

(1)



Approximating (4 @) (q)qi_lqo (a;‘)) by finite sums of elemnemits of the

form l/)qi—lqo(ui)l/)qi—lqo(vi)* we see that b, (x;) ¥, (y;)" can be

approximated by finite sums of elements of the form
l/)pi (xi)l/)qi_lqo q(ui)lpqi_lqo (vl)*lpql(y:)* — l/)piqi_lqo (xiui)l/)qo (y:vl)*

Thus we see that tile element (7) can be presented in the form

z l/)p!qo (SpyCIo) (8)
pEF'
where F' ={p;q;'qo:i=1,..,n} <SP is a finite set. Let F={p€
F':qo ~g p} and for each p € F, choose 7, €P such that pr, = qor,. Let

r € P be such that r = , for all p € F,, and put
q.=qor and F:={pr:p € F'\F,}.

Then pr =q for all p € F,, and p +~ g for all p € F. By (4) we have

l/)pvQO (SprQ ) € l/)pr,qo r (K(qu T Xpr)) - l/)pr,q (K(Xq,Xpr)) and hence

the element (8) can be presented inthe form (6).

We are ready to prove the main theorem. It gives a direct
constructionof the Cuntz-Pimsner algebra Oy of a regular product system
Xas the full cross-sectional C*-algebra of a suitable Fell bundle
corresponding to the limits of directed systems of the compact operators

arising from X.

(12)



Theorem (4.1.7)[4]:

Let X be a regular product system over a semigroup P of Ore type and

let G(P) be the enveloping group of P. For each [p, q] € G(P)we define
Blpq): = limk (Xgr Xpr)

to be the Banach space direct Ilimit of the directed system
({k(er, )}rep gigi}mep) The family B = {B;}teq(py is in @ natural

manner equipped with the structure of a Fell bundle over G(P) and we have

a canonical isomnorphismn

Ox

IR

¢ ({Bg}gEG(P))

from the Cuntz-Pimsner algebra Oy onto the full cross-sectional C*-algebra

C*({Bg}gec(py- In particular,

(i)  the universal representation jy: X — Oy is injective,

(ii) Ox has a natural grading {(Ox) 4}gec(p) OVer G(P), such that

(0x)g = spanijx (x)jx(¥)":x,y € X, [d(x). d(¥)] =g}  (9)

(iii) for every injective representation yof X, the integrated representation
[, of Oy is isometric on each Banach space (0x),4, g € G(P), and

thus it restricts to an isomorphism of the core C*-subalgebra of Oy,
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namely




(Ox)e = spanijx(x)jx(¥)*:x,y € X,d(x) = d(y)}.

Proof: As the direct limit lim k (X4, X;,,,) depends only on ‘sufficiently

large r’, it follows immediately that the limit does not depend on the choice
of a representative of [p,q] and thus Bp,,; is well defined. Let ¢, :
k(Xq, Xp) = Bpp.q1 denote the natural embedding Of k(X,, X,,) into By, 47 It
is isometric because all the connecting maps {1,/¢;} r < s are. Using the

(inductive) properties of the mappings ¢, , and (right tensoring) properties

P"%one sees that the formula

of the mappings g

Opups(S) © 0400, (1) = 0y, (0775), D (a7 ) B2 PP ()5 7205 )1y,

where s> p,,q1,S € k(X,,, X, ). T € k(Xg,,X,,), Vields well defined

bilinear maps

°: B[Z’Lpz] x B[leQZ] - B[Z’1vP2]°[Q1yQ2]

These maps establish an associative multiplication o on {B;}:eq(p),

satisfying
lla o bl < llall- lIbIl.
Hence {B;}:eq(pybecomes a Banach algebraic bundle. Simnilarly, formula
Ppipy () = 0p, 0 (5 S € k(X Xp,),

defines a “** operation that satisfies axioms and hence we get a Fell bundle

structure on {By}geq(py (We omit straightforward but tedious verification of

the details).




Now, we view C*({Bgl}geccpy) as a maximal C*-completion of the

direct sum @ 4¢¢(p)By- Using the maps , we define mappings

vX= ]_[Xp = C*({Bg}gec(r))

pEP
by
X, 3 x = @pe(ty), pEP (10)

Is an isomorphism of C*-correspondences, it follows that ¥ restricted to

each summand X, is an injective representation of a C*-correspondence.

Moreover, for x € X,,,Y € X, we have t,, = ib%(t,)t, and thus

YY) =@, (td 0o, ,(ty) = @, (L1 (tIt) = @, (txy) = P (xp).

Hence ¥ is a faithful representation of the product system X in
C*({Bt}tec(ry)- We recall that (5 (¢,) = £ (a) = @,(a) and hence

v(@) =0, t) =9, (E2t))=9, (9,(@)=¥(8,(@), acApeP,

that is ¥ is Cuntz-Pimsner covariant. Since ¥ is injective, so is jy and claim
(i) holds. Now, considering the integrated representation [[,:0x —

C*({Bytgecpy)  forx € X,,,y € X, we have

nw(jx(x)jx()’)*) =¥(x) o ¥ ()" = @pelty) o ‘Pe,q(t;) = ‘Pp,q(txta*f)

= ‘Pp,q(gx,y)- (11)

It follows that [, maps
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(Ox)[p,Q] = Span{jx(x)jx(y)*:x € Xpr,y € Xgr, T € P}

onto By, 41 Putting g = [p, q] and using Lemma (4.1.6) part (iii), we see that
(Ox)4 is given by (9). We claim that [], is injective on (Ox)4. To see this,
let j,, , denote the mappings from Lemma (4.1.5) associated to the universal

representation jy and note that we have

. ps,qs _ .
Jpsas ® bprqr = Jprqr  fOrT<s

by (5). By the universal property of inductive limits, there is a mapping
Bip,q1 2 Bpr qr(T) = Jjpr.qr(T) € (Ox)pp,q1

winch is inverse to [[y [y g Accordingly [[y  is an epimorphism
injective on each (Ox),. Since the spaces B, g € G(P), are linearly
independent, so are (Ox)g4,g € G(P). Consequently, in view of Lemma
(4.1.6) we have

Oy = V)
X gEeGB(P)( X)g

and claim (ii) follows. In particular [[y: @ (0Ox); > @ B, is an
geG(P) geG(P)

isomorphism and as C*({B,}4ec(p)) is the closure of 69( )Bg in a
geaG(pP

maximal C*-norm we see that []y actually vyields the desired

isomnorphism Oy = C*({Bg}gEG(P)).

For the proof of part (iii), notice that we have just showed that

(Ox)p.q1is the closure of the increasing union Uyep jprgr (k(er,Xpr)),




where jp, or + k(Xgr Xpr) = (Ox)pp.q are isometric maps. Similarly, if i is
an injective covariant representation of X, then Hw((OX)[p,q]) is the closure
of the increasing union U,ep Ypr 7 (k(er,Xpr)), and by Lemma (4.1.5)
mappings Yy qr k(Xq. Xp) = [w((Ox)pq) are isometric.  Since

[Ty jprgr = Yprqrp.q.7 € P it follows that surjection [y: (Ox)p.q =

Y((Ox)p,q)) is an isometry, since it is isometric on a dense subset.

Let A be a C*-algebra. We denote by = the unitary equivalence relation
between representations of A, and by [n] the corresponding equivalence
class of m:A — R(H). Spectrum A = {[r] : m € Irr(A)} consists of the
equivalence classes of all irreducible representations of A, equipped with the
Jacobson topology. The relation < of being a sub representation factors
through= to a relation <on A. Namely if m:A - B(H,)and p:4 — R(H,)

are representations of A, then

[7] < [p] & 3 isometry U:H, = H, s.t (Va € A)n(a) = U*p(a)U.
Let a: A — B be a homomorphism between two C*-algebras. It is useful to
think of the dual map we aim to define as a factorization of a multivalued

map a, : Irr(B) = Irr(A) given by

&O(TEB) — {TEA € Irr(A): (LN < g © (1} (12)

The set [6o(ng)] = {[rna] € A:my < ng o a}does not depend on the choice of
a representative of the class [ng] and thus the following definition make

Sense.
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Definition (4.1.8)[4]:

The dual map to a homomorphism a:A — B is a multivalued map

a:B —» A given by the formula
a([ng]) = {[ral € A: [mp] < [mp © 0]}
:{[TEA] EA\:TL'ASTEBO(X}

Time range of & behaves exactly as one would expect. But for non-liminal B
the map a, and inparticular its domain, has to be treated with care. Let us

explain it with help of the following proposition and an example.
Proposition (4.1.9)[4]:

For every homomorphism a:A — B between two C*-algebras. its
image
a(B) = {[na] € A: kermy 2 ker o}
is a closed subset of A. Its domain D(d) is contained in an open subset

{[ng] € B: ker nz 2 B o (A)B}of B. Moreover, if B is liminal, then

D(@) == {[nz] € B: ker my 2 B a (A)B}

and d: B = A'is continuous.

Proof: If [z,] € @(B), then m, < 1z o a for some z € Irr(B), and hence

ker my 2 ker a. Conversely, if [m,] € A is such that ker m, 2 ker a, then

n4factors through to the irreducible representation of A/ker a = a(A).Thus




the formula m(a(a)) :=m,(a),a € A, yields a well defined element of

Irr(a(A)). Extending 7 to any g € Irr(B) onehas ny < 7g © a.

Now, let / be an ideal of A. Then [ ={[n,] € A:kerm 2]} is open

and we have

[T[B] € &_1(j) A E|7'tAEIrr(A)7TA S Tpoa,

kermy, 2] = ker(mgeo a) 2]

o kerng 2 a(])
< kermg 2 Ba(J)B.

That is & '(J) € {ng € B:kerng 2 Ba(J)B} and in particular D(&) =
a~Y(A) c {ny € B:ker nz 2 Ba (4)B}.

If we additionally assume that B is liminal, then for mz € Irr(B) the
representation gz o & decomposes into a direct sum of irreducibles. Namely,
there is a subset K of &,(mp)such that mp o a = @, ,cxmsB0 (Where 0

stands for the zero representation and is vacuous if g o ais nondegenerate).

Hence the implication
ker(mgo a) 2] = 3, €K S Irr(d)s.t.my <mp o a, kermy, 2]

holds true. This combined with the preceding argument yields &‘1(f) =

{ng € B:ker mg 2 Ba(J)B} and the second part of the assertion follows.




Example (4.1.10)[4]:

Let H = LZ[0,1] with uthe Lebesgue measure. Put B:= R(H),A :=
L*[0,1] and let a:A — B bethemonomorphism sending « € Ato the
operator of multiplication by a. Then mz = id is irreducible and g o
afaithful but a([rg]) = @. Accordingly,

D(@) # {[ng] € B:kermg 2 Ba (A)B} =B

Let X be a regular C*-correspondence with coefficients in A. We may
treat X as K(X) — (X, X) ,-imprimitivity bimodule and therefore the induced
representation functorX — Ind : Irr({X, X)) — Irr (K (X))factors through to
the homeomorphism [X — Ind]: (X,X)4 = (K (X)which in turn may be
viewed as a multivalued map [X — Ind] : A = (K (X) with domain D([X-
Ind]) = (X, X)a.

Definition (4.1.11)[4]:

Let X be a regular C*-correspondence over A. We define dual map
X:A—>A to X as the following composition of multivalued maps
X=00[X—Ind],
where @: K (X) — Ais dual to the left action @:A4 — K (X) of Aon X.
Alternatively, X is a factorization of the map X,: @, o X — Ind: Irr(4) —

Irr(4).




Proposition (4.1.12)[4]:

The multivalued map dual to a regular C* -correspondence X is always
surjective, that is X(A) = A. The domain of X satisfies the following

inclusion

D(X) € ((X,0(A)X),) (13)

Note here that (X, ®(4)X), is an ideal in A. If, in addition, A is liminal, then
X is a continuous rnultivalued map and we have equality in (13); in
particular, if X is full and essential, then X:A — A is a continuous

multivaluedsurjection with full domain, D(X) = 4.

Proof: As [X-Ind]: A - K (X) is surjective and ker @ = {0} we get X(A) =
A by Proposition (4.1.9). Since [X- Ind]:{(XX), = K(X)is a

homeomorphism, it follows from Proposition (4.1.9) that
D(X) € [X — Ind]=(K(X)B(A)K(X)) (14)

with equality if A is liminal (note that if A is liminal then K(X) is also
liminal being Morita—Rieffel equivalent to the liminal C*-algebra
(X, X)a S A). Hence it suffices to show that the sets in the right hand sides
of (13) and (14) coincide. However, for any representation = of A and any
C*-subalgebra B € K (X) we have

B € ker(X —Ind(r)) & n({BX,BX),) =0 < (X,BX), C kerm.

thus the assertion follows from the equality
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(X, K(X)B(AK(X)X)4 = (K(X)X, D(A)K X)X} = (X, B(A)X) 4.

In view of Proposition (4.1.3), if X and Y are regular C*-
correspondences with coefficients in A, then the tensoring on the right by the
identity 1lyin Y yields a homomorphism ®1, : K(X) - K(X & Y). With
help of its dual map we are able to analyze the relationship between the

spectra of compact operators on the level of spectrum of A.
Proposition (4.1.13)[4]:

Let X and Y be regular C*-correspondences with coefficients in A. Then W

have

[X.—Ind] e Y =@ 1y o [(X ® Y) — Ind] (15)
In other words, the diagram of multivalued maps

(X®Y)-Ind_ ——_
— K(X ®Y)

IS commutative, and in particular
D(X—Ind]e¥) =D(® Iy o [(X®Y) —Ind]) =Y~ ((XX)a)

Proof: Let ma: A — R(H) be an irreducible representation. If = € Y,(m4),
then H in is a closed suhspace of Y ®,, H irreducible under the left
multiplication by elements of A, or more precisely, irreducible for (Y —

Ind(74))( @y (A)). Since the tensor product of C*-correspondences is both
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associative and distributive with respect to direct sums, we may naturally
identify X @, H, with a closed subspace of X ® ¥ ®,, H. Since for a €
K(X) we have

((X QRY) — Ind(nA))(a (%9 1y)(x Ry Qr, h) =ax®y Qr, h,

we see that, the action of ((X®Y)—Ind(m,))(a® 1y)
OnX @, H,coincides with the action of (X-Ind(m))(a). In particular, the
subspace X ®, H,, is either {0}, when itm ¢ (X, X), or is irreducible for
(X ® Y) — Ind(m,) ) (K(X) ® 1y). Consequently,

(X —1Ind) o Yy(ms) EQ 1y, e (X ® Y) — Ind ().

To show the reverse inclusion, let p € (@TY)O o (X®Y) —Ind (m,). Then
pis an irreducible subrepresentation of the representation myxy:K(X) -
BX®Y ®y, Hwhere mygxy(@) = ((X®Y) —Ind(my))(@® 1y). We may
consider the dual C*-correspondence X (not to he confused with the dual X

to the C*-correspondence X) as an(X, X), — K(X) —imprimitivity bimnodule.

Then using the natural isomnorpinsmn
X Qxn®X) QY ®,, H=Y ®,, H,

we see that X- Ind(mgy)) is equivalent to Y —Ind(mp)e @y :A—
B(Y ®x, X). Since induction respects direct sums, X- Ind (p) is equivalent
to an irreducible subrepresentation  of Y — Ind(1,) o @y. Then mtbelongs to

both (X; X}, and Y, (), and we have

p= X—Ind(X —Ind(p)) = X — Ind(n).
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Consequently, ® 1y, o (X® Y) — Ind (1t4) € X — Ind o Y (ma).
Corollary (4.1.14)[4]:

The composition of duals to C*-correspondences coincides with the

dual of their tensor product:
Xo¥Y=XQY.

Proof: We showed in the proof of Proposition (4.1.13) that X — Ind o Y, =
(XTEO o(X®Y) —Ind and all subspaces of X ® Y ®,, H irreducible for
(X ® Y) —Ind(,)) (K (X) ® 1y)are of the form X &, H,, where T €
Yo () N(X, X) 5. Since Pxay(A) € K(X) ® 1y, the action of (X ®Y) —
Ind(r,) (@xgy(a))a € 4, coincides on X ®; Hy with X-Ind(m) (dx(a).

Thus we have
Koo Yy =(0x, o X—1Ind) oYy =0xgy,c XQY) —Ind =X®Y,.

Let X be a product system over P. By Corollary (4.1.14), the family
{)?p}pepofdual maps to C*-correspondences X,,,p € P, forms a sernigroup

of multivalued maps on A, that is

~

X, =id, and X, o X, =X,,, p.q€P.

If A is liminal then these mnutivalued maps are continuous by Proposition
(4.1.12).




Definition (4.1.15)[4]:
We call the semigroup X := {X,},ep dual to the product system X.

We prove certain technical facts concerning the interaction among

Cuntz-Pimsner representations, dual maps and the process of induction.

Lemma (4.1.16)[4]:

Let X be a product system over a left calculative semi group P. If

p,q,s € Paresuchthats > p,q, then

Rg-1eX5h, = [Xg —Ind]™* o 505 o [X, — Ind].

Proof: ~ Applying Proposition (4.1.13) t0 Y =X,-1,X = X,andY =
X,-15,X = X, , respectively, we get

[X, — Ind]|X-1s = $[X; — Ind] and [X, — Ind]X ;1. = §[X; — Ind].

As [X, — Ind] and [X, — Ind]arehomeomorphisms, this is equivalent to

~

Rp1s = [X, — Ind] " S[Xs — Ind] and K-,

pls

=[x, — Ind]_lef,[Xs — Ind],

and the assertion follows.




Lemma (4.1.17)[4]:

Suppose Y is an imprimitivity Hilbert A-B-bimodule and (74, 7wy, 5)
is its representation on a Hilbert space H. Thus m,:A - B(H), 5. B —

R(H), are representations and with the map 7. Y — R(H) they satisfy
na(a)my (y)mp(b) = my(ayb), my (x)my ()" = ma(A(x, y)),
my(x)*my (y) = mp({x,y)B),

a €EAbe B,x,y € Y. If mis an irreducible subreprsentation of mzthen
the restriction p(a) = my(a)l.,yu,, Yields an irreducible sub representation

of m, such that [p] = [Y — Ind(m)].

Proof: Let it m < my be a representation of B on a Hilbert space H, C
H.The Hilbert space my(Y)H, c H is invariant for elements of m,(A4)and
therefore p(a) = m4(a)lr,v)n, - a € A defines a representation of A. Since

n 2

> ek

i=1

= z (my (V)i oy (v ) = z CEACAALY

ij=1 Lj=1

n
z yi Qr h;
im1

the mapping ny(y)h» y @, h,y €Y, h € H,, extends by linearity and

2

continuity to a unitary operator V: wy(y)H, - Y ®, H,, which intertwines

p and Y-Ind(m) because

Vp(a) my(y)h = Vry(ay)h = (ay @7 h) = Y — Ind(m)(a)V my (y)h.




Accordingly, if & it is irreducible then p, being unitary equivalent to the

irreducible representation Y-Ind(m), is also irreducible.
Lemma (4.1.18)[4]:

Suppose Y is a Cuntz- Pimsner covariant representation of a regular’
product system X Over p on a Hilbert space H. Let p,q € P and let = he an

irreducible summnand of ,3(@ acting on a subspace K of H. Then the

restriction

m,(T) = PP (a)| T € K(Xp), (16)

W (Xp)wg (Xg) K’

yields a representation m,: K(X,,) — R(y, (X, ),(X,) K ) which is either

zero or irreducible. and such that

[7,] = [(X, — Ind)((X, — Ind) ™ (7))].

Proof: The dual C*-correspondence Xq to X, is an imprirnitivity (X,, X;), —

K(X,)-bimodule and (e, Pq, P P), where P, (b(x)) =, (X)*, is its
representation. Thus, by Lemma (4.1.17), the restriction 1m.(a) =

lpe(a)|¢q(xq)*1< ,a € A yields an irreducible subrepresentation m,:A —
B(y(X,) K ) of 1, such that [w,] = [X, — Ind()] = [X, — Ind~(x)],
if ,((X,,X,)4) = O, then (16) is a zero representation. Otherwise we may
apply Lemma (4.1.17) to m, and the representation (P, 4, 1,) of the
imprimitivity K(X;) — (X, X,)4-bimnodule X,. Then we see that (16)
yields an irreducible representation such that [m,] = [X, — Ind(m.)] =

[X, — Ind (X, — Ind)~(7))].




Section (4.2): A Uniqueness Theorem and Simplicity Criteria

for Cuntz-Pimsner Algebras with Applications

We consider a directed, left cancellative semigroup P and a regular
product system X over P with coefficients in an arbitrary C*-algebra A. We
recall from Theorem (4.1.7) that the Cuntz-Pimsner algebra Oyis graded

over the enveloping group G(P)with fibers

(0x)g = span{jx(x)jx(¥)" : x,y € X, [d(x).d(y)] = g}, g€ G(P).

Moreover, Oy may be viewed as a full cross-sectional algebra
C*({(Ox) g}gecpy) Of the Fell bundle{(Ox)g4}gecp). and the reduced

Cuntz—Pimsner algebra
0)7; = C;‘k ({(OX)g}gEG(p))

is cletined as the reduced cross-sectional algebra of {(Ox)4}gecp). There

exists a canonical epimorphsmn
A:0x - Oy. (a7)

This epimorphism may not be injective. However, A is always injective
whenever the group G(P)is amenable or more generally when the Fell

bundle {(Ox) 4}4ecmyhas the approximation property be defined.

By now, several conditions implying amenability of the Fell bundle

{(Ox) g}gecpyare known. That is, conditions which guarantee the identity

Ox = O%. These conditions seem to be independent of aperiodicity we want

to investigate, and thus we decided not to assume any of them. Accordingly,




we seek an intrinsic condition on the product system X (or on the dual
sernigroup X) which would guarantee that every Cuntz-Pimsner
representation of X injective on the coefficient algebra A generates a C*-
algebra lying in between Oy and 0Oy. Before proceeding further, we

summarize a few known facts useful in the aforementioned context.
Proposition (4.2.1)[4]:

Suppose that ¥ is an injective Cuntz-Pimsner representation of a

regular product system X. Consider the following conditions:

()  The canonical epimorphism [[,: Oy — C*(¥ (X)), where ix(x) =
Y(x),x € X, isanisomnorphism.

(i) There is a coaction Sof G = G(P)on C*(yY(X)) such that
B () = P(x)®ig(d(x)),x € X

(iii) There is a conditional expectation Ey, from C*(y(X))onto
Fy = span{p(x)P(y)” : x,y € X, d(x)~d(y)}
vanishing on elements ¥ (x)y (y)*with d(x) ~ d(y).

We have the implications (i) = (ii) = (iii), and (iii,) is equivalent to
existence of a unique epimorphism my: C*(W (X)) —» Oxsuch that the

following diagram

1, T
Ox —=C*(¥(X)) —= 0% (18)
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Is commutative. In particular, if the epimorphism A from (17) is an

isornorphisrn, then the conditions (i), (ii) ,(iii) areequivalent.

Proof: Implication (i) = (ii) is obvious because we know that Oy is
equipped with the coaction in the prescribed form. Suppose (ii) holds. Using
the contractive projections onto the spectral subspaces for the coaction g,
and the fact that elements of the form ¥(x)y(y)* span a dense suhspace of
C*(Y(E)), Lemma (4.1.6), we get

[C*(@)]] = fc € C*WW): B(e) = cBis(9)} = SFAREPCPG)’
 [d(). d)] = g}

In particular, the projection onto [C*(l/)(X))]f = Fy, is the conditional
expectation described in (iii). If we assume (iii), then {TTy, ((Ox)4)}gec i
a Fell bundle which yields a topological grading of C*(l/)(X)). Hence by [4]
there exists a desired epimorphism m,: C* (¥ (X)) — O%. Conversely, if such
an epimorphism m,: C*(¥ (X)) — Oy exists, then composing it with the
canonical conditional expectation on Oy one gets the conditional expectation

described in (ii).

Definition (4.2.2)[4]:

We say that a representation y¥: X — B of a product system X is
topologically graded if it has the property described in part (iii) of
Proposition (4.2.1).




Thus, to conclude our discussion, by uniqueness theorem for Oy we
understand a result which guarantees that for every injective Cuntz-Pimsner

covariant representation y of X there is a map my,, making the diagram (18)

commutative. By Proposition (4.2.1), this is equivalent to Y being
topologically graded. We now introduce a dynamical condition which entails

such a result.
Definition (4.2.3)[4]:

We say that a regular product system X, or the dual semnigroup
{)?p}pep, is topologically a periodic if for each nonempty open set U € A
each finite set F € P and element g € P such that g g p for p € F, there
exists a [m] € U such that for some enumeration of elements of F =
{p1,...,ppyand some elements sy,...,s, € P with ¢ < s; <...< s, and

p; < s; We have

[n] ¢ Xq—mi (Xz:i—llsi ([n])) foralli = 1,...,n. (19)

Proposition (4.2.4)[4]:

If condition (19) holds for some sequence q < s; <...< sythen it

also holds for any sequence g < s; <...< s,such that

Moreover , we have the following.

(i) If (G(P), P) is a quasi-lattice ordered group then in Definition

(4.2.3) one can always take

()




S1=p1V q and s; =p;Vsi_y foralli= 2,...,n

(i)  Topological aperiodicity of X implies that for any open nonempty
set U € A and any finite set F € P such that p g e for p € F,

there is a [] € U satisfying

[7] ¢ X,([x]) forallp €F. (20)

If (P, <) is linearly ordered then the converse implication also holds.

(iii)  In the case of a product system {X®"} .y arising from a single
regular C*-correspondence X, the topological aperiodicity is

equivalent to that for each n > 0 the set
E, ={[r] € A: € X*([n])}

has empty interior. (In this case we will say that the

C*-correspondence X is topologically a periodic.)

Proof: Let us notice that if q,p; <s; <s;, then using the semnigroup
property of X (Corollary (4.1.14)), surjectivity of mappings )?p,p €EP
(Proposition (4.1.12)) we get

~

-1
A c—1 A A A
R e oY =% 1008 ,4 o(X_lroX_l)
Si ;S a -s; s{ s b S s{ s

o X _ 22X 100 X -
Di Lsi q's; p; Lsi

— 74 v—1
=X, -170 X ,-15; 0 X 24
Si S s{ s

Hence [r] & X ;-1 ()?Z:lflsi ([x]) implies [x] ¢ )?q_lsir()?;_llsi ([x])). This

proves the initial part of the assertion.

(12




Ad (i). It follows immediately from what we have just shown.

Ad (ii). If F = {py,...,pn} S Pand p +5 e for all p € F, then putting g =
e we see that topological aperiodicity of X implies that for any nonempty
open set U < A there are elements s4,...,s, € P,p; < s;,i = 1,...,nand a

point [rt] € U such that
(7] & Rgmss, (Z5rk, (I2D) = R, (234, (D)) foralli=1,...n.

- . . P 5—1 < Py
By the inclusion noticed above we have X, ° X, = Xp, © Xg-15, ©

X715, 2 Xp, and thus condition (20) follows.

Conversely, suppose (P,<) is linearly ordered and the condition
described in (ii) is satisfied. Let U < A be open and nonempty, F < P finite
and g € P such that g »g p for p € F. Enumerating elements of F =

{p1,....pn} € P inalion-increasing order we have
P1SDP2 S SPkySqSPrgt1 S S Pn
for certain k, € {0, 1,...,n}. Defining

.__{q, I <k
St Ty iz kg +1

we see that, g < s; <...< s, and




Put F:{p;'q:i=1,. ko}U{qglp; :i=ky+1,...n}and note that
p +g e forall p € F'. Thus we may apply condition described in (ii) to F’

and then we obtain a [rr] € U satisfying (19).

Ad (iii). By part (ii) above, topological aperiodicity implies the condition
described in (iii). To see the converse, again by part (ii), it suffices to show
(20) for a finite set F < N\ {0}. The latter follows from condition described

in (iii) applied to n = m! where m = max {k: k € F}.
Theorem (4.2.5)[4]:

(Uniqueness theorem).Suppose that a regular product system X is
topologically aperiodic. Then every injective Cuntz-Pimsner representation
of X is topologically graded. if the canonical epimorphism X : Oy — O is

injective then there is a natural isomorphisrn

Ox = C*(Y(X))
for every injective Cuntz-Pimsner representation yof X.

Proof: Suppose that ¥ is an injective Cuntz-Pimsner representation of X in a
C*-algebra B. Then ¢ : k(X,) > B is injective for all p € P. Let us

consider an element of the form

PD(s,) + z ¥p.q(Sp.a)

pPEF

where ¢ € P,F S P is a finite set such that p g e forall p € F, and S, €

k(Xq) Spq € k(X4 X,). By Lemma (4.1.6) part (iii), such elements form a




dense subspace of C*(y(X)). Thus existence of the appropriate conditional

expectation will follow from the inequality

a1l = @I <[4 (5) + Y bpalSoa)]| @D

PEF

To prove this inequality, we fix € > 0 and recall that for any a € A the
mapping A 3 [z] — ||n(a)|| is lower semicontinuous and attains its
maximum equal to |lall, [4]. Thus, since X, — Ind: 4 - k(X)is a

homeomorphism, we deduce that there is an open nonemnpty set U € A
such that

||Xq — Ind(n)(Sq)“ > ||Sq|| —¢ for every [n] € U

Let F = {p,,...,p,}. By topological aperiodicity of X, there are elements
S1,..,Sp €EP such that g <s; <...<spand p; <s;,i = 1,...,n, and
there exists a (i) € Usatisfying (19). Let us fix these objects.

We recall that if p<s, then i$(k(X,))<S k(X;) and thus
% p

Y ®) (k(Xp)) c Y (k(X,)), ¢ cf. Lemma (4.1.5). In particular, we have

the increasing sequence of algebras

Y@ (k(x,)) € w6 (k(Xs,)) € - € p& (k(xs,)) € C*(W(X)).

We construct a relevant sequence of representations of these algebras as

follows. We put

(129)



vy @ (k(Xq)) - R(H,) definedas v, (l/)(q)(S)) = X, — Ind(r)(S)

Then v, is an irreducible representation because so is m. We let
TRRTASY (k(XSl))—NS(HSl) to be any irreducible extension of v,
andfori = 23,...,nwe take v (k(XSi))ﬁB(HSi) to be any

irreducible extension of v,,__ . Finally, we let v: C*(l/)(X)) — R(H) to be any

extension of v. . In particular, we have
Sn

Let P, € B(H) be the projection onto the suhspace H,. Clearly

|2 (¥ (5)) | = [|va (92(80) ) || = 1Xq = 1nd@ ()1 =[Sl ~ ¢

and as eis arbitrary we can reduce the proof to showing that

P (lpp,q(Sp’q)) P,=0 forp€F. (22)

To this end, we fixa p; € F. Let P, be the projection onto Hy, and consider

the space

Hp, = v(¥p, (Xp,)¥q (Xq)*)Hq

We claim that P H,, = {0}. Since H, < H,, this implies (22) and finishes
the proof. Suppose to the contrary that P H, # {0} By Lemma (4.1.18) and

the definitions of v and H,,, the mapping




k(Xp,) 25 > v (W®(S)|

b
is an irreducible representation equivalent to X;, - Ind(x). In particular, H,, is
irreducible for v (1/)(1’9 (k(Xpi))). Since

v (¢<m> (k(Xpi))) cv (¢<Si> (k(XSi))) and p;, € v (¢<Si> (k(XSi))) |
we see that P, H,, is an irreducible subspace for v (w(pi) (k(Xpi))). Thus,

since H, and P H,, are both irreducible subspaces for v (w(pi) (k(Xpi))),

either H,, = P H, or H, L1 P H, . However, (as P; H, + {0}) the latter is

clearly impossible. Thus H,,. < H,, and denoting by g, the representation

k(X)) 35 Sv (w2©)|.

pi

—-1
we get [, ] € L;ll ([Xp, — Ind(m)]) . Denoting by 7, the representation

k(Xg) 35 v (¥@()|

q

we have [rr,] € LE‘([nsi]) and 7, = X, — Ind(rr). Hence we get

[r] = (%, — Ind) ™" ()] € [Xq — Ind=*] (&5 ([, 1))

c X, - Ind‘l]([j‘(t/f,\‘l_l([Xpi — Ind(m)])))

Thereby in view of Lemma (4.1.16) we arrive at
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[7] € Xg-15, (X, 215 )([n])
which contradicts the choice of 7.

As an application of Theorem (4.2.5), we obtain simplicity criteria for the
reduced Cuntz- Pimsner algebra Oy To this end, we first introduce the

indispensable terminology.
Definition (4.2.6)[4]:

Let X be a regular product system over a semigroup P with coefficients
in a C*-algebra A. We say that an ideal J in A is X-invariant if and only if

for each p € P the set
X, '(J):= {a € A: (X, aX,), € J}

Is equal to J. We say Xis minimal if there are no nontrivial X-invariant ideals

in A, that is if for any ideal J in A we have
(vp e P)X,' () =] =] ={0} or]=A4
Theorem (4.2.7)[4]:

(Simplicity of O%) If a regular product system X is topologically a periodic

and minimal, then Oyis simple.

Proof: Supposel is an ideal in 0% and put J = (L) )nA={a€
A:jx(a) € I}. Then J is an ideal in A. We claim that J is X-invariant.

Indeed, for p € P we have




(X IX00a) = 75 (X%,) 150X, = 75 (%) %0 (X,) € 1

That is (X,,/X,), €] and hence J ngl(/). Onthe other hand, if a €
X, 1(J). then we have

0,(a) = z Ox,y.j; Where x;y; € X, and j; €].
i

Since jy : X — Oy is Cuntz-Pimsner covariant, we get
J}E(a) = j;(p) (Q)P(a)) = zj)?(p)(@xi,yi,ji) = ZJ)TE(XL)];(yu]l)*
i i

= > RGN €1

Thus Xgl(l) C J and this proves our claim. In view of minimality of X,
either J = Aor | = {0}. In the former case, Oy = C*(jx(X)) = Ibecause
Jx(Xp)= jx(AX,)= jx(A)jx(X,) € I for each p € P. In the latter case, the
composition of jy : X - Oxwith the quotient map 6: 0y — 0x/1 yields a
Cuntz Pimsner representationk,: =6 o jy of X in Ox/I which is injective

on A. Thus by Theorem (4.2.5) we have an epimorphism
T[kX: 0;/1 - 0;

such  that 7, (q(jx(x)) = jx(x).x € X.Hence j;(x)nI = {0}and
therefore I = {0}.

Schweizer found a necessary and sufficient condition for simplicity of

Cuntz-Pimsner algebras associated with single C*-correspondences,




improving similar results. Namely, if X is a left essential and full C*-
correspondence with coefficients in a unital C*-algebra A, then Oy is simple
if and only if X is minimal and nonperiodic, meaning that X®" ~ 44,

implies n =0, where = denotes the unitary equivalence of C*-
correspondences. This result suggests that topological aperiodicity of a
product system X should imply nonperiodicity of X, and this is indeed the

case.
Proposition (4.2.8)[4]:

Suppose that X is a topologically a periodic regular product system over a
semigroup P of Ore type. Then X,, ~ X, impliesp ~g e, and if in addition
(G(P),P) is a quasi-lattice ordered group, then X -1,yq) & Xp-1pvg)
impliesp = gq.

Proof: In view of Proposition (4.2.4) parts (i) and (ii), it suffices to note that
X, = X,implies that [r] € X,(X;*(xr)) for all [x] € A . To this end, let
V: X, = X,bea bimodule unitary implementing the equivalence X, =~ X,.

Let [z] € A be arbitrary and take any [p] € X;1 ([z]) (such p exists

because X,,is surjective). In other words, [r] < [X, — Ind(p)  @,]. Then V

gives rise to a unitary map
V:X,®,H, »X,®,H,, suchthat V(x®h) = (Vx)® h.

Indeed, this follows from the following simple computation:




n 2

z x;®h;

i=1

= z (xi®phi,x]'®phj) — z (hup((xl’x])A)h])

i,j=1 i,j=1

= z (hi, p((Vx;, V) a) ) = z ((Vx)®,hi, (Vx))®,h;)
ij=1 Lj=1

n 2

Z(in)®phi

i=1

where x; € X, h; € Hy,i = 1,...,n. Since V is a left A-module morphism,
we see that ¥ establishes a unitary equivalence between X, — Ind(p) o
@pand X, — Ind(p) o @,. Hence we have both [] < [X,; — Ind(p) o @]
and [rr] < [X, — Ind(p) ° @,].

We give several examples and applications of the theory developed
above. We discuss algebras associated with saturated Fell bundles, twisted C
*-dynamical systems, product systems of topological graphs and the Cuntz

algebra Qy.

We consider a regular product system X over a semigroup Pof Ore
type, with the additional property that each C*-correspondence X,,,p € P, is
a Hilbert bimodule equipped with left A-valued inner product p(:). X, <
X, — A. We call such an X regular product system of Hilbert bimnodules.
With help of for instance, one can show that a regular product system is a

product system of Hilbert bimodules if and only if each left action

homomorphism @,,: 4 - K(X,,) is surjective. In this case,@,: 4 - K(X,) is

an isomorphism and




plx,y) = 0,(0,,), xyE€EX,

The following Proposition (4.2.9) gives another characterization of regular

product systems of Hilbert bimodules in terms of the Fell bundle structure in

Oy identified in Theorem (4.1.7) above.
Proposition (4.2.9)[4]:

A regular product system X over a semigroup P of Ore type is a product
system of Hilbert bimodules if and only if the algebra of coefficients

Aembeds into Oy as the core subalgebra (Ox)e.), that is

jX(A) = (OX)[e,e]

In this case, each space X,. embeds into Oy as the fiber (Ox)ppe In

particular, jx(X,) = (Ox)pp.e] forall p € P. and
(OX)[p,q] = span {jx(x)jx(y)":x € X,y € Xq}, p.q €P. (23)

Proof: If all the maps @,:A4 — K(X,)are isomorphisms, it follows from
Lemma (4.1.2) part (ii) that all the maps &% K (X4, X,) = K(Xgr, Xpr)

are (Banach space) isomorphisms. Hence
lim K(Xqr Xpr) = ¢pq (K(Xq’ Xp))

where ¢, , denotes the natural embedding of K(X,,X,) into the inductive

limit [im K (X4, X, ). As the isomnorphismn from Theorem (4.1.7) sends




Jx()jx()* 10 ¢,4(0,,),x € X,,y € X,, we get [4]. In particular, we
havejx (4) = (Ox)[e,e-

Conversely, if we assume that @,:A - K(X,)is not onto for certain

p € P. Then

Gee(KA)) = 9pp (8,(0)) € 0y, (K(X,)) liM K (X, X,),
and hence jx(4) S (Ox)ie.e-
Definition (4.2.10)[4]:

A partial action of a group G on a topological space Q consists of a pair
({Dg}gec:{0g}gec), Where D,’s are open subets of Q and 6,:D4-1 —» Dy are

homeomorphisms such that

(PA1)D, =Q and 6, = id,
(PAZ)Qt(Dt—l N DS) - Dt N DtS’
(PA3) 65(0:(x)) = O05:(x),for x € Dg=1 N Dy-14-1.

the partial action ({Dy}4eq.{05}4e6) is topologicaily free if for every
open nonempty U < 2 and finite F € G \ {e} there exists . x € U such that

x € D -1implies 0,(x) = x forallt € F.
Proposition (4.2.11)[4]:

Suppose X is a regular product system of Hilbert bimodules and the

underlying semigroup P is of Ore type. The formulas




Digp1 = Xq((Xﬁp)p)’
Rpq(lr]) =%, X7 (Ix]), [l € Dygpy.p.q € P,

yield a well defined family of open sets {Dg}gEG(P)and homeomorphisms

X,:D;t - D, such that ({Dg}g ) is a partial action of

eG(P)’ {Xg}gEG(P)
G(P)on A. Moreover,

(i) {Xg}geG(P) is a semigroup dual to {(Ox) s}gec(p). Where we treat

{(0x)g}gecryasa pruduct system, and Xjare viewed as

multivalued maps on A with X, (A\D,-1) = {¢}

(i)  We have the following implication:

({Dg}gEG(P)’ {Xg}gEG(P)) is topologically free

= Xis topologically aperiodic, (24)

and if P is both left and right Ore. (so for instance it is a group or a
cancellative abelian semi group) then the above implication is

actually an equivalence.

Proof: Tobegin with, let us note that for an ideal linA and p € Pwe have
Xp(1) = oL %), X5 (1) = (X, TR )p) (25)

Now, let [x] € A and r € Pbe arbitrary. Natural representatives of the

classes X,X;* ([r]) and X, X;;* ([7]) act by multiplication from the left on

the spaces




Xp®Xq®ﬂHﬂ;; Xpr®er®ﬂHﬂja
respectively. The obvious C*-correspondence isomorphisms
X0 ®Xyr = X,0(X,0X,)®X, = X,0AQX, = X,®X,

yield a unitary equivalence between the aforementioned representations.
Hence X, X, ([n]) = X, X5 ([7]) and thus X,X;* does mint depend on
the choice of represen tative of [p, q]. It follows from (25) that the natural
domain of X,X;' is X,({X,, X,),)which coincides with the spectrum
of (X4 (X, Xp)p, Xg). This shows that the formulas above indeed define

homeomorphisms X,;: D,-1 = Dy, g € G(P).

Condition (PAI) is obvious. To show (PA2), let t = [t;,t;],s =
[s,s,] and r > t,,s,. Putting q = t,;(t;r),p = s,(s{'r), we have t =

[t.(t51r), t, (5 )1 = [q,7]  and s = [sy(s7r),s5(s7tr)] = [r,pl.
Hence

2:(D5) = Rig(Pprg1) = 2%t (£ (Ppegn)) = Xg (Do) 0 De).

On the other hand, since st = [t;,t,]o [s1,s,] = [t,(t;17r),s,(s7tr)] =

[q, p], we have
Dis N Dy = Digp1 N Digr) = XAq(D[e,p]) N XAq(D[e,r]) = XAq(D[e,p] N D[e,r])'

This proves condition (PA2).




To show (PA3), let t = [t;, t,], s =1[sq,s,], r > t;,5, and [r] € Di-1 N
Di-15-1. Then a natural representative of X .([T]) = Xis, s 1ot t,1([M]) =

Py

X o1 rXe -1 ([1]) acts by left multiplication on the space

S1S2 7 I' 'tty

X 55 ® thtl_lr®ﬂHﬂ = X, ®X52-1r®)?t1_1r®)?t2 ®,H,

Similarly, a representative of X (Xt([n])) = (Xs, e X5} o X, o X5 1)([n]) acts
by left multiplication on the space

X, @ X, @ X, @ X¢, r Hy.

The latter can be considered an invariant subspace of the former with help of
the following natural isomorphisms of C*-correspondences:

Xs, ®Xs, ®X¢, ®X;, = X, ®Xs, @(X, ®X, ) ®X, ®Xy,
= Xs, (Xs,: Xs, )Sz®xsglr®itzlr®(xtl, Xe, e, Xt,-

By the choice of [r] and property (PA2), we see that X, X, ([7r]) is nonzero

and thus equals X,.([r]), as irreducible representations have no non-trivial

subrepresentations.

Ad (i). This follows from our description of )?[p’q]and the form of

Opp.qr9iven in (23).

Ad (ii). Implication (24) is straightforward. For the converse, let us
additionally assume that Pis right cancellative and right reversible (then Pis
both left arid right Ore). Take any g;,.,9,» € G(P)\{[e e]}. Using left
reversibility of Pwe may represent these elements in the form g, =

[t,r]....,9, = [t,1, ], where t,ry,...,1;, € Pandt #r; fori=1,...,n.




By right reversibility of P, one can inductively find elements

d1,.--.qn: P1,-- -, Py, € Psuch that

qit = pi1y.
q2q1t = P2P172,
Qn - G2q1t = Py . P2D1Th

Then defining
@ =qn--q, S=qt and p;=Qqu...qqpi--p1 for i=1,...n,

wegetS = pr;andp;, #qfori = 1,...,n. Hence ¢1s = tand p;'s =
r; foreveryi= 1,...,n. Thus
Xgi = X[fﬂ‘i] = Xf)?r_il = Xq_ls)?z:.'lls

1

Since X, -1.X° 4, =X
q D; [

1

q-1sp;1s] does not depend on the choice of s =

q.p;, we see that the aperiodicity condition applied to g and

p1.- .., pnYyields the topological freeness condition for q4,..., q,.

We do not know if the converse to implication (24) holds in general.
Nevertheless, applying Proposition (4.2.1) and Theorems (4.2.5) and (4.2.7),

we obtain the following.
Corollary (4.2.12)[4]:

Suppose {Bg}gEGis a saturated Fell bundle. Treating its fibers as
imprimitivity Hilbert bimodules over B,, the dual semigroup {Bg}gEG is a

group of genime homeomorphisms of B,.




(i) The action {Bg}gEG is topologically free if and only if the product
system X = [[,¢c B, is topologically aperiodic. If this is the case,

then every C*-norm on @ [[,c¢ B, is topologically graded.

(if) If the action {Bg}gEGis topologically free and has no invariant non-

trivial open subsets then the reduced cross-sectional C*-algebra

C;‘({Bg}gEG ) is simple.

Suppose «a is an action of a semigroup P by endomorphisms of A such
that each, ag, s € P, extends to a strictly continuous endomorphism a; of
the multiplier algebra M(A). Let w be a circle-valued multiplier on P. That

iISw:P x P — Tissuch that

ol qQw(pqr) = w(p,qr)wlq,r), pqr € P.

Then (4, a,P,w) is called a twisted semigroup C*-dynamical system. A
twisted crossed product A %, ,, P, is the universal C*-algebra generated by
{is(a)ip(s) : a € A,s € P}where (i4,i,) is a universal covariant
representation of (4, P,a,w). That is, iy: A > A X,,Pis a

homomorphism and {ip(p) : p € P}are isometrics in M(4 %, ,, P) such that

ip(0)ip(q) = w(p, Qip(pq) and ip(pP)is(a)ip(P)* = is(ay(a)),

for p,q € P and a € A. A necessary condition for i, to be injective is that
all endomorphisms a,,p € P, are injective. We apply Theorem (4.1.7) to
show that when P is of Oretypethis condition is also sufficient. Additionally,

we reveal a natural Fell bundle structure in 4 <, P.




We associate to (4, a, P, w) a product system X = [[,ep-r X,0ver the
opposite semigroup P°? We equip the linear space X, := a,(A)A with the

following C*-correspondence operations
a-x = ay(a)x, X a = xa, (x,y)p, = x"y,
a € A x,y € X,. The multiplication inX is defined by
Xy = map(x)y,for x € Xy, =ap(A)Aandy € X; = aq(A)A.

X is a product system and the left action of A on each of its fibers is by
compacts. Accordingly, X is a regular product system if and only if all the
endomorphisms «,,p € P, are injective. Moreover, there is an

isomnorpinsm

given by the mapping that sends an element ip(p)*is(a) € A %, P to the
image of the element a € X, = a,(4)A in Ox. Using this isomnorphisrn

and Theorem (4.1.7) one immediately gets the following.
Proposition (4.2.13)[4]:

Suppose that (4, a, P, w) is atwisted semigroup C*-dynamical system,
where P is of Ore type and all the endomorphisms a,,p € P, are injective,

Then the following hold.

(i) The algebra A embeds via i, into the crossed product A x4, ,, P.




(if) The crossed product A < ., P is naturally graded over the group of

fractions G(P) by the subspaces of the form
B, = span{ip(p)*ia(a)ip(q): a € a,(A)Aa,(A) [p.ql =g}, g e€G(P).

Morvover A x,, P can he identified with the cross-sectional

C*algebra C*({By}gea(r))-

We keep the assumptions of Proposition (4.2.13). It is natural to define
a reduced twisted crossed product A < , P to be the reduced crosse
sectional algebra of the Fell bundle {B;}secp). L€t A: AXy, P -

A %, P be the canonical epimorphism, and

I == kerA.
We wish to generalize the main results to the case of twisted semnigroup
actions. Let X be a product system associated to (4, a, P, w)as above. One
can see, cf., for instance, that a fiber X,,,p € P, is a Hilbert bimodule if and
onlyif the range of a,, is a hereditary sub algebra of A. If this is the case,

then a,, (A) is a corner in A:
ay(A) = ay(A)Aa,(4) = a,(1)Aa,(1),
and the left inner product in X, is defined by

oY) = apytxy?),  xy€X,= a,(A)A
The spectrum of &, (A) can be identified with an open subset of A. Then the

homeomorphism &, a,(4) - A dual to the isomorphism ay. A -




a,(A)can be naturally treated as a partial homeomorphism of A. The
following Lemma (4.2.14) is based dealing with interactions on unital

algebras.
Lemma (4.2.14)[4]:

If the monomorphism «,, has a hereditary range, then the

homeomorphisms &,: a,(4) - A and X,:(X,,X,), - A coincide.

Proof: With our identifications, we have
@, () = {[n] € 4:7 (a,(4)) # 0} = (X, Xp)p

Let 7w : A — 3(H) be an irreducible representation such that 7 (ap(A)) + 0.

Then @, ([n])is the equivalence class of the representation mo a,:A —

& (m (ap(4)) H). Since m(t,(4)) H = m(a,(A)A)H and

HZal@nhi 2 _ z(hiaﬂ(a?aj)hj)p = Hzn(ai)hj
i T i

a; € X, = a,(A)A h; € H i =1,..,n, we see that a®, h —» m(a)h yields
r — %

2

a unitary operator U : X,®n H —>T[(ocp(A)) H. Furthermore, for a €

Ab € a,(A)and h € H we have

[X, — nd(n)(Q)U*|n(b)h = X, — Ind(n)(a)b ®,h = (a,(a)b)®; h
= [U*(n oap)(a)]n(b)h.

(1)




Hence U intertwines X;, — Ind and 7 o a,,. This proves that )?p = a,.

Before stating our criterion of simplicity for semigroup crossed

products, we need to define minimality for semigroup actions.
Definition (4.2.15)[4]:

Let a be an action of a semigroup P on a C*-algebra A. We say that «
is minimal if for every ideal J in A such that a;l (J) = Jforallp e P we

have ] = A or ] = {0}.

Let us note that if X is the product system associated to a twisted
semigroup C*-dynamical system (4, a, P, w)then minimality of a in the
sense of Definition (4.2.15) is equivalent to minimality of X in the sense of
Definition (4.2.6).

Proposition (4.3.16)[4]:

Suppose (4, a, P, w)is a twisted semi group C*-dynamical system with
P of Ore type. We assume that each endomorphism «,,p € P, is injective
and has hereditary range. As above, we regard &, p € P, as partial

homeomorphisms of A. The formulas

Digpy = Bq(0p(@), (D)=, (07 (nD),  [x] € Dygpypiq € P

A

yield a well defined partial action ({Dg }gEG(P),{ag which

}gEG(P))
coincides with the partial action induced by the Fell bundle

{B, }gEG(P) described in Proposition (4.2.13) part (ii). Moreover,
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({Dg }gEG(P) : {&g}gEG(P) ) is topologically free

= {&p}pEP is topologically aperiodic,

and

(i) if the semigroup {&p}pepis topologically aperiodic, then for any

ideal I in A %, ,, P suchthat/ n A = {0} we have I C .
(i) if the sernigroup {&p}pepis topologically aperiodic and o is minimal,

then the reduced twisted crossed product A g, ., P is simple.

Proof: With the identification of A x{, , P with Oy, for each g € G(P) we
have the correspondence between (Oy), and B,. Thus Lemma (4.2.14) and
Proposition (4.2.11) imply the initial part of the assertion. The remaining
claims (i) and (ii) follow from Lemma (4.2.14) and Theorems (4.2.5) and
(4.2.7).

Let E= (E° E',s,r) be a topological graph as introduced. This
means we assume that vertex set E° and edge set ET are locally compact
Hausdoff spaces, source map s : E — E%is a local homeomorphism, and

range map r : E — E, is a continuous map.

A C*-correspondence Xy of the topological graph E is defined in the

following manner. The space X consists of functions x € C,(E*) for which

E° 3v+— z |x(e)|?
{e€eEl:s(e)=v}
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belongs to A := C,(E®). Then X is a C*-correspondence over A with the

following structure.

(x-a)(e):= x(e)a(s(e)) fore€E?,
(x, YY) a(v): = z x(e)y(e) forv € E° and
{e€ELs(e)=v}
(a-x)(e) := a(r(e))x(e) foree€E™.
C*-correspondence Xy generates a product system over N. It follows that
this product system (or simply, this C*-correspondence Xg).is regular if and

only if

r(E1)
= E% and every v E° has a neighborhood V such that »~1(V)is compact. (26)

In particular, (26) holds whenever r: E* — E° is a proper surjection. If both
E° and E? are discrete then E is just a usual directed graph and then (26)
says that every vertex in E° receives at least one and at most finitely mnany
edges (in other words, graph E is row-finite and without sources).

Accordingly , the C*-algebra of E is
C*(E):= Ox,.

Let e = (ep,...,e1),1(e;)) =s(ejy1),i =1,..,n— 1, beapath in E. Then e
is a cycle if r(e,,) = s(e;), and vertex s(e;) is called tile base point of e. A
cycle e is said to be without entries if r~1(r(ey)) = ey forallk =
1,..,n. Graph E is topologically free, if base points of all cycles without
entries in Ehave empty interiors. It is known, that topological freeness of E

Is equivalent to the uniqueness property for C*(E).




In general, topological aperiodicity of Xy is stronger than topological
freeness of E. However, when E = (E°, E°, s,id) is a graph that comes from

a mapping s : E° — E°  these two notions coincide.
Proposition (4.2.17)[4]:

Suppose Xzis a C*-correspondence of a topological graph E satisfying
(26). The dual C* -correspondence acts on E° (identified with the spectrum
of A = Co(E®)) via the formula

Xe) = r(s7'(w)). (27)
In particular,

(i) Xg is topologically aperiodic if and only if the set of base points for
periodic paths in E has empty interior;

(if) If r is injective, topological aperiodicity of Xp is equivalent to
topological freeness of E;

(iii) If E is discrete, then X is topologically aperiodic if and only if E has
no cycles, and this in turn is equivalent to C*(E) being an AF-

algebra.

Proof: We identify A with E°by putting v(a):= a(v) forv € E® a €
A = Co(E®). We fix v € E°and an orthonormnal basis {x,}.es-1(» in the
Hilbert space CS7'®I. Let us consider the representation m, = A —

R(ClsT @) given by
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,(a) = z a(r(e))x,, a € A= Cy(E®).

ees~1(v)

One readily checks that the mapping

X;®,C 3 x @, A Z x(e)x, €l @

ees~1(v)
gives rise to a unitary which establishes equivalence Xz — Ind(v) = m,,.

Furthermore, we have

{w€E%w< m,}={w€E%w=r(e)for somee € s71(v)} = r(s 1(v)).

This yields (27). Claim (i) follows from (27), part (iii) of Proposition (4.2.4)
and the Baire category theorem. Claims (ii) and (iii) are now

straightforward.
Corollary (4.2.18)[4]:

Keeping theassumptions of Proposition (4.2.17), let V € E° be closed.
Then ideal ] = Co(E°\ V) is Xg-invarant if and only if Xz (V) = V.

Proof: It is known, that ideal | = Co(E°\ V) is Xg-invariant if and only if

V satisfies the following two conditions

(i) (VeeEVs(e)eV = r(e) €V, and

(i) vevVv=@3,er (v)s(e) eV.

in view of (27), conditions (i) and (ii) are respectively equivalent to the

inclusions X (V) € Vand V € X (V).




Example (4.2.19)[4]:

(Excel's crossed product for a proper local homeomorphism).
Let A = Cy(M) for a locally compact Hausdoff space M and let a: A — Abe
the operator of composition with a proper surjective local homeomorphism
o: M — M. Then a is an extendible monomorphism possessing a natural

left inverse transfer operator L: A — A, defined by

1
@O =gy ), )

seoc~1(t)
Let X;be the C*-correspondence with coefficients in A, constructed as
follows. X; is the completion of A with respect to the norm given by the

inner-product  below, and  with  the  following  structure:

x-a =xala), (x,y)= L(x*y), a-x = ax,

where a € A, x,y € X;. Clearly, the left action of A on X; is injective. One
can also show that it is by compacts. Hence X; is a regular C*-
correspondence. It is known that is naturally isomorplic to a C*-
correspondence associated to the topological graph E = (M, M, o,id). Thus,
by Proposition (4.2.17), the dual C*-correspondence to X; acts on M,
identified with the spectrum of A = Cy(M), via the formula

X,(t) =o71(2). (28)
It is observed that

Co(M) Na’L N := OX

L




is a natural candidate for Exel’s crossed product when A = C,(M) is non-
unital. When M is compact, C(M) %, ; N coincides with the crossed product
introduced and can be effectively described in terms of generators and

relations.

Now, combining Proposition (4.2.17), we see that the following

conditions are equivalent.

(i) X, is topologically aperiodic;
(if) the set of periodic points of ¢ has empty interior;
(iii) o is topalogically free in the sense of Exel and Vershik .

(iv) every non-trivial ideal in Co(M) %, ; N intersects Co(M) non-

trivially.

Consequently, in view of Corollary (4.2.18), the crossed product
Co(M) x,, N is simple if and only if in addition to the above equivalent

conditions there is no nontrivial closed subset Y of M such that 6=2(Y) =Y.

We introduce topological P-graphs which generalize both topological
k-graphs and (discrete) P-graphs. Within the framework of a general
approach to product systems proposed, the reasoning shows that a
topological P-graph defined below is simply a product system over P with
values in a groupoid of topological graphs. In the sequel P is a semigroup of
Ore type. We treat elements of P as morphisms in a category with single

object e.




Definition (4.2.20)[4]:
By a topological P-graph we mean a pair (A, d) consisting of:

(i) a small category A endowed with a second countable locally compact
Hnusdorff topology under which the composition map is continuous
andopen, the range map r is continuous and the source map s is a

local homeomorphism;

(if) a continuous functor d: A — P, called degree map, satisfying the
factorization property: if d(1) = pq then there exist unique u, v with
d(u) =p,d(v) = qand A = uv.

Elements (morphisms) of A are called paths. AP:= d~1 (p) stands for

the set of paths of degree p € P. Paths of degree e are called vertices.

We associate to a topological P-graph (A,d) a product system inthe
same manner as it is done for topological k-rank graphs. That is, for each

p € P weletX, =X E, be the standard C*-correspondence associated to the

topological graph

E, = (Ae’AP,s|Ap,r|Ap)
so that A := Cy(A®) and X,,, is the completion of the pre-Hilbert A-module

C.(AP) with the structure

(9@ = D TG g(n) and (- f b))

neAP(v)

= a(r(A))f(D)b(s(1)).




The proof works in our more general setting and shows that the formula

(fg)(N):= f(A(e,p))g(A(p.pa))

defines a product X, x X, 3 (f,g) — fg € X,, that makes X = [[,¢p X,
into a product system. In view of (26), we see that the product system X is

regular if and only if for every p € P we have
r(AP) = Aand
every v € E° has a neighborhood V such that 7 ~1(V) n A? is compact in A?.

If the above condition holds, we say that the topological P-graph (A, d) is
regular. It follows that if (A, d) is a regular topological k-rank graph (that is,
if P = N¥), then the Cuntz-Krieger algebra of (A, d) defined coincides with

Oy Hence it is natural to coin the following definitions.
Definition (4.2.21)[4].

Suppose (A,d) is a regular topological P-graph, where P is a semi
group of Ore type. We define a C*-algebra C*(A,d) and a reduced
C*algebra C;(A,d) of (A, d) to be respectively the Cuntz- Pimsner algebra

Oy and the reduced Cuntz-Pimsner algebra 05 where X is the regular

product system defined above.
Proposition (4.2.22)[4]:

Suppose (A,d) is a regular topological P-graph. The C*-algebras
C*(A,d) and C-(A,d) are non-degenerate in the sense that they are




generated by the images of injective Guntz-Pimsner representations of X =

[l,ep X;,,. Moreover,

(i) X is topologically a periodic if and only if for every nonempty
open set U < A®, each finite set F € P and an element g € P with
q+r p for all p eF, there is an enumeration {p,,..,p,}of
elements of F and there are elements s,,..,s, € Psuch that q <

S < <5, < s, fori=1,...,n,and the union

U{v EN:uEN SipeN Sis(u)=s@)andr(w) =r(@) =v}  (29)

i=1
does not contain U.

(i)~ Xis minimal if and only if there is no nontrivial closed set V < A®
such that

r(APn s7X(V))=V forall p € P. (30)
In particular, if the equivalent conditions in (i) hold, then any non-
zero ideal in C;(A,d) has non-zero intersection with Cy(A®). If the
conditions described in (i,) and (ii) hold, then C; (A, d) is simple.

Proof: The initial claim of tins proposition follows from Theorem (4.1.7)
above. To see that the equivalence in part (i) holds, it suffices to apply

formula (27) to the C*-correspondences X,, = Xg, v € P. Similarly, using

(27) and Corollary (4.2.18), we see that X-invariant ideals inCy(A®) are in

one-to-one correspondence with closed sets V satisfying (30). This proves




part (ii). The final claim of the proposition now follows from Theorems
(4.2.5) and (4.2.7) above.

Cuntz- introduced Qy, the universal C*-algebra generated by a unitary

u and isometrics s,,, n € N, subject to the relations

(Q1)s,,5, = Spns

(02)s,,u = u™s,,, and

m—1
(Q3) z uks,sh u k=1,
k=0

for all m,n € N* Cuntz proved that Qy is simple and purely infinite. Now
we deduce the simplicity of Qy from our genergl result - Theorem (4.2.7)

above.

It was shown that Qy may be viewed as the Cuntz-Pimnsner algebra of
a certain product system. We recall an explicit description of that product

system given.

The product system X is over the seimgroup N*and its coefficient
algebra is A = C(S1). We denote by Z the standard unitary generator of A.
Each fiber X,,,,m € N™, is a C*-correspondence over A associated to the
classical covering map S'!3z - z™ e St as constructed in Example
(4.2.19). Each X, as left A-module is free with rank 1, and we
denote the basis element by 1,,, Hence, each element of X,,, may be uniquely

written asé1,, with & € A. We have

(1) -a = Sap(a)ly,
(€1mnLlmdm = Lin(§™n),




a-§ly, = (af)lma

For é,a € Athen

S
i

Xm

m e N~

becomes a product system with multiplication X,,, % X, = X,,,,- given by

(¢1,) (1) = Can(m) iy,

for m,r € N*. We have

Ox =0
Now, let E; ;i,j =0,1,...,m — 1, be a system of matrix units in M,,(C).

There is an isomorphism

C(S") ® My (C) = K(Xp)

such that

f®Eij < Ogianeyy 7 1
Thus K (X,,,) may be identified with the circle S*. With these identifications,

we have

m—2

Om(Z) = ZQ Eg -1 + z 1®Ej4,
=0

and hence the multivalued map @,,,: S* - St is such that




Pn(z) = {w € SYw™ = z}.

Furthermore, [X,, — Ind] is identified with the identity map on S, and

consequently the multivalued map X,,, = @, o [X,,, — Ind]: ST — Stis
X.(2) = {we Sw™ = z}.

For inm # nthe set {z € S|z € X.(X, (2))} is finite, while every
nonempty open subset of S is infinite. It follows that the product system X

Is topologically aperiodic.

Now, we see that A does not contain any non-trivial invariant ideals. Indeed,
suppose J is an X-invariant ideal in A. Then L,,(J) <€ J for all m € N*.
There exists an open subset U of S and a function f € J such that f >0
and f(t) = Ofor all t € U. If m is sufficiently large then for each z €
Slthere is a w € U such that w™ = z. Then L,,(f) is strictly positive onS?

and hence invertible. Since L,,(f) € J, we conclude that ] = A.
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