Chapter (3)

Homogeneous Spaces and Connectivity of Matrix Groups

Now we will discuss homogeneous spaces as manifolds.

Section (3.1): Homogeneous Spaces

Let G be a Lie group of dimension dim G = n and $H \leq G$ a closed subgroup, which is therefore a Lie subgroup of dimension dim H = k. The set of left cosets

$$\frac{G}{H} = \{gH: g \in G\}$$

has an associated quotient map

$$\pi: G \rightarrow \frac{G}{H}: \pi(g) = gH.$$

We give G/H a topology by requiring that a subset $W \subseteq G/H$ is open if and only if $\pi^{-1}W \subseteq G$ is open; this is called the quotient topology on G/H.

Lemma (3.1.1):

The projection map $\pi: C \to G/H$ is an open mapping and G/H is a topological spacewhich is separable and Hausdorff.

Proof:

For $U \subseteq G$,

$$\pi^{-1}(\pi U) = \bigcup_{h \in H} Uh.$$

Where

$$Uh = \{uh \in G : u \in U\} \subseteq G$$

If $U \subseteq G$ is open, then each Uh (h \in H) is open, implying that $\pi U \subseteq G$ is also open.

G/H is separable since a countable basis of G is mapped by π to a countable collection of opensubsets of G/H that is also a basis.

To see that G/H is Hausdorff, consider the continuous map

$$\theta: G \times G \rightarrow G; \theta(x, y) = x^{-1}y.$$

Then

$$\theta^{-1}H = \{(x, y) \in GxG: xH = yH\}$$

and this is a closed subset since $H \subseteq G$ is closed. Hence,

$$\{(x; y) \in G xG ; xH = yH\} \subseteq G x G$$

is open. By dentition of the product topology, this means that whenever x; y $\in G$ with $xH \neq yH$, there are open subsets U; $V \subseteq G$ with $x \in U$, $y \in V$, $U \neq V$ and $\pi^u \cap \pi^v = \theta$ Since $\pi^U, \pi^V \subseteq G/H$ open, this shows that G/H is Hausdorff.

The quotient map G/H has an important property which characterises it.

Proposition(3.1.2):(Universal Property of the Quotient Topology)

For any topological space X, afunction $f : G/H \to X$ is continuous if and only if $f 0\pi: G \to X$ is continuous.

We would like to make G/H into a smooth manifold so that $\pi:G \rightarrow G/H$ is smooth. Unfortunately,the construction of an atlas is rather complicated so

we merely state a general result then consider some examples where the smooth structure comes from an existing manifold which is diffeomorphic to aquotient.

Theorem (3.1.3):

G/*H*can be given the structure of a smooth manifold of dimension

$$\dim G/H = \dim G - \dim H$$

So that the projection map π :G \rightarrow G/H is smooth and at each g \in G,

$$\ker\left(d \pi :: T_{g}G \rightarrow T_{gH}\frac{G}{H}\right) = dI_{g}\mathfrak{h}$$

There is an atlas for G/H consisting of charts of the form $\theta: W \to \theta W \subseteq \mathbb{R}^{n-k}$ for which there is a diffeomorphism $\Theta: W \times H \to \pi^{-1}$ wsatisfying the conditions

W

The projection π looks like proj₁: $\pi^{-1}W \rightarrow W$, the projection onto W, when restricted to : $\pi^{-1}W$.

For such a chart, the map \ominus is said to provide a local trivialisation of π over W. An atlas consisting of such charts and local trivialisations $(\theta:W \rightarrow W \theta; \ominus)$ provides a local trivialisation of π . This is related to the important notion of a principal H-bundle over G/H.

Notice that given such an atlas, an atlas for G can be obtained by taking each pair (θ : W $\rightarrow \theta$ W \ominus)and combining the map θ with a chart ψ : U $\rightarrow \psi$ U \subseteq R^kfor H to get a chart

$$(\theta \times \psi) \circ \Theta^{-1} : \Theta(w \times U) \to \ \theta W \times \psi U \subseteq \mathsf{R}^{n-k} \times \mathsf{R}^k = \mathsf{R}^n.$$

Such a manifold G/H is called a homogeneous space since each left translation map L_{g} on G gives rise a diffeomorphism

$$\bar{L}_g:G/H \rightarrow \bar{L}_g(xH) = gxH$$

for which π o $L_g = \overline{L}_g$ o π .

$$\begin{array}{c} G \xrightarrow{L_g} & G \\ \pi \downarrow & \pi \downarrow \\ G/H \xrightarrow{\overline{L}_g} G/H \end{array}$$

So each point gH has a neighbourhood diffeomorphic under L_g^{-1} to a neighbourhood of 1H; so locallyG/H is unchanged as gH is varied. This is the basic insight in Felix Klein's view of a Geometry which is characterised as a homogeneous space G/H for some group of transformations G and subgroup H.

In the following we will discuss Homogeneous spaces as orbits.

Just as in ordinary group theory, group actions have orbits equivalent to sets of cosets G/H, sohomogeneous spaces also arise as orbits associated to smooth groups actions of G on a manifolds.

Theorem (3.1.4):

Suppose that a Lie group G acts smoothly on a manifold M. If the element $x \in M$ has stabilizer $Stab_G(x) \leq G$ and the orbit $Orb_G(x) \subseteq M$ is a closed submanifold, then the function

$$f: G/Stab_G(x) \rightarrow Orb_G(x); f(g Stab_G(x)) = g x$$

is a diffeomorphism.

Example (3.1.5):

For $n \ge 1$, O(n) acts smoothly on \mathbb{R}^n by matrix multiplication. For any nonzerovector $v \in \mathbb{R}^n$, the orbit $Orb_{o(n)}(v) \in \mathbb{R}^n$, is diffeomorphic to O(n)/O(n-1).

Proof:

First observe that when v is the standard basis vector e_n , for $A \in O(n)$, $Ae_n = e_n$ if and only if e_n is the last column of A, while all the other columns of A are orthogonal to e_n . Since the columns of A must be an orthonormal set of vectors, this means that each of the first (n-1) columns of A has the form

$$egin{bmatrix} a_{1k} \ a_{1k} \ dots \ a_{1k} \ 0 \end{bmatrix}$$

Where the matrix

$$egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n-1} \ a_{21} & a_{22} & \cdots & a_{2n-1} \ dots & dots & \ddots & dots \ a_{n-11} & a_{n-12} & \cdots & a_{n-1n-1} \end{bmatrix}$$

is orthogonal and hence in O(n-1). We identify O(n-1) with the subset of O(n) consisting of matrices of the form

_

$$egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n-1} & 0 \ a_{21} & a_{22} & \cdots & a_{2n-2} & 0 \ dots & & \ddots & & 0 \ a_{n-11} & a_{n-12} & \cdots & a_{n-1n-1} & 0 \ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

and then have $Stab_{O(n)}(e_n) = O(n-1)$. The orbit of e_n is the whole unit sphere $S^{n-1} \subseteq R^n$ since given a unit vector u we can extend it to an orthonormal basis $u_1, \dots, u_{n-1}, u_n = u$ which form the columns of an orthogonal matrix $U \in O(n)$ for which $Ue_n = u$. So we have a diffeomorphism

$$O(n)/Stab_{O(n)}(e_n) = O(n)/O(n-1) \rightarrow Oeb_{o(n)}(e_n) = S^{n-1}.$$

Now for a general nonzero vector v notice that $\text{Stab}_{O(n)}(\hat{v}) = \text{Stab}_{O(n)}(\hat{v})$ where $\hat{\mathbf{v}} = (1 = /|\mathbf{v}|)\mathbf{v}$ and

$$Orb_{O(n)}(v) = S^{n-1}(|v|),$$

the sphere of radius |v|. If we choose any $P \in O(n)$ with $\hat{v} = Pe_n$, we have

$$\operatorname{Stab}_{O(n)}(\mathbb{V}) = \operatorname{P} \operatorname{Stab}_{O(n)}(e_n) \operatorname{P}^{-1}$$

and so there is a diffeomorphism

$$Orb_{O(n)}(\mathbb{V}) \rightarrow O(n)/P O(n/1)P^{-1} \xrightarrow{x_{p-1}} O(n)/o(n-1)$$

A similar result holds for SO(n) and the homogeneous space SO(n)= SO(n-1). For the unitaryand special unitary groups we can obtain the homogeneous spaces U(n)/U(n-1) and SU(n)/SU(n-1)as orbits of non-zero vectors in C^n on which these groups act by matrix multiplication; these are all diffeomorphic to S²ⁿ⁻¹. The action of the quaternionic symplectic group Sp(n) on H^n leads to orbits of non-zero vectors diffeomorphic to Sp(n)/Sp(n-1) and S⁴ⁿ⁻¹.

In the following we will discuss Projective spaces.

More exotic orbit spaces are obtained as follows. Let k= R,C,H and set d = dim_Rk. Consider k^{n+1} as a right k-vector space. Then there is an action of the group of units k^x on the subset of non-zero

vectors
$$k_0^{n+1} = k^{n+1} - \{0\}$$
:

 $z. \mathbb{X} = \mathbb{X}z^{-1}$

The set of orbits is denoted kP^n and is called n-dimensional k-projective space. Projective spaces Anelement of kP^n written [x] is a set of the form

$$[\mathbf{x}] = \{ xz^{-1} : z \in \mathsf{k}^{\mathsf{x}} \} \subseteq k_0^{n+1}$$

Notice that [x] = [y] if and only if there is a $z \in k^x$ for which $y = xz^{-1}$.

Remark (3.1.6):

Because of this we can identify elements kP^n with k-lines in k^{n+1} (i.e., 1-dimensional k-vector subspaces). kP^n is often viewed as the set of all such lines, particularly in the study of ProjectiveGeometry.

There is a quotient map

$$q_n: k_0^{n+1} \to KP^n; qn(x) = [x].$$

and we give kPⁿthe quotient topology which is Hausdorff and separable.

Proposition (3.1.7):

KPⁿis a smooth manifold of dimension dim kPⁿ= n dim_R k. Moreover, thequotient map qn $k_0^{n+1} \rightarrow KP^n$ is smooth with surjective derivative at every point in k_0^{n+1} .

Proof:

For r = 1, 2, ..., n, set $kp_r^n = \{|x|: x_r \neq o\}$, where as usual we write

$$\mathbf{x} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_{n+1} \end{bmatrix}$$
. Then $kp_r^n \subseteq KP^n$ is open. There is a function

$$\sigma_{r}: KP_{r}^{n} \rightarrow k^{n}; \ \sigma_{r}(|x|) = \begin{bmatrix} \chi_{1}\chi_{r}^{-1} \\ \chi_{2}\chi_{r}^{-1} \\ \vdots \\ \chi_{r-1}\chi_{r}^{-1} \\ \chi_{r+1}\chi_{r}^{-1} \\ \vdots \\ \chi_{n+1}\chi_{r}^{-1} \end{bmatrix}$$

Which is a continuous bijection that is actually a homeomorphism. Whenever $r \neq s$, the induced map

$$\sigma_s^{-1}o\sigma_r:\sigma_r^{-1}kp_r^n\cap KP_s^n\to\sigma_s^{-1}kp_r^n\cap KP_s^n$$

is given by

$$\sigma_{s}^{-1}0\sigma_{r}(x) = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{s-1} \\ y_{s+1} \\ \vdots \\ y_{n+1} \end{bmatrix}$$

Where

$$y_i = \begin{cases} x_j x_s^{-1} ifj \neq r, s, \\ x_s^{-1} ifj = r. \end{cases}$$

These (n+1) charts form the standard atlas for n-dimensional projective space over k.

An alternative description of KPⁿis given by considering the action of the subgroup

$$k_1^x = \{z \in k^x : |z| = 1\} \le k^x$$

on the unit sphere $S^{(n+1)d-1} \subseteq k_0^{n+1}$.Notice that every element [x] $\in KP^n$ contains elements of S^n .

Furthermore, if $x, y \in k_0^{n+1}$ have unit length |x| = |y| = 1, then [x] = [y] if and only if $y = xz^{-1}$ for some $z \in k_1^x$. This means we can also view kPⁿas the orbit space of this action of k_1^x on S^{(n+1)d-1}, and we also write the quotient map as $q_n: S^{(n+1)d-1} \rightarrow kP^n$; this map is also smooth.

Proposition (3.1.8):

The quotient space given by the map $q_n: S^{(n+1)d-1} \rightarrow kP^n$ is compact Hausdorff.

Proof:

This follows from the standard fact that the image of a compact space under a continuousmapping is compact.

Consider the action of O(n+ 1) on the unit sphere Sⁿ \subseteq Rⁿ⁺¹. Then for A \in O⁽ⁿ + 1), $z = \pm 1$ and $x \in$ Sⁿ, we have

$$A(xz^{-1}) = (Ax)_z^{-1}$$

Hence there is an induced action of O(n+1) on RPⁿ given by

$$A_{\cdot}[x] = [Ax].$$

This action is transitive and also the matrices $\pm I_{n+1}$ fix every point of RPⁿ. There is also an action of SO(n+ 1) on RPⁿ; notice that $-1_{n+1} \in SO(n+1)$ only if n is odd.

Similarly, U(n+ 1) and SU(n+ 1) act on CPⁿwith scalar matrices wl_{n+1}(w C_1^x) fixing everyelement. Notice that if wI_{n+1} \in SU(n + 1) then wⁿ⁺¹= 1, so there are exactly (n+ 1) such values.

Finally, Sp(n+ 1) acts on HPⁿ and the matrices $\pm I_{n+1}$ fix everything.

There are some important new quotient Lie groups associated to these actions, the projective unitary, special unitary and quaternionic symplectic groups

$$PU(n + 1) = U(n + 1)/\{\omega I_{n+1}: \omega \in C_1^x\},$$

$$PSU(n + 1) = SU(n + 1)/\{\omega I_{n+1}: \omega^{n+1} = 1\}$$

$$PS_p(n + 1) = Sp(n + 1)/\{\mp I_{n+1}\}$$

Projective spaces are themselves homogeneous spaces. Consider the subgroup of O(n+1) consisting of elements of the form

$\begin{bmatrix} a_{11} \end{bmatrix}$	$a_{_{12}}$	•••	$a_{_{1n-1}}$	0
a_{21}	•••	·.	•.	0
	••.	•••	•.	•
$ a_{n-11} $	·.	•••	•.	0
0	0		0	±1_

We denote this subgroup of O(n+1) by $O(n) \times O(1)$. There is a subgroup $\widetilde{O(n)} \leq SO(n+1)$ whose elements have the form

a_{11}	$a_{_{12}}$	•••	$a_{\scriptscriptstyle 1n-1}$	0
a_{21}	••.	·.	•••	0
	·.	·	·.	÷
a_{n-11}	•.	·.	•.	0
0	0	•••	0	ω

Where

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n-1} \\ a_{21} & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ a_{n-11} & \ddots & \ddots & a_{n-1n-1} \end{bmatrix} \in o(n), w = det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n-1} \\ a_{21} & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ a_{n-11} & \ddots & \ddots & a_{n-1n-1} \end{bmatrix}$$

Similarly, there subground $U(n) \times U(1) \leq U(n+1)$ whose elements have the form.

$[a_{11}]$	$a_{_{12}}$	•••	$a_{\scriptscriptstyle 1n-1}$	0
a_{21}	•••	·.	·.	0
	•••	•••	·.	:
a_{n-11}	·.	•••	a_{n-1n-1}	0
0	0	•••	0	ω

and $\check{U}(n) \leq SU(n + 1)$ with elements

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n-1} & 0 \\ a_{21} & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ a_{n-11} & \ddots & \ddots & a_{n-1n-1} & 0 \\ 0 & 0 & \cdots & 0 & \omega \end{bmatrix}$$

Where

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n-1} \\ a_{21} & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ a_{n-11} & \ddots & \ddots & a_{n-1n-1} \end{bmatrix} \in U(n), \quad w = det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n-1} \\ a_{21} & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ a_{n-11} & \ddots & a_{n-1n-1} \end{bmatrix}^{-1}$$

Finally we have $Sp(n) \times Sp(1) \in Sp(n+1)$ consisting of matrices of the form

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n-1} & 0 \\ a_{21} & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ a_{n-11} & \ddots & \ddots & a_{n-1n-1} & 0 \\ 0 & 0 & \cdots & 0 & \omega \end{bmatrix}$$

Proposition (3.1.9):

There are diffeomorphisms between

- RPⁿand O(n+1)/O(n) ×O(1), SO(n+1)/ $\widetilde{O(n)}$;
- CPⁿand U(n+1)/U(n) ×U(1), SU(n+1)/ $\widetilde{U(n)}$;
- HPⁿand Sp(n+ 1)/Sp(n) xSp(1).

There are similar homogeneous space of the general and special linear groups giving these projectivespaces. We illustrate this with one example.

 SL_2 [©] contains the matrix subgroup P consisting of its lower triangular matrices

$$\begin{bmatrix} u & o \\ w & v \end{bmatrix} \in SL_2(C)$$

This is often called a parabolic subgroup.

Proposition (3.1.10):

 CP^1 is diffeomorphic to SL_2 O/P.

Proof:

There is smooth map

$$\psi$$
: SL₂© \rightarrow CP¹; ψ (A) = [Ae₂].

Notice that for $\mathbf{B} = \begin{bmatrix} u & o \\ w & v \end{bmatrix} \in p$,

$$\begin{bmatrix} u & o \\ w & v \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ v \end{bmatrix},$$

hence $[(AB)e_2] = [Ae_2]$ for any A \in SL₂©. This means that $\psi(A)$ only depends on the coset AP \in SL₂(C)/P. It is easy to see that is onto and that the induced map SL₂(C)/P \rightarrow CP¹ is injective.

In the following we will discuss Grassmannians.

There are some important families of homogeneous spaces directly generalizing projective spaces.

These are the real, complex and quaternionic Grassmannians which we now define:

Let $O(k) \times O(n-k) \leq O(n)$ be closed the subgroup whose elements have the form

$$\begin{bmatrix} A & O_{k,n-k} \\ O_{n-k,k} & B \end{bmatrix} (A \in O(k), B \in O(n-k))$$

Similarly there are closed subgroups $U(k) \times U(n-k) \leq U(n)$ and $Sp(k) \propto Sp(n-k) \leq Sp(n)$ with elements

$$U(k) \times U(n-k) : \begin{bmatrix} A & O_{k,n-k} \\ O_{n-k,k} & B \end{bmatrix} (A \in U(k), B \in U(n-k)) :$$

$$Sp(k) \times Sp(n-k) : \begin{bmatrix} A & O_{k,n-k} \\ O_{n-k,k} & B \end{bmatrix} (A \in Sp(k), B \in Sp(n-k)) :$$

The associated homogeneous spaces are the Grassmannians

$$Gr_{k,n}(\mathbf{R}) = \mathbf{O}(n)/\mathbf{O}(\mathbf{k}) \times \mathbf{O}(n-\mathbf{k});$$
$$Gr_{k,n}(\mathbb{C}) = \mathbf{U}(n)/\mathbf{U}(\mathbf{k}) \times \mathbf{U}(n-\mathbf{k});$$
$$Gr_{k,n}(\mathbf{H}) = \mathbf{Sp}(n)/\mathbf{Sp}(\mathbf{k}) \times \mathbf{Sp}(n-\mathbf{k}):$$

Proposition (3.1.11):

For k= R,C,H, the Grassmannian $Gr_{k,n}(k)$ can be viewed as the set of allkdimensional |-vector subspaces in kⁿ.

Proof:

We describe the case k = R, the others being similar.

Associated to element $W \in O(n)$ is the subspace spanned by the frst k columns of W, say w_1, \ldots, w_k ; we will denote this subspace by $\langle w_1, \ldots, w_k \rangle$. As the columns of W are an orthonormal set, they are linearly independent, hence $\dim_{\mathbb{R}}\langle w_{1}, \ldots, w_{k} \rangle = k$. Notice that the remaining (n-k) columns giverise to another subspace $\langle w_{k+1}, \ldots, w_{n} \rangle$ of dimension $\dim_{\mathbb{R}}\langle w_{k+1}, \ldots, w_{n} \rangle = n-k$. In fact these are mutually orthogonal in the sense that

$$\langle w_{k+1}, \dots, w_n \rangle = \langle w_1, \dots, w_k \rangle^{\perp}$$
$$= \{ x \in \mathbb{R}^n; x. w_r = 0, r = 1, \dots, k \},\$$

 $\langle w_1, \ldots, w_k \rangle = \langle w_{k+1}, \ldots, w_n \rangle^{\perp}$

$$= \{ x \in \mathbb{R}^n; x. w_r = 0, r = k + 1, \dots, n \}$$

For a matrix

$$\begin{bmatrix} A & O_{k,n-k} \\ O_{n-k,k} & B \end{bmatrix} \in O(k) x O(n-k),$$

The columns in the product

$$W' = W \begin{bmatrix} A & O_{k,n-k} \\ O_{n-k,k} & B \end{bmatrix}$$

Span subspaces $\langle w'_1, ..., w'_k \rangle$ and $\langle w'_{k+1}, ..., w'_n \rangle$. But note that $w'_1, ..., w'_k$ are orthonormal and alsolinear combinations of $w_1, ..., w_k$; similarly, $w'_{k+1}, ..., w'_n$ are linear combinations of $w_{k+1}, ..., w_n$.

Hence

$$\langle w'_{1}, \ldots, w'_{k} \rangle = \langle w_{1}, \ldots, w_{k} \rangle, \langle w'_{k+1}, \ldots, w'_{n} \rangle = \langle w_{k+1}, \ldots, w_{n} \rangle.$$

So there is a well defined function

 $O(n)/O(k) \times O(n/k) \rightarrow k$ -dimensional vector subpaces of \mathbb{R}^n

Which sends the coset of W to the subspace $(w_1, ..., w_k)$. This is actually a bijection.

Notice also that there is another bijection

 $O(n)/O(k) \times O(n-k) \rightarrow (n-k)$ -dimensional vector subpaces of \mathbb{R}^n

Which sends the coset of W to the subspace $\langle w_{k+1}, ..., w_n \rangle$. This corresponds to a diffeomorphism $Gr_{k,n}(\mathbb{R}) \to Gr_{n-k,n}(\mathbb{R})$ which in turn corresponds to the obvious isomorphism $O(k) \times O(n-k) \to O(n-k) \times O(k)$ induced by conjugation by a suitable element $\mathbb{P} \in O(n)$.

Section (3.2):Connectivity of Matrix Groups.

In the following we will discuss connectivity of manifolds.

Definition (3.2.1):

A topological space X is connected if whenever $X = U \cup V$ with U, $V \neq \emptyset$, then $U \cap V \neq \emptyset$

Definition (3.2.2):

A topological space X is path connected if whenever $x \in X$, there is a continuouspath p: [0; 1] \rightarrow ! X with p(0) = x and p(1) = \mathcal{Y} .

X is locally path connected if every point is contained in a path connected open neighbourhood.

The following result is fundamental to Real Analysis.

Proposition (3.2.3):

Every interval [,b], [a, b), (a,b], $(a,b) \subseteq R$ is path connected and connected. Inparticular, R is path connected and connected.

Proposition (3.2.4):

If X is a path connected topological space then X is connected.

Proof:

Suppose X is not connected. Then $X = U \cup V$ where U, $V \subseteq X$ are non-empty and $U \cap V = \emptyset$. Let $x \in U$ and $\mathcal{Y} \in V$. By path connectedness of there X, is a continuous map p: $[0,1] \rightarrow X$ with p(0) = x and $p(1) = \mathcal{Y}$. Then $[0,1] = p^{-1}U \cup p^{-1}V$ expresses [0,1] as a union of open subsets withno common elements. But this contradicts the connectivity of [0,1]. So X must be connected.

Proposition (3.2.5):

Let X be a connected topological space which is locally path connected. Then X is path connected.

Proof:

Let $x \in X$, and set

 $X_x = \{ \in X : \exists p : [0,1] \rightarrow X \text{ continuous such that } p(0) = x \text{ and } p(1) = \mathcal{Y} \}.$

Then for each $\mathcal{Y} \in X_x$, there is a path connected open neighbourhood Uy. But for each point $z \in U_y$ there is a continuous path from to z via y, hence $U_y \subseteq X_x$. This shows that

$$X_z = \bigcup_{y \in x_z} U_{\mathcal{Y}} \subseteq X$$

is open in X. Similarly, if $w \in X - X_x$, then $X_w \subseteq X - X_x$ and this is also open. But then so is

$$X - X_x = \bigcup_{\omega \in X - X_z} x_\omega$$

Hence $X = X \cup [(X - X_x), \text{ and so by connectivity, } X_x = \emptyset \text{ or } X - X_x = \emptyset$. So X is path connected.

Proposition (3.2.6):

If the topological spaces X and Y are path connected then their product X \times Y ispath connected.

Corollary (3.2.7):

For $n \ge 1$, R^n is path connected and connected.

It is also useful to record the following standard results.

Proposition (3.2.8):

Let $n \ge 2$. The unit sphere $S^{n-1} \subseteq \mathbb{R}^n$ is path connected. In $S^0 = \{\pm 1\} \subseteq \mathbb{R}$.

The subsets $\{1\}$ and $\{-1\}$ are path connected. The set of non-zerovectors $\mathbb{R}_0^n \leq \mathbb{R}^n$ is path connected.

ii) For $n \ge 1$, the sets of non-zero complex and quaternionic vectors $\mathbb{C}_0^n \subseteq \mathbb{C}^n$ and $\mathbb{H}_0^n \subseteq \mathbb{H}^n$ are pathconnected.

Proposition (3.2.9):

Every manifold is locally path connected. Hence every connected manifold is pathconnected.

Proof:

Every point is contained in an open neighbourhood homeomorphic to some open subset of \mathbb{R}^n which can be taken to be an open disc which is path connected. The second statement now follows from Proposition (3.2.5).

Theorem (3.2.10):

Let M be a connected manifold and $N \subseteq M$ is non-empty submanifold which is also a closed subset. If dimN = dimM then N = M.

Proof:

Since $N \subseteq M$ is closed, $M - N \subseteq M$ is open. But $N \subseteq M$ is also open since every elementis contained in an open subset of M contained in N; hence M - $N \subseteq M$ is closed. Since M is connected, $M - N = \emptyset$.

Proposition (3.2.11):

Let G be a Lie group and H \leq G a closed subgroup. If G/H and H are connected, then so is G.

Proof:

First we remark on the following: for any $g \in G$, left translation map L_g : H \rightarrow gHprovides a homeomorphism between these spaces, hence gH is connected since H is.

Suppose that G is not connected, and let U, V \subseteq G be nonempty open subsets for which U \cap V = ϕ and U \cup V = G. the projection _ π :G \rightarrow G/H is a surjective open mapping, so π^U , $\pi^V \subseteq$ G/H are open subsets for which π^U , $\pi^V \subseteq$ G/H. As G/H is connected, there is an elementgH say in π^U , π^V In G we have

$$gH = \{gH \cap U\} \cup (gH \cap V),$$

Where $(gH \cap U)$; $(gH \cap V) \subseteq gH$ are open subsets in the subspace topology on gH since U; V are open in G. By connectivity of gH, this can only happen if gH $\cap U = \theta$ or gH $\cap V = \emptyset$, since these are subsets of U; V which have no common elements. As

$$\pi^{-1}gH = \{gh: h \in H\},\$$

This is false, so $(gH \cap U) \setminus (gH \cap V) \neq \emptyset$; which implies that $U \cap V \emptyset$; This contradicts the original sumption on U, V.

This result together with Proposition (3.2.9) gives a useful criterion for path connectedness of a Liegroup which may need to be applied repeatedly to show a particular example is path connected. Recall that a closed subgroup of a Lie group is a submanifold.

Proposition (3.2.12):

Let G be a Lie group and $H \leq G$ a closed subgroup. If G/H and H are connected, then G is path connected.

Example (3.2.13):

For $n \ge 1$, $SL_n(R)$ is path connected.

Proof:

For the real case, we proceed by induction on n. Notice that $SL_1(R) = \{1\}$, which iscertainly connected. Now suppose that $SL_{n-1}(R)$ is path connected for some $n \ge 2$.

Recall that $SL_n(R)$ acts continuously on R^n by matrix multiplication. Consider the continuousfunction

$$f: SL_n(R) \to R^n; f(A) = Ae_n.$$

The image of *f* is $imf = R_0^n = R^n - \{0\}$ since every vector $v \in R_0^n$

can be extended to a basis

$$V_1 \dots, V_{n-1}, V_n = V$$

of \mathbb{R}^n , and we can multiply v_1 by a suitable scalar to ensure that the matrix A_v with these vectors asits columns has determinant 1. Then $A_v e_n = v$.

Notice that $Pe_n = e_n if$ and only if

$$\mathbf{P} = \begin{bmatrix} Q & 0 \\ W & 1 \end{bmatrix}$$

Where Q is $(n-1) \times (n-1)$ with detQ = 1, is the $(n - 1) \times 1$ zero vector and w is an arbitrary $1 \times (n - 1)$ vector. The set of all such matrices is the stabilizer of $e_n, Stab_{SL_n(R)}(e_n)$, which is a closed subgroup of $SL_n(R)$. More generally, A $e_n = v$ if and only if

$$A = A_v P for some P \in Stab_{SL_n(R)}(e_n).$$

So the homogeneous space $SL_n(\mathbb{R})/Stab_{SL_n(\mathbb{R})}(e_n)$ ishomeomorphic to \mathbb{R}_0^n .

Since $n \ge 2$, it is well known that R_0^n is path connected, hence is connected. This implies that $SL_n(R)/Stab_{SL_n(R)}(e_n)$ is connected.

The subgroup $SL_{n-1}(R)/Stab_{SLn(R)}(e_n)$ is closed and the well defined map

$$Stab_{SL_{n}(\mathbb{R})}(e_{n}) = SL_{n-1}(\mathbb{R}) \rightarrow \mathbb{R}^{n-1}; \begin{bmatrix} Q & 0 \\ W & 1 \end{bmatrix} SL_{n-1}(\mathbb{R}) \rightarrow (wQ^{-1})^{T}$$

is a homeomorphism so the homogeneous space $Stab_{SL_n(R)}(e_n) / SL_{n-1}(R)$ is homeomorphic to R^{n-1} .

Hence by Corollary (3.2.7) together with the inductive assumption, $Stab_{SL_n(R)}(e_n)$ is path connected. We can combine this with the connectivity of R_0^n to deduce that $SL_n(R)$ is path connected, demonstrating the inductive step.

Example (3.2.14):

For $n \ge 1$, $GL_n^+(R)$ is path connected.

Proof:

Since $SL_n(R) \leq GL_n^+(R)$, it suffices to show that $GL_n^+(R)/SL_n(R)$ is path connected. Butfor this we can use the determinant to define a continuous map.

$$det: GL_n^+(R) \to R^+ = (0, \infty),$$

Which is surjective onto a path connected space. The homogeneous space $GL_n^+(R)/SL_n(R)$ is thendiffeomorphic to R⁺and hence is path connected. So $GL_n^+(R)$ is path connected.

This shows that

$$GL_n(\mathbf{R}) = GL_n^+(\mathbf{R}) \cup GL_n^-(\mathbf{R})$$

is the decomposition of $GL_n(R)$ into two path connected components.

Example (3.2.15):

For $n \ge 1$, SO(n) is path connected. Hence

$$O(n) = SO(n) \cup O(n)^{-1}$$

is the decomposition of O(n) into two path connected components.

Proof:

For n = 1, SO(1) = {1}. So we will assume that $n \ge 2$ and proceed by induction on n. SOassume that SO(n-1) is path connected.

Consider the continuous action of on R^n by left multiplication. The stabilizer of en is SO(n-1) \leq SO(n) thought of as the closed subgroup of matrices of the form

$$\begin{bmatrix} p & 0 \\ 0 & T \end{bmatrix}$$

With $P \in SO(n-1)$ and 0 the $(n-1) \times 1$ zero matrix. The orbit of e_n is the unit sphere S^{n-1} which ispath connected. Since the orbit space is also diffeomorphic to SO(n)/SO(n-1) we have the inductivestep.

Example (3.2.16):

For $n \ge 1$, U(n) and SU(n) are path connected.

Proof:

For n = 1, U(1) is the unit circle in C while $SU(1) = \{1\}$, so both of these are pathconnected. Assume that U(n-1) and SU(n-1) are path connected for some n ≥ 2 .

Then U(n) and SU(n) act on Cⁿby matrix multiplication,

$$Stab_{U(n)}(e_n) = U(n-1), Orb_{SU(n)}(e_n) = SU(n-1).$$

We also have

$$Orb_{U(n)}(e_n) = Orb_{SU(n)}(e_n) = S^{2n-1}$$

where $S^{2n-1} \subseteq C^n \cong R^{2n}$ denotes the unit sphere consisting of unit vectors. Since S^{2n-1} is pathconnected, we can deduce that U(n) and SU(n) are too, which gives the inductive step.

In the following we will discuss the path components of a Lie group

Let G be a Lie group. We say that two elements $x,y \in G$ are connected by a path in G if there is a continuous path p: $[0,1] \rightarrow G$ with p(0) = x and $p(1) = \mathcal{Y}$; we will then write $\frac{x - y}{G}$.

Lemma (3.2.17):

GIs an equivalence relation on G.

For $g \in G$, we can consider the equivalence class of g, the path component of g in G,

$$G_g = \left\{ x \in G : \frac{x \sim g}{G} \right\}$$

Proposition (3.2.18):

The path component of the identity is a clopen normal subgroup of G, $G_1 \triangleleft$ G;hence it is a closed Lie subgroup of dimension dimG.

The path component G_g agrees with the coset of g with respect to G_1 , G_g = gG_1 = G_{1g} and is aclosed submanifold of G.

Proof:

By Proposition (3.2.9) G_g contains an open neighbourhood of g in G. This shows that everycomponent is actually a submanifold of G with dimension equal to dimG. The argument used in the proof of Proposition (3.2.5) shows that each is G_g actually clopen in G.

Let x;y $\in G_1$. Then there are continuous paths p, q: [0, 1] $\rightarrow G$ with p(0) = 1 = q(0), p(0) = x andq(0) = y. The product path

$$r:[0,1] \rightarrow G; \quad r(t) = p(t)q(t)$$

hasr(0) = 1 and r(1) = xy. So $G_1 \leq G$. For $g \in G$, the path

$$s: [0,1] \rightarrow G; \quad s(t) = gp(t)g^{-1}$$

has s(0) = 1 and $s(1) = gxg^{-1}$; hence $G_1 \triangleleft G$. If $z \in gG_1 = G_1g$, then $g^{-1}z \in G_1$ and so there is a continuous path h: $[0,1] \rightarrow G$ with h(0) = 1 and $h(1) = g^{-1}z$. Then the path

$$gh: [0,1] \rightarrow G; \quad gh(t) = g(h(t))$$

has gh(0) = g and gh(1) = z. So each coset gG_1 is path connected, hence $gG_1 \subseteq G_g$. To show equality, suppose that g is connected by a path k: $[0,1] \rightarrow G$ in G to w $\in G_g$. Then the path g⁻¹k connects 1 to $g^{-1}w$, so $g^{-1}w \in G_1$, giving w $\in gG_1$. This shows that $G_g \subseteq_g G_1$.

The quotient group G/G₁ is the group of path components of G, which we will denote by π_0 G.

Example (3.2.19):

We have the following groups of path components:

 $\pi_0 SO(n) = \pi_0 SL_n(R) = \pi_0 SU(n) = \pi_0 U(n) = \pi_0 SL_n(\mathbb{C}) = \pi_0 GL_n(\mathbb{C}) = \{1\},$

Example (3.2.20):

Let

$$T = \left\{ \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} : \theta \in R \right\} \le SO(3)$$

And let $G = N_{SO(3)}(T) \leq SO(3)$ be its normalize. Then T and G are Lie subgroups of SO(3) and $\pi_0 G \cong \{\pm 1\}$.

Proof:

A straightforward computation shows that

$$N_{SO(3)}(T) = T \cup \left\{ \begin{bmatrix} -\cos\theta & \sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & -1 \end{bmatrix} : \theta \in R \right\} = T \cup \begin{bmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{bmatrix} T.$$

Notice that T is isomorphic to the unit circle,

$$T \cong T; \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} \leftrightarrow e^{\theta i} .$$

This implies that T is path connected and abelian since T is. The function

$$\varphi: G \to \mathbb{R}^{x}; \quad \varphi([a_{ij}]) = a_{33}$$

is continuous with

$$\varphi^{-1}R^+ = T, \varphi^{-1}R^- = T\begin{bmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{bmatrix}.$$

hence these are clopen subsets. This shows that the path components of G are

$$G_1 = T, \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} T.$$

Hence $\pi_0 G \cong \{\pm 1\}$.

Notice that $N_{SO(3)}(T)$ acts by conjugation on T and in fact every element of T $\triangleleft N_{SO(3)}(T)$ actstrivially since T is abelian. Hence $\pi_0 G$ acts on T with the action of the non-trivial coset given by

Conjugation by the matrix
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
,
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1}$$

which corresponds to the inversion homomorphism on the unit circle $T \cong T$.

Example (3.2.21):

Let $T = \{x1 + yi: x, y \in R, x^2 + y^2 = 1\} \le Sp(1)$, the group of unit quaternions. Let $G = N_{Sp(1)}(T) \le Sp(1)$ be its normalizer. Then T and G are Lie subgroups of Sp(1) and $\pi_0 G \cong (\pm 1)$.

Proof:

By a straightforward calculation,

$$G = T \cup \{xj - yk : x, y \in \mathbb{R}, x^2 + y^2 = 1\} = T \cup jT.$$

T is isomorphic to the unit circle so is path connected and abelian. The function

$$\theta$$
:G $\rightarrow \mathbb{R}$; θ (t1 + xi + yj+ zk) = $y^2 + z^2$,

is continuous and

$$\theta^{-1} = \mathrm{T}, \theta^{-1} \mathrm{I} = \mathrm{j}\mathrm{T}.$$

Hence the path components of G are T, jT. So $\pi_0 G \cong (\pm 1)$.

The conjugation action of G on T has every element of T acting trivially, so π_0 G acts on T. Theaction of the non-trivial coset is given by conjugation with j,

$$j(x1 + yi)j^{-1} = x1 - yi,$$

corresponding to the inversion map on the unit circle $\mathbb{T} \cong T$.

The significance of such examples will become clearer whenwe discuss maximal tori and their normalizers.

In the following we will discuss another connectivity result

Proposition (3.2.22):

Let G be a connected Lie group and $H \leq G$ a subgroup which contains an openneighbourhood of 1 in G. Then H = G.

Proof:

Let $U \subseteq H$ be an open neighbourhood of 1 in G. Since the inverse map inv: G \rightarrow G is ahomeomorphism and maps H into itself, by replacing U with U \cap inv U if necessary, we can assume thatinv maps the open neighbourhood into itself, i.e., inv U = U.

For $k \ge 1$, consider

$$U^k = \left\{ u_1 \dots u_k \in G \colon u_j \in U \right\} \subseteq H$$

Notice that inv $U^k = U^k$. Also, $U^k \subseteq G$ is open since for $u_1; \ldots, u_k \in U$,

$$u_1 \dots u_k \in L_{u_1 \dots u_{k-1}} U \subseteq U^k$$

where $L_{u_1 \dots u_{k-1}} U = L_{(u_1 \dots u_{k-1})^{-1}}^{-1} U$ is an open subset of G.

Then

$$V = \bigcup_{k \ge 1} U^K \subset H$$

satisfies inv V = V.

V is closed in G since given *g*∈G −V, for the open set *g*V ⊆G, if $x \in g$ V ∩V there are $u_1, ..., u_r, v_1, ..., v_s \in U$ such that

$$Gu_1, ..., u_r = v_1, ..., v_s$$

implying $g = v_1, ..., v_s u_1^{-1}, ..., u_r^{-1} \in V$, contradicting the assumption on g. So *V* is a nonempty clopen subset of G, which is connected. Hence $G - V = \emptyset$, and therefore V = G, which also implies that H = G.