Chapter (3)

Homogeneous Spaces and Connectivity of Matrix Groups

Now we will discuss homogeneous spaces as manifolds.

Section (3.1): Homogeneous Spaces

Let G be a Lie group of dimension dim $G = n$ and $H \leq G$ a closed subgroup, which is therefore a Lie subgroup of dimension dim $H = k$. The set of left cosets

$$
\frac{G}{H} = \{gH : g \in G\}
$$

has an associated quotient map

$$
\pi: G \to \frac{G}{H} : \pi(g) = gH.
$$

We give G/H a topology by requiring that a subset $W \subseteq G/H$ is open if and only if $\pi^{-1}W \subseteq G$ is open; this is called the quotient topology on G/H.

Lemma (3.1.1):

The projection map $\pi: C \to G/H$ is an open mapping and G/H is a topological spacewhich is separable and Hausdorff.

Proof:

For U ⊆G,

$$
\pi^{-1}(\pi U) = \bigcup_{h \in H} Uh.
$$

Where

$$
Uh = \{uh \in G : u \in U\} \subseteq G
$$

If U \subseteq G is open, then each Uh (h \in H) is open, implying that π U \subseteq G is also open.

 G/H is separable since a countable basis of G is mapped by π to a countable collection of opensubsets of G/H that is also a basis.

To see that G/H is Hausdorff, consider the continuous map

$$
\theta: G \times G \to G; \theta(x, y) = x^{-1}y.
$$

Then

$$
\theta^{-1}H = \{(x, y) \in GxG: xH = yH\}.
$$

and this is a closed subset since $H \subseteq G$ is closed. Hence,

$$
\{(x; y) \in G \times G \colon xH = yH\} \subseteq G \times G
$$

is open. By dentition of the product topology, this means that whenever x; y ∈G with xH ≠yH, thereare open subsets U; V ⊆G with x ∈U, y ∈V, U ≠V and $\pi^u \cap \pi^v = \theta$ Since π^U , $\pi^V \subseteq G/H$ are open, this shows that G/H is Hausdorff.

The quotient map G/H has an important property which characterises it.

Proposition(3.1.2):(Universal Property of the Quotient

Topology)

For any topological space X, afunction $f: G/H \rightarrow X$ is continuous if and only if f 0π : $G \rightarrow X$ is continuous.

We would like to make G/H into a smooth manifold so that π :G \rightarrow G/H is smooth. Unfortunately,the construction of an atlas is rather complicated so we merely state a general result then consider someexamples where the smooth structure comes from an existing manifold which is diffeomorphic to aquotient.

Theorem (3.1.3):

*G/H*can be given the structure of a smooth manifold of dimension

$$
dim G/H = dim G - dim H
$$

So that the projection map $\pi:G \rightarrow G/H$ is smooth and at each g $\in G$,

$$
ker\left(d \pi: T_gG \to T_{gH}\frac{G}{H}\right) = \ dl_g \mathfrak{h}.
$$

There is an atlas for G/H consisting of charts of the form θ : W $\rightarrow \theta W \subseteq$ R^{n-k}for which there is adiffeomorphism Θ : W × H → π^{-1} wsatisfying the conditions

$$
\Theta(w,h_1 h_2) = \Theta(w,h_1) h_2, \pi(\Theta(w,h)) = w \ (\omega \in W, h, h_1, h_2 \in H):
$$
\n
$$
W \times H \qquad \pi^{-1}W
$$
\nProj1

\n

w

The projection π looks like proj₁: $\pi^{-1}w \to w$, the projection onto W, when restricted to : $\pi^{-1}w$.

For such a chart, the map \ominus is said to provide a local trivialisation of π over W. An atlas consisting ofsuch charts and local trivialisations $(\theta:W\rightarrow W \theta; \Theta)$ provides a local trivalisation of π . This is related the important notion of a principal H-bundle over G/H.

Notice that given such an atlas, an atlas for G can be obtained by taking each pair (θ: W \rightarrow θW \ominus)and combining the map θwith a chart ψ: U \rightarrow Ψ U ⊆R^kfor H to get a chart

$$
(\theta\times\ \psi)\ o\ \textcircled{\scriptsize{\bigoplus}}^{-1}\colon \textcircled{\scriptsize{\bigoplus}}(w\times U)\!\rightarrow\ \theta W\times\psi U\subseteq R^{n-k}\times R^k=R^n.
$$

Such a manifold G/H is called a homogeneous space since each left translation map L_{g} on G gives riseto a diffeomorphism

$$
\overline{\mathsf{L}}_{g}:G/H\rightarrow\quad\overline{\mathsf{L}}_{g}(\boldsymbol{x}H)=g\boldsymbol{x}H
$$

for which π o L_g= \overline{L}_g o π.

$$
G \xrightarrow{L_g} G
$$

\n
$$
\pi \downarrow \qquad \pi \downarrow
$$

\n
$$
G/H \xrightarrow{\overline{L}_g} G/H
$$

So each point gH has a neighbourhood diffeomorphic under \overline{L}_g^{-1} to a neighbourhood of 1H; so locallyG/H is unchanged as gH is varied. This is the basic insight in Felix Klein's view of a Geometry whichis characterised as a homogeneous space G/H for some group of transformations G and subgroup H.

In the following we will discuss Homogeneous spaces as orbits.

Just as in ordinary group theory, group actions have orbits equivalent to sets of cosets G/H, sohomogeneous spaces also arise as orbits associated to smooth groups actions of G on a manifolds.

Theorem (3.1.4):

Suppose that a Lie group G acts smoothly on a manifold M. If the element $x \in M$ has stabilizer Stab_G(x) ≤G and the orbit Orb_G(x) ⊆M is a closed submanifold, then the function

$$
f : G\langle \text{Stab}_G(x) \rightarrow \text{Orb}_G(x); f(g \text{Stab}_G(x)) = g x
$$

is a diffeomorphism.

Example (3.1.5):

For $n \ge 1$, O(*n*) acts smoothly on R^{*n*} by matrix multiplication. For any nonzerovector $v \in \mathbb{R}^n$, the orbit $Orb_{o(n)}(v) \in \mathbb{R}^n$, is diffeomorphic to $O(n)/O(n-1)$.

Proof:

First observe that when v is the standard basis vector e_n , for A $\epsilon O(n)$, A e_n = e_n if andonly if e_n is the last column of A, while all the other columns of A are orthogonal to e_n . Since the columns of A must be an orthonormal set of vectors, this means that each of the first (n-1) columns ofA has the form

$$
\begin{bmatrix} a_{\scriptscriptstyle \rm lk} \\ a_{\scriptscriptstyle \rm lk} \\ \vdots \\ a_{\scriptscriptstyle \rm lk} \\ 0 \end{bmatrix}
$$

Where the matrix

$$
\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n-1} \\ a_{21} & a_{22} & \cdots & a_{2n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-11} & a_{n-12} & \cdots & a_{n-1n-1} \end{bmatrix}
$$

is orthogonal and hence in $O(n-1)$. We identify $O(n-1)$ with the subset of $O(n)$ consisting of matrices of the form

 \overline{a}

$$
\begin{bmatrix} a_{\scriptscriptstyle 11} & a_{\scriptscriptstyle 12} & \cdots & a_{\scriptscriptstyle 1n\!-\!1} & 0 \\ a_{\scriptscriptstyle 21} & a_{\scriptscriptstyle 22} & \cdots & a_{\scriptscriptstyle 2n\!-\!2} & 0 \\ \vdots & & \ddots & & 0 \\ a_{\scriptscriptstyle n\!-\!11} & a_{\scriptscriptstyle n\!-\!12} & \cdots & a_{\scriptscriptstyle n\!-\!1n\!-\!1} & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}
$$

and then have $Stab_{O(n)}(e_n) = O(n-1)$. The orbit of e_n is the whole unit sphere $S^{n-1} \subseteq R^n$ since givena unit vector u we can extend it to an orthonormal basis $u_1,...,u_{n-1}$, $u_n = u$ which form the columnsof an orthogonal matrix U $\epsilon O(n)$ for which $Ue_n = u$. So we have a diffeomorphism

$$
O(n)/Stab_{O(n)}(e_n) = O(n)/O(n-1) \rightarrow Oeb_{O(n)}(e_n) = S^{n-1}.
$$

Now for a general nonzero vector v notice that $Stab_{O(n)}(\vec{v}) = Stab_{O(n)}(\hat{v})$ where $\hat{\mathbf{v}} = (1 = / |\mathbf{v}|) \mathbf{v}$ and

Orb_{O(n)}(v) = Sⁿ⁻¹(
$$
|\mathbf{v}|
$$
),

the sphere of radius $|\mathbf{v}|$. If we choose any P \in O(n) with $\hat{\mathbf{v}}$ = Pe_n, we have

$$
Stab_{O(n)}(\mathbf{v}) = P Stab_{O(n)}(e_n)P^{-1}
$$

and so there is a diffeomorphism

$$
Orb_{O(n)}(v) \rightarrow O(n)/P\ O(n \ /1)P^{-1} \xrightarrow{x_{p-1}} O(n) / o(n\text{-}1)
$$

A similar result holds for $SO(n)$ and the homogeneous space $SO(n)$ = $SO(n-1)$. For the unitaryand special unitary groups we can obtain the homogeneous spaces $U(n)/U(n-1)$ and $SU(n)/SU(n-1)$ as orbits of non-zero vectors in \mathcal{C}^n on which these groups act by matrix multiplication; these are alldiffeomorphic to S^{2n-1} . The action of the quaternionic symplectic group $Sp(n)$ on H^n leads to orbits of non-zero vectors diffeomorphic to $Sp(n)/Sp(n-1)$ and S^{4n-1} .

In the following we will discuss Projective spaces.

More exotic orbit spaces are obtained as follows. Let $k = R.C.H$ and set $d =$ dim_Rk. Consider k^{n+1} as a right k-vector space. Then there is an action of the group of units k^xon the subset of non-zero

vectors
$$
k_0^{n+1} = k^{n+1} - \{0\}
$$
:

 $z \cdot x = xz^{-1}$

The set of orbits is denoted $kPⁿ$ and is called n-dimensional k-projective space. Projective spaces Anelement of $kPⁿ$ written [x] is a set of the form

$$
[x] = \{xz^{-1}: z \in k^x\} \subseteq k_0^{n+1}
$$

Notice that $[x] = [y]$ if and only if there is a z $\in \mathbb{R}^x$ for which $y = xz^{-1}$.

Remark (3.1.6):

Because of this we can identify elements kP^n with k-lines in k^{n+1} (i.e., 1dimensional k-vector subspaces). kPⁿis often viewed as the set of all such lines, particularly in the study of ProjectiveGeometry.

There is a quotient map

$$
q_n: k_0^{n+1} \to KP^n; qn(x) = [x].
$$

and we give kPⁿthe quotient topology which is Hausdorff and separable.

Proposition (3.1.7):

KPⁿis a smooth manifold of dimension dim $kP^{n} = n$ dim_R k. Moreover, the quotient map qn $k_0^{n+1} \to K P^n$ is smooth with surjective derivative at every point in k_0^{n+1} .

Proof:

For $r = 1, 2, ..., n$, set $kp_r^n = \{ |x| : x_r \neq 0 \}$, where as usual we write

$$
x = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_{n+1} \end{bmatrix}
$$
. Then $kp^n \subseteq KP^n$ is open. There is a function

$$
\sigma_r: KP_r^n \to k^n; \; \sigma_r(|x|) = \begin{bmatrix} \chi_1 \chi_r^{-1} \\ \chi_2 \chi_r^{-1} \\ \vdots \\ \chi_{r-1} \chi_r^{-1} \\ \chi_{r+1} \chi_r^{-1} \\ \vdots \\ \chi_{n+1} \chi_r^{-1} \end{bmatrix}
$$

Which is a continuous bijection that is actually a homeomorphism. Whenever $r \neq s$, the induced map

$$
\sigma_s^{-1} \sigma_r : \sigma_r^{-1} k p_r^n \cap K P_s^n \to \sigma_s^{-1} k p_r^n \cap K P_s^n
$$

is given by

$$
\sigma_{\mathcal{S}}^{-1} \mathsf{O} \sigma_{r}(x) = \begin{bmatrix} \mathcal{Y}_{1} \\ \mathcal{Y}_{2} \\ \vdots \\ \mathcal{Y}_{s-1} \\ \mathcal{Y}_{s+1} \\ \vdots \\ \mathcal{Y}_{n+1} \end{bmatrix}
$$

Where

$$
y_i = \begin{cases} x_j x_s^{-1} if j \neq r, s, \\ x_s^{-1} if j = r. \end{cases}
$$

These $(n+1)$ charts form the standard atlas for n-dimensional projective space over k.

An alternative description of KPⁿis given by considering the action of the subgroup

$$
k_1^x = \{ z \in k^x : |z| = 1 \} \le k^x
$$

on the unit sphere $S^{(n+1)d-1} \subseteq k_0^{n+1}$. Notice that every element [x] \in KPⁿcontains elements of Sⁿ.

Furthermore, if x,y $\in k_0^{n+1}$ have unit length $|x| = |y| = 1$, then $[x] = [y]$ if and only if $y = xz^{-1}$ for some $z \in k_1^x$. This means we can also view kPⁿas the orbit space of this action of k_1^x on $S^{(n+1)d-1}$, andwe also write the quotient map as $q_n: S^{(n+1)d-1} \rightarrow kP^n$; this map is also smooth.

Proposition (3.1.8):

The quotient space given by the map $q_n: S^{(n+1)d-1} \to kP^n$ is compact Hausdorff.

Proof:

This follows from the standard fact that the image of a compact space under a continuousmapping is compact.

Consider the action of O($n+1$) on the unit sphere $Sⁿ \subseteq Rⁿ⁺¹$. Then for A $\in O⁽ⁿ$ ^{+ 1)}, $z = \pm 1$ and ϵS^n , we have

$$
A(xz^{-1})=(Ax)_{z}^{-1}
$$

Hence there is an induced action of $O(n+1)$ on RPⁿgiven by

$$
A. [x] = [Ax].
$$

This action is transitive and also the matrices $\pm I_{n+1}$ fix every point of RPⁿ. There is also an action of $SO(n+1)$ on RPⁿ; notice that $-1_{n+1} \in SO(n+1)$ only if n is odd.

Similarly, $U(n+1)$ and $SU(n+1)$ act on CPⁿwith scalar matrices $wl_{n+1}(w \in$ C_1^x) fixing everyelement. Notice that if $wI_{n+1} \in SU(n + 1)$ then $w^{n+1} = 1$, so there are exactly $(n+1)$ such values.

Finally, $Sp(n+1)$ acts on HPⁿand the matrices $\pm I_{n+1}$ fix everything.

There are some important new quotient Lie groups associated to these actions, the projective unitary,special unitary and quaternionic symplectic groups

$$
PU(n + 1) = U(n + 1) / \{\omega I_{n+1}: \omega \in C_1^x\},
$$

\n
$$
PSU(n + 1) = SU(n + 1) / \{\omega I_{n+1}: \omega^{n+1} = 1\}
$$

\n
$$
PS_p(n + 1) = Sp(n + 1) / \{\mp I_{n+1}\}
$$

Projective spaces are themselves homogeneous spaces. Consider the subgroup of $O(n+1)$ consisting ofelements of the form

We denote this subgroup of $O(n+1)$ by $O(n) \times O(1)$. There is a subgroup $\widetilde{\theta(n)} \leq SO(n+1)$ whoseelements have the form

Where

$$
\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n-1} \\ a_{21} & \cdots & \cdots & \cdots \\ \vdots & \ddots & \ddots & \ddots \\ a_{n-11} & \cdots & \cdots & a_{n-1n-1} \end{bmatrix} \in o(n), w = det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n-1} \\ a_{21} & \cdots & \cdots & a_{2n-1} \\ \vdots & \ddots & \ddots & \ddots \\ a_{n-11} & \cdots & \cdots & a_{n-1n-1} \end{bmatrix}
$$

Similarly, there subground $U(n) \times U(1) \le U(n+1)$ whose elements have the form.

and $\breve{U}(n) \leq SU(n + 1)$ withelements

Where

$$
\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n-1} \\ a_{21} & \cdots & \cdots & \cdots \\ \vdots & \ddots & \ddots & \vdots \\ a_{n-11} & \cdots & \cdots & a_{n-1n-1} \end{bmatrix} \in U(n), \quad w = det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n-1} \\ a_{21} & \cdots & \cdots & \cdots \\ \vdots & \ddots & \ddots & \ddots \\ a_{n-11} & \cdots & \cdots & a_{n-1n-1} \end{bmatrix}^{-1}
$$

Finally we have $Sp(n) \times Sp(1) \in Sp(n+1)$ consisting of matrices of the form

$$
\left[\begin{array}{cccccc} a_{11} & a_{12} & \cdots & a_{1n-1} & 0 \\ a_{21} & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ a_{n-11} & \ddots & \ddots & a_{n-1n-1} & 0 \\ 0 & 0 & \cdots & 0 & \omega \end{array}\right]
$$

Proposition (3.1.9):

There are diffeomorphisms between

- RPⁿand O($n+1$)/O(n) ×O(1), SO($n+1$)/ $\widetilde{O(n)}$;
- CPⁿand U($n+1$)/U(n) ×U(1), SU($n+1$)/ $\widetilde{U(n)}$;
- HPⁿand Sp($n+1$)/Sp(n) xSp(1).

There are similar homogeneous space of the general and special linear groups giving these projectivespaces. We illustrate this with one example.

 SL_2 © contains the matrix subgroup P consisting of its lower triangular matrices

$$
\begin{bmatrix} u & o \\ w & v \end{bmatrix} \in SL_2(\mathcal{C})
$$

This is often called a parabolic subgroup.

Proposition (3.1.10):

 $\mathbb{C}P^1$ is diffeomorphic to $SL_2\otimes/P$.

Proof:

There is smooth map

$$
\psi: SL_2 \mathbb{O} \rightarrow CP^1; \psi(A) = [Ae_2].
$$

Notice that for $B = \vert$ $\begin{matrix} u & 0 \end{matrix}$ $\begin{bmatrix} u & v \\ w & v \end{bmatrix} \in p$

$$
\begin{bmatrix} u & o \\ w & v \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ v \end{bmatrix},
$$

hence $[(AB)e_2] = [Ae_2]$ for any A $\in SL_2\mathbb{O}$. This means that $\psi(A)$ only depends on the coset AP ϵ SL₂(C)/P. It is easy to see that is onto and that the induced map $SL_2(C)/P \rightarrow CP^1$ is injective.

In the following we will discuss Grassmannians.

There are some important families of homogeneous spaces directly generalizing projective spaces.

These are the real, complex and quaternionic Grassmannians which we now define:

Let $O(k) \times O(n - k) < O(n)$ be closed the subgroup whose elements have the form

$$
\begin{bmatrix} A & O_{k,n-k} \\ O_{n-k,k} & B \end{bmatrix} (A \in O(k), B \in O(n-k))
$$

Similarly there are closed subgroups $U(k) \times U(n-k) \leq U(n)$ and Sp(k) x $Sp(n-k) \le Sp(n)$ with elements

$$
U(k) \times U(n-k) : \begin{bmatrix} A & O_{k,n-k} \\ O_{n-k,k} & B \end{bmatrix} (A \in U(k), B \in U(n-k)) :
$$

$$
Sp(k) \times Sp(n-k) : \begin{bmatrix} A & O_{k,n-k} \\ O_{n-k,k} & B \end{bmatrix} (A \in Sp(k), B \in Sp(n-k)) :
$$

The associated homogeneous spaces are the Grassmannians

$$
Gr_{k,n}(R) = O(n)/O(k) \times O(n-k);
$$

$$
Gr_{k,n}(\mathbb{C}) = U(n)/U(k) \times U(n-k);
$$

$$
Gr_{k,n}(H) = Sp(n)/Sp(k) \times Sp(n-k);
$$

Proposition (3.1.11):

For k= R, C, H, the Grassmannian $Gr_{k,n}(k)$ can be viewed as the set of allkdimensional \vdash vector subspaces in k^n .

Proof:

We describe the case $k = R$, the others being similar.

Associated to element $\Theta(n)$ is the subspace spanned by the frst k columns of W, say w_1, \dots, w_k ; we will denote this subspace by $\langle w_1, \dots, w_k \rangle$. As the columns of W are an orthonormal set, they arelinearly independent, hence $\dim_R \langle w_1, \dots, w_k \rangle = k$. Notice that the remaining $(n-k)$ columns giverise to another subspace $\langle w_{k+1}, \dots, w_n \rangle$ of dimension $\dim_R \langle w_{k+1}, \ldots, w_n \rangle = n$ -k. In fact these aremutually orthogonal in the sense that

$$
\langle w_{k+1}, \dots, w_n \rangle = \langle w_1, \dots, w_k \rangle^{\perp}
$$

$$
= \{x \in R^n, x \cdot w_r = 0, r = 1, \dots, k\},\
$$

 $\langle w_1, \ldots, w_k \rangle = \langle w_{k+1}, \ldots, w_n \rangle^{\perp}$

$$
= \{x \in R^n; x. w_r = 0, r = k + 1, ..., n\},\
$$

For a matrix

$$
\begin{bmatrix} A & O_{k,n-k} \\ O_{n-k,k} & B \end{bmatrix} \in O(k)xO(n-k),
$$

The columns in the product

$$
W' = W \begin{bmatrix} A & O_{k,n-k} \\ O_{n-k,k} & B \end{bmatrix}
$$

Span subspaces $\langle w'_1, \dots, w'_k \rangle$ and $\langle w'_{k+1}, \dots, w'_n \rangle$. But note that w'_1, \dots, w'_k are orthonormal and alsolinear combinations of $w_1,...w_k$; similarly, w'_{k+1}, \dots, w'_n are linear combinations of w_{k+1}, \dots, w_n .

Hence

$$
\langle w'_1, \ldots, w'_k \rangle = \langle w_1, \ldots, w_k \rangle, \langle w'_{k+1}, \ldots, w'_n \rangle = \langle w_{k+1}, \ldots, w_n \rangle.
$$

So there is a well defined function

 $O(n)/O(k) \times O(n/k) \rightarrow k$ -dimensional vector subpaces of R^n

Which sends the coset of W to the subspace (w_1, \ldots, w_k) . This is actually a bijection.

Notice also that there is another bijection

 $O(n)/O(k) \times O(n-k) \rightarrow (n-k)$ -dimensional vector subpaces of R^n

Which sends the coset of W to the subspace $\langle w_{k+1}, \dots, w_n \rangle$. This corresponds to a diffeomorphism $Gr_{k,n}(\mathbb{R}) \to Gr_{n-k,n}(\mathbb{R})$ which in turn corresponds to the obvious isomorphism $O(k) \times O(n-k) \rightarrow O(n-k) \times O(k)$ induced by conjugation by a suitable element $P \in O(n)$.

Section (3.2):Connectivity of Matrix Groups.

In the following we will discuss connectivity of manifolds.

Definition (3.2.1):

A topological space X is connected if whenever $X = U \cup V$ with $U, V \neq \emptyset$, thenU $\cap V \neq \emptyset$

Definition (3.2.2):

A topological space X is path connected if whenever $x, \in X$, there is a continuouspath p: $[0; 1] \rightarrow ! X$ with $p(0) = x$ and $p(1) = Y$.

X is locally path connected if every point is contained in a path connected open neighbourhood.

The following result is fundamental to Real Analysis.

Proposition (3.2.3):

Every interval [,b], $[a, b), (a,b)$, $(a,b) \subseteq R$ is path connected and connected. Inparticular, R is path connected and connected.

Proposition (3.2.4):

If X is a path connected topological space then X is connected.

Proof:

Suppose X is not connected. Then $X = U \cup V$ where U, $V \subseteq X$ are non-empty andU $\cap V = \emptyset$. Let x ∈U and $\mathcal{Y} \in V$. By path connectedness of there X, is a continuous map p: $[0,1] \rightarrow X$ with $p(0) = x$ and $p(1) = y$. Then $[0,1] = p^{-1}U \cup p^{-1}U$ ¹V expresses [0,1] as a union of open subsets withno common elements. But this contradicts the connectivity of [0,1]. So X must be connected.

Proposition (3.2.5):

Let X be a connected topological space which is locally path connected. Then Xis path connected.

Proof:

Let $x \in X$, and set

 $X_x = \{ \in X : \exists p : [0,1] \rightarrow X \text{ continuous such that } p(0) = x \text{ and } p(1) = Y \}.$

Then for each $\mathcal{Y} \in X_{x}$, there is a path connected open neighbourhood U_y. But for each point $z \in U$ y there is a continuous path from to z via y, hence $U_y \subseteq X_x$. This shows that

$$
X_z = \bigcup_{y \in x_z} U_y \subseteq X
$$

is open in X. Similarly, if $w \in X$ -X_x, then $X_w \subseteq X$ -X_x and this is also open. But then so is

$$
X - X_x = \bigcup_{\omega \in X - X_z} x_{\omega}
$$

Hence $X = X \cup [(X - X_x)$, and so by connectivity, $X_x = \emptyset$ or $X - X_x = \emptyset$. So X is path connected.

Proposition (3.2.6):

If the topological spaces X and Y are path connected then their product X ×Y ispath connected.

Corollary (3.2.7):

For $n \geq 1$, R^n is path connected and connected.

It is also useful to record the following standard results.

Proposition (3.2.8):

Let n \geq 2. The unit sphere $S^{n-1} \subseteq \mathbb{R}^n$ is path connected. In $\mathbb{S}^0 = \{\pm 1\} \subseteq \mathbb{R}$.

The subsets {1}and {-1}are path connected. The set of non-zerovectors $\mathbb{R}_0^n \leq \mathbb{R}^n$ is path connected.

ii) For $n \geq 1$, the sets of non-zero complex and quaternionic vectors $\mathbb{C}_0^n \subseteq \mathbb{C}^n$ and $\mathbb{H}_0^n \subseteq \mathbb{H}^n$ are pathconnected.

Proposition (3.2.9):

Every manifold is locally path connected. Hence every connected manifold is pathconnected.

Proof:

Every point is contained in an open neighbourhood homeomorphic to some open subset of Rⁿwhich can be taken to be an open disc which is path connected. The second statement now followsfrom Proposition (3.2.5).

Theorem (3.2.10):

Let M be a connected manifold and $N \subseteq M$ is non-empty submanifold which is alsoa closed subset. If dimN = dimM then $N = M$.

Proof:

Since N ⊆M is closed, M - N ⊆M is open. But N ⊆M is also open since every elementis contained in an open subset of M contained in N; hence M - $N \subseteq M$ is closed. Since M is connected, M -N = \emptyset .

Proposition (3.2.11):

Let G be a Lie group and $H \leq G$ a closed subgroup. If G/H and H are connected,then so is G.

Proof:

First we remark on the following: for any g∈G, left translation map L_g : H \rightarrow gHprovides a homeomorphism between these spaces, hence gH is connected since H is.

Suppose that G is not connected, and let U, $V \subseteq G$ be nonempty open subsets for which U ∩V = ϕ and U ∪V = G. the projection _ π :G →G/H is a surjective open mapping, so π^U , $\pi^V \subseteq G/H$ are open subsets for which π^U , π^V \subseteq G/H. As G/H is connected, there is an elementgH say in π^U , $\pi^V \text{In G}$ we have

$$
gH = \{gH \cap U\} \cup (gH \cap V),
$$

Where (gH ∩U); (gH ∩V) \subseteq gH are open subsets in the subspace topology on gH since U; V are openin G. By connectivity of gH, this can only happen if gH ∩U = θ or gH ∩V = ϕ , since these are subsetsof U; V which have no common elements. As

$$
\pi^{-1}gH = \{gh: h \in H\},\
$$

This is false, so (gH ∩U) \ (gH ∩V) $\neq \emptyset$; which implies that U ∩V \emptyset ; This contradicts the originalassumption on U, V .

This result together with Proposition (3.2.9) gives a useful criterion for path connectedness of a Liegroup which may need to be applied repeatedly to show a particular example is path connected. Recallthat a closed subgroup of a Lie group is a submanifold.

Proposition (3.2.12):

Let G be a Lie group and $H \leq G$ a closed subgroup. If G/H and H are connected,then G is path connected.

Example (3.2.13):

For $n > 1$, $SL_n(R)$ is path connected.

Proof:

For the real case, we proceed by induction on n. Notice that $SL_1(R) = \{1\}$, which iscertainly connected. Now suppose that $SL_{n-1}(R)$ is path connected for some $n > 2$.

Recall that $SL_n(R)$ acts continuously on R^n by matrix multiplication. Consider the continuousfunction

$$
f:SL_n(R)\to R^n; f(A)=Ae_n.
$$

The image of f is $\text{im} f = R_0^n = \mathbb{R}^n - \{0\}$ since every vector $v \in R_0^n$

can be extended to a basis

$$
V_1 \ldots, V_{n-1}, V_n = V
$$

of \mathbb{R}^n , and we can multiply v₁by a suitable scalar to ensure that the matrix Avaith these vectors asits columns has determinant 1. Then $A_{v}e_{n}=v$.

Notice that $Pe_n = e_n$ if and only if

$$
P = \begin{bmatrix} Q & 0 \\ W & 1 \end{bmatrix}
$$

Where Q is $(n-1) \times (n-1)$ with det $Q = 1$, is the $(n-1) \times 1$ zero vector and w is an arbitrary $1 \times (n - 1)$ vector. The set of all such matrices is the stabilizer of

 e_n , $Stab_{SL_n(R)}(e_n)$, which is a closed subgroup of $SL_n(R)$. More generally, $Ae_n = v$ if and only if

$$
A = A_vP for some P \in Stab_{SL_n(R)}(e_n).
$$

So the homogeneous space $SL_n(R)/Stab_{SL_n(R)}(e_n)$ ishomeomorphic to R_0^n .

Since $n \geq 2$, it is well known that R_0^n is path connected, hence is connected. This implies that $SL_n(R)/Stab_{SL_n(R)}(e_n)$ is connected.

The subgroup $SL_{n-1}(R)/Stab_{SLn(R)}(e_n)$ is closed and the well defined map

$$
Stab_{SL_n(R)}(e_n) = SL_{n-1}(R) \rightarrow R^{n-1}; \begin{bmatrix} Q & 0 \\ W & 1 \end{bmatrix} SL_{n-1}(R) \rightarrow (wQ^{-1})
$$

is a homeomorphism so the homogeneous space $Stab_{SL_n(R)}(e_n)$ /SL_{n-1}(R) is homeomorphic to R^{n-1} .

Hence by Corollary (3.2.7) together with the inductive assumption, $Stab_{SL_n(R)}(e_n)$ is path connected. Wecan combine this with the connectivity of R_0^n to deduce that $SL_n(R)$ is path connected, demonstrating the inductive step.

Example (3.2.14):

For $n \geq 1$, $GL_n^+(\mathbb{R})$ is path connected.

Proof:

Since $SL_n(R) \leq GL_n^+(R)$, it suffices to show that $GL_n^+(R)/SL_n(R)$ is path connected. Butfor this we can use the determinant to define a continuous map.

$$
det: GL_n^+(R) \to R^+ = (0, \infty),
$$

Which is surjective onto a path connected space. The homogeneous space $GL_n^+(R)/SL_n(R)$ is thendiffeomorphic to R⁺and hence is path connected. So $GL_n^+(\mathbb{R})$ is path connected.

This shows that

$$
GL_n(R) = GL_n^+(R) \cup GL_n^-(R)
$$

is the decomposition of $GL_n(R)$ into two path connected components.

Example (3.2.15):

For $n \geq 1$, SO(n) is path connected. Hence

$$
O(n) = SO(n) \cup O(n)^{-1}
$$

is the decomposition of $O(n)$ into two path connected components.

Proof:

For $n = 1$, SO(1) = {1}. So we will assume that $n \ge 2$ and proceed by induction on n. SOassume that SO(n**-**1) is path connected.

Consider the continuous action of on $Rⁿ$ by left multiplication. The stabilizer of en is SO(n**-**1)≤ SO(n) thought of as the closed subgroup of matrices of the form

$$
\begin{bmatrix} p & 0 \\ r & 1 \end{bmatrix}
$$

With P \in SO(n-1) and 0 the (n-1)×1 zero matrix. The orbit of e_n is the unit sphere S^{n-1} which ispath connected. Since the orbit space is also diffeomorphic to SO(n)/SO(n**-**1) we have the inductivestep.

Example (3.2.16):

For $n \geq 1$, U(n) and SU(n) are path connected.

Proof:

For $n = 1$, U(1) is the unit circle in C while $SU(1) = \{1\}$, so both of these are pathconnected. Assume that U(n**-**1) and SU(n**-**1) are path connected for some $n > 2$.

Then $U(n)$ and $SU(n)$ act on $Cⁿ$ by matrix multiplication,

$$
Stab_{U(n)}(e_n) = U(n-1), Orb_{SU(n)}(e_n) = SU(n-1).
$$

We also have

$$
Orb_{U(n)}(e_n) = Orb_{SU(n)}(e_n) = S^{2n-1}
$$

where $S^{2n-1} \subseteq C^n \cong R^{2n}$ denotes the unit sphere consisting of unit vectors. Since S^{2n-1} is pathconnected, we can deduce that $U(n)$ and $SU(n)$ are too, which gives the inductive step.

In the following we will discuss the path components of a Lie group

Let G be a Lie group. We say that two elements $x, y \in G$ are connected by a path in G if there is acontinuous path p: $[0,1] \rightarrow G$ with $p(0) = x$ and $p(1) =$ *Y*; we will then write $\frac{x-y}{G}$.

Lemma (3.2.17):

GIs an equivalence relation on G.

For $g \in G$, we can consider the equivalence class of g, the path component of g in G,

$$
G_g = \left\{ x \in G : \begin{matrix} x - g \\ G \end{matrix} \right\}
$$

Proposition (3.2.18):

The path component of the identity is a clopen normal subgroup of G, G_1 G;hence it is a closed Lie subgroup of dimension dimG.

The path component G_gagrees with the coset of g with respect to G_1 , $G_g=$ $gG_1 = G_1$ _gand is aclosed submanifold of G.

Proof:

By Proposition (3.2.9) G_gcontains an open neighbourhood of g in G. This shows that everycomponent is actually a submanifold of G with dimension equal to dimG. The argument used in theproof of Proposition (3.2.5)shows that each is $G_{\rm g}$ actually clopen in G.

Let x;y $\in G_1$. Then there are continuous paths p, q: [0, 1] $\rightarrow G$ with $p(0) = 1 =$ $q(0)$, $p(0) = x$ and $q(0) = y$. The product path

$$
r:[0,1]\rightarrow G;\quad r(t)=p(t)q(t)
$$

hasr(0) = 1 and r(1) = xy. So G₁ \leq G. For g\ialgoriginal Fig. 5.

$$
s:[0,1] \to G
$$
; $s(t) = gp(t)g^{-1}$

has $s(0) = 1$ and $s(1) = gxg^{-1}$; hence $G_1 \triangleleft G$. If $z \in gG_1 = G_1g$, then $g^{-1}z \in G_1$ and so there is acontinuous path h: [0,1] \rightarrow G with h(0) = 1 and h(1) = $g^{-1}z$. Then the path

$$
gh: [0,1] \rightarrow G; gh(t) = g(h(t))
$$

has $gh(0) = gan d gh(1) = z$. So each coset gG_1 is path connected, hence $gG_1 \subseteq G_g$. To show equality, suppose that g is connected by a path k: [0,1] $\rightarrow G$ in G to w $\in G_g$. Then the path $g^{-1}k$ connects 1to $g^{-1}w$, so $g^{-1}w \in G_1$, giving w $\in gG_1$. This shows that $G_g \subseteq_g G_1$.

The quotient group G/G_1 is the group of path components of G, which we will denote by $\pi_0 G$.

Example (3.2.19):

We have the following groups of path components:

$$
\pi_0SO(n)=\pi_0SL_n(R)=\pi_0SU(n)=\pi_0U(n)=\pi_0SL_n(\mathbb{C})=\pi_0GL_n(\mathbb{C})=\{1\},
$$

Example (3.2.20):

Let

$$
T = \left\{ \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} : \theta \in R \right\} \le SO(3)
$$

And let $G = N_{SO(3)}(T) \leq SO(3)$ be its normalize. Then T and G are Lie subgroups of SO(3) and $\pi_0 G \cong {\pm 1}$.

Proof:

A straightforward computation shows that

$$
N_{SO(3)}(T) = T \cup \left\{ \begin{bmatrix} -cos\theta & sin\theta & 0 \\ sin\theta & cos\theta & 0 \\ 0 & 0 & -1 \end{bmatrix} : \theta \in R \right\} = T \cup \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} T.
$$

Notice that T is isomorphic to the unit circle,

$$
T \cong T: \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \leftrightarrow e^{\theta i}.
$$

This implies that T is path connected and abelian since T is. The function

$$
\varphi: G \to R^x; \quad \varphi\big(\big[a_{ij}\big]\big) = a_{33}
$$

is continuous with

$$
\varphi^{-1}R^{+} = T, \varphi^{-1}R^{-} = T \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.
$$

hence these are clopen subsets. This shows that the path components of G are

$$
G_1 = T, \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} T.
$$

Hence $\pi_0 G \cong {\pm 1}.$

Notice that $N_{SO(3)}(T)$ acts by conjugation on T and in fact every element of T $\langle N_{\text{SO}(3)}(T)$ actstrivially since T is abelian. Hence π_0 G acts on T with the action of the non-trivial coset given by

Conjugation by the matrix
$$
\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}
$$
,
\n
$$
\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1}
$$

which corresponds to the inversion homomorphism on the unit circle $T \cong T$.

Example (3.2.21):

Let $T = \{x1 + yi: x, y \in R, x^2 + y^2 = 1\} \le Sp(1)$, the group of unit quaternions. Let G = $N_{Sp(1)}(T) \le Sp(1)$ be its normalizer. Then T and G are Lie subgroups of Sp(1) and $\pi_0 G \cong (\pm 1)$.

Proof:

By a straightforward calculation,

$$
G = T \cup \{xj - yk : x, y \in R, x^2 + y^2 = 1\} = T \cup jT.
$$

T is isomorphic to the unit circle so is path connected and abelian. The function

$$
\theta: G \to \mathbb{R}; \theta(t1 + xi + yj + zk) = y^2 + z^2,
$$

is continuous and

$$
\theta^{-1} = T, \theta^{-1}1 = jT.
$$

Hence the path components of G are T, jT. So $\pi_0 G = \cong (\pm 1)$.

The conjugation action of G on T has every element of T acting trivially, so π_0 G acts on T. Theaction of the non-trivial coset is given by conjugation with j,

$$
j(x1 + yi)j^{-1} = x1 - yi,
$$

corresponding to the inversion map on the unit circle $\mathbb{T} \cong T$.

The significance of such examples will become clearer whenwe discuss maximal tori and their normalizers.

In the following we will discuss another connectivity result

Proposition (3.2.22):

Let G be a connected Lie group and $H \leq G$ a subgroup which contains an openneighbourhood of 1 in G. Then $H = G$.

Proof:

Let $U \subseteq H$ be an open neighbourhood of 1 in G. Since the inverse map inv: G \rightarrow G is ahomeomorphism and maps H into itself, by replacing U with U \cap inv

U if necessary, we can assume thatinv maps the open neighbourhood into itself, i.e., inv $U = U$.

For $k \geq 1$, consider

$$
U^k = \{u_1 \dots u_k \in G : u_j \in U\} \subseteq H.
$$

Notice that inv $U^k = U^k$. Also, $U^k \subseteq G$ is open since for $u_1; \ldots, u_k \in U$,

$$
u_1 \dots u_k \in L_{u_1 \dots u_{k-1}} U \subseteq U^k
$$

where $L_{u_1...u_{k-1}}U = L_{(u_1...u_{k-1})^{-1}}^{-1}U$ is an open subset of G.

Then

$$
V = \bigcup_{k \ge 1} U^K \subset H
$$

satisfies inv $V = V$.

V is closed in G since given $g \in G -V$, for the open set $gV \subseteq G$, if $x \in gV$ $\cap V$ there are $u_1, \ldots, u_r, v_1, \ldots, v_s \in U$ such that

$$
Gu_1, ..., u_r = v_1, ..., v_s
$$

implying $g = v_1, ..., v_s u_1^{-1}, ... u_r^{-1} \in V$, contradicting the assumption on g. So V is a nonempty clopen subset of G, which is connected. Hence $G - V =$ \emptyset , and therefore $V = G$, which also implies that $H = G$.