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Chapter (2) 

Quaternions, Clifford Algebras, and Matrix Groups as Lie 

Groups. 
Now we will discuss algebras. 

Section (2.1): Quaternions, Clifford Algebras, and Matrix Groups 

as Lie Groups 
First ॶ will denote any field, although our main interest will be in the cases 

ℝ,ℂ. 

Definition (2.1.1): 
finite dimensional (associative and unital) algebra A is a finite dimensional ঋ-

vector space which is an associative and unital ring such that for all r; s ∈ ঋ  and 

a; b ∈ A, 

(ܾݏ)(ܽݎ) =  .(ܾܽ)(ݏݎ) 

If A is a ring then A is a commutative ঋ -algebra. 

If every non-zero element ক ∈ A is a unit, i.e., is invertible, then A is a division 

algebra. 

In this last equation, ܽݎ and ܾݏ are scalar products in the vector space structure, 

while (ݏݎ)(ܾܽ) is the scalar product of ݏݎ with the ring product ܾܽ. 

Furthermore, if 1 ∈ ঋ is the unit of A, for t ∈ ঋ, the element 1ݐ ∈ A satisfies 

= ܽ(1ݐ) = ܽݐ  (1ܽ)ݐ  =  .(1ݐ)ܽ 

If dim ঋ A > 0, then 1 ≠ 0, and the function 

ঋ:ߟ → ;ܣ (ݐ)ߟ = ܶ1 

is an injective ring homomorphism; we usually just write t for ߟ (t) = t1. 

Example (2.1.2): 
For ݊ ≥  1, Mn(ঋ) is a ঋ-algebra. Here we have ߟ (t) = t ,ℂ is non-

commutative. 
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Example (2.1.3): 
The ring of complex numbers ℂ is an ℝ-algebra. Here we have ߟ (t) = t. C is 

commutative. Notice that ℂ is a commutative division algebra. 

A commutative division algebra is usually called a field while a non-

commutative division algebra is called a skew field. In French corps (~field) is 

often used in sense of possibly non-commutative division algebra. 

In any algebra, the set of units of A forms a group A* under multiplication, and 

this contains ঋx. 

For A = Mn(ঋ), Mn(ঋ)x = GLn(ঋ). 

Definition (2.1.4): 
Let ܤ,ܣ be two ঋ-algebras. A ঋ-linear transformation that is also a ring 

homomorphism is called a ঋ-algebra homomorphism or homomorphism of ঋ -

algebras. 

A homomorphism of ঋ-algebras ߮: A → B which is also an isomorphism of 

rings or equivalently of ঋ-vector spaces is called isomorphism of ঋ-algebras. 

Notice that the unit ߟ: ঋ → A is always a homomorphism of ঋ-algebras. There 

are obvious notions of kernel and image for such homomorphisms, and of 

subalgebra. 

Definition (2.1.5): 
Given two ঋ-algebras ܤ,ܣ, their direct product has underlying set ܤ ݔ ܣ with 

sum and product 

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)  , (a1, b1)(a2, b2) = (a1a2, b1b2). 

The zero is (0,0) while the unit is (1,1). 

It is easy to see that there is an isomorphism of ঋ -algebras A x B ≅ B x A. 

Given a ঋ-algebra A, it is also possible to consider the ring Mn(A) consisting of 

 matrices with entries in A; this is also a ঋ-algebra of dimension ݉ ݔ ݉

DimkMm(A) = m2dimK A. 
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It is often the case that a ঋ-algebra A contains a subalgebraঋ1⊆ A which is also 

a field. In that case A can be viewed as a over ঋ1 in two different ways, 

corresponding to left and right multiplication by elements of ঋ1. Then for t ∈

ঋ1, ܽ ∈ A, 

(݊݅ݐ݈ܽܿ݅݅ݐ݈ݑ݉ ݎ݈ܽܽܿݏ ݐ݂݁ܮ) → = ܽ.ݐ  ;ܽݐ 

(ܴ݅݃ℎ݊݅ݐ݈ܽܿ݅݅ݐ݈ݑ݉ ݎ݈ܽܽܿݏ ݐ) → ܽ. = ݐ  .ݐܽ 

These give different ঋ1-vector space structures unless all elements of ঋ1 

commute with all elements of A, in which case ঋ1 is said to be a central subfield 

of A. We sometimes write ঋ1A and ܣঋଵ to indicate which structure is being 

considered. ঋ1 is itself a finite dimensional commutative ঋ-algebra of some 

dimension ݀݅݉ঋঋ1. 

Proposition (2.1.6): 
Each of the ঋ1-vector spacesk1 A and ܣঋଵ is finite dimensional and in fact 

dimk A = dimk1 (k1A) dimkঋ1 = dimkঋ A|1 dimkঋ: 

Example (2.1.7): 
Let ঋ = ℝ and A = M2(ℝ), so dimR A = 4. Let 

ঋ1 =ቄቂ
ݔ ݕ
ݕ− ቃݔ ,ݔ: ݕ ∈ ℝቅ ⊆  ଶ(ℝ)ܯ

Then ঋ1≅ ℂ so is a subfield of M2(ℝ), but it is not a central subfield. Also dimk1 

A = 2. 

Example (2.1.8): 
Let ঋ = ℝ and A = M2(ℂ), so dimR A = 8. Let 

ঋ1 =ቄቂ
ݔ ݕ
ݕ− ቃݔ : ,ݔ ݕ ∈ ℝቅ ⊆  ଶ(ℂ)ܯ

Then ঋ1≅ ঃ so is subfield of M2(ℂ), but it is not a central subfield. Here dimk1 A 

= 4. 

Given a ঋ-algebra A and a subfield  ঋ1⊆A containing ঋ (possibly equal to ঋ), 

an element ܽ ∈  :acts on A by left multiplication ܣ 

= ݑ. ܽ ∋ ݑ) ݑܽ   .(ܣ 
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This is always a ঋ-linear transformation of A, and if we view A as the ঋ1vector 

space A ঋ1, it is always a ঋ1-linear transformation. Given a ঋ1-basis 

{v1,……,vm} for A ঋ1, there is an ݉ ݔ ݉ matrix ߩ(a) with entries in ঋ1 defined 

by 

ݒ(ܽ)ߣ = ߣ(ܽ)ݒ



ୀଵ

 

It is easy to check that 

ܣ:ߣ → ;(݇ଵ)ܯ ܽ ↦  (ܽ)ߣ

is a homomorphism of ঋ-algebras, called the left regular representation of A 

over ঋ1 with respect to the basis {v1,…, vm}. 

Lemma (2.1.9): 
 .hence it is an injection ,0 = ߣA →Mm(ঋ1) has trivial kernel kerߣ

Proof: 
If a ∈kerߣ then ߣ (a)(1) = 0, giving a1 = 0, so a = 0. 

Definition (2.1.10): 
The ঋ-algebra A is simple if it has only one proper two sided ideal, namely (0), 

hence every non-trivial |-algebra homomorphism ߠ: A →B is an injection. 

Proposition (2.1.11): 
Let ঋ be a field. 

i) For a division algebra ॰ over ঋ, ॰ is simple. 

ii) For a simple ঋ -algebra A, Mn(A) is simple. In particular, Mn(ঋ) is a simple 

ঋ -algebra. 

On restricting the left regular representation to the group of units of Ax, 

we obtain an injective group homomorphism 

௫ܣ:௫ߣ → ;(ঋଵ)ܮܩ (ݑ)(ܽ)௫ߣ =  ,ݑܽ

where ঋ1⊆ A is a subfield containing ঋ and we have chosen a ঋ1-basis of  ܣঋଵ 

Because 

௫ܣ ≅ ௫ߣ݉݅ ≤  (ঋ1)ܮܩ
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Ax and its subgroups give groups of matrices. 

Given a ঋ-basis of A, we obtain a group homomorphism 

→௫: AX  ଵିܽݒ=௫(a)(u);(݇)ேܮܩ

We can combine ߣ௫ and ߩ௫ to obtain two further group homomorphisms 

௫ߣ ௫ܣ :௫ߩ ݔ  ௫ܣ ݔ  → ;(ঋ)ܮܩ ௫ߣ (ݑ)(ܾ,ܽ)௫ߩ ݔ  =  ଵିܾݑܽ

Δ:ܣ௫ → (ݑ)(ܽ)(ঋ); Δܮܩ =  ଵିܽݑܽ

Notice that these have non-trivial kernels, 

Ker ߮௫:  ௫ = {(1,1),(-1,-1)}, Ker ∆ = {1,-1}ߩ

In the following we will discuss linear algebra over a division algebra 

let ॰ be a finite dimensional division algebra over a field ঋ. 

Definition (2.1.12): 
A (right) ॰-vector space V is a right ॰-module, i.e., an abelian group with a 

right scalar multiplication by elements of ॰ so that for ݑ; ݒ  ∈ V , ݔ; ݕ  ∈ ॰, 

v(xy) = (vx)y, 

v(x + y) = vx + vy, 

(u + v)x = ux + vx, 

v1 = v: 

All the obvious notions of ॰-linear transformations, subspaces, kernels and 

images make sense as do notions of spanning set and linear independence over 

॰. 

Theorem (2.1.13): 
Let V be a ॰ -vector space. Then V has a ॰-basis. 

If V has a finite spanning set over ॰ then it has a finite ॰ -basis; furthermore 

any two such finite bases have the same number of elements. 

Definition (2.1.14): 
A ॰ -vector space V with a finite basis is called finite dimensional and the 

number of elements in a basis is called the dimension of V over ॰, denoted 

dimD V . 
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For n > 1, we can view ॰n as the set of ݊ 1 ݔ column vectors with entries in ॰ 

and this becomes a ॰ -vector space with the obvious scalar multiplication 

൦

ଵݖ
ଶݖ
⋮
ݖ

൪ ݔ = ൦

ݔଵݖ
ݔଶݖ
⋮
ݔݖ

൪ 

Proposition (2.1.15): 
Let V,W be two finite dimensional vector spaces over ॰, of dimensions dimD V 

= m, dimDW = n and with bases {v1; : : : ; vm}, {w1; : : : ;wn}. Then a ॰-linear 

transformation ߣ: V →W is given by 

(ݒ)߮ = ݓܽ



ୀଵ

 

For unique elements ܽ ∈ ॰ Hence if 

߮ ൭ݒ௦ݔ௦



௦ୀଵ

൱ = ݓݕ,


௦ୀଵ

 

Then 

൦

1ݕ
2ݕ
⋮
݊ݕ

൪ = ൦

ܽଵଵ ܽଵଶ ⋯ ଵݔ
ܽଶଵ ܽଶଶ ⋯ ଶݔ
⋮ ⋱ ⋱ ⋮
ܽଵ ܽଶ ⋯ ݔ

൪ ൦

ଵݔ
ଶݔ
⋮
ݔ

൪ 

In particular, for V=॰m and W=॰n, every ॰-linear transformation is obtained in 

this way from left multiplication by a fixed matrix. 

This is of course analogous to what happens over a field except that we are 

careful to keep the scalar action on the right and the matrix action on the left. 

We will be mainly interested in linear transformations which we will identify 

with the corresponding matrices. If ߠ: ॰k→: ॰k and ߮॰m→ ॰n are ॰-linear 

transformations with corresponding matrices [ߠ] , [߮], then 

       (2.1)                                       ,[Ο߮ߠ] =[߮]  [ߠ]                                         

Also, the identity and zero functions Id; 0: ॰m→  ॰m have [Id] = Im and [0] = 

Om. 
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Notice that given a ॰-linear transformation ߮: V→W, we can 'forget' the ॰-

structure and just view it as a ঋ-linear transformation. Given ॰-bases {v1…, vm}, 

{w1,…..,wn} and a basis {b1, …, bd} say for ॰, the elements 

vrbt (r = 1, …. ,m , t = 1 , …. d), 

wsbt (s = 1, …, n , t = 1 , … d) 

form ঋ-bases for V;W as ঋ-vector spaces. 

We denote the set of all ݉ ݔ ݊ matrices with entries in ॰ by Mm,n(॰) and Mn(॰) 

= Mn,n(॰). Then Mn(॰) is a ঋ-algebra of dimension dim Mn(ঋ) = n2dimk॰. The 

group of units of Mn(॰) is denoted GLn(॰). However, for non-commutative ॰ 

there is no determinant function so we cannot define an analogue of the special 

linear group. We can however use the left regular representation to overcome 

this problem with the aid of some algebra. 

Proposition (2.1.16): 
Let A be algebra over a field ॰ and B ⊆ A a finite dimensional subalgebra. If 

u∈ B is a unit in A then ିݑଵ ∈ B, hence u is a unit in B. 

Proof: 
 Since B is finite dimensional, the powers uk (k≥0) are linearly dependent over 

ঋ, so for some tr∈ ঋ (r = 0,….,ℯ ) with ߬ℯ ≠ 0 and ℯ ≥ 1, there is a relation 

ݐݑ = 0
ℯ

ୀ

 

If we choose k suitably and multiply by a non-zero scalar, then we can assume 

that 

ݑ −  ݑݐ = 0.
ℯ

ୀାଵ

 

If v is the inverse of ݑ in A, then multiplication by vk+1 gives 

ݒ −  ିିଵݑݐ = 0.
ℯ

ୀାଵ

 

from which we obtain 
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ݒ −  ିିଵݑݐ ∈ ܤ
ℯ

ୀାଵ

 

For a division algebra ॰, each matrix A ∈Mn(॰) acts by multiplication on the 

left of ॰n. For any subfield ঋ1⊆  ॰ containing ॶ, A induces a (right) ॶ1-linear 

transformation, 

Dn→Dn; x →Ax 

If we choose a ঋ1-basis for ॰, A gives rise to a matrix AA∈Mnd(ॶ1) where d = 

dimk1॰ॶଵ . It is easy to see that the function ⋀: Mn(॰) →Mnd(ॶ1) ; ⋀(A) = ⋀A. 

is a ring homomorphism with ker⋀ = 0. This allows us to identify Mn(॰) with 

the subring im⋀ ⊆ Mnd(ॶ1). 

We see that A is invertible in Mn(॰) if and only if ⋀A is invertible in Mnd(ॶ1). 

But the latter is true if and only if det⋀A∈ 0. 

Hence to determine invertibility of A ∈Mn(॰), it suffices to consider det ⋀A 

using a subfield ॶ1. The resulting function 

Rdet ॶ1 : Mn(॰) → ॶ1; Rdet ॶ1 (A) = ⋀A. 

is called the ॶ1-reduced determinant of Mn(॰) and is a group homomorphism. It 

is actually true that det⋀A∈ ॶ1, not just in ॶ1, although we will not prove this 

here. 

Proposition (2.1.17): 
A ∈Mn(॰) is invertible if and only if Rdet ॶ1≠ 0 for some subfield ॶ1⊆

॰ containing ॶ1. 

In the following we will discuss Quaternions 

Proposition (2.1.18): 
If A is a finite dimensional commutative ℝ-division algebra then either A = 

ℝ or there is an isomorphism of ℝ -algebras A ≠ C. 

Proof: 
Let ߙ. Since A is a finite dimensional ℝ -vector space, the powers 

,ଶߙ, ߙ ,1 … ߙ. … must be linearly dependent, say 
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t0 + t1 ߙ + … + tm ߙm = 0               (2.2) 

for some tj∈ ℝ with m > 1 and tm≠ 0. We can choose m to be minimal with 

these properties. If t0 = 0, then 

t1 + t2 ߙ + t3 2ߙ + …. + tm ߙm-1 = 0 

contradicting minimality; so t0≠ 0. In fact, the polynomial ܲ(ܺ) = t0 + t1X +… 

+ tmXm∈ ℝ [X] is irreducible since if ܲ(ܺ) = ଵܲ(ܺ) ଶܲ(ܺ) then since A is a 

division algebra, either ଵܲ(ߙ) = 0 or ଶܲ(ߙ) = 0, which would contradict 

minimality if both deg ଵܲ(ܺ) > 0 and deg ଶܲ(ܺ) > 0. 

Consider the ℝ-subspace 

ℝ(ߙ) = ቐݏߙ


ୀ

ቑ 

Then ℝ(ߙ) is easily seen to be a ℝ-subalgebra of A. The elements 1, ߙ ,ߙଶ, 

 .m = (ߙ)ିଵform a basis by Equation (2.2), hence dimRℝߙ

Let ߛ ∈ C be any complex root of the irreducible polynomial t0 + t1X +…+ 

tmXm∈ ℝ [X] which certainly exists by the Fundamental Theorem of Algebra. 

There is an R-linear transformation which is actually an injection, 

߮:ℝ(ߙ)→ ℂ;  ߮ ∑ (ߙݏ = ∑ ିଵߛݏ
ୀ

ିଵ
ୀ  

It is easy to see that this is actually an R-algebra homomorphism. Hence ߮ℝ(ߙ) 

⊆ ℂ is a subalgebra. 

But as dimRℂ = 2, this implies that m = dimRℝ(ߙ) ≤ 2. If m = 1, then by 

Equation (2.2), ߙ ∈ ℝ. If m = 2, then ߮:ℝ(ߙ) = ℂ. 

So either dimR A = 1 and A = ℝ, or dimR A > 1 and we can choose an ߙ ∈ A 

with ℂ ≠  ℝ(ߙ). This means that we can view A as a finite dimensional ℂ-

algebra. Now for any ߚ ∈ A there is polynomial 

q(X) = u0 + u1X +…+ ݑℯܺℯ߳ℂ [X] 

with ℯ> 1 and ݑℯ ≠ 0. Again choosing ℯ to be minimal with this property, q(X) 

is irreducible. But then since q(X) has a root in ℂ, ℯ = 1 and ߚ ∈ ℂ. This shows 

that A = ℂ whenever dimR A > 1. 
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The above proof actually shows that if A is a finite dimensional ℝ-

division algebra, then either A = ℝ or there is a subalgebra isomorphic to ℂ. 

However, the question of what finite  dimensional ℝ -division algebras exist is 

less easy to decide. In fact there is only one other up to isomorphism, the skew 

field of quaternions ℍ. We will now show how to construct this skew field. 

Let 

ℍ = ቄቂ ݖ ݓ
ݓ− ݖ ቃ : ∋ ݓ,ݖ  ℂቅ ⊆  ଶ(ℂ)ܯ

It is easy to see that H is a subring of M2(ℂ) and is in fact an ℝ-subalgebra 

where we view M2(ℂ) as an ℝ-algebra of dimension 8. It also contains a copy of 

C, namely the ℝ-subalgebra 

ቄቂݖ 0
0 ቃݖ : ݖ ∈   ℂቅ ⊆ ℍ 

However, ℍ is not a C-algebra since for example 

݅ 0
0 −݆൨ ቂ

0 1
−1 0ቃ = ቂ0 ݅

݅ 0ቃ = − ቂ 0 1
−1 0ቃ ቂ

݅ 0
0 −݅ቃ ≠ ቂ 0 1

−1 0ቃ ቂ
݅ 0
0 −݅ቃ 

 

Notice that if ݓ,ݖ ∈ ℂ, then ݖ =  0 = ଶ|ݖ| if and only if ݓ  +  ଶ= 0. We|ݓ|

have 

ቂ ݖ ߱
−߱ ݖ ቃ ቂ

ݖ −߱
߱ ݖ

ቃ = 
ଶ|ݖ| + |߱|ଶ 0

0 ଶ|ݖ| + |߱|ଶ൨ 

Hence ቂ ݖ ߱
−߱ ቃis invertible if and only if ቂݖ ݖ ߱

−߱ ݖ ቃ ≠ 0; furthermore in that 

case, 

ቂ ݖ ߱
−߱ ݖ ቃ

ିଵ
=

⎣
⎢
⎢
⎢
⎡

ݖ
ଶ|ݖ| + |߱|ଶ

−߱
ଶ|ݖ| + |߱|ଶ

߱
ଶ|ݖ| + |߱|ଶ

ݖ
ଶ|ݖ| + |߱|ଶ⎦

⎥
⎥
⎥
⎤
 

 

which is in ℍ. So an element of ℍ is invertible in H if and only if it is invertible 

as a matrix. Notice that 

SU(2) = {A ∈ H : detA = 1} ≤Hx 
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It is useful to define on H a norm 

ቚቂ ݖ ߱
−߱ ቃቚݖ = ݐ݁݀ ቂ ݖ ߱

−߱ ݖ ቃ = ଶ|ݖ| + |߱|ଶ 

Then 

Su(2)={A∈  ℍ:|ܣ| =} ≤ ℍ௫ 

As an ℝ-basis of ℍ௫ we have the matrices 

1 = ,ܫ ݅ = ቂ ݅ 0
0 −݅ቃ , ݆ = ቂ 0 1

−1 0ቃ ,݇ = ቂ0 ݅
݅ 0ቃ 

These satisfy the equations 

i2 = j2 = k2 = -1, ij = k = - k = -ij = -kj; ki = j = -ik: 

This should be compared with the vector product on ℝ3 From now on we will 

write quaternions in the form 

= ݍ + ݅ݔ   ݆ + + ݇ݖ  ,ݔ) 1ݐ  ,ݕ ,ݖ ∋ ݐ  ܴ): 

q is a pure quaternion if and only if ݐ =  0,  is a real quaternion if and only if ݍ

= ݔ = ݕ  = ݖ   0. We can identify the pure quaternion ݅ݔ + ݆ݕ +  with the ݇ݖ

element xe1+ye2+ze3∈  ℝ3. Using this identification we see that the scalar and 

vector products on ℝ3 are related to quaternion multiplication by the following. 

Proposition (2.1.19): 
For two pure quaternions q1 = x1i + y1j + z1k, q2 = x2i + y2j + z2k, 

q1q2 = -(x1i + y1j + z1k) (x2i + y2j + z2k) + (x1i + y1j + z1k)_(x2i + y2j + z2k). 

In particular, q1q2 is a pure quaternion if and only if q1 and q2 are orthogonal, in 

which case q1q2 is orthogonal to each of them. 

The following result summarises the general situation about solutions of 

X2 + 1 = 0. 

Proposition (2.1.20): 
The quaternion q = ݅ݔ + ݆ + ݇ݖ +  satisfies q2 +1 = 0 if and only if t = 0 and 1ݐ

x2 + y2 + z2 = 1. 

Proof. This easily follows from Proposition 3.19. 

There is a quaternionic analogue of complex conjugation, namely 
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q = xi + j + zk + t1 ⟼  .xi - j - zk + t1- =  ∗ݍ = ݍ

This is `almost' a ring homomorphism ℍ → ℍ, in fact it satisfies 

ଵݍ) +  (2.3a)    ;2ݍ + 1ݍ = (ଶݍ 

 (2.3b)                                ; 2ݍ1ݍ = (ଶݍଵݍ)

 q ⇔  q is real quaternion;   (2.3c) = ݍ

 q ⇔q is a pure quaternion:                   (2.3d)- = ݍ

Because of Equation (2.3b) this is called a homomorphism of skew rings or 

anti-homomorphism of rings. 

The inverse of a non-zero quaternion ݍ can be written as 

ଵିݍ = ଵ
()

݃ =  
()

    (2.4) 

The real quantity ݍݍ is the square of the length of the corresponding vector, 

|݃| = ඥ݃݃ = ඥݔଶ + ଶݕ + ଶݖ +  ଶݐ

For z = with u, v ∈ R , z = u1- vi is the usual complex conjugation. 

In terms of the matrix description of ℍ, quaternionic conjugation is given by 

hermitian conjugation, 

ቂ ݖ ߱
−߱ ݖ ቃ ↦ ቂ ݖ ߱

−߱ ቃݖ
∗

= ቂ ݖ −߱
߱ ݖ

ቃ 

From now on we will write 

1 = 1, i = I, j = j, k = k. 

Now we will discuss Quaternionic matrix groups 

The above norm | | on ℍ extends to a norm on ℍn, viewed as a right H-vector 

space. We can define an quaternionic inner product on ℍ by 

ݕ.ݖ = ݕ∗ݖ = ݔݎݕ,


ୀଵ

 

Where we define the quaternionic conjugate of a vector by 

൦

ଵݔ
ଶݔ
⋮
ݔ

൪=[ݔଵݔଶ … .  [ݔ
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Similarly, for any matrix [ߙ ] over ℍ we can define [ߙ ] *= [ߙ  ] 

The length of x ∈ ℍ n is defined to be 

|ݔ| = ݔ∗ݔ√ = ඩ|ݔ|ଶ


ୀଵ

 

We can also define a norm on Mn(ℍ) i.e., for A ∈ Mn(ℍ), 

‖ܣ‖ = ݑݏ ቊ
|ݔܣ|
|ܺ| : 0 ≠ ݔ ∈ ℍቋ 

There is also a resulting metric on Mn(ℍ), 

(ܤ,ܣ) ↦ ܣ‖  −  ‖ܤ 

and we can use this to do analysis on Mn(ℍ). The multiplication map Mn(ℍ) x 

Mn(ℍ) →Mn(ℍ) is again continuous, and the group of invertible elements 

GLn(ℍ) ⊆Mn(ℍ) is actually an open subset. 

This can be proved using either of the reduced determinants 

ℝݐܴ݁݀ ∶ (ℍ)ܯ  →  ℝ,ܴ݀݁ݐ ∶ (ℍ)ܯ  → ℂ, 

each of which is continuous. By Proposition (2.1.17), 

GLn(ℍ) = Mn(ℍ) - ܴ݀݁ݐିଵ  0.                           (2.5a ) 

GLn(ℍ) = Mn(ℍ) - ܴ݀݁ݐିଵ  0 .                             (2.5b ) 

In either case we see that GLn(ℍ) is an open subset of Mn(ℍ). It is also possible 

to show that the images of embeddings GLn(ℍ) → GL4n(ℝ) and GLn(ℍ) → 

GL2n(ℂ) are closed. So GLn(ℍ) and its closed subgroups are real and complex 

matrix groups. 

The ݊ ݔ ݊ quaternionic symplectic group is 

(݊)ܵ = ∋ ܣ} = ܣ∗ܣ :(ℍ)ܮܩ  {ܫ  ≤  .(ℍ)ܮܩ

These are easily seen to satisfy 

(݊)ܵ = ∋ ܣ} .ݔ∀ :(ℍ)ܮܩ  ∋ ݕ  ℍ,ݕܣ.ݔܣ =  .{ݕ.ݔ

These groups ܵ(݊) form another infinite family of compact connected matrix 

groups along with familiar examples such as ܱܵ(݊),ܷ(݊), ܷܵ(݊). There are 



70 
 

further examples, the spinor groups ܵ݊݅(݊) whose description involves the real 

Clifford algebras ܮܥ. 

Now we will discuss The real Clifford algebras, 

The sequence of real division algebras ℝ,ℂ,ℍ can be extended by introducing 

the real Clifford algebras Cl, where 

Cl0 = ℝ , Cl1 = ℂ, Cl2 = ℍ ,  dimR = 2n 

There are also complex Clifford algebras, but we will not discuss these. The 

theory of Clifford algebras and spinor groups is central in modern differential 

geometry and topology, particularly Index Theory. It also appears in Quantum 

Theory in connection with the Dirac operator. There is also a theory of Clifford 

Analysis in which the complex numbers are replaced by a Clifford algebra and a 

suitable class of analytic functions are studied; a motivation for this lies in the 

above applications. 

We begin by describing Cln as an ℝ-vector space and then explain what the 

product looks like in terms of a particular basis. There are elements e1, e2, …  

en∈Cln for which 

൜
݁௦݁ = −݁௦݁ , ≠ ݏ ݂݅ .ݎ
 ݁ଶ =  −1                                                   (2.6 ܽ)     

Moreover, the elements ei1ei2  for increasing sequences 1 ≤ i1< i2< … <ir≤ n 

with 0 ≤ r ≤ n, form an ℝ-basis for Cln. Thus 

݀݅݉ℝ݈ܥ  =  2        (2.6b)      

When r = 0, the element 
1 2

 eir i ie e  is taken to be 1. 

Proposition (2.1.21): 
There are isomorphisms of ℝ-algebras 

1ଵܥ ≅ ܥ , ଶ݈ܥ ≅ ℍ 

Proof: 
For Cl1, the function 

ଵ݈ܥ → ℂ; ݔ + 1݁ݕ ↦ ݔ + ,ݔ) ݅ݕ ∋ ݕ ℝ), 
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is an ℝ -linear ring isomorphism. 

Similarly, for Cl2, the function 

Cl2→ ℍ; t1 + xe1 + ye2 + ze1e2→ t1 + xi + yj + zk (t,x,y,z∈ ℝ); 

is an R-linear ring isomorphism. 

We can order the basis monomials in the ݁ݎ by declaring ei1ei2 

to be number 

1 + 2i1-1 + 2i2-1 + … + 2ir-1, 

which should be interpreted as 1 when ݎ =  0. Every integer ݇ in the range 1 ≤

 ݇ 6 2݊ has a unique binary expansion 

k = k0 + 2k1 +… + 2jkj +… + 2nkn, 

where each kj = 0,1. This provides a one-one correspondence between such 

numbers k and the basis monomials of Cln. Here are the basis orderings for the 

first few Clifford algebras. 

Cl1 : 1,e1; Cl2 : 1,e1; e2; e1e2; Cl3 : 1; e1, e2, e1e2, e3, e1e3, e2e3; e1e2e3. 

Using the left regular representation over ℝ associated with this basis of Cln, we 

can realiseCln as a subalgebra of M2n(ℝ). 

Example (2.1.22): 
For Cl1 we have the basis {1, e1} and we find that 

(0)ߩ = ݈ଶ,(1݁) = ቂ0 −1
1 0 ቃ 

So the general formula is 

ݔ)ߩ + (1݁ݕ = ቂ
ݔ ݕ−
ݕ ݔ ቃ ݕ,ݔ) ∈ ℝ) 

For Cl2 the basis {1, e1, e2, e1e2} leads to a realization in M4(ℝ) for which (1)ߩ = I4 

and 

(ଵ)ߩ = ൦

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

൪  ଶߩ,
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൦

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

൪ , ଵଶߩ ൦

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

൪ 

In all cases the matrices ߩ(ei1ei2…eir) are generalized permutation matrices all of 

whose entries are entries 0, ±and exactly on non-zero entry in each row and 

column. These are always orthogonal matrices of determinant 1. 

These Clifford algebras have an important universal property which actually 

characterises them. 

First notice that there is an ℝ-linear transformation 

݆݊:ℝ → ;݈ܥ ݆݊ ൭ݔ݁



ୀଵ

൱ = ݔ݁



ୀଵ

 

By an easy calculation, 

݆݊ ൭ݔ݁



ୀଵ

൱
ଶ

= −ݔଵଶ = − อݔ݁



ୀଵ

อ
ଶ

ୀଵ

  (2.7) 

Theorem (2.1.23): (The Universal Property of Clifford Algebras) 
Let A be a ℝ-algebra and f : ℝn→Aanℝ-linear transformation for which 

f(x)2 = -|21|ݔ. 

Then there is a unique homomorphism of ℝ-algebras F :Cln→ A for which F _jn 

= f, i.e., for all x ∈ ℝn, 

൯(ݔ)൫݆ܨ =  .(ݔ)݂ 

Proof: 
The homomorphism F is defined by setting (ݎ݁)݂ = (ݎ݁)ܨ and showing that it 

extends to a ring homomorphism on Cln. 

Example (2.1.24): 
There is an ℝ-linear transformation 

0ߙ ∶ ℝ  → ; ݈ܥ (ݔ)0ߙ  = −݆(ݔ) = ݆(ݔ�). 

Then 
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α 0(x)2 = jn(-x)2 = -|2|ݔ, 

so by the Theorem there is a unique homomorphism of ℝ-algebras ߙ: Cln→Cln 

for which 

 .(x)0ߙ = (jn(x)) ߙ

Since jn(er) = er, this implies 

 .er- = (er) ߙ

Notice that for 1 ≤ i1 < i2 < , … <ik≤ n, 

k(1-) = ( ei1ei2, …eik) ߙ
ei1ei2 … eik൜

݁ଵ݁ଶ … ݁ ݂݅ ݇ ݅݊݁ݒ݁ ݏ 
−݁ଵ݁ଶ …݁ ݂݅ ݇ ݇݀݀ ݏ 

It is easy to see that ߙ is an isomorphism and hence an automorphism. 

This automorphism ߙ: Cln→Cln is often called the canonical automorphism of 

Cln. 

Clifford algebras. Consider the ℝ-algebra M2(ℍ) of dimension 

16. Then we can define an ℝ-linear transformation 

ସ:ℝଶߠ → :ଶ(ℍ)ܯ ସ(௫ଵଵା௫ଶଶା௫ଷଷା௫ସସ)ߠ = 


ଵ݅ݔ + ଶ݆ݔ + ଷ݇ݔ ସ݇ݔ

ସ݇ݔ ଵ݅ݔ + ଶ݆ݔ − ଷ݇ݔ
൨" 

Direct calculation shows that 4ߠ satisfies the condition of Theorem (2.1.23) 

hence there is a unique ℝ-algebra homomorphism ⊝4 : Cl4→ M2(ℍ) with ⊝4  j4 

 This is in fact an isomorphism of ℝ -algebras, so .4ߠ =

Cl4 ≅ M2(ℍ): 

Since ℝ ⊆ ℝ2⊆ ℝ3⊆ ℝ4 we obtain compatible homomorphisms 

⊝1 : Cl1→M2(ℍ); ⊝2 : Cl2→M2(ℍ), ⊝3 : Cl3→ M2(ℍ); 

which have images 

 

im⊝1 = {zI2 : z ∈ C}. 

im⊝2 = {qI2 : q ∈ H}, 

im⊝3 = ൜ฬ
ଵݍ 0
0 ଶݍ

ฬ ଶݍଵݍ: ∈ ℍൠ 
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This shows that there is an isomorphism of ℝ-algebras 

Cl3≠ ℍ ݔ ℍ, 

Where the latter is the direct product of Definition (2.1.5) We also have 

ହܮܩ ≅ ܮܩ,ଷ(ℂ)ܯ  ≅ ܮܩ(ℝ)଼ܯ   ≅  ௦ℝܯ ݔ(ℝ)଼ܯ 

After this we have the following periodicity result, where Mm(Cln) denotes the 

ring of ݉ ݔ ݉ matrices with entries in Cln. 

Theorem (2.1.25):  
For n > 0,  

Cln+8≅= M16(Cln). 

First there is a conjugation (   ) : Cln→Cln defined by 

݁ଵ݁ଶ, … ݁ = (-1)݇ೖೖషభ, … ei1 

whenever 1 ≤ i1< i2< … <ik≤ n, and satisfying 

+ ݔ  ,ݕ + ݔ = ݕ 

 ,ݔݐݔݐ

for ݔ, ∋ ݕ ∋ n and t݈ܥ  ℝ. Notice that this is not a ring homomorphism Cln→Cln 

since for example whenever ݎ <  ,ݏ 

݁݁௦ = eser = -eres = − ݁݁௦ ≠eres. 

However, it is a ring anti-homomorphism in the sense that for all 

,ݔ                                           ∋ ݕ  n,       (2.8)݈ܥ 

When n = 1, 2 this agrees with the conjugations already defined in ℂ and ℍ. 

Second there is the canonical automorphismߙ:Cln→Cln defined in Example 

(2.1.24). 
We can use ߙ to define a ±-grading on Cln: 

 .{u- = (u)ߙ : u ∈Cln} = ିn݈ܥ , {u = (u) ߙ : u ∈Cln} = ାܥ

Proposition (2.1.26): 
i) Every element ݒ ∈  n can be unique expressed in the form v = v++v- where݈ܥ 

v+∈ ∋-ାand vܥ ା݈ܥ = ି . Hence as an ℝ-vector space, Clnܥ  .ିܮܥ⊕ 

ii) This decomposition is multiplicative in the sense that 
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ݒݑ ∈ ,ݑ ݂݅   ேାܥ ∋ ݒ ேାܮܥ  ∋ ݒ ݑ ݎ   , ିܥ

,ݒݑ ∋ ݑݒ ∋ ା if u݈ܥ ∋ ݒ ݀݊ܽ ାܥ   ିଵܥ 

Proof: 
i) The elements 

ାݒ =
1
2
൫ݒ + ିݒ,  ൯(ݒݒ)ߙ =

1
2
൫ݒ −  .൯(ݒ)ߙ

satisfy ߙ (v+) =v+, ߙ(v-) = -v- and v = v+ + v-. This expression is easily found to 

be the unique one with these properties and defines the stated vector space 

direct sum decomposition. 

Notice that for bases of ݈ܥ± we have the monomials 

ej1 … ej2m∈ ≥ା (1 ≤ j1 < … < j2mܮܥ ݊). 

ej1, … ej2m+1∈ ଵ݈ܥ  (1 ≤ j1 < … < j2m+1≤ n).           (2.9) 

Finally, we introduce an inner product. and a norm | |on Cln by defining the 

distinct monomials ei1ei2 eik with 1 ≤ i1< i2< … <ik≤ n to be an orthonormal 

basis, i.e. 

݁ଵ݁ଶ … ݁ . ݁ଵ݁ଶ … ݁ = ቄ1   ݂݅  ℓ = ݇ ܽ݊݀ ݅ =  ݆ ݂ݎ ݈݈ܽ ݎ 
 ݁ݏ݅ݓݎℎ݁ݐ 0

 

A more illuminating way to define is by the formula 

.ݒ.ݑ = ଵ
ଶ
ݒ ݑ)ܴ݁ +  (2.10)        ,( ݑ ݒ

Where for ߱ ∈Cln we define its real part Re߱ to be the coefficient of 1 when w 

is expanded as an ℝ-linear combination of the basis monomials ei1 …eir with 1 

≤ i1< …<ir≤ n and 0 ≤ r. It can be shown that for any ݒ,ݑ ∈  ,n and w ∈jnRn݈ܥ 

,(ݑݓ) (ݒݓ)  =  ⌈߱⌉ଶ(ݒ _ ݑ). .                               (2.11) 

In particular, when ⌈߱⌉ = 1 left multiplication by ߱ defines an ℝ-linear 

transformation on Cln which is an isometry. The norm | |gives rise to a metric 

onCln. This makes the group of units ݈ܥ௫  into a topological group while the 

above embeddings of Cln into matrix rings are all continuous. This implies that 

௫ܮܥ  is a matrix group. Unfortunately, they are not norm preserving. For 
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example,2+e1e2e3∈Cl3 has |2 + ଵଶଷ|=√5,but the corresponding matrix in 

M8(ℝ) has norm√3. However, by defining for each ߱ ∈Cln 

|ݓ|  = ∋ ݔ :{ݔݓ} ܮܥ , |ݔ|  =  1}, 

we obtain another equivalent norm on Cln for which the above embedding Cln→ 

M2n(ℝ) does preserve norms. For ߱ ∈jnℝn we do have ‖ݓ| = ‖ݓ| and more 

generally, for w1…wk∈jnℝn, 

‖wଵ ‖ݓ… = |wଵ … w୩| = |wଵ| … |w୩| 

For ݔ, ∋ ݕ  ,݈ܥ 

‖ݕݔ‖ ≤  ‖ݕ‖‖ݔ‖

without equality in general. 

In the following we will study The spinor groups we will describe the compact 

connected spinor groups Spin(n) which are groups of units in the Clifford 

algebras Cln. Moreover, there are surjective Lie homomorphisms Spin(݊)→

ܱܵ(݊)each of whose kernels have two elements. 

We begin by using the injective linear transformation jn : ℝn→Cln to 

identify ℝn with a subspace of Cln, i.e., 

ݔ݁ ↔ ݆݅(ݔ݁) =


ୀଵ



ୀଵ

ݔ݁



ୀଵ

 

Notice that ℝn⊆ ∋ ିC , so for x݈ܥ ℝn, u ∈ ∋  ݒ ା andܥ  ିܮܥ

∋ ݔݑ,ݑݔ .ିܥ  ∋ ݔݒ,ݒݔ  ା      (2.12)ܮܥ

is the unit sphere nCl ⊆ nℝInside of  

∑ ∑)݁ݔ ଶݔ =
ୀଵ


ୀଵ   nℝ2 x {=  1-nS |ݔ| 1 = {=}{1

Lemma (2.1.27): 
݈௫C ∈u , nClis a unit in u . Then nCl⊆ 1-nS ∈u Let   

Proof: 
nℝ ∈u Since  

  )-u-(u= u )u = (-2u  =-)-|ݑ|12 = (,

so (-u) is the inverse of u. Notice that -u ∈ ℂିଵ 
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we have 1-nℂ ∈ k, …,u1uMore generally, for  

ଵݑ                    (2.13)                                         )= 1u …kuk1)-= ( 1-)ku…1uݑ…

Definition (2.1.28): 
The pinor group Pin(݊) is th e subgroup of ݈ܥ௫ n generated by the elements of 

ℂିଵ, 

  )௫ ≤} 1-nℂ ∈ ru 0, >k :  ku… 1u{) = nPin݈ܥ

with  nCl) is a topological group and is bounded as a subset of nNotice that Pin(

respect to the metric introduced in the last section. It is in fact a closed subgroup 

of ݈ܥ௫   and so is a matrix group; in fact it is even compact. We will show that 

in an interesting fashion. We will require the following useful  nℝacts on  (݊)Pin

result. 

Lemma (2.1.29): 
, then= 0 ݑ .   let∋ ݒ,ݑ If nCl ⊆ nℝ .ݒ

= ݒݑ  .ݒݑ− 

Proof: 
, we obtainℝ ∈ s, yrxwith ∑ ݁ݕ

ୀଵ  = v and  ∑ ݁ݔ
ୀଵ=  ݑWriting  

ݑݒ = 


௦ୀ

ݕ௦ݔ݁௦݁



ୀଵ

 

ݕ௫ݔ݁ଶ


ୀଵ

(ݔ௦ݕ − ௦)݁݁௦ݕݔ
ழ௦

 

 

= 1ݕݔ −


ୀଵ

(ݔݕ − ௦)݁݁௦ݕݔ
ழ௦

 

= ݒ.ݑ −(ݔ௦ݕ − ௦)݁݁௦ݕݔ
ழ௦
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= −(ݔ௦ݕ − ௦)݁݁௦ݕݔ
ழ௦

 

= ݒ.ݑ −(ݔ௦ݕ − ௦)݁݁௦ݕݔ
ழ௦

 

= −


ୀଵ

ݔݕ௦݁݁௦



௦ୀଵ

 

=  .ݒݑ−

,nℝ ∈ ݔand  1-nS ∈u For  

ݑݔ(ݑ)ߙ  =  ( − −)ݔ(ݑ (ݑ =  .ݑݔݑ 

If ݑ.  ,then by Lemma (2.1.29) ,0 = ݔ

ݑݔ(ݑ)ߙ                           = ݔଶݑ−  = ݔ(1−)− =  (2.14ܽ)                         .ݔ

, thenR ∈t for some  1ݔ  =ݑݐ. On the other hand, if -= |ݑ|ଶ-=  2uSince  

ݑݔ(ݑ)ߙ                                    = = ݑଶݑݐ  −   (2.14b)                          ݑݐ

This allows us to define a function .nℝ ݑݔ(ݑ) ߙ  ∈So in particular  

ℝ:ݑߩ → ℝ;(ݔ)ݑߩ = ݑݔ(ݑ)ߙ =  .ݑݔݑ
-nS ∈ r…u1ufor  ru…1u= u ; if (ݑ)ݑݔ, we can consider  (݊)Pin ∈ ݑSimilarly for 

, we have1 

ଵݑݔ   x α(u)ݑ  =ߙ )r…u1(uݑ…

)1u… rur1)-((x)ru …1ur1)-= ((  

     (2.15)                          .    nR                                          = …ߧ௨ଵߩ (ݔ)௨ߩߧ ∈     

So there is a linear transformation 

ℝ :ݑߩ → ℝ ;(ݔ)ݑߩ =  ݑݔ(ݑ)ߙ 

Proposition (2.1.30): 
For u ∈ Pin(n), ݑߩ : ℝ → ℝ is an isometry, i.e., an element of O(n). 

Since each ݑߩ ∈ O(n) we actually have a continuous homomorphism 

(݊)݊݅ܲ :ߩ  → (݊); (ݑ)ߩ   =   :ݑߩ 

Proposition ߩ: Pin(n) →O(n) is surjective with kernel ker {1-,1} = ߩ. 
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follows by using the standard fact that every element 

of O(n) is a composition of reections in hyperplanes. 

. ThennI= u ߩ, i.e., ߩker  ∈ ku… 1u= u , 1-nS ∈ k, …u1uSuppose that for some  

. kuߩdet …1uߩ) = det  ku1…ߩuߩ= det(u 1ߩ = det   

must be even, k 1. These facts imply -=  ruߩis a reection and so has det  ruߩEach 

u ∈ ݈ܥା  and then by Equation (2.13), 

  1u … ku=  1-u  =ݑ.

we have nℝ ∈ ݔSo for any  

= ݔ-1, (ݔ)ߩ  =   ݑݔݑ 

which implies that 

= ݑݔ  .ݔݑ 

For each r = 1, … , n we can write 

= ݑ  ܽ  +  ܾ݁  =  (ܽା + ܾ݁ ) +  (ܽ + ݁), 

in their expansions in terms of the monomial  redo not involve  nCl ∈ r, brawhere 

we obtain re= x bases of Equation (2.9). On taking  

.re)rbre+  ra) = (rbre+  ra(re  

giving 

re)rbre+  ra(re-=  rbre+  ra  

rerbr 2 e - rerare-=  

rbre - rar -2e݁ଶ-=  

rbre - ra=   

ܾ ଵ
ି) + (ܽି − ܾ݁ିre -ܽା= ( 

, rbre = ra=   

= 0 and  rb. Thus we have sere-=  rese, re ≠ sewhere we use the fact that for each 

. R ∈t 1 for some t= u , so r. But this applies for all redoes not involve  ra= u so 

Since ݑ = t1, 

= ଶ1ݐ ݑݑ   = (−1)   =  1, 
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by Equation (2.13) and the fact that k is even. This shows that t = ± and so u = 

±1. 

For ݊ ≥  1, the spinor groups are defined by 

(݊)݊݅ܵ = (݊)ܱܵ ଵ1ିߩ  ≤  ܲ݅݊(݊). 

Theorem (2.1.31): 
Spin(n) is a compact, path connected, closed normal subgroup of Pin(n), 

satisfying 

                                         Spin(n) =   Pin (n) ∩ CL୬ା                                 (2.16a)  

)(2.16b                     ,            )nSpin( re∪) n) = Spin(nPin(                                    

for any r = 1, … , n. 

) nSpin( ߨଵis trivial, ) nSpin(the fundamental group of 3  >n Furthermore, when 

= 1. 

Proof: 
is path  nCl ⊆ nR ⊆ 1-nSWe only discuss connectivity. Recall that the sphere 

connected. 

we must  1-nS ∈ ku…1u= u . Now for an element 1-nS ∈ 0uChoose a base point 

have k even, say k = 2m. In fact, we might as well take m to be even since u = 

. Then there are continuous paths1-nS ∈w for any w )w-(u 

ݎߩ ∶  [0,1] → ܵିଵ (ݎ =  1, …  2݉), 

: Then. ru(1) = rpand  0u(0) = rpfor which  

)t(m2p ) …t(1p) = t(p → ܵିଵ : [0,1] p  

is a continuous path in Pin(n) with 

(0) = ଶݑ   =  (−1) =  1, (1) =  ,ݑ 

But t ⟼  ((t)) is a continuous path in O(n) with ((0)) ∈ SO(n), hence ) 

(t)) ∈ SO(n) for all t. This shows that  is a path in Spin(n). So every element u 

∈ Spin(n) can be connected to 1 and therefore Spin(n) is path connected. 
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The final statement involves homotopy theory and is not proved here. It should 

and in fact the map } 1-1,{ ≅) nSO( ߨଵ3,  >n be compared with the fact that for 

is a universal covering. 

The double covering maps : Spin(n) →SO(n) generalize the case of SU(2) → 

SO(3). 

) nSpin( ⊆ uNthere is an open neighbourhood  ∈u In fact, around each element 

is a homeomorphism, and actually a diffeomorphism.  uN → uN: for which 

This implies the following. 

Proposition (2.1.32): 

The derivative d : spin(n) → so(n) is an isomorphism of R-Lie algebras and 

(݊)݊݅ܵ ݉݅݀  =  ݀݅݉ ܱܵ(݊)  = ቀ݊2ቁ 

In the following we will discuss The centres of spinor groups 

Recall that for a group G the centre of G is 

(ܩ)ܥ = {ܿ ∈ ܩ  ∶  ∀݃ ∈ ;ܩ   ݃ܿ =  ܿ݃}. 

3 we have >n ) with n. It is well known that for groups SO(G ⊲) GThen C( 

Proposition (2.1.33): 
≤ ݊ ݎܨ  3, 

൫ܱܵ(݊)൯ܥ = ݈ݐ} ∶ = ݐ   ±1, ݐ  =  1} = ൜
{1} ݂݅ ݊ ݅݀݀ ݏ

{±1} ݂݅ ݊ ݅݊݁ݒ݁ ݏ 

Proposition (2.1.34): 
For n ≥ 3 

൯(݊)݊݅൫ܵܥ = ቐ
݀݀ ݏ݅ ݊ ݂݅ {±1}

{±1, ±݁ଵ … ݁ } ݂݅ ݅݊ ≡ .4 ݀݉ 2
{±1, ±݁ଵ … ݁} ݂݅ ݊ ≡ .4 ݀݉ 0

 

⎩
⎪
⎨

⎪
⎧

ݖ
2  ݀݀ ݏ݅ ݊ ݂݅ 

ݖ
4

 ݂݅݊ ≡ .4 ݀݉ 2
௭
ଶ
ݖݔ
2

 ݂݅݊ = .4 ݀݉ 0
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Proof: 
If g ∈ C(Spin(n)), then since ߩ: Spin(n) → SO(n), ߩ(g) ∈ C(SO(n)). As ±1 ∈ 

C(Spin(n)), this gives |((݊)݊݅ܵ)ܥ|=  and indeed |((݊)ܱܵ)ܥ |2 

൯(݊)݊݅൫ܵܥ =  .൫ܱܵ(݊)൯ܥ ଵିߩ

For n even, 

(−1)ቀ
ାଵ
ଶ ቁ= ݁ଶ… −1ቀ


ଶቁ݁ଵଶ=  ne … 1ene….  1e=  2)ne…  1e±( 

Since 

ቀ݊ + 1
2 ቁ =

(݊ + 1)݊
2

 ≡ ൜
≡ ݊ ݂݅ 2 ݀݉ 0 ,4 ݀݉ 2
≡ ݊ ݂݅ 2 ݀݉ 1  , 4 ݀݉ 0

this implies 

(±݁ଵ …݁)ଶ = ൜
1 ݂݅ ݊ ≡ ,4 ݁݀݉ 2
−1 ݂݅ ݊ ≡  ,4 ݁݀݉  0

Hence for n even, the multiplicative order of ±݁ଵ … . ݁ is 1 or 2 depending on 

the congruence class of n modulo 4. This gives the stated groups. 

We remark that Spin(1) and Spin(2) are abelian. 

In the following we will discuss finite subgroups of spinor groups Each 

orthogonal group O(n) and SO(n) contains finite subgroups. For example, when 

n = 2, 3, these correspond to symmetry groups of compact plane figures and 

while elements of direct isometries, ) are often called nsolids. Elements of SO(

= 3 is explored in the Problem n . The case of indirect isometriesare called  -)nO(

Set for this chapter. Here we make some remarks about the symmetric and 

alternating groups. 

is the group of all  nSsymmetric group 1 the  >n Recall that for each 

 ≤ nAalternating group = 1, … n. The corresponding n permutations of the set 

evenis the subgroup consisting of all  nS 

 → nS)=1 where sign : ߪsign(for which  nS ∈ ߪpermutations, i.e., the elements 

{±1}  is the sign homomorphism. 

by linear transformations: nॶact on  nS, we can make |For a field  
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ߪ ተ

ଵݔ
ଶݔ
⋮
ݔ

ተ = ተ

ఙିଵ(ଵ)ݔ
ఙିଶ(ଶ)ݔ

⋮
ఙିଵ()ݔ

ተ 

Notice that ߪ(er) = ݁ఙ(). The matrix [ߪ] of the linear transformation induced by 

's has all its entries 0 or 1, with exactly one 1 in rewith respect to the basis of  ߪ

each row and column. For example, when n = 3, 

[(123)] = 
0 0 1
1 0 0
0 1 0

൩ , [(1,3)] = 
0 0 1
0 1 0
1 0 0

൩ 

When ॶ = ℝ each of these matrices is orthogonal, while when ॶ = ℂ it is 

) n) or U(nas the subgroup of O( nܵwe can view  ݊unitary. For a given 

consisting of all such matrices which are usually called permutation matrices. 

Proposition (2.1.35): 
,nS ∈ ߪFor  

(ߪ)݊݃݅ݏ =  .([ߪ])ݐ݁݀ 

Hence we have 

݊ܣ = ൜
ܱܵ(݊) ∩ ܵ ݂݅ ݇ = ܴ
(݊)ݑܵ ∩ ܵ ݂݅ ݇ = ܥ  

is a simple group. nA5,  >n Recall that if  

) nPin( ≤=  nS 1-ߩ= ܵ) is onto, there are finite subgroups nO( →) n: Pin(ߩAs 

n ܵ:ߩsurjective homomorphisms ) for which there are nSpin(ିଵ  andܣ=≥

1. Note that ±whose kernels contain the two elements  nA→ nߩ :ܣand  nS→

4, there are no homomorphisms r:  ≥n !, However, for ݊= หܣห!, while n =2 หܵห

= Id. ߩ ∘  ߬for which  nܣ → nA, t: nS → nS 

 

 

 

 

 

ܵ ܵ 

ܵ 

 ܣ ܣ

 ܣ

r r 

௦݀݅ ߩ ߩ  
݅݀௦  
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Similar considerations apply to other finite subgroups of O(n). 

In ܮܥ௫  n we have a subgroup En consisting of all the elements 

±݁ … ݁(1 ≤ ݅ଵ < ⋯ < ݅ ≤ ݊, 0 ≤  (ݎ

 |The order of this group isܧ|its image under ±and as it contains  +1n= 2 ,1ߩ :

) is also the nE= C( |{±1}|. In fact, n= 2หܧหof order  nEߩ= n ܧ) is nO( →) nPin(

-. Every nonis abeliann 1ܧ and so -=  ݁
ିଵ

 ݁ିଵjeiecommutator subgroup since 

elementary ) is an nO( ≤ n1ܧ, hence - =݁ଶhas order 2 since n ܧtrivial element in 

) is a nO( ∈) re(ߩ. Each element n2)/Zi.e., it is isomorphic to (group, -2

generalized permutation matrices with all its non-zero entries on the main 

diagonal. There is also a subgroup ܧ


= ܧ ≤ ܱܵ(݊) of order 2ିଵ where 

ܧ = ܧ ∩  (݊) ݊݅ܵ

).Zis isomorphic to (ܧ


 In fact /n2-ܧ  and nEThese groups    

are non-abelian and fit into exact sequences of the form 

1 →
ݖ
2 → ܧ → ቀ

ݖ
2ቁ


→ 1, 1 → 2/ݖ → ܧ → ିଵ(2/ݖ) → 1 

or  nE2 is equal to the centre of the corresponding group /Zin which each kernel 

 .  This means they are extraspecial 2-groupsܧ
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Section (2.2) : Matrix Groups as Lie Groups  
Now  we will discuss the basic ideas of smooth manifolds and Lie groups. 

Definition (2.2.1): 
if smooth is open, is called  kmR ⊆ kVwhere each  2V → 1V: g A continuous map 

it is infinitely differentiable. A smooth map g is a diffeomorphism if it has 

inverse ݃ିଵ which is also smooth. smooth.  

Definition (2.2.2): 
Let M be a separable Hausdorff topological space. 

are open subsets, is  nR ⊆V and M  ⊆U where  ݂ ∶  ܷ →  ܸA homeomorphism 

called an n-chart for U.  

If U = {ܷఈU: ߙ ∈ A} is an open covering of M and ृ = { ఈ݂ → ఈܸ} is a 

collection of charts, then ℱ is called an atlas for M if, whenever ܷఈ ∩ ఉܷU≠0  

ఉ݂ ∘ ఈ݂
ିଵ: ఈ݂(ܷఈ ∩ ఉܷ) → ఉ݂(ܷఈ ∩ ఉܷ) 

is a diffeomorphism. 

 

 

 

 

 

 

 

We will sometimes denote an atlas by (M,U, ℱ) and refer to it as a smooth 

manifold of dimension ݊ or smooth ݊-manifold. 

Definition (2.2.3): 
Let (M,U,ℱ) and (ܷᇱ,ܷᇱ, ݂ᇱ) be atlases on topological spaces M and ܯ’. A 

smooth map h: (M,U,ℱ)→  (ܷᇱ,ܷᇱ, ݂ᇱ) is a continuous map ℎ: ܯ →  ᇱ suchܯ 

that for each pair ߙ, ᇱwith ℎ(ܷఈ)ߙ ∩ ܷఈᇱ  ≠  the composite , ߠ 

ఈ݂ᇱ
ᇱ ∘ ℎ ∘ ఈ݂

ିଵ: ఈ݂(ℎିଵܷఈᇱᇱ → ఈܸᇱ
ᇱ  

ܷఈ ∩ ఉܷ 

ఈܷ) ߙ݂ ∩ ఉܷ) ఉ݂→ܷఈ ∩ ఉܷ 

 ଵିߙ݂

ఉ݂  ଵିߙ݂

ఉ݂ 
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is smooth.  

ఈ݂(ℎିଵܷఈᇱᇱ )
ഀ ᇲ
ᇲ ∘∘ഀషభ
ሱ⎯⎯⎯⎯⎯ሮ ఈܸᇱ

ᇱ             

 

 

 

In the following we will discuss Tangent spaces and derivatives  

Let (M,U, ℱ) be a smooth n-manifold and p ∈ M .ߛ Let  : (a,b) → M be a 

continuous curve with 0 > ߙ < b.  

Definition (2.2.4): 
is differentiable at t ∈ (ܽ, ܾ) if for every chart f : U → V with ߛ(t) ∈ U, the curve 

f ∘ ,ܽ) :  ߛ ܾ) → V is differentiable at t ∈ (ܽ, ܾ), i.e., (f ∘  is ߛ .exists (t) ’( ߛ

smooth at t ∈ (a; b) if all the derivatives of f ∘   .exists at t  ߛ

The curve  ߛ  is differentiable if it is differentiable at all points in (ܽ, ܾ). 

Similarly ߛ is smooth if it is smooth at all points in (ܽ, ܾ).  

Lemma (2.2.5): 
and suppose that 0U ∈) t( ߛbe a chart with  0V→ 0U:  0fLet  

∩ ݂
ିଵݒ → ∘  ) :)a, bݒ   0f ߛ

is differentiable/smooth at t. Then for any chart ݂ ∶  ܷ →  ܸ with ߛ (t) ∈ U 

f∘ ∩(a, b) :   ߛ ݂ିଵV → V  

is differentiable/smooth at t. 

Proof: 
The smooth composite ݂ ∘ ,ܽ) is defined on a subinterval of  ߙ ܾ) containing t 

and there is the usual Chain or Function of a Function Rule for the derivative of 

the composite 

(ݐ)ᇱ(ߛ݂)                                  =       ∘షభ൫∘ఊ(௧)൯(∘ఊ)ᇲ(௧)                             (2.19)ܿܽܬ

Here, for a differentiable function 

ఈ݂
ିଵ ݂′ఈିଵ 

ℎିଵܷఈᇱᇱ  ℎ(ܷఈ) ∩ܷఈᇱᇱ  
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ℎ:ݓଵ → (ݔ)ଶ;ℎݓ = 
ℎଵ(௫)
⋮

ℎଶ(௫)

 

 

isJacobian matrix , the 1W ∈x open subsets, and  2mR ⊆ 2Wand  1mR ⊆ 1Wwith  

(ݔ)ܿܽܬ = 
߲ℎ
ݔ߲

൨(ݔ) ∈  (ܴ)ଶ,ଵܯ

:  0fis differentiable at 0, then for any (and hence every) chart  ߛand  ߛ = (0)ߩIf 

. In nR ∈)’(0)  ߛf= ( 0v, there is a derivative vector 0U ∈(0)  ߛwith  0V → 0U

passing to another chart f : U →V with (0) ߛ ∈ U by Equation (2.19) we have 

ᇱ(0)(ߛ݂) = బషభ൫݂ܿܽܬ ∘ ݂)൯(0)ߛ ∘  .ᇱ(0)(ߛ

, pat M to the manifold M pTtangent space In order to define the notion of the 

we consider all pairs of the form 

((f ߛ)’(0), f : U → V )  

where (0)ߛ = p ∈ U, and then impose an equivalence relation ~ under which 

.)2V → 2U:  2f )’(0), 2ߛf((~ ) 1V → 1U:  1f )’(0), 1ߛf(( 

Since 

ଶభషభܿܽܬᇱ(0)1f(ߛ  ቀ݂1ఊ(0)ቁ  )2fߛ  = (0)’()

we can also write this as 

,)2V →2U ܿܽܬమభషభ൫భ()൯௩, ଶ݂:(~ ) 1V → 1U:  1f v,( 

whenever there is a curve ߙ in M for which 

(0) = v ′1(ߛf(p, (0) = ߛ  

and we will sometimes denote the M pThe set of equivalence classes is T

equivalence class of (v, f : U →V ) by [v, f : U→ V ]. 

Proposition (2.2.6): 
.nvector space of dimension -Ris an M pT, M ∈p For  
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Proof: 
with M p, we can identify the elements of TU ∈p with ݂: ܷ →  ܸ For any chart 

arises as the derivative of a  nR ∈Every  (ݒ, ݂: ܷ →  ܸ ).objects of the form 

curve ߝ-) : ߛ,   ," For example for small enough .()݂ = (0)ߛ V for which → (ߝ

we could take  

(ݐ)ߛ = ()݂  +  .ݒݐ 

There is an associated curve in M, 

ߛ ∶ ,ߝ−)  (ߝ  → ;ܯ  (ݐ)ߛ   =  ݂ିଵఊ(ݐ) 

by nRwith M p. So using such a chart we can identify Tp(0) = ߛfor which  

݂,ݒ] ∶ ܷ →  ܸ ] ↔   .ݒ

is a vector space and that the above correspondence is a M phis shows that TT

linear isomorphism. 

Let h: (ܯ,ܷ,ℱ) →  be a smooth map between manifolds of (ᇱ,ܷᇱ,ℱᇱܯ) 

dimensions ݊,݊ᇱ. For p ∈ M, consider a pair of charts with p∈ ܷఈ  and h(p) ∈

ܷఈᇲ
ᇱ . Since ℎఈᇲ,ఈ = ఈ݂ᇲ

ᇱ ,∘ ℎ ∘ ఈ݂
ିଵ 

is differentiable, the Jacobian matrix ܿܽܬఈᇲఈ( ఈ݂() has an associated R-linear 

transformation 

݀ ℎఈᇱఈ: ܴ →  ܴᇱ;  ݀ ℎఈᇲఈ(ݔ) = ℎఈᇲఈ൫ܿܽܬ  ఈ݂()൯ݔ. 

It is easy to verify that this passes to equivalence classes to give a well defined 

R-linear transformation 

   p(hT →M p: T phd(′ܯ.

Proposition (2.2.7): 
Let ℎ: (ܯ,࣯,ℱ)  → (′ℱ,′࣯,′ܯ) :݃ and (′ℱ,′࣯′ܯ)   →  be smooth (′′ℱ,′′࣯′′ܯ) 

maps between manifolds ܯ,ܯᇱ,ܯ′′ of dimensions ݊,݊ᇱ,݊′′. 

  p(hT→M p: Tphdlinear transformation -Rthere is an M  ∈p For each a)(′ܯ.

b) For each p ∈ M, 

݀() ∘ ݀ℎ = ݀(݃ ∘ ℎ) 

c) For the identity map ܯ :݀ܫ → ∋  ݀݊ܽ ܯ   ܯ 
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MpT= Id pd Id  

Definition (2.2.8): 
Let (ܯ,࣯,ℱ) be a manifold of dimension ݊. A subset N ⊆ M is a submanifold 

of dimension k if for every p ∈ N there is an open neighbourhood ܷ ∈  of p ܯ 

and an n-chart ݂ ∶ ܷ →  ܸsuch that 

U. ∩N ) = kR ∩V (1-f ∈p   

For such an N we can form k-charts of the form 

∘݂ ∶  ܰ ∩  ܷ !  ܸ →  ܴ (ݔ)݂∘  =  :(ݔ)݂ 

We will denote this manifold by (ܰ,ܷ࣯ே,ℱேܰ,ܰܨ). The following result is 

immediate. 

Proposition (2.2.9): 
For a submanifold ܰ ⊆ → ܰ : of dimension k, the inclusion function incl ܯ 

injection.is an M pT →N p: T pd incl, N ∈p is smooth and for every  ܯ  

The next result allows us to recognise submanifolds as inverse images of points 

under smooth mappings. 

Theorem (2.2.10): 
(Implicit Function Theorem for manifolds). Let ℎ: (ܯ,ܷ,ℱ) !  be (′ܨ,ᇱ,ܷᇱܯ) 

a smooth map between manifolds of dimensions ݊,݊′. Suppose that for some q 

is M ⊆N. Then q1-h=  ∈  ܰ is surjective for every  ܯ′)p(hT→Mp: T݀ ℎܯ , ′ ∈

submanifold of dimension ݊ –  ݊′ and the tangent space at  ∈  ܰ is given by 

.phd  = ker ܶ ܰ 

Theorem (2.2.11): 

(Inverse Function Theorem for manifolds). Let h: (M,࣯,ℱ) →  be a (′ᇱ,ܷᇱ,ℱܯ)

 ∈p . Suppose that for some ݊,݊′smooth map between manifolds of dimensions 

is an isomorphism. Then there is an open  ܯ′)p(hT→M p: T phd , M

neighbourhood U ⊆ M of p and an open neighbourhood V ⊆  such ()of ℎ ′ܯ 

that ℎܷ = ܸ and the restriction of ℎ to the map ℎଵ: ܷ →  ܸ is diffreomorphism. 
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linear isomorphism and -Ris an  )p(hT → ܶ: ݀ ℎ In particular, the derivative 

݊ =  ݊′. 

When this occurs we say that ℎ is locally a diffeomorphism at . 

Example (2.2.12): 
). ThenR(nGL→) R(nConsider the exponential function exp: M 

X:) = X(Od exp  

Hence exp is locally a diffeomorphism at O. 

In the following Lie groups 

Definition (2.2.13): 
Let G be a smooth manifold which is also a topological group with 

multiplication map mult : ܩ → ܩ ݔ  ܩ :and inverse map inv ܩ   →  and view ܩ 

→ ܩ  as the product manifold. Then G is a Lie group if mult; inv are smooth ܩ 

maps. 

Definition (2.2.14): 
Let G be a Lie group. A closed subgroup ܪ ≤  that is also a submanifold is ܩ 

called a Lie subgroup of G. It is then automatic that the restrictions to H of the 

multiplication and inverse maps on G are smooth, hence H is also a Lie group. 

is a G and when G  gthere is a tangent space TG 2 g , at each GFor a Lie group 

G  1= Tg matrix group this agrees with the tangent space. We adopt the notation 

for the tangent space at the identity of G. A smooth homomorphism of Lie 

groups ܩ →  .has the properties of a Lie homomorphism ܪ 

For a Lie group G, let g ∈ G. There are following three functions are of great 

importance. 

gx.) = x(g; LG →G :  gL (Left multiplication)   

xg.) = x(g; RG→G :  gR (Right multiplication) 

.1-gxg) = x(g; xG→G :  gx (Conjugation)  

Proposition (2.2.15): 
are all diffreomorphisms with inverses gx, gR, gL, the maps G ∈g For  
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ିଵܮ = ିଵ,ܴିଵܮ = ܴିଵ,߯ିଵ = ߯ିଵ 

Proof: 
harts for ܩ ݔ ܩ have the form 

2,Vx 1V → 2Ux 1 U: 2߮ x 1߮  

ߤ  ଵܷݔ ଶܷ ,⊆  ܹ ⊆  Now suppose that Gare charts for  kV→kU: k߮where .ܩ 

where there is a chart ߠ:W →Z. By assumption, the composition 

→ ߠ2x v 1v ݖ ∘ ߤ ∘ (߮ଵିଵ߮ݔଶିଵ):=  1-)ߠ ∘ ߤ ∘ (߮ଵ߮ݔଶ 

, we have2U ∈x and  1U ∈g , so if ߤ(݃,  x(gis smooth. Then L = ((ݔ

∘ ߮ଶିଵ) ∘ ߮ଶ(ݔ) gL ߠ   x(gL = (ߠ -1)∘

But then it is clear that 

→ ߠv: 2ݖ ∘ ߮ଶିଵ  

but treating the first variable 1-)߮ଵ߮ݔଶ(ߠ ∘ ߤ ∘is smooth since it is obtained from 

as a constant. 

, notice thatgx. For gA similar argument deals with R 

,gL ∘ g= R gR ∘ g= L gࣲ  

and a composite of smooth maps is smooth. 

 gare worth studying. Since LG  ∈The derivatives of these maps at the identity 1 

1-gand R 1-gare diffeomorphisms with inverses   L gand R 

G gT →G  1= Tg :  1)gd(R, 1)gd(L  

are R-linear isomorphisms. We can use this to identify every tangent space of G 

linear isomorphism-Rxes 1, so it induces an fi gx. The conjugation map gwith  

.g →g :  1)gx= d( gAd  

This is the adjoint action of g ∈ G on g. For G a matrix group. 

There is also a natural Lie bracket [ , ] defined on g, making it into an R-Lie 

algebra. The construction follows that for matrix groups. 
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Theorem (2.2.16):  
Let ܩ  be Lie groups and ߮: G →H a Lie homomorphism. Then the derivative ܪ,

is a homomorphism of Lie algebras. In particular, if G ≤ H is a Lie subgroup, 

the inclusion map incl : G→H induces an injection of Lie algebras d incl : g →h.  

Now we study Some examples of Lie groups. 

Example (2.2.17): 
) is a Lie group.ॶ(n, GLℝ,ℂ=  ॶFor  

Proof: 
 2n ॶ) we identify with ॶ(n) is an open subset where as usual Mॶ(nM ⊆) ॶ(nGL

) and the identity function ॶ(nGL ⊆U . For charts we take the open sets 

). So the ॶ(n) is just Mॶ(nGL ∈A . The tangent space at each point ݀ܫ: ܷ →  ܷ

notions of tangent space and is agree here. The multiplication and inverse maps 

are obviously smooth as they are defined by polynomial and rational functions 

). ॶ(nbetween open subsets of M 

Example (2.2.18): 
) is a Lie group.ॶ(n, GLℝ,ℂ =ॶFor  

we have 

)ॶ(nGL ⊆1  1-) = detॶ(nSL  

is a smooth manifold of dimension  ॶis continuous.  ॶ →) ॶ(nWhere det: GL

and det is smooth. In order to R  ∈r at each  ℝ=  ℝ rwith tangent space T ॶ Rdim

 ℝ →) ॶ(n: M Aapply Theorem 4.10, we will first show that the derivative d det

To do this, consider a smooth curve ॶ(nGL ∈A for every  is surjective .(ߙ) :-

(0) using the 0_. We calculate the derivative on A(0) = ߙ) with ॶ(nGL →) ߝ, ߝ

formula 

d݀݁ݐ((0)′ߙ) = ௗௗ௧ഀ()

ௗ௧     |ୀ
  

The modified curve 

  ߙ0 ) :-ߝ,ߝॶ(nGL →) ;((௧)∘ߙ  =1-A (௧)ߙ
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satisfis ߙ(0) = I implies 

ᇱߙ)ଵݐ݁݀݀ (0)) =
(௧)ߙݐ݁݀݀

ݐ|   ݐ݀ = 0
= ᇱߙݎݐ (0) 

Hence we have 

(ᇱ(0)ߙ)ݐ݁݀ ݀ =  ௗ ௗ௧(ఈబ(௧))
ௗ௧      |௧ୀ

=det A ௗୢୣ୲(ఈబ(௧))
ௗ௧      |௧ୀ

= detߙݎݐ ܣᇱ (0) 

linear transformation- ॶis the  ASo d det 

.)X1-Atr(A) = detX(Ad det →  ॶ)ॶ(n: M Adetd   

) and it is also surjective since tr is. In ॶ(nslA=  AThe kernel of this is ker d det

) is ॶ(nGL→) ॶ(n). By Theorem (2.2.10), SLॶ(nSL ∈A particular this is true for 

a submanifold and so is a Lie subgroup. Again we find that the two notions of 

tangent space and dimension agree. 

There is a useful general principle at work in this last proof. Although we state 

the following two results for matrix groups, it is worth noting that they still 

replaced by an arbitrary Lie group.) is ℝ(napply when GL 

Proposition  (2.2.19): 
be a smooth function and suppose M →) ℝ(n: GLF Let . (Left Translation Trick)

) ℝ(nGL ∈A . Let )ℝ(nGL ∈C for all ) C(F) = BC(Fsatisfies ) ℝ(nGL ∈B that 

with d FA surjective. 

Then d FBA is surjective. 

Proof: 
), is a diffeomorphism, and ℝ(nGL →) ℝ(n: GL B, LG ∈B Left multiplication by 

) isℝ(nGL ∈A its derivative at  

(ܤܮ)݀ ∶ (ܴ)݊ܯ   → ;(ܴ)݊ܯ (ܺ)ܤܮ ݀   =  ܺܤ 

). Thenℝ(nas a function on GLF =  BL ∘F By assumption,  

d FBA(X)  = d FBA(B(B-1X)) 

= d FBA ∘ d(LB)A(B-1X) 

= d(F ∘ LB)A(B-1X) 

= d FA(B-1X): 
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) is surjective, this proves the result.R(non M 1-BSince left multiplication by  

Proposition (2.2.20): 
smooth  ߙM be a matrix subgroup, ) ℝ(nGL ≤G Let . (Identity Check Trick)

. M ∈q for some G = q 1-Fa smooth function with M  →) ℝ(n: GLF manifold and 

is I Fd . If )ℝ(nGL ∈C for all ) C(F) = BC(F, G ∈B Suppose that for every 

.gA=  AFker d and G  ∈A is surjective for all  AFd surjective then  

Example (2.2.21): 
).ℝ(n) is a Lie subgroup of GLnO( 

Proof: 
) as the solution set of a family of ℝ(nGL ⊆) nRecall that we can specify O(

. I= A TAvariables arising from the matrix equation  2npolynomial equations in 

equations in the entries of the matrix ݊ + ቀ݊2ቁ = ቀ݊ + 1
2 ቁ In fact, the following 

] are sufficient:ija= [A  

ߙଶ − 1 = 0(1 ≤ ݎ ≤ ݊),ܽܽ௦ = 0(1 ≤ ݎ < ݏ ≤ ݊)


ୀଵ



ୀଵ

 

: F We combine the left hand sides of these in some order to give a function 

for example → ℝቀାଵଶ ቁ) ℝ(nGL 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡  ଵଶߙ − 1



ୀଵ
⋮

 ଶߙ − 1


ୀଵ

 ଵఈೖߙ − 1


ୀଵ
⋮

 ܽ(ିଵ)ఈೖ



ୀଵ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

ℝቀାଵଶ ቁ →) ℝ(n: MA FWe need to investigate the derivative d  
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d FA is surjective for all A ∈ O(n), it is sufficient to check the case A = I. The 

matrix 2x nቀ݊ + 1
2 ቁis the I ] = ija= [A at F Jacobian matrix of  

ଵܨ݀

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
2 0 0 0 ⋯ 0 0
⋮ ⋱ ⋮ ⋮
0 0 0 0 … 0 2
0 1 1 0 … 0 0
⋮ ⋱ ⋮ ⋮
0 1 0 ⋯ 0 1 0
⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 1 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

th row has a 2 corresponding to the r rows, the n Where in the top block of 

and in the bottom block, each row has a 1 in each column  rravariable 

+ n . The rank of this matrix is r < swith  sr, arsacorresponding to one of the pair 

surjective. It is also true thatis  1Fd soቀ݊2ቁ = ቀ݊ + 1
2 ቁ  

:)n(o) = ℝ(nSym-= Sk IFker d   

) is a Lie subgroup This example is typical of what ℝ(nGL ≤) nHence O(

.)ℝ(nGL happens for any matrix group that is a Lie subgroup of 

Theorem (2.2.22): 
be a matrix group which is also a submanifold, hence a Lie ) ℝ(nGL ≤G Let 

subgroup. Then the tangent space to G at I agrees with the Lie algebra g and the 

.gA= G  AT; more generally, Gdim is G dimension of the smooth manifold  

In the rest of this  sections, our goal will be to prove the following important 

result. 

Theorem (2.2.23): 
.)ℝ(nGLis a Lie subgroup of  ܩbe a matrix subgroup. Then ) ℝ(nGL ≤G Let  

The following more general result also holds but we will not give a proof. 

Theorem (2.2.24): 
Let G ≤ H be a closed subgroup of a Lie group H. Then G is a Lie subgroup of 

H. 
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In the following we will discuss some useful formula in matrix groups 

so thatr ) be a closed matrix subgroup. Choose ℝ(nGL ≤G Let  

2)). /; 1O()R(nMexp(N ∈) B) exp(A) then exp(O,r()R(nMN ∈ 1/2ܤ,ܣ and if  ≤< r 0 

for which )R(nM ∈C ), there is a unique r; O()R(nMSince exp is injective on N 

(ܤ)ݔ݁ (ܣ)ݔ݁  =     (2.20)                                    (ܥ)ݔ݁ 

We also set 

ܵ = ܥ  − ܣ� − ܤ � −
1
2

[ܤ,ܣ] ∈    (ܴ)                  (2.21)ܯ

Proposition (2.2.25): 
‖ܵ‖ satisfies 

‖ܵ‖ ≤ ‖ܣ‖)65 +  ଷ(‖ܤ‖

Proof: 
) we haveR(nM ∈X For  

(ܺ)ݔ݁ = + ܫ   ܺ +  ܴଵ(ܺ), 

Where the remainder term R1(X) is given by 

ܴଵ(ݔ) = 
1
݇! ݔ



ஸଶ

 

Hence, 

‖ܴଵ(ݔ)‖ ≤ ‖ܺ‖ଶ
1
݇!
ିଵ‖ݔ‖

ஸଶ

 

Since ‖1/2 > ‖ܥ, 

‖ܴଵ(ܥ)‖ <         ଶ                              (2.22)‖ܥ‖

Similarly 

(ܥ)ݔ݁ = (ܤ)ݔ݁(ܣ)ݔ݁  = + ܫ  + ܣ  + ܤ   ܴଵ(ܤ,ܣ), 

Where 

‖ܴଵ(ܤ,ܣ)‖ ≤ 
1
݇!൭ቀ݇ݎቁ

ି‖ܤ‖‖ܣ‖


ୀ

൱ = 
‖ܣ‖) + ିଶ(‖ܤ‖

݇!
ஹଶஹଶ

 

≤ +‖ܣ‖)  ଶ(‖ܤ‖
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giving 

since ‖ܣ‖ +  .1 >‖ܤ‖

Combining the two ways of writing exp(C), we have 

      (2.23)                                ) C(1R -) A,B(1R+ B + A = C  

and so 

‖ܥ‖ ≤ ‖ܣ‖ + ‖ܤ‖ + ‖ܴଵ(ܤ,ܣ)‖ + ‖ܴଵܥ‖ 

< ‖ܣ‖ + +‖ܤ‖ ‖ܣ‖) + ଶ(‖ܤ‖ +  ଶ‖ܥ‖

≤ 2 ൬‖ܣ‖+ ‖ܤ‖ +
1
2
 ଶ൰‖ܥ‖

 

since ‖ܣ‖, ,‖ܤ‖ ‖ܥ‖ ≤ 1/2. Finally this gives 

‖ܥ‖ ≤ +‖ܣ‖)4  .(‖ܤ‖

Equation (2.23) Also gives 

ܥ‖ − ‖ܤܿܣ ≤ ‖ܴଵ(ܤ,ܣ)‖ + ‖ܴଵܥ‖ 

≤ +‖ܣ‖) ଶ(‖ܤ‖ + ‖ܣ‖4) +  ଶ(‖ܤ‖

Giving 

ܥ‖ − ܣ = ‖ܤ =        ଶ                                 (2.24)(‖ܤ‖‖ܣ‖)17

Now we will refine these estimates further. Write 

exp(ܿ) = 1 + ܥ +
1
2
ଶܥ + ܴଶ(ܿ) 

Where 

ܴଶ(ܥ) = 
1
݇!
≤

1
3
ଷ‖ܥ‖

ஹଷ

 

which satisfies the estimate 

ฯܴଶ(ܿ) ≤
1
3
ฯ
ଷ

 

since ‖1 ≥ ‖ܥ. With the aid of Equation (2.21) we obtain 

exp(ܿ) = 1 + ܣ + ܤ +
1
2

[ܤ,ܣ] + ܵ +
1
ܥ2

ଶ + ܴଶ(ܥ) 
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= 1 + ܣ + ܤ +
1
2

[ܤ,ܣ] +
1
2

ܣ) + ଶ(ܤ + ܶ 

= 1 + ܣ + ܤ + ଵ
ଶ

ଶܣ) + ܤܣ2 + (ଶܤ + ܶ                         (2.25)    

Where 

ܶ = ܵ +
1
2

(ܿଶ − ଶ(ܤ(ܣ) + ܴଶ(ܥ)                       (2.26)    

Also 

(ܣ)ݔ݁ exp(ܤ) = 1 + ܣ + ܤ +
1
2

ଶܣ) + ܤܣ2 + (ଶܤ + ܴଶ(ܤ,ܣ)        (2.27) 

ܴଶ(ܤ,ܣ) = 
1
݇!
൭ቀ݇ݎቁܣ

ܤିଵ


ୀ

൱
ஹଷ

, 

which satisfies 

‖ܴଶ(ܤ,ܣ)‖ ≤
1
3

+‖ܣ‖)  ଷ(‖ܣ‖

Since ‖ܣ‖ + ‖ܤ‖ ≤ 1 

Comparing Equations (2,26) and (2,27), and using(2,20) we see that 

(c)2R –) 2C -2((A+B))ଵ
ଶ

(A,B)+2S=R 

Taking norms we have 

‖ܵ‖ ≤ ‖ܴଶܤ,ܣ)‖ +
1
2

ܣ) + ܣ)(ܤ + ܤ − (ܥ − ܣ) + ܤ −  ‖ܥଶܴ‖‖+‖(ܥ

≤
1
3

+‖ܣ‖) ଷ(‖ܣ‖ +
1
2

+‖ܣ‖) ‖ܤ‖ + ܣฯ(‖ܥ‖ + ܤ − ܥ +
1
3
ฯ
ଷ

 

≤
1
3

‖ܣ‖) + ଷ(‖ܣ‖ +
5
2

+‖ܣ‖) .(‖ܤ‖ 17 ฯ(ܣ + ܤ − ܥ +
1
3
ฯ
ଷ

 

≤ +‖ܣ‖)65  .ଷ(‖ܤ‖

yielding the estimate  

‖ܵ‖ ≤ ‖ܣ‖)65 +        ଷ                              (2.28)(‖ܤ‖

Theorem (2.2.26): 
, then the following identities are satisfied.)R(nM ∈ ܷ,ܸIf  

[Trotter Product Formula] 
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exp(ܷ + ܸ) = lim
→

(expቆ൬
1
ݎ
൰ ቇݑ expቆ൬

1
ݎ
൰  (ቇݒ

[Commutator Formula] :  

exp([ݒ,ݑ]) = lim
→

(exp൬ቀଵ
୰
ቁ u൰ exp ൬ቀଵ

୰
ቁ v൰ exp ቀ− ቀଵ

୰
ቁ uቁ exp ቀଵ

୰
ቁ v))   

Proof: 

 For large r we may take A =ଵ

B =ଵ ݀݊ܽ ݑ


  and apply Equation (2.21) to give ݒ

)rC) = exp(V )/r) exp((1U)/rexp((1 

with  

ฯܥ − ൬
1
ݎ
൰ ݑ) + ฯ(ݒ ≤

17(‖ܷ‖ + ‖ܸ‖)ଶ

ଶݎ
 

As r→ ∞  

In the following we will discuss not all Lie groups are matrix groups.  

For completeness we describe the simplest example of a Lie group which is not 

a matrix group. In fact there are finitely many related examples of such 

is particularly  Heisଷand the example we will discuss  nHeisHeisenberg groups 

important in Quantum Physics.  

is defined as follows. Recall the group  nHeisHeisenberg group , the ݊ ≥  3For 

form), whose elements have the ℝ(nreal unipotent matrices SUT ݊ ݔ ݊of   

⎣
⎢
⎢
⎢
⎢
⎡
1 ܽଵଶ ⋯ ⋯ ⋯ ܽଵ
0 1 ܽଶଵ ⋱ ⋱ ܽଶ
0 0 ⋱ ⋱ ⋱ ⋮
⋮ ⋮ ⋱ 1 ܽିଶିଵ ⋮
⋮ ⋮ ⋱ 0 1 ܽିଵ
0 0 … 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎤

 

) consists of the matrices of the ℝ(n) of SUTℝ(nsut. The Lie algebra ℝ ∈ ijawith 

form  
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⎣
⎢
⎢
⎢
⎢
⎡
0 ଵଶݐ ⋯ ⋯ ⋯ ଵݐ
0 0 ଶଵݐ ⋱ ⋱ ܽଶ
0 0 ⋱ ⋱ ⋱ ⋮
⋮ ⋮ ⋱ 0 ିଶିଵݐ ⋮
⋮ ⋮ ⋱ 0 0 ିଵݐ
0 0 … 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

 

. It is a ቀ݊2ቁ = n) with dimSUTℝ(nis a matrix subgroup of GL n. SUTℝ ∈ ijtwith 

nice algebraic exercise to show that the following hold in general. 

Proposition (2.2.27):  
 ∈]  ija[consists of all the matrices  nSUTof ) nC(SUT, the centre ݊ ≥  3For 

is ) nC(SUT. Furthermore, n= j and = 1 i except when = 0  ijawith n Heis

.nSUTsubgroup of  contained in the commutator  

). Under this nC(SUT ≅ ℝNotice that there is an isomorphism of Lie groups 

corresponds to the matrices with  ℝ ⊆ ℤisomorphism, the subgroup of integers 

.nSUT⊲ n ℤ(in fact central) subgroup  and these form a discrete normal ℤ ∈ n1a 

We can form the quotient group  

.n  ℤ/ n= SUT nHeis  

This has the quotient space topology and as Zn is a discrete subgroup, the 

is a local homeomorphism. This can be used to  nHeis→ n: SUTq quotient map 

defined on small open  nis also a Lie group since charts for SUT nshow that Heis

is the n. The Lie algebra of Heisnsets will give rise to charts for Heis 

.nsut=  nheis, i.e., nsame as that of SUT 

Proposition (2.2.28):  
of q consists of the image under  nHeisof ) nC(Heis, the centre ݊ ≥  3For 

is contained in the commutator subgroup of ) nC(Heis. Furthermore, )nC(SUT

.nHeis 

is isomorphic to the circle group n  ℤ=)n) = C(SUTnNotice that C(Heis 

T = {z ∈ ℂ :|1 = |ݖ}  

with the correspondence coming from the map 

R → T; t ↔ ݁గ௧.  
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When n = 3, there is a surjective Lie homomorphism 

 

: ܷܵ ଷܶ → ℝଶ; 
1 ݔ ݐ
0 1 ݕ
0 0 1

൩ → ቂ
ݔ
 ቃݕ

 

, there is an induced ߩker  ≤ 3). Since Z3= C(SUT ߩwhose kernel is ker 

. In this case ݍ =  for which  2R → 3: Heispsurjective Lie homomorphism  o 

is given byT  ≅) nthe isomorphism C(Heis  


1 0 ݐ
0 1 0
0 0 1

൩ ଷݖ ↔ ݁ଶగ௧ 

From now on we will write [ݕ,ݔ, 2ଶగ௧] for the element  


1 ݔ ݐ
0 1 ݕ
0 0 1

൩ ଷݖ ∈  ଷݏ݅݁ܪ 

,ݔ  and∋ ݖ ∋ ݕ  ℝwith  [ݕ,ݔ, has the form  3Thus a general element of Heis[ݖ

 ܶ. The identity element is 1 = [0, 0,1]. The element 2  


1 ݔ ݐ
0 1 ݕ
0 0 1

൩ 

,ݕ,ݔ).   will be denoted  3heisof the Lie algebra(ݐ

Proposition (2.2.29): 
are given by 3HeisMultiplication, inverses and commutators in   

,ଵݕ,ଵݔ] ,ଶݕ,ଶݔ][ଵݖ [ଶݖ = ቂݔଵ + ଶݔ + ଵݕ + ,ଶݕ ଶమഏೣభమݖଵݖ ቃ, 

,ݕ,ݔ] ଵି[ݖ = ,ݔ−ൣ ,ݕݔ  ଵ݁ଶగ௫௬൧ିݖ

,ଵݔ] ,ଵݕ ,ଶݔ][ଵݖ ,ଶݕ ,ଶݔ][ଶݖ ,ଶݕ ,ଶ]ିଵ=ൣ0,0ݖ ݁ଶగ(௪௫௬ଶି௬ଵ௫ଶ)൧ 

The Lie bracket in heis3 is given by 

:)2x1y - 2y1x 0, )] = (0,2, t2, y2x(, )1, t1, y1x[(  
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and occurs algebra ) Lie(Heisenberg is often called a  3heisThe Lie algebra 

throughout Quantum Physics. It is essentially the same as the Lie algebra of 

operators on differentiable functions ݂ ∶  ℝ →  ℝ spanned by 1; q given by 

ௗ(௫)= (ݔ)݂ ;(ݔ)݂ = (ݔ)1݂
ௗ௫

(ݔ)݂݃ , =   (ݔ)݂ݔ

The non-trivial commutator involving these three operators is given by the 

canonical commutation rela-tion 

[p, q] = pq - qp = 1.  

-1) a basis with the only non 0, (0, 0) , 0, (1 , 0) , 0, he elements (1, 3heisIn 

trivial commutator [(1, 0, 0) , (1, 0, 0)] = (0, 0, 1). 

Theorem (2.2.30):  
with trivial kernel ) C(nGL → 3: Heis߮There are no continuous homomorphisms 

ker ߮ = 1.  

Proof: 
) is a continuous homomorphism with trivial C(nGL→ 3: Heis߮Suppose that  

, the 3Heis ∈g is minimal with this property. For each n kernel and suppose that 

.nC) acts on vectors in g( ߮matrix   

topological has a T as above. Then T ) with the circle 3We will identify C(Heis

T 6  〈ݖ〉element whose powers form a cyclic subgroup  ; this is an0zgenerator 

whose closure is T. For now we point out that for any irrational number r ∈ R, 

the following is true: for any real number s ∈ R and any 0 < ߝ, there are integers 

p; q ∈ Z such that  

|ݍ  ݎ  ݏ|  <  .ߝ 

This implies that ݁ଶగ୧୰ is a topological generator of T since its powers are dense.  

Let ߣ be an eigenvalue for the matrix ߮(z0), with eigenvector v. If necessary 

1, then > |1|ߣ. If  > ߣ, we may assume that  ݖିଵwith 0 zreplacing   

߮൫ݖ൯ݒ = ݒ(0ݖ)߮ =  ݒߣ

and so  

ฮ߮൫ݖ൯ฮ ≥ ‖ߣ‖ . 
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Thus ߮൫ݖ൯ → ∞ as k → ∞, implying that ߮T is unbounded. But ߮ is 

continuous and T is compact hence ߮T is bounded. So in fact |‖1 = |‖ߣ. 

we have 3Heis ݃ ∈), for any 3C(Heis ∈ 0zis a homomorphism and  ߮Since  

;v)g( ߣ ߮= v )0z(  ߮)g( ߮= v )0gz( ߮= v )g0z(߮= v )g( ߮)0z(߮  

. If ߣ) for the eigenvalue 0z( ߮) is another eigenvector of g( ߮which shows that 

we set 

}.0=  vk)ߣூ-) 0z( ߮1 s.t. ( >k ∃:  nC ∈v {=  ఒܸ  

is a vector subspace which is also closed under the actions of all  nC ఒܸ ⊆then 

1 to be the largest number for  > 0k. Choose 3Heis ∈g ) with g( ߮the matrices 

satisfying ఒܸ ∈ 0vwhich there is a vector  

.0 ≠ 0v1-0k) 1ߣ -) 0z( ߮( 0, =  0vnI)1ߣ –) 0z( ߮( 

for which ∈V ∈v , u, there are vectors 1 > 0kIf  

.vߣ= v )0z( ߮ v,+ u ߣ= u )0z( ߮  

Then 

v1-kߣk+ u kߣ= u k)0z( ߮= u ݖ) (߮ 

and since |1 =|ߣ,  

ฮ߮(ݖ)ฮ = ฮ߮ݖฮ ≥ ௨ߣ| + ݇௩| → ∞ 

 

is  ఒܸ= 1 and  0kis bounded. So T  ߮. This also contradicts the fact that → ∞k as 

just the eigenspace for the eigenvalue ߣ. This argument actually proves the 

following important general result, which in particular applies to finite groups 

viewed as zero-dimensional compact Lie groups. 

Proposition (2.2.31):  
-a continuous homomor) C(nGL →G : ߩup and be a compact Lie groG Let 

phism. Then for any g ∈ G, ߩ (g) is diagonalizable.  

 → 3: Heis ߠ, we obtain a continuous homomorphism ఒܸOn choosing a basis for 

also has the T . By continuity, every element of dI0= (ߣz(ߠ) for which C(dGL
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and we can assume n = d , we must have n. By minimality of dIform (scalar)

.nI0 = (ߣz(߮  

 ∈z By the equation for commutators in Proposition 4.34, every element 

, hence3in Heis 1-h1-ghg= z is a commutator  3Heis ≤T  

,) = 11-h1-ghg( ߮) = z( ߮det   

and  dI)z(ߤ) = z(߮, T ∈z are homomorphisms. So for every ߮and  since det

is path connected, T is continuous. But  xC →T: 1 =ߤ, where the function  d)z(ߤ

so ߤ(z) = 1 for every z ∈ T. Hence for each z ∈ T, the only eigenvalue of ߮ (z) 

is 1. This shows that T ≤ ker ߮, contradicting the assumption that ker ߮ is 

trivial.  

 nA modification of this argument works for each of the Heisenberg groups Heis

(݊ ≥  3), showing that none of them is a matrix group. 

 

 

  


