

an University of Science and Technology College of Petroleum Engineering and

Petroleum Engineering Department

Project Title Water Flooding Analysis

(Simber West Field Case Study)

تحليل عملية الغمر المائي

(Simber West در اسة الحالة في حقل)

Submitted in partial Fulfillment of the Requirements

Of the Degree OfB.tech in Petroleum Engineering

Prepared By:

Mahir Abdallah Elmajoup

Musaab Ibrahim Elhassan

Ahmed Fayad Ahmed

Mulham Abdalla Mohammed

Supervisor:

Sami Mohamed Elamin

Contents	Page
Chapter 1	4.4
Introduction	11
1.1. Background of problem	11
1.2. Objective of Simber Water Injection	11
1.3. The objective of the researchby using Material Balance Case	12
Study 1.4. Objective of project:	
1.5. Project Layout:	12
Chapter 2	
Literature Review & Theoretical Background	14
2.1. Literature Review	14
2.1.1. Primary recovery	14
2.1.2. Secondary recovery:-2.1.3. Territory recovery:-	14
2.1.4. Selection criteria:-	14
2.2. Theoretical Background	16
2.2.1. Water flooding	16
2.2.2. Goal of Water flooding	17
2.2.3. Conventional Improved Recovery (IR)	17
2.2.4. Factors Affecting Water flooding	18
2.2.5. Field Performance before implement water injection:	20
2.2.6. Previous Study:- 2.2.6.1. Ekofisk (North Sea)	21 21
2.2.6.2. Wilmington Oil Field (California)	21
2.2.6.3. Kuparuk River (Alaska North Slope)	22
2.2.6.4. Started in Unity at November 2001, with WSW03 & 04	23
Chapter 3	
-	26
Methodology	
3.1. Material Balance	26
3.2. MBAL Software Over view	27
3.2.1. MBAL Software- Input Data	29
3.2.2. Setting up the Basic Model	30
3.2.3. Plotting	31
3.3. Basic Reservoir Data	31
3.4. OFM overview	33
3.5. Fundamental relationship	33
3.5.1. Production Plot	33
3.5.2. Analysis plot	34

i

3.5.3. Production Forecasting	34
3.5.4. Bubble map	35
3.6. Data to be entered	35
Chapter 4 Results & Discussion	39
 4.1. Evaluation of Material Balance 4.2. Assumptions 4.3. Material Balance Case Study 4.3.1. Medium Case 4.4. Production Data 4.4.1.Comulative water production 4.4.2Comulative oil production 4.3Comulative GOR 4.5. MBAL – History Match (Analytical Method) 4.5.1. Matching on Energy Balance 	39 39 39 45 45 45 45 45 46 47
4.5.2. Matching on Tank Volume	48
4.6. After matching with the SGS pressure data:4.6.1. Matching on Tank Volume	49 49
 4.6.2. Matching on Energy Balance 4.6.3. Drive Mechanism 4.7. Material Balance Case Study 4.7.1. Low Case 4.8. Observation 4.9. Descussion, Water Injection Operation & Implementation: 	49 50 53 53 56
Chapter 5 Conclusions & Recommendation	56 58
5.1. Conclusion	58

5.2. Recommendation

Figure	Page
Figure 2.2 Wate flooding Displacement(Tarek, T.A,Book)	17
Figure 2.3 Water flooding history	18
Figure 2.4 Barriers to vertical flow(Tarek, T.A,Book)	18
Figure 2.5 Lateral pay discontinuities	19
Figure 2.6 Completion interval inconsistencies	19
Figure 2.7 field production performances.	20
Figure 2.8 [(6.4 billion bbl stock tank original oil in place	
(STOOIP)]	21
Figure 2.9 Areal maps of injection & production well in the Ranger –zone	22
Figure 2.10 [A (62% of STOOIP) and C (38% of STOOIP)]	22
Figure 3.1. Selection Material Balance.	27
Figure 3.2 Tank balance	28
Figure 3.3 In this screen, the fluid has been defined as oil	30
Figure 3.4. Selection Model	30
Figure 3.5 order plot variable	31
Figure 3.6. Porosity -Permeability Information	31
Figure 3.7. Simber west wells depth distribution	32
Figure 3.8 Production performance plot using OFM	33
Figure 3.9 water production behavior using OFM	34
Figure 3.10 Production Forecasting chart by OFM	34
Figure 3.11 Bubble map by OFM	35
Figure 4.1 SGS & SFL vs Time	38
Figure 4.2 the reservoir pressure difference established for MBAL	38

analysis

Figure 4.3 Due to Limit fluid data available, correlation was used	
to generate the PVT data	39
Figure 4.4 Black Oil Input Data Figure 4.5 Pressure vs Oil viscosity	39 40
Figure 4.6 Pressure vs oil FVF	40
Figure 4.7 pressure vs Gas viscosity	41
Figure 4.8 pressure vs GOR	41
Figure 4.9 pressure vs Gas FVF	42
Figure 4.10. No aquifer attach as understood from reservoir pressure and water cut behavior	43
Figure 4.11. Tank Input Data – Water Influx	43
Figure 4.12 Tank Input Data – Rermeabilities.	44
Figure 4.13Pressure&Cumulative water production	45
Figure 4.14 Pressure & Cumulative oil production	45
Figure 4.15 Pressure & cumulative GOR production	46
Figure 4.16 calculated oil production by MBAL	47
Figure 4.17 Matching on Tank Volume (calculated oil in place by MBAL)	48
Figure 4.18 Matching on Tank Volume (actual Oil in place by MBAL)	49
Figure 4.19 Tank Pressure vs Calculated oil production	49
Figure 4.20 Drive Mechanism identifying	50
Figure 4.21 Oil productions (Stimulated pressure vs actual pressure)	50
Figure 4.22 cumulative oil production vs time	51
Figure 4.23 cumulative oil prod vs time (avg oil & tank pressure)	51

Figure 4.24. Average water Inj vs Time (tank pressure & Time)	52
Figure 4.25.calculated oil production vs tan pressure	53
Figure 4.26.actual oil in place vs calculated from MBAL	53
Figure 4.27 data matching	54
Figure 4.28 pressure vs calculated oil	54
Figure 4.29 Average oil actual pressure& estimated pressure	55
Figure 4.30 Average Water Injection vs tank pressure	
	55

Tables

Table2.1.Selection criteria	15
MBAL Software- Input Data Table 3.1	29
Table 4.1. Basic Data	37

قال تعالى (اقرأ باسم ربك الذي خلق (1) خلق الإنساق من علق (2) اقرا وربك الإكرم (3) الذي علم بالقلم (4) علم الإنساق ما لم يعلم (5) كلا إن الإنساق ليطغى (6)).

> صدق الله العظيم*ر* (سـورة العلق)

Abstract

Simber west field was shut in due to low reservoir pressure in Q3 2009 represented rapid decline reservoir pressure and low water cut so suggested that minimum aquifer support to Ard-D reservoir To restore the oil production and increase the reserve and recovery factor water injection has been perform for Aradeiba-D reservoirs.

MBAL had been used to estimate the effectiveness of water injection in increasing current reservoir pressure from 1400psia to targeted reservoir pressure of 2500psia

Also to determine the optimum production rate when reservoir starts resumeproduction&to determine the timeline for reservoir pressure to achieve 2500 psi with the current water injection operating conditions.

تجريد

توقف الانتاج في حقل (Simber west) وذلك للانخفاض السريع في ضغط الممكن في الربع الثالث من سنة 2009 متاقتر اح معالجة قوة الدفع للمكمن باستخدام الغمر المائي للطبقة (Aradeiba-D) لاستعادة الانتاج وزيادة معدل الاستخلاص

تم استخدام (MBAL) لحساب تاثير الغمر المائي لرفع مستوى ضغط المكمن من (MBAL) لحساب تاثير الغمر المائي لرفع مستوى ضغط المكمن من (MBAL) ومعرفة الزمن اللازم للوصول للضغط المحدد و النتبؤ بالانتاج الامتل.

Chapter One Introduction

Chapter 1 Introduction

1.1. Background of problem:

Initially field start to produce since 2005 with four producers (SIW01, SIW02, SIW03,SIW04) which were produced about 1000 bp/d each but experienced severe decline and HGOR due to sharp pressure depletion,

The two subsequent infill wells (SIW05, SIW06)were unable to produce due to HGOR, the field was shut in since 2010 due to low reservoir pressure.

The rapid decline reservoir pressure and low water cut suggested that provide minimum aquifer support to Ard-D reservoir.

1.2. Objective of Simber Water Injection

The main objective of operating an individual injection well is to inject the maximum amount of water without having it go out of the intended pay zone.

The goal is to maximize injection into, and only into, the oil productive zones by

- i. To perform water injection for Aradeiba-D reservoirs.
- **ii.** To estimate the effectiveness of water injection in increasing current reservoir pressure from1400 psia to targeted reservoir pressure of 2500psia.
- iii. To restore the oil production and increase the reserve and recovery factor.

1.3. Theobjective of theirsearchby using Material Balance

- i. To validate the tank in place volume
- **ii.** To determine the timeline for reservoir pressure to achieve 2500 psi with the current water injection operating conditions
- iii. To determine the optimum production rate when reservoir start resume production

1.4. Objective of project:

The scope of our project is use tank model to validate the water injection project and back the wells to production by maintain pressure by using,

- i. Material balance model.
- **ii.** OFM software (production data).

1.5. Project Layout:

This project report has been divided into five chapters:-Chapter one represents a brief introduction related to our project. Chapter two explains the literature review& Theoretical Backgrounds related towater injection project. Chapter three customized represent Basic reservoir data Field Performance before implement water injection.& introduction to software use in research (MBAL and OFM overview). In Chapter four we enter all require data to software and analyze the output data calculations of. Also we make software by visual Basic language to predict liquid loading. In chapter five we show our results and lastlywe put our future Recommendation.

Chapter Two Literature Review &TheoreticalBackg round

Chapter 2

Literature Review&Theoretical Background

2.1. Literature Review

The recovery of oil by any of the natural drive mechanisms is called primary recovery. The term refers to the production of hydrocarbons from a reservoir without the use of any process (such as fluid injection) to supplement the natural energy of the reservoir.

Performance of oil reservoirs is largely determined by the nature of the energy, (driving mechanism, available for moving the oil to the wellbore).

2.1.1. Primary recovery

There are basically six driving mechanisms that provide the natural energy necessary for oil recovery:

- i. Rock and liquid expansion drive
- **ii.** Depletion drive
- iii. Gas cap drive
- iv. Water drive
- **v.** Gravity drainage drive
- vi. Combination drive

2.1.2. Secondary recovery:-

Its process of produce oil out from reservoir by use using outside energy

- i. Water flooding
- **ii.** Gas injection

2.1.3. Territory recovery:-

Its boost energy in reservoir to increase oil production and reduce residual oil

- i. Thermal
- ii. Chemical
- iii. Miscible
- iv. Microbial

2.1.4. Selection criteria:-

Allui	ymous, 2000; Demin et al	., 2001; Ano	nymous, 2002; Hon	gfu et al., 2003; Mort	is, 2004; Anony	rmous, 2006; Awai	n et al., 2006; Koottungal, 2008;	Koottungal, 2010)).			
Oil	properties				Reservoir characteristics						
SN	EOR method	# Projects	Gravity (API)	Viscosity (cp)	Porosity (%)	Oil saturation (% PV)	Formation type	Permeability (md)	Net thickness	Depth (ft)	Temperature (F)
Miscible gas injection											
1	C02	153	[22]-45 Avg. 37	35-0 ^ª Avg. 2.08	3-37 Avg. 15.15	15-89 Avg. 46	Sandstone or Carbonate	1.5-4500 Avg. 209.73	(Wide Range)	1500 ^b -13365 Avg. 6230.17	82-257 Avg. 138.10
2	Hydrocarbon	67	[23] -57 Avg. 38.3	18000-0.04 Avg. 286.1	4.25-45 Avg. 14.5	[30] -98 Avg, 71	Sandstone or Carbonate	0.1-5000 Avg. 726.2	[Thin unless dipping]	4040[4000] -15900 Avg. 8343.6	85-329 Avg, 202.2
3	WAG	3	33-39 Avg. 35.6	0.3-0.9 Avg. 0.6	11 -24 Avg. 18.3		Sandstone	130-1000 Avg. 1043.3	NC	7545-8887 Avg. 8216.8	194-253 Avg. 229.4
4	Nitrogen	3	38[35] -54 Avg. 47.6	0.2-0 ^c Avg. 0.07	7.5-14 Avg. 11.2	0.76[0.4] -0.8 Avg. 0.78	Sandstone or Carbonate	0.2-35 Avg. 15.0	[Thin unless dipping]	10000(6000) -18500 Avg. 14633.3	190-325 Avg. 266.6
Im	niscible gas injection										
	Nitrogen	8	16-54 Avg. 34.6	18000-0 ^d Avg. 2256.8	11-28 Avg. 19.46	47-985 Avg, 71	Sandstone	3-2800 Avg. 1041.7		1700-18500 Avg. 79142	82-325 Avg, 173.1
6	C02	16	11-35 Avg. 22.6	592-0.6 Avg. 65.5	17-32 Avg. 26.3	42-78 Avg. 56	Sandstone or Carbonate	30-1000 Avg. 217		1150-8500 Avg. 3385	82-198 Avg. 124
7	Hydrocarbon	2	22-48 Avg, 35	4-0.25 Avg. 2.1	5-22 Avg. 13.5	75-83 Avg. 79	Sandstone	40-1000 Avg. 520		6000-7000 Avg. 6500	170-180 Avg. 175
8	Hydrocarbon + WAG	14	93-41 Avg. 31	16000 -0.17 Avg. 3948.2	18-31.9 Avg. 25.09	Avg. 88	Sandstone or Carbonate	100-6600 Avg. 2392		2650 -9199 Avg. 7218.71	131-267 Avg, 198.7
Che	mical methods										
	Polymer	53	13-425 Avg, 265	4000 ^e -0.4 ^f Avg. 123.2	10.4-33 Avg. 22.5	34-82 Avg. 64	Sandstone	1.8°-5500 Avg. 834.1	[NC]	9460-700 Avg. 4221.9	237.2-74 Avg. 167
10	Alkaline surfactant polymer (ASP)	13	23[20] - 34[35] Avg. 32.6	6500 ^g -11 Avg. 875.8	26-32 Avg. 26.6	68[35] -74.8 Avg. 73.7	Sandstone	596[10] -1520	[NC]	3900[9000] -2723 Avg. 2984.5	158[200] -118 [80] Avg. 121.6
11	Surfactant + P/A	4	22-39 Avg, 31.75	15.6-2.63 Avg. 7.08	14-16.8 Avg. 15.6	43.5-53 Avg, 49	Sandstone	50-60 Avg. 56.67	[NC]	5300-625 Avg. 3406.25	155-122 Avg. 126.33
The	rmal/mechanical methods										
12	Combustion	27	[10] -38 Avg. 23.6	[5000]2770-1.44 Avg. 504.8	14-35 Avg. 23.3	[50] -94 Avg. 67	Sandstone or Carbonate [Preferably Carbonate]	10 -15000 Avg. 1981.5	[>10]	400-11300[11500] Avg. 5569.6	64.4-230 Avg, 175.5
13	Steam	274	[8] -33 Avg. 14.61	5E6-3 ^h Avg. 32594.96	12-65 Avg. 32.2	35-90 Avg. 66		1 ⁱ -15001 Avg. 2669.70	[>20]	200-9000 Avg. 1647.42	10-350 Avg. 105.91
14	Hot water	10		8000-170 Avg. 2002	25-37 Avg. 31.2	15-85 Avg. 58.5	Sandstone	900-6000 Avg. 3346	-	500-2950 Avg. 1942	75-135 Avg. 98.5
15	[Surface mining]	-	[7] - [11]	[Zero cold flow]	[NC]	[>8 wt% Sand]	[Mineable tar sand]	[NC]	[>10]	[> 3:1 overburden to sand ratio]	[NC]
	robial										
16	Microbial	4	12-33 Avg. 26.6	8900-1.7 Avg. 2977.5	12-26 Avg. 19	55-65 Avg. 60	Sandstone	180-200 Avg. 190		1572-3464 Avg. 2445.3	86-90 Avg. 88

Table2.1Selection criteria

2.2. Theoretical Background

2.2.1. Water flooding

Why is water flood the most popular Enhance Oil Recovery Scheme?

From screening criteria found that

- i. Water is the cheapest flooding agent for Enhance Oil RecoveryThe need to dispose of produced water
- ii. Easy and safe to inject
- iii. Proven technology

Planning a water flood scheme:

- i. Ensure good understanding of fluid properties (PVT, water chemicalanalysis...etc.)
- ii. Establish good record of reservoir pressure history &productionbehavior
- iii. Establish rock and mineral properties (relative perm., clay contents, Compressibility...etc.)
- iv. Establish geological maps (structure, net pay, cross-section)

Plan well spacing and pattern

- i. Lease geometry & ownership
- **ii.** Formation continuity
- iii. Fracture system or permeability orientation

Stages of water flooding,

- **i.** Interference Stage
- ii. Fill-up
- iii. Break-through
- iv. Flood-out (after break-through)

2.2.2.Goal of Water flooding

- i. Maintain Reservoir Pressure –(Pressure Maintenance)
- **ii.** Support Emergency service.
- iii. Supplement Natural Water Influx

But:-

i, ii&iii are Displacement Processes and the Goal is to Displace Oil to a Production

well

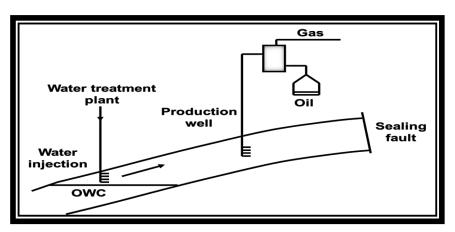


Figure 2.2 Wate flooding Displacement(Tarek, T.A,Book)

2.2.3. Conventional Improved Recovery (IR)

Injection of immiscible fluid

- i. Water injection
- **ii.** Nitrogen injection
- iii. Casing head gas reinjection

Often used in 'secondary recovery 'WaterfloodingInjection of water into a reservoir to

- i. Increases reservoir energy
- ii. Sweeps oil towards producing wells

Most widely applied secondary recovery method, Accounts for about 50% of U.S. oil production

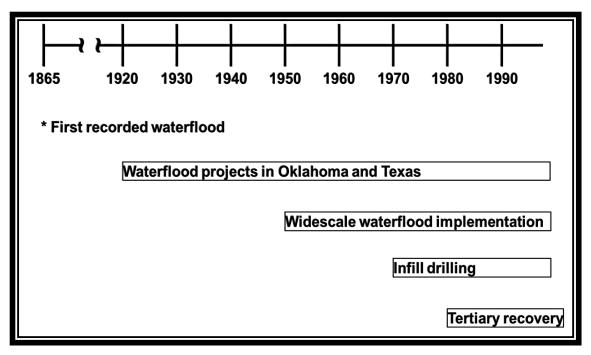
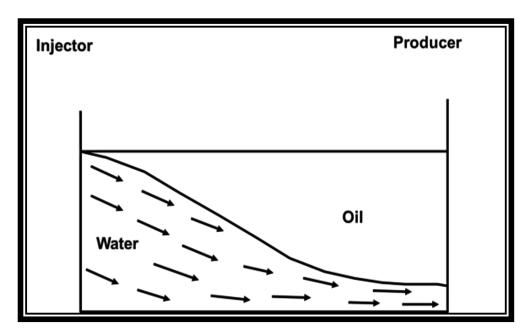



Figure 2.3 Water flooding history

2.2.4. Factors Affecting Water flooding

i. Gravity

ii. Figure 2.4 Barriers to vertical flow(Tarek, T.A,Book)

iii. Lateral pay discontinuities

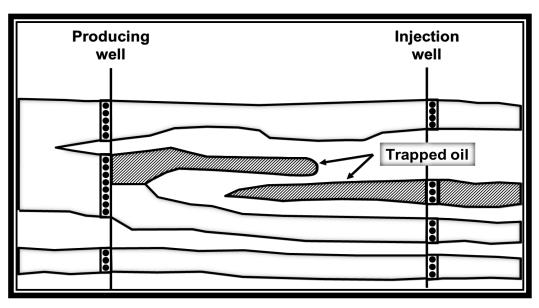


Figure 2.5Lateral pay discontinuities

iv. Completion interval inconsistencies

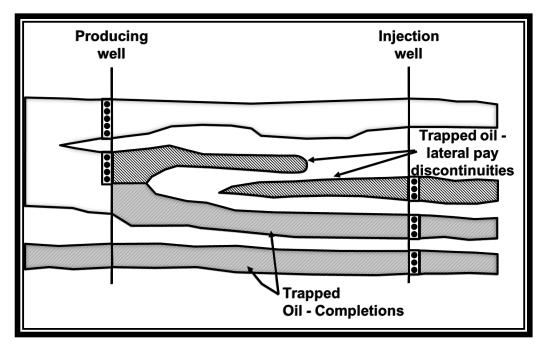


Figure 2.6 Completion interval inconsistencies

2.2.5.Field Performance before implement water injection:

First oil was achieved on June 2005 Peak production achieved on Nov 2005 with about 3200 bp/d The reservoir become idle since Aug 2009 due to low productivity Water cut is low, in the range of 0~40% Current reservoir pressure has been declined to 1600 psi. The rapid decline of reservoir pressure and low water cut suggested minimum aquifer support to Aradeiba-D

Potentially also sand continuity and quality are poor, resulted all wells in Simbir West experiencing low inflow

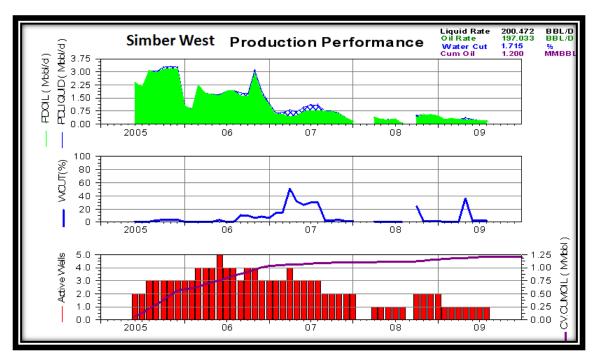


Figure 2.7 field production performances.

2.2.6.Previous Study:-

2.2.6.1.Ekofisk (North Sea)

The Ekofisk oil field is in the North Sea, south of Norway. It is a large, carbonate reservoir that has two zones.

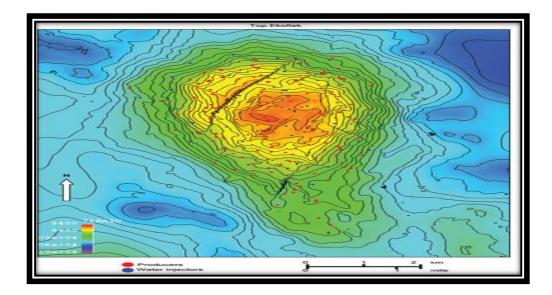


Figure 2.8 [(6.4 billion bbl stock tank original oil in place (STOOIP)]

2.2.6.2. Wilmington Oil Field (California)

The LBU area of the Wilmington oil field (southern California, U.S.A.) is mainly under the Long Beach harbor and contains more than 3 billion bbl of OOIP.

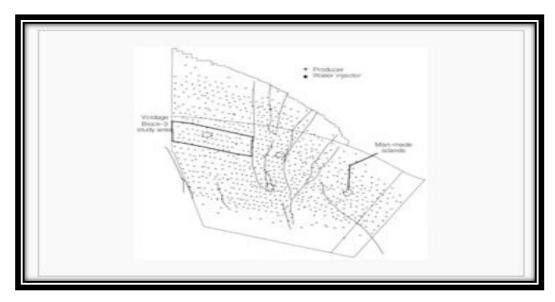


Figure 2.9 Areal maps of injection & production well in the Ranger –zone

2.2.6.3.Kuparuk River (Alaska North Slope)

The Kuparuk River oil field is west of the supergiant Prudhoe Bay oil field on Alaska's North Slope

The sandstone reservoir consists of two zones that are separated by impermeable shale and siltstones.

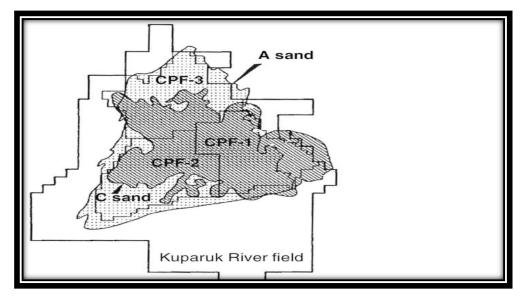
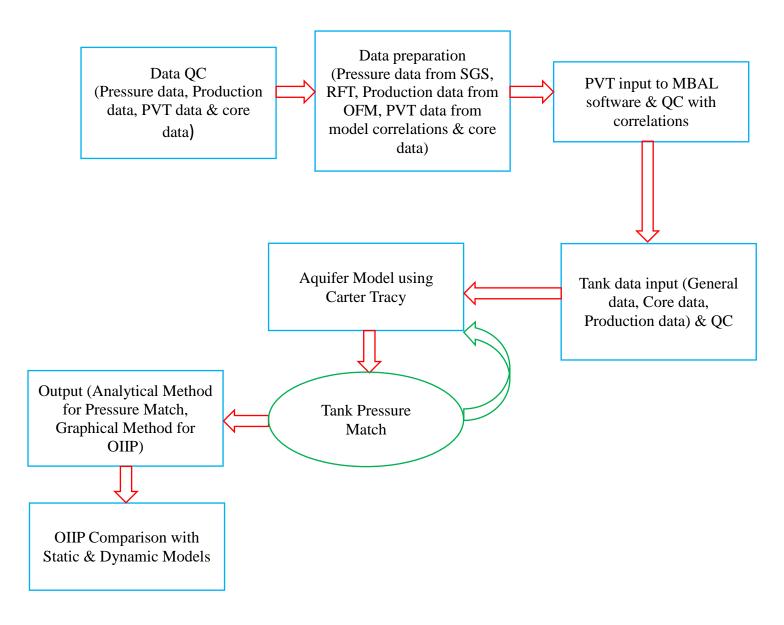


Figure 2.10 [A (62% of STOOIP) and C (38% of STOOIP)]

2.2.6.4.Started in Unity at November 2001, with WSW03 & 04

1-To Provide artificial aquifer support to Ghazal, Zarga and Aradeiba Reservoirs.

2-To improve the areal and vertical sweep efficiency moving the oil to the producers.


3-To raise the depleted reservoir pressure at the desired reservoirs pressure and sustain void age replacement ratio.

4-To improve the Recovery factor

Chapter Three Methodology

Chapter 3

Methodology

3.1. Material Balance:

The material balance concept is based on the principle of conservation of mass: Mass of fluids originally in place = fluids produced + Remaining fluids in place. This can be synthesized in the fundamental equation:

$F = N.E_t + W_e$

Where:

F is the production

 $\mathbf{E}_{\mathbf{E}}$ is this expansion term, depending on PVT and reservoir parameters

We is the water influx term

The material balance program uses a conceptual model of the reservoir to predict the reservoir behavior based on the effects of reservoir fluids production and gas to water injection.

The material balance equation is zero-dimensional, meaning that is based on a tank model and does not take into account the geometry of the reservoir, the drainage areas, the position and orientation of the wells, etc.

However, the material balance approach can be a very useful tool in performing many tasks, some of which are highlighted below:

- Quantify different parameters of a reservoir such as hydrocarbon in place, gas cap size, etc.
- Determine the presence, the type and size of an aquifer, encroachment angle, etc.
- Estimate the depth of the Gas/Oil, Water/Oil, Gas/Water contacts.
- Predict the reservoir pressure for a given production and/or injection schedule,
- Predict the reservoir performance and manifold back pressures for a given production schedule.
- Predict the reservoir performance and well production for a give manifold pressure schedule.

3.2. MBAL Software Over view

MBAL is a reservoir modeling tool, this tool was designed to allow for greater understanding of the current reservoir behavior and perform predictions while determining its depletion.

Reservoir modeling can be carried out within MBAL with the use of several different tools to focus on different aspects:-

- i. Material Balance,
- ii. Reservoir Allocation
- iii. Monte Carlo volumetric,
- iv. Decline Curve Analysis,
- v. 1-D Model (Buckley-Leverett)
- vi. Multi-Layer (relative permeability averaging)
- vii. Tight Gas Type Curve tool

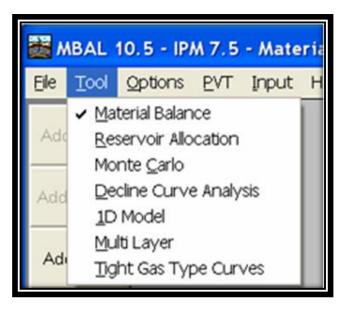


Figure 3.1. Selection Material Balance.

The material balance approach can be a very useful tool in performing many tasks:-

- i. Quantify different parameters of a reservoir such as hydrocarbon in place, gas cap size,
- **ii.** Determine the presence, the type and size of an aquifer, encroachment angle, etc.
- iii. Predict the reservoir pressure for a given production and/or injection schedule
- iv. Predict the reservoir performance and well production for a given manifold pressure

When a volume of oil is produced from a reservoir, the space once occupied by this volume must be filled by something else

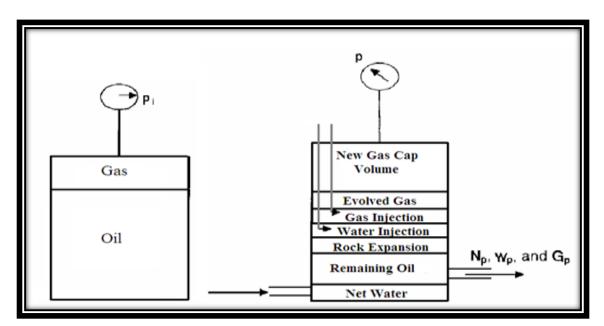


Figure 3.2 Tank balance

3.2.1.MBAL Software- Input Data

Input Data		
Item	Unit	Formation A
GOR	Scf/STB	5
API	Degrees	20
Gas Gravity	Sp.gr	0.74
Water Salinity	ppm	3000
H2S	f	0
Co2	f	0
N2	f	0
Pi	psia	1866
Avg Thickness	m	16.18
Porosity	f	0.19
Connate Water Saturation	f	0.2
Water Compressibility	psi-1	2.99E-06
Initial Gas cap	Scf	0
Oil in Place	MMSTB	100.77
Start Oil Production	Date	Mar-2002
Rock Compressibility	psi-1	3.50E-06

MBAL Software- Input Data Table 3.1

3.2.2.Setting up the Basic Model

M 🙀	BAL 8	.00 - IPM	1 5.00	- Mate	erial Balance - re	s1.mbi				
File	Tool	Options	PVT	Input	History Matching	Production Prediction	View	Units	Help	
Add	l Tank									
Add	Trans.									
Add	dWell									
Co	nnect									
м	ove									

Figure 3.3In this screen, the fluid has been defined as oil.

System Options					
✔Done XCancel	n Help				
Tool Options			User Information		
Reservoir Fluid	01	•	Company		
Tank Model	Single Tank	•	Field		
PVT Model	Simple PVT	•	Location		
Production History	By Tank	•			
Compositional Model	None	•	Platform		
Mix Injection Fluid		<u></u>	Analyst		
	EOS Model Setup		Reference Time	01/01/1995	date d/m/y
User Comments	ļ	Date	Stamp	(Ctrl	+Enter for new line)
					~

Figure 3.4. Selection Model

3.2.3. Plotting

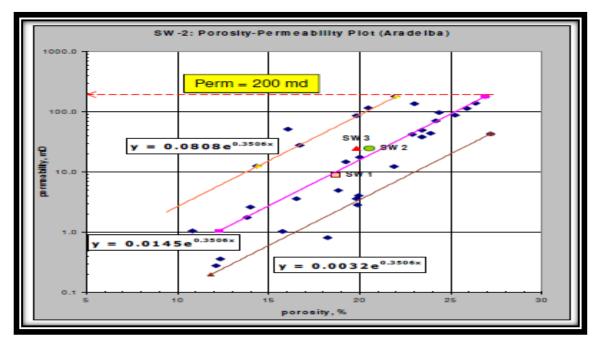

Plot Variables		
✓ Done	2 Felb	
Stream	Plot	Versus
Plot Variables	Mole Percent N2 Number of Producers Oil Density Oil FVF Oil Rate Oil Relative Perm. Oil Saturation Oil Viscosity Producing GOR Reservoir Injection Reservoir Voidage Reservoir Voidage Reservoir Voidage Reservoir Voidage Reservoir Voidage Reservoir Voidage Reservoir Voidage Reservoir Voidage Reservoir Voidage Reservoir Voidage Nater Compressibility Water Cut Water Cut Water Cut Water Cut Water Relative Perm Water Relative Perm Vater NF	Number of Producers Oil Density Oil FVF Oil Rate Oil Recovery Factor Oil Relative Perm. Oil Saturation Oil Viscosity Producing GOR Reservoir Voidage Reservoir Voidage Reserv

Figure 3.5order plot variable

3.3. Basic Reservoir Data

Porosity -Permeability Information

- i. Based on Routine Core Analysis of SIW-2 (Air perm).
- ii. Calibrated with permeability result from DST at SIW-1, SIW-2 & SIW-3

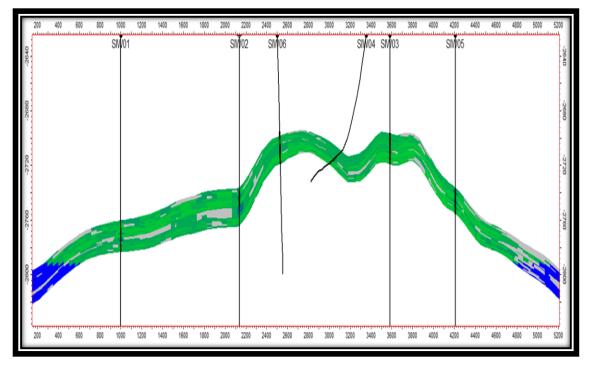


Figure 3.7. Simber west wells depth distribution

3.4. OFM overview

OFM (Oil Field Manager) is application software with an array of tools to manage oil and gas data. It has many useful functions from simple plots to decline curve analysis OFM stored the data in a separate database and this database can be shared and used by several parties.

Templates can be generated where users can customize it based on his requirement that will speed up his analysis well or field wise.

In field we have 2 licenses shared among users

3.5. Fundamental relationship

Software - OFM - what it can offer??

3.5.1. Production Plot

(To study well performance over time)

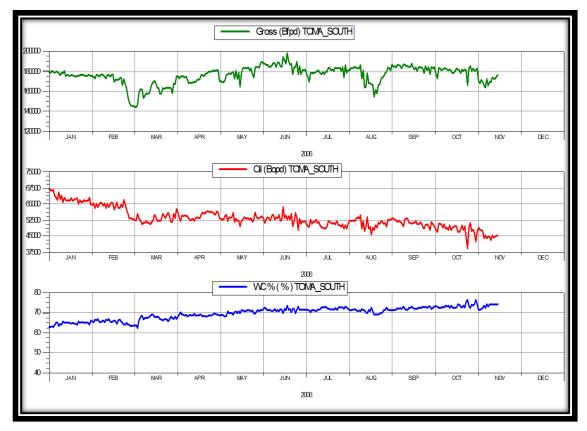


Figure 3.8Production performance plot using OFM

3.5.2. Analysis plot

To analysis the water production behavior

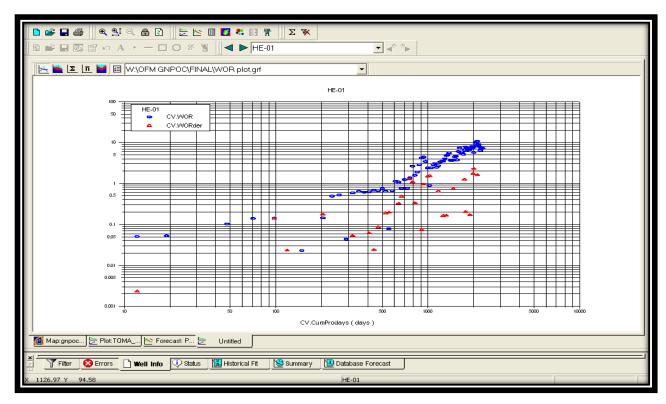
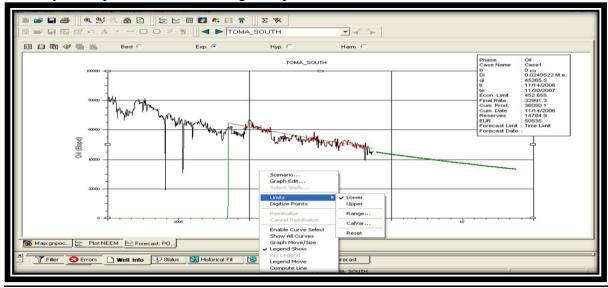



Figure 3.9water production behavior using OFM

3.5.3. Production Forecasting

To study the depletion rates and mitigation plan

Figure 3.10Production Forecasting chart by OFM

3.5.4.Bubble map

To study the spacing and production coverage

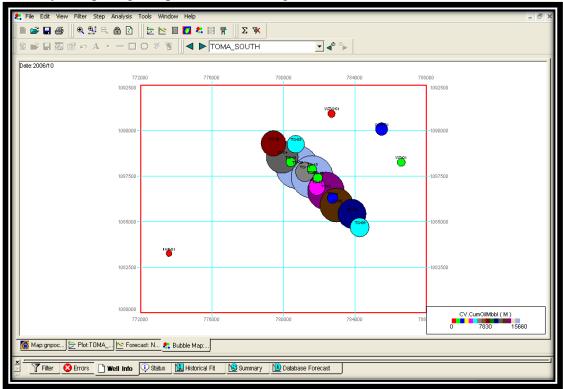


Figure 3.11 Bubble map by OFM

3.6.Data to be entered

Basic data

- **i.** Coordinate well (X,Y)
- ii. Country/Block/Field/Well name
- iii. Production Data
- iv. PVT data
- v. Allocated Monthly Production Data by Well
- vi. Well test
- vii. DFL/ SFL
- viii. Downtime
- ix. Lab test

Chapter Four Results & Discussion

Chapter 4

Results & Discussion

4.1. Evaluation of Material Balance

1. To validate the tank in place volume

2. To determine the timeline for reservoir pressure to achieve 2500 psi with the current water injection operating conditions

3. To determine the optimum production rate when reservoir start resume production

4.2.Assumptions:

- Single Tank mode, single PVT mode, single stage separator
- 2 case studies established due to pressure regime different (Medium & Low Case).

Basic Reservoir Data	Rock Properties	Fluid Properties	Resource & Reserve	
Location: Block 2A	Net Sand: 10~15 m	API: 38	In Place: 80.75 MMstb	
Discovery: November 2002	Porosity: 17 ~ 21%	i. Viscosity: 2.4 cp @ 80C	EUR: 21.80 MMstb (27% RF)	
MajorSand: Aradeiba-D	Permeability: 10 ~ 100 mD	Average Swi: 0.31	Np: 1.20 MMstb (1.5% recovery)	
Depth: 2740 – 3100 mkb	Initial Pressure: 3800 psi	Rsi: 110 scf/stb	Producers: 7 Ops (SIW-04 converted to WI)	

Table 4.1.Basic Data

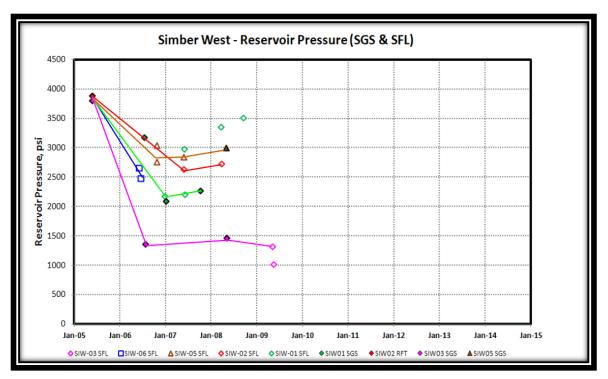


Figure 4.1 SGS & SFL vs Time

Pressure Analysis

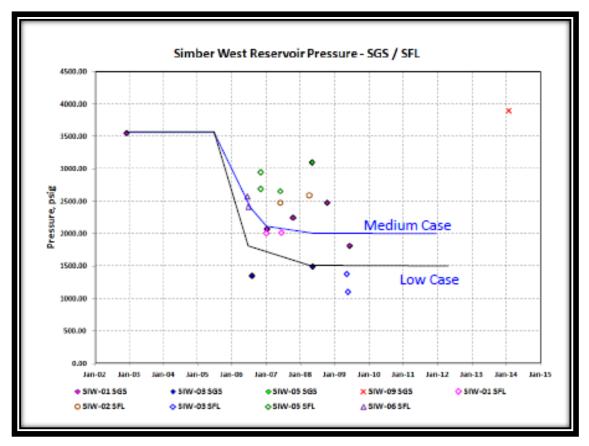
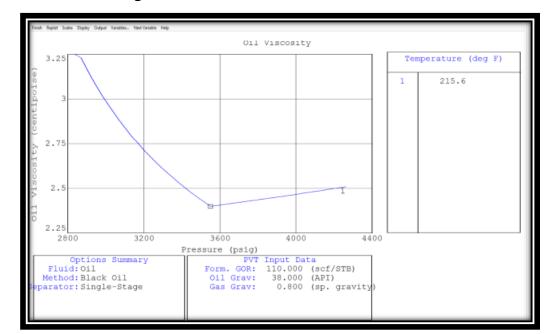


Figure 4.2 the reservoir pressure difference established for MBAL analysis

The reservoir pressure range is quite significant difference, 2 cases (medium & low) established for MBAL analysis.

4.3. Material Balance Case Study

4.3.1. Medium Case


First enter fluid properties

Oil - Black Oil: Data Input						
🖌 🖌 Done 🕅 Done 🖉 Help	latch	Import				
Input Parameters Formation GOR 110 so	cf/STB	Separator Single-Stage				
Oil gravity 38 A	PI	Correlations Pb,Rs,Bo				
Water salinity 2500 pp	p. gravity pm	Standing				
Mole percent CD2 0 pr	ercent ercent	Oil Viscosity Beggs et al				
Mole percent N2 0 pe	ercent					

Figure 4.3Due to Limit fluid data available, correlation was used to generate the PVT data

	Oil - Black Oil: Matching						
٥	one XCance	el 🦹 Help	Match	Peset	H ^{HH} Import	Plot [Сору
	Temperature 215.6 deg F Table 1 (T=215.6) Bubble Point 3550 psig						
	Pressure	Gas Oil Ratio	0il FVF	0il Viscosity	Gas FVF	Gas Viscosity	
	psig	scf/STB	RB/STB	centipoise	ft3/scf	centipoise]
1	3550	110	1.02	2.4			▲
2							

Figure 4.4 Black Oil Input Data

PVT - Correlations generated PVT data

Figure 4.5Pressure vs Oil viscosity

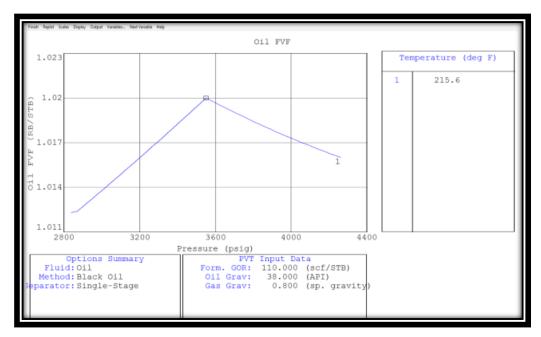


Figure 4.6Pressure vs oil FVF

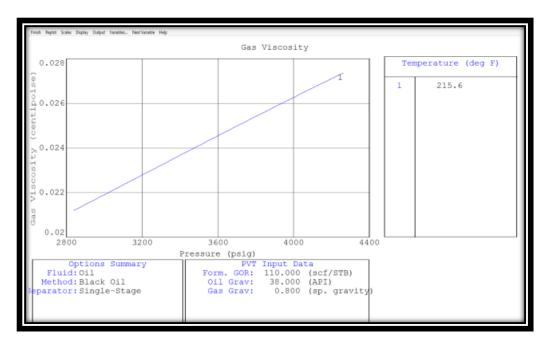


Figure 4.7pressure vs Gas viscosity

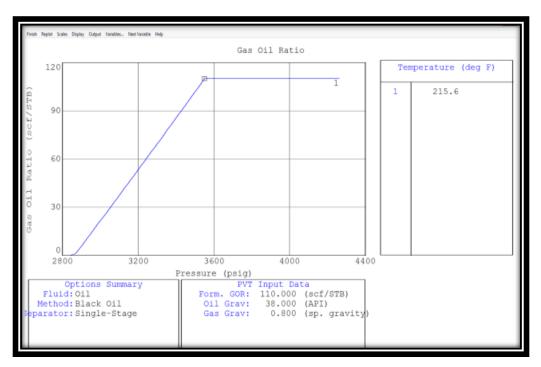


Figure 4.8pressure vs GOR



Figure 4.9pressure vs Gas FVF

Tank Input Data - Tank Parameters				
✔Done XCancel ? Help	<u>المجمع المجمع المجمع</u>			
Tank Water Rock Parameters Influx Compres	Rock s. Compaction	Pore Volume Relative vs Depth Permeat		
Tank Type	Oil	•	Monitor Contacts	
Name	Simber West]	Gas Coning	
Temperature	215.6	deg F	Water Coning	
Initial Pressure	3550] psig	The in place value estimated	
Porosity	0.2	fraction	The in place value estimated	
Connate Water Saturation	0.31	fraction	from static model was honored	
Water Compressibility	Use Corr	1/psi	in the MBAL study	
Initial Gas Cap	0	L L		
Original Oil In Place	80.75	MMSTB		
Start of Production	01/06/2005	date d/m/y	Calculate Pb	
<< Prior Next >> Validate				

Figure 4.10.No aquifer attach as understood from reservoir pressure and water cut behavior

Tank Input Data - Water Influx				
	See Telb			
Tank Water Parameters Influx	Bock Bock Pore Volume Relative Production Compress. Compaction vs Depth Permeability History			
Model None				

Figure 4.11.Tank Input Data – Water Influx

Typical Kr was used

Tank Input Data - Relative Permeabilities							
V Done X Cancel Y Help Plot Copy Copy Copy							
Tank Water Rock Rock Pore Volume Relative Parameters Influx Compress. Compaction vs Depth Permeability							
Rel Perm. from Corey Functions Vater Sweep Eff. 100 percent Hysteresis No Gas Sweep Eff. 100 percent							
Tank Input Data - Relative Permeat Image: Done Image: Done Image: Done Image: Done							
fraction fraction							
Krw 0.31 0.4 3							
Kro 0.3 0.7 2							
Krg 0.1 0.5 1							
<< Prior Next >> WARNING : Enter saturations relative to total system							
	-						

Figure 4.12 Tank Input Data –Rermeabilities.

4.4. Production Data

Oil & Water production from OFM database

4.4.1.Comulative water production

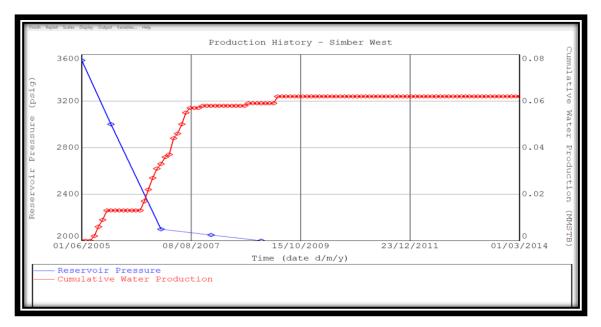
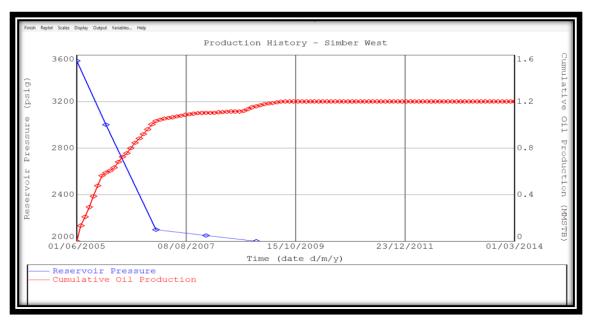



Figure 4.13Pressure&Cumulative water production

4.4.2Comulative oil production

Figure 4.14Pressure & Cumulative oil production

4.4.3Comulative GOR

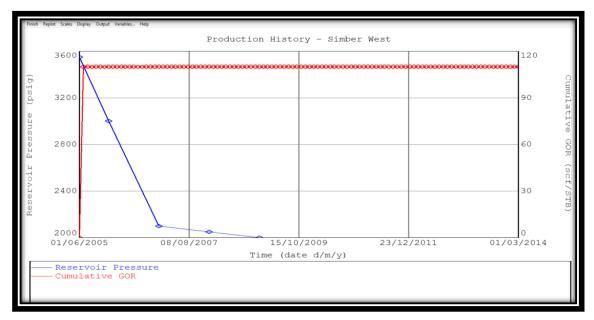


Figure 4.15Pressure & cumulative GOR production

Gas production was estimated base on Rsi of 110 Scf/stb due to no gas measurement available

4.7. MBAL – History Match (Analytical Method)

4.7.1. Matching on Energy Balance

•By using the original estimated in place (80.75 MMstb), the theoretical reservoir pressure should be high, but in reality, the reservoir pressure is lower than that.

STUDET MESE AHALYCICAL PICCHOA 3600 Match Points Status : + Off ⊿ High 3200 x Medium × ∇ Low 2800 2400 × 2000 Calculated Oil Production (MMSTB) 215.6 Tank Temperature (deg F) Aquifer Model None Aquifer System Tank Pressure Tank Porosity (psig) (fraction) 3550 Linear 0.2 Connate Water Saturation 0.31 (fraction) Water Compressibility Use Corr (1/psi) (1/psi) Formation Compressibility Initial Gas Cap 3.49998e-6 0 80.75 Oil in Place (MMSTB) 01/06/2005 Production Start (date d/m/y)

•This indicate the volume estimation need to be adjusted

Figure 4.16calculated oil production by MBAL

4.7.2. Matching on Tank Volume

•By using the original estimated in place (80.75 MMstb), the straight line method is not fulfill, which indicate the original estimated volume is bigger than what it should be

•This indicate the volume estimation need to be adjusted

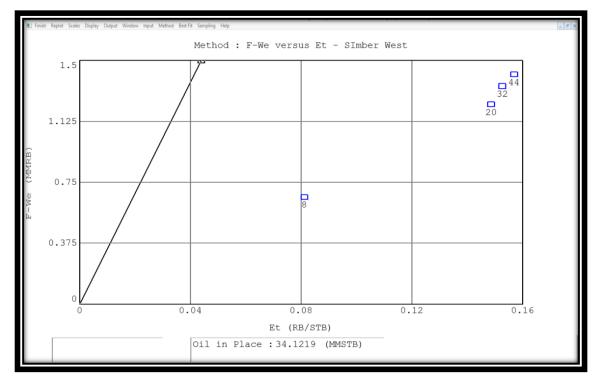
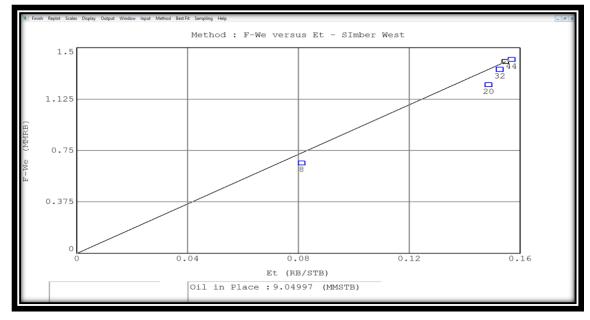
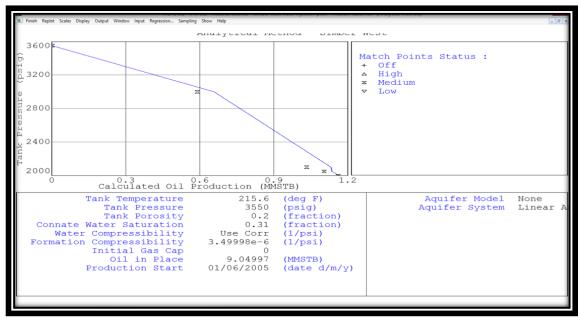



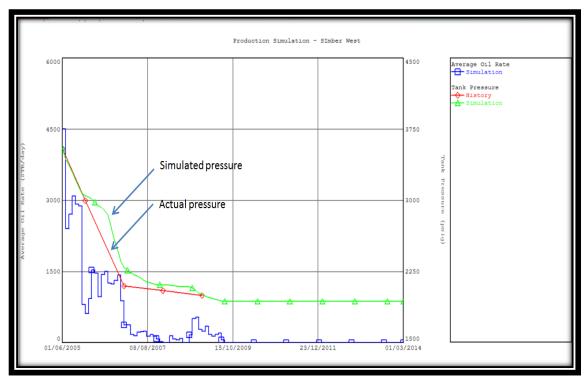
Figure 4.17Matching on Tank Volume (calculated oil in place by MBAL)


4.8. After matching with the SGS pressure data:

4.8.1. Matching on Tank Volume

Figure 4.18Matching on Tank Volume (actual Oil in place by MBAL)

4.8.2. Matching on Energy Balance


Figure 4.19Tank Pressure vs Calculated oil production

4.8.3. Drive Mechanism

🗉 Finish Replot Scales Display Output Window Input Versus Help	DITAC LICCUM	TOW DIMPCT MC2	_	- 8
1				l Expansion ompressibilit
0.75				
0.5				
0.25				
0 01/01/2006 02/10/2006	03/07/2007 Time (date d/r	02/04/2008 m/y)	01/01/2009	
Tank Temperature	215.6	(deg F)	Aquifer Mod	
Tank Pressure Tank Porosity	3550	(psig) (fraction)	Aquifer Syst	em Linear
Connate Water Saturation	0.31	(fraction)		
Water Compressibility	Use Corr	(1/psi)		
Formation Compressibility	3.49998e-6	(1/psi)		
Initial Gas Cap Oil in Place	0 9.04997	(MMSTB)		
Production Start	01/06/2005	(date d/m/y)		

Figure 4.20Drive Mechanism identifying

Indicate that fluid expansion is the major energy in the reservoir

The simulated pressure match the Actual pressure data, the tank can use for prediction

Figure 4.21Oil productions (Stimulated pressure vs actual pressure)

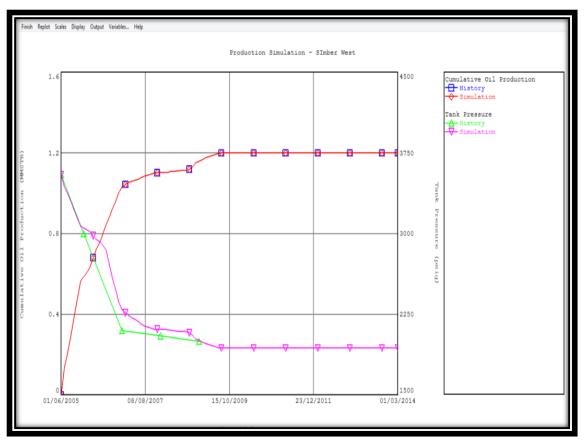
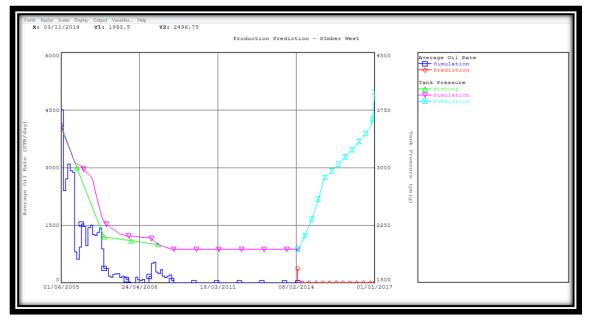



Figure 4.22 cumulative oil production vs time

•MBAL analysis suggested that by Nov 2014, Simber West reservoir pressure should be reached 2500 psi

•The production should be resumed after the reservoir pressure achieve target

Figure 4.23cumulative oil prod vs time(avg oil & tank pressure)

With the water injection rate of 1250 bwpd, and to maintain reservoir pressure at 2500 psi, suggested the production should be resumed at maximum 1200 bopd

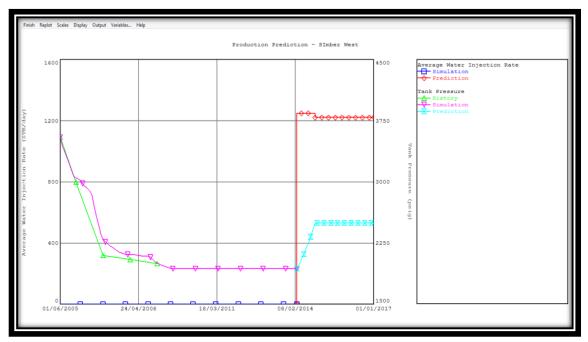


Figure 4.24. Average water Inj vs Time (tank pressure & Time)

4.7. Material Balance Case Study

4.7.1. Low Case

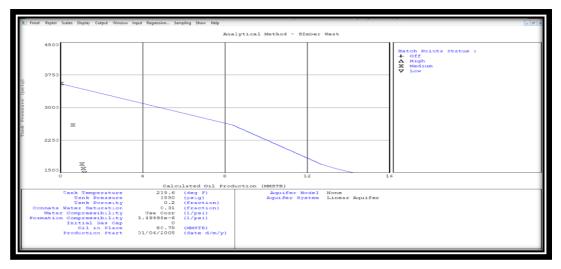


Figure 4.25.calculated oil production vs tan pressure

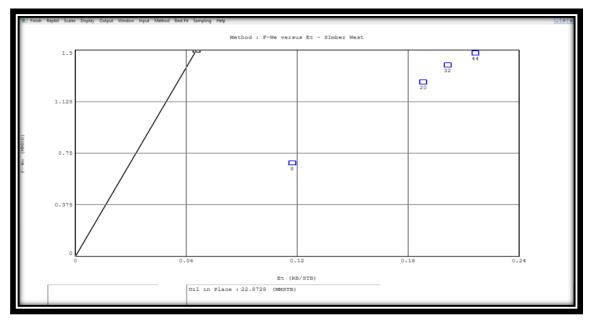
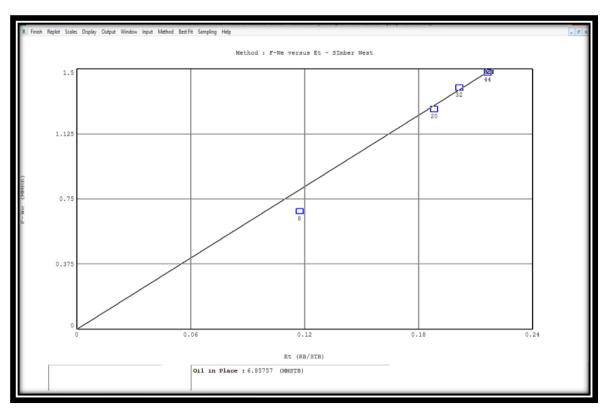
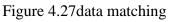




Figure 4.26.actual oil in place vs calculated from MBAL

Similar to Medium case, the in place of low case also require to be tuned.

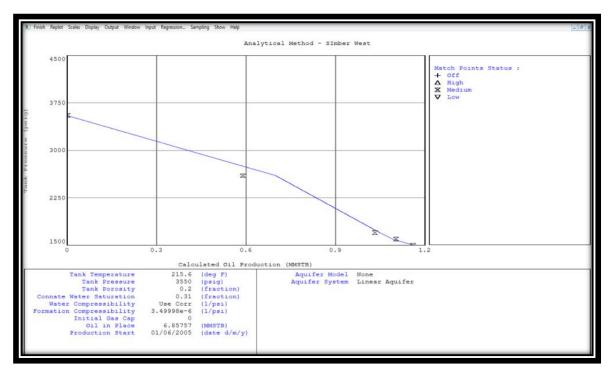


Figure 4.28pressure vs calculated oil

The suggested in place volume should be 6.86 MMstb (for Medium Case)

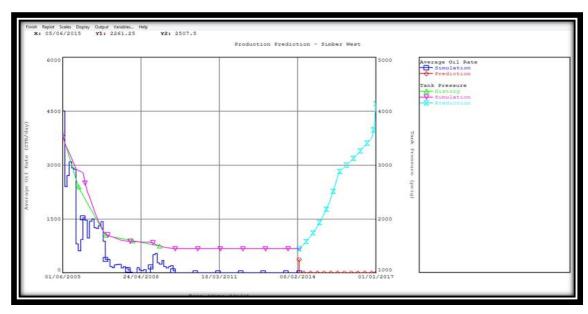


Figure 4.29Average oil actual pressure& estimated pressure

- i. MBAL analysis suggested that by June 2015, Simber West reservoir pressure should be reached 2500 psi
- ii. The production should be resumed after the reservoir pressure achieve target

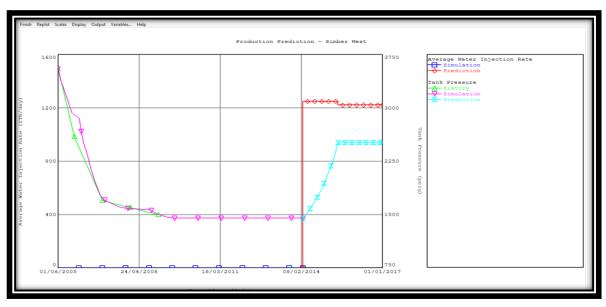


Figure 4.30Average Water Injection vs tank pressure

With the water injection rate of 1250 bp/d, and to maintain reservoir pressure at 2500 psi, suggested the production should be resumed at maximum 1200 bp/d

4.8 Observation

- i. MBAL analysis suggested that the reservoir should achieve pressure of 2500 psi by Nov 2014 (medium case) or June 2015 (low case) with production rate of about 1100 bopd. However, close monitoring require to enhance the understanding of subsurface to achieve optimize production.
- **ii.** Fluid properties (PVT data) data quality may detriment the quality of the analysis because the main drive mechanism is fluid expansion
- iii. The reservoir pressure range indicate that the sand continuity is uncertain, Geophysicist's seismic input are essential to further understand the sand continuity

4.9. Discussion, Water Injection Operation & Implementation:

- i. Water injection metering performance is dissatisfactory
- ii. Untreated injection water probably caused the scale / skin formation
- iii. Water injection parameters established through injectivity test
- iv. SIW01, SIW03 not really supported by water injection
- v. SIW05 supported by water injection, but experiencing +ve skin problems probably due to untreated injection water.

Chapter Five Conclusions & Recommendations

Chapter 5

Conclusions & Recommendation

5.1. Conclusion

- i. Simber West oil properties is suitable for water injection scheme
- ii. Geological understanding is dissatisfactory (unknown sand continuity)
- **iii.** STOIIP probably less than expectation (Based on MBAL analysis)
- Weak and moderate aquifer available, but due to geological structure, only support to SIW01 relatively
- v. SIW01, SIW03, SIW05 are probably are located at different sand body (Based on reservoir pressure respond)
- vi. SIW03 production is fluctuating probably due to small volume of connected sand body

5.2. Recommendation

- i. The first part requires that water be injected at the highest pressure possible
- **ii.** The second part limits the injection pressure to just below formation fracture pressure.
- iii. In practice, operators commonly use a surface injection pressure of 50 psig below formation parting pressure minus the static pressure of a column of injection fluid.
- iv. More SGS pressure to ensure the analysis are properly calibrated
- v. Gas measurement are recommended to avoid lost count of energy

References:-

-Tarek, T.A,Paul,D. McKinney,(2005) *Advanced_Reservoir_Engineering*, Senior Staff Advisor, V.P. Reservoir Engineering, Anadarko Petroleum Corporation, Anadarko Canada Corporation.

-Bose,R.B. (2007) Unloading Using Auger Tool and Foam and Experimental Identification of Liquid Loading of Low Rate Natural Gas Wells, MSc Thesis, Texas A&M University.

-Binli,O. (2009) Overview Of Solution To Prevent Liquid-Loading Problems In Gas Wells, MSc Thesis, Middle East Technical University.

-AGARWAL, R.G. (1980). A new method to account for producing time effects when drawdown type curves are used to analyze pressure buildup and other test data. SPE Paper

9289, Presented at SPE–AIME 55th Annual Technical Conference, Dallas, Texas, Sept. 21–24

-CARTER, R. and TRACY, G. (1960). An improved method for calculations of water influx. Trans. AIME, 152

- CRAFT, B. and HAWKINS, M. (1959). *Applied Petroleum Reservoir Engineering* (Englewood Cliffs, NJ: Prentice Hall)

-HAWKINS, M. (1955). *Material Balances in Expansion TypeReservoirsAbove Bubble-Point*. SPE Transactions Reprint

Series No. 3, pp. 36-40