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Abstract

We demonstrate that rather weak forms of the extendable local
reflexivity and of the principle of local reflexivity are needed for the
lifting of bounded convex approximation properties from Banach spaces
to their dual spaces. We show that certain adjoint multiplication operators
are convex- cyclic and show that some are convex- cyclic but no convex
polynomial of the operator is hypercyclic. Also some adjoint multi-
plication operators are convex- cyclic but not 1-weakly hypercyclic. We
deal with two weaker forms of injectivity which turn out to have a rich
structure behind: separable injectivity and universal separable injectivity.
We show several structural and stability properties of these classes of
Banach spaces. We provide natural examples of separably injective
spaces, including L., ultraproducts built over countably incomplete
ultrafilters, in spite of the fact that these ultraproducts are never injective.
We show that the Fremlin tensor product is not square mean complete
when the two spaces are uncountable metrizable compact spaces.
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Chapter 1
Banach Spaces with their Spaces and the Related Local Reflexivity

We provide a unified approach to the lifting of various bounded
approximation properties, including, besides the classical ones, the
approximation property of pairs properties of Banach spaces, and the
positive approximation property of Banach Lattices.

Section (1.1): Lifting of the Convex Bounded Approximation
Property

Approximation property is a locally convex topological vector
spaces is said to have the approximation property if the identity on map
can be approximated, uniformly on the compact set, by continuous linear
map of finite rank [5]).

Let X be a Banach space and let A be an arbitrary subset of £L(X).
The space X has the A -approximation property if for every compact
subset K of X and every € > 0, there exists S € A such that [|Sx — x|| < ¢
for all xe K. Let 1 <A <. The space X has the A-bounded A -
approximation property if S can be chosen with [|S]| < A (meaning that X
has the (A N ABL(X))-approximation property). In the case when the set A
is convex and contains 0, we speak about convex approximation
properties.

The positive approximation property is precisely the A -
approximation property where A is the cone F(X) . of positive finite-rank
operators. The approximation property for pairs is also a convex
approximation property.

By standard arguments (e.g., that the topology of uniform
convergence on compact sets coincides with the strong operator topology
on bounded subsets of operators), X has the A-bounded A-approximation
property if and only if there exists a net (S,) < A with ||S, || < A for all v,
and S, — Iy pointwise, i.e., in the strong operator topology. We say that
X has the A-bounded duality A-approximation property if the net (S,,) can
be chosen so that also S, — Ix+ pointwise. The dual space X* of X is said
to have the A-approximation property with conjugate operators if X* has
the A*-approximation property.

In the case of convex approximation properties, the following
simple result is useful.



Proposition (1.1.1) [1] Let X be a Banach space and let A be a convex
subset of L£(X) containing 0. Let 1 <A< . Then the following
properties are equivalent.

(@) X has the A-bounded duality A-approximation property.

(b) X* has the A-bounded A-approximation property with conjugate

operators.
(c) There exists a net (S,,) A such that
limsupl|S, || < 2
%

and
x(Spx*) =, x(x*) Vx* € X*,Vx* e X,

Proof: The implications (a) = (b) = (¢) are obvious. For the
implication (c) = (a), we apply the (rather straightforward) fact that the
A-bounded duality A-approximation property is equivalent to the (1 + ¢)-
bounded duality A-approximation property for all e > 0. To show the
latter property, we use that the weak and strong operator topologies on a
space of the bounded linear operators yield the same dual space [1].
Hence, having a net converging in the weak operator topology on L(X)
(or on L(X*) as in (c)) means that, by passing to convex combinations,
one may always assume that the net converges in the strong operator
topology on L(X) (or on £L(X™)) to the same element.

We introduce the following general forms of the ELR and the PLR.
In Theorem (1.1.5) we shall see that these rather weak forms of the ELR
and the PLR are sufficient for the lifting of different bounded
approximation properties from Banach spaces to their dual spaces.
Definition (1.1.2) [1] Let X be a Banach space and let C be a subset of
L(X™). Let1 < A < o0. We say that X is A-extendably locally reflexive
of type C if for all finite-dimensional subspaces E ¢ X** and F c X*, and
forall e > 0, there exists T € C suchthat T(E) c X,||IT|| € A2 + ¢, and

|x*(TX*) —x™(x*)| < e Vx*™ € S, Vx* € Sy.

The A-ELR of a Banach space X clearly implies the A-ELR of type
L(X*). More examples will be presented.
Definition (1.1.3) [1] Let X be a Banach space, let A and B be subsets of
L(X) and L(X™), respectively. We say that the principle of local
reflexivity of type B — A holds in X if for all T € B, for all finite-
dimensional subspaces E c X** and F c X*, and for all ¢ > 0, there
exists S € A such that ||S|| < ||T|| + € and



[(Tx*™)(x*) — x**(S*x*)| < € Vx*™ € S, Vx* € Sy.
The PLR of type B — A means that the operators on X** of “type B” are
“locally” of “type A” on X.
Examples (1.1.4) [1] The following assertions are true.

Q) By the PLR, in every Banach space X, the PLR of type
F(X™) - F(X) holds.
(i) Let X be a Banach space and let Y be a closed subspace of X.

By the PLR respecting subspaces, the PLR of type {T €
FX*):TY) cYH}Y - {Se FX):S(Y) c Y} holdsin X.
(iii) In every Banach lattice X, the PLR of type F(X*), —
F(X). holds.
(iv) Let A be a subset of L(X). Trivially, in every Banach space
X, the PLR of type A™ — A holds.
Theorem (1.1.5) [1] Let X be a Banach space. Let A be a convex subset
of £L(X) containing 0. Let B and C be subsets of £(X**) such that A** o
C c B. Letl < A, u <oo. Assume that the principle of local reflexivity
of type B — A holds in X. If X is A-extendably locally reflexive of type C
and has the p-bounded A -approximation property, then X has the Au-
bounded duality A-approximation property.
Proof: By Proposition (1.1.1) (c), it suffices to construct a net (R,) c A
such that lim sup||R, || < Au and
%

x*(Ryx*) =, x*(x*) Vx* € X* ,Vx*™ € X*.

Consider the set of all v=(E,F,¢e), where Ec X™ and F c X*
are finite-dimensional subspaces and € > 0, directed in the natural way.
Since X is A-ELR of type C, for every v, there exists an operator T, € C
such that T,(E) c X, ||IT, ]| <A+ ¢, and

lx* (T, x™) —x™*(x*)| < & Vx* € S, Vx* € Sg.
The set T, (SE) c X is compact because S is compact. Since X has the
p-bounded A-approximation property, there exists S, € A with ||S,|| < u
such that
ISy T, x* — T,x™|| = ||S, Tyx™ — T, x**|| <& Vx™ € Sg.
We have S;*T,x™ € Ao C c B. By the PLR of type B — A, there exists
R, € A with
IRV < ST Tl + e < u(d + &) + ¢,
implying that
limsupl|R, || < Au,
\Y
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and

(ST, x™)(x*) — x*(Ryx™)| < e Vx™ € S, Vx* € S.

For arbitrary x** € S; and x* € S, we have
lx™ (Ryx™) — x™* (™)

< [x™(Ryx™) = (S5 Tyx™) (x|

+ (S5 Tyx™) (x7) — (T, x™) ()| + " (Tyx™) — x™ (x")]

< 3e¢.
This implies that

Ii\r}‘n x(Ryx*) = x*(x*) Vx* € X* ,vx*™ € X**,
Indeed, let x* € Sy~ and x™ € Sy« be given. For g, >0, take v, =
(span {x**}, span{x*}, &,/3). If v =(E,F,&) = v,, then x* € Sg,x* €
Sp, € < go/3, and we have

|x*(Ryx*) — x**(x*)| < 3¢ < &,

as needed.

From Theorem (1.1.5) and Example (1.1.4) (iv), we have the
following immediate corollary that will be applied in lifting results.
Corollary (1.1.6) [1] Let X be a Banach space. Let A be a convex subset
of L(X) containing 0 and let C be a subset of L(X**) such that Ao C c
A™. Letl < A, u < oo, If X is A-extendably locally reflexive of type Cand
has the u-bounded A-approximation property, then X has the Au-bounded
duality A-approximation property.



Section (1.2): Extendable Local Reflexivity Implied by Convex
Approximation Properties

The lifting Theorem (1.2.1) by Johnson and Oikhberg has a strong
converse, due to Rosenthal.

Theorem (1.2.1) [1] (Rosenthal). Let X be a Banach space. Let1 < A <
oo . If X* has the A-bounded approximation property, then X is A-
extendably locally reflexive.

Recall that, by an important result, the assumption “X* has the A-
bounded approximation property” is equivalent to “X* has the A-bounded
approximation property with conjugate operators”. We shall see that
Rosenthal’s Theorem (1.2.1) can be extended as follows, providing a
general converse to our main Theorem (1.1.5).

Proposition (1.2.2) [1] Let X be a Banach space. Let Abe a subset of
WX). Let 1 <A <oo. If X* has the A-bounded A -approximation
property with conjugate operators, then X is A -extendably locally
reflexive of type A™.
Proof: Let F c X* be a finite-dimensional subspace and let ¢ > 0. Since
Sp is compact and X* has the A-bounded {S*:S € A} -approximation
property, there exists S € A with ||S|| < A such that

IS*x* — x*|| < & Vx* € Sg.

Then $** € A* and ||S*|]| < 2. Since S € W(X), we have that

S**(X**) c X [1]. For arbitrary x™* € Sy and x* € S,
|X*(S**X**) _ X**(X*)l — |X**(S*X*) _ X**(X*)l < ||x**||||5*x* _ X*”
<e
Hence, for any finite-dimensional subspace E of X**, the conditions of
the A-ELR of type A™* for X are satisfied.

In the case of Banach lattices, we have the following version of
Rosenthal’s Theorem (1.2.1).

Theorem (1.2.3) [1] Let X be a Banach lattice. Let1 < A1 < co. If the
dual lattice X* has the A-bounded positive approximation property, then X
is positively A-extendably locally reflexive.

Proof: Since X* has the A-bounded positive approximation property, it
has the A -bounded positive approximation property with conjugate
operators [1]. Let A = F(X),. Then A c W(X) and A** ¢ F(X**), c
L(X**),. The claim is immediate from Proposition (1.2.2).

The following result is immediate from Proposition (1.2.2) and
Corollary (1.1.6). It shows that the lifting of convex approximation
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properties from a Banach space to its dual space is possible whenever the
dual space already enjoys a weaker approximation property.

Theorem (1.2.4) [1] Let X be a Banach space. Let A be a convex subset
of L(X) containing 0 and let B be a subset of W(X) such that A o B c A.
Let 1 <A, u<oo. If X* has the A-bounded B -approximation property
with conjugate operators and X has the u-bounded A -approximation
property, then X has the Au-bounded duality A-approximation property.

If, in Theorem (1.2.4), A c K (X) and X* or X** has the Radon-
Nikodym property, then X has the metric duality A -approximation
property.

Let us have general application of Theorem (1.2.4) to (positive)

approximation properties of pairs.
Corollary (1.2.5) [1] Let X be a Banach space and Y a closed subspace of
X. Let A be an operator ideal. Denote A = {S € A(X):S(Y) c Y} and
B={T e W(X):T(Y) cY}. Let 1 < A,u<oo. Then the assertion of
Theorem (1.2.4) holds. In the special case when X is a Banach lattice, A
and B may be replaced by A, and B,..

The classical cases when Corollary (1.2.5) applies are A = F(X)
and A = K (X). For instance, it follows that the dual lattice X* has the
bounded (metric if X* has the Radon-Nikodym property) positive
approximation property whenever X has the bounded positive
approximation property and X* has the bounded positive weakly compact
approximation property with conjugate operators.

If one adds in the definition of the A-ELR the requirement that the

operator T € L(X**) also satisfies T*(X*) c X*, then one obtains the
notion of the strong A-extendable local reflexivity. The strong A-ELR was
introduced and studied. Among others, Rosenthal’s Theorem (1.2.1) was
strengthened and extended in as follows.
Theorem (1.2.6) [1] (Oja). Let A be an operator ideal and let X be a
Banach space. Let 1 <A< . If AX) c W(X) and X* has the A-
bounded A (X)-approximation property with conjugate operators, then X
is strongly A-extendably locally reflexive.

It was also observed that Theorem (1.2.1) fails already for the
bounded compact approximation property, i.e., F(X) cannot be replaced
by K (X) in Theorem (1.2.1). This also means that the assumption “X has
the A-bounded A (X)-approximation property with conjugate operators”
is essential in Theorem (1.2.6). A “strong” example of this phenomenon
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was presented: there exists a strongly 1-ELR Banach space X with a
monotone shrinking basis such that:

(i) its even duals X**, X****, ... are strongly 1-ELR, have the metric
compact approximation property, but do not have the bounded
weakly compact approximation property with conjugate operators;

(ii) its odd duals X*, X***, ... are not ELR, but have the metric compact
approximation property with conjugate operators.

We shall extend Theorem (1.2.6) to convex approximation
properties of pairs as follows.
Theorem (1.2.7) [1] Let X be a Banach space and Y a closed subspace of
X. Let A be a linear subspace of £(X) containing F(X). Let1 < A < oo,
If X* has the A-bounded {S € A:S(Y) c Y}-approximation property with
conjugate operators, then for every finite-dimensional subspace F c X*
and for every € > 0, there exists an operator S € A with S(Y) c Y such
that ||S|| <A +ecand S*x* = x*forall x* € F.

Moreover, if Ac W(X), then the operator T:=S™ has the
following properties:
TX™) c X, TY*H) cV|ITI| <2 +&x*(Tx*) =x(x*) for all
x* € X*and x* € F, and T*(X*) c X*.

In the proof of Theorem (1.2.7), we use the lemma below, which,
by standard arguments, follows from the definition.
Proof. Let F c X™ be a finite-dimensional subspace and lete > 0. Look
at X* endowed with its weak = topology and notice that Y+ is weak x
closed. Using [1] choose a weakx-to-weaks continuous linear projection
P on X* such that ran P = F and P(Yt) c Y*. Then there exists Q €
F(X) such that P = Q*. Hence, Q(Y) c Y and F = ranQ".

Moreover, by assumption and Lemma (1.2.8), we have R € A with
R(Y) c Y such that |[R*]| < A and [|[R*x* — x*|| < (/1|QIDI|x*|| for all
x*€EF.

Define S =R+ Q(x — R). Then, clearly, Se A and S(Y) c Y.
Let us observe that

IGx = RIQN= sup llg"x" = R(@"x) < sup () Q"I
X*EByxx X*EByx Q ”
= &.
Hence, ||S|| < ||IR*|| + ||(Iy- — R*)Q*|| < A + €. Let us also observe that
S* =1Iy+ (Ixy» = R")(Q" — Ix+).

Hence, clearly, S is identity on F = ran Q".
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Assume now that A € W(X). Then S € W(X) and S* € W(X™).
Therefore, T: = S* € W(X**,X) and T* € W(X***, X*). Moreover, since
S(Y)cvY,wegetthat T(Y1t+) c X n Y+t =Y. And we also have

x*(Tx™) = x™*(S*x*) = x™(x*) vx*™* € X*™*,Vx* €F.

We extend the strong ELR to pairs as follows.

Lemma (1.2.8) [1] Let X be a Banach space. Let A be a linear subspace
of L(X). Let 1 <A< oo. If X has the A-bounded A -approximation
property, then for every finite-dimensional subspace E of X and for every
€ > 0 there exists an operator S € A with ||S|| < A, such that [|Sx — x|| <
€ ||lx|| forall x € E.

Definition (1.2.9) [1] Let X be a Banach space and Y a closed subspace
of X. Let 1 < A < oo, We say that the pair (X,Y) is strongly A1-extendably
locally reflexiveif for all finite-dimensional subspaces E ¢ X** and F c
X*, and for all e >0, there exists T € L(X**) such that T(E) c
XTOYD) eV T <A1+ & x*(Tx*™) = x*(x*) for all x* € E and
x*€F,and T*(X*) c X*.

It is natural to say that the pair (X* Y1) has the A-bounded A-
approximation property with conjugate operators if X™ has the A-bounded
{S € A:S(Y) c Y} -approximation property with conjugate operators.
Thus, the “moreover” part of Theorem (1.2.7) may be reformulated as
follows.

Theorem (1.2.10) [1] Let X be a Banach space and Y a closed subspace
of X. Let A be a linear subspace of W(X) containing F(X). Let1 <1<
oo. If the pair (X*, Y1) has the A-bounded A-approximation property with
conjugate operators, then the pair (X,Y) is strongly A-extendably locally
reflexive.

Theorem (1.2.10) contains Theorem (1.2.6) as the special case whenY =
{0} and A is the component of an arbitrary operator ideal, since the strong
ELR of X coincides with the strong ELR of the pair (X, {0}).

The theorem of Johnson, mentioned in the beginning of this
section, was extended from X* to (X* Y1): if the pair (X*, Y1) has the A-
bounded approximation property, then it has the A -bounded
approximation property with conjugate operators. Therefore, taking A =
F(X), we immediately get from Theorem (1.2.10) the following version
of Rosenthal’s Theorem (1.2.1) for pairs.



Corollary (1.2.11) Let X be a Banach space and Y a closed subspace of
X. Let1l < A < oo, If the pair (X*, Y1) has the A-bounded approximation
property, then the pair (X,Y) is strongly A-extendably locally reflexive.



Chapter 2
Convex Cyclic Operators
We give a Hahn- Banach characterization for convex-cyclic. We
also obtain an example of abounded operator S on a Banach space with
0,(5™) = @ such that S is convex- cyclic, but S is not weakly hypercyclic

and S? is not convex- cyclic. This solved two questions of Rezaci
when ap(S*) = @. We also characterize the diagnolizable normal
operators that are convex- cyclic and give a condition on the eigenvalues
of an arbitrary operators for it to be convex- cyclic.

Section (2.1): The Hahn-Banach Characterization for Convex-
Cyclicity

The convex hull of a given set X may be defined as: (i) The
(unique) minimal convex set containing X; (ii) The intersection of all
convex set containing X [6].

Rezaei gave a (universality) criterion for an operator to be convex-
cyclic. Using the Hahn-Banach Separation Theorem, we give a necessary
and sufficient condition for a set to have a dense convex hull, as a result
we get a criterion for a vector to be a convex-cyclic vector for an
operator.

Proposition (2.1.1) [2] Let X be a locally convex space over the real or
complex numbers and let E be a nonempty subset of X. The following are
equivalent:

(i) The convex hull of E is dense in X.

(ii) For every nonzero continuous linear functional f on X we have

that the convex hull of Re(f(E)) is dense in R.

(iii) For every nonzero continuous linear functional f on X we

have that
supRe(f(E)) = o and infRe(f(E)) = —oo.
(iv) For every nonzero continuous linear functional f on X we have that
supRe(f(E)) = oo.

Proof: Let IF denote either the real or complex numbers. Clearly (i) =
(i) = (iii) = (iv) holds. Now assume that (iv) holds and by way of
contradiction, assume that co(E) is not dense in X. Then there exists a
point p € X that is not in the closure of co(E). So, by the Hahn-Banach
Separation Theorem, there exists a continuous linear functional f on X so

that Re(f(x)) < Re(f(p)) for all x € co(E). It follows that Re(f(E)) is
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bounded from above and thus sup Re(f(E)) # oo. This contradicts our
assumption that (iv) is true. Thus it must be the case that if (iv) holds,
then (i) does also. Hence all four conditions are equivalent.
Corollary (2.1.2) [2] (The Hahn-Banach Characterization for Convex-
Cyclicity). Let X be a locally convex space over the real or complex
numbers, T: X — X a continuous linear operator, and x € X. Then the
following are equivalent:

(i) The convex hull of the orbit of x under T is dense in X.

(ii) For every non-zero continuous linear functional f on X we have

sup Re (f(Orb (T,x))) = oo,

Below are some simple consequences of the Hahn-Banach
characterization for convex-cyclic vectors.

As it was pointed the range of a cyclic operator may not be dense.

For example, the range of the unilateral shift has codimension one. The
closure of the range of a cyclic operator has codimension at most one.
Notice that the range of hypercyclic operator is always dense. The Hahn-
Banach characterization of convex-cyclicity easily shows that convex-
cyclic operators must also have dense range, see the following result.
Proposition (2.1.3) [2] If T is a convex-cyclic operator on a locally
convex space X, then T has dense range.
Proof: Suppose that T is a convex-cyclic operator and let x be a convex-
cyclic vector for T, and by way of contradiction, suppose that T does not
have dense range. Then there exists a continuous linear functional f such
that £ (R(T)) = {0}, where R(T) denotes the range of T. By the Hahn-
Banach characterization, Corollary (2.1.2), we must have that
sup Re (f(Orb(T,x)) = . However, since T"x € R(T) for all n > it
follows that f(T™x) =0 for all n > 1. So, supRe(f(Orb(T x)) =
sup Re({f(T0x),0}) < oo. It follows from Corollary (2.1.2) that x is not
a convex-cyclic vector, a contradiction. Thus, T must have dense range.

In general, if T is hypercyclic and ¢ > 1, then ¢T may not be
hypercyclic. However, Ledn-Saavedra and Mdller proved that if T is
hypercyclic and a is a unimodular complex number, then aT is
hypercyclic. The same property is also true for weak hypercyclic
operators. Next we present a similar result for convex-cyclic operators,
that follows from the Hahn-Banach characterization of convex-cyclic
vectors.
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Proposition (2.1.4) [2] If T is a convex-cyclic operator on a real or
complex locally convex space X, and if ¢ > 1, then cT is also convex-
cyclic. Furthermore, every convex-cyclic vector for T is also a convex-
cyclic vector for cT.
Proof: Suppose that x is a convex-cyclic vector for T, and we will show
that x is also a convex-cyclic vector for cT, by using the Hahn-Banach
characterization (Corollary (2.1.2)). Let f be any non-zero continuous
linear functional on X. Since x is a convex-cyclic vector for T, then
supRe(f(Tnx)) =c. Since c¢>1 then we have that
sup Re[f((cT)"x)] = supc™Re[f(T"x)] = supRe[f(T"x)] = «. So,
by the Hahn-Banach characterization, x is a convex-cyclic vector for cT.
Corollary (2.1.5) If |c| =1 and T is weakly hypercyclic, then cT is
convex-cyclic.
Proof: Let c:=e®B, where # € Rand 8 > 1. Then by dela Rosa. We
obtain that e!°T is weakly hypercyclic, hence e‘®T is convex-cyclic. Thus,
cT = B(e'T) is convex cyclic by Proposition (2.1.4).

Let us define the following convex polynomials
1+t+.-+thk1

k
- 1(c"‘1 + k2w e+t ife> 1

Definition (2.1.6) [2] Let X and Y be topological spaces. A family of
continuous operators T;: X — Y (i € I) is universal if there exists an x €
X such that {T;x:i € I} isdense inY.

Let T € L(X). Denotes M,,(T) the arithmetic means given by
[+T+--+T"1

pe(t); = rest
kA2 c—1

Mn(T) =

n
Recall that an operator T is Cesaro hypercyclic if there exists x € X such

that {M,,(T)x:n € N} is dense in X. See [2].

[oe]

k
It is proved that T is Cesaro hypercyclic if and only if (%)k IS
=1

universal.
Proposition (2.1.7) [2] Let X be a Banach space, ¢ > 1 and T € L(X)
such that cI — T has dense range. Then the following are equivalent:

Q) gis hypercyclic
(ii) (pR(T)) oy IS universal.
Proof: Notice that if c > 1,

12



k k
pE(T) (el — T)x = (el — T)pE(Mx = (c — 1) — (x _ (g) x),

ck—-1
Proposition (2.1.8) [2] If T is Cesaro hypercyclic org is hypercyclic for

some ¢ = 1, then T is convex-cyclic.

Notice that the proof of the sufficient condition for a bilateral
weighted backward shift on ¢P(Z) to be convex-cyclic given is not
correct.

Section (2.2): e-hypercyclic operators versus convex-cyclic operators
with diagonal operators and adjoint multiplication operators

Let us now exhibit the relation between e-hypercyclic and convex-
cyclic operators.
Theorem (2.2.1) [2] Every € -hypercyclic vector is a convex-cyclic
vector.
Proof: Let x be an e-hypercyclic vector for an operator T and we will
prove that for a non-zero vector y € X and § > 0, there exists a convex
polynomial p such that

lp(Mx—yll <4
Since € € (0,1), there exists N € N such that 2eV||y|| < §. As x is an &-
hypercyclic vector for T, there exists a positive integer k; such that
|T*1x — Ny|| < lINyll = eNllyll.

If T*1x — Ny = 0, we choose I, such that

N N
Ty — N ||S N+1 .
|t - ="y < et =g
Thus
|| N lex—eNy||<6N+1 ”y”
N-1 - '
Hence
||1T'“ Tl ||_||N_1T“ < 2V ||yl < 8
R N =y = x x|| <2V ||y

and the proof ends by letting p(z) = %z"l + %212.
If T*1x — Ny # 0, there exists a positive integer k, such that
|T*1x + T*2x — Ny|| = ||T*2x — (Ny — TFix)|| < ¢||Ny — T*x||
< e2Nllyll.
If T*1x + T*2x — Ny = 0, analogously to the above situation we
choose [; such that

13



1
Trix + — N Tk2x + —Tl3x — y” ||—Tl3x

”N | <2V |lyll<$

and the proof ends.
If T*1x + Tk2x — Ny # 0, there exists a positive integer k5 such
that
|T*1x + T*2x + TRsx — Ny|| < 3N Iyl
By induction, in the step N, if T*1x + Tk2x + ... + TkN-1x — Ny =
0, we choose I such
that

1 1 1
N N N N

and the proof ends.
If T*1x + Tk2x + ... + T*N-1x — Ny # 0, there exists a positive
integer k, such that
|T*1x + Tkax + -+ ToN-1 + Thvyx — y|| < VN |y ||
Thus
THix + ... 4+ Thkny
N
Ending completely the Proof:
By a Fréchet space we mean a locally convex space that is
complete with respect to a translation invariant metric.
If A is a nonempty collection of polynomials and T is an operator
on a space X, then T is said to be A-cyclic and x € X is said to be an A-
cyclic vector for T if {p(T)x:p € A} is dense in X. Furthermore, T is
said to be A-transitive if for any two nonempty open sets U and V in X,
there exists a p € A such that p(T)U NV # @. Since the set of all
polynomials with the topology of uniform convergence on compact sets
in the complex plane forms a separable metric space, then any set of
polynomials is also separable, hence we have the following result.
Proposition (2.2.2) [2]. Suppose that T: X — X is a continuous linear
operator on a real or complex Fréchet space and A is a nonempty set of
polynomials. Then the following are equivalent:
(i) T has a dense set of A-cyclic vectors.
(if) T is A-transitive. That is, for any two nonempty open sets U,V in
X, there is a polynomial p € A such that p(T)U NV # @.
(iii) T has a dense Gg set of A-cyclic vectors.

—y||<eVNlyll<s
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By choosing various sets of polynomials for A, we can get results for
hypercyclic and supercyclic operators, as well as cyclic operators that
have a dense set of cyclic vectors. If A is the set of all convex
polynomials, then we get the following immediate corollary.

Corollary (2.2.3) [2]. Let T: X — X be a continuous linear operator on a
real or complex Fréchet space, then the following are equivalent.

Q) T has a dense set of convex-cyclic vectors.

(i) T is convex-transitive. That is, for any two nonempty open sets

U,V in X, there is a convex polynomial p such that p(T)U n
vV # 0.

(iii) T has a dense Gg set of convex-cyclic vectors.

Proposition (2.2.4) [2] Let A be a nonempty set of polynomials and let
{Ty: X = Xy }req be a uniformly bounded sequence of linear operators
on a sequence of Banach spaces {X, }r~; such that for every n > 1, the
operator S, = ®7_,T; on X™ = ®7_, X, has a dense set of A-cyclic
vectors. Then T = @2, T} is A-cyclic on X = @, X, and T has a
dense set of A-cyclic vectors.

Proof: Suppose that for every n > 1 the operators S,, are A-cyclic and
have a dense set of A-cyclic vectors. We will show that T is A-transitive.
Let U and V be two nonempty open sets in X Since the vectors in X
with only finitely many non-zero coordinates are dense in X, then we may
choose vectors x = (x;)-, and y = (y;)%, in X such that x,, = 0
and y;, = O for all sufficiently large k, say x;, = 0 and y, =0 forall k >
N, and such that x € U and y € V. Since Sy is A-cyclic and has a dense
set of A -cyclic vectors in XM there exists a vector u=
Uy, Uy, ... ,uy) € XM such that u is an A-cyclic vector for Sy and so
that (uq, uy, ... ,uy) is close enough to (x;, x5, ... ,xy) so that the infinite
vector @t = (uq, Uy, ... ,uy,0,0,...) € U. Since Sy is A-cyclic, there is a
polynomial p € A such that p(Sy)(uq,u,,... ,uy) is close enough to
(y1,¥2, ... ,yn) such that p(T)@i € V. Thus, T is A-transitive on x(®)
and thus by Proposition (2.2.2) we have that T has a dense set of A-
cyclic vectors.

We next apply the previous proposition to infinite diagonal
operators where A is the set of all convex polynomials. This extends the
finite dimensional matrix result given by Rezaei to infinite dimen-sional
diagonal matrices.

15



Theorem (2.2.5) [2] Suppose that T is a diagonalizable normal operator
on a separable (real or complex) Hilbert space with eigenvalues {A; }r=1.

(@) If the Hilbert space is complex, then T is convex-cyclic if and
only if we have that the eigenvalues {1, }r-, are distinct and for every
k =12 > 1and Im(4;) # O.

(b) If the Hilbert space is real, then T is convex-cyclic if and only if

the eigenvalues {1, };-, are distinct and for every k = 1 we have that
A < —1.
Proof: By the spectral theorem we may assume that T = diag (14, 5, ...)
is an infinite diagonal matrix acting on £2(N) and let {e,};_, be the
canonical unit vector basis where e, has a one in its k* coordinate and
zeros elsewhere.

(@) If T is convex-cyclic with convex-cyclic vector x = (x, )=y €
£2(N), then by Corollary (2.1.2) we must have for every k > 1 that oo =
sup Re({T™x, e;)) = sup Re(A\}xy,).

nz1 nz1

This implies that x;, # 0 and that || > 1 for each k > 1. Likewise,
since the Hilbert space is complex in this case, we must have
- [
oo = sup Re ((T"x,x—ek)) = supRe (A}(‘xkx—) = sup Re(iA}) .

nz1 k nz1 k nz1
This implies that A, cannot be real, hence Im(4;) # O forall k > 1.

Conversely, suppose that for every k > 1 we have that [1;] > 1
and Im(4;) # 0. Then forn > 1, let T,,: = diag(14,1,, ..., A;,) be the
diagonal matrix on C™ where A, is the k" diagonal entry. Since the
eigenvalues {A; }r—; are distinct and |A;| > 1 and Im(A;) # 0 for 1 <
k < n, then we know from Rezaei that T, is convex-cyclic on C" and that
every vector all of whose coordinates are non-zero is a convex-cyclic
vector for T,,. Since such vectors are dense in C" for every n > 1, then it
follows from Proposition (2.2.4) that T is also convex-cyclic and has a
dense set of convex-cyclic vectors. (b) The proof of the real case is
similar to that above.

The next theorem says that if an operator has a complete set of
eigenvectors whose eigenvalues are distinct, not real, and lie outside of
the closed unit disk, then the operator is convex-cyclic.

Theorem (2.2.6) [2] Let S:{re:r>1and0< 0] <n}=C\ (DU
R). Suppose that T is a bounded linear operator on a complex Banach
space X and that T has a countable linearly independent set of
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eigenvectors with dense linear span in X such that the corresponding
eigenvalues are distinct and are contained in the set S. Then T is convex-
cyclic and has a dense set of convex-cyclic vectors.

Proof: Suppose that {v,, };=, is a linearly independent set of eigenvectors
for T that have dense linear span in X and such that the corresponding
eigenvalues {1,,}5, are distinct and contained in the set S. By replacing
each eigenvector v,, with a constant multiple of itself we may assume that
> lv,ll? < oo. Let D be the diagonal normal matrix on £2(N) whose
nt" diagonal entry is A,,. Then define a linear map A: #2(N) - X by
A({an}n=1) = Xn=1 anvn.

Notice that since {a, };_; € £2(N), then we have that

co co 1/2 oo 1/2
lAandoll = || > anv s(2|an|2> (an)
n=1 n=1 n=1

= Cl{antn=1ll 2w

where C = (X%_,|lv,/I)™?, which is finite. The above inequality
implies that A is a well defined continuous linear map from £2(N) to X. It
follows that since the eigenvectors {v, };-—; have dense linear span in X,
that A has dense range. Also, if {e,};—, is the standard unit vector basis
in £2(N), then clearly A(e,,) = v,, foralln > 1 and thus A4 intertwines D
with T. To see this notice that AD(e,) = A(A,e,) = Av, = T(v,) =
TA(e,,). Thus AD(e,) = TA(e,,) for all n > 1, thus AD = TA. Finally,
since D has distinct eigenvalues that all lie in the set S, it follows from
Proposition (2.2.5) that D is convex-cyclic and has a dense set of convex-
cyclic vectors. Since A intertwines D and T and A has dense range, then A
will map convex-cyclic vectors for D to convex-cyclic vectors for T'.
Thus, T is convex-cyclic and has a dense set of convex-cyclic vectors.

If G is an open set in the complex plane, then by a reproducing
kernel Hilbert space ' of analytic functions on G we mean a vector space
of analytic functions on G that is complete with respect to a norm given
by an inner product and such that point evaluations at all points in G are
continuous linear functionals on H'. Naturally we also require that f = 0
in H if and only if f(z) =0 for all z€ G. This is equivalent to the
reproducing kernels having dense linear span in /. Given such a space
H, a multiplier of H is an analytic function ¢ on G so that ¢f € H for
every f € H. In this case, the closed graph theorem implies that the
multiplication operator M,: 7 — 3 is a bounded linear operator.
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Corollary (2.2.7) [2] Suppose that G is an open set in C with components
{G,}ne; and 3¢ is a reproducing kernel Hilbert space of analytic functions
on G, and that ¢ is a multiplier of . If ¢ is non-constant on every
component of G and ¢(G,) N {z € C:|z| > 1} #+ @ for every n € ], then
the operator Mg, is convex-cyclic on # and has a dense set of convex-
cyclic vectors.

Proof: We will show that the eigenvectors for Mg, with eigenvalues in the
set S = C\(ID U R) have dense linear span in 7. It will then follow from
Theorem (2.2.6) that M, is convex-cyclic.

Every reproducing kernel for H is an eigenvector for Mg,. In fact,
if 1 € G, then MyK) = o) K;, where K; denotes the reproducing kernel
for H at the point A € G. By assumption, for every component G,, of G, ¢
is non-constant on G, thus the set {1 € G,:|@(1)| > 1} is a nonempty
open subset of G,.. Also since ¢ is an open map on G,,, ¢ cannot map the
open set {1 € G,:|lp(1)| > 1} into R. Thus, for all n€J E, =
{1 € G,:lp(1)| > 1 and ¢(1) ¢ R} is a nonempty open subset of G,,. Let
E:= Unej En. Then for every A € E, K; is an eigenvector for Mg, with
eigenvalue @(1) which lies in S=C\(DUR). Since ENG, is a
nonempty open set for every n € J, then the corresponding reproducing
kernels {K;: 1 € E} have dense linear span in . Finally, since ¢ is non-

(o]
constant on E, for eachn € J, we can choose a countable set {An} , _,

in E,, that has an accumulation point in E,, in such a way that ¢ is one-to-
(ee] (ee]
nke1 - ThEN the countable set {Kln’k}n,k=1

one on {A,x} is a set of

independent eigenvectors with dense linear span inH and with distinct
eigenvalues. It now follows from Theorem (2.2.6) that M, is convex-
cyclic and has a dense set of convex-cyclic vectors.

Next we give an example of a convex-cyclic operator that is not 1-
weakly hypercyclic.
Example (2.2.8) [2] Let M;., be the adjoint of the multiplication
operator associated to the multiplier ¢(z):=2+z on H?(D). The
operator M5, , = 21 + B, where B is the unilateral backward shift, is not
1-weakly-hypercyclic, however M;., is convex-cyclic by Corollary
(2.2.7).

The following result is true since powers of convex polynomials
are also convex polynomials.
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Proposition (2.2.9) [2] If T is an operator on a Banach space and there
exists a convex polynomial p such that p(T)is hypercyclic, then T is
convex-cyclic.

By a region in C we mean an open connected set in C. In the
following theorem, we consider the operator which is the adjoint of
multiplication by z, the independent variable.

Theorem (2.2.10) [2] Suppose that G is a bounded region in C and G N
{z:|z| > 1} # @. Suppose also that  is a reproducing kernel Hilbert
space of analytic functions on G, then M, is convex-cyclic on A . In fact,
there exists a convex polynomial p such that p(M;) is hypercyclic on H.

Proof: Choose n>1 such that G™:={z": z € G} satisfies G"n
{z € C:Re(z) < 1} # @. To see how to do this, choose a polar rectangle
R={re:r,<r<mryanda <6 < B} such that R = G. Then simply
choose a positive integer n such that n(f — a) > 2m. Then R™ < G™ and
R™ will contain the annulus {re'®: v <r <7J'}, so certainly G"n
{z € C:Re(z) < 1} # 0.

Now if 0 < a < 1, then the convex polynomial p,(z) = az+ (1 — a)

maps the disk B (aT_li) onto the unit disk. Notice that the family of

disks {B (%1%) 0<a< 1} is the family of all disks that are centered
on the negative real axis and pass through the point z = 1. Thus it follows

that {z € C: Re(z) < 1} = Ug<q<1 B (a_l ,1). So we can choose ana €

a a
a-1 1

n —
(0,1) such that ¢ naB( — .=

p(z) = py(z™) is a convex polynomial and furthermore it satisfies
p(G) N oD # @.

Thus My is hypercyclic on H . However, My = p*(M}) where
p*(z) = p(2). Also, since p is a convex polynomial, all of its coefficients
are real, thus p* = p. Thus, p(M;) = p*(M;) = M, is hypercyclic on H .

We show an example of an operator that is convex-cyclic but no

convex polynomial of the operator is hypercyclic. In other words, the
operator is purely convexcyclic.
Example (2.2.11) [2] Let {a,,};=; and {B,,};o=; be two strictly decreasing
sequences of positive numbers that are interlaced and converging to zero.
In other words, 0 < @41 < Bt < apfor alln>1and a,, - 0 (and
hence S, = 0). Foreachn > 1, let

) # @. It follows that the polynomial
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) 1
Gn::{re19:2<r<2+; andan<9<ﬁn}.

Let G:= US>, G, and let L3(G) be the Bergman space of all analytic
functions on G that are square integrable with respect to area measure on
G. Then the operator M; is purely convex- cyclic on L% (G); meaning that
M; is convex-cyclic on L% (G), but p(M;) is not hypercyclic on L%(G) for
any convex polynomial p.

Proof: By Corollary (2.2.7) we know that M is convex-cyclic on L% (G).
In order to show that no convex polynomial of M, is hypercyclic,
suppose, by way of contradiction, that there exists a convex polynomial p
such that p(M;) is hypercyclic. Since p is a convex polynomial it has real
coefficients thus p#(z) = p(z) where p#(z):=p(2) . Thus p(M}) =
M;# = M, and it follows that M is hypercyclic on L2(G). Thus it
follows that every component G,, of G must satisfy that p(G,) N 0D # @.
However since p is a convex polynomial, p is (strictly) increasing on the
interval [0, ©). Thus, p(2) > p(1) = 1. Choose an & > 0 such that ¢ <
p(2) — 1. Since p is continuous at z = 2, and since we have an € > 0,
then there exists a 6 > 0 such that if |z— 2| < §, then |p(z) — p(2)| < .
Notice that for n sufficiently large we have that G, € B(2,6), thus,
p(G,) €S B(p(2),e) € {z € C: Re(z) > 1}. Thus, p(G,) N D # @ for
all large n, a contradiction. It follows that no convex polynomial of M, is
hypercyclic, hence M, is purely convex-cyclic.
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Chapter 3
Separably Injective Banach Spaces
We obtain two fundamental characterization of universally
separably injective spaces: (i) A Banach space E is universally separably
injective if and only if every separable subspaces is contained in a copy of
? inside E. (ii) A Banach space E is universally separably injective if

and only if for every separable space S on has Ext (%”E) =0. We

construct a consistent example of a Banach space of type C(K) which is
1-separably injective but not 1-universally separably injective.
Section (3.1): Basic properties of separably injective spaces with
examples
A Banach space E is separably injective if for every separable
Banach space X and each separable Y ¢ X, every operator t:Y = E
extends to an operator T: X — E. If some extension T exists with ||T|| <
AlT|| we say that E is A-separably injective [7].
Definition (3.1.1) [3] A Banach space E is separably injective if for every
separable Banach space X and each subspace Y c X, every operator
t:Y — E extends to an operator T: X — E. If some extension T exists
with ||T|| < A|[t]| we say that E is A-separably injective.
Every separably injective space E is A-separably injective for some
A since every sequence of norm-one operators t,:Y, —» E induces a
norm-one operator t:#,(Y,) —» E. Separable injective spaces can be
characterized as follows.
Proposition (3.1.2) [3] For a Banach space E the following properties are
equivalent.
(@) E isseparably injective.
(b) Every operator from a subspace of £, into E extends to #;.
(c) For every Banach space X and each subspace Y such that X/Y is
separable, every operator t: Y — E extends to X.
(d) If X is a Banach space containing E and X/E is separable, then E is
complemented in X.
(e) For every separable space S one has Ext (S, E) = 0.
Moreover,
(i) The space E is A-complemented in every Z such that Z/E is
separable if and only if every operator t:Y — E admits an
extension T: X — E with ||T|| < A||t]|, whenever X/Y is separable.
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(i) If E is A-separably injective, then for every operator t: Y — E there
exists an extension T: X — E of T with ||T|| < 31]|t||, whenever
X/Y is separable.
Proof: It is clear that (c) = (a) = (b) and (¢c) = (d) & (e). Moreover, (i)
shows that (d) = (c) and (ii) shows that (a) = (c). The remaining
implication (b) = (a) follows from the proof of (ii) below.
For the sufficiency statement in (i) simply consider t as the identity
on E. For the necessity statement, given an operator t:Y — E form the
associated push-out diagram

0 - v 5 x 3 xiw 5 o
tl L I

!

O - E - PO - PO/E - O
Since PO/E = X/Y is separable, there is a projection p: PO — E with
norm at most A, and thus, recalling that [|t'|| < 1, the composition
pt': X — E yields an extension of ¢t with norm at most A.
The proof for (ii) is a little more tricky. Let q be a surjective map
from £; — X/Y. The lifting property of £, provides an operator Q: ¢, —

X. Consider thus the commutative diagram

O—>kerqi>€1 5 xtv - 0

¢l Q1 |l
0o - Y - X - X/Y - 0
Let us construct the true push-out of the couple (¢,j) and the

corresponding complete diagram

O—>kerqi>€1 L xtv - o

bt le

o - v L po 5 x/v > o

We can consider without loss of generality that ||¢|| = 1. LetS: ¢, - E
be an extension of t¢ with [|S]| < A||tg|| < Allt]l. By the universal
property of the push-out, there exists an operator L: PO — E such that
L¢' =S and ||L]| < max{||t]l, |ISII} < Allt]l . Again by the universal
property of the push-out, there is a diagram of equivalent exact sequences

!

0 - v L po 5 x/vy - 0
T
0 - Y - X 5 x/v > o
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where the isomorphism y is defined as y((y,u) + 4) = j(y) + Q(u) is
such that |ly|| < max{||jll, ||Ql|} < 1. The desired extension of t to X is
T = Ly~1, where y 1 comes defined by

¥ Hx) = (x — s(px), s(px)) + 4,
where s:X/Y — £, is a homogeneous bounded selection for g with
Is|l < 1. One clearly has ||y ~|| < 3, and therefore ||T|| < 3A.

We are especially interested in the following subclass of separably

injective spaces.
Definition (3.1.3) [3] A Banach space E is said to be universally
separably injective if for every Banach space X and each separable
subspace Y c X, every operator t: Y — E extends to an operator T:Y —
X . If some extension T exists with ||T|| < A||t]| we say that E is
universally A-separably injective.

A Banach space E is universally separably injective if and only if
every E-valued operator with separable range extends to any superspace.
It is also easy to show that every universally separably injective space is
A-universally separably injective for some A.

Recall that a Banach space X has Pelczynski’s property (V) if each
operator defined on X is either weakly compact or it is an isomorphism
on a subspace isomorphic to c¢,. We will say that X has Rosenthal’s
property (V) if it satisfies the preceding condition with £, replacing c,. It
is well-known that Lindenstrauss spaces (i.e., L., -Spaces) have this
property.

Not all £.,-spaces have Petczynski’s property (V): for example,
the L, -spaces without copies of c, constructed by Bourgain and
Delbaen; or those that can be obtained from Bourgain-Pisier; or the space
Q constructed as a twisted sum

0-C[0,1]>Q—>¢,—0
with strictly singular quotient map. Recall that a Banach space X is said
to be a Grothendieck space if every operator from X to a separable
Banach space (or to ¢,) is weakly compact. Clearly, a Banach space with
property (V) is a Grothendieck space if and only if it has no
complemented subspace isomorphic to cy. It is well-known that £, is a
Grothendieck space.
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Proposition (3.1.4) [3]

(@) A separably injective space is of type L., has Pelczynski’s
property (V) and, when it is infinite dimensional, contains copies
of ¢y.

(b) A universally separably injective space is a Grothendieck space of
type L., has Rosenthal’s property (V) and, when it is infinite
dimensional, contains £ ..

Proof: (a) Let E be a A-separably injective space. We want to see that if
Y is a subspace of any Banach space X, every operator t: Y — E extends
to an operator T: X — E** with ||T|| < A||t]|. This implies that E** is A-
injective, by an old result of Lindenstrauss. Being of infinite dimension,
E™is an L, 9+ space and so isE. Lett:Y — E be an operator. Given a
finite-dimensional subspace F of X, let Tz: F — E be any operator
extending the restriction of t to YN F. Let F be the set of finite-
dimensional subspaces of X, ordered by inclusion, let U be any ultrafilter
refining the Fréchet filter on F, that is, containing every set of the form
{G € F: F c G} for fixed F € F. Then, define T: X - E** taking
T(x) = weak” — 7|l|(rp) Tr(1px) -

It is easily seen that T is a linear extension of t, with ||T|| < A]|¢t]|.

To show that E contains ¢, and has property (V), let T:E - X be a
non-weakly compact operator (E being an infinite dimensional £, space
cannot be reflexive). Choose a bounded sequence (x,) in E such that
(Ty,) has no weakly convergent subsequences and let Y be the subspace
spanned by (x,,) in E. As Y is separable we can regard it as a subspace of
C[0, 1]. Let J: C[0, 1] — E be any operator extending the inclusion of Y
into E. Since TJ:C[0,1] » E is not weakly compact, TJ is an
isomorphism on some subspace isomorphic to c,; and the same occurs to
T.

(b) If, in addition to that, E is universally separably injective we
may take T:E — Z and Y c FE as before but this time we consider Y as a
subspace of ¢,. If J: £,, = E is any extension of the inclusion of Y into
E, thenTJ: ¥, — Z is not weakly compact. Hence it is an isomorphism
on some subspace isomorphic to £ 00 and so is .

Several modifications on the proof of Ostrovskii yield
Proposition (3.1.5) A A-separably injective space with A < 2 is either
finite-dimensional or has density character at least c.
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Recall that a class of Banach spaces is said to have the 3-space
property if whenever X/Y and Y belong to the class, then so X does.
Proposition (3.1.6) [3]

(i) The class of separably injective spaces has the 3-space property.
(i) The quotient of two separably injective spaces is separably
injective.
(ili)  The class of universally separably injective spaces has the 3-
space property.
(iv)  The quotient of a universally separably injective space by a
separably injective space is universally separably injective.
Proof: The simplest proof for the 3-space property (i) follows from
characterization (ii) in Proposition (3.1.2): let us consider an exact

sequence 0 > F - E %G -0 in which both F and G are separably
injective. Let ¢: K — E be an operator from a subspace ¢: K — ¢, of 4;;
then ¢ can be extended to an operator ®: £, — G, which can in turn be
lifted to an operator W: ¢, — E. The difference ¢ — ¥, takes values in F
and can thus be extended to an operator e: £, — F. The desired operator
isW + e. A different homological proof that properties having the form
Ext(X,—) = 0 are always 3-space properties can be found.

To prove (ii) and (iv) let us consider an exact sequence 0 - F - E

56 -0 in which F is separably injective and E is (universally)
separably injective. Let ¢p: Y — G be an operator from a separable space
Y which is a subspace of a separable (arbitrary) space X. Consider the

pull-back diagram

O—>F—>EE>G—>O

I T’ Té

Q
O -»- F - PB - Y - 0

Since F is separably injective, the lower exact sequence splits, so Q has a
selection operator s:Y — PB. By the injectivity assumption about E,
there exists an operator T: X — E agreeing with Qs onY. Then qT: X —
G is the desired extension of ¢.

The proof for (iii) has to wait until Theorem (3.2.1) when a suitable
characterization of universally separably injective spaces will be
presented.

Several variations of these results can be seen. It is obvious that if
(E,) ¢ is a family of A-separably injective Banach spaces, then £.,(I, E,)
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is A -separably injective. The non-obvious fact that also c,(I, E,) is
separably injective can be considered as a vector valued version of
Sobczyk’s theorem. Proofs for this result have been obtained by Johnson-
Oikhberg, Rosenthal, Cabello and Castillo-Moreno, each with its own
estimate for the constant. These are 242 (implicitly), A(1 + A)*, (34%)*
and 61", respectively.

Examples (3.1.7) [3]:

All injective spaces are universally separably injective. Sobczyk
theorem states that ¢, —and ¢, (T"), in general- are 2-separably injective in
its natural supremum norm. They are not universally separably injective
since they do not contain £ .

(@) Twisted sums. The 3-space property yields that twisted sums of
separably injective are also separably injective. In particular:

(i) Twisted sums of ¢, and co(I') : This includes the Johnson-

Lindenstrauss spaces C(4,,) obtained taking the closure of the
linear span in £, of the characteristic functions {1, },cy and

{1M“}a(§] for an uncountable almost disjoint family {M,},¢; of

subsets of N. Marciszewski and Pol answer a question of
Koszmider showing that there exist 2¢ almost disjoint families
M generating non-isomorphic C(4,,)-spaces.

(i) Twisted sums of two nonseparable c,(I")spaces. This includes
variations of the previous construction using the Sierpinski-
Tarski generalization of the construction of almost disjoint
families; the Ciesielski-Pol space; the WCG nontrivial twisted
sums of ¢q(I') obtained independently by Argyros, Castillo,
Granero, Jimenez and Moreno and by Marciszewski .

(iii)  Twisted sums of ¢, and £, as those constructed.

Yoo

Co

(iv) A twisted sum of ¢, and ¢, ( ) that is not complemented in

any C(K)-space, as the one obtained.

(b) The space #5,(I'): A typical 1-universally separably injective space is
the space £5,(I') of countably supported bounded functions f:I" - R,
where T" is an uncountable set. This space is isomorphic but not
isometric to some C(K) space, showing in this way that the theory of
universally separably injective spaces does not run parallel with that
of injective spaces. What makes this space universally separably
injective space is the following property:
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Definition (3.1.8) [3] We say that a Banach space X is ¢ -upper-
saturated if every separable subspace of X is contained in some
(isomorphic) copy of £, inside X.

It is clear that an ¢, -upper-saturated space is universally separably
injective. We will prove later that the converse also holds.

The space ¢./cy: Since ¢, is injective and c, is separably
injective, it follows from Proposition (3.1.6) that £,/cy is universally
separably injective, although the constant is not optimal. It follows from
Proposition (3.1.13) (a) that £../c, is 1-universally separably injective,
hence, it is - upper-saturated. This can be improved to show that every
separable subspace of £,/c, is contained in a subalgebra of £,/c,
isometrically isomorphic to £,.

It is well-known that £.,/c, is not injective. The simplest proof
appears in Rosenthal: an injective space containing cy(/) must also
contain £, (I); it is well-known that £./c, contains c,(I) for |I| = ¢
while it cannot contain £.,(I). The proof is quite rough in a sense: it says
that £ ./ c, is uncomplemented in its bidual, a huge superspace. Denoting
N* = BN\N, Amir had shown that C(N*) is not complemented in
£,(2°), which provides another proof that [,/ c, is not injective. Amir’s
proof can be refined in order to get C(N*) uncomplemented in a much
smaller space. It can be shown that C(N*) contains an uncomplemented
copy Y of itself.

Proposition (3.1.9) [3]. A C(K) space is 1-separably injective if and only
if K is an F-space.

Simple examples show that when a C(K)-space is only isomorphic
to a 1-separably injective then K does not need to be an F-space. It is an
immediate consequence of Tietze’s extension theorem that a closed
subset of an F-space is an F-space. In particular, N* = SN\N is an F-
space.

Given a compact space K, we write K’ for its derived set, that is,
the set of its accumulation points. This process can be iterated to define

K@+ a5 (k™M) with K© = K. We say that K has height n if K™ =
¢. We say that K has finite height if it has height n for some n € N.

Proposition (3.1.10) [3] If K is a compact space of height n, then C(K) is
(2n — 1)-separably injective. Consequently, if K is a compact space of
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finite height then C(K) is separably injective although it is not universally
separably injective.
Proof: Let Y c X with X separable and lett:Y — C(K) be a norm one
operator. The range of t is separable and every separable subspace of a
C(K) is contained in an isometric copy of C(L), where L is the quotient
of K after identifying k and k" when y(k) = y(k’) for all y € Y. This L
IS metrizable because Y is separable. Moreover, if K has height n, then L
has height at most n and so it is homeomorphic to [0, w" - k] with r <
nk<w . Since C[0,w” -k] is (2r + 1) -separably injective, our
operator can be extended to an operator T: X — C(K) with norm

ITII < @r + DItll < (2n — D¢,
concluding the Proof:

When K is a metrizable compact of finite height n, Baker showed
that 2n — 1 is the best constant for separable injectivity, using arguments
from Amir. There are some difficulties in generalizing those arguments
for nonmetrizable compact spaces, so we do not know if it could exist a
nonmetrizable compact space K of height n such that C(K) is A-separably
injective for some 1 < 2n — 1.

Proposition (3.1.11) [3] The space of all bounded Borel (respectively,
Lebesgue) measurable functions on the line is 1-separably injective in the
sup norm.

Proof: Clearly the given spaces are in fact Banach algebras satisfying the
inequality required by Albiac- Kalton characterization. Thus they can be
represented as C(K) spaces. On the other hand, each measurable function
can be decomposed as f = u|f|, with u measurable.

This clearly implies that the corresponding compacta are F-spaces.

Argyros proved that none of the spaces in the above example is
injective. This is very simple in the Borel case: the characteristic
functions of the singletons generate a copy of ¢y,(R) in the space of
bounded Borel functions. The density character of the latter space is the
continuum, as there are ¢ Borel subsets. Therefore it cannot contain a
copy of £, (R), whose density character is 2€.

(c) M-ideals. A closed subspace ] c X is called an M-ideal if its
annihilator J* ={x* € X*:(x*x) =0vx€J} is an L -
summand in X*. This just means that there is a linear projection
P on X* whose range is J* and such that ||x*|| = [[P(x*)]| +
llx* — P(x*)|| forall x* € X*.
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The easier examples of M -ideals are just ideals in C(K)-spaces. In
particular, if M is a closed subset of the compact space K and L = K \M
one has that Cy(L) is an M-ideal in C(K) is straightforward from the
Riesz representation of C(K)*. A remarkable generalization of Borsuk-
Dugundji theorem for M -ideals was provided by Ando and,
independently, Choi and Effros. In order to state it let us recall that a
Banach space Z has the A-approximation property (A-AP, for short) if, for
every € > 0 and every compact subset K of Z, there exists a finite rank
operator T on Z, with ||T|| < A, such that ||T z — z|| < &, for every z € K.
We say that Z has the bounded approximation property (BAP for short) if
it has the A-AP, for some A.
Theorem (3.1.12) [3]. LetJ be an M-ideal in the Banach space E and
m. E — E/] the natural quotient map. Let Y be a separable Banach space
and t:Y — E/] be an operator. Assume further that one of the following
conditions is satisfied:
(i) Y has the A-AP.
(i) J is a Lindenstrauss space.
Then t can be lifted to E, that is, there is an operator T: Y — E such that
T = t. Moreover one can get ||T|| < A||t]| under the assumption (i) and
ITII = ll¢ll under (ii).
One has.
Proposition (3.1.13) [3] Let J be an M-ideal in a Banach space E.
(@) If E is A-(universally) separably injective, then E/] is A2-
(universally) separably injective.
(b)If E is A -separably injective, then J is 242 -separably
injective.
When J is a Lindenstrauss space (which is always the case if
E is), then the exponent 2 disappears.
In particular, if K; is a closed subset of the compact space K and
K, = K \K; one has:
(c) If C(K) is A-(universally) separably injective, then so is
C(K,).
(d) If C(K) is A-separably injective, then C,(K,) is 2A-separably
injective.
Proof: (a) By (the proof of) Proposition (3.1.4), E** is A-injective and so
it has the A-AP. Since E** = J** @, (E/])**we see that also /** and
(E/])** have the A1-AP. Hence both J and (E/]) have the 1-AP. LetY be
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a separable subspace of X and t:Y — E/] an operator. Let S be a
separable subspace of E/] containing the image of t. We may assume S
has the A-AP. Lets:S — E be the lifting provided by Theorem (3.1.12),
so that ||s|| < A. Now, if T:X — E is an extension of st, then nT: X —
E/] is an extension of t, and this can be achieved with [|zT|| = ||T|| <
2ell.

(d) —and (b)-. Let us remark that if S is a subspace of C(K)
containing Cy(K,) and S/C,(K,) is separable, then there is a projection
p:S - Cy(K,) of norm at most 2. Indeed, S/C,(K,) is a separable
subspace of C(K;) and there is a lifting s: S/Cy(K,) — C(K), with ||s|| =
1, and p = 15 — sr is the required projection. Now, lett:Y — Cy(K,) be
an operator, where Y is a subspace of a separable Banach space X .
Considering t as taking values in C(K), there is an extension T: X —
C(K) with ||T|| < A]|t]|. Let S denote the least closed subspace of
C(K ) containing the range of T and Cy(K,) and p:S — Cy(K,) a
projection with |[p|l <2 . The composition pT:X — Cy(K,) is an
extension of t and clearly, ||pT|| < 2A]¢t]|.

(d) Ultraproducts of type L.,: Let us briefly recall the definition and
some basic properties of ultraproducts of Banach spaces. For a
detailed study of this construction at the elementary level needed
here we refer to Heinrich or Sims’ notes. Let I be a set, U be an
ultrafilter on I, and (X;);¢; a family of Banach spaces. Then £, (X;)
endowed with the supremum norm, is a Banach space, and

Cg)l(Xi){(xi)Efoo(Xi):,IZj{ln,)”xi”:O} is a closed subspace of

£ (X;). The ultraproduct of the spaces (X;);c; following U is
defined as the quotient
foo(Xi)
[X:] = ——.
s ch(Xy)
We denote by [(x;)] the element of [X;];, which has the family (x;) as a
representative. It is not difficult to show that |[[(x;)]]| = gmllxill. In the
l

case X; = X for all i, we denote the ultraproduct by X, and call it the
ultrapower of X following U. If T;: X; = Y; is a uniformly bounded
family of operators, the ultraproduct operator [T;]: [Xi]ly — [Yily is
given by [T;1y [(x;)] = [Ti(x;)]. Quite clearly, [|[T;]y]l = ,Iuian.)”Ti”-
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Definition (3.1.14) [3] An ultrafilter U on a set I is countably incomplete
if there is a decreasing sequence (I,,) of subsets of I such that I,, € U for
alln,and N;~, I, = 0.

Notice that U is countably incomplete if and only if there is a
function n: I - N such that n(i) - o along U (equivalently, there is a
family (i) of strictly positive numbers converging to zero along U). It is
obvious that any countably incomplete ultrafilter is non-principal and also
that every non-principal (or free) ultrafilter on N is countably incomplete.
Assuming all free ultrafilters countably incomplete is consistent with
ZFC, since the cardinal of a set supporting a free countably complete
ultrafilter should be measurable, hence strongly inaccessible.

It is clear that the classes of L, ,+ spaces are stable under
ultraproducts. In the opposite direction, a Banach space is a £, ;+ space if
and only if some (or every) ultrapower is. In particular, a Banach space is
an L, space or a Lindenstrauss space if and only if so are its ultra
powers. It is possible however to produce a Lindenstrauss space out of
non-even-L,-spaces: indeed, if p(i) - co along U, then the ultraproduct
[Lp@],, is a Lindenstrauss space.

The following result about the structure of separable subspaces of
ultraproducts of type L., will be fundamental.

Lemma (3.1.15) [3]: Suppose [X;]ly is an L, ;+ -space. Then each
separable subspace of [X;]¢ is contained in a subspace of the form [F;],
where F; c X; is finite dimensional and garr;d(Fi,fgi))s A, where
k(i) = dimF;.

Proof: Let us assume S is an infinite-dimensional separable subspace of
[X;1y. Let (s™) be a linearly independent sequence spanning a dense
subspace in S and, for each n, let (s/*) be a fixed representative of s™ in
£5(X;). Let S™ = span{s',.. ,s™}. Since [X;]y is an L, ;+-space there
is, for each n, a finite dimensional F™ c [X;]; containing S™ with
d(F™, ¢4mF™) < A+ 1/n.

For fixed n, let (f™) be a basis for F™ containing s?,.. ,s™.
Choose representatives (f/™) such that f™ = sf if f™ = s?. Moreover,
let F{* be the subspace of X; spanned by f;* for1 < m < dim F™.

Let (I,,) be a decreasing sequence of subsets I,, € U such that
N1 I, = @. For each integer n put
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- 2
],’l:{i € I.d(F™, ¢dmF )sa+;}mn

and J,, = Nu<m Jn- All these sets are in U. Finally, set J, = J,. Next we
define a function k: I — N. Set
1 i €0

k(@) = {Sup{n:i €/} i €Jw
For eachi € I, take F; = Fi"(i). This is a finite-dimensional subspace of
X; whose Banach-Mazur distance to the corresponding £X is at most A +
2/k(i). It is clear that [F;] contains S and also that k(i) — oo along U,
which completes the Proof:
Theorem (3.1.16) [3] Let (X;);¢; be a family of Banach spaces such that
[X;1y is a L, y+-space. Then [X;]q, is A-universally separably injective.

Lemma (3.1.17) [3] For every function k:I — N, the space [f’;(i)]uis 1-

universally separably injective.

Proof: Let I be the disjoint union of the sets {1, 2, ..., k(i)} viewed as a
discrete set. Now observe that c¥ (f’;,(i)) is an ideal in £, (f’;(i)) =
£, (") = C(BT) and apply Proposition (3.1.13) (a).

Corollary (3.1.18) [3] Let (X;);; be a family of Banach spaces. If [X;]y
is a Lindenstrauss space, then it is 1-universally separably injective.
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Section (3.2): Two characterizations of universally and 1-separably
injective spaces

In Proposition (3.1.4) (b) it was proved that universally separably
injective spaces contain €.,. Much more is indeed true:

Theorem (3.2.1) [3] An infinite-dimensional Banach space is universally
separably injective if and only if it is £ ,,-upper-saturated.

Proof: The sufficiency is a consequence of the injectivity of £,,. In order
to show the necessity, let Y be a separable subspace of a universally
separably injective space X. We consider a subspace Y,, of £, isomorphic
to Y and an isomorphism t: Y, — Y. We can find projections p on X and q
on ¢ such that Y c kerp,Y, c kerq, and both p and g have range
isomorphic to 4.

Indeed, letw: X — X/Y be the quotient map. Since X contains 4,
and Y is separable, m is not weakly compact so, by Proposition (3.1.4) (b),
there exists a subspace M of X isomorphic to ¢, where m is an
isomorphism. Now X/Y = (M) @ N, with N a closed subspace. Hence
X =M @ n~1(N), and it is enough to take p as the projection with range
M and kernel ==1(N).

Since kerp and ker g are universally separably injective spaces,
we can take operators u: X — kerq and v: €., = ker p such that v = t on
Yoandu=t"tonY.

Let w: £, — ran p be an operator satisfying |lw(x)|| = ||x|| for all
x € .. We will show that the operator

T=v +W(1{;°° —uv):foo - X
is an isomorphism (into). This suffices to end the proof since ran T is
isomorphic to ¢, and both T and v agree withton Y,,soY cranT c X.
Since ran v c kerp and ran w C ran p, there exists C > 0 such that
ITx|l = € max{|lv(x)Il, ||W(1{;°° — uv)x”}(x € Ly).

Now, if [[vx|l < 2llulD)~*lIxIl, then [luvx]] <%||x||; hence

1
Iw(2e., —wo)x]| = [|(Le,, = wv)x]| > S lIxIl

Thus ||Tx]|| = C2|lul])~||x|| for every x € X.

We can now complete the proof of Proposition (3.1.6) (iii) and
show that the class of universally separably injective spaces has the 3-
space property.
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Proposition (3.2.2) [3] The class of universally separably injective spaces
has the 3-space property.

Proof: By Theorem (3.2.1) one has to show that being . -upper-
saturated is a 3-space property.

Let0 oY - X g Z — 0 be an exact sequence in which bothY,Z
are £ -uppersaturated, and let S be a separable subspace of X. It is not
hard to find separable subspaces S,, S, of X such that S c S; and §,/S, =
[q(S)]. LetY,, be a copy of £, inside Y containing S,. By the injectivity
of £, S is contained in the subspace Y, @ [q(S)] of X. And since there
exists a copy Z,, of £, containing [q(S)], S is therefore contained in the
subspace Y, @ Z of X, which is isomorphic to ..

A homological characterization of universally separably injective
spaces is also possible. We need first to show:

Proposition (3.2.3) [3]. If U is a universally separably injective space
then Ext (£, U) = 0.

Proof: James’s well known distortion theorem for £, (resp.c,) asserts
that a Banach space containing a copy of £,(resp.c,) also contains an
almost isometric copy of £, (resp.cy). Not so well known is Partington’s
distortion theorem for #.,: a Banach space containing £, contains an
almost isometric copy of ¢, (see also Dowling). This last copy will
therefore be, say, 2-complemented.

Let I' denote the set of all the 2-isomorphic copies of £, inside €.
For each E €T let (z:E - £, be the canonical embedding, p; a
projection onto E of norm at most 2 and ug: E — £, an isomorphism.
Assume that a nontrivial exact sequence

O-U—-X-4¢,-0
exists. We consider, for each E € T, a copy of the preceding sequence,
and form the product of all these copies 0 — £, (I',U) —» £, (I, X) -
£, €s) » 0. Let us consider the embedding J:€e = €o(T, o)
defined as J (x)(E) = ugpg(x) and then form the pull-back sequence

0 - 2,U) - 2, X) -» 4,0 ¢,) - O

| T T]

0 - ¢,U) - PB % 2. > 0

Let us show that g cannot be an isomorphism on a copy of ¢ .
Otherwise, it would be an isomorphism on some E € I' and thus the new
pull-back sequence
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0 - ¢,TLU) - PB S ¢, 5 0

|l T Tig
0 -» ¢,0,U) » PB - E - O
would split. And therefore the same would be true making push-out with
the canonical projection rg: £, (I, U) — U onto the E-th copy of U:
0 - ¢,(LU) » PB » E - O
g ) ||
0O - U - POy -» E - O
But it is not hard to see that new pull-back with uz?*
O - U - POg - E - 0
1 0 T ug!
0O - U - X - {4, - 0
produces exactly the starting sequence which, by assumption, was
nontrivial.

However, the space PB should be universally separably injective by
Proposition (3.1.6) (iii), hence it must have Rosenthal’s property (V), by
Proposition (3.1.4) (b). This contradiction shows that the starting
nontrivial sequence cannot exist.

We are thus ready to prove:

Theorem (3.2.4) [3] A Banach space U is universally separably injective
if and only if for every separable space S one has Ext (¢,,/S,U) = 0.
Proof: Let S be separable and let U be universally separably injective.
Applying £(—,U) to the sequence 0 » S — £, — £,,/S — 0 one gets
the exact sequence
W o 84, U) - 8(S,U) » Ext(£,/S,U) — Ext(£o,, U)

Since Ext(€, U) = 0, one obtains that every exact sequence 0 —» U —
X - £,/S — 0 fits in a push-out diagram

0O » S - £, - £/ - 0

! ! |

0O - U -» X - ¢,/ - 0.
Since U is universally separably injective, the lower sequence splits.

The converse is clear: every operator t:S — U from a separable
Banach space into a space U produces a push-out diagram

0O » S - {y, - £,/ - 0
tl ) ]
O - U - PO - ¢,/ - 0
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The lower sequence splits by the assumption Ext(£../S,U) = 0and so t
extends to £, according to the splitting criterion for push-out sequences.

Which leads to the unexpected:
Corollary (3.2.5) [3] Ext(£o/cy,£/co) =0; i.e., every short exact
sequence 0 = £,/cy = X = £/cy = 0 splits.

This result provides a new solution for equation Ext(X,X) = 0.
The other three previously known types of solutions are: ¢, (by Sobczyk
theorem), the injective spaces (by the very definition) and the L,(u)-
spaces (by Lindenstrauss’ lifting).

Also with Proposition (3.2.2), one has:
Corollary (3.2.6) [3] Rosenthal’s property (V) is not a 3-space property
Proof: With the same construction as above, start with a nontrivial exact
sequence 0 » ¢, > E > ¥, — 0 (see [3]) and construct an exact
sequence

0 2(T,20,) > X 50, -0,
where g cannot be an isomorphism on a copy of ¢,. So X has not
Rosenthal’s property (V). The space £ (I, £,) has Rosenthal’s property
(V) as a quotient of £,(I',¢x) = £, (N xT) , since the property
obviously passes to quotients.

It is not however true that Ext(U,V) =0 for all universally
separably injective spaces U and V as any exact sequence 0 » U —
() » £,(T')/U - 0 in which U is a universally separably injective
non-injective space shows.

We establishe a major difference between 1-separably injective and
general separably injective spaces: 1-separably injective spaces must be
Grothendieck (hence they cannot be separable or WCG) while a 2-
separably injective space, such as c,, can be even separable. The
following lemma due to Lindenstrauss provides a quite useful technique.
Lemma (3.2.7) [3] Let E be a l-separably injective space and Y a
separable subspace of X, with dens X = X;. Then every operator t: Y —
E can be extended to an operator T: X — E with the same norm.

This yields
Proposition (3.2.8) [3] Under CH every 1-separably injective Banach
space is universally 1-separably injective and therefore a Grothendieck
space.

Proof: Let E be 1-separably injective, X an arbitrary Banach space and
t:Y — E an operator, where Y is a separable subspace of X. Let [t(Y)] be
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the closure of the image of t. This is a separable subspace of E and so
there is an isometric embedding u: [t(Y)] - ¢4 . As £ is 1-injective
there is an operator T: X — £, whose restriction to Y agrees with ut.
Thus it suffices to extend the inclusion of [¢(Y)] into E to #.,. But, under
CH, the density character of £, is X; and the preceding Lemma applies.
The “therefore’ part is now a consequence of Proposition (3.1.4) (b).
The “therefore” part survives in ZFC:
Theorem (3.2.9) [3] Every 1-separably injective space is a Grothendieck
and a Lindenstrauss space.
Proof: The proof of Proposition (3.1.4) yields that 1-separably injective
spaces are of type L, 1+, that is, Lindenstrauss spaces. It remains to prove
that a 1-separably injective space E must be Grothendieck. It suffices to
show that ¢, is not complemented in E, so let J:c,— E be an
embedding. Consider an almost-disjoint family M of size X, formed by
infinite subsets of N and construct the associated Johnson-Lindenstrauss
twisted sum space
0 - ¢o = C(4x) = co(Ry) > 0.
Observe that the space C(4,,) has density character X, , we have
therefore a commutative diagram
0 - ¢ » Cly) » c®) - 0

| \) \)

d
0 - ¢ - E - E/J(c,) - O.

If ¢, was complemented in E then it would be complemented in C(4,)
as well, which is not.

Proposition (3.2.8) leads to the question about the necessity of the
hypothesis CH. We will prove now that it cannot be dropped.
Lemma (3.2.10) [3] Let K, L, M be compact spaces and let f: K - M be a
continuous map, with 7 = f°: C(M) - C(K) its induced operator, and let
. C(M) - C(L) be a positive norm one operator. Suppose that S: C(L) —
C(K) is an operator with ||S|| =1 and St=J. Then S is a positive
operator.
Proof: Obviously S = 0 if and only if $*6, = O for all x € K, where 6,
is the unit mass at x and S*: C(K)* - C(L)* is the adjoint operator. Fix
x € K. By Riesz theorem we have that $*§,, = u is a measure of total
variation ||u]l < 1. Let u = u* — u~ be the Hahn-Jordan decomposition
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of u, so that [|ull = lu™ Il + |~ Il, with u™, u= = 0. We have that §¢(,) =
J6, =1"S*8,, = "y, thus

Speo = Uit =i and  [coll = el = el
Since ¢ is a positive operator these imply that the above is the Hahn-
Jordan decomposition of &5,y and so «“u~ = 0O, hence u~ = 0.
Definition (3.2.11) [3] Let L be a zero-dimensional compact space. An
X,-Lusin family on L is a family F of pairwise disjoint nonempty clopen
subsets of L with |F| = X,, such that whenever G and H are subfamilies
of F with |G| = || = X,, then

U{Geg} nU{G € H} # ¢.

The following lemma shows the consistency of the existence of an

X,-Lusin family on N*.
Lemma (3.2.12) [3] Under MA and the assumption ¢ = X, there exists an
X,-Lusin family on N*.
Proof: By Stone duality, since the Boolean algebra associated to N* is
@ (N)/fin, an X,-Lusin family on N* is all the same as an almost disjoint
family {4,}4<w, Of infinite subsets of N such that for every B c N either
{a:|A,/B] is finite} or {a:|A, N B| is finite} has cardinality < X,. Let
{B,: @ < w,} be an enumeration of all infinite subsets of N. We construct
the sets 4, inductively on a. Suppose A, has been constructed fory < a.
We define a forcing notion P whose conditions are pairs p =
(f,.F,) where f, is a {0, 1}-valued function on a finite subset dom (f,)
of Nand F, is a finite subset of a. The order relation is that p < q if £,
extends f,, F, D F, and f, vanishes in A,\ dom (f,) for y € F,. One
checks that this forcing is ccc. Hence, by MA, using a big enough generic
filter the forcing provides an infinite set A, < N such that, for all y < «,

(i) Ag, N A, isfinite, and

(ii) If B, is not contained in any finite union of As’s, then A, N B, is

infinite.

Theorem (3.2.13) [3] It is consistent that there exists a compact space K
for which the Banach space C(K) is 1-separably injective but not
universally 1-separably injective.
Proof: We will suppose that ¢ = X, and that there exists an X,-Lusin
family in N*. Under these hypotheses, let K be the Stone dual compact
space of the Cohen-Parovi¢enko Boolean algebra. The definition of that
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Boolean algebra implies that K is an F -space and thus C(K) is 1-
separably injective by Theorem (3.1.8). We show that it is not universally
1-separably injective. The argument follows the scheme, where they
prove that K does not map onto SN, but we use X,-Lusin families instead
of w,-chains because they fit better in the functional analytic.

Let {U,;:n € N} be a sequence of pairwise disjoint clopen subsets
of K, and letU = U, U,,. Let c c ¢, be the Banach space of convergent
sequences, and t: ¢ » C(K) be the operator given by t(z)(x)z, if x € U,
and t(z)(x) = rlll_)rgo zn ifx # U.

If C(K) were universally 1-separably injective, we should have an
extension T:¢, —» C(K) of t with ||T||=1. We shall derive a
contradiction from the existence of such operator.

Notice that the conditions of Lemma (3.2.10) are applied, so T is
positive (observe that c = C(N U {}) and T = f° where f:K > N U
{0} is given by f(x) =nifx € U, and f(x) = o if x & U).

For every A c N we will denote [A] = A#N\N. The clopen subsets
of N* are exactly the sets of the form [A], and we have that [A] = [B] if
and only if (A\B) U (B\A) is finite.

Let F be an X,-Lusin family inN*, For F =[A] € Fand0 <& <
%, let

F,={xeK\U:T(1,)(x) >1—¢}.

Let us remark that F, depends only on F and not on the choice of
A. This is because if [A] = [B], then1, — 15 € ¢y, hence T(1, — 15) =
t(14 — 1) which vanishes out of U, so T(1 )|y =T 1glx\w-

Claim1.If § <ecand F € F, then F5 C F,.

Claim2. F, NG, = ¢ forevery F + G.

Proof of Claim 2. Since F N G = @ we can choose 4, B < N such
that F=[A4],G =[Bland ANB=0¢. f x €, NG, T(1, +15)(x) >
2—2e&>1 which is a contradiction because 1, +1z; =1,,5 and
T (Laup)l < ITNIT(L40p)Il = 1. End of the Proof of Claim 2.

For every F € F, let F be a clopen subset of K\U such that F, , c
F c F, 5. By the preceding claims, this is a disjoint family of clopen sets.
It follows that K\U does not contain any X,-Lusin family. Therefore we
can find G, H < F with |G| = || = X, such that

U{c‘:ceg} nU{H:Ge}[}:cp.
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Now, for every n € N choose a pointp,, € U,,. Let g: BN - K be a
continuous function such that g(n) = p,,.

Claim 3. Foru € gN, 4 c N, T(1,)(g(w)) = {é :‘;Z Z [[ﬂ

Proof of Claim 3. It is enough to check it foru = n € N. This is a
consequence of the fact that T is positive, because if m € A,n & A, then
0 < t(1,,) < T(14) < t(1ygmy ) < 1. End of the Proof of Claim 3.

The function g is one-to-one because

{pn:nEA}n{pn:neA} = ¢
for every A c N, as the function T(1,) separates these sets. On the other
hand, as a consequence of Claim 3 above, for every F € F and every
g, g *(F,)=F, and also g7*(F) = F. These facts make the families %
and G above to contradict that F is an X,-Lusin family in N*.
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Chapter 4
Complex Vector Lattices

We motivates the definition of Complexification of Archimedean
vector lattices, the Fremlin tensor product of Archimedean complex-
vector lattices, and a theory of powers of Archimedean complex vector
lattices.

Section (4.1): Vector Lattices Complexifications

A vector space (V) equipped with a partial order “<” is called a
vector lattices if for each pair x,y in V: (i) There is smallest element w
(denoted by x A w) for which x < z and y < z, (ii) There is a largest
element w (dented by x Aw) for whichx <w andy < w, (iii) ifx <y
thenx+y <y+zforallzeV, (iv) If x <yandc € R* then cx < cy,
the element |x| :== x v (—x) is called the Modulus of X. The element
XT:=XvO0 is called the positive part of X. The X~ :=(-X) Vv O is
called the negative part of X. If a vector lattice V is equipped with a norm
||I-]| for which, (v) for all x,y € V, if |[x| < |y| then ||x|| < ||y]| then V
(equipped with < and ||-]|) is called a normed vector lattice [8].

We discuss the specific case that we will use to complexify
Archimedean vector lattices over R and multilinear maps over R. Using
the notation, let p,,(x,y) = w (x,yeR) . If E is an
Archimedean vector lattice over R and f,g € E then u,.(f,g) =
\/%(f Hg), where fH g:=sup{fcosf+ gsing:6 €[0,2r]}, as
defined. Therefore, from Mittelmeyer and Wolff’s Theorem, a vector
space E + iE over C is an Archimedean vector lattice over C if and only
if E'is a u, 4-complete Archimedean vector lattice over R. We refer to the
Uz 4 -completion (E¥24, ¢) of E as the square mean completion of E .
Noting that u, 4 is absolutely invariant. We summarize the newly found
information regarding functional completions for this special case in the
following corollary of.

Corollary (4.1.1) [4] If E is an Archimedean vector lattice over R then
there exists a unique square mean completion (E#24, ¢) of E. Moreover,
if E4, ..., Eg, F are Archimedean vector lattices over R with square mean
completions (E;**, ¢ )(k € {1,...,s}) and F is square mean complete,
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then for every vector lattice s-morphism T:x s;_,E, — F there exists a
unigue vector lattice s -morphism T#2+:x$_, Ev** - F such that
TH24(py(f1), ., ¢s(f;)) = T(f1, ..., fs) . Furthermore, if F is uniformly
complete and T:x;,_, E;, — F is a positive s-linear map then there exists
a unique positive s -linear map THz24:x3_, E,f“ — F such that
T”2‘4(¢1(f1)1 yd)s(f;;)) =T(f1,.... fs) for every f;, € Ex(k € {1,..., s}).
Here ¢ is the natural embedding of Ej, into E} .
We now turn to complexifications of Archimedean vector lattices

over R.
Definition (4.1.2) [4] For an Archimedean vector lattice E over R we
define a pair (Ejc|, ¢) to be a vector lattice complexification of E if the
following hold.

(i) E|c is an Archimedean vector lattice over C.

(il E - (E|(C|)p is an injective vector lattice R-homomorphism.

(iii) For every Archimedean vector lattice Fover C as well as for
every vector lattice R- homomorphism T: E — F,, there exists a
unique vector lattice C-homomorphism

Tic|: Ejc| = F suchthat T o ¢ =T.

We next prove the existence and uniqueness of vector lattice
complexifications.
Theorem (4.1.3) [4] If E is an Archimedean vector lattice over R then
there exists a vector lattice complexification of E, unique up to vector
lattice isomorphism.
Proof: Let E be an Archimedean vector lattice over R. By Corollary
(4.1.1), there exists a unique square mean completion (E#2+,¢) of E.
Define E|¢| := (E*2#)¢ and observe that Ej¢| is an Archimedean vector

lattice over C and that (E|(C|)p = E#z+. Next, let F be an Archimedean

vector lattice over C and let T:E — F, be a vector lattice R -
homomorphism. Since F, is square mean complete, there exists a unique
vector lattice R-homomorphism T#2+: E#2+ — F, such that TH24 o ¢ = T.
Define Ti|: Eic; = F by Tiq|(f + ig) = TH24(f) + iT#24(g) for every
f +ig € Ec|. Then Ticjo ¢ =T. Moreover, for f +ig € E|c; we have
from (see [4]) that

Tigi(If + igl) = TH24(f B g) = TH2+(f) B T#24(g) = |Tie(f + ig)|.
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Thus Tic) is a vector lattice C-homomorphism and therefore
(Eic @) is a vector lattice complexification of E. Next, we prove the
uniqueness. To this end, suppose (Eyic), ¢1) and (Ezc), ¢2) are vector

lattice complexifications of E. Then ((E1|(C|)p, ¢>1) and ((E2|(C|)p, ¢2) are

square mean completions of E, and hence there exists a vector lattice
isomorphism y: (E1|(C|)p - (E2|(C|)p. Similar to Tic above, the map

Yc: E1jc] = Ez|cy defined by yc(f +ig) =v(f) +iy(g) is a vector
lattice C-homomorphism. The bijectivity of y is evident.

For the square mean completion (E#2+, ¢) of E, we will from now
on identify E with ¢(E). Using this identification, we complexify
positive sg-linear maps (respectively, vector lattice si-morphisms) to
positive s¢-linear maps (respectively, vector lattice sc-morphisms) as
follows. Let Ey, ..., E, F be Archimedean vector lattices over R with F
square mean complete, and let T:x3_, E;, — F be a vector lattice sg-
morphism.

For (fg + ift's... f¢ + if) €%G=q Exq), define Tic: %=1 Exic| = Fc by

Ti(fot + ifits .. fo +iff’) = Z T”“(fell’ vfei)izi:lek'
er€{0,1}

If F is uniformly complete and T above is any positive sg-linear
map, we define T|¢| in a similar manner. We collect a few facts regarding
this complexification in the following proposition. Statement (iii) and the
statement that Tjc; = (T#24)|c| in (i) and (ii) are evident. The proof of (ii)
follows from Corollary (4.1.1), and the proof of (i) is similar to the
complexification of vector lattice homo-morphisms seen in the proof of
Theorem (4.1.3).

Proposition (4.1.4) [4] Let E4, ..., E,, F be Archimedean vector lattices
over R with F square mean complete.
(i) If a map T:x;_, E} — F is a vector lattice sg-morphism then T
is a vector lattice sc-morphism and Ti¢| = (T#24) (.
(i) If F is uniformly complete and T:x3_, E, = F is a positive sp-
linear map then Tjc)is a positive s¢-linear map and Tic| = (T#24),¢|.
(iii) If in (i) or (ii) all E,, ..., E, are square mean complete then
Tic| = T¢.
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Section (4.2): The Archimedean Vector Lattice Tensor Product

We define the tensor product of Archimedean vector lattices over
K and show the existence of the Archimedean complex tensor product by
complexifying the Fremlin tensor product of Archimedean real vector
lattices.

We start with the definition of these tensor products of
Archimedean vector lattices over K. For s = 2 and IK = R the definition
coincides with Fremlin’s definition of the Archimedean tensor product of
Archimedean vector lattices over R.

Definition (4.2.1) [4] Given Archimedean vector lattices E, ..., E over
K, we define a pair (®35-; Ex,®) to be an Archimedean vector lattice
tensor product of E, ..., Es if the following hold.

(i) ®3_; Ex isan Archimedean vector lattice over K.

(i) ® is a vector lattice s-morphism.

(iii) For every Archimedean vector lattice F over K and for every
vector lattice s- morphism T:x;_; E, — F, there exists a uniquely
determined vector lattice homo- morphism T®:@i=1 Ey, — F such
that T® o®=T.

Below and throughout the rest of this section, (®3-; V. ®) denotes

the algebraic tensor product of vector spaces Vy, ..., V; over K.
Lemma (4.2.2) [4] Let E;, ..., E be Archimedean vector lattices over R.

(i) There exists an essentially unique Archimedean vector lattice

@izl E, over R and a vector lattice s-morphism @:xi=1 E, -
®i=1 E} such that for every Archimedean vector lattice F over R
and every vector lattice s-morphism T:x3_, Ej, — F, there exists a
unique vector lattice homomorphism T®:®3_, E,, — F such that
T® s ®=T.

(ii) There exists an injective linear map S:®35_, Ex > ®3_, E such
that S e ®=.

(iii) For every w €Q3_, E, there existx, € Eff (ke {l...,s})
such that for every e >0, there exists v €Qj—, Eyx such that
lw—v]|<elx; ®..Q x5), i.e. ®i_; Ex is relatively uniformly
dense in @jy_; Ep.
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(iv) For every O0<w €®j_, E, there exist x, € E} (k €
{1..,sPsuchthat0 < (x; ® ... ® x5) < w, i.e. 3, E is order
dense in ®3_; Ex.

We deal with the existence and uniqueness of the complex
Archimedean vector lattice tensor product and requires several
prerequisite results. The next lemma surely is known.

Lemma (4.2.3) [4] If V, ..., Vs are vector spaces over R then ®3_; (V)
and (®3-, Vi) are isomorphic as vector spaces over C.

Proof: Since the algebraic tensor product is associative, we only need to
prove the result for s =2, and use induction. The case s =2 is the
content of Theorem (see [4]), but, we provide a sketch of van Zyl’s proof
to correct some potential confusion caused by an accumulation of minor
misprints. First let U and VV be vector spaces over R, and let (U Q V,RQ)
and (Uc ® V) be the algebraic tensor products of U,V, respectively
UcVe. Since Qc:Uc x Ve —» (U@ V)¢ is a bilinear map over C, it
induces a unique C-linear map T: U ®, Ve = (U @ V). It is easy to see
that T is surjective. To show that T is injective, let w = Y 7_;(u;, +
iug,) Q4 (v +ivy,) € Us @4 V¢ and suppose that T(w) = 0. Note that
Tw) =Xk (ue @ vy —up Q vy, + iy, Q@ vy + iuy, ® uy,), and so for
any R-linear functionals ¢ on U and ¥ on V we have

> (9 @) — pp )
k=1

=0and ) (¢ @H() + B p)) =0 ()
k=1

Let & = &, + i, be a C-linear functional on U¢ and letn = n,. + in. be a
C -linear functional on V¢, both written in their natural decompositions.
Then &, ¢, are R -linear functional on U and n,,n. are R -linear
functionals on V. Now
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n

Z E(uy + iw (v + ivy)
k=1
- Z(fr(u)nr(vk) = & W (vi))
k=1
_ Z (Er(u;()nc(vk) + Er(uk)nc(vllc))
k=1
1) (6 iIne @) + -, (0))
k=1

1) (£ e = & @Inewl)
k=1

NIE

(Ec(u;c)nr(vk) + & (wdn, (vllc))

k=1

= D () - Ewidne(w)
k=1
1) (£clun () = £ @idn (v))
k=1

=1 (8w + £ e ().
k=1

Applying () again to each of these eight summands, we have that
he1 E(uy + i In(vy +ivy) = 0. Therefore w = 0 and T is injective.
Then T is a vector space isomorphism.
In light of the previous lemma, we will from now identify
(®5-1 Vk(c)p with ®3%_, Vy for vector spaces Vy, ..., V; over R.

There exists a simpler construction of the square mean completion
than the construction preceding Proposition (see [4]), which was given in
a more general setting. Indeed, Azouzi constructs a square mean
completion of an Archimedean vector lattice E over R essentially as
follows. Let E;:=FE and for every ne€ N, define E,.;:=E, U

{uz4(f.9): f.g € En}] . where [{p24(f.9):f,g € Ex}] denotes the
vector subspace of E® generated by {u, 4(f,9): f. g € En}. Then define
E®:= U,y E,. To see that E® is a vector lattice, note that for every f €
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E® there exists n € N such that f € E,. Then |f| = v2pu,4(f,0) €
E,.,. It follows that EE is the square mean completion of E, that is, E®
and E*24 are isomorphic as vector lattices. In fact, from the identity
Ao o(f, g) = puo4(Af, Ag) for every 1 € R* and every f, g € E, we have
Ef i = {30 toa(fie 1) fr 9k € En}. We use this fact in the first of
the two following lemmas that are needed for Proposition (4.2.6).

Lemma (4.2.4) [4] Denote the standard sine and cosine functions on

[Og] by sin and cos, respectively. For an Archimedean vector lattice E

over R and for every f € (E¥2+)* there exists uq,..,u, € E* and
te1 o tep, € {cos,sin} (k € {1,...,n}) such that

Proof: Our proof is via mathematical induction. Let h € E;f,; and first
suppose that f = p, 4(u,v) for some u, v € EE. Then f = sup{u cos 6 +
vsin®: 6 € [0,m/2]}. Next, suppose that f = Y2_, up 4 (ug, vi). Then

n

f= Z sup {uycos 8y + vy sin 6}

k=19k€|07

= sup {Z (uy cos 6, + vy, sin Ok)]
ore[0 3]

This completes the base step of the induction argument. For the inductive

step, suppose that for every f € E;f there exists u,,...,u, € E* and

ty, ... tp, € {cos,sin}(k € {1,...,n}) such that

= supn] zn:ntkj(ekj)uk

01 j€[0
Let f € E;,.,. From the argument in the base step above, we may assume
that f = p, 4(u, v) for some u, v € Ej; .
By the induction hypothesis there exists uq, ..., up, v1,..., v, € E* and
ti1 o tkpgr Sk o1 Skry, € {cos, sin}(k € {1, ..., s}) such that
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n m
=Uz4| SUP Z tk,j(ek,j)uk , SUp Znsk](ek])vk

9k,je[0%] k=1j=1 GkJE 0

n
= sup sup Z —[tk,j(Qk,j)uk COS ¢

odo?] Lol (217

+ supn] Zns’”(e’”)vk sing

Qk]E[O

= supn] zn:ntkj(ekj)cos¢uk inskj(ekj)smcpvk

¢.61s€[0

The next Iemma can be verified using mathematlcal induction. We
do not include the Proof:
Lemma (4.2.5) [4] Let tq,...,t, be Lipschitz functions on R with
Lipschitz constant 1. Also assume that |t,(x)] <1 for every k €
{1,...,n}and every x € R. Then for every x;,y, € R(k € {1,...,n}) we
have [[Te=1 ti Ccx) — k=1 e il < Ze=1lxx — yicl-

We have the following proposition.
Proposition (4.2.6) [4] If E is an Archimedean vector lattice over R then
E is relatively uniformly dense in EH24 |
Proof: Let E be an Archimedean vector lattice over R and first suppose
that f € (EH24)* . Say that f = su[p ]{ }(‘zll'[;’ﬁl tk,j(Qk,j)uk} for

O €0

some uq,...,u, € ET and ty 4, ...  tkp, € {cos,sin}(k € {1,...,n}). Note

kjT

that given 6, ; € [O ]meN there exist [, ; € N such that |

O j sz—m. Since sine and cosine are both Lipschitz functions with
Lipschitz constant 1 we have from Lemma (4.2.5) that
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n Pk n Dk I
kjTC
| [eiodu=2 | o <z—m> t
k=1 j=1 k=1 j=1
n Pk Pk I
] T
3 [ oot~ oo (52
k=1]j=1 j=1
n Pk n
lk’jT[ T
SZ 9k,j—2—m| || Sz—mz Drclul.
k=1 j=1 k=1
Thus,
n Dk n Pk n
) L jT T
tk.j (Qk,j)uk S Lk, j om | Uk + om Prclu|
k=1 j=1 k=1j=1 k=1

n
r Iy i T
<V S T (2o St
k=1

lk,j=1 k=1 j=1
Since this is true for every 6y ; € [Og] (kef1,,..,n},je{1, ..,pr}) we

have
n Dk

2m n
L jT T
o<r-\/ Zﬂtk<z—m> < ), Pl
lgj=1k=1 j=1 k=1
m Ly i

It follows that the sequence g,,,: = Vlzk’jzlzﬁzl H?’;l ty (’;—’;) converges
relatively uniformly to f.
Finally, for f € E, there exist sequences (a,), (b,) in E such that a,
Tu Tru Tru
- f*andb, —» f~.Thena, — b, - f.

We are ready to deal with the Archimedean tensor product of
Archimedean vector lattices over KK.

Theorem (4.2.7) [4] Let E4, ..., E; be Archimedean vector lattices over K.
(i) There exists an essentially unique Archimedean vector lattice

®5_, Ex over K and a vector lattice s-morphism ®:x5_, E, —
®7=1 Ex such that for every Archimedean vector lattice F over K
and every vector lattice s-morphism T:x3_, E;, — F, there exists a
unique vector lattice homomorphism T®:®3_, E,, — F such that
T® c®=T.

(if) There exists_an injective K linear map S:®3_; E;, »®3_; Ej such
that S - ®@=Q.
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(iii) T(®5-; Ex. Q51 Ex) <2 . Thus, ®3_; Ex is dense in
®35_4 Ex in the relatively uniform topology.

(iv) For every w e (®;-1 E,)\M0}, there exist x; @ ... ® x4 €
Q=1 Ey, with x, € Ef(ke{l..,s}) such that 0<(x; ® .. ®

xs) < |wl, i.e. ®3_, Ey is order dense in ®3_; Ey.
Proof: By Lemma (4.2.2), statements (i)-(iv) are valid for K = R. We
assume in the proof below that K = C.
(i) LetE,,.., E F be Archimedean vector lattices over C. Denote

by (@iﬂ Ekp,@) the Archimedean vector lattice tensor
product of Ei, .. Es, . We claim that the pair

((®i=1 Ek”)lcl ,@m) is the unique Archimedean complex
vector lattice tensor product of Ey, ..., Eg. Let T:x5_, E;, = F be
a vector lattice s-morphism. From Lemma (4.2.2), the map ®
induces a unique vector lattice homomorphism Tp® on

®%=1 Ex,, such that T? o ®=T,. Also, the map Tp® extends
. . . ® H2 4
uniquely to a vector lattice homomorphism (Tp) on

(@izl Ekp)uz’4 (Corollary (4.1.1)). By Proposition (4.1.4) (i),

the map ® ¢ is a vector lattice s- morphism and (Tp®)|(c| is a

vector lattice homomorphism. We will prove that the map
@ NS . . .
(Tp )l(cl-(®k=1 Ekp)l(cl—>F is the unique vector lattice

homomorphism such that (Tp®)I(CI o ®|cj=T. Indeed, for every

(fg + fit o 6 fF) €%y Ej We have

(19), o @i G+ 15 52D

=(12) 4| 2, B ) e

er€{0,1}
= Z Tp®°®_(f6]ia---1f6§) i2k=16k
GkE{O,l}
= D T (e ) R = T+ if o S5+ ).
GkE{O,l}
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Since every vector lattice C-homomorphism is real, the uniqueness of
® . ® U2a
(Tp )I<CI follows from the uniqueness of (Tp ) .

The proof of uniqueness of the Archimedean complex vector lattice
tensor product is not different from the real case.

(iiy Consider the newly minted tensor product (®j5—; Ex.®)
constructed in (i). By Lemma (4.2.2), there exists an Archimedean vector
lattice G over R and a vector lattice s-morphism T:x;_; Ey, — G such

that the induced linear map T®:®3_, Ex,—- G is injective. By taking the

square mean completion of G, if necessary, we will assume that G is
square mean complete. By taking vector space complexifications, we find

an injective vector lattice s-morphism (T®)(C:(®i=1 E"P)c - G¢, of
equivalently by Lemma (4.2.3), (T‘X’)(C:(X)i:1 E, = G¢. Moreover, if
(T¢)® : ®3_, Ex — G is the unique linear map induced by T¢, then for

foe+iff e B, (ke{l,..,s}),
(TP +ift @ .. ® f5 +iff) = Te(fd + ifi ... f§ +iff)

er€{0,1}

= > T ®. @ f) T
ex€{0,1}
In particular, ((T¢)®) is a real map with ((T(C)®)p = T®, and therefore

we have (T)® = (T®)(C. From part (i) of this theorem there exists a
unique vector lattice C-homomorphism (Tc)@1®i=1 Ey = G such that
(Tc)® o ®=T; . Moreover, there exists a unique C -linear map
S:®3_, E;, >®3_, E;, such that Se ®=®. Then (Te)® o So @=Tg,
and hence (T¢)® o S = (To)® = (T®)(C. Therefore S is injective.

(c) By Lemma (4.2.2) we know that ®j_; Ey, is relatively
uniformly dense in ®35_, Ey,. We also know from Proposition (4.2.6)

- - 1 i M |
that ®j—; Ex, is relatively uniformly dense in (®i=1Ekp) "By
taking vector space complexifications, we have t(®3-; E,,®5-1 Ex) < 2.
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— S Ua,
(d) Suppose w € (®3-; E,)\M0}. Then 0 < |w| € (®i=1 Ekp) o
_ _ )
Since ®j=1 Ej, is order dense in (®i=1 Ekp) , it is also order dense in

_ Ua, ) _
(®i=1 Ekp) **  Thus there exists Wy EQr—y Ekp such that 0 <w, <
lw|. From Lemma (4.2.2), there exists x; ® ... ® x; EQr_; Ex, with

xx EEF(ke{l, .. sh)suchthat0 < (x; ® ... ® x) < wy,.
In (i) it is necessary to take the vector lattice complexification of

[ Ey, to ensure that (@i=1 Ek”)ICI is an Archimedean vector lattice

over C. Indeed, Theorems (4.2.10) and (4.2.11) furnish examples where
the vector space complexification (@iﬂ Ek”)lcl does not suffice.

We need two lemmas first.
Lemma (4.2.8) [4] Let X and Y be nonempty subsets of R without
isolated points. Then the function S: (x,y) — /x2% + y? ((x,y) € X x
Y) is in the square mean completion of C(X) ® C(Y) but for all
nonempty open subsets U of X and W of Y we have S|, xy € C(U) &
c(w).
Proof: For f € C(X) and g € C(Y) we identify f ® g with the function
(x,y) » f(x)g)((x,y) € X xY). Consider the element S of the
square mean completion of C(X) ® € (Y) defined by

(x,y) — Jx2+y2((x,y) € X xY).
Let U and W be open nonempty subsets of X and Y, respectively. We will
show that the vector subspace of C(U) generated by {S(:,y):y € W},
whose elements are considered as functions on U, is not finite-
dimensional. It follows that S|,y € C(U) ® C(W). Since W is open
and nonempty and Y has no isolated points, we can choose «a; €

W (for all k € N) for which af # af when i #j. Let n€ N and let

A, Ay € R for which Ag/x? + af = 4,S(x,y,) =0 for all x € U.
Since the function x — A;4/x? + aZ(x € R) is n times differentiable at
every x € X, a routine calculation shows that the n x n matrix A(x)

defined by A(x);; = ;zﬂwhen evaluated at the vector (14,...,1,,)

(x2+a2-) 2
J

yields the wvector (0,..,0) for every non-zero x € U. However,
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R_1y/x% + aZdet(A(x)) = det(B(x))where the n x n matrix B(x ) is

defined by B(x);; = ﬁ which has (Vandermonde) determinant
x%+as
J
1 1 ajz —ai
1_[ 2+a? x2+al) 1_[ (22 + a?)(x% + a?) #0
1<j<ksn J k 1<j<ksn J k

Thus det(A(x)) # O for every non-zero x € U, the vector subspace of
C(U) generated by {S(-,y):y € Y} (as functions on U) is infinite
dimensional, and S|yxy € C(U) ® C(W).

Lemma (4.2.9) [4] Let X and Y be nonempty subsets of R without
isolated points and let f € C(X) ® C(Y). Then there exists a nonempty
open subsetV of X x Y and g € C(X) @ C(Y) such that f], = g|v.
Proof: Note that C(X) ® C(Y)is the vector lattice generated by C(X) ®
C(Y) in C(X x Y). Every element f € C(X) ® C(Y) is of the form f =
/\}‘=1 Vies fjk Where f;, € C(X) ® C(Y) for each j and each k. Let
fi.f2 €C(X) Q C(Y). If f # f,, we may assume there exists (x, y) such
that f; (x, y) < fa(x,y) and then there exists a nonempty open subset O
of X x Y such that f; A f, = f; on 0. Of course such an open subset O
also exists if f; = f,. By repeating this argument there exists a nonempty
open set U < 0 such that AT_;(ViL, fjx) = VL, fj,x On U for some
jo €{1..,n}

Similarly, there exists a nonempty open set V < U such that VL, fj x, =
fiyk, ONV for some kq € {1, ..., m}.

Theorem (4.2.10) [4] Let X and Y be nonempty subsets of R without
isolated points. Then C(X) ® C(Y) is not square mean complete.

Therefore (C(X) ) C(Y))(C is not an Archimedean vector lattice over C.

Proof: Assume that the element S of Lemma (4.2.8) is in C(X) ® C(Y).
Then by Lemma (4.2.9) there exists a nonempty open set VV in X x Y and
an element g € C(X) ® C(Y) such that g|,, = S|,. However the open set
IV contains a nonempty open subset of the form U x W with O ¢ U. This
contradicts Lemma (4.2.8).
We use Theorem (4.2.10) to prove the following.

Theorem (4.2.11) [4] If X and Y are uncountable compact metrizable
spaces then C(X) ® C(Y) is not square mean complete. Therefore

(C(X) () C(Y))(C is not an Archimedean vector lattice over C.
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Proof: By [4], we know that both X and Y contain a closed subset
homeomorphic with the Cantor set D. Then D < ID can be viewed as a

closed subset of X x Y and the function Fy: (x,y) — /x2 + y2((x,y) €
D x ]D))is continuous. By Tietze’s Extension Theorem, the function x —
x (x € D) can be extended to continuous functions f and g on X and Y,
respectively. Then the function F: (x,y) — /f(x)2 + g(»)? ((x,y) €
X><Y) is a continuous function in the square mean completion of
C(X) ® C(Y) that extends F,. If F were in C(X) ® C(Y) itself then its
restriction to D x D would be in ¢(D) ® c(D) which by Theorem
(4.2.10) is impossible. This proves the theorem.

It is certainly tempting to conjecture the following.

Conjecture (4.2.12) [4] If X and Y are infinite compact metrizable spaces
then C(X) ® C(Y) is not square mean complete.

The above two theorems show that the old way of complexifying
Archimedean vector lattices via vector space complexifications is
inadequate for pursuing complex analysis on Archimedean complex
vector lattices.

We remark that the complex Archimedean vector lattice tensor
product, like its real counterpart, possesses as well a universal property
with respect to positive multilinear maps and complex uniformly
complete vector lattices as range. The proof of this universal property,
stated in the theorem below, is similar to the proof of Theorem (4.2.7) (i).
Theorem (4.2.13) [4] Let E;, ..., E;, F be Archimedean vector lattices
over K with F uniformly complete. If T:x;_, E;, — F is a positive si-
linear map, then there exists a unique positive K - linear map
T@@iﬂ E, » Fsuchthat T® o®=T.

A reformulation of part (i) of Theorem (4.2.7) in terms of
Archimedean real vector lattices and vector lattice complexifications is
the following.s
Theorem (4.2.14) [4] Let E4, ..., E,,F be Archimedean vector lattices
over R and suppose that T:x;_, E; — F is a vector lattice sg-morphism.

There exists a unique vector lattice s¢-morphism (T|(C|)®:®i=1 Exic| =
® =
F h that (T =T.
jcf such that (Tig) ™ » ®|;

Proof: Consider T to be a vector lattice sg-morphism from x3_; Ej to
F#24_ By Proposition (4.1.4) (i) there exists a unique vector lattice s¢-
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. R .
morphism TI(CI:Xi=1 Ekl(Cl - Fl(Cl such that Tl(cl|><i-1Ek =T. If (T|(C|) IS

i i i i ®
the unique vector lattice C-homomorphism induced by T¢ then (T|(C|) °

®= T¢. In particular, (T|(C|)@ 0 ®|Xi=1Ek =T.
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