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We study closed convex hulls of unitary orbits in various ܥ∗-

algebras. For unital ܥ∗-algebras with real rank zero and a faithful 

tracial state determining equivalence of projections, a notion of 

majorization which describes the closed convex hulls of unitary 

orbits for self-adjoint operators are considered. Other notions of 

majorization are examined in these ܥ∗-algebras. We show that norms 

on certain Banach spaces can be approximated uniformly, and with 

arbitrary precision, on bounded subsets by ܥ∞ smooth norms and 

polyhedral norms. We employ the pinching theorem, ensuring that 

some operators admit any sequence of contractions as an operator 

diagonal. Nontrivial twisted are shown. 
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  ∗ܥ   - المسارات الواحدیة في جبریات  إلىدرسنا الھیاكل المعیاریة المغلقة 

∗ܥ - المتنوعة . أعتبرنا لأجل جبریات  ة الأحادیة مع صفر الرتبة الحقیقي والحال 

ل المحدبة الأثریة المعتقدة المحددة لتكافؤ المساقط والفكرة الرائدیة لوصف الھیاك

أخرى  أفكار مدروسیة تمؤثرات المرافق الذاتي تملمغلقة للمسارات الأحادیة لأجل ا

∗ܥ - للرائدیة في جیریات  ن ھذه. أوضحنا أن النظام عن فضاءات باناخ المعینة یمك 

ة النظائم نتظام ومع دقة اختیاریة وعلى الفئات الجزئیة المحدودة بواسطاأن تقرب ب

ஶܥالملساء  ن ھنة الانضغاط وضامنین أظائم متعددة السطوح. استخدمنا مبروالن 

 ي متتالیة للانكماش كمؤثر قطري. أوضحنا مجموعبعض المؤثرات تسمح لأ

 الالتواء غیر البدیھي.
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Chapter 1 

Unitary Orbit In ∗-Algebras of Real Rank Zero 

Combining the ideas with the Dixmier property, we demonstrate 

unital, infinite dimensional ܥ∗-algebras of real rank zero and strict 

comparison of projections with respect to a faithful tracial state must be 

simple and have a unique tracial state, closed convex hulls of unitary 

orbits of self-adjoint operators are fully described in unital, simple, purely 

infinite ܥ∗-algebras. 

Section (1.1): Scalars and Unitary Orbits of Convex Hulls 

Unitary orbits of operators are important objects that provide 

significant information about operators. In the infinite dimensional 

setting, the norm closure of the unitary orbits must be taken as 

unitary groups are no longer compact. For all intents and purposes, 

two operators that are approximately unitarily equivalent (that is, 

have the same closed unitary orbits) may be treated as the same 

operator inside a ܥ∗ −algebra and the question of when two (normal) 

operators are approximately unitarily equivalent has been studied. 

When two operators are not approximately unitarily 

equivalent, it is interesting to ask, “How far are the operators from 

being approximately unitarily equivalent?” This question is 

quantified by describing the distance between the operators’ unitary 

orbits and has a long history. For self-adjoint matrices S and T with 

eigenvalues {ߤ}ୀଵ  and {ߣ}ୀଵ   respectively, the distance between 

the unitary orbits of ܵ and ܶ was computed to be the optimal 

matching distance  

min
ఙ∈ௌ

max{|ߣ  − ∋ ݇ | |ఙ()ߤ   {1, . . . ,݊}}    

where Sn is the permutation group on {1, . . . , n}. However, if S and T 

are normal matrices, the distance between the unitary orbits of S and 
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T need not equal the optimal matching distance. For bounded normal 

operators on Hilbertspace, results have been obtained analogous to 

the known matricial results. This question has been active in other 

C∗-algebras where the most recent work has made use of K-theoretic 

properties and ideas. 

Another important concept is that of majorization for self-

adjoint matrices. A notion of majorization for real-valued functions in 

L1[0, 1] was first developed by Hardy, Littlewood, and Pólya using 

non-increasing rearrangements and this notion has been widely 

studied. When applied to self-adjoint matrices through their 

eigenvalues, a fascinating concept is obtained. Majorization of self-

adjoint matrices has been thoroughly analyzed and has relations to a 

wide range of problems in linear algebra, such as classical theorem of 

Schur and Horn characterizing the possible diagonal n-tuples of a 

self-adjoint matrix based on its eigenvalues and applications to 

generalized numerical ranges of matrices. 

Majorization has an immediate analogue in II1 factors by 

replacing eigenvalues with spectral distributions. By using the notion 

of majorization via eigenvalue functions (also known as spectral 

scales) of self-adjoint operators in II1 factors, several analogues of 

matricial results have been obtained. For example, an analogue of the 

Schur-Horn Theorem for II1 factors was first postulated and proved 

by Ravichandran and analogues of generalized numerical ranges 

were developed. 

The notion of majorization of self-adjoint operators in both 

matrix algebras and II1 factors as a deep connection with unitary 

orbits. Indeed, given two self-adjoint operators ܵ and ܶ, it was shown 

for matrix algebras and II1 factors that ܶ majorizes S if and only if S is 
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in the (norm) closure of the convex hull ( the convex hull may be 

defined as the intersection of all convex sets containing x or as the set 

of all convex combinations of point in x) [5]  of the unitary orbit of T , 

denoted convതതതതതത(࣯(ܶ)). Consequently, the question of whether T 

majorizes S is a question of whether ܵ can be obtained by ‘averaging’ 

copies of T . 

Analysis of the closure of convex hulls of unitary orbits has 

yielded some interesting results. For example, the Dixmier property 

for a C∗-algebra asks that the centre of the C∗-algebra interests every 

such orbit. One need only consider self-adjoint operators to verify the 

Dixmier property show that a unital C∗-algebra A has the Dixmier 

property if and only if ि is simple and has at most one faithful tracial 

state. 

We describe the closure of convex hulls of unitary orbits of self-

adjoint operators in various C∗-algebras. Taking inspiration from von 

Neumann algebra theory, we will focus on C∗-algebras that behave 

like type III and type II1 factors. In particular, unital, simple, purely 

infinite C∗-algebras are our analogues of type III factors and unital C∗-

algebras with real rank zero and a faithful tracial state determining 

equivalence of projections are our analogues of type II1 factors.  

Develops and extends the necessarily preliminary results on 

majorization of self-adjoint operators in matrix algebras and II1 

factors. In particular, the notion of eigenvalue functions is adapted 

from II1 factors to C∗-algebras with faithful tracial states by replacing 

spectral distributions with dimension functions. The properties of 

eigenvalue functions are immediately transferred to this setting. 

There are scalars in convex hulls of unitary orbits in C∗-
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algebras with faithful tracial states. Notice if ि is a unital C∗-algebra 

with a faithful tracial state ߬ and ܶ ∈  ि, then ߬(ܵ)  =  ߬(ܶ) for all ܵ ∈

 convതതതതതത(࣯(ܶ)). Consequently convതതതതതത(࣯(ܶ))  ∩  {ℂܫि} is either empty 

or {߬ (ܶ)ܫि}. Using an averaging process along with manipulations of 

projections, it is demonstrated that if ि is a unital, infinite 

dimensional C∗-algebra with real rank zero and strict comparison of 

projections with respect to a faithful tracial state  , then ߬ (ܶ) ∈

convതതതതതത(࣯(ܶ)) for all ܶ ∈ ि. Combined with the Dixmier property, this 

implies ि must be simple and τ must be the unique faithful tracial 

state on ि. We investigated the ability of faithful tracial states to 

imply simplicity of C∗-algebras. 

We analyze convതതതതതത(࣯(ܶ))  for self-adjoint T in unital C∗-algebras 

ि that have real rank zero and a faithful tracial state ߬ with the 

property that if ܲ,ܳ ∈  ि are projections, then ߬ (ܲ)  ≤  ߬ (ܳ) if and 

only if ܲ is Murray-von Neumann equivalent to a subprojection of ܳ. 

In particular, theorm (1.1.46) shows for such C∗-algebras that ܵ ∈

 convതതതതതത(࣯(ܶ))if and only if T majorizes S with respect to ߬. ि though 

the assumptions on ि are restrictive in the classification theory 

world, they do apply to several C∗-algebras such as UHF C∗-algebras, 

the Bunce-Deddens C∗-algebras,  irrational rotations algebras, and 

many others. 

Trying to generalize Theorem (1.1.37) to other C∗-algebras may 

be a difficult task. Indeed, it is the case that there are self-adjoint 

operators with the same eigenvalue functions that are not 

approximately unitarily equivalent when the assumption ‘߬ (ܲ)  =

 ߬ (ܳ) implies ܲ and ܳ are equivalent’ is removed. In addition, the 

question of characterizing convതതതതതത(࣯(ܶ)) appear very complicated if ि 



11 
 

has more than one tracialstate as, by above 

discussions, convതതതതതത(࣯(ܶ))  ∩  {ℂܫि}  =  ∅.  

We devote to investigating other closed orbits and notions of 

majorization of operators. We begin by using eigenvalue, which 

computes the distance between unitary orbits of self-adjoint 

operators via an analogue of the optimal matching distance. In 

addition, an analogue of singular value decomposition of matrices is 

obtained. Furthermore, descriptions of when one operator’s 

eigenvalue (singular value) function dominants another operator’s 

eigenvalue (respectively singular value) function and when one 

operator (absolutely) submajorizes another operator are described. 

We describing convതതതതതത(࣯(ܶ)) for self-adjoint operators T in 

unital, simple, purely infinite C∗-algebras. In particular, convതതതതതത(࣯(ܶ)) is 

precisely all self-adjoint operators ܵ such that the spectrum of S is 

contained in the convex hull of the spectrum of ܶ. 

We will extend the notion and properties of eigenvalue 

functions to C∗-algebras with faithful tracial states. 

Definition (1.1.1)[1]: For a unital C∗-algebra ि and an element ܶ ∈

 ि, the unitary orbit of ܶ is 

࣯(ܶ) ∶=  {ܷ∗ܶ ܷ | ܷ a unitary in ि}. 

The closed unitary orbit of ܶ ∈  ि is ࣩ(ܶ) ∶=  ࣯(ܶ), the norm closure 

of (T). 

The convex hull of ࣯(ܶ) will be denoted by conv(࣯(ܶ)) and its norm 

closure by convതതതതതത(࣯(ܶ)). 

The main component is the generalization of the following 

notions from tracial von Neumann algebras to tracial C∗-algebras.  

Definition (1.1.2)[1]: Let ै be a von Neumann algebra a tracial 

state τ . 
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(i) For a self-adjoint operator ܶ ∈ ै, the eigenvalue function of 

ܶ associated with ߬ , denoted ்ߣఛ  is defined for ݏ ∈  [0, 1) by 

ఛ்ߣ :(ݏ) = inf{ݐ ∈ ℝ|்݉ ((ݐ,∞)) ≤  {ݏ

where ்݉is the spectral distribution of T with respect to τ . 

(i) For an arbitrary ܶ ∈ ै, the singular value function of T associated 

with ߬, denoted ߤఛ is defined for ݏ ∈  [0, 1) by 

ఛ்ߤ, :(ݏ) =  |்|ߣ
்  .(ݏ)

Example (1.1.3)[1]: Let ܶ ∈ ℳ(ℂ) be self-adjoint with eigenvalues 

ୀଵ{ߣ} where ߣ  ≥  ାଵ for all ݇. If τ is the normalized trace onߣ 

ℳ(ℂ), then ்ߣఛ (ݏ) = ∋ ݏ  for allߣ ቂିଵ


 , 

ቁ.Similarly ,if ܶ ∈

ℳ(ℂ)has singular values {ߪ}ୀଵ  where ߪ ≥  ାଵ for all ݇, thenߪ 

ఛ்ߤ (ݏ) = ∋ ݏ  for allߤ ቂିଵ


 , 

ቁ. 

Example (1.1.4)[1]: Let ै = ,ஶ[0ܮ  1] equipped with the tracial 

state ߬  defined by integrating against the Lebesgue measure m. If ݂ ∈

 ै is real-valued, then ߣఛ(ݏ) =  where ݂∗ is the non-increasing (ݏ)∗݂

rearrangement of ݂, which may be defined by 

:(ݏ)∗݂ = inf{ݐ ∈ ℝ | ݉({ݔ ∈  [0, (ݔ)݂ | [1  > ({ݐ   ≤ {ݏ  . 

It can be shown (see Theorem (1.1.9) that ݂∗ is a non-increasing, 

right continuous function. Consequently, if ݂ is non-increasing and 

right continuous, then ݂ =  ݂∗. 

To generalize these notions to C∗-algebras with faithful tracial states, 

we will use the following as a replacement for spectral distributions. 

Definition (1.1.5)[1]: Let ߳ >  0 and let ఢ݂ denote the continuous 

function on  [0, ∞) such that ఢ݂(ݔ)  =  1 if ݔ ∈  [߳,∞), (ݔ)݂߳  =  0 if 

∋ ݔ  ቂ0, ఢ
ଶ
ቃ,and ఢ݂(ݔ) is linear on ቀఢ

ଶ
, ߳ቁ.  

Let ि be a unital C∗-algebra with faithful tracial state ߬. The 

dimension function associated with ߬, denoted ݀ఛ , is defined for 
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positive operators ܣ ∈  ि by 

݀ఛ(ܣ): = lim
ఢ→

߬( ఢ݂(ܣ)) . 

Definition (1.1.6)[1]. Let ि be a unital C∗-algebra with a faithful 

tracial state  . 

(i) For a self-adjoint operator ܶ ∈  ि, the eigenvalue function of T 

associated with ߬ , denoted ்ߣఛ , is defined for ݏ ∈  [0, 1) by 

ఛ்ߣ :(ݏ) = inf{ݐ ∈ ℝ|݀߬ ((ܶ − (ि)ାܫݐ ≤  {ݏ

where (ܶ − ܶ ि)ା denotes the positive part ofܫݐ −  .िܫݐ

(ii) For an arbitrary ܶ ∈  ि, the singular value function of ܶ associated 

with ߬ , denoted ்ߤఛ , is defined for ݏ ∈  [0, 1) by 

ఛ்ߤ :(ݏ) = | ்|ߣ
ఛ  .(ݏ) 

Lemma (1.1.8) will demonstrate that Definitions (1.1.2) and (1.1.6) 

agree when ि is a von Neumann algebra. 

Example (1.1.7)[1]: Let ि be a unital C∗-algebra with a faithful 

tracial state ߬ . Let {ߣ}ୀଵ ⊆ ℝ be such that ߣ ≥  ାଵfor all k andߣ 

let { ܲ}ୀଵ ⊆ ि be a collection of pairwise orthogonal projections 

such that ∑ ܲܫि
ୀଵ  . For each ݇ ∈  {0, 1, . . . , ݊}, let ݏ = ∑ ߬( ܲ)

ୀଵ  . If 

ܶ = ∑ ߣ ܲ

ୀଵ , then ்ߣఛ (ݏ)  = ߣ  for all ݏ ∈ ,ିଵݏ]  .(ݏ

Eigenvalue and singular value functions have several important 

properties. Although most (if not all) of these properties can be 

demonstrated using C∗-algebraic techniques, we will appeal to von 

Neumann algebra theory to shorten the exposition. 

For a unital C∗-algebra ि with a faithful tracial state  , let 

→ ఛ: िߨ  ℬ(ܮଶ(ि , ߬)) be the GNS representation of ि with respect to 

߬. Note ߨఛ is faithful and ߬ is a vector state on ℬ(ܮଶ(ि , ߬)). If ै is the 

von Neumann algebra generated by ߨఛ(ि), specifically ߨఛ(ि)ᇱᇱ, then ߬ 

extends to a tracial state on ै . 
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Lemma (1.1.8)[1]: Let ि be a unital C∗-algebra with faithful tracial 

state τ and let ै be the von Neumann algebra described above. If ܶ ∈

 ि is self-adjoint, then 

ఛ்ߣ (ݏ) = గఛߣ  (ݏ)(ܶ)

for all ݏ ∈  [0, 1), where ߣగഓ(்)
ఛ  is as defined in Definition (1.1.2). 

Proof. If ݉గഓ(ܶ) denote s the spectral distribution of ߨఛ(ܶ) with 

respect to ߬, we obtain for all ݐ ∈ ℝ that 

       ݀ఛ((ܶ – (ि)ାܫݐ  = lim
ఢ→

߬ ൫ ఢ݂((ܶ −  ि)ା)൯ܫݐ 

                                    =  lim
ఢ→

߬ ൫ߨఛ((ܶ −  ि)ା)൯ܫݐ 

                                    =  lim
ఢ→

߬ ൫ߨఛ((ܶ − ि)ା)൯ܫݐ   =  ݉గഓ(ܶ)((ݐ,∞)) 

as ఢ݂((ܶ −  ि)ା) converges in the weak∗-topology to the spectralܫݐ 

projection of ߨఛ(ܶ) onto (ݐ,∞). The result then follows by definitions. 

Using Lemma (1.1.8), the known properties of eigenvalue and 

singular value functions on von Neumann algebras automatically 

transfer to the tracial C∗-algebra setting. 

Theorem (1.1.9)[1]: Let ि be a unital C∗-algebra with faithful tracial 

state ߬ and let ܶ, ܵ ∈  ि be self-adjoint operators. Then: 

(i) The map ݏ → ఛ்ߣ   .is non-increasing and right continuous (ݏ)

(ii) If ܶ ≥  0, lim
௦↘

ఛ்ߣ (ݏ)  = ‖ܶ‖and ்ߣఛ (ݏ) ≥ 0 for all ݏ ∈ [0,1). 

(iii) If ߪ(ܶ) denotes the spectrum of  ܶ , then lim
௦↗ଵ 

ఛ்ߣ (ݏ) =

ݐ|ݐ}݂݊݅ ∈ and  lim{(ܶ)ߪ
௦↘

ఛ்ߣ (ݏ) = sup{ݐ|ݐ ∈  .{(ܶ)ߪ

(iv) If ܵ ≤  ܶ , then ߣௌఛ(ݏ) ≤ ఛ்ߣ ݏ for all(ݏ) ∈ [0,1). 

(v) If ߙ ≥  0, then ߣ ߬ߣఈ்ఛ (ݏ) = ఛ்ߣߙ ାఈூि்ߣ and (ݏ)
ఛ = ఛ்ߣ (ݏ) +  for ߙ

all ݏ ∈ [0,1). 

(vi) ߣௌା்ఛ ݏ)  + (ݐ ≤ (ݏ)ௌఛߣ + ఛ்ߣ ,ݏ for all (ݐ) ݐ ∈ [0,1) with ݏ + ݐ < 1. 

(vii) |ߣௌఛ(ݏ) − ఛ்ߣ ܵ‖|(ݏ) − ܶ‖ for all ݏ ∈ [0,1). 
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(viii) ߬ (݂(ܶ)) = ∫ ఛ்ߣ)݂ ଵݏ݀((ݏ)
   for all continuous functions ݂:ℝ → ℝ. 

(ix) If ܶ ≥  0, then ߣ∗் 
ఛ (ݏ) ≤ ‖ܸ‖ଶ ்ߣఛ ݏ for all(ݏ) ∈ [0,1) and ܸ ∈

ि. 

(x) If ܷ ∈  ि is a unitary, then ߣ∗் 
ఛ (ݏ = ఛ்ߣ ݏ for all (ݏ) ∈ [0,1). 

(xi) If ܶ ≥  0, (்)ߣ
ఛ (ݏ) = ఛ்ߣ)݂ ݏ for all((ݏ) ∈ [0,1) and all continuous 

increasing functions ݂ ∶ [0,∞)  → ℝ with ݂ (0)  ≥  0. 

(xii) If ܵ, ܶ ≥  0, then ∫ ݂൫ߣௌା்ఛ ୲ݏ൯݀(ݏ)
 ≤ ∫ (ݏ)ௌఛߣ)݂ + ఛ்ߣ ୲ݏ݀((ݏ)

  for 

all ݐ ∈ [0,1] and all continuous, increasing, convex functions ݂ ∶

ℝ → ℝ. 

(xiii) If ܵ, ܶ ≥ 0, then ∫ ݂൫ߣௌା்ఛ ୲ݏ൯݀(ݏ)
 ≤ ∫ ݂൫ߣௌఛ(ݏ)൯ + ఛ்ߣ)݂ ୲ݏ݀((ݏ)

  for 

all ݐ ∈ [0,1] and all increasing concave functions ݂ ∶ ℝ → ℝ with 

݂(0)  =  0. 

Theorem (1.1.10)[1]: Let ि be a unital C∗-algebra with faithful 

tracial state ߬ and let ܶ ,ܵ,ܴ ∈  ि. Then: 

(i) ்ߤఛ (ݏ) = |்|ߤ
ఛ (ݏ) = ∗்ߤ

ఛ ݏ for all(ݏ) ∈ [0,1). 

(ii) ߤఈ்ఛ (ݏ) = ఛ்ߤ|ߙ| ݏ for all (ݏ) ∈ [0,1) and ߙ ∈ ℂ. 

(iii) ߤோ்ௌఛ ఛ்ߤ‖ܵ‖‖ܴ‖(ݏ) ݏ for all(ݏ) ∈ [0,1). 

(iv) ߤௌ்ఛ ݏ) + (ݐ    ≤ ఛ்ߤ(ݏ)ௌఛߤ  ,ݏ for all (ݐ) ∋  ݐ  [0, 1) with ݏ + > ݐ  1 

(v) ∫ ݂൫ߤௌା்ఛ ୲ݏ൯݀(ݏ)
 ≤ ∫ (ݏ)ௌఛߤ)݂ + ఛ்ߤ ୲ݏ݀((ݏ)

  for all ݐ ∈ [0,1] and all 

continuous increasing, convex functions ݂:ℝ → ℝ. 

(vi) ∫ ݂൫ߤௌା்ఛ ୲ݏ൯݀(ݏ)
 ≤ ∫ ݂൫ߤௌఛ(ݏ)൯ + ఛ்ߤ)݂ ୲ݏ݀((ݏ)

  for all ݐ ∈ [0,1] and 

all increasing concave functions ݂ ∶ ℝ → ℝ with ݂(0)  =  0. 

To define a notion of majorization for self-adjoint operators, we 

recall the following. 

Definition (1.1.11)[1]: For real-valued functions ݂,݃ ∈ ,ஶ[0ܮ  1], it 

is said that ݂ majorizes ݃, denoted ݃ ≺  ݂ , if 
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න ݏ݀(ݏ)∗݃
௧


 ≤  න ݏ݀(ݏ)∗݂

௧


 for all ݐ ∈  [0, 1]and න ݏ݀(ݏ)∗݃

ଵ



=  න ݏ݀(ݏ)∗݂
ଵ


 

where ݂∗ and ݃∗ are the non-increasing rearrangements of ݂ and ݃ 

(see Example (1.1.4)). 

The following example provides some intuition for 

majorization. 

Example (1.1.12)[1]: Let ݂ ∈ ,ஶ[0ܮ  1] be a real-valued function and 

fix {0 = ݏ   < ଵݏ <··· < ݏ =  1}. For ݇ ∈  {1, . . . ,݊}, let 

ߙ  =
1

ݏ − ିଵݏ
න ݏ݀(ݏ)∗݂
௦ೖ

௦ೖషభ
 

and let ݃ = ∑ 1[௦ೖషభ,௦ೖ)

ୀଵ , where 1 denotes the characteristic 

function of ܺ. 

We claim that  ≺  ݂ . Note ݃ is non-increasing and right continuous so 

݃∗  =  ݃. 

Furthermore, note 

න ݏ݀(ݏ)∗݂
௦ೖ


= න ݏ݀(ݏ)݃

௦ೖ


 

 for all ݇ ∈  {0, 1, . . . ,݊}. 

Suppose ݐ ∈ ,ିଵݏ]  (ݐ)݃ ]. Ifݏ  ≤ (ݏ)݃ then ,(ݐ)∗݂   ≤  for all (ݏ)∗݂ 

∋ ݏ ,ିଵݏ]  ,ିଵݏ as ݃ is constant on [ݐ  .] and ݂∗ is non-increasingݏ

Thus 

න (ݏ)∗݂ − ݏ݀(ݏ)݃
௧


= න (ݏ)∗݂ − ݏ݀(ݏ)݃ 

௧

௦ೖషభ
 ≥  0. 

Otherwise ݃(ݐ)  > (ݏ)݃ Hence .(ݐ)∗݂   > ∋ ݏ for all (ݏ)∗݂  ,ݐ]   ݃ ) asݏ

is constant on [ݏିଵ,  ) and ݂∗ is non-increasing. Thusݏ

න (ݏ)∗݂ − ݏ݀(ݏ)݃
௧


= න (ݏ)∗݂ − ݏ݀(ݏ)݃

௧

௦ೖషభ
≥ න (ݏ)∗݂ − ݏ݀(ݏ)݃

௦ೖ

௦ೖషభ
= 0. 
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Hence ݃ ≺  ݂ as claimed. 

Definition (1.1.13)[1]: Let ि be a unital C∗-algebra with a faithful 

tracial state τ . For self-adjoint elements ܶ, ܵ ∈  ि, it is said that ܶ 

majorizes S with respect to τ, denoted  ≺ఛ ܶ , if ߣௌఛ ≺ ఛ்ߣ . 

Example(1.1.14)[1]: Let ܶ, ܵ ∈ ℳ(ℂ) be self-adjoint with 

eigenvalues {ߣଵ ≥ ଶߣ ≥ · · · ≥ ଵߤ} } andߣ ≥ ଶߤ  ≥ · · · ≥  {ߤ

respectively. If ߬ is the normalized trace on Mn(C), then S ≺τ T if and 

only if 

ߤ



ୀଵ

  ≤  ߣ



ୀଵ

 for all ݉ ∈  {1, . . . ,݊ −  1}and ߤ



ୀଵ

=  ߣ



ୀଵ

 . 

There are several equivalent formulations of majorization of 

self-adjoint operators in tracial von Neuman algebras as the 

following theorem demonstrates. 

Theorem (1.1. 15)[1]:  Let ै be a von Neumann algebra with a 

faithful tracial state ߬ . Let ܶ , ܵ ∈  ै be positive operators. Then the 

following are equivalent: 

(i) ܵ ≺ఛ ܶ . 

(ii) ߬ ቀ൫ܵ – ܫैݎ  ൯ାቁ  ≤  ߬ ቀ൫ܶ – < ݎ ൯ାቁ for allैܫݎ   0 and ߬ (ܶ)  =

 ߬ (ܵ). 

(iii) ߬(݂ (ܵ))  ≤  ߬(݂ (ܶ)) for every continuous convex function 

݂:ℝ → ℝ. 

(iv) If ै is a factor, then for all self-adjoint ܵ,ܶ ∈ ै, ܵ ≺ఛ ܶ is 

equivalent to: 

ܵ ∈  convതതതതതത(࣯(ܶ)). 

ܵ ∈  conv൫࣯(ܶ)൯തതതതതതതതതതതതതതതത௪
∗

 . 

There exists a unital, trace-preserving, positive map Φ ∶  ै →

 ै such that ߔ(ܶ)  =  ܵ. 
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(v) There exists a unital, trace-preserving, completely positive map 

ߔ ∶  ै →  ै such that ߔ(ܶ)  =  ܵ. 

We see to what extent Theorem (1.1.15) generalizes to tracial C∗-

algebras. Note Lemma (1.1.8) immediately implies the following. 

Corollary (1.1.16)[1]: Let ि be a unital C∗-algebra with a faithful 

tracial state ߬. Let ܶ, ܵ ∈  ि be positive operators. Then the following 

are equivalent: 

(i) ܵ ≺ఛ ܶ . 

(ii) ߬ ቀ൫ܵ – ܫैݎ  ൯
ା
ቁ  ≤  ߬ ቀ൫ܶ – ݎ ൯ାቁ for allैܫݎ  > 0 and ߬(ܶ) =

 ߬(ܵ). 

(iii) ߬(݂ (ܵ)) ≤ ߬(݂(ܶ)) for every continuous convex function ݂ ∶ ℝ →

ℝ. 

For the remaining equivalences in Theorem (1.1.15), note part (v) 

does not make sense in an arbitrary C∗-algebra. We will mainly focus 

on part (iv) of Theorem (1.1.15) to which we have the following 

preliminary result. 

Lemma (1.1.17)[1]: Let ि be a unital C∗-algebra with a faithful 

tracial state ߬ and let T ∈  ि be self-adjoint. Then 

(i) If ߣ ∈ ℝ, then ܫߣि ≺ఛ ܶ if and only if ߣ =  ߬ (ܶ) 

(ii) If ܵ ∈  convതതതതതത(࣯(ܶ)), then ܵ =  ܵ∗ and  ≺ఛ ܶ . 

Proof. The first claim follows from Example (1.1.12) and part (viii) of 

Theorem (1.1.9). 

For the second claim, suppose {ܷ}ୀଵ ⊆ ि are unitary operators, 

ୀଵ{ݐ} ⊆ [0,1] are such that ∑ ݐ
ୀଵ , and ܴ = ∑ ݐ

ୀଵ ܷ∗ܷܶ . Then ܴ 

is self-adjoint and ߬(ܴ) =  ߬(ܶ). Moreover, by parts (v, x, xii) of 

Theorem (1.1.9), 

න ோఛߣ ݏ݀(ݏ)
௧


≤ න  ݐ



ୀଵ

௧


ೖ∗்ೖߣ
ఛ = ݏ݀(ݏ) න  ݐ



ୀଵ

௧


ఛ்ߣ  ݏ݀(ݏ)
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= න ఛ்ߣ ݏ݀(ݏ)
௧


 

for all ݐ ∈  [0, 1]. Thus ܴ ≺ఛ ܶ for all ܴ ∈ conv(࣯(ܶ)). 

If ܵ ∈  convതതതതതത(࣯(ܶ)), then clearly ܵ =  ܵ∗. The fact that ܴ ≺ఛ ܶ then 

follows by part (vii), the above paragraph, the fact that ߬ is norm 

continuous, and the fact that 

�� ቤන (ݏ)݂ − ݏ݀(ݏ)݃
௧


ቤ ≤ ‖݂ −  ݃‖ஶ�� ≤ 0 

for all ݐ ∈  [0, 1] and all bounded functions ݂ and ݃. 

It is unlikely that parts (vi, viii) of Theorem (1.1.15) holds in 

arbitrary tracial C∗-algebras due to the lack of ability to take weak∗-

limits of convex combinations of inner automorphisms. However, we 

have the following . 

Proposition (1.1.18)[1]: Let ि be a unital C∗-algebra with a faithful 

tracial state ߬ and let ߮ ∶  ि →  ि be a positive map. Then ߮ is unital 

and ߬ -preserving if and only if ߮(ܶ) ≺ఛ ܶ for all positive operators 

ܶ ∈  ि. 

Proof: Suppose ߮ is unital, positive, and τ -preserving. Let ܶ ∈  ि be 

positive. 

Then ߬(߮(ܶ))  =  ߬ (ܶ). Furthermore, for all ݎ >  0 notice 

߮(ܶ) – िܫݎ   =  ߮(ܶ − (िܫݎ   ≤  ߮((ܶ −  (ि)ାܫݎ 

so 

߬ ((߮(ܶ) − (ि)ାܫݎ   ≤  ߬ ൫߮((ܶ − ि)ା)൯ܫݎ   =  ߬ ((ܶ −  .(ि)ାܫݎ 

Hence Corollary (1.1.16) implies that (ܶ) ≺ఛ  ܶ . 

Conversely, suppose ߮ ∶  ि →  ि is a positive map such that 

߮(ܶ) ≺ఛ ܶ for all positive operators ܶ ∈  ि. By part (viii) of Theorem 

(1.1.9), 
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߬ (߮(ܶ))  = න (்)ఝߣ
ఛ ݏ݀(ݏ)

ଵ


= න ఛ்ߣ ݏ݀(ݏ)

ଵ


= ߬(ܶ) 

 for all positive operators ܶ ∈  ि. Hence ߮ is ߬ -preserving. Since 

ூिߣ
ఛ (ݏ)  =  1 for all ݏ ∈  [0,1), by parts (i, ii) of Theorem (1.1.9), 

‖(िܫ)߮‖ = lim
୲↘

න ఝ(ூि)ߣ
ఛ ݏ݀(ݏ)

ଵ


≤ lim

୲↘
න ூिߣ

ఛ ݏ݀(ݏ)
ଵ


= 1. 

Hence 0 ≤ (िܫ)߮   ≤ (िܫ)߮ ि. Ifܫ   ≠  ि, thenܫ 

0 = (िܫ)߬   − ((िܫ)߮)߬   = िܫ)߬  − ((िܫ)߮   >  0, 

a clear contradiction. Hence ߮(ܫि)  =  .िܫ 

There are many other forms of majorization for elements of ܮஶ[0, 1]. 

We have the following. 

Definition (1.1.19)[1]: Let ि be a unital C∗-algebra with a faithful 

tracial state ߬  . For ܶ, ܵ ∈  ि, it is said that T (absolutely) submajorizes 

ܵ with respect to ߬, denoted ܵ ≺ఛ
௪ ܶ, if 

න ݏ݀(ݏ)ௌఛߤ
௧


≤ න ఛ்ߤ ݏ݀(ݏ)

௧


 for all ݐ ∈ [0,1]. 

In this part, we will demonstrate for certain unital ܥ∗-algebras 

A with a faithful tracial state τ that ߬ (ܶ)ܫि  ∈  convതതതതതത(࣯(ܶ)) for all self-

adjoint ܶ ∈  Combined with the Dixmier property, this implies .ܣ

these C∗-algebras are simple; that is, have no closed ideals. We begin 

with definitions and examples of ܥ∗-algebras for which these results 

apply. 

Definition (1.1.20)[1]: A unital ܥ∗-algebra ि is said to have real 

rank zero if the set of invertible self-adjoint operators of ि is dense in 

the set of self-adjoint operators. Equivalently, ि has real rank zero if 

and only if every self-adjoint element of ि can be approximated by 

self-adjoint elements with finite spectrum. Also ि is said to have 

stable rank one if the set of invertible elements is dense in ि. 

Definition (1.1.21): Let ि be a unital ܥ∗-algebra and let ܲ,ܳ ∈  ि be 
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projections. It is said that ܲ and ܳ are Murray-von Neumann 

equivalent (or simply equivalent), denoted ܲ ∼  ܳ, if there exists an 

element ܸ ∈  ि such that ܲ =  ܸ∗ܸ and ܳ =  ܸ ܸ∗. It is said that ܲ is 

equivalent to a subprojection of ܳ, denoted ܲ ≲  ܳ, if there exists a 

projection ܳ′ ≤  ܳ such that ܲ ∼ ܳ′. 

Definition (1.1.22)[1]: Let ि be a unital ܥ∗-algebra with a faithful 

tracial state  . Then: 

(i) ि is said to have strong comparison of projections with respect to 

τ if for all projections ܲ,ܳ ∈ ि, ߬ (ܲ)  ≤  ߬ (ܳ) implies ܲ ≲  ܳ. 

(ii) ि is said to have strict comparison of projections with respect to τ 

if for all projections ܲ,ܳ ∈ ि, ߬ (ܲ)  <  ߬ (ܳ) implies ܲ ≲  ܳ. 

There are several ܥ∗-algebras that are known to have the above 

properties. 

Example (1.1.23)[1]: Type ܫܫଵ factors are well known to be unital 

 algebras that are simple, have real rank zero, and have strong-∗ܥ

comparison of projections with respect to a faithful tracial state, 

which happens to be unique. 

Example (1.1.24)[1]: It is not difficult to verify that UHF ܥ∗-algebras 

and the Bunce-Deddens algebras (specific direct limits of ℳ(ܥ(ܶ))) 

are unital, simple, real rank zero ܥ∗-algebras that have strong 

comparison of projections with respect to a faithful tracial state, 

which happens to be unique. However, as mentioned, there exists 

unital, simple, AF ܥ∗-algebras with unique tracial states that do not 

have strong comparison of projections. 

Example (1.1.25)[1]: As mentioned, irrational rotation algebras and, 

more generally, simple non-commutative tori for which the map from 

ܭ  to ℝ induced by the tracial state is faithful are examples of unital, 

simple, real rank zero ܥ∗-algebras that have strong comparison of 
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projections with respect to a faithful tracial state, which happens to 

be unique. 

Example (1.1.26): More generally, if ि is a unital, simple, ܥ∗-algebra 

with real rank zero, stable rank one, and a tracial state ߬ such that the 

induced map ߬∗  ∶ (ܣ)ܭ   → ℝ defined by ߬∗([ݔ])  =  is (ݔ) ߬ 

injective, then ि will have strong comparison of projections with 

respect to ߬ by cancellation.  

Example (1.1.27)[1]: It was demonstrated free minimal actions of 

ℤௗ  on Cantor sets give rise to crossed product ܥ∗ −algebras that have 

real rank zero, stable rank one, and strict comparison of projections 

with respect to their tracial states. 

Example (1.1.28)[1]: For certain tracial reduced free product ܥ∗-

algebras, implies simplicity, implies stable rank one, and implies real 

rank zero and strict comparison of projections. 

Notice that all of the ܥ∗-algebras presented above are simple. This 

turns out to be no coincidence. To see this, we prove the following 

result. 

Theorem (1.1.29)[1]: If ि and ߬ are as in the hypotheses of Theorem 

(1.1.37), then ि is simple and τ is the unique tracial state on ि. 

Proof. The following argument can be found, but is repeated for 

convenience of the reader. Suppose ℐis a non-zero ideal in ि. Let ܶ ∈

 ℐ\ {0} be positive. Therefore ߬(ܶ)ܫि  ∈  convതതതതതത(࣯(ܶ))  ⊆ ℐ  by 

Theorem (1.1.37). As ߬ is faithful, ߬(ܶ )  ≠  0 so  ℐ = ि. Hence ि is 

simple. 

Suppose ߬  is another tracial state on ि.  ߬ (ܵ)  = ߬ (ܶ ) for all 

ܵ ∈  convതതതതതത(࣯(ܶ)). Hence Theorem (1.1.37) implies. 

 ߬(ܶ )  =  ߬ (߬(ܶ)ܫि)  =  ߬(ܶ ). 

As this holds for all self-adjoint ܶ ∈ ि  , we obtain that ߬ =  ߬. 
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Example (1.1.30)[1]: To see why strict comparison of projections 

without arbitrarily small projections is not sufficient in Theorem 

(1.1.29), consider the ܥ∗-algebra ि =  ℂ⊕ ℂ  with the faithful tracial 

state ߬ ((ܽ, ܾ))  = ଵ
ଶ

(ܽ +  ܾ). It is clear that ि is a unital ܥ∗-algebra  

with real rank zero and strict comparison of projections with respect 

to ߬ . However,  ि is not simple. 

Note the following easily verified lemma which will be used 

often without citation. 

Lemma (1.1.31)[1]: Let ि be a unital ܥ∗-algebra and let ܶ, ܵ,ܴ ∈ ि.  

if ܶ ∈  convതതതതതത(࣯(ݏ)) and ܵ ∈ convതതതതതത(࣯(ܴ)), then ܶ ∈ convതതതതതത(࣯(ܴ)).  

To prove Theorem (1.1.37), it will suffice to prove the theorem 

for self-adjoint operators with finite spectrum by the assumption that 

ि has real rank zero. Combined with the following remark, it will 

suffice to consider self-adjoint operators with two points in their 

spectra. 

To prove Theorem (1.1.37) for self-adjoint operators with two 

points in their spectra, we will use equivalence of projections to 

construct matrix algebras and apply results on majorization for self-

adjoint matrices, to average part of one spectral projection with the 

other. Using a back-and-forth-type argument, we eventually obtain 

an operator in conv(࣯(ܶ)) that is almost ߬ (ܶ)ܫि. 

As ߬(ि) may not equal [0, 1], we may only divide projections up 

based on the size of another projection. As such, the following 

division algorithm result will be of use to us and is easily verified. 

Lemma (1.1.32)[1]: Let ݐ ∈  ቀ0, ଵ
ଶ
ቁ and write 1 =  ݇ଵݐ +  ଵ whereݎ 

݇ଵ  ∈ ℕ and 0 ≤ ଵݎ   < Then ݇ଵ .ݐ   ≥  2 and 0 ≤ ଵݎ  < ଵ
భାଵ

 

Furthermore, if ݎଵ ≠  0 and 1 =  ݇ଶݎଵ + ଶ for some ݇ଶݎ  ∈  ℕ  . and 0 ≤
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ଶݎ   ≤ ଵ, then ݇ଶݎ   ≥  ݇ଵ. 

The following lemma will be our method of constructing matrix 

algebras. However, the embedding of each matrix algebra into ि need 

not be a unital embedding. 

Lemma (1.1.33)[1]: Let ि be a unital ܥ∗-algebra with a faithful 

tracial state ߬ and let ܲ ∈  ि be a projection with (ܲ) ∈ ቀ,ଵ
ଶ
ቃ . Write 

1 =  ݇߬(ܲ) + ∋ ݇ where ݎ ℕ  and 0 ≤ > ݎ   ߬ (ܲ). If  

(i) ि has strong comparison of projections with respect to ߬ and ℓ =

 ݇ −  1, or 

(ii) ि has strict comparison of projections with respect to ߬ , ݎ ≠ 0, and 

ℓ =  ݇ −  1, or 

(iii) ि has strict comparison of projections with respect to ߬ , and ℓ =

 ݇ −  2, then there exists pairwise orthogonal subprojections ൛ ܲൟୀଵ
ℓ

  of 

{ܲ} ि –ܲ such thatܫ ∪ ൛ ܲൟୀଵ
ℓ

 are equivalent in ि. 

Proof: Notice ߬ (ܫि −  ܲ) = (݇ − 1)߬ (ܲ)  + ≤ ݇ Since .ݎ   2, ߬ (ܲ)  ≤

िܫ) ߬  −  ܲ) with strict inequality when ݎ ≠  0. Therefore, by 

assumptions, there exists a subprojection ଵܲ of ܫि − ܲ such that ଵܲ ∼

 ܲ. If ݇ ≥  3 (and ℓ ≥  2), there exists a subprojection ଶܲ of ܫि −  ܲ −

 ଵܲ such that ଶܲ ∼  ܲ. By repeating this argument, we obtain pairwise 

orthogonal subprojections ൛ ܲൟୀଵ
ℓ

  of ܫि −  ܲ such that ܲ ∼ ܲ for all ݆. 

As Murray-von Neumann equivalence is an equivalence relation, the 

result follows. 

We now divide the proof of Theorem (1.1.37) for T with two 

point spectra into twoparts: Lemma (1.1.34) proves the result when 

ि has strong comparison of projections, and Lemma (1.1.33) will 

modify the argument to obtain the result in the other case. In that 

which follows, diag(ܽଵ, . . . , ܽ) denotes the diagonal ݊ ×  ݊ matrix 
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with diagonal entries ܽଵ, . . . ,ܽ. 

Lemma (1.1.34)[1]: Let ि be a unital ܥ∗-algebra with real rank zero 

that has strong comparison of projections with respect to a faithful 

tracial state  . If ܲ ∈  ि is a projection, ܽ, ܾ ∈ ℝ, and ܶ =  ܽܲ +

िܫ)ܾ  −  ܲ), then ߬ (ܶ)ܫि  ∈  convതതതതതത(࣯(ܶ)). 

Proof. By interchanging ܲ and ܫि −  ܲ , we may assume that ߬ (ܲ) ≤
ଵ
ଶ
 . Let ݎ = ߬ (ܲ)  and write 1 =  ݇ଵݎ  + ଵ  where ݇ଵݎ  ∈  ℕ, ݇ଵ ≥  2 

and 0 ≤ ଵݎ  ≤ min ቄݎ, < ଵ
భାଵ

  ቅ < ଵ
ଶ
 . By Lemma (1.1.40) there are 

pairwise orthogonal subprojections ൛ܳൟ ୀଵ
భିଵ of ܫि − ܲ such that 

{ܲ} ∪ ൛ܳൟ ୀଵ
భିଵ are equivalent in ि. Let ଵܲ = िܫ −  ܲ ∑ ܳ

భିଵ
ୀଵ   . Using 

the equivalence of {ܲ} ∪ ൛ܳൟ ୀଵ
భିଵ  , a copy of ℳభ(ℂ) may be 

constructed in ि with unit ܫि − ଵܲ. Using this matrix subalgebra, ܶ 

can be viewed as the operator  

ܶ =  diag(ܽ, ܾ, . . . , ܾ)  ⊕  ܾ ଵܲ  ∈  ℳభ(ℂ)⊕  ଵܲि ଵܲ  ⊆ ि. 

Since any self-adjoint matrix majorizes its normalized trace, we 

obtain by that 
ܽ +  (݇ଵ  −  1)ܾ

݇ଵ
భܫ ∈   convതതതതതത(࣯ (diag(ܽ, ܾ, . . . , ܾ))) 

where the unitary orbit is computed in ℳభ(ℂ). Therefore, if ܽଵ  =
ା(భିଵ) 

(భ
, we obtain by using a direct sum argument that 

ଵܶ ∶=  ܽଵ(ܫि −  ଵܲ)  +  ܾ ଵܲ  ∈  convതതതതതത(࣯(ܶ)). 

Notice ( ଵܲ)  = ଵݎ ଵ . Ifݎ  =  0, the proof is complete (as ߬ ( ଵܶ)  =

 ߬ (ܶ)). Otherwise, by writing 1 =  ݇ଶݎଵ  + ଶ where ݇ଶݎ  ∈  ܰ, ݇ଶ ≥  ݇ଵ, 

and 0 ≤ ଶݎ   ≤ min ቄݎଵ, ଵ
మାଵ

  ቅ and by repeating the above argument, 

there exists a projection ଶܲ  ∈  ि such that ߬ ( ଶܲ) =  ଶ andݎ 
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ଶܶ ∶= ܽଵ ଶܲ +
ܾ +  (݇ଶ −  1)ܽଵ

 ݇ଶ
(ि– ଶܲܫ)  ∈  convതതതതതത(࣯( ଵܶ))  

⊆   convതതതതതത(࣯(ܶ)). 

Notice if ݎଶ =  0, the proof is again complete. 

Repeat the above process ad infinitum. Notice that the proof is 

complete if the process ever terminates via a zero remainder. As 

such, we may assume that we have found a non-decreasing sequence 

(݇)ஹଵ  ⊆ ℕ with ݇ଵ ≥  2, a sequence (ݎ)ஹଵ  ⊆ ቀ0, ଵ
ଶ
ቃ  with 1 =

݇ାଵݎ  + } ାଵ, projectionsݎ ܲ}ஹଵ ⊆  ि with ߬( ܲ)  =  , sequencesݎ 

(ܽ)ஹଵ, (ܾ)ஹଵ  ⊆ ℝ such that 

 ܽ ାଵ =  
(݇ଶାଵ  −  1)ܾ

݇ଶାଵ
 and ܾାଵ =

(݇ଶାଵ  −  1)ܽାଵ
݇ଶାଵ

 , 

and operators 

ଶܶ =  ܽ ଶܲ +  ܾ(ܫि– ଶܲ) and ଶܶାଵ  =  ܾ ଶܲାଵ  +  ܽାଵ(ܫि −  ଶܲାଵ) 

such that ܶ ∈   convതതതതതത(࣯(ܶ)) for all ݊. 

If ܽ ≤  ܾ, it is elementary to verify that 

ܽ ≤ ܽଵ  ≤ ܽଶ  ≤···≤ ܾଶ  ≤ ܾଵ ≤ ܾ 

(as averages are used to construct each ܽ and ܾ). Similarly, if ܾ ≤

 ܽ, then 

ܾ ≤  ܾଵ  ≤  ܾଶ  ≤ ··· ≤  ܽଶ  ≤  ܽଵ  ≤  ܽ. 

As a result, (ܽ)ஹଵ and (ܾ)ஹଵ are bounded monotone sequence of 

R and thus converge. Let 

ܽᇱ = lim
→ஶ

ܽ   ܽ݊݀ ܾᇱ =  lim
→ஶ

ܾ . 

 If the non-decreasing sequence (݇)ஹଵ is bounded (and thus 

eventually constant), using  the fact that ݇ଵ ≥  2 we obtain ܽ′ =  ܾ′ by 

taking the limit of one relations between an and bn. If (݇)ஹଵ is 

unbounded, then by using the fact that 
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lim
→ஶ

ฬܿ −  
ܿ + ݉݀
݉ + 1 ฬ =  |ܿ –  ݀|   

we again obtain ܽ′ =  ܾ′. 

 Let ߳ >  0 and choose n such that |ܽ  − ܽ′| <  ߳ and |ܾ  − ܽ′| <  ߳. 

Then ‖ ଶܶ − ‖िܫ′ܽ    <  ߳ so 

dist (ܽ′ܫि, convതതതതതത(࣯(ܶ)))  ≤  ߳. 

Hence ܽᇱܫि ∈  convതതതതതത(࣯(ܶ)). Since every element of convതതതതതത(࣯(ܶ)) has 

trace equal to ߬ (ܶ), we obtain ܽ′ =  ߬(ܶ) thereby completing the 

result. 

Lemma (1.1.35)[1]: Let ि be a unital ܥ∗-algebra with real rank zero 

and property (b) of Theorem (1.1.37) with respect to a faithful tracial 

state  . If ܲ ∈  ि is a projection, ܽ, ܾ ∈ ℝ, and ܶ = ܽܲ + िܫ)ܾ  − ܲ), 

then ߬(ܶ)ܫि ∈  convതതതതതത(࣯(ܶ)). 

Proof. Notice, by case (ii) of Lemma (1.1.40), that the recursive 

algorithm in the proof of Lemma (1.1.41) works at the ݊୲୦  stage in 

this setting provided ݎ ≠  0. Therefore, if ݎ ≠  0 for all ݊ ∈ ℕ, the 

proof is complete. Otherwise, if n is the first number in the algorithm 

for which ݎ =  0, notice ݎିଵ  = ଵ


 . Thus it suffices to prove the 

result in the case that ߬(ܲ)  = ଵ


 for some ݇ ∈ ℕ with ݇ ≥ 2. 

If ݇ ≥  3, we can apply the algorithm in Lemma (1.1.41) by viewing 

the remainders as being ଵ


 instead of zero. Indeed the proof of 

Lemma(1.1.34) may be adapted using case (iii) instead of case (iii) of 

Lemma (1.1.33) to construct (݇  −  1)  ×  (݇  −  1) matrix algebras 

(instead ݂ ݇  ×  ݇) and by using the new scalars 

ܽ ାଵ =  
ܽ + (݇ଶାଵ  −  2)ܾ

݇ଶାଵ
 and ܾାଵ =

ܾ(݇ଶାଶ  −  2)ܽାଵ
݇ଶାଶ − 1  , 

The remainder of the proof then follows as in Lemma (1.1.41). Thus it 



28 
 

remains to prove the result in the case ߬(ܲ)  = ଵ
ଶ
. 

Since ि has property (b), there exists a projection ܲ  ≤ िܫ  −  ܲ with 

߬( ܲ)  < ଵ
ଶ
. Consider 

ܶ  =  ܽܲ +  ܾ ܲ  ∈  (ܲ +  ܲ)ܣ(ܲ +  ܲ). 

As (ܲ +  ܲ)ि(ܲ +  ܲ) satisfies the assumptions of this lemma and 

since 

߬( ା బ)(ܲ) =
1

߬(ܲ +  ܲ) ߬
(ܲ) ≠

1
2

, 

the above cases imply there exists ߙ  ∈ ℝ such that ߙ(ܲ +  ܲ)  ∈

  convതതതതതത(࣯( ܶ)) where convതതതതതത(࣯( ܶ)) is computed in (ܲ +  ܲ)ि(ܲ +

 ܲ). Consequently 

ܲ)ߙ + ܲ)  + िܫ)ܾ  − ܲ −  ܲ)  ∈  convതതതതതത(࣯(ܶ)) 

by a direct sum argument. As ߬(ܲ +  ܲ)  = ଵ
ଶ
, the above cases imply 

there exists ߙ ∈ ℝ such that ܫߙि ∈ convതതതതതത(࣯(ܶ)). As every element of 

convതതതതതത(࣯(ܶ)) has trace ߬(ܶ),ߙ =  ߬(ܶ) completing the result. 

Lemma (1.1.36)[1]: Let ि and ߬ be as in the hypotheses of Theorem 

(1.1.37). If ܶ ∈  ि is a self-adjoint operator with finite spectrum, then 

िܫ(ܶ)߬ ∈  convതതതതതത(࣯(ܶ)). 

Proof. By assumption there exist pairwise orthogonal non-zero 

projections { ܲ}ୀଵ  and scalars {ߙ}ୀଵ ⊆ ℝ such that  = ∑ ߙ ܲ

ୀଵ  . 

By applying Lemma(1.1.34)  (1.1.35) to ߙଵ ଵܲ + ଶߙ  ଶܲ in ( ଵܲ +

ଶܲ)ि( ଵܲ + ଶܲ) and by appealing to a direct sum argument, there 

exists a ߚ ∈ ℝ such that 

)ߚ ଵܲ + ଶܲ)  +  ߙ  ܲ



ୀଷ

∈  convതതതതതത(࣯(ܶ)). 

By iterating this argument another ݊ −  2 times, there exists a 

∋ ߚ ℝ such that ܫߚि ∈  convതതതതതത(࣯(ܶ)). As every element 
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of  convതതതതതത(࣯ (ܶ)) has trace ߬(ܶ),ߚ =  ߬(ܶ) completing the result. 

Theorem (1.1.37)[1]: Let ि be a unital C∗-algebra with real rank 

zero. Suppose ߬ is a faithful tracial state on ि such that either: 

(a) ि has strong comparison of projections with respect to ߬ , or  

(b) ि has strict comparison of projections with respect to ߬ and for 

every ݊ ∈ ℕ there exists a projection ܲ ∈  ि such that 0 <  ߬ (ܲ)  < ଵ


. 

Then τ (ܶ)ܫि  ∈  convതതതതതത(࣯(ܶ))  for all self-adjoint ܶ ∈ ि. 

Once Theorem (1.1.29) is established, we easily obtain the 

following . 

Proof: Let ܶ ∈  ि be self-adjoint. Let ߳ >  0. Since ि has real rank 

zero, there exists a self-adjoint operator T0 ∈ ि with finite spectrum 

such that ฮܶ –  ܶฮ  < ߳.  Notice this implies dist (ܴ, convതതതതതത(࣯(ܶ)))  ≤

 ߳ for all ܴ ∈  convതതതതതത(࣯ ( ܶ)). 

By Lemma (1.1.44), ߬( ܶ)ܫि ∈  convതതതതതത(࣯ ܶ)). Since |߬( ܶ)  −  ߬(ܶ)| < ߳, 

we obtain 

dist (߬(ܶ)ܫि, convതതതതതത(࣯(ܶ)))  <  2߳. 

As ߳ was arbitrary, the result follows. 

Note the set of projections contained in ℐ is closed under taking 

subprojections (as ℐ is hereditary) and is closed under Murray-von 

Neumann equivalence (as ℐis an ideal). Therefore, by part (iii) of 

Lemma (1.1.33), there exists a projection ܲ ∈  ℐ with ߬(ܲ)  ≥ ଵ
ଶ
. 

If ߬(ܲ) = ଵ
ଶ
, choose a non-zero projection ܲ′ ≤P with ߬(ܲ′)  < ଵ

ଶ
 

and a subprojection ܳ of ܫि − P with ߬(ܳ)  =  ߬(ܲ′) such that ܳ ∼  ܲ′. 

Hence  ∈ ℐݏ ܫ ܲ +  ܳ ∈ ℐ. As ߬(ܲ +  ܳ)  > ଵ
ଶ
, we have reduced to the 

case ߬(ܲ)  > ଵ
ଶ
. 

If ߬(ܲ)  > ଵ
ଶ
, then ܫि − ܲ is equivalent to a subprojection of ܲ 
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and thus ܫि − ܲ ∈ ℐ. Since ܲ ∈ ℐ, this implies ܫि ∈ ℐ so ℐ = ि. 

We will demonstrate the following theorem which 

characterizes  convതതതതതത(࣯ (ܶ)) for self-adjoint ܶ in various ܥ∗-algebras 

using the notion of majorization. 

Lemma (1.1.38)[1]: Let ि and τ be as in Theorem (1.1.42). Suppose 

ܵ,ܶ ∈  ि are self-adjoint operators with finite spectrum. Then there 

exists two collections of pairwise orthogonal non-zero projections 

{ ܲ}ୀଵ  and {ܳ}ୀଵ  with 

 ܲ



ୀଵ

 = ܳ



ୀଵ

  = )߬ ݀݊ܽ  िܫ  ܲ)  =  ߬(ܳ) ݂ݎ ݈݈ܽ ݇  

and scalars {ߙ}ୀଵ , ୀଵ{ߚ}  ⊆ ℝ with ߙ  ≥ ߚ ାଵ andߙ  ≥  ାଵߚ

such that 

ܶ = ߙ ܲ



ୀଵ

  ܽ݊݀ ܵ = ߚܳ



ୀଵ

 . 

Proof. Since ܶ and ܵ have finite spectrum, there exists two 

collections of pairwise orthogonal non-zero projections { ܲ
ᇱ }ୀଵ  and 

{ܳᇱ }ୀଵ  with ∑ ܲ

ୀଵ = ∑ ܳ

ୀଵ = ᇱߙ}  ि and scalarsܫ }ୀଵ , ᇱߚ} }ୀଵ ⊆

ℝ with ߙᇱ > ାଵᇱߙ ᇱߚ ݀݊ܽ ߙ > ାଵᇱߚ  such that 

ܶ = ߙᇱ ܲ
ᇱ



ୀଵ

  ܽ݊݀ ܵ = ߚᇱ


ୀଵ

ܳᇱ  . 

Suppose ߬( ଵܲ
ᇱ)  ≥  ߬(ܳଵᇱ ). Since ि has strong comparison of 

projections, there exists a projection ଵܲ ∈ ि such that ߬( ଵܲ) =  ߬(ܳଵᇱ ) 

and ଵܲ  ≤ ଵܲ
ᇱ . Letting ܳଵ  = ܳଵᇱ  , we have 

ܶ = ଵᇱߙ ଵܲ  + ଵᇱߙ  ( ଵܲ − ଵܲ
ᇱ)  + ߙᇱ ܲ

ᇱ


ୀଶ

  and ܵ = ଵᇱܳଵߚ  + ߚᇱ


ୀଶ

ܳᇱ  . 

Similarly, if ߬( ଵܲ
ᇱ)  ≤  ߬(ܳଵᇱ), there exists a projection ܳଵ ∈  ि such 

that ߬( ଵܳ)  =  ߬( ଵܲ
ᇱ) and ܳଵ  ≤ ܳଵᇱ . Letting ଵܲ  =  ଵܲ

ᇱ, we have 
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ܶ = ଵᇱߙ ଵܲ  + ߙᇱ ܲ
ᇱ



ୀଶ

  and ܵ = ଵᇱܳଵߚ  + ଵᇱ(ܳଵᇱߚ + − ܳଵ) + ߚᇱ


ୀଶ

ܳᇱ  . 

By repeating this argument at most another ݉ +  ݈ −  1 times (for 

the next iteration, using ଶܲ
ᇱ and ܳଶᇱ  when ߬( ଵܲ

ᇱ)  =  ߬(ܳଵᇱ) and 

otherwise using ଵܲ
ᇱ  −  ଵܲ and ܳଶᇱ  in the first case and ଶܲ

ᇱ and ܳଵᇱ  −  ଵܳ 

in the second case), the result follows. 

The following result enables us to reduce Theorem (1.1.42) to 

the case of self-adjoint operators with finite spectrum.  

Lemma (1.1.39)[1]: Let ि and τ be as in Theorem (1.1.42). If ܵ, ܶ ∈

 ि are self-adjoint operators, then for every ϵ > 0 there exists self-

adjoint operators ܵ′, ܶ′ ∈  ि with finite spectrum such that 

‖ܶ −  ܶᇱ‖  <  ߳,    ܽ݊݀ ‖ܵ −  ܵ′‖  <  ߳. 

Furthermore: 

(i) ܶᇱ ≺ఛ ܶ ܽ݊݀ ܵ′ ≺ ߬ ܵ. 

(ii) If S, T ≥ 0, then ܵ′, ܶ′ ≥  0. 

(iii) If  ≺ఛ  ܶ , then ܵᇱ ≺ఛ  ܶ′. 

(iv) If ܵ,ܶ ≥  0 and ܵ ≺ఛ
௪  ܶ, then ܵ′ ≺  .′ܶ ఛ௪ݓ

(v) If ߣௌఛ(ݏ)  ≤ ఛ்ߣ ∋ ݏ for all(ݏ)  [0, 1), then ߣௌᇲ
ఛ (ݏ)  ≤ ᇲ்ߣ

ఛ ∋ ݏ for all(ݏ) 

[0, 1). 

Proof. Let ߳ >  0. Since ि has real rank zero, there exists self-adjoint 

operators ܶ, ܵ  ∈ ि with finite spectrum such that 

 ‖ܶ −  ܶ‖  ≤
߳
2

 ܽ݊݀ ‖ܵ –  ܵ‖  ≤
߳
2

 . 

Let { ܲ}ୀଵ  , {ܳ}ୀଵ , ୀଵ{ߙ} , and{ߚ}ୀଵ  be as in the conclusions of 

Lemma(1.1.22) so that 

ܶ  = ߙ ܲ



ୀଵ

  ܽ݊݀ ܵ  = ߚܳ



ୀଵ

 . 

and, for each ݇ ∈ {0, 1, . . . ,݊}, let ݏ = ∑ ߬( ܲ)
 ୀଵ  . Notice s୩ < ݇ + 1 
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for all ݇, ݏ  =  0, ݏ  < ݏ  =  1, and ߣ௦బ
ఛ (ݏ) = ௦బߚ  andߙ

ఛ (ݏ) =   forߙ

all ݏ ∈ ,ିଵݏ] ݇ ). For eachݏ ∈ {0, 1, . . . ,݊}, let 

ᇱߙ =
1

ݏ − ିଵݏ
න ఛ்ߣ ݏ݀ (ݏ)
௦ೖ

௦ೖషభ
 and  ߚᇱ =

1
ݏ − ିଵݏ

න ఛ்ߣ ݏ݀ (ݏ)
௦ೖ

௦ೖషభ
, 

and let 

ܶ′ = ߙᇱ ܲ
ᇱ



ୀଵ

     ܽ݊݀    ܵᇱ  = ߚᇱ


ୀଵ

ܳᇱ  . 

We claim ܶ′ and ܵ′ are the desired self-adjoint operators, implies 

ܶᇱ ≺ఛ  ܶ and ܵᇱ ≺ఛ  ܵ. Furthermore, if ܵ, ܶ ≥  0, then ߣௌఛ(ݏ) and ்ߣఛ  (ݏ)

are non-negative functions. Consequently ߙᇱ ᇱߚ, ≥ 0 for all 

݇, ᇱ,ܶᇱܵ ݏ  ≥  0. 

    To see that ‖ܶ −  ܶ′‖ <  ߳, it suffices to show that ‖ ܶ −  ܶ′‖ ≤ ఢ
ଶ
. 

For each ݇, notice 

ߙ| − ᇱߙ | ≤
1

ݏ − ିଵݏ
න ߙ| − ఛ்ߣ ݏ݀ |(ݏ)
௦ೖ

௦ೖషభ
 

=
1

ݏ − ିଵݏ
න หߣ

బ்
ఛ (ݏ) − ఛ்ߣ ݏ݀ ห(ݏ)

௦ೖ

௦ೖషభ
 

=
1

ݏ − ିଵݏ
න ‖ ܶ  − = ݏ݀ ‖ ܶ   ‖ ܶ  −  ܶ ‖ <

߳
2

௦ೖ

௦ೖషభ
 

As this holds for all ݇, we obtain ‖ ܶ  −  ܶᇱ‖  ≤ ఢ
ଶ
. The same 

arguments show ‖ܵ −  ܵᇱ‖  <  ߳. 

   Suppose  ܵ ≺ఛ  ܶ . Notice , that ߙᇱ  ≥ ାଵᇱߙ \ and ߚᇱ  ≥ ାଵᇱߚ  for all ݇. 

Consequently ்ߣᇲ
ఛ (ݏ)  = ᇱߙ and ߣௌᇲ

ఛ (ݏ)  = ᇱߚ  for all s ∈ ,ିଵݏ]  .(ݏ

This along with the definition of ߙᇱ  and ߚᇱ  implies 

න ᇲ்ߣ
ఛ ݏ݀ (ݏ)

௦ೖ

௦ೖషభ
= න ఛ்ߣ ݏ݀ (ݏ)

௦ೖ

௦ೖషభ
 and න ௌᇲߣ

ఛ ݏ݀ (ݏ)
௦ೖ

௦ೖషభ
= න ݏ݀ (ݏ)ௌఛߣ

௦ೖ

௦ೖషభ
 

for all ݇. In particular, by adding integrals, we obtain 
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න ᇲ்ߣ
ఛ ݏ݀ (ݏ)

ଵ


= න ఛ்ߣ ݏ݀ (ݏ)

௦ೖషభ


 = න ݏ݀ (ݏ)ௌఛߣ

ଵ


= න ௌᇲߣ

ఛ ݏ݀ (ݏ)
ଵ


. 

For an arbitrary ݐ ∈  [0, 1], choose ݇ ∈  {1, . . . ,݊} such that ݐ ∈

,ିଵݏ]   ] and noticeݏ

න ᇲ்ߣ
ఛ (ݏ) − ௌᇲߣ

ఛ ݏ݀ (ݏ)
௧



= න ఛ்ߣ (ݏ) − ݏ݀(ݏ)ௌఛߣ 
௦ೖషభ


 +න ᇲ்ߣ

ఛ (ݏ) − ௌᇲߣ
ఛ ݏ݀ (ݏ)

௧

௦ೖషభ
. 

To see the left-hand-side is always non-negative, we note that 

ᇲ்ߣ
ఛ (ݏ) − ௌᇲߣ

ఛ ᇲ்ߣ  If .(݇ݏ ,ିଵݏ] is constant on (ݏ)
ఛ (ݏ) − ௌᇲߣ

ఛ (ݏ) ≥ 0 on 

 then ,(݇ݏ ,ିଵݏ]

න ᇲ்ߣ
ఛ (ݏ) − ௌᇲߣ

ఛ ݏ݀ (ݏ)
௧


≥ න ఛ்ߣ (ݏ) − ݏ݀(ݏ)ௌఛߣ 

௦ೖషభ


 ≥ 0. 

Otherwise ்ߣᇲ
ఛ (ݏ) − ௌᇲߣ

ఛ (ݏ)  < 0 on [ݏିଵ, ݇ݏ) so  

         න ᇲ்ߣ
ఛ (ݏ) − ௌᇲߣ

ఛ ݏ݀ (ݏ)
௧


 

≥ න ఛ்ߣ (ݏ) − ݏ݀(ݏ)ௌఛߣ 
௦ೖషభ


 +න ᇲ்ߣ

ఛ (ݏ) − ௌᇲߣ
ఛ ݏ݀ (ݏ)

௦ೖ

௦ೖషభ
 

                 = න ఛ்ߣ (ݏ) − ݏ݀(ݏ)ௌఛߣ 
௦ೖషభ


+ න ఛ்ߣ (ݏ) − ݏ݀(ݏ)ௌఛߣ 

௦ೖ

௦ೖషభ
≥ 0 

Hence, ܵᇱ ≺ఛ ܶ′ when ≺ఛ ܶ . 

  If ܵ, ܶ ≥  0 and ܵ ≺ఛ
௪ ܶ, then the proof that ܵᇱ ≺ఛ

௪ ܶᇱ follows 

from the above proof  (ignoring the part that shows ∫ ௌᇲߣ
ఛ ଵ(ݏ)ݏ݀

 =

∫ ᇲ்ߣ
ఛ ଵ(ݏ)ݏ݀

 . 

If ߣௌఛ(ݏ)  ≤ ఛ்ߣ ∋ ݏ for all (ݏ)  [0, 1), then ߚᇱ  ≤ ᇱߙ  for all ݇ and thus 

ௌᇲߣ
ఛ (ݏ)  ≤ ᇲ்ߣ

ఛ ∋ ݏ for all (ݏ)  [0, 1). 

The following result for elements of  ℳଶ(ℂ) is referred to as a 

pinching. 
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Lemma (1.1.40)[1]: Let ि and ߬ be as in Theorem (1.1.42). If ܲ ∈  ि 

is a projection, ܽ, ܾ ∈ ℝ, and ܶ =  ܽܲ + िܫ)ܾ  −  ܲ), then for all ݐ ∈

 [0, 1], 

ܶݐ + (1 − िܫ(ܶ)߬(ݐ 
= ݐܽ)  + ߬(ܶ)(1 − + ܲ((ݐ  + ݐܾ)   ߬(ܶ)(1 − िܫ)((ݐ  −  ܲ)

∈  convതതതതതത(࣯(ܶ)). 

Proof. Fix ݐ ∈  [0, 1] and let 

ܽ′ = + ݐܽ   ߬(ܶ )(1 − ′ܾ  and   (ݐ  = + ݐܾ   ߬(ܶ)(1 −  .(ݐ 

Since ߬(ܶ )  =  ܽ߬(ܲ ) + िܫ)ܾ߬  − ܲ )  ∈  conv({ܽ, ܾ}), we obtain that 

ܽ′ , ܾ ′ ∈  conv({ܽ, ܾ}). 

By interchanging ܲ and ܫि −  ܲ, we may assume that ߬(ܲ ) ≤ ଵ
ଶ
. 

Since ि has strong comparison of projections, there exists a 

projection ܳ ∈ ि such that ܳ ∼  ܲ and  ≤ िܫ −  ܲ . Consequently, 

using the partial isometry implementing the equivalence of ܲ and ܳ, 

a copy of ℳଶ(ℂ) may be constructed in (ܲ +  ܳ)ि(ܲ +  ܳ) so that ܲ 

and ܳ are the two diagonal rank one projections. Hence T can be 

viewed as the operator 

ܶ =  (ܽܲ +  ܾܳ)  ⊕ िܫ )ܾ  −  ܲ −  ܳ)  

∈ ℳଶ(ℂ) ⊕ िܫ )  −  ܲ −  ܳ)ि(ܫि −  ܲ −  ܳ) ⊆  .ܣ 

Choose ܾᇱᇱ  ∈ ℝ  so that ܾᇱ′ +  ܽᇱ  =  ܽ +  ܾ. Notice ܾᇱᇱ ∈

 conv({ܽ, ܾ}) as ܽ′ ∈ conv({ܽ, ܾ}). We see that 

diag(ܽᇱ, ܾᇱᇱ) ≺ଵ
ଶTr

 diag(ܽ, ܾ) 

where ଵ
ଶ

Tr is the normalized trace on ℳଶ(ℂ) (which agrees with 

߬ ାொ ). Thus  

ܽ′ܲ +  ܾ′′ܳ + िܫ)ܾ  −  ܲ −  ܳ)  ∈  convതതതതതത(࣯(ܶ )). 

By applying Theorem (1.1.37) to ܾᇱᇱ ܳ + िܫ )ܾ  −  ܲ − िܫ ) ݊݅ (ܳ  −

 ܲ )ि( ܫि −  ܲ ) and by applying a direct sum argument, we obtain 
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that 

ܽ′ܲ + िܫ )′′′ܾ  −  ܲ )  ∈  convതതതതതത(࣯(ܶ )) 

for some ܾᇱᇱᇱ  ∈ ℝ. As every element of convതതതതതത(࣯(ܶ )) has trace ߬(ܶ), 

one can verify that ܾᇱᇱᇱ =  ܾᇱ . 

The following result contains the main technical details 

necessary for a recursive argument in the proof of Theorem (1.1.42). 

In particular, it will enable us to systematically apply pinchings. 

Lemma (1.1.41)[1]: Let ि and ߬ be as in Theorem (1.1.42). Suppose 

{ ܲ}ୀଵ  is a collection of pairwise orthogonal projections with 

∑ ܲ

ୀଵ = ,िܫ ୀଵ{ߙ} , ୀଵ{ߚ} ⊆ ℝ with ߚ ≥  ାଵ  for  all ݇, andߚ 

ܶ = ߙ ܲ



ୀଵ

  ܽ݊݀   ܵ = ߚܳ



ୀଵ

 . 

Suppose further that ܵ ≺ఛ  ܶ and there exists ܽ j such that ߙ  ≥  ଵ forߚ 

all ݇ <  ݆, ߙ  < ߙ ଵ, andߚ   ≥ ≤ ݇ ାଵ for allߙ   ݆. Then there exists 

ᇱߙ} }ୀଵ ⊆ ℝ such that ߙଵᇱ = ߙ,ଵߚ  = ߙ   ≥ > ଵ for all 1ߚ   ݇ <  ݆,

ᇱߙ ≥ ାଵᇱߙ   for all ݇ ≥  ݆, and 

ܶ′ =  ߙᇱ ܲ



ୀଵ

∈ convതതതതതത(࣯(ܶ)). ݇ = 1∑݊ 

Furthermore, if  ܳ = ∑ ܲ

ୀଶ  , then ܳܵܳ ≺ఛ  ܳܶᇱܳ in ܳिܳ. 

Proof. Note ݆ ≥  2  along with the fact that  ܵ ≺ఛ ܶ . In addition, note 

ଵߙ > ߙ . 

Consider 

ܶ = ଵߙ  ଵܲ  + ߙ  ܲ ∈  ൫ ଵܲ  +  ܲ൯ि( ଵܲ +  ܲ). 

If ߚଵ  ∈  [߬భାೕ( ܶ), ଵߚ ଵ] writeߙ = ଵߙݐ + (1 − )భାೕ߬(ݐ ܶ) with ݐ ∈

[0, 1] and let 

ଵᇱߙ = ,ଵߚ  ߙ = ߙݐ  + (1 − )భାೕ߬(ݐ  ܶ), and ߙ′ = ≠ ݇  for allߙ  1, ݆. 

Otherwise, if ߚଵ ∉ [߬భାೕ( ܶ),ߙଵ] , let 
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ଵᇱߙ = ߙ   = ߬భାೕ( ܶ), and ߙᇱ  = ݇  for allߙ  ≠  1, ݆. 

Notice, in this later case, that ߙଵᇱ  = ᇱߙ  >  and ܶ′ will need 1_ߙ ଵ soߚ 

to be modified again later to obtain the desired (see the last 

paragraph of the proof). Furthermore, in both cases, 

ଵᇱߙ ߬(ܲ − 1)  + )ᇱ߬ߙ  ܲ)  = )ଵ߬ߙ  ଵܲ)  + ߬൫ߙ  ܲ൯. 

If ܶ′ =  ∑ ᇱߙ ܲ

ୀଵ , then by applying Lemma(1.1.23) to ܶ ∈

( ଵܲ + ܲ) by appealing to a direct sum argument, we obtain 

ܶ′  convതതതതതത(࣯(ܶ)). 

We claim that ܵ ≺ఛ ܶ′. For each ݇ ∈ {0, 1, . . . ,݊}, let ݏ  =

∑ ߬( ܲ)
ୀଵ   . Notice ݏ  < ,݇ ାଵ for allݏ  ݏ =  0, ݏ = 1, and ்ߣఛ (ݏ)  =

ߙ  and  ߣௌఛ(ݏ)  = ߚ   for all s ∈ ,ିଵݏ]  ). Notice, in both of the aboveݏ

cases, that ߙᇱ  ≥ > ݇ ଵ for allߚ  ݆ and ݇ ≥ ᇱߙ    ≥ ାଵᇱߙ  for all ݇ ≥

݆(as ߙᇱ  ≥ ᇲ்ߣ ,). Thereforeߙ
ఛ (ݏ)  = ᇱߙ  = ఛ்ߣ ∋ ݏ   for all (ݏ) ,ିଵݏ]  (ݏ

with ݇ > ݆, 

න ᇲ்ߣ
ఛ  ݏ݀(ݏ)

௦ೕ


 = ߙᇱ ߬( ܲ)



ୀଵ

 = ߙ߬( ܲ)


ୀଵ

  = න ఛ்ߣ  ݏ݀(ݏ)
௦ೕ


, 

and  ்ߣᇲ
ఛ (ݏ)  ≥ > ݏ ଵ for allߚ ∋ ݐ ିଵ. Consequently, ifݏ [0,  ିଵ], weݏ

see that 

න ఛ்ߣ (ݏ) − ݏ݀ (ݏ)ௌఛߣ
௧


≥ න ଵߚ   − = ݏଵ݀ߚ   0

௧


. 

For ݐ ∈ ,ିଵݏൣ   ൯, we will need to divide the proof into twoݏ

cases. First if ߙᇱ ≥ ߚ  , then  if ߙᇱ ≥ > ݇  for allߚ   ݆. Consequently 

ᇲ்ߣ
ఛ (ݏ)  ≥ ߚ  on [,  )  soݏ

(ݏ) ′ܶ   ≥  on ݆ߚ

න ᇲ்ߣ
ఛ (ݏ) − ݏ݀ (ݏ)ௌఛߣ

௧


= න ᇲ்ߣ

ఛ (ݏ) − ݏ݀(ݏ)ௌఛߣ 
௦ೕషభ


 +න ᇲ்ߣ

ఛ (ݏ)  − ݏଵ݀ߚ 
௧

௦ೕషభ

≥ 0 + 0. 
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Otherwise suppose ߙᇱ < ߚ . Notice ߙᇱ < ᇱߙ < ߚ ≤ ଵߚ  ≤  ᇱ for allߙ 

݇ ≥ ݆ and ݈ <  ݆.  Thus 

න ᇲ்ߣ
ఛ  ݏ݀(ݏ)

௦ೕషభ


 = ߙᇱ ߬( ܲ)

ିଵ

ୀଵ

 

and  ்ߣᇲ
ఛ (ݏ)  = ݏ ᇱ for allߙ ∈ ,ିଵݏൣ  ,൯. Consequentlyݏ

න ᇲ்ߣ
ఛ (ݏ) − ݏ݀ (ݏ)ௌఛߣ

௧


(ߙᇱ − )߬(ߚ ܲ)
ିଵ

ୀଵ

+ න ᇱߙ  − ݏ݀ߚ 
௧

௦ೕషభ
 

≥ (ߙᇱ − )߬(ߚ ܲ)
ିଵ

ୀଵ

+න ᇱߙ  − ݏ݀ߚ 
௦ೕ

௦ೕషభ
 

                             = (ߙᇱ − )߬(ߚ ܲ)


ୀଵ

 

                             = (ߙ − )߬(ߚ ܲ)


ୀଵ

= න ఛ்ߣ (ݏ) − ݏ݀(ݏ)ௌఛߣ 
௦ೕ


≥ 0. 

Finally, if  ≥   , thenݏ 

න ᇲ்ߣ
ఛ (ݏ) − ݏ݀(ݏ)ௌఛߣ 

௧


= න ᇲ்ߣ

ఛ (ݏ) − ݏ݀(ݏ)ௌఛߣ 
௦ೕ


+ න ᇲ்ߣ

ఛ (ݏ) − ݏ݀(ݏ)ௌఛߣ 
௧

௦ೕ
 

= න ఛ்ߣ (ݏ) − ݏ݀(ݏ)ௌఛߣ 
௦ೕ


+ න ఛ்ߣ (ݏ) − ݏ݀(ݏ)ௌఛߣ 

௧

௦ೕ
≥ 0 

with equality when ݐ =  1. Thus, the proof that ܵ ≺ఛ ܶ′ is complete. 

Postponing the discussion of the ߙଵᇱ ≠  ଵ case, we demonstrateߚ

that if ߙଵᇱ = ܳܵܳ ଵ thenߚ ≺ఛೂ ܶ′ܳ in ܳिܳ. For each ݇ ∈  {1, . . . ,݊}, let 

ᇱݏ ∑ ߬ொ( ܲ)
ୀଶ . Notice ݏᇱ  < ିଵᇱݏ   for all ݇, ᇱݏ = 1 and ߣொௌொ

ఛೂ (ݏ) = ߚ     

for all ݏ ∈ ,ିଵݏ] ଵᇱߙ ). In the caseݏ  = ᇱߙ ଵ, we note thatߚ  ≤ ଵߚ  ≤   ᇱߙ 

for all ݈ < ݆, and  ߙᇱ  ≥ ݇ ାଵ for allߙ ≥ ݆. Consequently, ߣொ்ᇲொ
ఛೂ (ݏ)  ≥

> ݏ ଵ for allߚ ିଵᇱݏ , ᇲ்ߣ
ఛೂ(ݏ) = ᇱߙ  for all ݏ ∈ ିଵᇱݏ]  , ᇱݏ )with ݇ ≥ ݆, and  
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න ᇲ்ߣ
ఛೂ(ݏ)݀ݏ 

௦ೕషభ
ᇲ


 = ߙᇱ ߬ொ( ܲ)

ିଵ

ୀଵ

. 

Moreover, one can verify that 

ொ்ᇲொߣ
ఛೂ ቆ

− ݏ  ߬( ଵܲ)
߬(ܳ) − 1ቇ ᇲ்ߣ

ఛ ொௌொߣ and  (ݏ)
ఛೂ ቆ

− ݏ  ߬( ଵܲ)
߬(ܳ) − 1ቇ  (ݏ)ௌఛߣ

for all ݏ ≥  . ݏ 

If ݐ < ିଵᇱݏ  , then 

න ொ்ᇲொߣ
ఛೂ (ݏ) − ொௌொߣ

ఛೂ  ݏ݀(ݏ)
௧


≥ න ଵߚ − ݏଶ݀ߚ ≥ 0.

௧


 

If  ݐ ∈ ିଵᇱݏൣ ,  ᇱ൧ we see thatݏ

න ொ்ᇲொߣ
ఛೂ −(ݏ) ொௌொߣ

ఛೂ  ݏ݀(ݏ)
௧


 

   = න ொ்ᇲொߣ
ఛೂ (ݏ) − ொௌொߣ

ఛೂ  ݏ݀(ݏ)
௦ೕషభ
ᇲ


+ න ொ்ᇲொߣ

ఛೂ (ݏ) − ொௌொߣ
ఛೂ  ݏ݀(ݏ)

௧

௦ೕషభ
ᇲ

 

           =
1

߬(ܳ)
(ߙᇱ − )߬(ߚ ܲ)
ିଵ

ୀଶ

+න ᇱߙ  − ݏ݀ߚ 
௧

௦ೕషభ
ᇲ

 

            =
1

߬(ܳ)
(ߙᇱ − )߬(ߚ ܲ)
ିଵ

ୀଵ

+ න ᇱߙ  − ݏ݀ߚ 
௧

௦ೕషభ
ᇲ

 

            =
1

߬(ܳ)න ᇲ்ߣ
ఛ (ݏ) −  ݏ݀(ݏ)ௌఛߣ

௦ೕషభ


+ න ᇱߙ  − ݏ݀ߚ 

௧

௦ೕషభ
ᇲ

 

In particular, for ݐ =  ᇱ , we see thatݏ 

                    න ொ்ᇲொߣ
ఛೂ (ݏ) − ொௌொߣ

ఛೂ  ݏ݀(ݏ)
௦ೕ
ᇲ


 

   =
1

߬(ܳ)
න ᇲ்ߣ

ఛ (ݏ) −  ݏ݀(ݏ)ௌఛߣ
௦ೕషభ


+ න ᇱߙ  − ݏ݀ߚ

௦ೕ
ᇲ

௦ೕషభ
ᇲ

 

                                 =
1

߬(ܳ)න ᇲ்ߣ
ఛ (ݏ) −  ݏ݀(ݏ)ௌఛߣ

௦ೕషభ


+ ൫ߙᇱ  − ൯ߚ

߬( ܲ)
߬(ܳ) 
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                                  =
1

߬(ܳ)
න ᇲ்ߣ

ఛ (ݏ) −  ݏ݀(ݏ)ௌఛߣ
௦ೕ


. 

If ߙᇱ  ≥   , thenߚ

        න ொ்ᇲொߣ
ఛೂ (ݏ) − ொௌொߣ

ఛೂ  ݏ݀(ݏ)
௧


≥  න ொ்ᇲொߣ

ఛೂ (ݏ) − ொௌொߣ
ఛೂ  ݏ݀(ݏ)

௦ೕ
ᇲ


 

                                                         =
1

߬(ܳ)
න ᇲ்ߣ

ఛ (ݏ) − ≤ ݏ݀(ݏ)ௌఛߣ 0
௦ೕ


 

Finally, if ݐ >  ,ᇱݏ 

        න ொ்ᇲொߣ
ఛೂ (ݏ) − ொௌொߣ

ఛೂ  ݏ݀(ݏ)
௧


 

=  න ொ்ᇲொߣ
ఛೂ (ݏ) − ொௌொߣ

ఛೂ  ݏ݀(ݏ)
௦ೕ
ᇲ


+  න ொ்ᇲொߣ

ఛೂ (ݏ) − ொௌொߣ
ఛೂ  ݏ݀(ݏ)

௧

௦ೕ
ᇲ

 

             =
1

߬(ܳ)
න ᇲ்ߣ

ఛ (ݏ) −  ݏ݀(ݏ)ௌఛߣ
௦ೕ


 

     +
1

߬(ܳ)
 න ொ்ᇲொߣ

ఛೂ ൬
ݏ − ߬( ଵܲ)
߬(ܳ)

൰ − ொௌொߣ
ఛೂ ൬

ݏ − ߬( ଵܲ)
߬(ܳ)

൰  ݏ݀
ఛ(ொ)௧ାఛ(భ)

௦ೕ
 

            =
1

߬(ܳ)
න ᇲ்ߣ

ఛ (ݏ) −  ݏ݀(ݏ)ௌఛߣ
௦ೕ


 

             +
1

߬(ܳ)
 න ᇲ்ߣ

ఛ (ݏ) − ݏ݀(ݏ)ௌఛߣ ≥  0 
ఛ(ொ)௧ାఛ(భ)

௦ೕ
 

with equality to zero when ݐ =  1. Hence ܳܵܳ ≺ఛೂ  ܳܶ′ܳ in ܳिܳ. 

To complete the proof, we notice the proof is complete when 

ଵߚ ∈  ቂ߬భାೕ  ( ܶ), ଵᇱߙ ଵቃ(i.e. theߙ  =  ଵ case). Otherwise, repeat theߚ 

above proof with j replaced with ݆ +  1 and ܶ replaced with ܶ′. Note 

we end up obtaining that ߙᇱ  ≥ ାଵᇱߙ  under this recursion as the first 

iteration yields ߙଵᇱ  = ଵᇱߙ ᇱ and the second iteration would averageߙ   

with ߙାଵᇱ ≤ ߙ  < ᇱᇱߙ ᇱᇱ withߙ ᇱ to yieldߙ  = ᇱߙ > ାଵᇱᇱߙ . This process 

must eventually obtain ߙଵᇱ  = ଵߚ ଵ by reaching the case thatߚ ∈
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ቂ߬భାೕ  ( ܶ), = ݆ ଵቃ for if we must apply the proof withߙ  ݊ and we 

produce a self-adjoint operator ܶᇱ with ܵ ≺ఛ ܶᇱ ,ߙଵᇱ  > ᇱߙ ଵ , andߚ  ≥

ଵᇱߙ   ≥ ߚ   for all ݇ and ݈, we have a contradiction to the act that 

ܵ ≺ఛ ܶᇱ (which guarantees ߬(ܵ)  =  ߬(ܶᇱ)) . Furthermore, note we 

obtain ܳܵܳ ≺ఛೂ ܳܶ
ᇱܶ at the last step of this iterative process. 

Theorem (1.1.42)[1]: Let ि be a unital ܥ∗-algebra with real rank 

zero that has strong comparison of projections with respect to a 

faithful tracial state  . If ܶ ∈  ि is self-adjoint, then  

 convതതതതതത൫࣯(ܶ)൯ =  {ܵ ∈  ि |ܵ ∗ =  ܵ, ܵ ≺ఛ  ܶ } . 

Before proceeding, we briefly outline the approach to the 

proof. First, we reduce to the case that ܶ and ܵ have finite spectrum. 

This is done by showing ܶ and ܵ can be approximated by self-adjoint 

operators ܶ′ and ܵ′ such that ܵᇱ ≺ఛ  ܶ′. We then demonstrate a 

‘pinching’ on self-adjoint operators T′ with exactly two points in their 

spectrum to show that all convex combinations of ܶ′ and ߬(ܶᇱ)ܫिare 

in  convതതതതതത(࣯(ܶ′)). Appealing to a specific decomposition result and by 

progressively applying pinchings, the result is obtained. 

We begin with the decomposition result. 

Proof : Let ܶ ∈  ि be self-adjoint. Note the inclusion 

  convതതതതതത(࣯(ܶ))  ⊆  {ܵ ∈  ि |ܵ∗  =  ܵ, ܵ ≺ఛ ܶ } 

To prove the other inclusion, let ܵ ∈  ि be self-adjoint with 

 ܵ ≺ఛ ܶ  By Lemma (1.1.26), we may assume without loss of 

generality that S and T have finite spectrum. 

Let { ܲ}ୀଵ  , {ܳ}ୀଵ , ୀଵ{ߙ}  and {ߚ}ୀଵ  be as in Lemma(1.1.25)so 

that 

ܶ = ߙܳ



ୀଵ

  and      ܵ = ߚ ܲ



ୀଵ

 . 
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Since ि has strong comparison of projections, there exists a unitary 

ܷ ∈  ि such that ܷ∗ܷܳ =  ܲ for all ݇. Hence ܷ∗ܷܶ = ∑ ܳߙ
ୀଵ  . 

Since ߣ∗்
ఛ (ݏ)   = ఛ்ߣ ݏ for all(ݏ) ∈ [0, 1), ܵ ≺ఛ  ܷ∗ܷܶ . Consequently, 

ଵߙ ≥ ଵߚ ≥ ߚ  ≥ ߙ  . 

If ߙଵ = = ܶ , thenߙ   ܵ =  िand there is nothing toܫ(ܶ)߬ 

prove. Otherwise, we may apply Lemma (1.1.28) to obtain, for some 

ᇱߙ} }ୀଶ  ⊆ ℝ, that 

ܶᇱ = ଵߚ  ଵܲ  + ߙᇱ ܲ



ୀଶ

 ∈ convതതതതതത൫࣯(ܷ∗ܶ ܷ)൯and ܳܵܳ ≺ఛೂ ܳܶ
ᇱܳ݅݊ ܳܵܳ 

where ܳ = ∑ ܲ

ୀଶ  . In addition, note Lemma(1.1.28) produces 

ᇱߙ} }ୀଶ  so that ܳܵܳ and ܳܶ′ܳ in ܳܳܣ are either equal or satisfy the 

hypotheses of Lemma (1.1.28); that is, ܳܵܳ ≺ఛೂ ܳܶ′ܳ, ାଵᇱߙ  ≤ ᇱߙ  for 

all ݇ ≥ ݆, ᇱߙ = ߙ ≥ ଵߚ  ≥ ଶ for all 1ߚ  < ݇ < ݆, and, if ݆ = ଶᇱߙ,2  ≥

ଶߚ   ≥ ߚ   ≥   .Therefore, by applying Lemma (1.1.28) at mostߙ 

another ݊ −  1 times, we obtain that 

 ܵ ∈  ܿconvതതതതതത(࣯(ܷ∗ܷܶ))  =  convതതതതതത(࣯(ܶ)). 
 

Section(1.2): Classification of Sets and Purely Infinite ܥ∗-

Algebras 

 We will study additional sets based on eigenvalue and singular 

value functions in ܥ∗-algebras. We begin by studying the distance 

between unitary orbits of self-adjoint operators. The following result 

is the main result. 

Theorem (1.2.1)[1]:  Let ि be a unital ܥ∗-algebra with real rank zero 

that has strong comparison of projections with respect to a faithful 

tracial state  . If ܵ, ܶ ∈  ि are self-adjoint, then 

dist൫࣯(ܵ),࣯(ܶ)൯ = sup{|ߣௌఛ ఛ்ߣ – (ݏ)  ∋ ݏ | |(ݏ)  [0, 1)} . 

In particular, ܵ and ܶ are approximately unitarily equivalent if and 
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only if ߣௌఛ(ݏ)  = ఛ்ߣ ∋ ݏ for all (ݏ)  [0, 1) if and only if ܵ ≺ఛ ܶ and 

ܶ ≺ఛ ܵ. 

Proof. We have 

(ݏ)ௌఛߣ|  − ఛ்ߣ  |(ݏ)  = ∗ௌߣ| 
ఛ ∗ ் ߣ – (ݏ)

ఛ |(ݏ)  ≤  ‖ܷ∗ܷܵ –  ܸ∗ܶ ܸ‖ 

for all unitaries ܷ,ܸ ∈  ि and ݏ ∈  [0, 1). Hence 

sup{|ߣௌఛ ఛ்ߣ – (ݏ)  ∋ ݏ | |(ݏ)  [0, 1)} ≤ dist൫࣯(ܵ),࣯(ܶ)൯ . 

For the other inequality, fix ߳ >  0. Since ि has real rank zero, 

there exists self-adjoint operators ܵ′,ܶ′ ∈  ि with finite spectrum 

such that 

‖ܵ −  ܵ′‖  <  ߳ and ‖ܶ −  ܶ′‖  <  ߳. 

Note 

ఛ்ߣ|  ᇲ்ߣ – (ݏ)
ఛ |(ݏ)  <  ߳    and  |ߣௌఛ(ݏ) – ߣௌᇲ

ఛ |(ݏ) <  ߳ 

 for all ݏ ∈  [0, 1) . 

 Let { ܲ}ୀଵ  , {ܳ}ୀଵ , ୀଵ{ߙ}  and {ߚ}ୀଵ  so that 

ܶᇱ  = ߙ ܲ



ୀଵ

  and      ܵᇱ  = ߚܳ



ୀଵ

 . 

If ݏ = ∑ ߬൫ܳ൯
ୀଵ  for all ݇ ∈  {0, 1, . . . ,݊}, implies ்ߣᇲ

ఛ (ݏ) =    andߙ 

ௌᇲߣ
ఛ (ݏ) = ߚ    for all ݏ ∈ ,ିଵݏ]  )߬ ). Furthermore, sinceݏ ܲ)  =

 ߬(ܳ) for all ݇ and since ि has strong comparison of projections, 

there exists a unitary ܷ ∈  ि such that ܷ∗
ܷܲ =  ܳ  for all ݇ and, 

consequently, ܷ∗ܶ′ܷ = ∑ ܳߙ
ୀଵ  . Hence 

‖ܷ∗ܶ ܷ –  ܵ‖  ≤  2߳ +  ‖ܷ∗ܶ′ܷ −  ܵ′‖ 

                           =  2߳ + sup{|ߙ  − ∋ ݇ | |ߚ   {1, . . . ,݊}}  

                           =  2߳ + sup{|்ߣᇲ
ఛ ௌᇲߣ – (ݏ)

ఛ ∋ ݏ | |(ݏ)  [0,1)}   

                            ≤  4߳ + sup{|்ߣఛ (ݏ)  − ∋ ݏ | |(ݏ)ௌఛߣ    [0, 1)} . 

As ߳ >  0 was arbitrary, the proof is complete. 

We have the following result . 

Theorem (1.2.2)[1]: Let ि be a unital ܥ∗-algebra with real rank zero 
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that has strong comparison of projections with respect to a faithful 

tracial state  . If ܵ, ܶ ∈  ि are self-adjoint, then 

  dist ቀܵ, convതതതതതത൫࣯(ܶ)൯ቁ 

= sup
௧∈(,ଵ)

1
ݐ

max ቊන −(ݏ)ௌఛߣ ఛ்ߣ ݏ݀ (ݏ)
௧


≥

1
ݐ
න ఛ்ߣ (ݏ) − ݏ݀ (ݏ)ௌఛߣ
௧


ቋ 

 Proof. Let α be the quantity on the right-hand side of the desired 

equation. Suppose ܶ′ ∈  convതതതതതത൫࣯(ܶ)൯. Then ܶᇱ ≺ఛ ܶ. Consequently,  

‖ܶᇱ −  ܵ‖  ≥  
1
ݐ
න (ݏ)ௌఛߣ − ᇲ்ߣ

ఛ ݏ݀ (ݏ)
௧


≥

1
ݐ
න (ݏ)ௌఛߣ − ఛ்ߣ ݏ݀ (ݏ)
௧


 

and  

‖ܶᇱ −  ܵ‖  ≥  
1
ݐ න ᇲ்ߣ

ఛ (ݏ) − ݏ݀ (ݏ)ௌఛߣ
ଵ

ଵି௧
≥

1
ݐ න ఛ்ߣ (ݏ) − ݏ݀ (ݏ)ௌఛߣ

ଵ

ଵି௧
 

Therefore dist(ܵ, conv(ܷ(ܶ)))  ≥  .ߙ 

 For the other inequality, first suppose ߙ ≤  0. Then 

න (ݏ)ௌఛߣ − ఛ்ߣ ݏ݀ (ݏ)
௧


 and න ఛ்ߣ −(ݏ) ݏ݀ (ݏ)ௌఛߣ

ଵ

ଵି௧
≤  0  

for all ݐ ∈  (0, 1). The first inequality implies 

න ݏ݀ (ݏ)ௌఛߣ
௧


≤  න ఛ்ߣ ݏ݀ (ݏ)

௧


 

for all ݐ ∈  [0, 1], and by letting t tend to 1, the second inequality then 

implies 

න ݏ݀ (ݏ)ௌఛߣ
ଵ


≤  න ఛ்ߣ ݏ݀ (ݏ)

ଵ


 

Consequently, ߙ =  0 and  ≺ఛ  ܶ . Thus implies ܵ ∈  convതതതതതത(࣯(ܶ)) ; so 

equality is obtained in this case. 

Otherwise, suppose ߙ >  0. Let ߳ >  0. Since ि has real rank 

zero, there exist self-adjoint operators ܵ′, ܶ′ ∈  ि with finite 

spectrum such that 

‖ܵ −  ܵ′‖  <  ߳        and          ‖ܶ −  ܶ′‖  <  ߳. 
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In addition 

 หߣௌఛ(ݏ) − ௌᇲߣ
ఛ ห(ݏ) <  ߳  and  ห்ߣఛ (ݏ) − ᇲ்ߣ

ఛ ห(ݏ)  <  ߳ 

for all ݏ ∈  [0, 1). By the definition of ߙ, we obtain 

න ௌᇲߣ
ఛ (ݏ) − ߙ − ݏ݀ 2߳

௧


≤  න (ݏ)ௌఛߣ − ߙ − ݏ݀ ߳ 

௧


≤ න ఛ்ߣ (ݏ) − ݏ݀ ߳

௧



≤ න ᇲ்ߣ
ఛ ݏ݀ (ݏ)

௧


 

න ௌᇲߣ
ఛ (ݏ) + ߙ + ݏ݀ 2߳

௧


≥  න (ݏ)ௌఛߣ + ߙ + ݏ݀ ߳ 

௧


≥ න ఛ்ߣ (ݏ) + ݏ݀ ߳

௧



≥ න ᇲ்ߣ
ఛ ݏ݀ (ݏ)

௧


 

for all ݐ ∈  (0, 1). Consequently, using non-increasing 

rearrangements and applied to ଵ݂(ݏ) = ௌᇲߣ
ఛ −(ݏ)  ߙ − 2߳, ଶ݂(ݏ)  =

ௌᇲߣ
ఛ (ݏ)  + ߙ + 2߳, and ݃(ݏ)  = ᇱఛ்ߣ -there exists a real-valued, non  ,(ݏ)

increasing function ℎ ∈ ,ஶ[0ܮ  1] such that 

 ଵ݂(ݏ)  ≤  ℎ(ݏ)  ≤  ଶ݂(ݏ)                                           (1)  

for all ݏ ∈  [0, 1) and ℎ ≺ ᇱఛ்ߣ  . 

Let { ܲ}ୀଵ  , {ܳ}ୀଵ , ୀଵ{ߙ}  and {ߚ}ୀଵ   be as in Lemma (1.1.21) so 

that 

ܶᇱ  = ߙ ܲ



ୀଵ

           and          ܵᇱ  = ߚܳ



ୀଵ

 . 

Furthermore, for ݇ ∈  {0, 1, . . . ,݊}, let ݏ = ∑ ߬(ܳ)
ୀଵ , let 

ᇱߙ =  
1

ିଵݏ – ݏ
න ℎ(ݏ) ݀ݏ
௦ೖ

௦ೖషభ
, 

and let ܶ = ∑ ᇱߙ ܲ
ᇱ

ୀଵ . Notice ߙᇱ ≥ ାଵᇱߙ   for all ݇ as ℎ is non-

increasing. Since ℎ ≺ ᇲ்ߣ 
ఛ  ≺ ߬ , ܶ  ≺ఛ ܶ and  ܶ ∈  convതതതതതത(࣯(ܶ′)). 

Since ि has strong comparison of projections, there exists a 

unitary ܷ ∈  ि such that ܷ∗ ܷܲ =  ܳ for all ݇. Therefore ܷ∗ ܷܶ =
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∑ ᇱܳߙ
ୀଵ  . However, due to the definition of ߙᇱ , equation (1), we see 

that 

‖ܷ∗ ܷܶ −  ܵ′‖  ≤ + ߙ   2߳. 

Therefore, since ܷ∗
ܷܶ ∈  convതതതതതത(࣯(ܶ′)), ‖ܶ − ܶ′‖ < ߳, and ‖ܵ − ܵ′‖ < ߳, 

we obtain that 

dist(ܵ, conv(࣯(ܶ)))  ≤ + ߙ   4߳ 

thereby completing the proof. 

Since tracial states are norm continuous, Theorem (1.2.2) 

immediately implies the following. 

Corollary (1.2.3)[1]: Let ि be a unital ܥ∗-algebra with real rank zero 

that has strong comparison of projections with respect to a faithful 

tracial state  . If ܵ, ܶ ∈  ि are self-adjoint, then 

dist(conv(࣯(ܵ)), conv(࣯ (ܶ)))  =  |߬(ܵ)  −  ߬(ܶ)|. 

We are also able to study arbitrary operators based on their 

singular value functions. The following object will play the role of the 

singular value decomposition of matrices for infinite dimensional ܥ∗-

algebras. 

Definition (1.2.4)[1]: For a unital ܥ∗-algebra ि and an element ܶ ∈

ि, the closed two-sided unitary orbit of ܶ is 

ࣨ(ܶ)  =  {ܷ ܶ ܸ | ܷ,ܸ unitaries in ि}തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത. 

We classify closed two-sided unitary orbits using singular 

values. We restrict to ܥ∗-algebras with stable rank one as the 

following well-known lemma directly implies every operator almost 

has a polar decomposition. 

Lemma (1.2.5)[1]: Let ि be a unital ܥ∗-algebra and let ܯ, ߳ >  0. 

There exists a 0 < ߜ  < ߳ such that if ܤ,ܣ ∈ ि, ‖ܣ‖ ≤ − ܣ‖ and , ܯ

‖ܤ < |ܣ|‖ then ,ߜ − ‖|ܤ|   <  ߳. 

Corollary (1.2.6)[1]: Let ि be a unital ܥ∗-algebra with stable rank 
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one and let ܶ ∈ ि. Then for all ߳ >  0 there exists a unitary ܷ ∈  ि 

such that ‖ܶ −  ܷ |ܶ |‖  <  ߳. 

Lemma (1.2.7)[1]: Let ि be a unital ܥ∗-algebra with a faithful tracial 

state  . If ( ܶ)ஹଵ  ⊆ ∋ ܶ converges in norm to ܣ  ि, then ்ߤఛ (ݏ)  =

lim
→ஶ

ߤ ்
ఛ ∋ ݏ for all  (ݏ) [0, 1). 

Proof. Recall ߤௌఛ(ݏ)  = |ௌ|ߣ
ఛ ܵ for all (ݏ) ∈ ܶ Since .ܣ = lim

→ஶ ܶ , we 

obtain |ܶ| = lim
→ஶ ܶ by Lemma (1.2.5).  

Proposition (1.2.8)[1]: Let ि be a unital ܥ∗ −algebra with real rank 

zero, stable rank one, and strong comparison of projections with 

respect to a faithful tracial state  . If ܵ, ܶ ∈ ि, then ܵ ∈ ࣨ(ܶ) if and 

only if ߤௌఛ(ݏ)  = ఛ்ߤ ∋ ݏ for all (ݏ) [0, 1). 

Proof. If ܷ,ܸ ∈  ि are unitaries, then 

்ఛߤ (ݏ) = |்|ߣ
ఛ (ݏ) = |்|ߣ

ఛ (ݏ)∗ܸ = |்|ߣ
ఛ (ݏ) = ఛ்ߤ  (ݏ)

for all ݏ ∈  [0, 1). Consequently, if ܵ ∈ ࣨ(ܶ), then ߤௌఛ(ݏ)  = ఛ்ߤ  for (ݏ)

all ݏ ∈ [0, 1) by Lemma (1.2.7). 

For the converse direction, suppose ߤௌఛ(ݏ)  = ఛ்ߤ ∋ ݏ for all (ݏ) [0, 1) 

and let ߳ > 0. By Corollary (1.2.6), there exists unitaries ܷ,ܸ ∈ ि 

such that 

‖ܶ −  ܷ |ܶ|‖  <  ߳        and        ‖ܵ −  ܸ |ܵ|‖  <  ߳. 

Furthermore, since 

|்|ߣ
ఛ (ݏ) = ఛ்ߤ (ݏ) = (ݏ) ௌఛߤ = |ௌ|ߣ

ఛ  (ݏ)

for all ݏ ∈ [0, 1), Theorem (1.2.1) implies there exists a unitary ܹ ∈

ि such that 

‖ܹ∗|ܶ|ܹ −  |ܵ|‖  <  ߳. Hence 

‖ܸ ܹ∗ܷ∗ܹܶ −  ܵ‖  ≤  2߳ +  ‖ܸ ܹ∗|ܶ|ܹ −  ܸ |ܵᇱ|‖  <  3߳. 

Since ߳ >  0 was arbitrary, the proof is complete. 

Our next results provide descriptions of all operators whose 



47 
 

eigenvalue function is dominated by another operator’s eigenvalue 

function. In particular, these notions of majorization are related to 

Cuntz equivalence, but are significantly stronger (i.e. requiring 

bounded sequences for approximations). We have following result . 

Proposition (1.2.9)[1]: Let ि be a unital ܥ∗-algebra with real rank 

zero that has strong comparison of projections with respect to a 

faithful tracial state  . If ܵ,ܶ ∈  ि are positive operators, then 

ܵ ∈ ܣ  | ܣܶ∗ܣ}  ∈  ि, ‖ܣ‖  ≤  1}തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത 

if and only if ߣௌఛ(ݏ)  = ఛ்ߣ ∋ ݏ for all (ݏ) [0, 1). 

Proof. If ܣ ∈  ि is such that ‖ܣ‖  ≤  1, then 

∗்ߣ
ఛ (ݏ)   ≤ ఛ்ߣ ଶ‖ܣ‖  (ݏ)   ≤ ఛ்ߣ  (ݏ)  

for all ݏ ∈  [0, 1).  

For the other direction, suppose ߣௌఛ(ݏ)  = ఛ்ߣ ∋ ݏ for all  (ݏ) [0, 1). Let 

߳ > 0. There exists positive operators ܵ′,ܶ′ ∈  ि with finite spectra 

such that ‖ܶ −  ܶ′‖  <  ߳, ‖ܵ −  ܵ′‖  <  ߳, and ߣௌᇲ
ఛ (ݏ)   ≤ ᇲ்ߣ

ఛ  for all(ݏ)

∋ ݏ [0, 1). Let { ܲ}ୀଵ  , {ܳ}ୀଵ , ୀଵ{ߙ}  and {ߚ}ୀଵ  so that 

ܶᇱ  = ߙ ܲ



ୀଵ

           and          ܵᇱ  = ߚܳ



ୀଵ

 . 

Since ܶ′, ܵ′ ≥ ߚ,ߙ,0 ≥  0 for all ݇. Furthermore, along with the fact 

that ߣௌᇲ
ఛ (ݏ)   ≤ ᇲ்ߣ

ఛ ∋ ݏ ݈݈ܽ for (ݏ) [0, 1) implies ߚ ≤  .݇  for allߙ

Since ि has strong comparison of projections, there exists a 

unitary ܷ ∈  ि such that ܷ∗ ܷܲ = ܳ for all k so that ܷ∗ܶ′ܷ =

∑ ܳߙ
ୀଵ  . For each k, let 

ߛ = ൞ඨ
ߚ
ߙ

if ߚ =  0

0 if ߚ ≠  0

. 

Consequently, if ܣ = ∑ ܳߛ
ୀଵ ∈ ि, then ‖ܣ‖ ≤ 1 and ܣܷ′ܶ∗ܷ∗ܣ =

ܵ′. Hence 
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− ܣܷܶ∗ܷ∗ܣ‖  ܵ‖  ≤  2߳ + − ܣܷ′ܶ∗ܷ∗ܣ‖   ܵ′‖  =  2߳. 

As ߳ > 0 was arbitrary, the result follows. 

Proposition (1.2.10)[1]: Let ि be a unital ܥ∗-algebra with real rank 

zero, stable rank one, and strong comparison of projections with 

respect to a faithful tracial state  . If ܵ,ܶ ∈ ि, then 

ܵ ∈ ∋ ܤ,ܣ | ܤܶܣ}  ि, ,‖ܣ‖ ‖ܤ‖  ≤  1}തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത 

if and only if ߤௌఛ(ݏ)  ≤ ఛ்ߤ ∋ ݏ for all(ݏ) [0, 1). 

Proof. If A, B ∈ ि are such that ‖ܣ‖ , ‖ܤ‖  ≤  1, then 

்ߊ
ఛ (ݏ)  ≤ ఛ்ߤ‖ܤ‖ ‖ܣ‖  (ݏ)  ≤ ఛ்ߤ  (ݏ)

for all ݏ ∈  [0, 1). Consequently, one direction follows from Lemma 

(1.2.7). 

For the other direction, supposeߤௌఛ(ݏ) ≤ ఛ்ߤ ݏ for all(ݏ) ∈  [0, 1). 

Consequently ߣ|ௌ|
ఛ (ݏ) ≤ |்|ߣ

ఛ ݏ for all (ݏ) ∈  [0, 1). Thus Proposition 

(1.2.9) implies for all ߳ >  0 there exists an ܣ ∈  ि with ‖ܣ‖  ≤  1 

such that ‖|ܵ|  − ‖ܣ| ܶ|∗ܣ   <  ߳. Furthermore, Corollary (1.2.6) 

implies there exists unitaries ܷ,ܸ ∈  ि such that ‖ܵ −  ܸ |ܵ|‖  <  ߳ 

and ‖ܶ −  ܷ|ܶ|‖  <  ߳. Thus 

‖ܵ – ‖ܣ ܶ∗ܷ∗ܣܸ  ≤ ‖ܵ − ‖ܣ| ܶ|∗ܣ ܸ  + ߳ ≤ ‖ܵ −  ܸ |ܵ|‖ + 2߳ ≤  3߳. 

The result follows. 

We desire to analyze the notion of (absolute) submajorization 

as defined. In particular. The following useful lemma shows if one 

positive operator submajorizes an operator, then conjugating by a 

specific contractive operator almost yields majorization. 

Lemma (1.2.11)[1]: Let ि be a unital ܥ∗-algebra with real rank zero 

and strong comparison of projections with respect to a faithful tracial 

state  . If ܵ,ܶ ∈  ि are positive operators such that ܵ ≺ఛ
௪ ܶ, then for all 

߳ >  0 there exists positive operators ܵ′,ܶ′ ∈  ि and an ܣ ∈  ि with 

‖ܣ‖  ≤  1 such that 
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‖ܵ −  ܵᇱ‖ ≤  ߳, ‖ܶ −  ܶᇱ‖ ≤  ߳,    and   ܵᇱ ≺ఛ  .ܣ′ܶ∗ܣ

Proof. Fix ߳ >  0. There exists positive operators ܵ′,ܶ′ ∈  ि with 

finite spectra such that 

 ‖ܵ −  ܵᇱ‖ ≤  ߳, ‖ܶ −  ܶᇱ‖ ≤  ߳,   and ܵ′ ≺ఛ
௪ ܶ′. 

Let { ܲ}ୀଵ  , {ܳ}ୀଵ , ୀଵ{ߙ}  and {ߚ}ୀଵ ,  so that 

ܶᇱ  = ߙ ܲ



ୀଵ

           and          ܵᇱ  = ߚܳ



ୀଵ

 . 

For each ݇ ∈  {0, 1, . . . , ݊}, let ݏ  = ∑ ߬( ܲ)
ୀଵ   . 

Consider the function ݂ ∶  [0, 1]  → ℝ defined by 

(ݐ)݂ = න ᇲ்ߣ
ఛ  ݏ݀(ݏ)

௧


−න ௌᇲߣ

ఛ  ݏ݀(ݏ)
ଵ


. 

 Since ݂ is continuous, ݂ (0)  ≤  0, and ݂ (1)  ≥  0, there exists a ݐ  ∈

 [0, 1] such that ݂ (ݐ)  =  0. Let ݐ′ =  sup{ݐ ∈  [0, (ݐ)݂ | [1  =  0} and 

choose ݇′ ∈  {1, . . . ,݊} such that  ݐ′ ∈ ,ᇲିଵݏ]  = ′݇ ᇱ)  (withݏ  ݊ if 

= ′ݐ  1). Notice this implies 

න ᇲ்ߣ
ఛ  ݏ݀(ݏ)

௦ೖᇲషభ


≤ න ௌᇲߣ

ఛ  ݏ݀(ݏ)
ଵ


≤ න ᇲ்ߣ

ఛ  ݏ݀(ݏ)
௦ೖᇲ


. 

Choose ݍ ∈  [0, 1] such that 

න ᇲ்ߣ
ఛ  ݏ݀(ݏ)

ଵ


= න ᇲ்ߣ

ఛ  ݏ݀(ݏ)
௦ೖᇲషభ


+ නݍ ᇲ்ߣ

ఛ  ݏ݀(ݏ)
௦ೖᇲ


  

and let ि = ݍ  ܲᇱ  + ∑ ܲ
ᇲିଵ
ୀଵ  . Clearly ‖ܣ‖ ≤ 1 and 

= ܣᇱܶ∗ܣ  ᇲߙݍ   ܲᇲ +  ߙ ܲ

ᇲିଵ

ୀଵ

. 

Furthermore, one may verify using integral arguments that 

ܵᇱ ≺ఛ  .ܣ′ܶ∗ܣ

Proposition (1.2.12)[1]: Let ि be a unital ܥ∗-algebra with real rank 

zero and strong comparison of projections with respect to a faithful 

tracial state  . If ܵ, ܶ ∈  ि are positive operators, then 



50 
 

ܵ ∈  convതതതതതത({ܣ | ܣܶ∗ܣ ∈ ि, ‖ܣ‖  ≤  1}) 

if and only if ܵ ≺ఛ
௪ ܶ. 

Proof. If {ܣ  }ୀଵ  ⊆ ि are such that ‖ܣ‖ ≤ 1 for all ݇, {ݐ}ୀଵ ⊆

[0, 1] are such that ∑ ݐ
ୀଵ  and ܵᇱ = ∑ ݐ

ୀଵ ≤ ′ܵ  , thenܣܶ∗ܣ 0 and 

න ௌᇲߣ
ఛ ݏ݀ (ݏ) ≤

௧


න ݐ ఛ்ߣ‖ଶܣ‖ 



ୀଵ

ݏ݀ (ݏ)
௧


≤ න ఛ்ߣ ݏ݀ (ݏ)

௧


 

Thus one inclusion follows. 

For the other direction, suppose ܵ ≺ఛ
௪ ܶ. Let ߳ >  0. By Lemma 

(1.2.11) there exists positive operators ܵ′, ܶ′ ∈  ि and an ܣ ∈  ि with 

‖ܣ‖  ≤  1 such that 

‖ܵ −  ܵᇱ‖ ≤  ߳, ‖ܶ −  ܶᇱ‖ ≤  ߳,   and    ܵᇱ ≺ఛ  .ܣ′ܶ∗ܣ

As 

ܵ′ ∈ convതതതതതത(࣯(ܣ′ܶ∗ܣ)) 

the result follows. 

Proposition (1.2.13)[1]: Let ि be a unital ܥ∗-algebra with real rank 

zero, stable rank one, and strong comparison of projections with 

respect to a faithful tracial state  . If ܵ,ܶ ∈ ि, then 

ܵ ∈ convതതതതതത({ܤ,ܣ | ܤܶܣ ∈ ि, ,‖ܣ‖ ‖ܤ‖  ≤  1}) 

if and only if ܵ ≺ఛ
௪ ܶ. 

Proof. If {ܣ }ୀଵ   , ‖ୀଵܤ‖  ⊆ ि are such that ‖ܣ‖,‖ܤ‖ ≤  1 for all 

ୀଵ{ݐ} ,݇ ⊆ [0, 1] are such that ∑ ݐ
ୀଵ = 1 and ܵᇱ = ∑ ݐ

ୀଵ  , ܤܶܣ

then 

න ௌᇲߤ
ఛ ݏ݀ (ݏ) ≤

௧


න ݐ‖ܣ‖ଶ



ୀଵ

ఛ்ߤ ݏ݀ (ݏ)
௧


≤ න ఛ்ߤ ݏ݀ (ݏ)

௧


 

Thus one inclusion follows from Lemma (1.2.7). 

For the other direction, suppose ܵ ≺ఛ
௪ ܶ. Thus |S| ≺ఛ

௪  |T| so 

Proposition (1.2.12) implies 

|ܵ|  ∈ convതതതതതത({ܣ | ܣ| ܶ|∗ܣ ∈ ि, ‖ܣ‖  ≤  1}) . 
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The result then follows by approximation arguments along with 

Lemma (1.2.5). 

We will show the following result describing the closed convex 

hulls of unitary orbits of self-adjoint operators ܶ in unital, simple, 

purely infinite ܥ∗-algebras (pure infiniteness ܥ∗-algebras A are 

compared, and equivalence between them is obtained if the primitive 

ideal space of A has real rank zero, of if A is Approximately divisble) 

[6] based on the spectrum of ܶ, denoted ߪ(ܶ). 

Since unital, simple, purely infinite ܥ∗-algebras have real rank 

zero, to verify the reverse inclusion it suffices to consider self-adjoint 

ܵ,ܶ ∈  ि with finite spectrum and ߪ(ܵ)  ⊆  conv(ߪ(ܶ)) by the 

continuous functional calculus. Furthermore, note this problem is 

invariant under simultaneous multiplying the operators by non-zero 

real numbers and simultaneous translation of the operators by a real 

constant. As such, it suffices to prove the result for positive ܶ with 

‖ܶ ‖  =  1 and 0, 1 ∈  .(ܶ)ߪ 

We will demonstrate it suffices to prove the result when ܶ is a 

projection. This will be done by constructing (possibly non-unital) 

embeddings of arbitrarily larger matrix algebras into ि. 

Subsequently, we will verify that the result holds for ܶ a projection 

and ܵ ∈  ℂܫि. The result will follow for arbitrary ܵ with finite 

spectrum by an application of K-Theory. 

We begin with the following well-known result for purely infinite ܥ∗-

algebras. 

Lemma (1.2.14)[1]: Let ि be a unital, simple, purely infinite ܥ∗-

algebra and let ܲ,ܳ ∈  ि be orthogonal non-zero projections. For any 

݊ ∈ ℕ there exists a collection { ܲ}ୀଵ of pair-wise orthogonal 

subprojections of ܲ such that each ܲ is Murray-von Neumann 
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equivalent to ܳ. 

By ‘a non-trivial projection’, we mean a non-zero projection ܲ 

with ܲ ≠  .िܫ

Lemma (1.2.15) [1]: Let ि be a unital, simple, purely infinite ܥ∗-

algebra and let ܲ ∈  ि be a non-trivial projection. If ߚ,ߙ ∈ ℝ and ܶ =

+ ܲߙ  िܫ)ߚ  −  ܲ), then ܫߙि ∈ convതതതതതത(࣯(ܶ)). 

Proof. Clearly the result holds if ߙ = = ߙ so suppose ߚ   By .ߚ 

scaling and translating, we may assume that ߙ =  1 and ߚ =  0. 

Let ݊ ∈ ℕ be arbitrary. By Lemma (1.2.14) there exists a 

collection { ܲ}ୀଵ  of pairwise orthogonal subprojections of ܲ such 

that ܲ  ∼ िܫ  −  ܲ for all ݇. Using the partial isometries implementing 

the equivalence of {ܫि −  ܲ }  ∪ { ܲ}ୀଵ  , a copy of ℳାଵ(ℂ) may be 

constructed in ि such that the unit of ℳାଵ(ℂ) is ܲ
ᇱ: = िܫ  −  ܲ +

 ∑ ܲ

ୀଵ  and T may be viewed as the operator 

ܶ =  diag(0,1, . . . ,1) ⊕ िܫ) −  ܲ
ᇱ)  

∈ ℳାଵ(ℂ) ⊕ िܫ)  − ܲ
ᇱ )ि(ܫि − ܲ

ᇱ )  ⊆ ि. 

Since any self-adjoint matrix majorizes its trace, we obtain that 
݊

݊ +  1 ାଵܫ ∈  convതതതതതത ቀ࣯൫diag(0, 1, . . . , 1)൯ቁ 

where the unitary orbit is computed in ℳାଵ(ℂ). Thus, by a direct 

sum argument, we obtain 

 
݊

݊ +  1 ܲ
ᇱ + िܫ) − ܲ

ᇱ )  ∈  conv(࣯(ܶ)). 

By taking the limit as ݊ →  ∞, we obtain ܫि ∈ convതതതതതത(࣯(ܶ)). 

Lemma (1.2.16)[1]: Let ि be a unital, simple, purely infinite ܥ∗-

algebra and let { ܲ}ୀଵ  be a collection of pairwise orthogonal, non-

zero projections. If ܶ = ∑ ߣ ܲ

ୀଵ  for some real numbers {ߣ}ୀଵ ∈ ℝ, 

then 
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ଵߣ ൭ ܲ

ିଵ

ୀଵ

൱ + ߣ  ܲ ∈  convതതതതതത(࣯(ܶ)). 

Lemma (1.2.17)[1]: Let ि be a unital, simple, purely infinite ܥ∗-

algebra and let ܲ ∈  ि be a non-trivial projection. For each ߛ ∈

 [0, 1] ∩ ℚ, there exist pairwise orthogonal, non-zero projections 

ଵܳ,ܳଶ ,ܳଷ such that ܳଵ + ܳଶ +  ܳଷ =  ि andܫ 

0ܳଵ  + ଶܳߛ   +  1ܳଷ  ∈ convതതതതതത(࣯(ܲ)). 

Proof. Note the cases ߛ =  0, 1 are trivial. Otherwise, fix ݊ ∈ ℕ and 

choose ݇ ∈  {1, . . . , ݊ − 1} so that ߛ = 


. Let ܳ ∈ ि be any non-trivial 

projection. By Lemma (1.2.15) there exists a collection ൛ ܲൟ ୀଵ
ାଵ

 of 

pairwise orthogonal subprojections of Psuch that ܲ ∼ ܳ for all ݆. 

Similarly there exists a collection ൛ ܲ
ᇱൟ
ୀଵ

ିାଵ of pairwise orthogonal 

subprojections of  ܫि − ܲ such that ܲ
ᇱ ∼ ܳ for all ݆. 

Let 

ܳଵ  = िܫ)  −  ܲ)− ܲ
ᇱ

ିଵ

ୀଵ

 ,ܳଶ  =  ܲ



ୀଵ

 +  ܲ
ᇱ

ିଵ

ୀଵ

 ܽ݊݀ ܳଷ  =   ܲ



ୀଵ

. 

Since ܲାଵ ≤  ܳଷ and ܲିାଵ  ≤ ܳଵ, it is clear that ܳଵ,ܳଶ, and ܳଷ are 

pairwise orthogonal, non-zero projections such that ଵܳ + ܳଶ +ܳଷ +

 ि. Using the partial isometries implementing the equivalence ofܫ 

൛ ܲൟୀଵ


 ∪ { ܲ}  = 1 , a copy oℳ(ℂ)can be constructed in ि such that 

the unit of ℳ(ℂ) is ܳଶ and 

ܲ =  0ܳଵ  ⊕ ⊕ ܦ   1ܳଷ  ∈  ܳଵिܳଵ  ⊕  ℳ(ℂ)  ⊕  ܳଷिܳଷ ⊆ ि 

where ܦ is a diagonal matrix with 1 appearing along the diagonal 

exactly ݇ times and 0 appearing along the diagonal exactly ݊ −

 ݇ times. Since any self-adjoint matrix majorizes its trace, we obtain 

and a direct sum argument that 
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0ܳଵ  + ଶܳߛ   +  1ܳଷ  ∈  conv(࣯(ܲ)). 

Lemma (1.2.18)[1]: Let ि be a unital, simple, purely infinite ܥ∗-

algebra and let ܲ ∈  ि be a non-trivial projection. For each ߛ ∈

 [0, 1], िܫߛ ∈ convതതതതതത(࣯(ܲ)). 

Proof. By applying approximations, it suffices to prove the result for 

∋ ߛ  (0, 1)  ∩ ℚ. By Lemma (1.2.1816 there exists pairwise 

orthogonal, non-zero projections ܳଵ,ܳଶ,ܳଷ such that ܳଵ +  ܳଶ +

 ܳଷ =  ि andܫ

0ܳଵ  + ଶܳߛ   +  1ܳଷ  ∈  convതതതതതത(࣯(ܲ)). 

Choose two non-zero subprojections ܳଵᇱ  and ܳଷ of ܳଶ such that 

ଵܳ +  ܳଷ = ܳଶ. By applying Lemma (1.2.14) to 0ܳଵ  + ߛ  ଵܳ
ᇱ ∈

(ܳଵ +  ܳଵᇱ )ि(ܳଵ +  ܳଵᇱ), we obtain that 

ଵܳ)ߛ  + ܳଵᇱ )  ∈  convതതതതതത(࣯(0ܳଵ  + ଵᇱܳߛ  )) 

 (where the quantity on the right-hand side is computed in 

((ܳଵ +  ܳଵᇱ)ि(ܳଵ +  ܳଵᇱ)). Similarly 

ଷܳ)ߛ  + ܳଷᇱ )  ∈  convതതതതതത(࣯(1ܳଷ  + ଷᇱܳߛ  )) 

Hence, by the fact that 0 ଵܳ  + ଶܳߛ   +  1ܳଷ is a direct sum of 0 ଵܳ  +

ଵᇱܳߛ   and 1ܳଷ  + ଷᇱܳߛ  , we obtain that 

िܫߛ = ଵܳ)ߛ  +  ܳଵᇱ)  + ଵܳ)ߛ  +  ܳଷᇱ )  ∈ convതതതതതത(࣯(ܲ)). 

Theorem (1.2.19)[1]: Let ि be a unital, simple, purely infinite ܥ∗-

algebra and let ܶ ∈  ि be self-adjoint. Then 

convതതതതതത(࣯ (ܶ))  =  {ܵ ∈  ि |ܵ∗  = (ܵ)ߪ,ܵ   ⊆  conv(ߪ(ܶ))}. 

Proof: We may assume ߪ(ܵ) and σ(T) are finite so that there exists 

൛ߣൟୀଵ
  , ୀଵ{ߙ}  ⊆ ℝ with ߣ  < ߙ ାଵ for all ݇ andߣ  ∈

 conv ቀ൛ߣൟୀଵ


ቁ for all ݇, and two collections of pairwise orthogonal 

non-zero projections ൛ ܲൟୀଵ
  and {ܳ}ୀଵ  with ∑ ܲ


ୀଵ   = िܫ  =

∑ ܳ
ୀଵ  such that 
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ܶ = ߣ ܲ



ୀଵ

           and          ܵ = ߙܳ



ୀଵ

 . 

The result is trivial if ݉ =  1 so we assume ݉ ≥  2. 

Furthermore, by translation and scaling, it suffices to prove the result 

when ߣଵ =  0 and ߣ =  1. Furthermore, by Lemma (1.2.16) and the 

fact that ߣଵ ≤ ߣ   ≤ = ݉  for all ݇, we may assume thatߣ   2. For 

simplicity, let ܲ =  ܲ ݏ ଵܲ  = िܫ  −  ܲ and  =  ܲ . 

Since ि is a unital, simple, purely infinite ܥ∗-algebra, there 

exists a collection { ܲ
ᇱ }ୀଵିଵ1 of non-zero, pairwise orthogonal 

subprojections of Pand a collection{ ܲ
ᇱᇱ}ୀଵିଵ  of non-zero, pairwise 

orthogonal subprojections of ܫि −  ܲ such that ܲᇱ ∼  ܳ , ܲ
ᇱ =  ܲ −

∑ ܲ
ᇱିଵ

ୀଵ  is non-zero, and ܲ
ᇱᇱ = ∑ ܲ

ᇱᇱିଵ
ୀଵ  is non-zero. For each ݇ ∈

 {1, . . . , ݊}, let ܳᇱ  = ܲ
ᇱ + ܲ

ᇱᇱ. Therefore 

[ܳ]



ୀଵ

 = [िܫ]   =  [ܳᇱ ]



ୀଵ

 =  [ܳᇱ ]  +  [ܳ]

ିଵ

ୀଵ

. 

Hence [ܳ]  =  [ܳᇱ ] so ܳ݊ ∼  ܳᇱ . 

Notice 

ܶ =⊕ୀଵ
  (1 ܲ

ᇱ  +  0 ܲ
ᇱᇱ ) ∈

݊
⊕
݇ = 1

 ܳᇱिܳᇱ  . 

Since ܲ
ᇱand ܲ

ᇱᇱ are non-zero for each kand since ܳᇱिܳᇱ  is a unital, 

simple, purely infinite ܥ∗-algebra, by applying Lemma (1.2.18) in 

each ܳᇱिܳᇱ and by taking a direct sum, we obtain 

ߙܳᇱ


ୀଵ

∈ convതതതതതത(࣯(ܶ)). 

Since ∑ ᇱܳᇱߙ
ୀଵ  is unitarily equivalent to ܵ by the fact that ܳ ∼ ܳᇱ  

for all ݇, we obtain that  ܵ ∈ convതതതതതത(࣯(ܶ)). 

We note the following . 
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Corollary (1.2.20)[1]: Let ि be a unital, simple, purely infinite ܥ∗-

algebra. If ܵ, ܶ ∈  ि are self-adjoint, then 

dist ቀܵ, conv൫࣯(ܶ)൯ቁ = sup
௫∈ఙ(ௌ)

 dist(ݔ, conv(ߪ(ܶ))) . 

Proof. First, suppose ܶ′ ∈  conv(࣯(ܶ )). ߨ ݐ݁ܮ ∶ ि →  ℬ(ܪ) be a 

faithful representation of ि (whose existence is guaranteed by the 

GNS construction). For every self-adjoint operator ܣ ∈  ℬ(ܪ), 

conv((ܣ)ߪ)  = ,ߟܣ〉}  ∋ ߟ |〈ߟ ℋ, ‖ߟ‖  =  1}തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത. 

Let ߟ ∈ ℋ be such that ‖ߟ‖  =  1. Since 

‖ܶ′ −  ܵ‖  ≥ − ′ܶ)ߨ〉|  ,ߟ(ܵ  |〈ߟ  ≥  dist(〈ߟ(ܵ)ߨ,  ,((( ܶ)ߪ)conv ,〈ߟ

we obtain that 

dist ቀܵ, conv൫࣯(ܶ)൯ቁ ≥ sup
௫∈ఙ(ௌ)

 dist(ݔ, conv(ߪ(ܶ))) . 

For the reverse inclusion, defined a continuous function ݂ ∶ ℝ → ℝ 

so that ݂(ݔ)  ∈  conv(ߪ(ܶ )) for all ݔ and 

− ݔ| |(ݔ)݂   =  dist(ݔ, conv(ߪ(ܶ ))) 

for all ݔ ∈ ℝ. Let ܶ′ =  ݂(ܵ). Therefore, by the continuous functional 

calculus, ߪ(ܶ′)  = ((ܵ)ߪ)݂   ⊆  conv(ߪ(ܶ )). Hence ܶ′ ∈  conv(ߪ(ܶ )) 

by Theorem (1.2.19). Since 

‖ܵ −  ܶ′‖  = sup
௫∈ఙ(ௌ)

− ݔ‖ ‖(ݔ)݂   = sup
௫∈ఙ(ௌ)

dist(ݔ, conv(ߪ(ܶ ))) , 

the reverse inclusion holds. 

We note the proof of Theorem ((1.2.19) can be improved to 

normal operators provided ܭଵ(ि) is trivial or, more generally, for 

normal operators N such that ܫߣि −  ܰ is an element of the connected 

component containing ܫि in the set of invertible elements of ि, 

denoted िିଵ, for all ߣ ∉  This is a generalization and we only .(ܰ)ߪ

sketch the modifications to the proof. 

Theorem (1.2.21)[1]: Let ि be a unital, simple, purely infinite ܥ∗-
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algebra and let ଵܰ, ଶܰ  ∈ ि be normal operators with ܫߣि −  ܰ ∈ िିଵ 

for all ߣ ∉ and for all ݇. Then ଶܰ(ܰ)ߪ  ∈ convതതതതതത(࣯( ଵܰ)) if and only if 

)ߪ ଶܰ)  ⊆  conv(ߪ( ଵܰ)). 

Proof. Suppose ଶܰ  ∈ convതതതതതത(࣯( ଵܰ)). Let (ܯ)ஹଵ ⊆  conv(࣯( ଵܰ)) be 

such that ଶܰ = lim
→ஶ

ߨ  and letܯ ∶ ि → ℬ(ܪ) be a faithful 

representation of ि. For every normal operator ि ∈ ℬ(ܪ), 

 conv((ܣ)ߪ)  = ,ߟܣ〉}  ∋ ߟ |〈ߟ  ℋ, ‖ߟ‖  =  1}തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത. 

Since ܯ ∈ conv(࣯( ଵܰ)), we obtain 〈ߨ(ܯ)ߟ, 〈ߟ ∈ conv(ߪ( ଵܰ)) for all 

ߟ ∈ ℋ with ‖ߟ‖ =  1. Therefore, since 〈ߨ( ଶܰ)ߟ, 〈ߟ = lim
→ஶ

 ,〈ߟ,ߟ(ܯ)ߨ〉

we obtain ߪ( ଶܰ)  ⊆ conv(ߪ( ଵܰ)). 

For the converse direction, note that ଵܰ and ଶܰ can be 

approximated by normal operators with finite spectra. Thus, by an 

application of the continuous functional calculus, it suffices to prove 

that if ߪ( ଶܰ) and ߪ( ଵܰ) are finite and ߪ( ଶܰ)  ⊆  conv(ߪ( ଵܰ)), then 

ଶܰ ∈ convതതതതതത(࣯( ଵܰ)). Furthermore, by using similar direct sum 

arguments as in the proof of Theorem ((1.2.19), it suffices to prove 

the result in the case that ଶܰ  ∈  ℂܫि. 

Note that Lemma (1.2.15) holds when ߙ and ߚ are complex 

numbers by applying rotations and translations. Hence by applying 

the same ideas as in Lemma (1.2.16), we may reduce to the case that 

N has exactly three points in its spectrum. 

Suppose ߪ( ଵܰ) = ߛ and {ଷߙ,ଶߙ,ଵߙ} ∈  conv(ߪ( ଵܰ)). Then there 

exist a permutation ߪ on {1, 2, 3} and ݐ, ݎ ∈ [0, 1] such that if ߛ′ =

గ(ଵ)ߙݐ  + (1 − ߛ గ(ଶ) thenߙ(ݐ = ′ߛݎ + (1 −  గ(ଷ). Consequently, byߙ(ݎ

applying rotations, translations, compressions, and Lemma (1.2.18) 

first with the spectral projections corresponding to ߙగ(ଵ) and ߙగ(ଶ), 

and then again with the result and the spectral projection 
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corresponding to ߙగ(ଷ), the result is obtained. 

 

 

Chapter 2 

Smooth Banach Spaces 
We show that this holds for any equivalent norm on c(Γ), 

where Γ is an arbitrary set. We also give a necessary condition for the 

existence of a polyhedral norm on a weakly compactly generated 

Banach space, which extends a well-known result of Fonf 

Section (2.1): Approximation of Norms a Necessary Condition  

for Polyhedrality in WCG Spaces 

Given a Banach space (ܺ, ‖ ∙ ‖) and ߝ >  0, we say that a new 

norm |||  ∙  ||| is  ߳ -equivalent  to ‖∙‖if  

|||ݔ|||   ≤ ‖ݔ‖   ≤  (1 +  ,|||ݔ|||(ߝ

for all ݔ ∈  ܺ. Suppose that ܲ is some geometric property of norms, 

such as smoothness or strict convexity. We shall say that a norm ‖∙‖ 

can be approximated by norms having ܲ if, given any ߝ >  0, there 

exists a norm having ܲ that is ߝ -equivalent to ‖∙‖. That is ‖∙‖ may be 

approximated uniformly, and with arbitrary precision, on bounded 

subsets of ܺ by norms having ܲ. 

The question of whether all equivalent norms on a given 

Banach space can be approximated by norms having P is a recurring 

theme in renorming theory. It is known to be true if ܲ is the property 

of being strictly convex, or locally uniformly rotund. (In fact, in these 

two cases, it is possible to show that if ‖∙‖has ܲ, then the set of 

equivalent norms on ܺ having ܲ is residual in the space of all 

equivalent norms on ܺ, which is completely metrisable). 

Definition (2.1.1)[2]: We say the norm ‖∙‖ of a Banach space ܺ is ܥ 
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smooth if its kth Fréchet derivative exists and is continuous at every 

point of ܺ \ {0}. The norm said to be ܥஶ smooth if this holds for all 

݇ ∈  ℕ. 

For separable spaces, we have the following recent and conclusive 

result. 

Theorem (2.1.2)[2]: Let ܺ be a separable Banach space with a ܥ 

smooth norm. Then any equivalent norm on ܺ can be approximated by 

 . smooth normsܥ

There is an analogous result to Theorem (2.1.2) for polyhedral 

norms. 

Definition (2.1.3)[2]: We say a norm ‖∙‖ on a Banach space ܺ is 

polyhedral if, given any finite-dimensional subspace ܻ of  ܺ, the 

restriction of the unit ball of ‖∙‖ to ܻ is a polytope. 

Theorem (2.1.4) [2]: Let ܺ be a separable Banach space with a 

polyhedral norm. Then any equivalent norm on ܺ can be approximated 

by polyhedral norms. 

Definition (2.1.5)[2]: Let Γ be a set. The set ܿ(߁) consists of all 

functions ݔ ∶ → ߁  ℝ, with the property that { ߛ ∈ ߁  ∶ |(ߛ)ݔ|  ≥  is {ߝ

finite whenever ߝ >  0. We equip ܿ(߁) with the norm ‖∙‖ஶ , where 

ஶ‖ݔ‖  = max{|(ߛ)ݔ| ∶ ߛ   ∈  . {߁

When ߁ is uncountable, ܿ(߁) is non-separable. The structure 

of ܿ(߁) strongly promotes the existence of the sorts of norms under 

discussion. For example, it is well known that the canonical norm on 

ܿ(߁) is polyhedral, and that it can be approximated by ܥஶ smooth 

norms. In terms of finding positive non-separable analogues of 

Theorems (2.1.2) and (2.1.4), this class of spaces is a very plausible 

candidate. 

The most general result concerning this class to date is given 
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below. We shall call a norm ‖∙‖on ܿ(߁)a lattice norm if ‖ݔ‖  ≤   ‖ݕ‖

whenever ݕ,ݔ ∈  ܿ(߁) satisfy |(ߛ)ݔ|  ≤  |(ߛ)ݕ| 

for each  ߛ ∈  .߁ 

Theorem (2.1.5)[2]: Every equivalent lattice norm on ܿ(߁)can be 

approximated by ܥஶ smooth norms. 

The following result completely settles the approximation 

problem in the case of ܿ(߁), from the point of view of ܥஶ smooth 

norms and polyhedral norms. It solves a special case . 

Definition (1.1.6)[2]: Let (ܺ, ‖∙‖) be a Banach space. A subset ܤ of 

the closed unit ball ܤ∗ is a called a boundary of ‖∙‖ if, for each ݔ in 

the unit sphere ܵ, there exists ݂ ∈ (ݔ)݂ such that ܤ   =  1. 

This is also known as a James boundary of X. The dual unit 

sphere ܵ∗  and the set ext (ܤ∗) of extreme points of the dual unit 

ball ܤ∗   are always boundaries of ‖∙‖, by the Hahn-Banach Theorem 

and (the proof of the) Krein-Milman Theorem, respectively. It is 

worth noting that the property of being a boundary is not preserved 

by isomorphisms in general: a boundary of ‖ ∙ ‖  may not be a 

boundary of |||∙|||, where |||∙||| is an equivalent norm. Since we will 

be changing norms, it will be necessary to bear this in mind. 

Boundaries play a key role in the theory of both smooth norms 

and polyhedral norms. If (ܺ, ‖∙‖) has a boundary that is countable or 

otherwise well-behaved, then ܺ enjoys good geometric properties as 

a consequence . 

Recall that an element ݂ ∈ ∗ܤ   is called a ݓ∗-strongly exposed 

point of  ܤ∗  if there exists ݔ ∈ ܤ   such that ݂(ݔ)  =  1 and, 

moreover, ห݂ –  ݂ห  →  0 whenever ( ݂)  ⊆ ∗ܤ   is a sequence 

satisfying ݂(ݔ)  →  1. It is a simple matter to check that the (possibly 

empty) set ݓ∗-str exp(ܤ∗) of w∗-strongly exposed points of ܤ∗  is 
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contained in any boundary of ‖∙‖. We recall the following important 

result of Fonf, concerning polyhedral norms. 

Theorem (2.1.7)[2]: Let ‖∙‖ be a polyhedral norm on a Banach space 

X having density character ߢ. Then ݓ∗-str exp(ܤ∗)  has cardinality  ߢ 

and is a boundary of ‖∙‖ (so is the minimal boundary, with respect to 

inclusion). Moreover, given ݂ ∈ ܣ the set ,(∗ܤ)str exp-∗ݓ  ∩   hasܤ 

non-empty interior, relative to the affine hyperplane ܣ ∶= ∋ ݔ}   ܺ ∶

(ݔ)݂   =  1}. 

In particular, if ܺ is separable and ‖∙‖ is polyhedral, then ݓ∗-

str exp(ܤ∗) is a countable boundary. Conversely, if (ܺ, ‖∙‖) is a 

Banach space and ‖∙‖ has a countable boundary ܤ, then ܺ admits 

equivalent polyhedral norms that approximate ‖∙‖. Thus, in the 

separable case, the existence of equivalent polyhedral norms can be 

characterised purely in terms of the cardinality of the boundary. 

In the non-separable case however, any analogous 

characterizations, if they exist, must generally rely on more than the 

cardinality of the boundary alone. There exist Banach spaces 

(ܺ, ‖∙‖)having no equivalent polyhedral norms, yet X has density the 

continuum ܿ, and ‖∙‖ has boundary ܤ of cardinality c. Such Banach 

spaces can take the form ܺ =  where ܶ is the 1-point ,(ܶ)ܥ 

compactification of a suitably chosen locally compact scattered tree. 

Recall that a Banach space ܺ is weakly compactly generated 

(WCG) if ܺ =  spanതതതതതത‖∙‖(ܭ), where ܭ ⊆  ܺ is weakly compact. 

Separable spaces and reflexive spaces are WCG. Examples of WCG 

spaces that are neither include the ܿ(߁) spaces above. The following 

is the main result. It provides a little more information about the 

structure of the set ݓ∗-str exp(ܤ∗), besides cardinality, given a WCG 

polyhedral Banach space. 
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Definition (2.1.8)[2]: We call an indexed set of pairs ൫݁ఊ , ݁ఊ∗ ൯
ఊ∈௰

⊆

 ܺ × ܺ∗ܽ Markushevich basis (or M-basis) if 

(i) ݁ఈ∗൫݁ఉ൯ = , ఈఉ , (that is, ൫݁ఊߜ  ݁ఊ∗ ൯
ఊ∈௰

 is a biorthogonal system); 

(ii)  span തതതതതതത‖∙‖൫݁ఊ൯ఊ∈௰ =  ܺ, and  

(iii) ൫ ݁ఊ∗ ൯
ఊ∈௰

separates the points of ܺ. 

Furthermore, an M-basis is called strong if ݔ ∈  span തതതതതതത‖∙‖൛݁ఊ: ݁ఊ∗(ݔ) ≠

0ൟ  for all ݔ ∈  ܺ,  shrinking if ܺ∗ = span തതതതതതത‖∙‖൫݁ఊ∗൯ఊ∈௰, and weakly 

compact if {݁ఊ: ߛ ∈ {߁ ∪ {0} is weakly compact. 

The existence of an M-basis allows us to define supports of 

functionals in the dual space. 

Definition (2.1.9)[2]: Let ܺ be a Banach space with an M-basis 

൫݁ఊ  , ݁ఊ∗ ൯
ఊ∈௰

 and let ݂ ∈  ܺ∗ . Define the support of ݂ (with respect to 

the basis) to be the set 

supp(݂)  = ∋ ߛ}  (ఊ݁)݂:߁  ≠  0} . 

We say f has finite support if supp(݂) is finite. 

The main result of this section, Theorem (2.1.15), states that if ܺ has 

a strong M-basis then, given the right circumstances, the norm on ܺ 

can be approximated by norms having boundaries that consist solely 

of elements having finite support. The following result illustrates the 

relevance of such boundaries to the current discussion. It 

amalgamates two theorems, both of which are stated with broader 

hypotheses in their original forms. 

Theorem (2.1.10)[2]: Let a Banach space ܺ have a strong M-basis, 

and suppose that the norm ‖∙‖ has a boundary consisting solely of 

elements having finite support. Then ‖∙‖can be approximated by both 

 .ஶ norms and polyhedral normsܥ
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Now we will assume that the Banach space ܺ has a strong M-

basis ൫݁ఊ , ݁ఊ∗ ൯
ఊ∈௰

 , such that ฮ݁ఊฮ =  1 for all ߛ ∈  Furthermore, we .߁

will suppose that there is some fixed ܮ ≥  0 satisfying   ฮ݁ఊ∗ฮ ≤  for ܮ 

all ߛ ∈  .߁ 

Given  ∈ ܺ∗ , set ‖݂‖ଵ =  ∑ ห݂൫݁ఊ൯หఊ∈௰ , whenever this quantity is 

finite, and set ‖݂‖ଵ = ∞ otherwise. Observe that if ݔ = ∑ ݁ఊ∗(ݔ)݁ఊఊ∈ி , 

for some finite ܨ ⊆  then ,߁ 

|(ݔ)݂|  ≤    ห݁ఊ∗ (ݔ)หห݂൫݁ఊ൯ห
ఊ∈ி

 ≤ ‖ݔ‖ܮ    ห݂൫݁ఊ൯ห
ఊ∈ி

 ≤  ,ଵ‖݂‖‖ݔ‖ܮ 

whence ‖݂‖  ≤ ∋ ݂ ଵfor all‖݂‖ ܮ   ܺ∗ . It is also easy to see that ‖∙‖ଵ is 

a इ∗ -lower semicontinuous function on ܺ∗ , and that given ݎ >  0, 

the norm-bounded set 

ܹ  =  {݂ ∈  ܺ∗: ‖݂‖ଵ ≤  , {ߣ 

is symmetric, convexand इ ∗ -compact. 

Let us consider the set ܤ =  {݂ ∈  ܵ∗: ‖݂‖ଵ <  ∞}. Evidently, ܤ 

is the countable union of the sets  ܵ∗ ∩ ܹ  , ∋ ݎ ℕ , which are इ∗-

closed in ܵ∗  . If ܵ∗  ∩ ܹ  contains a non-empty norm-open subset of 

ܵ∗ , for some ݎ ∈ ℕ, then it is a straightforward matter to show that 

there exists ܯ ≥  0 such that ‖݂‖ଵ ≤ ∋ ݂ for all ‖݂‖ ܯ   ܺ∗ , whence 

ܵ∗ ∩  ெܹ = ܵ∗  and ܺ is isomorphic to ܿ(߁) via the map ݔ ⟼

ቀ݁ఊ∗ (ݔ)ቁ
 ఊ∈௰

 . If there is no such r, then of course ܤ is of first category 

in ܵ∗  . If ܺ is not isomorphic to any space of the form ܿ(߁), 

≠ ܤ ℎ݁݊ݐ ܺ∗  , but ܤ may still be a boundary of ‖∙‖ . 

We shall be interested in cases where B is a boundary of ‖∙‖. 

The following lemma will be used in Theorem (2.1.12). 

Lemma (2.1.11)[2]: Suppose that ܤ as defined above is a boundary of 
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‖∙‖  Then  ܺ∗ =  span തതതതതതത‖∙‖൫݁ఊ∗൯,i.e., the M-basis of ܺ is shrinking. 

Proof: Let ܨ ⊆  be finite, and define ߁ 

ܺி  =  span തതതതതതത‖∙‖൫݁ఊ൯ఊ∈௰\ி
 and ிܹ  =  span തതതതതതത‖∙‖൫݁ఊ∗൯ఊ∈ி . 

Then ிܹ  =  ܺிୄ (the inclusion  ܺிୄ ⊆  ிܹ follows from the fact that 

the basis is strong), and thus ܺ∗ / ிܹ naturally identifies with ܺி∗  , and 

ฮ݂ ↾ಷฮ  =  ݀(݂, ிܹ) for all ݂ ∈  ܺ∗ , 

where 

݀(݂, ிܹ)  = inf{‖݂ −  ݃‖ ∶  ݃ ∈  ிܹ}   . 

Suppose, for a contradiction, that there exists ݂ ∈  ܺ∗ and ߝ >  0, 

such that ݀(݂, ிܹ) > ⊇ ܨ for all finite ߝ    be empty. Sinceܨ Let .߁ 

‖݂‖  =  ݀൫݂, ிܹబ൯ > ݔ take a unit vector ,ߝ  ∈  ܺ having finite 

support, such that ݂(ݔ)  > ଵܨ Set .ߝ  = supp ݔ . Since ቛ݂ ↾ಷభቛ =

݀൫݂, ிܹభ൯ > ଵݔ there exists a unit vector ,ߝ ∈  ܺ having finite support 

in ܨ \ ߁ଵ , such that ݂(ݔଵ) > ଶܨ Define .ߝ   = ଵܨ  ∪  supp ݔଵ . 

Continuing like this, we get a sequence of unit vectors (ݔ) having 

finite, pairwise disjoint supports, such that ݂(ݔ) >  .for all i ߝ 

Clearly, (ݔ) is not weakly null. 

On the other hand, if ݂ ∈ = ݕ and ܤ  ∑ ݁ఊ∗(ݔ)݁ఊఊ∈ி is a unit 

vector, where ܨ ⊆  is finite, then ߁ 

 |(ݕ)݂| ห݁ఊ∗(ݕ)ห
ఊ∈

ห݂൫݁ఊ൯ห ≤   ห݂൫݁ఊ൯ห
ఊ∈ி

. 

It follows that ݂(ݔ)  →  0 as ݊ →  ∞. This holds for every element of 

B, which is a boundary, so ݔ  →  0 weakly, by Rainwater’s. This is a 

contradiction.  

We can now prove Theorem (2.1.12), although the 

approximation scheme used in that result fails in the case under 

consideration here, and substantial modifications must be made. 
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Theorem (2.1.12)[2]: Let a Banach space ܺ have an M-basis as 

above, and suppose that ܤ as above is a boundary. Given ε > 0, there 

exists an ε-approximation ||| · ||| of ‖∙‖, which has a boundary 

consisting solely of elements having finite support. Consequently, by 

Theorem (2.1.10), ‖∙‖ can be approximated by  ܥஶ smooth norms and 

polyhedral norms. 

Proof. Fix ߝ ∈ (0, 1). Suppose ݂ ∈ ܺ∗ satisfies ‖݂‖ଵ < ∞. We define a 

sequence of positive numbers and a sequence of subsets of Γ 

inductively. To begin, set 

,݂) 1) = max൛ห݂൫݁ఊ൯ห: ߛ ∈ ,݂)ܩ ൟ and߁ 1)  

=  ൛ߛ ∈ ߁  ∶  ห݂൫݁ఊ൯ห  = ,ݖ)  1)ൟ. 

Given ݊ ≥  2, we define  

(݊,݂)  

=  ൜max൛ห݂൫݁ఊ൯ห: ߛ ∈ − ݊,݂)ܩ\߁  1)ൟ if ݖ)ܩ\߁,݊ − 1) ≠ ∅
                  ,݁ݏ݅ݓݎℎ݁ݐ                                                              0

     

and ܩ(݂, ݊) = ∋ ߛ}  ߁  ∶ |(ߛ ݁)݂|  ≥  {(݊,݂) 

Observe that the set ܩ(݂,݊) is finite if and only if (݂,݊)  ≠  0 and, in 

this case, ‖݂‖ଵ ≥ ,݂)ܩ| ,By induction .|(݊,݂)ܩ|(݊,݂) ݊)|  ≥  ݊ for all 

݊, so (݂, ݊)  ≤ ‖݂‖ଵ݊ିଵ and, in particular, (݂, ݊)  →  0. By 

construction, the sequence ((݂,݊)) is decreasing, and strictly 

decreasing on the set of indices n at which it is non-zero. If (݂, ݊)  =

 0 for some ݊ ∈ ℕ ,then ݂(݁ఊ)  ≠  0 for at most finitely many γ and 

hence f has finite support. Thus, when ݂ has infinite support, we get a 

strictly decreasing sequence of positive numbers (݂, ݊)  →  0, and a 

strictly increasing sequence of finite sets (ܩ(݂, ݊)). 

Provided ܩ(݂, ݊) is finite, we define 

इ(݂, ݊) =  (݂, ݊)sgn ቀ݂൫݁ఊ൯ቁ ݁ఊ∗

ఊ∈ீ

  , 
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and 

 ℎ(݂, ݊) = ((݂, ݅) – ,݂)  ݅ +  1))इ(݂, ݅)


ୀଵ

. 

Let ߛ ∈ ∋ ߛ If .߁  ⋃ \߁  ஶ(݊,݂)ܩ
ୀଵ  , then ℎ(݂,݉)൫݁ఊ൯ =  0 =  ݂൫݁ఊ൯ 

for all ݉. Otherwise, let ݊ be minimal, subject to the condition ߛ ∈

,݂)ܩ  ݊). By minimality, we have (݂,݊) = ห݂൫݁ఊ൯ห. If ݉ < ݊, then 

ℎ(݂,݉)൫݁ఊ൯ = 0. If ݉ ≥  ݊, then we can see that 

ℎ(݂,݉)൫݁ఊ൯ = ൫(݂, ݅)– ,݂)  ݅ +  1)൯sgn(݂(ߛ))


ୀଵ

 

                                              = ,݂)]  ݊)  − ,݂)  ݊ +  1) 

,݂) +                            ݊ +  1)  − + ݊,݂)   2) 

                           + . . .− . . . 

(݉,݂) +                              − + ݉,݂)   1)]sgn ቀ݂൫݁ఊ൯ቁ   

                    = ((ߛ_݁)݂)sgn |(ߛ_݁)݂|   − + ݉,݂)   1)sgn ቀ݂൫݁ఊ൯ቁ

=  ݂൫݁ఊ൯ − + ݉,݂)   1)sgn ቀ݂൫݁ఊ൯ቁ . 

From the calculation above and the fact that (݂,݉ +  1)  <  ห݂൫݁ఊ൯ห, 

we have 

หℎ(݂,݉)൫݁ఊ൯ห  =  |sgn(݂൫݁ఊ൯(ห݂൫݁ఊ൯ห  − + ݉,݂)   1))|  

= |(ߛ_݁)݂|   − + ݉,݂)   1). 

Since (݂,݉ +  1)  ≥  0, we obtain หℎ(݂,݉)൫݁ఊ൯ห  ≤  ห݂൫݁ఊ൯ห. 

Therefore, for all ߛ ∈ ,߁  หℎ(݂,݉)൫݁ఊ൯ห  ≤  ห݂൫݁ఊ൯ห and 

ℎ(݂,݉)൫݁ఊ൯  →  ݂൫݁ఊ൯ as ݉ →  ∞. We apply Lebesgue’s Dominated 

Convergence Theorem to conclude that ‖݂ −  ℎ(݂,݉)‖ଵ →  0. 

Since ‖∙‖݃ ≤ − ݂‖ we also get ,‖∙‖ ܮ   ℎ(݂,݉)‖  →  0. Since the signs 

of इ(݂, ݅)൫݁ఊ൯ and इ(݂, ݅)൫݁ఊ൯ agree whenever they are non-zero, 
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‖ℎ(݂, ݊)‖ଵ = ൫(݂, ݅) − ,݂)  ݅ +  1)൯


ୀଵ

 ‖इ(݂, ݅)‖ଵ

= ((݂, ݅)  − ,݂)  ݅ + ,݂)ܩ|((1  ݅)|


ୀଵ

. 

Therefore, if ݂ has infinite support, then ‖݂‖ଵ =

∑ ,݂)) ݅) −
ୀଵ ,݂) ݅ + ,݂)ܩ|((1 ݅)|. 

Given ݉ >  ݊, define 

݃(݂,݊,݉)  = ቐ
‖݂ − ℎ(݂,݊)‖ଵ

|(݉,݂)ܩ| इ(݂,݉) if |ܩ(݂,݉)| <  ∞,

0 otherwise.
  

and ݆(݂,݊,݉) = ℎ(݂,݊) +  ݃(݂,݊,݉),݉ > ݊. Observe that 

supp(݆(݂, ݊,݉))  

⊆ ܤ Let .(݉,݂)ܩ   = ∗ܤ  ∩  ܹ  =  {݂ ∈ ∗ܤ  ∶  ‖݂‖ଵ ≤  ,Of course .{ݎ 

⊇ ܤ  ⋃ ஶܤ
 ୀଵ  . We let 

ܸ   =   ݆(݂,݊,݉): ݂ ∈ < ݉, ܤ  ݊ and ‖݂ −  ݆(݂,݊,݉)‖ <  2ି(ାଶ) ఌ   , 

and set 

 ܸ = ራ (1 +  2ି ߝ) ܸ

ஶ

 ୀଵ
 . 

Define |||ݔ|||  =  sup{݂(ݔ) ∶  ݂ ∈  ܸ }. This is the norm that we claim 

ߝ −approximates ‖∙‖ and has a boundary consisting solely of 

elements having finite support. 

First of all, we prove that ‖x‖ < |||x||| ≤ (1 + ε)|||x||| whenever 

ݔ ≠ 0. Take ݔ ∈  ܺ with ‖ݔ‖  =  1 and let ݂ ∈ (ݔ)݂ such that ܤ   =  1 

(which is possible as B is a boundary of ‖∙‖). Let r be minimal, such 

that  ∈ ‖݂‖  . Sinceܤ   ≤ ∋  ଵ for all‖݂‖ ܮ  ܺ∗ , and ฮ݂ –  ݆(݂,݊,݉)ฮଵ ≤

 2 ‖݂ −  ℎ(݂, ݊)‖ଵ, it follows that there exists n such that 

‖݂ −  ݆(݂,݊,݉)‖  <  2ି(ାଶ) ఌ  whenever m > n. In particular, 
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|||ݔ||| ≥ (1 +  2ିߝ)݆(݂,݊,݊ + (ݔ)(1   ≥  (1 + 2ି1)(ߝ −  2ି(ାଶ)ߝ)  

≥  1 + 2ି(ାଵ) ߝ. 

To secure the other inequality, simply observe that if ݂ ∈ < ݉, ܤ 

 ݊ and ‖݂ −  ݆(݂, ݊,݉)‖  < 2ି(ାଶ) ߝ, then 

(1 +  2ି ,݂)݆(ߝ  (ݔ)(݉,݊ ≤  (1 +  2ି ߝ)൫1 + 2ି(ାଶ) ߝ൯

≤  1 +  ൫2ି  + 2ି(ାଶ) +  2ି(ଶାଶ)൯ߝ ≤  1 +  .ߝ 

This means that |||ݔ|||  ≤  1 + ‖ݔ‖ ,By homogeneity .ߝ   < |||ݔ|||   ≤

 (1 + ݔ whenever ‖ݔ‖ (ߝ  ≠  0. 

Now we show that ||| · ||| has a boundary consisting solely of 

elements having finite support. By Milman’s Theorem we know that 

ext(ܤ(,|||·|||)∗)  ⊆  തܸइ∗ . Define 

= ܦ ሩቌራ(1 +  2ି௦ ߝ)
ஶ

௦ୀ
௦ܸ

തതതതതതതതതതതതതതതതതതതതതതതइ
∗

ቍ
ஶ

ୀଵ

  , 

and let ݀ ∈ ∋ ݎ For each .ܦ  ℕ ,‖݀‖ ≤  (1 +  2ି + 1)(ߝ    2ି(ାଶ)  ߝ), 

and hence ‖݀‖ ≤  1. Therefore, if |||ݔ|||  =  1, then 

(ݔ)݀  ≤ ‖ݔ‖‖݀‖   ≤ ‖ݔ‖   <  1. 

It follows that, with respect to ||| · |||, none of the elements of D are 

norm-attaining. Consequently,  ܤ෨  =  ext(ܤ(,|||·|||)∗)\ܦ is a boundary 

of ||| · |||. We claim that every element of e B has finite support. 

Given ݂ ∈ ෨ܤ  we have ݂ ∈  (1 +  2 − (ߝ ݎ തܸइ
∗    for some  ∈ ℕ . 

For a contradiction, we will assume that ݂ has infinite support. 

According to Lemma (2.1.11), our M-basis is shrinking. It follows that 

supp g is countable for all  ∈  ܺ∗ . Thus, തܸइ
∗  is Corson compact in the 

इ∗ -topology which implies that it is a Fr´echet-Urysohn space . In 

particular, there exist sequences ( ݂) ⊆ , ܤ ܽ݊݀ (݊), (݉)  ⊆ ℕ , 

with ݊ <  ݉ for all ݇ ∈ ℕ, such that ൫݆( ݂ ,݊ ,݉)൯ ⊆ ܸ and  
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݆( ݂  , ݊ ,݉)
  इ∗ 
ሱ⎯ሮ  ݈, where ݈ =  (1 +  2ି ߝ)ିଵ݂. 

We claim that, in fact, ݂
  इ∗ 
ሱ⎯ሮ  ݈. First, we show 

that ℎ( ݂,݊)
  इ∗ 
ሱ⎯ሮ  ݈. To this end, suppose that |ܩ( ݂ ,݉)| ↛  ∞. Then 

by taking a subsequence if necessary, there exists ܰ ∈ ℕ such that 

ห supp൫݆( ݂ ,݊ ,݉)൯ห  ≤ )ܩ|  ݂ ,݉)|  ≤ ܰ for all ݇. But as 

݆( ݂  , ݊ ,݉)
  इ∗ 
ሱ⎯ሮ ݈, this would force | supp(݈)|  ≤ ܰ <  ∞, which is 

not the case. Thus we must have |ܩ( ݂  ,݉)|  →  ∞. Therefore, for all 

∋ ߛ )݃,߁  ݂  , ݊ ,݉)൫݁ఊ൯  →  0 as ݇ →  ∞. Since ‖∙‖ ≤  ଵ, the‖∙‖ ܮ 

sequence ൫݃( ݂  ,݊ ,݉)൯ is bounded. Therefore, 

݃( ݂  ,݊ ,݉)
  इ∗ 
ሱ⎯ሮ  0 and hence ℎ( ݂ , ݊ )

  इ∗ 
ሱ⎯ሮ1. 

      We will now show that ݂  −  ℎ( ݂  ,݊)
  इ∗ 
ሱ⎯ሮ  0. For each ߛ ∈

,߁  ห ݂ (ߛ)−  ℎ( ݂ , ݊)൫݁ఊ൯ห  ≤ ห ݂ ൫݁ఊ൯ห, so ‖ ݂  −  ℎ( ݂ ,݊)‖ଵ ≤

 ‖ ݂‖ଵ. Therefore, ൫ ݂  −  ℎ( ݂  ,݊)൯ is a bounded sequence. Given 

∋ ߛ  ,߁ 

|( ݂  −  ℎ( ݂  ,݊))(݁_ߛ)|  ≤ )  ݂ ,݊  +  1)  ≤
‖ ݂‖ଵ

)ܩ| ݂ ,݊ +  1)|

≤
ݎ

)ܩ| ݂ , ݊ +  1)| . 

Since ( ݂ ,݊)
  इ∗ 
ሱ⎯ሮ  ݈, as above, the infinite support of ݈ ensures that 

)ܩ| ݂,݊)|  →  ∞. Therefore, ( ݂  −  ℎ( ݂ ,݊)൫݁ఊ൯ →  0 and hence 

݂  −  ℎ( ݂ ,݊)
  इ∗ 
ሱ⎯ሮ  0 as ݇ →  ∞. It follows that ݂

  इ∗ 
ሱ⎯ሮ  ݈ as claimed, 

and hence  ∈  . ܤ 

    Fix ݊ ∈ ℕ such that ‖݈ −  ℎ(݈, ݊)‖ଵ <  Then for all .ߝ ଵ  2ି(ାଷ)ିܮ 

݉ >  ݊, 

‖݈ −  ݆(݈, ݊,݉)‖  ≤ – ݈‖ ܮ   ݆(݈,݊,݉)‖ଵ  ≤ − ݈‖ ܮ2   ℎ(݈,݊)‖ଵ
<  2ି(ାଶ)ߝ. 
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So ݆(݈, ݊,݉)  ∈  ܸ  for al݈ ݉ >  ݊. Let 

ߣ  =
൫(݈,݉)− + ݉,݈)   1)൯|ܩ(݈,݉)|

‖݈ −  ℎ(݈,݊)‖ଵ
. 

Note that ߣ  >  0 whenever ݉ >  ݊. Since ‖݈ −  ℎ(݈,݊)‖ଵ =

∑ ,݈)) ݅)  − ,݈)  ݅ + ,݈)ܩ|((1 ݅)|ஶ
ୀାଵ   , we get ∑ ஶߣ

ୀାଵ =  1. 

      (݉,݊,݈)݆ ߣ
ஶ

ୀାଵ

 =  ,݈) ℎߣ ݊)
ஶ

ୀାଵ

 +  ,݈)݃ ߣ ݊,݉)
ஶ

ୀାଵ

 

                          =  ℎ(݈, ݊)  +  ൫(݈, ݅) − ,݈)  ݅ +  1)൯इ(݈, ݅)
ஶ

ୀାଵ

 =  ݈. 

Therefore, ݂ is a nontrivial convex combination of elements of (1 +

 2ିݎ ܸ(ߝ ⊆ ݂ so , (∗(|||·|||,)ܤ ∉  ext(ܤ(,|||·|||)∗), and hence ݂ ∉ ෨ܤ . This 

gives us our desired contradiction. In conclusion, e B is a boundary of 

||| · ||| consisting solely of functionals having finite support.  

Theorem (2.1.13) becomes a trivial consequence of Theorem 

(2.1.12). 

Theorem (2.1.13)[2]: 14 Let ߁ be an arbitrary set, and let ‖∙‖ be an 

arbitrary equivalent norm on ܿ(߁). Then ‖∙‖ can be approximated by 

both ܥஶ norms and polyhedral norms. 

Theorem (2.1.13) is a consequence of a more general result, 

Theorem (1.1.12), which involves spaces having Markushevich bases. 

The proofs of both results are given. 

Proof: In this case ܤ =  (ܵబ (௰),‖∙‖)∗  , so it is a boundary of ‖∙‖.  

It is worth remarking that the implication (d) ⇒ (c) is essentially 

Theorem (2.1.12), but with the additional assumption that the M-

basis is countable. The method of proof in that case is completely 

different from the one presented here. 

We begin with a lemma. It is based on straightforward 

geometry and is probably folklore, but is included for completeness . 
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Lemma (2.1.14) [2]: Suppose that ܦ ⊆  ∗  has the property that forܤ 

all ݂ ∈ ݔ there exists ,ܦ   ∈  ܺ and ݎ >  0 such that ฮݔ + ฮݖ  =

ݔ)݂   + ‖ ݖ‖ whenever (ݖ  <   . Thenݎ 

(i) ݎ ≤  ฮݔฮ, and 

 (ii)‖ݖ ‖ < ∋ ݃  andݎ  ݔ)݃ implies {݂} \ ܦ   + (ݖ   <  ฮݔ +  .ฮݖ

In particular, if ݂,݃ ∈ D are distinct then ฮݔ – ฮݔ   ≥  . f ݎ 

Proof. 

(i) Suppose that ฮݔฮ < ∋ ݕ  . Letݎ   ܺ satisfy ‖ݕ‖  < ݎ   −  ฮݔฮ. 

Tnen  ฮ±ݕ – ฮݔ   <   and so ݂ ݎ 

(ݕ)݂  = ‖ݕ‖ = ‖ݕ−‖  = (ݕ−)݂   =  ,(ݕ)݂− 

meaning that ݕ ∈  ker ݂. It follows that ݂ =  0, which is impossible. 

(ii) Suppose ‖ݖ ‖ < ݃, ݎ ∈ ݔand ݃൫ {݂}ܦ + ൯ݖ  = ฮݔ +  ฮ. Sinceݖ

݃ ≠  ݂ we can find ݕ ∈  ker ݂ such that ݃(ݕ)  >  0 and  ‖ݕ‖ < ݎ   −

⊇ ݂ Otherwise we would have ker . ‖ݖ‖  ker ݃, so ݃ =  for some ݂ߙ 

ݔ)݂ and since ,ߙ  + (ݖ   =  ฮݔ + ฮݖ = ݔ)݃  + (ݖ   = ݔ)݂ߙ +

ݔandฮ ,(ݖ  + ฮݖ >  0 by (1), we conclude that ݃ =  ݂, which is not 

the case. Thus ky + zk < r f and so 

ฮݔ + ݕ + ฮݖ  = ݔ)݂   + + ݕ  (ݖ   = ݔ)݂   +  .(ݖ 

On the other hand, 

ฮݔ + ݕ + ฮݖ ≥ ݔ)݃  + + ݕ  (ݖ   > ݔ)݃   + (ݖ   = ฮݔ + ฮݖ  

= ݔ)݂   +  .(ݖ 

Finally, if ݂,݃ ∈ ݔare distinct and ฮ ܦ  − ฮݔ  <   , then by (2) weݎ 

would have 

ฮݔฮ = (ݔ)݃   = ݔ)݃  + ݔ)  − ((ݔ   < ฮݔ  + ݔ)  − )ฮݔ   =  ฮݔฮ . 

Armed with this lemma, we can give the proof of Theorem (1.16). 

Theorem (2.1.15)[2]: Let X be WCG, and let the norm ‖∙‖ on ܺ be 
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polyhedral. Then the boundary ݓ∗-str exp(ܤ∗) of ‖∙‖ may be written 

as 

(∗ܤ)str exp-∗ݓ  = ራܦ

ஶ

ୀଵ

, 

where each ܦ is relatively discrete in the ݓ∗-topology. 

The theorem above should be compared to the following 

sufficient condition: if the norm ‖∙‖ on ܺ admits a boundary ܤ such 

that ܤ = ⋃ ஶܦ
ୀଵ  and = ⋃ ஶܭ

ୀଵ  , where each Dn is relatively 

discrete in the ݓ∗-topology, and each ܭ is ݓ∗-compact, then ‖∙‖ can 

be approximated by polyhedral norms. Thus Theorem (2.1.15) can be 

considered as a step towards a characterisation of the existence of 

polyhedral norms, in the WCG case. 

The main results concern a class of spaces which include all 

spaces of the form ܿ(߁), namely those that admit the following type 

of basis. 

Proof: Since ܺ is WCG, we can find a weakly compact M-basis 

(݁ఊ  , ݁ఊ∗)ఊ∈௰  of X . Let ܧ be the set of ݔ ∈  ܺ that can be written as a 

linear combination of at most n elements of (݁ఊ)ఊ∈௰  . Let us define ܤ ∶

= इ∗ −str exp(ܤ∗). for each ݂ ∈ ݔ we can find a point ,ܤ  ∈

span(݁ఊ)ఊ∈௰ that lies in the interior of ܣ ∩ ܤ  , where ܣ is the 

supporting hyperplane as defined in that theorem. By a 

straightforward argument, it follows that there exists ݎ >  0 such 

that ‖ݔ + ‖ݖ   = ݔ)݂  + ‖ݖ‖ whenever (ݖ  <  belongs to ݔ Any such .ݎ 

some ܧ . Therefore, given ݂ ∈  we can define ݊ to be the minimal ,ܤ 

݊ ∈ ℕ for which we can find an ݔ and ݎ as above, with ݔ ∈  . ܧ 

Define ܦ, to be the set of all ݂ ∈ such that  ݊ ܤ  =  ݊, and 

there exist ݔ and ݎ, as described above, which in addition satisfy ݎ ≥
 2ି  and 
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ݔ =   ܽఊ݁ఊ
ఊ∈ி

, 

where ܨ ⊆ |has cardinality n and |ܽఊ ߁   ≤  ݉ for all ߛ ∈  Any such .ܨ 

pair (ݔ, ∋ ݂ will becalled a witness for (ݎ  .  ,ܦ

Evidently,  =  ⋃ ,ܦ
∞
,ୀଵ  . We claim that each ܦ, is 

relatively discrete in the norm topology. For a contradiction, suppose 

otherwise and let ݂, ݂  ∈ − ݂‖ , such thatܦ  ݂‖  →  0. For each  ∈

ℕ , select a witness (ݔ  ,  ) for  ݂ . The setݎ

= ܮ     ቐܽఊ݁ఊ
ఊ∈ி

∶ ⊇ ܨ  |has cardinality ݊ and |ܽఊ ߁   ≤  ݉ for all ߛ ∈ ቑܨ   , 

 is weakly compact, being a natural continuous image of [−݉,݉] ×

൫൛݁ఊ: ߛ ∈ ൟ߁  ∪ {0}൯.Thus, by the Eberlein- Smulyan Theorem, and 

by taking a subsequence of (ݔ) if necessary, we can assume that the 
∋ ݕ  tend weakly to someݔ ∋ ݕ We claim that .ܮ  > ݆  for someܧ 

 ݊. Indeed, if 

= ݕ  ܽఊ݁ఊ
ఊ∈ி

, 

where ܨ ⊆ ≠ ߛ has cardinality n and a ߁  0 for all ߛ ∈  then there ,ܨ 
exists a ܭ for which ݁ఊ∗ (ݔ)   ≠  0 for all ߛ ∈ ܨ   and all ݇ ≥  .ܭ 

Because each ݔ can be expressed as a linear combination of n 
elements of (݁ఊ) ఊ∈௰ , it follows that ݔ  ∈  span(݁ఊ)ఊ∈ி   

whenever ݇ ≥  .ܭ 

Indeed, if 

इ =  ܾఊ݁ఊ
ఊ∈ீ

 , 

where ܩ ⊆ Γ has cardinality n, and if ݁ఊ∗(इ)  ≠ 0 for all ߛ ∈  then , ܨ 

necessarily ܨ ⊆  and equality of these sets follows since their ,ܩ 
cardinalities agree. Because the ݔ ,݇ ≥ -belong to a finite ,ܭ 
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dimensional space, it follows that ฮݕ – ฮݔ   →  0. However, by 

Lemma (2.1.14), we know that the ݔ  are uniformly separated in 
norm by 2ି (≤  .), so they cannot converge in norm to anythingݎ 

Thus ݕ ∈ > ݆  for someܧ   ݊, as claimed. Now fix ݖ ∈  ܺ such 

that ‖ݖ‖ <  2ି. We have ‖ݔ  + ‖ݖ  =  ݂(ݔ  +  for all ݇, because (ݖ 

2ି ≤ – . As ฮ݂ݎ  ݂ฮ  →  0 and ݔ + → ݖ  + ݕ   weakly, we get ݖ 

ݔ‖  + ‖ݖ  → ݕ)݂  + (ݖ   ≤ + ݕ‖   On the other hand, by w-lower .‖ݖ 
semicontinuity of the norm, + ݕ‖ ‖ݖ  ≤ + ݕ)݂   So the equality .(ݖ
+ ݕ‖ ‖ݖ  = + ݕ)݂  ‖ݖ‖ holds whenever (ݖ <  2ି. In particular, 1 =
‖ݔ‖   → ∋ ݕ However .‖ݕ‖  ܧ   and ݆ <  ݊, and this contradicts the 

minimal choice of ݊ =  ݊. 

Thus each ܦ, is relatively discrete in the norm topology. 

Since ܦ, ⊆ ∗and since the norm and इ ܤ  −topologies agree on ܤ, 

it follows that Dn,m is relatively discrete in the इ∗ −topology as well. 
Finally, we recall that a Banach space ܺ is called weakly Lindel¨of 

determined (WLD) if ܤ∗  is Corson compact in the इ∗ −topology. 
The class of WLD spaces includes all WCG spaces. Any polyhedral 

Banach space is an Asplund space, and any WLD Asplund space is 
WCG. Therefore Theorem (2.1.13) extends to all WLD polyhedral 
spaces. 
 

 

 

 

 

 

 

Chapter 3 
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Positive Linear Maps and Pinchings 
We deduce two recent theorems of Kennedy-Skoufranis and 

Loreaux-Weiss for conditional expectations onto a masa in the 

algebra of operators on a Hilbert space. We also get a few results for 

sums in a unitary orbit 

Section (3.1): Pinching Theorem and  Sums in A Unitary Orbit 

We recall two theorems which are fundamental to obtain 

several results about positive linear maps, in particular conditional 

expectations, and unitary orbits. These theorems were established 

we also refer to this article for various definitions and properties of 

the essential numerical range ఢܹ(ܣ) of an operator A in the algebra 

 ,of all (bounded linear) operators on an infinite dimensional (ℋ)ܮ

separable (real or complex) Hilbert space ℋ. 

We denote by ࣞ the unit disc of ℂ. We write ܣ ≃  to mean ܤ 

that the operators ܣ and ܤ are unitarily equivalent. This relation is 

extended to operators possibly acting on different Hilbert spaces, 

typically, ܣ acts on ℋ and ܤ acts on an infinite dimensional subspace 

ܵ of ℋ, or on the spaces ܪ ⊕  .or ⊕ஶℋ ܪ 

Theorem (3.1.1)[3]: Let ܣ ∈ (ܣ)with ܹ (ℋ)ܮ   ⊃  ࣞand { ܺ}ୀଵஶ   a 

sequence in (ܪ)ܮ such that sup

‖ ܺ‖ <  1. Then, a decomposition ℋ =

 ⊕ୀଵ
ஶ ℋ  holds with ܣℋ ≃  ܺ  for all ݅. 

The direct sum refers to an orthogonal decomposition, and AHi 

stands for the compression of ܣ onto the subspace ℋ . 

Theorem (3.1.1) tells us that we have a unitary congruence 

between an operator in ܮ(⊕ஶ  ,ܣ and a ”pinching” of (ܪ

∞
⊕
݅ = 1

ܺ  ≃ܧܧܣ

ஶ

ୀଵ
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 for some sequence of mutually orthogonal infinite dimensional 

projections {ܧ}ୀଵஶ   in ܮ(ℋ) summing up to the identity ܫ. Thus 

ୀଵஶ{ܪ}  can be regarded as an operator diagonal of ܣ. In particular, if 

ܺ is an operator on ℋ with ‖ܺ‖ <  1, then, ܣ is unitarily congruent to 

an operator on ℋ⊕ℋ of the form, 

⋍ ܣ  ቀܺ ∗
∗ ∗ ቁ.                                          (1) 

For a sequence of normal operators, Theorem (3.1.1) admits a 

variation. Given ࣛ,ℬ ⊂  ℂ, the notation ܣ ⊂௦௧ + ܣ means that ܤ

ࣞݎ  ⊂ ℬ for some ݎ >  0. 

Theorem (3.1.2)[3]: Let ܣ ∈ (ܣ)with ఢܹ (ℋ)ܮ   ⊃ ࣞ and { ܺ}ୀଵஶ a 

sequence of normal operators in ܮ(ℋ) such that 

⋃ ܹ( ܺ)ஶ
ୀଵ  ⊂௦௧ ఢܹ(ܣ). Then, a decomposition ℋ = ⊕ୀଵ

ஶ ℋ  holds 

with ܣℋ ≃  ܺ  for all i. 

Our concern is the study of generalized diagonals, i.e., 

conditional expectations onto a masa in ܮ(ℋ), of the unitary orbit of 

an operator. The pinching theorems are the good tools for this study; 

we easily obtain and considerably improve two recent theorems, of 

Kennedy and Skoufranis for normal operators, and Loreaux and 

Weiss for application to the class of unital, positive linear maps which 

are trace preserving.  

The next gives applications which only require (1). These 

results mainly focus on sums of two operators in a unitary orbit. 

We recall a straightforward consequence of (1) for the weak 

convergence. 

Corollary (3.1.3)[3]: Let ܣ,ܺ ∈ (ܣ)with ఢܹ (ℋ)ܮ   ⊃ ࣞ and ‖ܺ‖ ≤

 1. Then there exists a sequence of unitaries { ܷ}ୀଵஶ    in ܮ(ℋ) such that 

 wot lim
→ାஶ

ܷܷܣ∗  =  ܺ. 
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We cannot replace the weak convergence by the strong 

convergence; for instance if ܣ is invertible and ‖ܺ‖  <  ଵ‖ିଵ forିܣ‖ 

some unit vector h, then ܺ cannot be a strong limit from the unitary 

orbit of ܣ. However, the next best thing does happen. 

Moreover, this is even true for the ∗-strong operator topology. 

Corollary (3.1.4)[3]: Let ܣ,ܺ ∈ (ܣ)with ఢܹ (ℋ)ܮ   ⊃ ࣞ and ‖ܺ‖ ≤

 1. Then there exist two sequences of unitaries {ܷ}ୀଵஶ  and { ܸ}ୀଵஶ  in 

 ∗ such that (ℋ)ܮ

∗ sot lim
→ାஶ

ܷܷܣ∗ + ܸܣ ܸ
∗

2
 =  ܺ. 

Proof. From (1) we also have 

⋍ ܣ  ቀ ܺ −ܴ
−ܵ ܶ   ቁ . 

Hence there exist two unitaries ܷ,ܸ ∶ ℋ → ℋ⊕ℋ  such that 
∗ܷܣܷ  + ∗ܸܣ ܸ 

2 =  ቀܺ 0
0 ܶ ቁ .                                (2) 

Now let {{݁}ୀଵஶ  be a basis of ℋ and choose any unitary ܹ:ℋ⊕

ℋ → ℋ such that ܹ( ݁ ⊕  0)  =  ݁  for all ݆ ≤  ݊. Then 

ܺ ∶=  ܹ  ቀܺ 0
0 ܶ ቁ ܹ

∗ 

strongly converges to ܺ. Indeed, { ܺ} is bounded in norm and, for all 

݆,ܺ ݁  →  ܺೕ . 

Taking adjoints,  

ܺ∗ ∶=  ܹ  ቀܺ
∗ 0

0 ܶ∗  ቁ ܹ
∗, 

we also have ܺ∗ →  ܺ strongly. Setting ܷ  =  ܹܷ and ܸ  =  ܹܸ 

and using (2) completes the proof. 

Remark (3.1.5)[3]: Corollary (3.1.4) does not hold for the 

convergence in norm. We give an example. Consider the permutation 

matrix 
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ܶ = ൭
0 0 1
1 0 0
0 1 0

൱  ���� 

and set ܣ =  2 ⊕ஶ  ܶ regarded as an operator in ܮ(ℋ). Then 

ఢܹ(ܣ)  ⊃  ࣞ, however ܺ =  is not a norm limit from the ܫ(1/2) 

unitary orbit of ܣ. Equivalently, (1/2)ܫ is not a norm limit from the 

unitary orbit of (ܣ + + ܣ) ,Indeed .2/(∗ܣ  = 2/(∗ܣ  − ܫ   (3/2)ܲ for 

some projection ܲ. 

We reserve the word ”projection” for selfadjoint idempotent. ܣ 

strong limit of idempotent operators is still idempotent; thus, the 

next corollary is rather surprising. 

Corollary (3.1.6)[3]: Fix ߙ >  0. There exists an idempotent ܳ ∈

∋ ܺ such that for every (ℋ)ܮ  ‖ܺ‖ with (ℋ)ܮ  ≤  we have two ߙ 

sequences of unitaries  { ܷ}ୀଵஶ  and { ܸ}ୀଵஶ  for which (ℋ)ܮ ݊݅ 

∗ sot lim
→ାஶ ܷܷܳ∗ + ܸܳ ܸ

∗  =  ܺ. 

Proof. Let ܽ >  0, define a two-by-two idempotent matrix 

ܯ  =  ቀ1 0
ܽ 0 ቁ                                             (3) 

and set ܳ = ⊕ஶܯ regarded as an operator in ܮ(ℋ). Since the 

numerical range ܹ(·) of  

ቀ2 0
0 0 ቁ 

is ࣞ, we infer that ܹ(2ିߙଵܯ)  =  ఢܹ((2ିߙଵܳ)  ⊃ ࣞ for a large 

enough a. The result then follows from Corollary (3.1.4) with ܣ =

 .ଵܺିߙ ଵܳ and the contractionିߙ2 

Corollary (3.1.7) does not hold for the convergence in norm. 

Proposition (3.1.7) [3]: Let ܺ ∈ + ܫߣ be of the form (ℋ)ܮ   for a ܭ 

compact operator ܭ and a scalar ߣ /∈  {0, 1, 2}. Then ܺ is not norm 

limit of  ܷܷܳ∗ + ܸܳ ܸ
∗ for any sequences of unitaries {ܷ}ୀଵஶ and 

{ ܸ}ୀଵஶ  and any idempotent ܳ in ܮ(ℋ). 
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Proof. First observe that if {ܣ}ୀଵஶ  and {ܤ}ୀଵஶ  are two bounded 

sequences in ܮ(ℋ) such that ܣ – ܤ   →  0 in norm, then we also 

have ܣଶ  – ଶܤ   →  0 in norm; indeed 

ଶܣ   – ଶܤ   = ܣ)ܣ  − (ܤ  + ܣ) − ܤ(ܤ  . 

Now, suppose that ߣ ≠  1 and that we have the (norm) convergence, 

ܷܳ ܷ
∗ + ܸܳ ܸ

∗  → + ܫߣ   .ܭ 

Then we also have 

ܹܳ ܹ
∗  −  (−ܳ + + ܫߣ   ܷ∗ܭ ܷ)  →  0                         (4) 

where ܹ ∶=  ܷ∗ ܸ . Hence, by the previous observation, 

( ܹܳ ܹ
∗ )ଶ −  (−ܳ + + ܫߣ   ܷ∗ܷܭ)ଶ →  0, 

that is 

ܹܳ ܹ
∗  −  (−ܳ + + ܫߣ   ܷ∗ܷܭ)ଶ  →  0                       (5) 

Combining (4) and (5) we get 

(−ܳ + + ܫߣ   ܷ
(ܷܭ∗ − (−ܳ + + ܫߣ   ܷ∗ܭ ܷ)ଶ 

hence 

(−2 + + ܳ(ߣ2 – ߣ)  + ܫ(ଶߣ  ܭ   →  0 

for some bounded sequence of compact operators ܭ . Since ߣ ≠ 1, 

we have 

ܳ =
ߣ
2
+ ܫ  ܮ 

for some compact operator ܮ. Since ܳ is idempotent, either ߣ =  2 or 

= ߣ  0. 

The operator ܺ in Proposition (3.1.7) has the special property that 

ఢܹ(ܺ) is reduced to a single point. However Proposition(3.1.7) may 

also hold when ఢܹ(ܺ) has positive measure. 

Corollary (3.1.8)[3]: Let ܳ be an idempotent in ܮ(ℋ) and ݖ ∈

 ℂ\ {0, 1, 2}. Then, there exists ߙ >  0 such that the following property 

holds: 
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If ܺ ∈ − ܺ‖ satisfies (ℋ)ܮ  ‖ܫݖ  ≤  then ܺ is not norm limit of ,ߙ 

ܷܷܳ∗ + ܸܳ ܸ
∗ 

for any sequences of unitaries {{ܷ}ୀଵஶ  and { ܸ}ୀଵஶ  in L(ℋ). 

More operators with large numerical and essential numerical 

ranges are given in the next proposition. An operator ܺ is stable 

when its real part (ܺ +  ܺ∗)/2 is negative definite (invertible). 

Proposition (3.1.9)[3]: If ܺ ∈  is stable, then ܺ is not norm (ℋ)ܮ 

limit of ܷܳ ܷ
∗ + ܸܳ ܸ

∗ for any sequences of unitaries {ܷ}ୀଵஶ  and  

{ ܸ}ୀଵஶ and any idempotent ܳ in ܮ(ℋ). 

Proof. We have a decomposition ℋ =  ℋ௦ ⊕ℋ௦ in two invariant 

subspaces of ܳ such that ܳ acts on Hs as a selfadjoint projection ܲ, 

and ܳ  acts on Hns as a purely nonselfadjoint idempotent, that is ܣℋೞ  

is unitarily equivalent to an operator on ℱ ⊕ ℱ of the form 

 ܳℋೞ  ≃  ቀ0 ܫ
ܴ 0 ቁ                                                  (6) 

where R is a nonsingular positive operator on a Hilbert space ℱ , so 

ܳ ≃  ܲ ⊕ ≃  ቀ0 ܫ
ܴ 0 ቁ .                                      (7) 

Let ܻ  be a norm limit of the sum of two sequences in the unitary orbit 

of ܳ. If the purely non-selfadjoint part ℋ௦  is vacuous, then ܻ is 

positive, hence ܻ ≠  ܺ. If ℋ௦ is not vacuous, (7) shows that 

ܳ +  ܳ∗  ≃  2ܲ ⊕  ቀ2ܫ ܴ
ܴ 0 ቁ 

                                                         ≃  2ܲ ⊕  ቄቀܫ ܫ
ܫ ቁ ܫ + ቀܴ 0

0 −ܴ ቁቅ . 

This implies that ‖(ܳ +  ܳ∗)ା‖ ≥ ‖(ܳ +  ܳ∗)ି‖ , therefore ܻ +  ܻ∗ 

cannot be negative definite, hence ܺ ≠  ܻ . 

 

 

Section (3.2): Unital, Trace Preserving Positive Linear Maps 
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With Pinchings in Factors 

Kennedy and Skoufranis have studied the following problem: 

Let ॒  be a maximal abelian ∗-subalgebra (masa) of a von Neumann 

algebra ै, with corresponding expectation ॱ॒ ∶  ै →  ॒ (i.e., a 

unital positive linear map such that ॱ॒(ܺܯ)  =  ܺ ॱ॒(ܯ) for all ܺ ∈

 ॒ and ܯ ∈  ै) . Given a normal operator  ∈  ै , determine the 

image by ॱ॒ of the unitary orbit of ܣ,  

(ܣ)॒∆  =  { ॱ॒(ܷܷܣ ∗) ∶  ܷ a unitary in ै }. 

In several cases, they determined the norm closure of ∆॒(ܣ). We have 

the following two propositions. 

Proposition (3.2.1)[3]: Let ॒  be a masa in (ℋ),ܺ ∈ ॒ , and ܣ a 

normal operator in ܮ(ℋ). 

If ߪ(ܺ) ⊂  convߪ(ܣ), then X lies in the norm closure of ∆॒(ܣ). 

Proposition (3.2.2) [3]: Let ॒  be a continuous masa in ܮ(ℋ),ܺ ∈ ॒, 

and ܣ a normal operator in ܮ(ℋ). If X lies in the norm closure of ∆॒(ܣ), 

then ߪ(ܺ) ⊂  convߪ(ܣ). 

Since we deal with normal operators, ߪ(ܺ) ⊂  convߪ(ܣ) 

means ܹ(ܺ)  ⊂  ఢܹ(ܣ). Proposition (3.2.2) needs the continuous 

assumption. It is a rather simple fact; we generalize it in Lemma 

(3.2.4): Conditional expectations reduce essential numerical ranges, 

ܹ(ॱ॒(ܶ))  ⊂  ఢܹ(ܶ) for all ܶ ∈  Thus, the main point which .(ℋ)ܮ 

says that if ܹ(ܺ)  ⊂  ఢܹ(ܣ) then ܺ can be approximated by operators 

of the form ॱ॒(ܷܷܣ∗) with unitaries ܷ. With the slightly stronger 

assumption ܹ(ܺ) ⊂௦௧  ఢܹ(ܣ), via the following corollary, that ܺ is 

exactly of this form, furthermore the normality assumption on ܺA is 

not necessary. 

Corollary (3.2.3)[3]: Let ॒  be a masa in ܮ(ℋ),ܺ ∈  ॒  and ܣ ∈

(ܺ)ܹ If .(ℋ)ܮ  ⊂௦௧  ఢܹ(ܣ), then ܺ =  ॱ॒(ܷܷܣ∗)  for some unitary 
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operator ܷ ∈  .(ℋ)ܮ 

Proof. First, we note a simple fact: Let { ܲ}ୀଵஶ  be a sequence of 

orthogonal projections in ॒ such that ∑ ܲ
ஶ 
ୀଵ = ܼ and let ,ܫ ∈

such that ܼܲ (ℋ)ܮ ܲ  ∈  ॒  for all ݅. Then, we have a strong sum 

ॱ॒(ܼ)  =  ܼܲ ܲ

ஶ 

ୀଵ
. 

Now, denote by ℋ  the range of ܲ and assume dim Hi = ∞ for 

all i. We have ఢܹ൫ܺℋ൯  ⊂  ఢܹ(ܺ), hence 

 ራ ܹ(ܺℋ)
ஶ

ୀଵ
 ⊂௦௧  ఢܹ(ܣ). 

We get a unitary ܷ on ℋ = ⊕ୀଵ
ஶ ℋ  such that 

⋍ ܣ ∗ܷܣܷ   = ቌ
ܺℋభ
∗
⋮
⋮

  

∗
ܺℋమ
∗
⋮

  

⋯
∗
⋱
⋱

  

⋯
⋯
⋱
⋱
ቍ  ����.� 

Since 0 ⊕···⊕  ܺℋ  ⊕  0 ···∈  ॒  for all i, the previous simple fact 

shows that 

ॱ॒(ܷܷܣ∗)  =
∞
⊕
݅ = 1

ܺℋ  =  ܺ. 

The following result extends Proposition (3.2.2), the ”easy” 

part of Kennedy-Skoufranis’ theorem . 

Lemma (3.2.4)[3]: If ܺ is a masa in ܮ(ℋ) and ܼ ∈  then ,(ℋ)ܮ 

ܹ(ॱ॒(ܼ))  ⊂  ഥܹ (ܼ) and ఢܹ(ॱ॒(ܼ))  ⊂  ఢܹ(ܼ). 

Proof. (i) Assume ܼ is normal. We may identify the unital ܥ∗-algebra 

िspanned by ܼ with ܥ(ߪ(ܼ)) via a ∗-isomorphism ߮: ܥ(ߪ(ܼ)) →  ि 

with ߮(ݖ ↦ (ݖ   =  ܼ. Let ℎ ∈ ℋ be a unit vector. For ݂ ∈

 set ,((ܼ)ߪ)ܥ 

߰(݂)  =  〈ℎ,ॱ॒(߮(݂))ℎ〉. 

Then ߰ is a positive linear functional on ܥ(ߪ(ܼ)) and ߰(1)  =  1. 

Thus ߰ is a Radon measure induced by a probabilty measure μ, 
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߰(݂)  = න (ݖ)μ݀(ݖ)݂
ఙ()

 

We then have 〈ℎ,ॱ॒(ܼ)ℎ〉  = (ݖ)߰   ∈  conv(ߪ(ܼ)). Since conv(ߪ(ܼ))  

=  തܹതതത(ܼ), we obtain ܹ(ॱ॒(ܼ))  ⊂  ഥܹ (ܼ). 

(ii) Let ܼ be a general operator in ܮ(ℋ) and define a conditional 

expectation 

ॱଶ: ܮ(ℋ⊕ℋ)  →  ॒  ⊕  ॒  

by 

 ॱଶ ቆቀ
ܣ ܤ
ܦ ܥ  ቁቇ =  ൬

(ܣ)ॱ॒ܣ 0
0 ॱ॒(ܤ) ൰ . 

From the first part of the proof, we infer 

ܹ(ॱ॒(ܼ))  ⊂  ܹ ቆ൬
(ܼ)ॱ॒ܣ 0

0 ॱ॒(ܤ) ൰ቇ ⊂  ഥܹ  ቆቀܼ ܥ
ܦ  ቁቇ ܤ

whener ቀܼ ܥ
ܦ   ቁis normal. Since we have, by a simple classical fact ܤ

ഥܹ (ܼ) =  ሩ ഥܹ  ቆቀܼ ܥ
ܦ ቁቇ ܤ ,                             (7) 

where the intersection runs over all ܥ,ܤ such that ቀܼ ܦ, ܥ
ܦ  ቁ is ܤ

normal, we obtain ܹ(ॱ॒(ܼ))  ⊂ ഥܹ (ܼ). 

(iii) We deal with the essential numerical range inclusion. We can 

split ॒ into its discrete part ु and continuous part ℭ with the 

corresponding decomposition of the Hilbert space, 

॒  = ु⊕  ℭ, ℎℎ  = ℋௗ  ⊕ℋ . 

We then have 

ఢܹ(ॱ॒(ܼ))  =  conv ቄ ఢܹ ቀॱु൫ܼℋ൯ቁ ;  ఢܹ ቀॱℭ൫ܼℋ ൯ቁቅ  .   (8) 

We have an obvious inclusion 

ఢܹ ቀॱु൫ܼℋ൯ቁ  ⊂  ఢܹ൫ܼℋ൯.                                                 (9) 

On the other hand, for all compact operators ܭ ∈  ,(ℋ)ܮ 
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ఢܹ ቀॱℭ൫ܼℋ  ൯ቁ =  ఢܹ൫ॱℭ൫ܼℋ  ൯ + ℋ൯ܭ  =  ఢܹ ቀॱℭ൫ܼℋ + ℋܭ  ൯ቁ  

⊂  ܹ൫ܼℋ + ℋܭ  ൯ 

by the simple folklore fact that a conditional expectation onto a 

continous masa vanishes on compact operators and part (ii) of the 

proof. Thus, when ܭ runs over all compact operators, we obtain 

ఢܹ ቀॱु൫ܼℋ  ൯ቁ  ⊂  ఢܹ൫ܼℋ  ൯.                                      (10) 

Combining (8) (9) and (10) completes the proof. 

For discrete masas, unlike continuous masas , there is a unique 

conditional expectation, which merely consists in extracting the 

diagonal with respect to an orthonormal basis. In a recent article, 

Loreaux and Weiss give a detailed study of diagonals of idempotents 

in ܮ(ℋ). They established that a nonzero idempotent ܳ has a zero 

diagonal with respect to some orthonormal basis if and only if ܳ is 

not a Hilbert-Schmidt perturbation of a projection (i.e., a self-adjoint 

idempotent). They also showed that any sequence {ܽ}  ∈  ݈ஶ such 

that |ܽ|  ≤ for all n and, for some ܽబ ,ܽ ߙ   =  ܽబ  for infinitely 

many ݇, one has a idempotent ܳ such that ‖ܳ‖  ≤ + ߙ18   4 and ܳ 

admits {ܽ} as a diagonal with respect to some orthonormal basis. 

Using this, they proved that any sequence in ݈ஶ is the diagonal of 

some idempotent operator  answering a question of Jasper. Further, 

it is not necessary to confine to diagonals, i.e., discrete masas, and the 

constant 18ߙ + 4 can be improved; in the nॱ॒t corollary we explicit 

the best constant when ߙ =  1. 

Corollary (3.2.5)[3]: Let ॒  be a masa in ܮ(ℋ) and α > 0. There exists 

an idempotent ܳ ∈ ∋ ܺ such that for all ,(ℋ)ܮ   ॒  with ‖ܺ ‖ <  we ,ߙ 

have ܺ =  ॱ॒(ܷܷܳ∗) for some unitary operator ܷ ∈ = ߙ If .(ℋ)ܮ 

 1, ‖ܳ ‖ =  ඥ5 + 2√5 is the smallest possible norm. 



85 
 

Proof. We have an idempotent ܳ such that ఢܹ(ܳ)  ⊃  hence the ,ࣞߙ 

first and main part of Corollary (3.2.5) follows from Corollary (3.2.3). 

The remaining parts require a few computations. 

To obtain the bound ඥ5 + 2√5  when ߙ =  1 we get a closer look at 

⊕ஶܯ with ܯ where a is a positive scalar. We have 

(ܯ)ܹ  =  {〈ℎ,ܯℎ〉: ℋ ∈  ℂଶ, ‖ℎ‖ =  1} 

                                            =  {|ℎଵ|ଶ  +  ܽℎଶതതതℎଵ ∶   |ℎଵ|ଶ +  |ℎଶ|ଶ  =  1} , 

hence, with ℎଵ  = ఏ,ℎଶ݁ݎ   =  ට1 – ݎଶ݁ఈ, 

(ܯ)ܹ  =  ራ ቄݎଶ  + ଶ݁(ఏିఈ)ݎ –ඥ1ݎܽ  ∶ ∋ ߙ,ߠ   [0, ቅ[ߨ2
ஸஸଵ

 . 

Therefore ܹ(ܯ) is a union of circles ߁  with centers ݎଶ and radii 

ࣞ ଶ. To haveݎ –ට1ݎܽ ⊂  it is necessary and sufficient that (ܯ)ܹ 

−1 ∈ ߁   for some ݎ ∈  [0, 1], hence 

ܽ =
1 + ଶݎ 

ଶݎ –1√
.                                                 (11) 

Now we minimize ܽ = ∋ ݎ given by (11) when (ݎ)ܽ   (0, 1) and thus 

obtain the matrix ܯ∗ with smallest norm such that ܹ൫ܯ∗൯  ⊃  ࣞ. 

Observe that ܽ(ݎ)  →  +∞ as ݎ →  0 and as ݎ →  1, and 

(ݎ)′ଷ/ଶܽ(ଶݎ – 1)ଶݎ   = ସݎ   + ଶݎ4   −  1. 

Thus ܽ(ݎ) takes its minimal value ܽ∗ when ݎଶ  =  √5 −  2. We have 

ܽ∗ଶ  = 4 + 2√5, hence 

ฮܯ∗ฮ =  ට5 + 2√5. 

Now, letting  = ⊕ஶܯ∗  , we have ఢܹ(ܳ)  =  ܹ൫ܯ∗൯, so that ܳ is an 

idempotent in ܮ(ℋ) such that ఢܹ(ܳ) ⊃  ࣞ, and thus by Corollary 

(3.2.3) any operator ܺ such that ‖ܺ‖ <  1 satifies ॱ॒(ܷܷܳ∗)  =  ܺ for 

some unitary ܷ. 
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It remains to check that if ܳ is an idempotent such that 

Corollary (3.2.5) holds for any operator ܺ such that ‖ܺ ‖ <  1, then 

‖ܳ‖  ≥  ඥ5 + 2√5. To this end, we consider the purely nonselfadjoint 

part ܳℋೞ  of  , 

ܳℋೞ  ≃  ቀ ܫ 0
ܴ 0 ቁ . 

We have ఢܹ(ܳ) ⊃  ࣞ if and only if  ఢܹ(ܳℋೞ) ⊃  ࣞ. By Lemma (3.2.5) 

this is necessary. We may approximate ఢܹ(ܳℋೞ)  with sligthly larger 

essential numerical ranges, by using apositive diagonalizable 

operator ܴఌ  such that ܴఌ  ≥  ܴ ≥  ܴఌ  −  for writing which ,ܫߝ 

 ఢܹ ቆ൬
ܫ 0
ܴఌ 0 ൰ቇ =  ఢܹ ൭

∞
⊕
݅ = 1

൬ ܫ 0
ܽ 0 ൰ ൱ 

where {ܽ}ୀଵஶ  is a sequence of positive scalars, the eigenvalues of ܴఌ. 

By the previous step of the proof, this essential numerical range 

contains ࣞif and only if lımതതതത ܽ   ≥  ܽ∗. If this holds for all ߝ >  0, then 

‖ܳ‖  ≥  ඥ5 + 2√5. 

Unital positive linear maps Φ ∶  ॸ → ॸ , the matrix algebra, 

which preserve the trace play an important role in matrix analysis 

and its applications. These maps are sometimes called doubly 

stochastic. 

We say that Φ: (ℋ)ܮ ↦  is trace preserving if it preserves (ℋ)ܮ

the trace ideal ࣮and Tr Φ(ܼ)  =  Tr ܼ for all  ∈ ࣮ . 

Corollary (3.2.6)[3]: Let ܣ ∈  The following two conditions are .(ℋ)ܮ 

equivalent: 

(i) ఢܹ(ܣ)  ⊃  ࣞ. 

(ii) For all ܺ ∈ ‖ܺ‖ with (ℋ)ܮ  <  1, there exists a unital, trace 

preserving, positive linear map Φ ∶ (ℋ)ܮ   → (ܣ)such that Φ (ℋ)ܮ   =

 ܺ. 
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We may further require in (ii) that Φ is completely positive and sot- 

and wot-sequentially continuous. 

Proof. Assume (i). We have a unitary ܷ ∶ ℋ →⊕ஶℋ such that 

⋍ ܣ ∗ܷܣܷ   = ቌ
ܺ
∗
⋮
⋮

  

∗
ܺ
∗
⋮

  

⋯
∗
ܺ
⋱

  

⋯
⋯
⋱
⋱
ቍ  .  

Now consider the map ߖ ∶ (ஶℋ⊕)ܮ   →  ,(ℋ)ܮ 

൭
ܼଵ,ଵ ܼଵ,ଶ ⋯
ܼଶ,ଵ ܼଶ,ଶ ⋯
⋮ ⋮ ⋱

൱ 

and define Φ ∶ (ℋ)ܮ   → (ܶ)as Φ (ℋ)ܮ   =  Ψ(ܷܷܶ∗). Since both Ψ 

and the unitary congruence with U are sot- and wot-sequentially 

continuous, and trace preseverving, completely positive and unital, so 

is Φ. Further Φ(ܣ)  =  ܺ. 

Assume (ii) and suppose that ݖ ∉  ఢܹ(ܣ) and |ݖ|  <  1 in order 

to reach a contradiction. If ݖ = ఏ݁|ݖ|  ,  replacing A by ݁ିఏܣ, we may 

assume 1 > ≤ ݖ   0. Hence, 

ఢܹ((ܣ + (2/(∗ܣ   ⊂  [ݖ,∞−) 

and there exists a selfadjoint compact operator L such that  
+ ܣ ∗ܣ 

2
≤ + ܫݖ   .ܮ 

This implies that ܺ ∶=  ଵା௭
ଶ
 cannot be in the range of Φ for any ܫ

unital, trace preserving positive linear map. Indeed, we would have 

 
1 + ݖ

2 = ܫ
ܺ +  ܺ∗

2 =  Φ൬
+ ܣ ∗ܣ 

2 ൰  ≤ + ܫݖ   Φ(ܮ) 

which is not possible as Φ(ܮ) is compact. 

In the finite dimensional setting, two Hermitian matrices ܣ and 

ܺ satisfy the relation ܺ =  for some positive, unital, trace (ܣ)ߔ 

preserving linear map if and only if ܺ is in the convex hull of the 

unitary orbit of ܣ. In the infinite dimensional setting, if   the norm 
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closure of the unitary orbit of ܣ. This is easily checked by 

approximating the operators with diagonal operators. Such an 

equivalence might not be brought out to the setting of Corollary 

(3.2.5).  

   Here we mention a result of Wu: If A ∈  is not of the form (ℋ)ܮ 

scalar plus compact, then every X ∈ L(ℋ) is a linear combination of 

operators in the unitary orbit of ܣ. 

If one deletes the positivity assumption, the most regular class of 

linear maps on ܮ(ℋ) might be given in the following definition. 

Definition (3.2.7) [3]: A linear map Ψ ∶ (ℋ)ܮ   → -is said ultra (ℋ)ܮ 

regular if it fulfills two conditions: 

(u1) Ψ(ܫ)  =  .and Ψ is trace preserving ܫ 

(u2) Whenever a sequence ܣ  →  for either the norm-, strong-, or ܣ 

weak-topology, then we also have Ψ(ܣ)  →  for the same type (ܣ)ߖ 

of convergence. 

Any ultra-regular linear map preserves the set of essentially 

scalar operators (of the form ܫߣ + ∋ ߣ with ܭ  ℂ and a compact 

operator ܭ). For its complement, we state our last corollary. 

Corollary (3.2.8)[3]: Let ܣ ∈  ,be essentially nonscalar. Then (ℋ)ܮ 

for all ܺ ∈ ߖ there exists a ultra-regular linear map (ℋ)ܮ  ∶ (ℋ)ܮ   →

(ܣ)ߖ such that (ℋ)ܮ   =  ܺ. 

Proof. An operator is essentially nonscalar precisely when its 

essential numerical range is not reduced to a single point. So, let 

ܽ, ܾ ∈  ఢܹ(ܣ), ܽ ≠ ܾ. By a lemma of Anderson and Stampfli, A is 

unitarily equivalent to an operator on ℋ⊕ℋ of the form 

= ܤ  ቀܦ ∗
∗ ∗ ቁ  

Where ܦ = ⊕ୀଵ
ஶ ܦ , with two by two matrices ܦ, 
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ܦ  =  ൬
ܽ 0
0 ܾ

 ൰ 

such that ܽ  →  ܽ and ܾ  →  ܾ as ݊ →  ∞. We may assume that, for 

some ߚ,ߙ >  0, we have ߙ >  |ܽ|  +  |ܾ| and |ܽ −  ܾ|  >  Hence .ߚ 

there exist ߛ >  0 and two by two intertible matrices ܶ such that, for 

all ݊,ܹ( ܶܦ ܶ
ିଵ )  ⊃ ࣞand ‖ ܶ‖ +  ‖ ܶ

ିଵ‖ ≤ = ܶ So, letting .ߛ 

 (⊕ୀଵ
ஶ

ܶ)  ⊕  we obtain an invertible operator ܶ on ℋ⊕ℋ such ,ܫ 

that ఢܹ(ܶିܶܤଵ)  ⊃  ࣞ. 

Hence we have an invertible operator ܵ on ℋ such that 

ఢܹ(ܵିܵܣଵ)  ⊃  ࣞ. Therefore we may apply Corollary (3.2.7)and 

obtain a wot- and sot-sequentially continuous, unital, trace 

preserving map Φ such that Φ(ܵିܵܣଵ)  =  ܺ. Letting ߖ(·)  =

 Φ(ܵ · ܵିଵ) completes the proof. 

We cannot find an alternative proof, not based on the pinching 

theorem, for Corollaries (3.2.6) and (3.2.8). 

If we trust in Zorn, there exists a linear map Ψ ∶ (ℋ)ܮ   →  (ℋ)ܮ 

which satifies the condition (u1) but not the condition (u2). Indeed, 

let ൛ܽൟ∈Ω be a basis in the Calkin algebra ℭ =  indexed ,(ℋ)ܭ/(ℋ)ܮ 

on an ordered set Ω, whose first element ܽబ is the image of ܫ by the 

canonical projection ߨ ∶ (ℋ)ܮ   →  ℭ. Thus, for each operator ܺ, we 

have a unique decomposition ߨ(ܺ)  =  ∑ ൫ߨ(ܺ)൯ܽ∈Ω  with only 

finitely many nonzero terms. Further ൫ߨ(ܺ)൯
బ

= 0 if X is compact, 

and ൫(ܫ)ߨ൯
బ

 =  1. We then define a map ߰ ∶ (ℋ)ܮ   →   by (ℋ⊕ℋ)ܮ 

߰(ܺ)  =  ቆ
ܺ 0
0 ൫(ܫ)ߨ൯బܫ

ቇ . 

Letting ߖ(ܺ)  =  ܸ ߰(ܺ)ܸ∗ where ܸ ∶ ℋ ⊕ℋ → ℋ is unitary, we 

obtain a linear map ߖ ∶ (ℋ)ܮ   →  which satifies (u1) but not (ℋ)ܮ 
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(u2): it is not norm continuous. 

Let ߱ be a Banach limit on ݈ஶ and define a map ߮ ∶  ݈ஶ →

 ݈ஶ, {ܽ} ↦  {ܾ}, where ܾଵ  =  ߱({ܽ}) and ܾ  =  ܽିଵ,݊ ≥  2. 

Letting Ψ(ܺ) =  ߮(݀݅ܽ݃(ܺ)), where ݀݅ܽ݃(ܺ) is the diagonal of ܺ ∈

 ℋ in an orthonormal basis, we obtain a linear map Ψ which is norm 

continuous, satisfies (u1) but not (u2): it is not strongly sequentially 

continuous. 

However, it seems not possible to define explicitly a linear map Ψ : 
(ℋ)ܮ  →  .satisfying (u1) but not (u2) (ℋ)ܮ 

We discuss possible extensions to our results to a von 
Neumann algebra ℜ acting on a separable Hilbert space ℋ. First, we 

need to define an essential numerical range ఢܹ
ℜ for ℜ. Let  ∈  ℜ . If ℜ 

is type-III, then ఢܹ
ℜ (ܣ) ∶=  ఢܹ  If ℜ is type-IIஶ, then .(ܣ)

ఢܹ
ℜ (ܣ): = ሩ ഥܹ + ܣ) (ܭ

∈࣮

  

where ࣮is the trace ideal in ℜ (we may also use its norm closure ܭ, 
the ”compact” operators in ℜ, or any dense sequence in ܭ) 
Recently, Dragan and Kaftal obtained some decompositions for 
positive operators in von Neumann factors, which, in the case of 

 were first investigated. This suggests that our questions (ℋ)ܮ
dealing with a possible extension to type- IIஶ and -III factors also 
have an affirmative answer.  

Let ℜ be a type- IIஶ or -III factor. 

Definition (3.2.9): A sequence { ܸ}ୀଵஶ    of isometries in ℜ such that 
∑ ܸ ܸୀ ூ

∗ஶ
ୀଵ  is called an isometric decomposition of ℜ. 

Conjecture (3.2.10): Let ܣ ∈  ℜ with ఢܹ
ℜ(ܣ)  ⊃ ࣞ and { ܺ}ୀଵஶ  a 

sequence in ℜ such that sup

‖ ܺ‖ <  1 . Then, there exists an isometric 

decomposition { ܸ}ୀଵஶ  of  ℜ such that ܸ
ܣ ∗ ܺ  =  ܺ  for all ݅.  
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Chapter 4 

Nontrivial Twisted Sums of  and C(K) 
We obtain a new class of compact Hausdorff spaces K for which 

c can be nontrivially twisted with C(K). 
Section (4.1): Nontrivial Twisted Sums for Corson Compacta Toward the 

General Valdivia Case 

We present a broad new class of compact Hausdorff spaces ܭ 

such that there exists a nontrivial twisted sum of ܿ and (ܭ)ܥ, where 

 denotes the Banach space of continuous real-valued functions (ܭ)ܥ

on ܭ endowed with the supremum norm. By a twisted sum of the 

Banach spaces ܻ and ܺ we mean a short exact sequence 0 →  ܻ →

 ܼ →  ܺ →  0, where ܼ is a Banach space and the maps are bounded 

linear operators. This twisted sum is called trivial if the exact 

sequence splits, i.e., if the map ܻ →  ܼ admits a bounded linear left 

inverse (equivalently, if the map ܼ →  ܺ admits a bounded linear 

right inverse). In other words, the twisted sum is trivial if the range 

of the map ܻ →  ܼ is complemented in Z; in this case, ≅  ܺ ⊕ܻ  .  We 

denote by Ext(X, Y ) the set of equivalence classes of twisted sums of 

Y and X and we write Ext(X, Y ) = 0 if every such twisted sum is 

trivial. 

Many problems in Banach space theory are related to the quest 

for conditions under which Ext(X, Y ) = 0. For instance, an equivalent 

statement for the classical Theorem of Sobczyk is that if ܺ is a 

separable Banach space, then Ext(ܺ, ܿ)  =  0 . The converse of the 

latter statement clearly does not hold in general: for example, 

Ext(ℓଵ(ܫ), ܿ)  ≠  0, since ℓଵ(ܫ) is a projective Banach space. 

However, the following question remains open: is it true that 

Ext((ܭ)ܥ, ܿ) ≠ 0 for any nonseparable (ܭ)ܥ space? This problem 
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was stated and further studied in which proves that, under the 

continuum hypothesis (CH), the space Ext((ܭ)ܥ, ܿ) is nonzero for a 

nonmetrizable compact Hausdorff space ܭ of finite height. In 

addition to this result, everything else that is known about the 

problem is summarized namely that Ext((ܭ)ܥ, ܿ)  is nonzero for a 

 :space under any one of the following assumptions (ܭ)ܥ

(i) ܭ is a nonmetrizable Eberlein compact space. 

(ii) ܭ is a Valdivia compact space which does not satisfy the 

countable 

(iii) chain condition (ܿܿܿ); 

(iv) the weight of ܭ is equal to ω1 and the dual space of C(K) is not 

weak*-separable. 

(v) ܭ has the extension property and it does not have ܿܿܿ; 

(vi) C(K) contains an isomorphic copy of  ℓஶ 

Note also that if Ext(ܻ, ܿ)  ≠  0 and ܺ contains a complemented 

isomorphic copy of  , then Ext(ܺ, ܿ)  ≠  0= 0. 

Here is an overview of the main results of this article. Theorem 

(4.1.3) gives a condition involving biorthogonal systems in a Banach 

space X which implies that Ext(ܺ, ܿ)  ≠  0. We discuss some of its 

implications when ܺ  is of the form C(K). It is proven that if ܭ contains 

a homeomorphic copy of [0,߱]  ×  [0, ܿ] or of 2c, then Ext((ܭ)ܥ, ܿ) is 

nonzero, where c denotes the cardinality of the continuum. We 

investigate the consequences of the results Valdivia and Corson 

compacta. Recall that Valdivia compact spaces constitute a large 

superclass of Corson compact spaces ( This, let ݔ is  Corson compact 

spaces with a Radon probability measure ߤ- by removing all open 

subset of [7] (ݔ  closed under arbitrary products; moreover, every 

Eberlein compact is a Corson compact devoted to the proof that, 
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under CH, it holds that Ext((ܭ)ܥ, ܿ)  ≠  0 for every nonmetrizable 

Corson compact space ܭ. The question of whether Ext((ܭ)ܥ, ܿ)  ≠  0 

for an arbitrary nonmetrizable Valdivia compact space ܭ remains 

open (even under ܪܥ), but we solve some particular cases of this 

problem. 

The weight and the density character of a topological space X 

are denoted, respectively, by ݓ(߯) and dens(߯) . Moreover, we 

always denote by ߯ the characteristic function of a set ܣ and by |ܣ| 

the cardinality of ܣ. We start with a technical lemma which is the 

heart of the proof of Theorem (4.1.3). A family of sets (Ai)i∈I is said 

to be almost disjoint if each Ai is infinite and ܣ  ∩   is finite, forܣ 

݈݈ܽ ݅, ݆ ∈ = ݅ ℎݐ݅ݓ ܫ   ݆. 

Lemma (4.1.1)[4]: There exists an almost disjoint family 

൫ܣ,ఈ൯∈ఠ,ఈ∈ of subsets of ߱ satisfying the following property: for 

every family ൫ܣ,ఈ
ᇱ ൯

∈ఠ,ఈ∈
 with each  ܣ,ఈ

ᇱ ⊂  ,ఈ cofinite in An,α, itܣ 

holds that sup
∈ఠ

|ܯ|   =  +∞, where: 

ܯ  =  ൜݊ ∈  ߱ ∶ ∋    ራ ,ఈܣ
ᇱ

ఈ∈ 
ൠ . 

Proof. We will obtain an almost disjoint family ൫ܣ,ఈ൯∈ఠ,ఈ∈ of 

subsets of  2
ழఠ

 with the desired property, where 2ழఠ  = ⋃ 2∈ఠ  

denotes the set of finite sequences in 2 =  {0,1}. For each ߳ ∈ 2ఠ , we 

set:  

ࣛఢ  =  {߳| ∶  ݇ ∈  ߱}, 

so that (ࣛఢ)ఢ∈ଶഘ  is an almost disjoint family of subsets of 2ழఠ. Let 

(ℬఈ)ఈ∈  be an enumeration of the uncountable Borel subsets of 2ఠ. 

Recalling that  

|ℬఈ|   =  ܿ for all ߙ ∈  ܿ , one easily obtains by transfinite recursion a 
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family ൫߳,ఈ൯∈ఠ,ఈ∈
 of pairwise distinct elements of  s2ఠuch that 

߳,ఈ ∈  ℬఈ , for all ݊ ∈  ߱, ∋ ߙ  ܿ. Set ܣ,ఈ = ഀ,ఢܣ   and let 

൫ܣ,ఈ
ᇱ ൯∈ఠ,ఈ∈   be as in the statement of the lemma. For ݊ ∈  ߱, 

denote by ܦ the set of those ߳ ∈  2ఠ  such that ݊ ∈   for all butܯ 

finitely many  ∈ ఢܣ  . Note that: 

ܦ  =  ራ ሩ ራ൛ܥ ∶ ∋    2  with ݊ ∈ ൟܯ 
ஹబబ∈ఠ

 , 

where ܥ denotes the clopen subset of 2ఠ consisting of the 

extensions of p. 

The above equality implies that ܦ is an ܨఙ (and, in particular, a Borel 

subset of 2ఠ. We claim that the complement of ܦ in 2ఠis countable. 

Namely, if it were uncountable, there would exist ߙ ∈  ܿ with ℬఈ  =

 2ఠ\ ܦ. But, since ݊ ∈ ∋   for allܯ  ,ఈܣ 
ᇱ , we have that ߳,ఈ ∈  ,ܦ 

contradicting the fact that  ߳,ఈ ∈  ℬఈ  and proving the claim. To 

conclude the proof of the lemma, note that for each ݊ ≥  1 the 

intersection ⋃ ழܦ  is nonempty; for ߳ ∈ ⋃ ழܦ , we have that {݅ ∶

 ݅ < ݊}  ⊂ ∋  , for all but finitely manyܯ   .ఢܣ 

      Let ܺ be a Banach space. Recall that a biorthogonal system in ܺ is 

a family (ݔ, )∈ூߛ  with ݔ  ∈  ܺ, ߛ  ∈  ܺ∗, (ݔ)ߛ  =  1 and ߛ(ݔ)  =  0 

for ݅ ≠  ݆. The cardinality of the biorthogonal system (ݔ , )∈ூߛ  is 

defined as the cardinality of ܫ. 

Definition (4.1.2)[4]: Let (ݔ,  )∈ூbe a biorthogonal system in aߛ

Banach space ܺ. We call (ݔ )∈ூ bounded if supߛ,
∈ூ

‖ݔ‖  <  +∞  and 

sup
∈ூ

‖ݕ‖  <  +∞  weak*-null if (ߛ)∈ூ  is a weak*-null family, i.e., if 

൫ߛ(ݔ)൯∈ூ  is in ܿ(ܫ), for all ݔ ∈  ܺ. 

Theorem (4.1.3) [4]: Let ܺ be a Banach space. Assume that there 
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exist a weak*- null biorthogonal system ൫ݔ,ఈ, ,ఈ൯∈ఠ,ఈ∈ߛ
 in ܺ and a 

constant ܥ ≥  0 such that: 

ะݔ,ఈ



ୀଵ

ะ  ≤  ,ܥ 

for all ݊ଵ, . . . , ݊  ∈  ߱ pairwise distinct, all ߙଵ, . . . , ߙ  ∈  ܿ, and all ݇ ≥

 1. 

Then Ext(ܺ, ܿ)  ≠  0. 

Proof. We have that Ext(ܺ, ܿ) =  0 if and only if every bounded 

operator ܶ: ܺ →  ℓஶ/ܿ admits a lifting 1, i.e., a bounded operator 

 ܶ : ܺ →  ℓஶ with ܶ(ݔ) =  ܶ(ݔ) + ܿ, for all ݔ ∈  ܺ. Let us then show 

that there exists an operator ܶ ∶  ܺ →  ℓஶ/ܿ that does not admit a 

lifting. To this aim, let   ൫ܣ,ఈ൯∈ఠ,ఈ∈
be an almost disjoint family as 

in Lemma (4.1.1) and consider the unique isometric embedding ܵ ∶

 ܿ(߱ ×  ܿ)  →  ℓஶ/ܿ  such that ܵ(݁,ఈ)  =  ߯,ഀ + ܿ, where 

൫݁,ఈ൯∈ఠ,ఈ∈ denotes the canonical basis of ܿ(߱ × ܿ). Denote by ߁ ∶

 ܺ →  ܿ(߱ × ܿ) the bounded operator with coordinate functionals 

൫ߛ,ఈ൯∈ఠ,ఈ∈ and set ܶ =  ܵ ∘ ߁ ∶  ܺ →  ℓஶ/ܿ. Assuming by 

contradiction that there exists a lifting  ܶ  of ܶ and denoting by 

൫μ൯∈ఠ the sequence of coordinate functionals of  ܶ  we have that the 

set: 

,ఈܣ
ᇱ  = ∋ }  ,ఈܣ  ∶  μ൫ݔ,ఈ൯  ≥

1
2

 } 

is cofinite in ܣ,ఈ. It follows that for each ݇ ≥  1, there exist  ∈  ߱, 

݊ଵ, . . . , ݊  ∈  ߱ pairwise distinct, and ߙଵ, . . . ߙ,  ∈  ܿ such that  ∈

,ఈܣ 
ᇱ  , for ݅ =  1, . . . , ݇. Hence: 
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݇
2
≤ ߤ  ൭ݔ,ఈ



ୀଵ

  ൱  ≤ ฮܥ  ܶฮ, 

which yields a contradiction. 

Corollary (4.1.4)[4]: Let ܭ be a compact Hausdorff space. Assume 

that there exists a bounded weak*-null biorthogonal system 

൫ ݂,ఈ ,ఈ൯∈ఠ,ఈ∈ߛ,  in (ܭ)ܥ such that ݂,ఈ ݂,ఉ  =  0, for all ݊,݉ ∈  ߱ 

with ݊ ≠  ݉ and all ߚ,ߙ ∈  ܿ. Then Ext((ܭ)ܥ, ܿ)  ≠  0. 

Definition (4.1.5)[4]: We say that a compact Hausdorff space K 

satisfies property )∗ ( if there exist a sequence (ܨ)∈ఠ of closed 

subsets of ܭ and a bounded weak*-null biorthogonal system 

൫ ݂,ఈ ,ఈ൯∈ఠ,ఈ∈ߛ,  in (ܭ)ܥ such that: 

ܨ ∩  ራ ܨ
ஷ

തതതതതതതതത
 = ∅                                      (1) 

and supp  ݂ ,ఈ ⊂ ܨ  , for all ݊ ∈  ߱ and all ߙ ∈  ܿ, where supp ݂,ఈ  

denotes the support of ݂,ఈ . 

In what follows, we denote by (ܭ)ܯ the space of finite 

countably-additive signed regular Borel measures on ܭ, endowed 

with the total variation norm. We identify as usual the dual space of 

 .(ܭ)ܯ with (ܭ)ܥ

Lemma (4.1.6)[4]: Let ܭ be a compact Hausdorff space and ܮ be a 

closed subspace of ܭ. If L satisfies property (∗), then so does ܭ. 

Proof: Consider, as in Definition (4.1.5), a sequence (ܨ)∈ఠ of closed 

subsets of ܮ and a bounded weak*-null biorthogonal system 

൫ ݂,ఈ ,ఈ൯∈ఠ,ఈ∈ߛ,  in (ܮ)ܥ. By recursion on n, one easily obtains a 

sequence (ܷ)∈ఠof pairwise disjoint open subsets of K with each Un 

containing ܨ. Let ܸ be an open subset of ܭ with ܨ ⊂ ܸ ⊂  ܸഥ ⊂ ܷ . 

Using Tietze’s Extension Theorem and Urysohn’s Lemma, we get a 
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continuous extension  ሚ݂,ఈ of ݂,ఈ to ܭ with support contained in ܸഥ  

and having the same norm as ݂,ఈ. To conclude the proof, let ߛ,ఈ ∈

,ఈߛ be the extension of (ܭ)ܯ ∈  that vanishes identically (ܮ)ܯ

outside of L and observe that ൫ ሚ݂,ఈ, -*,ఈ൯∈ఠ,ఈ∈ is a bounded weakߛ

null biorthogonal system in (ܭ)ܥ. 

As an immediate consequence of Lemma (4.1.6) and Corollary 

(4.1.4), we obtain the following result. 

Theorem (4.1.7)[4]: If a compact Hausdorff space L satisfies property 

(∗), then every compact Hausdorff space K containing a homeomorphic 

copy of L satisfies Ext((ܭ)ܥ, ܿ)  ≠ 0. 

We now establish a few results which give sufficient conditions 

for a space ܭ to satisfy property (∗). Recall that, given a closed subset 

 is ܭ in ܨ of a compact Hausdorff space K, an extension operator for ܨ

a bounded operator ܧ ∶ (ܨ)ܥ   →  which is a right inverse for (ܭ)ܥ 

the restriction operator (ܭ)ܥ  ∋  ݂ ↦ ∋ ܨ|݂   Note that F .(ܨ)ܥ 

admits an extension operator in K if and only if the kernel (ܨ|ܭ)ܥ  =

 {݂ ∈ (ܭ)ܥ  ∶  ݂|ி =  0} of the restriction operator is complemented 

in (ܭ)ܥ. A point x of a topological space ܺ  is called a cluster point of a 

sequence (ܵ)∈ఠ of subsets of ܺ if every neighborhood of ݔ 

intersects Sn for infinitely many ݊ ∈  ߱. 

Lemma (4.1.8)[4]: Let K be a compact Hausdorff space. Assume that 

there exist a sequence (ܨ)∈ఠ of pairwise disjoint closed subsets of ܭ 

and a closed subset ܨ of ܭ satisfying the following conditions: 

(a) F admits an extension operator in K; 

(b) every cluster point of (ܨ)∈ఠis in F and ܨ  ∩ = ܨ  ∅, for all ݊ ∈

 ߱; 

(c) there exists a family ൫ ݂,ఈ, ,ఈ൯∈ఠ,ఈ∈, where ൫ߛ ݂,ఈ,  ,ఈ൯ఈ∈ is aߛ

weak*-null biorthogonal system in ܥ(ܨ) for each ݊ ∈  ߱ and 
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sup
∈ఠ,ఈ∈

ฮ ݂,ఈฮ  <  +∞ , sup
∈ఠ,ఈ∈

ฮߛ,ఈฮ  <  +∞ . 

Then K satisfies property  )∗( . 

Proof. From (b) and the fact that the ܨ are pairwise disjoint it 

follows that (1) holds. Let (ܷ)∈ఠ, ( ܸ)∈ఠ, and ൫ ሚ݂,ఈ൯∈ఠ,ఈ∈ be as in 

the proof of Lemma (4.1.6); we assume also that ܸഥ ∩ = ܨ  ∅, for 

all ݊ ∈  ߱. Let ߛ,ఈ  ∈ ,ఈߛ be the extension of (ܭ)ܯ  ∈  that (ܨ)ܯ 

vanishes identically outside of ܨ. 

We have that ൫ ሚ݂,ఈ,  ,ఈ൯∈ఠ,ఈ∈ is a bounded biorthogonal system inߛ

,ఈ൯ఈ∈ߛand that൫ (ܭ)ܥ  is weak*-null for each n, though it is not true 

in general that the entire family ൫ߛ,ఈ൯∈ఠ,ఈ∈is weak*-null. In order 

to take care of this problem, let ܲ ∶ (ܭ)ܥ  →  be a bounded (ܨ|ܭ)ܥ 

projection and set ߛ,ఈ = ,ఈߛ  ∘ ܲ. Since all ˜fn,α are in (ܨ|ܭ)ܥ, we 

have that ൫ ሚ݂,ఈ, ,ఈ൯∈ఠ,ఈ∈ߛ
 is biorthogonal. To prove that 

൫ߛ,ఈ൯∈ఠ,ఈ∈ is weak*-null, note that (b) implies that lim
→ାஶ 

ฮ݂|ிฮ =

 0, for all ݂ ∈  .(ܨ|ܭ)ܥ 

Corollary (4.1.9)[4]: Let ܭ be a compact Hausdorff space. If (ܭ)ܥ 

admits a bounded weak*-null biorthogonal system of cardinality ܿ, 

then the space [0,߱]  × ,satisfies property (*). In particular ܭ  × ܮ  ܭ 

satisfies property  (*)  for every compact Hausdorff space ܮ containing 

a nontrivial convergent sequence. 

Corollary (4.1.10)[4]: The spaces [0,߱]  ×  [0, ܿ] and 2  satisfy 

property (∗). In particular, a product of at least c compact Hausdorff 

spaces with more than one point satisfies property (*). 

Proof. The family ቀ߯ൣ,ఈ൧, ఈߜ − ఈାଵቁߜ
ఈ∈

 is a bounded weak*-null 

biorthogonal system in 0])ܥ, ܿ]), where ߜఈ ∈ ,0])ܯ  ܿ]) denotes the 

probability measure with support {ߙ}. It follows from Corollary 
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(4.1.9) that [0,߱] ×  [0, ܿ] satisfies property (∗). To see that 2 also 

does, note that the map [0, ܿ] ∋ ↦ ߙ  ߯ఈ ∈ 2  embeds [0,c] into 2 , so 

that 2 ≅  2
ఠ

× 2 contains a homeomorphic copy of [0,߱] ×  [0, ܿ].  

Recall that a projectional resolution of the identity (PRI) of a 

Banach space ܺ is a family ( ఈܲ)ఠஸఈஸdens() of projection operators 

ఈܲ: ܺ →  ܺ satisfying the following conditions: 

(i) ܲߙ =  1, for ߱ ≤ ≥ ߙ   dens(ܺ); 

(ii) ܲdens() is the identity of ܺ; 

(iii) ఈܲ[ܺ] ⊂  ఉܲ[ܺ]and Ker൫ ఉܲ൯ ⊂  Ker( ఈܲ), for ߱ ≤ ≥ ߙ  ≥ ߚ 

 dens(ܺ); 

(iv) ఈܲ(ݔ) = lim
ఉழఈ ఉܲ(ݔ) , for all ݔ ∈  ܺ, if ߱ < ≥ ߙ  dens(ܺ) is a limit 

ordinal; 

(v) dens( ఈܲ[ܺ])  ≤ ≥ ߱ for ,|ߙ|  ≥ ߙ   dens(ܺ). 

We call the PRI strictly increasing if ఈܲ[ܺ] is a proper subspace of 

ఉܲ[ܺ],  for ߱ ≤ ߙ  < ≥ ߚ  dens(ܺ). 

Corollary (4.1.11)[4]: Let ܭ and L be compact Hausdorff spaces such 

that L contains a nontrivial convergent sequence and (ܭ)ݓ  ≥  ܿ. If 

× ܮ admits a strictly increasing PRI, then the space (ܭ)ܥ  satisfies ܭ 

property  (*).  

Proof. This follows from Corollary (4.1.9) by observing that if a 

Banach space ܺ admits a strictly increasing PRI, then X admits a 

weak*-null biorthogonal system (ݔఈ , ‖ఈݔ‖ ఈ)ఠஸఈழdens() withߛ =

 1 and ‖ߛఈ‖ ≤  2, for all ߙ. Namely, pick a unit vector ݔఈ  in ఈܲାଵ[ܺ]  ∩

 Ker( ఈܲ) and set ߛఈ  =  ߶ఈ ∘  ( ఈܲାଵ –  ఈܲ), where ߶ఈ ∈  ܺ∗ is a norm-

one functional satisfying ߶ఈ(ݔఈ)  =  1. 

Let us recall some standard definitions. Given an index set ܫ, we 

write Σ(ܫ)  = ∋ ݔ}  ℝூ ∶  suppݔ is countable}, where the support 
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suppݔ of ݔ is defined by suppݔ =  {݅ ∈ ܫ  ∶ ݔ  ≠  0}. Given a compact 

Hausdorff space ܭ, we call A a ߑ -subset of ܭ if there exist an index set 

߮ and a continuous injection ܫ ∶ → ܭ   ℝூ  such that ܣ =  ߮ିଵ[Σ(ܫ)]. 

The space K is called a Valdivia compactum if it admits a dense Σ-

subset and it is called a Corson compactum if K is a Σ-subset of itself. 

We dedicated to the proof of the following result. 

Lemma (4.1.12)[4]: Let ܭ be a compact Hausdorff space and ܨ be a 

closed non- open Gδ subset of K. Then there exists a sequence (ܨ)∈ఠ 

of nonempty pairwise disjoint regular closed subsets of ܭ such that 

condition (b) in the statement of Lemma (4.1.12) holds. 

Proof. We can write ܨ =  ⋂∈ఠ ܸ, with each ܸ open in ܭ and ܸାଵതതതതതത 

properly contained in ܸ . Set ܷ  = ܸ\ ܸାଵതതതതതത, so that all cluster points 

of (ܷ)∈ఠ are in F. To conclude the proof, let ܨ be a nonempty 

regular closed set contained inܷ . 

Once we get the closed sets (ܨ)∈ఠ from Lemma (4.1.12). First, we 

need an assumption ensuring that इ(ܨ)  ≥  ܿ, for all ݊. To this aim, 

given a point x of a topological space ߯, we define the weight of ݔ in ߯ 

by: 

इ(ݔ,ܺ) = min{इ(ܸ ) ∶  ܸ neighborhood of ݔ in ߯}. 

Recall that if ܭ is a Valdivia compact space, then (ܭ)ܥ admits a PRI . 

Moreover, a trivial adaptation of the proof  shows in fact that (ܭ)ܥ 

admits a strictly increasing PRI. Thus, by the argument in the proof of 

Corollary (4.1.11), (ܭ)ܥ admits a weak*-null biorthogonal system 

( ఈ݂ , ߱(ఈߛ ≤ ߙ < such that ఈ݂ (ܭ)ݓ  ≤  1 and ߛఈ ≤  2, for all ߙ. The 

following result is now immediately obtained. 

Corollary (4.1.13)[4]: Let ܭ be a Valdivia compact space such that 

इ(ܭ,ݔ)  ≥  ܿ, for all ݔ ∈ -Assume that there exists a closed non .ܭ 
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open ܩఋ subset F admitting an extension operator in K. Then K satisfies 

property (∗). 

Assuming that K has ccc, the next lemma allows us to reduce 

the proof of Theorem (4.1.15) to the case when इ(ܭ,ݔ)  ≥  ܿ, for all 

∋ ݔ  .ܭ 

Lemma (4.1.14)[4]: Let K be a ccc Valdivia compact space and set: 

= ܪ ∋ ݔ}  ܭ  ∶  इ(ܭ,ݔ)  ≥  ܿ}. 

Then: 

(a) ܪ =  ∅, if इ(ܭ)  ≥  ܿ; 

(b) इ(ܭ \ int(ܪ))  <  ܿ, where  int(ܪ)denotes the interior of ܪ; 

(c) ܪ is a regular closed subset of ܭ; 

(d) इ(ܪ,ݔ)  ≥  ܿ, for all ݔ ∈  .ܪ 

Proof. If ܪ =  ∅, then K can be covered by a finite number of open 

sets with weight less than c, so that इ(ܭ)  <  ܿ. This proves (a). To 

prove (b), let ( ܷ)∈ூ be maximal among antichains of open subsets of 

K with weight less than ܿ. Since I is countable and c has uncountable 

cofinality, we have that ܷ =  ⋃∈ூ ܷ has weight less than c. From the 

maximality of( ܷ)∈ூ, it follows that ܪ \ ܭ ⊂  ഥܷ; then K \ int(ܪ)  =

തതതതതതതܪ \ ܭ   ⊂  ഥܷ. To conclude the proof of (b), let us show that इ( ഥܷ)  <

 ܿ. Let A be a dense Σ-subset of K and let ܦ be a dense subset of ܣ ∩

 ܷ with |ܦ|  ≤  इ(ܷ). Then ܦഥis homeomorphic to a subspace of 

ℝइ(ܷ), so that इ( ഥܷ)  =  इ(ܦഥ)  ≤  इ(ܷ)  <  ܿ. To prove (c), note 

that ܪ is clearly closed; moreover, by (b), the open set ܭ\int(ܪ)തതതതതതതത has 

weight less than c and hence it is contained in ܪ\ܭ. Finally, to prove 

(d), let V be a closed neighborhood in K of some x ∈ H. By (b), we 

have इ(ܸ \ ܪ)  <  ܿ. Recall that if a compact Hausdorff space is the 

union of not more than ߢ subsets of weight not greater than κ, then 

the weight of the space is not greater than κ. Since इ(ܸ )  ≥  ܿ, it 
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follows from such result that इ(ܸ ∩ (ܪ   ≥  ܿ. 

 

Theorem (4.1.15) [4]: If K is a Corson compact space with इ(ܭ)  ≥

 ܿ, then Ext((ܭ)ܥ, ܿ)  =  0. In particular, under CH, we have 

 Ext((ܭ)ܥ, ܿ) =  0 for any nonmetrizable Corson compact space K. 

The fact that Ext((ܭ)ܥ, ܿ)  ≠  0 for a Valdivia compact space ܭ which 

does not have ccc is already known . Our strategy for the proof of 

Theorem (4.1.15) is to use Lemma (4.1.14) to show that if ܭ is a 

Corson compact space with इ(ܭ)  ≥  ܿ having ccc, then ܭ satisfies 

property (∗). We start with a lemma that will be used as a tool for 

verifying the assumptions. Recall that a closed subset of a topological 

space is called regular if it is the closure of an open set (equivalently, 

if it is the closure of its own interior). Obviously, a closed subset of a 

Corson compact space is again Corson and a regular closed subset of 

a Valdivia compact space is again Valdivia. 

Proof: By Lemma (4.1.14), it suffices to prove that if K is a nonempty 

Corson compact space such that इ(ܭ,ݔ)  ≥ c for all ݔ ∈  then K ,ܭ 

satisfies property (∗). Since a nonempty Corson compact space K 

admits a ܩఋ point  , this fact follows from Corollary (4.1.14) with ܨ =

 .{ݔ} 

In this section we prove that Ext((ܭ)ܥ, ܿ)  ≠  0 for certain 

classes of nonmetrizable Valdivia compact spaces ܭ and we propose 

a strategy for dealing with the general problem. First, let us state 

some results which are immediate consequences of what we have 

done so far. 

Proposition (4.1.16)[4]: If K is a Valdivia compact space with 

इ(ܭ)  ≥  ܿ and L is a compact Hausdorff space containing a nontrivial 

convergent sequence, then ܮ ×  .(∗) satisfies property ܭ 
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Proof. As we have observed, if ܭ is a Valdivia compact space, then 

 admits a strictly increasing PRI. The conclusion follows from (ܭ)ܥ

Corollary (4.1.13). 

Proposition (4.1.17)[4]: Let K be a Valdivia compact space admitting 

a ܩఋ point x with इ(ܭ,ݔ)  ≥  ܿ. Then Ext((ܭ)ܥ, ܿ)  ≠  0 and, if K has 

ccc, then K satisfies property (∗). 

Proof. As mentioned before, the non-ccc case is already known. 

Assuming that K has ccc, define H as in Lemma (4.1.14) and conclude 

that H satisfies property (∗) using Corollary (4.1.18) with ܨ =  .{ݔ} 

Corollary (4.1.18)[4]:  Let K be a Valdivia compact space with 

इ(ܭ)  ≥  ܿ admitting a dense ߑ-subset A such that ܣ \ ܭ is of first 

category. Then Ext((ܭ)ܥ, ܿ)  ≠  0 and, if ܭ has ccc, then ܭ satisfies 

property (∗). 

Proof. ܭ has a dense subset of ܩఋ points. Assuming that ܭ has ccc and 

defining ܪ as in Lemma (4.1.14), we obtain that H contains a ܩఋ point 

of K, which implies that K satisfies the assumptions of Proposition 

(4.1.17). 

Now we investigate conditions under which a Valdivia compact 

space ܭ contains a homeomorphic copy of [0,߱] ×  [0, ܿ]. Given an 

index set I and a subset ܬ of ܫ, we denote by ݎ ∶ ℝூ  → ℝூ the map 

defined by setting ݎ(ݔ)| = ≡ ூ\|(ݔ)ݎ  and|ݔ   0, for all x ∈ RI. 

Given a subset K of RI, we say that ܬ ⊂ [ܭ] ݎ good if-ܭ is ܫ   ⊂  It is .ܭ 

proven that if ܭ is a compact subset of RI and Σ(ܫ) ∩  ,ܭ is dense in ܭ

then every infinite subset ܬ of ܫ is contained in a ܭ-good set ܬ′ with 

|ܬ|  =  .|′ܬ| 

Proposition (4.1.19) [4]: Let K be a Valdivia compact space 

admitting a dense Σ-subset A such that some point of ܣ\ܭ is the limit of 

a nontrivial sequence in ܭ. Then ܭ contains a homeomorphic copy of 
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[0,߱] × [0,߱1]. In particular, assuming CH, we have that K satisfies 

property (∗). 

Proof. We can obviously assume that ܭ is a compact subset of some 

ℝூand that ܣ =  Σ(ܫ)  ∩  Since A is sequentially closed, our .ܭ 

hypothesis implies that there exists a continuous injective map 

[0,߱]  ∋  ݊ ↦ ݔ   ∈  be a countable subset of I such ܬ Let .ܣ \ ܭ 

that ݔ|  = ∋ ݉,݊ | , for allݔ  [0,߱] with n = m. Using  and 

transfinite recursion, one easily obtains a family (ܬఈ)ఈஸఠభ of ܭ-good 

subsets of I satisfying the following conditions: 

(i) Jα is countable, for α<ω1; 

(ii) J ⊂  ;ܬ 

(iii) ܬఈ  ⊂ ≥ ఉ, for 0ܬ  ≥ ߙ  ≥ ߚ   ߱ଵ; 

(iv) ܬఈ  =  ⋃ ఉఉழఈܬ  , for limit  ߙ ∈  [0,߱ଵ]; 

(v) for all ݊ ∈  [0,߱], the map [0,߱ଵ] ∋ ↦ ߙ  ఈܬ  ∩ supp ݔ is 

injective. 

Given these conditions, it is readily checked that the map 

[0,߱]  ×  [0,߱ଵ]  ∋ (ߙ,݊)   ↦ (ݔ)ഀݎ  ∈  ܭ

is continuous and injective. 

We observe that the validity of the following conjecture would 

imply, under CH, that Ext((ܭ)ܥ, ܿ) ≠  0 for any nonmetrizable 

Valdivia compact space ܭ. 

Conjecture. If ܭ is a nonempty Valdivia compact space having ccc, 

then either ܭ has a ܩఋ point or ܭ admits a nontrivial convergent 

sequence in the complement of a dense Σ-subset. 

To see that the conjecture implies the desired result, use 

Lemma (4.1.14) and Propositions (4.1.17) and (4.1.19), keeping in 

mind that a regular closed subset of a ccc space has ccc as well. The 
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conjecture remains open, but in what follows we present an example 

showing that it is false if the assumption that K has ccc is removed. 

Recall that a tree is a partially ordered set (ܶ,≤) such that, for 

all ݐ ∈  ܶ, the set (·, (ݐ  = ∋ ݏ}   ܶ ∶ ݏ  <  is well-ordered. We define {ݐ

a compact Hausdorff space from a tree ܶ by considering the subspace 

ܲ(ܶ) of 2்  consisting of all characteristic functions of paths of ܶ; by a 

path of T we mean a totally ordered subset ܣ of ܶ such that (·, (ݐ  ⊂

∋ ݐ for all ,ܣ  It is easy to see that ܲ(ܶ) is closed in 2் .ܣ   ; we call it 

the path space of ܶ. 

Denote by ܵ(߱ଵ) the set of countable successor ordinals and 

consider the tree  =  ⋃ ߱ଵఈఈ∈ௌ(ఠభ)  , partially ordered by inclusion. The 

path space ܲ(ܶ) is the image of the injective map Λ ∋ ↦ ߣ   ߯(ఒ)  ∈

 2் , where Λ =  ⋃ ߱ଵ
ఈ

ఈஸఠభ  and (ߣ)ܣ  = ∋ ݐ}   ܶ ∶ ⊃ ݐ   .{ߣ 

Proposition (4.1.20)[4]: If the tree ܶ is defined as above, then its path 

space ܲ(ܶ) is a compact subspace of ℝ் satisfying the following 

conditions: 

 (i) ܲ(ܶ)  ∩  ;is dense in ܲ(ܶ), so that ܲ(ܶ) is Valdivia (ܶ)ߑ 

(ii) P(T) has no ܩఋ points; 

(iii) no point of ܲ(ܶ)\Σ(ܶ) is the limit of a nontrivial sequence in P(ܶ). 

Proof. To prove (i), note that ߯(ఒ) = lim
ఈழఠభ

߯(ఒ|ഀ)  for all ߣ ∈  ଵ߱
ఠభ. 

Let us prove (ii). Since ܲ(ܶ) is Valdivia, every ܩఋ point of ܲ(ܶ) must 

be in Σ(ܶ), i.e., it must be of the form ߯(ఒ) , with ߣ ∈  ߱ଵఈ , ߙ < ߱ଵ. To 

see that ߯(ఒ) cannot be a ܩఋ point of ܲ(ܶ), it suffices to check that for 

any countable subset ܧ of ܶ, there exists μ ∈  Λ,μ =  such that ,ߣ 

߯(ఒ) and ߯(ஜ) are identical on ܧ. To this aim, simply take μ = ߣ  ∪

∋ ߚ with ,{(ߚ,ߙ)}  ߱ଵ \ {(ߙ)ݐ ∶ ∋ ݐ  ∋ ߙ and ܧ   dom(ݐ)}. Finally, to 

prove (iii),  let ൫߯(ఒ)ܣ൯ஹଵ be a sequence of pairwise distinct 
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elements of ܲ(ܶ) converging to some ߳ ∈  ܲ(ܶ) and note that the 

support of ߳ must be contained in the countable set ⋃ (ߣ)ܣ)  ∩ஷ

 . ((ߣ)ܣ 

It is easy to see that, for ܶ defined as above, the space ܲ(ܶ) 

does not have ccc. Namely, setting ௧ܷ  =  {߳ ∈  ܲ(ܶ) ∶ (ݐ)߳  = 1} for 

∋ ݐ  ܶ, we have that ௧ܷ  is a nonempty open subset of ܲ(ܶ) and that 

௧ܷ ∩  ௦ܷ  =  ∅, when ݐ, ∋ ݏ  ܶ are incomparable. 
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