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We study closed convex hulls of unitary orbits in various C*-
algebras. For unital C*-algebras with real rank zero and a faithful
tracial state determining equivalence of projections, a notion of
majorization which describes the closed convex hulls of unitary
orbits for self-adjoint operators are considered. Other notions of
majorization are examined in these C *-algebras. We show that norms
on certain Banach spaces can be approximated uniformly, and with
arbitrary precision, on bounded subsets by C* smooth norms and
polyhedral norms. We employ the pinching theorem, ensuring that
some operators admit any sequence of contractions as an operator

diagonal. Nontrivial twisted are shown.
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Chapter 1
Unitary Orbit In C*-Algebras of Real Rank Zero

Combining the ideas with the Dixmier property, we demonstrate
unital, infinite dimensional C*-algebras of real rank zero and strict
comparison of projections with respect to a faithful tracial state must be
simple and have a unique tracial state, closed convex hulls of unitary
orbits of self-adjoint operators are fully described in unital, simple, purely
infinite C*-algebras.
Section (1.1): Scalars and Unitary Orbits of Convex Hulls

Unitary orbits of operators are important objects that provide
significant information about operators. In the infinite dimensional
setting, the norm closure of the unitary orbits must be taken as
unitary groups are no longer compact. For all intents and purposes,
two operators that are approximately unitarily equivalent (that is,
have the same closed unitary orbits) may be treated as the same
operator inside a C* —algebra and the question of when two (normal)
operators are approximately unitarily equivalent has been studied.

When two operators are not approximately unitarily
equivalent, it is interesting to ask, “How far are the operators from
being approximately unitarily equivalent?” This question is
guantified by describing the distance between the operators’ unitary
orbits and has a long history. For self-adjoint matrices S and T with
eigenvalues {u,}i-, and {1, };i-,; respectively, the distance between
the unitary orbits of Sand T was computed to be the optimal
matching distance

min max{lﬂ'k - MO'(k)l | k € {1vvn}}

oES,
where S, is the permutation group on {1, . .., n}. However, if Sand T

are normal matrices, the distance between the unitary orbits of S and



T need not equal the optimal matching distance. For bounded normal
operators on Hilbertspace, results have been obtained analogous to
the known matricial results. This question has been active in other

C*-algebras where the most recent work has made use of K-theoretic

properties and ideas.

Another important concept is that of majorization for self-
adjoint matrices. A notion of majorization for real-valued functions in
L1[O, 1] was first developed by Hardy, Littlewood, and Pdlya using
non-increasing rearrangements and this notion has been widely
studied. When applied to self-adjoint matrices through their
eigenvalues, a fascinating concept is obtained. Majorization of self-
adjoint matrices has been thoroughly analyzed and has relations to a
wide range of problems in linear algebra, such as classical theorem of
Schur and Horn characterizing the possible diagonal n-tuples of a
self-adjoint matrix based on its eigenvalues and applications to
generalized numerical ranges of matrices.

Majorization has an immediate analogue in Il1 factors by
replacing eigenvalues with spectral distributions. By using the notion
of majorization via eigenvalue functions (also known as spectral
scales) of self-adjoint operators in Il1 factors, several analogues of
matricial results have been obtained. For example, an analogue of the
Schur-Horn Theorem for |1, factors was first postulated and proved
by Ravichandran and analogues of generalized numerical ranges
were developed.

The notion of majorization of self-adjoint operators in both
matrix algebras and Il factors as a deep connection with unitary
orbits. Indeed, given two self-adjoint operators S and T, it was shown

for matrix algebras and Il; factors that T majorizes S if and only if Sis



in the (norm) closure of the convex hull ( the convex hull may be
defined as the intersection of all convex sets containing x or as the set
of all convex combinations of point in x) [5] of the unitary orbit of T,
denoted conv(U(T)). Consequently, the question of whether T
majorizes S is a question of whether S can be obtained by ‘averaging’
copiesof T .

Analysis of the closure of convex hulls of unitary orbits has
yielded some interesting results. For example, the Dixmier property
for a C*-algebra asks that the centre of the C*-algebra interests every
such orbit. One need only consider self-adjoint operators to verify the
Dixmier property show that a unital C*-algebra A has the Dixmier
property if and only if 2L is simple and has at most one faithful tracial
state.

We describe the closure of convex hulls of unitary orbits of self-
adjoint operators in various C*-algebras. Taking inspiration from von

Neumann algebra theory, we will focus on C*-algebras that behave

like type Ill and type ll1 factors. In particular, unital, simple, purely
infinite C*-algebras are our analogues of type Il factors and unital C*-
algebras with real rank zero and a faithful tracial state determining
equivalence of projections are our analogues of type Il factors.
Develops and extends the necessarily preliminary results on
majorization of self-adjoint operators in matrix algebras and Il
factors. In particular, the notion of eigenvalue functions is adapted
from Il; factors to C*-algebras with faithful tracial states by replacing
spectral distributions with dimension functions. The properties of
eigenvalue functions are immediately transferred to this setting.

There are scalars in convex hulls of unitary orbits in C*-



algebras with faithful tracial states. Notice if 2 is a unital C*-algebra
with a faithful tracial state trand T € U, then 7(S) = ©(T) forall S €
conv(U(T)). Consequently conv(U(T)) n {Cly} is either empty
or {t (T)Iy}. Using an averaging process along with manipulations of
projections, it is demonstrated that if U is a unital, infinite
dimensional C*-algebra with real rank zero and strict comparison of
projections with respect to a faithful tracial state , then 7 (T) €
conv(U(T)) for all T € A. Combined with the Dixmier property, this
implies & must be simple and T must be the unique faithful tracial
state on A. We investigated the ability of faithful tracial states to
imply simplicity of C*-algebras.

We analyze conv(U(T)) for self-adjoint T in unital C*-algebras
A that have real rank zero and a faithful tracial state T with the
property that if P,Q € U are projections, then ¢ (P) < 7 (Q) ifand
only if P is Murray-von Neumann equivalent to a subprojection of Q.
In particular, theorm (1.1.46) shows for such C*-algebras that S €
conv(U(T))if and only if T majorizes S with respect to 7. A though
the assumptions on 2 are restrictive in the classification theory
world, they do apply to several C*-algebras such as UHF C*-algebras,
the Bunce-Deddens C*-algebras, irrational rotations algebras, and
many others.

Trying to generalize Theorem (1.1.37) to other C*-algebras may
be a difficult task. Indeed, it is the case that there are self-adjoint
operators with the same eigenvalue functions that are not
approximately unitarily equivalent when the assumption ‘z (P) =
7 (Q) implies P and Q are equivalent’ is removed. In addition, the

question of characterizing conv(U(T)) appear very complicated if 2A
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has more than one tracialstate as, by above
discussions, conv(U(T)) n {Cly} = 0.

We devote to investigating other closed orbits and notions of
majorization of operators. We begin by using eigenvalue, which
computes the distance between unitary orbits of self-adjoint
operators via an analogue of the optimal matching distance. In
addition, an analogue of singular value decomposition of matrices is
obtained. Furthermore, descriptions of when one operator’s
eigenvalue (singular value) function dominants another operator’s
eigenvalue (respectively singular value) function and when one
operator (absolutely) submajorizes another operator are described.

We describing conv(U(T)) for self-adjoint operators T in
unital, simple, purely infinite C*-algebras. In particular, conv(U(T)) is
precisely all self-adjoint operators S such that the spectrum of S is
contained in the convex hull of the spectrum of T,

We will extend the notion and properties of eigenvalue
functions to C*-algebras with faithful tracial states.

Definition (1.1.1)[1]: For a unital C*-algebra & and an element T €
A, the unitary orbit of T is

U(T) := {U'T U | U aunitary in A}.
The closed unitary orbit of T € Ais O(T) := U(T), the norm closure
of (T).
The convex hull of U(T) will be denoted by conv(U(T)) and its norm
closure by conv(U(T)).

The main component is the generalization of the following
notions from tracial von Neumann algebras to tracial C*-algebras.
Definition (1.1.2)[1]: Let M be a von Neumann algebra a tracial

Sstate t.
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(i) For a self-adjoint operator T € IR, the eigenvalue function of
T associated with 7 , denoted A% is defined for s € [0, 1) by
AL(s): = inf{t € Rlmy ((t,»)) < s}
where mis the spectral distribution of T with respectto .
(i) For an arbitrary T € 9, the singular value function of T associated

with 7, denoted p, is defined for s € [0,1) by
HE(s):= Ay ().
Example (1.1.3)[1]: Let T € M,,(C) be self-adjoint with eigenvalues
{A}i=ywhere A, = Apyq for all k. If T is the normalized trace on
M, (C), then AL(s)=A, for all s € [% ,S).Similarly if Te
M, (C)has singular values {o}};-, Where g, = o, for all k, then
ur(s) =y, forall s € [% S)
Example (1.1.4)[1]: Let M = L,[0,1] equipped with the tracial
state T defined by integrating against the Lebesgue measure m. If f €
M is real-valued, then Az(s) = f*(s) where f* is the non-increasing
rearrangement of f, which may be defined by
fr*(s):=inf{t e R|m{x € [0,1]]| f(x) > t}) < s}.

It can be shown (see Theorem (1.1.9) that f* is a non-increasing,
right continuous function. Consequently, if f is non-increasing and
right continuous, then f = f*.
To generalize these notions to C*-algebras with faithful tracial states,
we will use the following as a replacement for spectral distributions.
Definition (1.1.5)[1]: Let ¢ > 0 and let f. denote the continuous
function on [0, ) such that f,(x) = 1ifx € [¢,2), fe(x) = O if
x € [O,g],and fe(x) is linear on Ge)

Let A be a unital C*-algebra with faithful tracial state 7. The
dimension function associated with t, denoted d, , is defined for
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positive operators A € A by
do(4): = lim T(£.(4)) .

Definition (1.1.6)[1]. Let A be a unital C*-algebra with a faithful
tracial state .
(i) For a self-adjoint operator T € 2, the eigenvalue function of T
associated with 7, denoted A%, is defined for s € [0,1) by

%(s): = inf{t € R|dt ((T — tly),) < s}
where (T — tly), denotes the positive part of T — tl.
(i) Foran arbitrary T € ¥, the singular value function of T associated
with 7, denoted u?., is defined for s € [0,1) by

uE(s): = Afr | (5).

Lemma (1.1.8) will demonstrate that Definitions (1.1.2) and (1.1.6)
agree when 2 is a von Neumann algebra.
Example (1.1.7)[1]: Let U be a unital C*-algebra with a faithful
tracial state 7 . Let {1;};-; € R be such that 1, > 1,.,for all k and
let {P,}i-1 S U be a collection of pairwise orthogonal projections
such that X3, Ply . Foreach k € {0,1,...,n} lets, = ¥¥_, 7(P) . If
T = Y}k-1 AkPr, then A%.(s) = A, forall s € [sx_q,Sk).

Eigenvalue and singular value functions have several important
properties. Although most (if not all) of these properties can be
demonstrated using C*-algebraic techniques, we will appeal to von
Neumann algebra theory to shorten the exposition.

For a unital C*-algebra % with a faithful tracial state , let
.. A = B(L,(U, 1)) be the GNS representation of A with respect to
7. Note m, is faithful and t is a vector state on B(L, (U ,7)). If M is the
von Neumann algebra generated by 7, (), specifically ()", then 1

extends to a tracial state on I .
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Lemma (1.1.8)[1]: Let A be a unital C*-algebra with faithful tracial
state T and let 9t be the von Neumann algebra described above. If T €

A is self-adjoint, then

7(s) = 2z(T)(s)
foralls € [0,1), where A7 is as defined in Definition (1.1.2).

Proof. If m,_(T) denote s the spectral distribution of 7.(T) with
respect to 7, we obtain for all t € R that
d. (T - tly);) = |ei_r)T(1)T (fo((T = tly),))
= lim 7 (m (T~ thy),))
= lim (w (T — thy),)) = My (T)((t,))

as f.((T — tly),) converges in the weak*-topology to the spectral
projection of m(T) onto (t, «). The result then follows by definitions.
Using Lemma (1.1.8), the known properties of eigenvalue and
singular value functions on von Neumann algebras automatically
transfer to the tracial C*-algebra setting.
Theorem (1.1.9)[1]: Let A be a unital C*-algebra with faithful tracial
state trand letT,S € A be self-adjoint operators. Then:

(i) Themaps — A%(s) is non-increasing and right continuous.

@) IfT = 0O, LI{‘Q A%(s) = |IT|land A%(s) = Oforall s € [0,1).

(iii) If o(T) denotes the spectrum of T , then Is'znf A%(s) =

inf{t|t € o(T)}and LI{T()] A% (s) = sup{t|t € a(T)}.
(iv) IfS < T ,then A3(s) < A%L(s)forall s € [0,1).
(v) Ifa = 0, then At A5 (s) = adr(s) and A%y qp, = A7(s) +a for
all s € [0,1).

(Vi) Asir (s +1t) < A(s) + AL(t) forall s,t € [0,1) withs +t < 1.
(vii) |AS(s) — A%(s)]lIS — T|| forall s € [0,1).

14



(viii) T (f(T)) = folf(ATT(s))ds for all continuous functions f: R — R.
(ix) If T = 0O, then A}-ry (s) < |[VII% A%(s)for all s € [0,1) and V €
A
(x) IfU € Wisaunitary, then A-ry s) = A%(s) for all s € [0,1).
(xi) T = 0,45 (s) = f(47(s))for all s € [0,1) and all continuous
increasing functions f : [0, ) — Rwith f (0) = 0.
(xii) If S,T > 0, then [ f(A%,7(s))ds < [, F(AE(s) + A%(s))ds for
all t € [0,1] and all continuous, increasing, convex functions f :
R — R.
(xiii) If S, T > 0, then [ f(A%,(s))ds < [J f(A%(s)) + f(A%(s))ds for
all t € [0,1] and all increasing concave functions f : R — R with
f(©) = 0.
Theorem (1.1.10)[1]: Let U« be a unital C+algebra with faithful
tracial state trand let T ,S,R € . Then:
(i) #5(s) = fpi(s) = pi-(s)for all s € [0,1).
(i) u&r(s) = |a|ut(s) forall s € [0,1) and a € C.
(i) urrs(OIRIISluz (s)for all s € [0,1).
(V) uir(s+ t) < ps(s)ur(t)foralls,t € [0,1)withs +t <1
W) [ f(uEr(s))ds < [ F(uE(s) + puk(s))ds for all t € [0,1] and all
continuous increasing, convex functions f: R — R.
(Vi) Jy £ (347 (s))ds < [ £ (45()) + f(uF(s))ds for all ¢ € [0,1] and
all increasing concave functions f : R - R with f(0) = 0.
To define a notion of majorization for self-adjoint operators, we
recall the following.
Definition (1.1.11)[1]: For real-valued functions f,g € L,[0,1], it

is said that f majorizes g,denoted g < f,if
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t t 1
fg*(s)ds < ff*(s)ds forallt € [0,1]and f g*(s)ds
0 0 0

= folf*(s)ds

where f* and g* are the non-increasing rearrangements of f and g
(see Example (1.1.4)).

The following example provides some intuition for
majorization.
Example (1.1.12)[1]: Let f € L[0,1] be a real-valued function and
fix{0 = sy <s5;<-<s, = 1}. Fork € {1,...,n} let

T = JSk Fi(5)ds

and let g =Xy-11[,_,s) Where 1y denotes the characteristic
function of X.
We claim that < f . Note g is non-increasing and right continuous so
9 =g
Furthermore, note

fOSkf*(s)ds = fOSkg(s)ds

forallk € {0,1,...,n}.
Suppose t € [sk—1,Sk]. If g(t) < f*(t), theng(s) < f*(s) for all
s € [skx_1,t]as g is constant on si_q,sk] and f* is non-increasing.
Thus

f £1(s) = g(s)ds = f F1(s) = g(s)ds = 0,

Sk-1
Otherwise g(t) > f*(t).Hence g(s) > f*(s)foralls € [t,s;)as g

is constant on [sy_4, S;) and f* is non-increasing. Thus
t t Sk
[F@-geis=| f)-geds= [ 1) g(s)ds =0
0 Sk—1 Sk—-1

16



Hence g < f as claimed.

Definition (1.1.13)[1]: Let U be a unital C+-algebra with a faithful
tracial state T . For self-adjoint elements T,S € ¥, it is said that T
majorizes S with respect to t, denoted <, T ,if A3 < A%.
Example(1.1.14)[1]: Let T,S € M, (C)be self-adjoint with
eigenvalues {4, =1, >--->1,} and {uy = pp == u,}
respectively. If T is the normalized trace on My(C), then S <; T if and

only if

m m n n
Zuk < Zlk forallm € {1,...,n — 1}and Zuk: ZAk :
k=1 k=1 k=1 k=1

There are several equivalent formulations of majorization of
self-adjoint operators in tracial von Neuman algebras as the
following theorem demonstrates.

Theorem (1.1. 15)[1]: Let 9 be a von Neumann algebra with a
faithful tracial state 7. Let T ,S € 9t be positive operators. Then the
following are equivalent:

i S<,T.

i) ©((s-rh),) < t((T-rly),)for all v >0 and ©(7) =
T (S).

@iii) =(f (S)) < =(f (T)) for every continuous convex function
fTR- R

(iv) If 9 is a factor, then for all self-adjoint S,T € M,S <, T is
equivalent to:
S € conv(U(T)).

—W*
S € conv(W(T)) .
There exists a unital, trace-preserving, positive map @ : 9t —
I such that @(T) = S.

17



(v) There exists a unital, trace-preserving, completely positive map
@ : MM - Wsuchthat d(T) = S.

We see to what extent Theorem (1.1.15) generalizes to tracial C*-
algebras. Note Lemma (1.1.8) immediately implies the following.
Corollary (1.1.16)[1]: Let & be a unital C*-algebra with a faithful
tracial state 7. Let T,S € U be positive operators. Then the following

are equivalent:

(i) S <,T.

(i) 7((S-rlw),) < t((T-rly),) for all ¥>0 and =(T)=
7(5).

(iii) =(f (S)) < t(f(T)) for every continuous convex function f : R —
R.

For the remaining equivalences in Theorem (1.1.15), note part (v)
does not make sense in an arbitrary C*-algebra. We will mainly focus
on part (iv) of Theorem (1.1.15) to which we have the following
preliminary result.

Lemma (1.1.17)[1]: Let A be a unital C+algebra with a faithful
tracial state T and let T € U be self-adjoint. Then

(M) IfA € R, then Aly <, Tifandonly if A = 7 (T)

(i) If S € conv(U(T)),thenS = S*and <, T.

Proof. The first claim follows from Example (1.1.12) and part (viii) of
Theorem (1.1.9).

For the second claim, suppose {U}i-; S U are unitary operators,
{ti}i=1 € [01] are suchthat Y}_; ty,and R = Y}_; t;, U;TU;. Then R
is self-adjoint and 7(R) = t(T). Moreover, by parts (v, X, xii) of
Theorem (1.1.9),

t t t
fo E(s)dssfo Ztklf,;wk(s)ds :fo Ztk T(s)ds

18



= fot T(s)ds

forallt € [0,1]. ThusR <, T forall R € conv(U(T)).
If S € conv(U(T)), then clearly S = S*. The fact that R <, T then
follows by part (vii), the above paragraph, the fact that t is norm

continuous, and the fact that

| () — g(s)ds
0

forallt € [0,1] and all bounded functions f and g.
It is unlikely that parts (vi, viii) of Theorem (1.1.15) holds in
arbitrary tracial C*-algebras due to the lack of ability to take weak*-
limits of convex combinations of inner automorphisms. However, we
have the following .
Proposition (1.1.18)[1]: Let U be a unital C*-algebra with a faithful
tracial state T and let ¢ : 2 — A be a positive map. Then ¢ is unital
and 7 -preserving if and only if ¢(T) <, T for all positive operators
T € A
Proof: Suppose ¢ is unital, positive, and T -preserving. Let T € A be
positive.
Then t(@(T)) = 7 (T). Furthermore, for all» > 0 notice

e(T) - rly = o(T — rly) < o((T — rly);)
S0

T ((p(T) — rly)y) < (T — 1ly)y)) = T (T — rly),).

Hence Corollary (1.1.16) implies that (T) <, T.
Conversely, suppose ¢ : 2 — A is a positive map such that
@(T) <, T for all positive operators T € U. By part (viii) of Theorem
(1.1.9),

19



1

1
o) = [ Ky (das = [ A5s)ds ==(r)
0

0

for all positive operators T € 2. Hence ¢ is T -preserving. Since
I,(s) = 1foralls € [0,1), by parts (i, i) of Theorem (1.1.9),

1 1
— s T 1 T J—
oGl = lim | Fyp()ds < lim [ 7,(ds =1

Hence 0 < ¢(ly) < Iy If o(ly) # Iy, then

0 = t(ly) — ©(p(y)) = t(y— @Uy) > 0,
a clear contradiction. Hence ¢(Iy) = Iqy.
There are many other forms of majorization for elements of L [0, 1].
We have the following.
Definition (1.1.19)[1]: Let U be a unital C*-algebra with a faithful
tracial statet .For T,S € ¥, itis said that T (absolutely) submajorizes

S with respect to 7, denoted S <¥ T, if

t t
f pus(s)ds < f ur(s)ds forall t € [0,1].
0 0

In this part, we will demonstrate for certain unital C *-algebras
A with a faithful tracial state 7 that t (T)Iy € tonv(U(T)) for all self-
adjoint T € A. Combined with the Dixmier property, this implies
these Cx-algebras are simple; that is, have no closed ideals. We begin
with definitions and examples of C*-algebras for which these results
apply.
Definition (1.1.20)[1]: A unital C*-algebra 2 is said to have real
rank zero if the set of invertible self-adjoint operators of 2 is dense in
the set of self-adjoint operators. Equivalently, 2 has real rank zero if
and only if every self-adjoint element of 2 can be approximated by
self-adjoint elements with finite spectrum. Also 2 is said to have
stable rank one if the set of invertible elements is dense in 2L.
Definition (1.1.21): Let A be a unital C*-algebraand let P,Q € A be

20



projections. It is said that P and Q are Murray-von Neumann
equivalent (or simply equivalent), denoted P ~ Q, if there exists an
elementV € UsuchthatP = V*Vand Q = V V" Itissaid that P is
equivalent to a subprojection of Q, denoted P < Q, if there exists a
projection Q" < Q suchthatP ~ Q'.
Definition (1.1.22)[1]: Let U be a unital C*-algebra with a faithful
tracial state . Then:
() A is said to have strong comparison of projections with respect to
T if for all projections P,Q € A, (P) < 7 (Q) impliesP < Q.
(ii) W is said to have strict comparison of projections with respectto t
if for all projections P,Q € A, 7 (P) < t(Q) impliesP < Q.

There are several C*-algebras that are known to have the above
properties.
Example (1.1.23)[1]: Type 11, factors are well known to be unital
C*-algebras that are simple, have real rank zero, and have strong
comparison of projections with respect to a faithful tracial state,
which happens to be unique.
Example (1.1.24)[1]: It is not difficult to verify that UHF C*-algebras
and the Bunce-Deddens algebras (specific direct limits of M,,(C(T)))
are unital, simple, real rank zero C*-algebras that have strong
comparison of projections with respect to a faithful tracial state,
which happens to be unique. However, as mentioned, there exists
unital, simple, AF C*-algebras with unique tracial states that do not
have strong comparison of projections.
Example (1.1.25)[1]: As mentioned, irrational rotation algebras and,
more generally, simple non-commutative tori for which the map from
K, to R induced by the tracial state is faithful are examples of unital,

simple, real rank zero C*-algebras that have strong comparison of
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projections with respect to a faithful tracial state, which happens to
be unique.
Example (1.1.26): More generally, if 2 is a unital, simple, C*-algebra
with real rank zero, stable rank one, and a tracial state z such that the
induced map 7, : Ky(4) » R defined by t*([x])) = 7 (x) is
injective, then 2 will have strong comparison of projections with
respect to 7 by cancellation.
Example (1.1.27)[1]: It was demonstrated free minimal actions of
Z% on Cantor sets give rise to crossed product C* —algebras that have
real rank zero, stable rank one, and strict comparison of projections
with respect to their tracial states.
Example (1.1.28)[1]: For certain tracial reduced free product C*-
algebras, implies simplicity, implies stable rank one, and implies real
rank zero and strict comparison of projections.
Notice that all of the C*-algebras presented above are simple. This
turns out to be no coincidence. To see this, we prove the following
result.
Theorem (1.1.29)[1]: If & and 7 are as in the hypotheses of Theorem
(1.1.37), then A is simple and T is the unique tracial state on 2.
Proof. The following argument can be found, but is repeated for
convenience of the reader. Suppose Jis a hon-zero ideal in 2. Let T €
I\ {0} be positive. Therefore t(T)Iy € conv(U(T)) €3I by
Theorem (1.1.37). As 7 is faithful, 7(T') # 0 so J =% Hence 2 is
simple.

Suppose 1, is another tracial state on 2. 7, (S) =7, (T ) for all
S € conv(U(T)). Hence Theorem (1.1.37) implies.

To(T) = 7 (x(My) = =(T).
As this holds for all self-adjoint T € 2 , we obtain that 7, = .
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Example (1.1.30)[1]: To see why strict comparison of projections
without arbitrarily small projections is not sufficient in Theorem
(1.1.29), consider the C*-algebra & = C @ C with the faithful tracial

state 7 ((a,b)) = %(a + b). It is clear that U is a unital C*-algebra

with real rank zero and strict comparison of projections with respect
to T . However, 2 is not simple.

Note the following easily verified lemma which will be used
often without citation.

Lemma (1.1.31)[1]: Let & be a unital C*-algebraand let T,S,R € .
if T € conv(U(s)) and S € conv(U(R)),thenT € conv(U(R)).

To prove Theorem (1.1.37), it will suffice to prove the theorem
for self-adjoint operators with finite spectrum by the assumption that
A has real rank zero. Combined with the following remark, it will
suffice to consider self-adjoint operators with two points in their
spectra.

To prove Theorem (1.1.37) for self-adjoint operators with two
points in their spectra, we will use equivalence of projections to
construct matrix algebras and apply results on majorization for self-
adjoint matrices, to average part of one spectral projection with the
other. Using a back-and-forth-type argument, we eventually obtain
an operator in conv(U(T)) that is almost 7 (T)Iy.

As () may not equal [0, 1], we may only divide projections up
based on the size of another projection. As such, the following

division algorithm result will be of use to us and is easily verified.

Lemma (1.1.32)[1]: Let t € (O%) and write 1 = k,t + r; where

ki eN and 0<r, <t Then k; =22 and 0 < n<

Furthermore, ifr; # Oand1 = k,r; + r, forsomek, € N .and0 <
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r, < r,thenk, > kj.

The following lemma will be our method of constructing matrix
algebras. However, the embedding of each matrix algebra into 2 need
not be a unital embedding.

Lemma (1.1.33)[1]: Let & be a unital C*-algebra with a faithful

tracial state T and let P € U be a projection with (P) € (%] . Write

1 = kt(P) +rwherek €N and0 < r < t(P).If

(i) A has strong comparison of projections with respect to T and ¢ =
k — 1,or

(ii) A has strict comparison of projections with respect to t,r # 0, and
f =k —10r

(iii) A has strict comparison of projections with respect to t, and £ =

. . . . . £
k — 2,then there exists pairwise orthogonal subprojections {Pj}j=1 of

v . .
Iy — P such that {P} U {Pj}j=1 are equivalent in 2.

Proof: Notice t (Iy — P) =(k — 1)t (P) + r.Since k = 2,7 (P) <
T (Iy — P) with strict inequality when r # 0. Therefore, by
assumptions, there exists a subprojection P; of Iy — P such that P, ~
P.Ifk = 3 (and ¥ = 2), there exists a subprojection P, of Iyy — P —

P, such that P, ~ P. By repeating this argument, we obtain pairwise
— ¢
orthogonal subprojections {Pj}j=1 of Iy — P such that P; ~ P for all j.

As Murray-von Neumann equivalence is an equivalence relation, the
result follows.

We now divide the proof of Theorem (1.1.37) for T with two
point spectra into twoparts: Lemma (1.1.34) proves the result when
A has strong comparison of projections, and Lemma (1.1.33) will
modify the argument to obtain the result in the other case. In that
which follows, diag(a,...,a,) denotes the diagonal n x n matrix
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with diagonal entries a4, ..., a,.

Lemma (1.1.34)[1]: Let U be a unital C*-algebra with real rank zero
that has strong comparison of projections with respect to a faithful
tracial state . If P € A is a projection, a,b €R, and T = aP +
b(Iy — P),thent (T)Iy € tonv(U(T)).

Proof. By interchanging P and Iy — P , we may assume that 7 (P) <

%. Let ro =7 (P) and write 1 = kyry + r, where k; € N, k; = 2

and 0 < r; < min{r0,< }<% By Lemma (1.1.40) there are

. . . . ki—1
pairwise orthogonal subprojections {Qj}jl=1 of Iy — P such that

{P}u {Qj}’;_:ll are equivalent in UA. Let P, = Iy — PZ?;? Q; . Using

the equivalence of {P}u{Q;} a copy of My (C) may be

ky—
j=t
constructed in A with unit Iy — P;. Using this matrix subalgebra, T
can be viewed as the operator
T = diag(a,b,...,b) & bP, € M (C) D PUP, S A
Since any self-adjoint matrix majorizes its normalized trace, we
obtain by that
a + (k; — 1)b
k1

where the unitary orbit is computed in M) (C). Therefore, if a; =

I, € tonv(U (diag(a,b,...,b)))

MZ+1)I’, we obtain by using a direct sum argument that
1
T, := a;(Iy — P;) + bP; € conv(U(T)).

Notice (P;) = r; . If r; = 0, the proof is complete (as 7 (T;) =
7 (T)). Otherwise, by writingl = k,r; + r,wherek, € N, k, = ki,

and0 < nr, < min{rl,ﬁ } and by repeating the above argument,
2

there exists a projection P, € A suchthatt (P,) = r, and
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b + (k; — Day
ko
c ctonv(Uu(T)).

Ty :==a,P, + (Iy— P,) € conv(U(T,))

Notice if , = 0, the proof is again complete.
Repeat the above process ad infinitum. Notice that the proof is
complete if the process ever terminates via a zero remainder. As

such, we may assume that we have found a non-decreasing sequence
(ky)ns1 €N with k; > 2, a sequence (1,),>1 S (O%] with 1 =

kn+1Ta + Tnya, Projections {B },»; € A with 7(P,) = r,, sequences
(@) ns1, (by)ns1 € R such that
_ (kaper — Db

. (kan+1 — Danys
an+1 —

" and b, = ,
k2n+1

Kon+1
and operators
Ton = nPon + bp(ly— Py) and Topyq = bpPoniq + Gpyi(ly — Ponyt)
such that T,, € conv(U(T)) for all n.
Ifa < b, itis elementary to verify that
a<a <a, <+<b, <b;<h
(as averages are used to construct each a,, and b,). Similarly, if b <
a, then
b<b <b,<<a; <a <a
As a result, (a,),>1 and (b,,),,»1 are bounded monotone sequence of
R and thus converge. Let

a' =Ilima, and b’ = lim b,,.

n—00 n—->oo

If the non-decreasing sequence (k,),>; iS bounded (and thus
eventually constant), using the factthat k; > 2 we obtaina’ = b’ by
taking the limit of one relations between an and bn. If (k,,),;»; IS

unbounded, then by using the fact that
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lim

m—-0oo

C_

we again obtaina’ = b'.
Let e > 0 and choose n such that |a,, —a'| < eand |b, —d'| < €.
Then ||T,,, — d'ly|| < €so

dist (a'ly, conv(U(T))) < e.
Hence a'ly € tonv(U(T)). Since every element of tonv(U(T)) has
trace equal to 7 (T), we obtain a’ = 7(T) thereby completing the
result.
Lemma (1.1.35)[1]: Let U be a unital C*-algebra with real rank zero
and property (b) of Theorem (1.1.37) with respect to a faithful tracial
state . If P € U is a projection, a,b € R, and T = aP + b(Iy — P),
then 7(T)Iy € Ttonv(U(T)).
Proof. Notice, by case (ii) of Lemma (1.1.40), that the recursive
algorithm in the proof of Lemma (1.1.41) works at the n™" stage in
this setting provided r,, # 0. Therefore, if r, # O for all n € N, the

proof is complete. Otherwise, if n is the first number in the algorithm

for which n, = 0, notice r,_; = ki . Thus it suffices to prove the

n

result in the case that 7(P) = %for some k € Nwith k > 2,
If Kk = 3, we can apply the algorithm in Lemma (1.1.41) by viewing
the remainders as being % instead of zero. Indeed the proof of
Lemma(1.1.34) may be adapted using case (iii) instead of case (iii) of
Lemma (1.1.33) to construct (k,, — 1) x (k,, — 1) matrix algebras
(instead of k,, * k,)and by using the new scalars

an + (kznyr — 2)b

k2n+1

n _ bn(k2n+2 - 2)an+1
and b,,,, = ,
Konsz —1

Ap +1 —

The remainder of the proof then follows as in Lemma (1.1.41). Thus it
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remains to prove the result in the case 7(P) = %

Since A has property (b), there exists a projection Py, < Iy — P with
T(Py) < % Consider

T, = aP + bP, € (P + P)A(P + P,).
As (P + Py)UA(P + P,) satisfies the assumptions of this lemma and

since

1
e )y Py

T(p + p)(P) =
the above cases imply there exists a, € R such that ay(P + Py) €
conv(U(T,)) where tonv(U(T,)) is computed in (P + Py)A(P +
P,). Consequently
ag(P + Py) + b(ly — P — Py) € tonv(U(T))
by a direct sum argument. As (P + Py) = % the above cases imply

there exists a € R such that aly € conv(U(T)). As every element of
conv(U(T)) has trace 7(T),a = t(T) completing the result.

Lemma (1.1.36)[1]: Let &L and 7 be as in the hypotheses of Theorem
(2.2.37). If T € U is a self-adjoint operator with finite spectrum, then
T(T)Iy € TONV(U(T)).

Proof. By assumption there exist pairwise orthogonal non-zero
projections {P, }-, and scalars {a;};-,; S R such that = }}_; @, Py .
By applying Lemma(1.1.34) (1.1.35) to a,P; + a,P, in (P, +
P,)A(P, + P,) and by appealing to a direct sum argument, there

exists a B, € R such that

n

Bo(Pr+Py) + ) @y P € TOMU(U(T)),
k=3

By iterating this argument another n — 2 times, there exists a
B €R such that ply e conv(U(T)). As every element
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of conv(U (T)) has trace 7(T), 8 = t(T) completing the result.
Theorem (1.1.37)[1]: Let & be a unital Cx-algebra with real rank
zero. Suppose 7 is a faithful tracial state on 2 such that either:

(a) A has strong comparison of projections with respect to 7, or

(b) A has strict comparison of projections with respect to t and for

everyn € N there exists a projection P € Asuchthat0 < 7 (P) < %

Then t (T)Iy € tonv(U(T)) for all self-adjoint T € 2.

Once Theorem (1.1.29) is established, we easily obtain the
following .
Proof: Let T € U be self-adjoint. Let € > 0. Since A has real rank
zero, there exists a self-adjoint operator TO € 2 with finite spectrum
such that ||T - T,|| <e. Notice this implies dist (R, TOMV(U(T))) <
e forall R € conv(U (T,)).
By Lemma (1.1.44), 7(T,y)Iy € TONV(UT,)). Since |7(T,) — 1(T)| <,
we obtain

dist (z(T)Iy, TonV(U(T))) < 2e.

As € was arbitrary, the result follows.

Note the set of projections contained in 7 is closed under taking
subprojections (as 7 is hereditary) and is closed under Murray-von

Neumann equivalence (as Jis an ideal). Therefore, by part (iii) of

Lemma (1.1.33), there exists a projection P € J with 7(P) > %

If t(P) = % choose a non-zero projection P’ <P with t(P') < %
and a subprojection Q of Iyy — P with 7(Q) = 7(P')suchthatQ ~ P’
Hence € JIsoP + Q €J.Ast(P + Q) > % we have reduced to the
case 7(P) > %

If 7(P) > % then Iy — P is equivalent to a subprojection of P
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and thus Iy — P € 7. Since P € 7, thisimplies Iy € 7s0 7 = 2A.

We will demonstrate the following theorem which
characterizes conv(U (T)) for self-adjoint T in various C*-algebras
using the notion of majorization.

Lemma (1.1.38)[1]: Let % and t be as in Theorem (1.1.42). Suppose
S, T € A are self-adjoint operators with finite spectrum. Then there

exists two collections of pairwise orthogonal non-zero projections
{P Y=, and {Qp }r=, with

Z P, = Z Qr = Iy and t(Py) = ©(Qy) forallk
k=1 k=1

and scalars {ai}i=1.{Br}r=1 S R with a;, = ay,,and B = B+

such that

m n
T :Zakpk andS:Zﬁka.
k=1 k=1

Proof. Since T and S have finite spectrum, there exists two
collections of pairwise orthogonal non-zero projections {P;},_, and
{Q Yo, with Y. P, =¥t _. Qp = Iy and scalars {aj}7 . {Bi}.o1 S

R with a;, > a;,,,a and B), > B, such that

m l
T :Za,gp,; and S :Zﬁ,;Q,;.
k=1 k=1

Suppose 7(P{) = 7(Q1). Since A has strong comparison of
projections, there exists a projection P, € A such that 7(P,) = (Q;)

and P; < P{.Letting Q; = Q;,we have

m l

T =Py + (P - P)) + ) P andS = B0 + ) i Q.
k=2 k=2

Similarly, if ©(P;{) < t(Q;), there exists a projection Q; € « such
that t7(Q,) = t(P{)and Q; < Q;.Letting P, = P, we have

30



m

l
T =aiP + ) @ andS =0 ++BI(Q— Q)+ ) ik
k=2

k=2

By repeating this argument at most another m + [ — 1 times (for
the next iteration, using P, and Q, when t(P;) = 7(Q;) and
otherwise using P{ — P; and Q5 in the first case and P, and Q; — Q,
in the second case), the result follows.

The following result enables us to reduce Theorem (1.1.42) to
the case of self-adjoint operators with finite spectrum.
Lemma (1.1.39)[1]: Let & and T be as in Theorem (1.1.42). If S,T €
A are self-adjoint operators, then for every € > 0 there exists self-
adjoint operators S’, T' € A with finite spectrum such that

IT —T'|| <e€ and]||S — S| < e

Furthermore:
(\)T' <, Tand S <18.
(i) IfS, T>0, thenS',T' = 0.
(i) If <, T,thenS' <, T
(iVIfS,T = 0andS <Y T,thenS" <w}? T’
(V) If 25(s) < A% (s)for all s € [0,1), then A5, (s) < A7 (s)forall s €
[0,1).
Proof. Let e > 0. Since 2 has real rank zero, there exists self-adjoint

operators Ty, S, € U with finite spectrum such that
€ €
IT = Toll <5 and [IS- Soll <5

Let {P,.}?_; . {Qu}iq {ax}i,, and{B,}¢_, be as in the conclusions of
Lemma(1.1.22) so that

m n
Ty :Zakpk and S :Zﬁka -
k=1 k=1

and, for each k € {0,1,...,n}, let s, = ¥*_, 7(P;) . Notice s, < k + 1
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forall k, s = 0,5, <s, = 1, and A5 (s) = a, and g (s) = ay, for

all s € [sy_q1,5,). Foreachk € {0,1,...,n},let

1 Sk 1 Sk
a, = —f A%(s) ds and B;, = s—f AL(s) ds,

Sk~ Sk-1Js,,_, kK~ Sk-1Js,_,

and let

n

n
T :Za,gp,; and S’ :Zﬁ,gq,;.
k=1

k=1
We claim T’ and S’ are the desired self-adjoint operators, implies
T' <, Tand S’ <; S. Furthermore, if S,T > 0, then A5(s) and A%(s)
are non-negative functions. Consequently a;,B, =0 for all
k,soS' ' T'" = 0.

To see that ||[T — T'|| < e, it suffices to show that ||T, — T'|| < g

For each k, notice

1 Sk
lay — | s—f lag — A5(5)] ds
Sk~ Sk-1Jsg,_,
1 Sk
=—— [ 115, - 5| ds
Sk — Sk-1Jg,_,
1 fSk €
= ITo — Tllds = |ITo —Tll<3
Sk — Sk—-1 Sk1 0 0 2

As this holds for all k, we obtain ||T, — T'|| < g The same

arguments show [|S — S'|| < e.

Suppose S <; T .Notice,thata, > a;,.,\and B, = B, for all k.
Consequently 17.(s) = ajand Ac,(s) = B forall s € [s,_4,5).
This along with the definition of ;, and g;, implies

fk  (s) ds = fk

Sk—1 Sk-1

Sk Sk
r(s) ds and f *,(s) ds = f £(s) ds
Sk-1

Sk—1

for all k. In particular, by adding integrals, we obtain
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folﬂfp'(s) ds = fSk_l 7(s)ds = fl t(s)ds = folzg,(g) ds .

0 0

For an arbitrary t € [0,1], choose k € {1,...,n} such that t €

[s,_1, s%] and notice

f T, (s) — A% (s) ds
0

= f TR (s) = 2E(s)ds + f T, (s) — A% (s) ds.
0

Sk-1
To see the left-hand-side is always non-negative, we note that
1(s) — A5/(s) is constant on [sx_q sk).If A%.(s) — A (s) =0 on

[sk—1 sk), then

Sk-1

[ ) =25 ds = [ 25 - s 20
0 0

Otherwise A%./(s) — Au(s) <0on [s,_; sk)so

f T (s) — A% (s) ds
0

> TAE(s) = A(s)ds + | C(s) = A5(s) ds
0

Sk-1

B f T (s) - 2E(s)ds + f " () - 25(5)ds > 0
0

Sk-1

Hence, S’ <, T'when <, T.

If S,T = 0 and S <¥ T, then the proof that S’ <¥ T’ follows
from the above proof (ignoring the part that shows fol Aords(s) =
fol Azids(s).

If AZ(s) < A% (s) for all s € [0,1), then B, < «a, for all k and thus
s(s) <ALi(s)foralls € [0,1).
The following result for elements of M, (C) is referred to as a

pinching.
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Lemma (1.1.40)[1]: Let 2 and 7 be as in Theorem (1.1.42).If P € A
is a projection,a,b € R,and T = aP + b(ly — P),thenforallt €
[0,1],
tT + (1 — t)1(T)Iy

= (at+7(T)(1 = )P + (bt + 7(T)(1 — t))(Iy — P)

€ conv(U(T)).
Proof. Fixt € [0,1] and let

a'=at +t(T)(X —t) and b'= bt + t(T)(1 — ¢t).

Since 7(T) = at(P) + bt(ly — P) € conv({a,b}), we obtain that
a',b' € conv({a, b}).

By interchanging P and Iy — P, we may assume that (P ) < %

Since A has strong comparison of projections, there exists a
projection Q € A such that Q ~ P and < Iy — P . Consequently,
using the partial isometry implementing the equivalence of P and Q,
a copy of M, (C) may be constructed in (P + Q)UA(P + Q) sothat P
and Q are the two diagonal rank one projections. Hence T can be
viewed as the operator
T = (aP + bQ) @ b(ly— P — Q)
EM(C)D (Iy— P — Q)UUy— P — Q) E A
Choose b” e R so that b"" +a" = a+ b. Notice b"E€
conv({a, b}) as a’ € conv({a, b}). We see that
diag(a’,b"") <%Tr diag(a, b)

where %Tr is the normalized trace on M,(C) (which agrees with

Tp +q )- Thus

a'P + b"'Q + b(ly— P — Q) € conv(U(T)).
By applying Theorem (1.1.37) tob"” Q + b(Ily— P — Q) in (Iy —
P)U(Iy— P) and by applying a direct sum argument, we obtain
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that

a'P + b""(Iy— P) € conv(U(T))
for some b'" € R. As every element of conv(U(T )) has trace 7(T),
one can verify that "’ = b’ .

The following result contains the main technical details
necessary for a recursive argument in the proof of Theorem (1.1.42).
In particular, it will enable us to systematically apply pinchings.
Lemma (1.1.41)[1]: Let A and 7 be as in Theorem (1.1.42). Suppose

{P}i=, is a collection of pairwise orthogonal projections with
YR P = Iy {ap 3o {Br}i=1 S Rwith B, = B, for all k,and

T :ZakPk and S —Z,Bka.

k=1

Suppose further that S <, T and there exists a j such that a;, = p; for
all k < j,a; < By, and ap = a4, forall k = j. Then there exists
{ap}i-1 € R such that a; = By, a, = a, = B, forall 1 < k < j,

a, = ap,, forallk > j,and

n

T' = Z a, P, € conv(U(T)). k = 1¥n
k=1

Furthermore, if Q = Y}_, P, ,then QSQ <, QT'Q in QAQ.
Proof. Note j > 2 along with the fact that S <, T . In addition, note
a; > aj.
Consider
To= ayP; + a;P; € (P, + P)UAPP, + Pj).

If By € [tp,+p,(To) as] write By = tay + (1 — t)tp +p,(Tp) With ¢ €
[0,1] and let

= Praj = ta;+ (1 - t)TP1+P}.(T0),and a'y =aforallk = 1,j.

Otherwise, if B; ¢ [rP1+P].(T0), a,], let
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a; = aﬁ

= tP1+Pj(T0),and a, = qforallk = 1,j.
Notice, in this later case, that a; = a; > f; so a_1 and T" will need
to be modified again later to obtain the desired (see the last
paragraph of the proof). Furthermore, in both cases,

ajt(P —1) + ajt(P) = ayt(Py) + ajT(Pj).

If T" = Y}-; a, Py then by applying Lemma(1.1.23) to T, €
(P, + P;) by appealing to a direct sum argument, we obtain
T' conv(U(T)).

We claim that § <, T'. For each k €{0,1,...,n}, let s, =
Y_1T(P;) . Notice s < sy4q for all k,so = 0,s, =1, and A%(s) =
a, and AS(s) = By forall s € [s,_q, sk). Notice, in both of the above
cases, that a,, =B, forall k < jand k > a;, = a;,, for all k >
j(asaj = a;). Therefore, A7.(s) = aj, = A7(s) forall s € [sx_q,5;)
with k > j,

S; J J s

fo Ts)ds = Y aa(P) = Y ar(P) = f

k=1 k=1

J
r(s)ds

and A%.(s) = p, for all s <s;_;. Consequently, if ¢ € [0,s;_], we

see that

f T(s) — A5(s) ds zf B, — puds = 0.
0 0

Fort € [sj_l,sj), we will need to divide the proof into two
cases. First if aj = f;, then if a; = f; for all k < j. Consequently
(s) = pjon[o,s;) so
T'(s) = pBjon
t Sj-1 t
f Kon(s) — 25(s) ds = f ou(s) — A%(s)ds + f 1oi(s) — puds
0 0 N

j—1

>0+0.
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H ! H ! ! !
Otherwise suppose a; < ;. Notice a, < a; < f; < p; < «; for all

k>jand!l < j. Thus
j—1

fOSH m(s)ds = Z a;, T(Py)

k=1
and 2A%,(s) = ajforalls € [s;_q,s;). Consequently,
T j j=11 5

j—1

[ F9) - 25661 s Y- et~ onCr + |

/
ij - IBJdS
k=1 j-1

j—1

j-1 ;
> (- B + | af - s
k=1 s
J
= D (@ = Be(P)
k=1

j S
= Z(“k — Bt (Py) = f Ar(s) — A5(s)ds = 0.
k=1 0

Finally, if > sj,then

t

f T (s) = AZ(s)ds = f K (s) - A§(s)ds+f T (s) — AE(s)ds
0 0 .

Sj
S]' t
= [ 156 - 5©as+ [ 156 - HGs)s 20
0 Sj
with equality when t = 1. Thus, the proof that S <, T'is complete.
Postponing the discussion of the a; # [5; case, we demonstrate
that if a; = B, then QSQ <z, T'Q in QUQ.Foreachk € {1,...,n}, let

Sy Z;;Z 7o (P;). Notice s, < s;_, for all k,s;, =1 and AZQSQ(s) = B

foralls € [sx_4,s¢)- Inthecasea; = f;, wenotethata; < f; < «;

forall I <j, and aj > ay, for all k > j. Consequently, 1'%, (s) =
k QT'Q

By forall s < sj’_l,fﬁ(s) = qp foralls € [sj_q,sp)with k > j, and
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/ j—-1

Sj-1 )LTQ ds = ,
MOLE aTo(Py).
0

k=1

Moreover, one can verify that

T — (P) — t(P,) .
AQ%"Q( (Q) ! > (S) and AQSQ <T)1 — 1) S(S)

foralls > Sj -

Ift < s{_,,then

f oT’ Q(s) AQSQ(s)ds > fo By — Byds = 0.

If ¢ € [sj_y,s]] we see that

[REAMORPKNOLE

:foj R1g(5) = Aglo(s)ds + f . Lgr1g(8) = Aggo(s)ds

j-1
1 t
= @kzzz(“;c = Bi)t(Py) + L aj — Pjds

j—1

j—-1
1 t
=55 ;«x; BR[| af — pyas

j-1
1 Sj—l T() . t
=— A,s—lsds+f a; — B;ds
T(Q)_fo T S( ) S;_l j :8]

In particular, for t = s; , we see that

!

fo 0T’ Q(s) AQSQ(s)dS

1 (S ] i
:@fo A7(s) — 25(s)ds + fS, aj — f;ds

j—1

1 Sj-1 . r (P)
:ﬁfo () = (s)ds + (af — B) =g

7(Q)
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1 o T T
= @fo TI(S) - AS(S)dS .

Ifa; > pB;,then

!
S

f QTQ(S) QSQ(S)dszf QTQ(S) Agzo(s)ds

0

1 (% . .
= @fo TI(S) - AS(S)dS >0

Finally, ift > sj’,

[REMORPXNOTE

:fo QTQ() A Q(s)ds+f QTQ(S) A 050 (8)ds

5j

1 Sj T T
= @fo r(s) — A5(s)ds

Lj(Q)HT(PI)AZQT,Q (%) ~ AZ‘?SQ (%) i

+
7(Q)

1 5 .
= @fo 7 (s) — A%(s)ds

T(Q)t+7(Py)
+ Ti(s) —A%(s)ds = 0
Q) f r(8) = 45(s)

with equality to zerowhent = 1. Hence QSQ <14 QT'Q in QUQ.
To complete the proof, we notice the proof is complete when
pi € [rpﬁpj (TO),al](i.e. the a; = B, case). Otherwise, repeat the

above proof with j replaced with j + 1 and T replaced with T'. Note
we end up obtaining that a; > a;,, under this recursion as the first
iteration yields a; = a; and the second iteration would average a;
with aj,; < a; <a; to yield a; with a; = a; > aj},. This process
must eventually obtain a; = B; by reaching the case that B, €
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[Tp1+pj (To), 041] for if we must apply the proof with j = n and we

produce a self-adjoint operator T' with S <, T’ ,a; > B;,and a;, >
a; = f; for all k and [, we have a contradiction to the act that
S <, T' (which guarantees 7(S) = 7(T")). Furthermore, note we

obtain QSQ <1, QT'T at the last step of this iterative process.
Theorem (1.1.42)[1]: Let A be a unital C*-algebra with real rank

zero that has strong comparison of projections with respect to a
faithful tracial state . If T € U is self-adjoint, then
conv(W(T)) ={S € AIS*x= 5,5 <, T}

Before proceeding, we briefly outline the approach to the
proof. First, we reduce to the case that T and S have finite spectrum.
This is done by showing T and S can be approximated by self-adjoint
operators T' and S’ such that S’ <, T'. We then demonstrate a
‘pinching’ on self-adjoint operators T’ with exactly two points in their
spectrum to show that all convex combinations of T’ and ©(T")Iyare
in conv(U(T")). Appealing to a specific decomposition result and by
progressively applying pinchings, the result is obtained.

We begin with the decomposition result.

Proof:LetT € U be self-adjoint. Note the inclusion
conv(U(T)) < {S e A|S* = 5,§ <, T}

To prove the other inclusion, let S € U be self-adjoint with
S <., T By Lemma (1.1.26), we may assume without loss of
generality that S and T have finite spectrum.

Let {Pr}ro1 AQk}iz1 {akti=, and {By}r-; be as in Lemma(1.1.25)s0
that

n

n
T :Zaka and S :ZﬁkPk :
k=1

k=1

40



Since A has strong comparison of projections, there exists a unitary
U € Asuch that U*Q,U = Py for all k. Hence U'TU = Y.7_; axQx .
Since Ay (s) = A%(s)for all s € [0,1),S <, U*TU . Consequently,
ap = P1= P = ay.

If a; = a,, then T = S = ©(T)Iyand there is nothing to
prove. Otherwise, we may apply Lemma (1.1.28) to obtain, for some
{ay}i=, € R, that

n

T = B,P, + Z P, € COMV(U(U™T U))and QSQ <., QT'Qin QSQ
k=2

where Q =Y}_,P,. In addition, note Lemma(1.1.28) produces
{a, }r—, so that QSQ and QT'Q in QAQ are either equal or satisfy the
hypotheses of Lemma (1.1.28); that is, QSQ <, QT'Q, ay; < ay for
al k> ja,=ap,=p; = B, foral 1<k<j, and, if j = 2,a; >
B> = B, = a, .Therefore, by applying Lemma (1.1.28) at most
another n — 1 times, we obtain that

S € cconv(U(U*TU)) = tonv(U(T)).

Section(1.2): Classification of Sets and Purely Infinite C*-
Algebras

We will study additional sets based on eigenvalue and singular
value functions in C*-algebras. We begin by studying the distance
between unitary orbits of self-adjoint operators. The following result
is the main result.
Theorem (1.2.1)[1]: Let A be a unital C*-algebra with real rank zero
that has strong comparison of projections with respect to a faithful
tracial state . If S,T € U are self-adjoint, then

dist(U(S), U(T)) = sup{|2E (s) - 2%(s)| | s € [0,1)}.

In particular, S and T are approximately unitarily equivalent if and
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only if A5(s) = A%(s) for all s € [0,1)if and only if S <, T and
T <;S.
Proof. We have
1A5(s) — AR()] = 1AGsu(s) = Ay py ()| < IUTSU- VT V||
forall unitaries U,V € Yands € [0,1).Hence
sup{|2% (s) - 2%(s)| | s € [0, 1)} < dist(U(S), U(T)).

For the other inequality, fix e > 0. Since U has real rank zero,
there exists self-adjoint operators S',T' € A with finite spectrum
such that

IS — S| < eand|IT — T'|| < e
Note
|27(s) = A (s)| < € and |25(s) - Ag(s)| < €
foralls € [0,1).
Let {Pr}r=q {Qi}i=1 {ar}r=1 and {B}r, so that

n n

T' = ZakPk and S’ = Zﬁka :

k=1 k=1

If s, = X5, 7(Q;) for allk € {0,1,...,n}, implies A7./(s) = a; and
Aa(s) = B for all s € [sg_q,s). Furthermore, since t(Py) =
7(Qy) for all k and since U has strong comparison of projections,
there exists a unitary U € U such that U*P,U = Q, for all k and,
consequently, U'T'U = Y-, axQx . Hence
\U*TU=S|| < 2¢ + ||UT'U — §'|

= 2e +supf{lay — Billk € {1,...,n}}

= 26 +sup{|AL.(s) - 25:(s)||s € [01)}

< 4e +sup{|Az(s) — As(s)l s € [0, 1)}.
As e > 0O was arbitrary, the proof is complete.

We have the following result .

Theorem (1.2.2)[1]: Let & be a unital C*-algebra with real rank zero
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that has strong comparison of projections with respect to a faithful

tracial state . If S,T € U are self-adjoint, then

dist (5, COT/(’U(T)))

1 t 1
sup —max f t(s) —A5(s) ds = ?f
0

te(o,1) t 0

5(s)-—ﬂ§(s)ds}

Proof. Let a be the quantity on the right-hand side of the desired

equation. Suppose T’ € conv(U(T)). Then T’ <, T.Consequently,

1t 1t
T — S|| = ;f AE(s) — A5(s) ds 2;[ AE(s) — A5(s) ds
0 0

and

1 1

T (s) = Ai(s) ds = %f T (s) = A5(s) ds

1-t

, 1
I = sl > 7 [

1-t
Therefore dist(S, conv(U(T))) = a.

For the other inequality, first suppose a« < 0. Then

t 1
f T(s) = 25(s) ds and | A5(s) = AZ(s) ds < O
0

1-t

forallt € (0,1). The first inequality implies

f: T(s) ds < f: t(s) ds

forallt € [0,1], and by letting t tend to 1, the second inequality then

implies
1 1
f Ae(s) ds < f A%(s) ds
0 0

Consequently, « = Oand <, T .Thus implies S € conv(U(T)) ; so
equality is obtained in this case.

Otherwise, suppose @ > 0. Let € > 0. Since U has real rank
zero, there exist self-adjoint operators S, T’ € A with finite
spectrum such that

IS — S'|| < e and IT — T'|| < e
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In addition
|A§(s) —A§,(5)| < € and |A?F(s) —ATF,(S)| < €

forall s € [0,1). By the definition of a, we obtain

t
fﬂ;(s)—a—ZedsS f
0

0

t t

W(s)—a-— edssf T(s)—€eds
0

t
sf ,(s) ds
0
t t t
f1§1(5)+a+26d52f (s)+a+ edszf T(s)+eds
0 0 0

t
> f ,(s) ds
0

for all t € (0,1). Consequently, using non-increasing
rearrangements and applied to fi(s) = Ay (s) —a — 2¢, f(s) =
Ao (s) +a+2¢ and g(s) = A%,(s), there exists a real-valued, non-
increasing function h € L[0, 1] such that

fi(s) = h(s) < f(s) (1)
foralls € [0,1)and h < A%,.
Let{P}roq {Qith=1 {ax}i=, and {B}r=, beasinLemma (1.1.21) so
that

m n
T' = Z oy Py and S = Z BrQk -
k=1 k=1

Furthermore, fork € {0,1,...,n}, lets, = X'_, 7(Qy), let
I — 1 K
a, = mfsk_lh(s) ds,
and let T, = Y}_, @, Pr. Notice a; = a;,, for all k as h is non-
increasing. Since h < A7, <1,Ty <, Tand T, € conv(U(T")).
Since A has strong comparison of projections, there exists a
unitary U € A such that U*P,U = Qy for all k. Therefore U*T,U =
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Yre1 @, Qi . However, due to the definition of «,,, equation (1), we see
that
|U*T,U — S'|| < a + 2e.
Therefore, since U*T,U € Tomv(U(T)), |IT—T'|| <€, and ||S — S'|| <,
we obtain that
dist(S, conv(U(T))) < a + 4e
thereby completing the proof.

Since tracial states are norm continuous, Theorem (1.2.2)
immediately implies the following.

Corollary (1.2.3)[1]: Let 2 be a unital C*-algebra with real rank zero
that has strong comparison of projections with respect to a faithful
tracial state . If S,T € U are self-adjoint, then

dist(conv(u(S)), conv(u (T))) = |t(S) — ©(T)|.

We are also able to study arbitrary operators based on their
singular value functions. The following object will play the role of the
singular value decomposition of matrices for infinite dimensional C*-
algebras.

Definition (1.2.4)[1]: For a unital C*-algebra 2 and an element T €
A, the closed two-sided unitary orbit of T is

N(T) = {UTV | U,V unitaries in 2}.

We classify closed two-sided unitary orbits using singular
values. We restrict to C*-algebras with stable rank one as the
following well-known lemma directly implies every operator almost
has a polar decomposition.

Lemma (1.2.5)[1]: Let A be a unital C*-algebra and let M,e > 0.
There exists a 0 < § < esuch that if A,B € U, ||A|| <M, and ||A —
B|| < &, then [|]A| — |B]l| < e.

Corollary (1.2.6)[1]: Let U be a unital C*-algebra with stable rank
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one and let T € A. Then for all e > 0 there exists a unitary U € A
suchthat |IT — U|T ||| < e.

Lemma (1.2.7)[1]: Let A be a unital C*-algebra with a faithful tracial
state . If (T,)),»1 S A converges in norm to T € %, then u%(s) =

lim ut. (s) foralls €[0,1).
n—-oo

Proof. Recall ui(s) = Af(s) for all S€ A. Since T = lim T,,, we
IS

n-oo
obtain |T| = TIlLrgo T,, by Lemma (1.2.5).
Proposition (1.2.8)[1]: Let A be a unital C* —algebra with real rank
zero, stable rank one, and strong comparison of projections with
respect to a faithful tracial state . If S,T € 2, then S € N (T) if and
only if ué(s) = uk(s) forall s € [0, 1).
Proof. If U,V € 2 are unitaries, then
uorv(S) = Ayrv () = Arp V() = A () = uz(s)
forall s € [0, 1). Consequently, if S € NV (T), then ui(s) = uk(s) for
alls € [0,1) by Lemma (1.2.7).
For the converse direction, suppose ui(s) = uk(s) for alls €[0,1)
and let ¢ > 0. By Corollary (1.2.6), there exists unitaries U,V € A
such that
\IT —UIT|ll <e and |IS=VI|S||| < e
Furthermore, since
Air|(s) = ut(s) = ps (s) = Ag(s)
forall s € [0,1), Theorem (1.2.1) implies there exists a unitary W €
A such that
IW*|TIW — |S]|| < e.Hence
\VW*U*TW — S| < 2¢ + |[VW*TIW = V|S'|l| < 3e.
Since e > 0 was arbitrary, the proof is complete.

Our next results provide descriptions of all operators whose
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eigenvalue function is dominated by another operator’s eigenvalue
function. In particular, these notions of majorization are related to
Cuntz equivalence, but are significantly stronger (i.e. requiring
bounded sequences for approximations). We have following result .
Proposition (1.2.9)[1]: Let & be a unital C*-algebra with real rank
zero that has strong comparison of projections with respect to a
faithful tracial state . If S,T € 2 are positive operators, then

S e {ATA| A€ U |A|| < 1}
if and only if 25(s) = A%(s) forall s € [0, 1).
Proof. If A € Uissuchthat ||A|| < 1, then

ara (8) < A7 2% (s) < 2% (s)
foralls € [0,1).

For the other direction, suppose A3(s) = A%(s) foralls € [0, 1). Let
e > 0. There exists positive operators S, T’ € U with finite spectra

such that ||[T — T'|| < €IS — S'|| < €, and A% (s) < A%.(s)for all
s €[0,1). Let {Pe}ii=1  {Qx}r=1. {r}i=1 and {Bx }i=; SO that

n

n
T’ :Zakpk and S’ :ZBka .
k=1

k=1
Since T',S" >0, ay, B = 0 forall k. Furthermore, along with the fact
that Ao/ (s) < A%/(s) forall s € [0,1) implies By < a; forall k.

Since A has strong comparison of projections, there exists a
unitary U € U such that U*P,U = Q,, for all k so that U*T'U =

Y _. a,Qy . Foreach k, let

Bx .., _
y={ |a, |fﬁk—0_

0 iff+#0
Consequently, if A =Y7_,vxQx € U, then ||A|| < 1 and A*U*T'UA =

S’.Hence
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|A*U*TUA — S|| < 2¢ + ||A"U'T'UA — S'|| = 2e.

As € > 0 was arbitrary, the result follows.
Proposition (1.2.10)[1]: Let U be a unital C*-algebra with real rank
zero, stable rank one, and strong comparison of projections with
respect to a faithful tracial state . If S,T € U, then

S € {ATB | A,B € & ||A]|l,||Bl] < 1}
if and only if us(s) < utr(s)foralls €[0,1).
Proof. If A,B € Y are such that ||A||, [|B]| < 1,then

Mirp(s) < NANIBIKE(S) < k()
for all s € [0,1). Consequently, one direction follows from Lemma
1.2.7).

For the other direction, supposeus(s) < ur(s)forall s € [0,1).

Consequently Afg(s) < Ajy(s) for all s € [0,1). Thus Proposition
(1.2.9) implies for all e > 0 there exists an A € A with ||A|| < 1
such that |||S| — A*|T |A|| < e. Furthermore, Corollary (1.2.6)
implies there exists unitaries U,V € U such that ||S — V |S]|| < €
and ||T — U|T]|| < e. Thus

IS— VA*U'T A|| < ||S =V A*|T |A|| +€ <|IS = V|S]|| + 2¢ < 3e.
The result follows.

We desire to analyze the notion of (absolute) submajorization

as defined. In particular. The following useful lemma shows if one
positive operator submajorizes an operator, then conjugating by a
specific contractive operator almost yields majorization.
Lemma (1.2.11)[1]: Let Z be a unital C*-algebra with real rank zero
and strong comparison of projections with respect to a faithful tracial
state . If S,T € U are positive operators such that S <¥ T, then for all
€ > 0 there exists positive operators S, 7' € A and an A € A with
IA]] < 1suchthat
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IS —S'II<ellT —T'll<e and S' <, AT'A.
Proof. Fix € > 0. There exists positive operators S, T' € A with
finite spectra such that
IS — S'I< ellT —T'||< € andS" <¥ T
Let {P}r—1 AQi}i1 {arti=1 and {By}i-,, so that

n

n
T' = Z o Py and S = Z BrQk -
k=1

k=1
Foreachk € {0,1,...,n},lets, =Y3_;7(Py) .
Consider the function f : [0,1] — R defined by

t 1
f(t) :f w(s)ds —f s (s)ds .
0 0
Since f is continuous, f (0) < 0,and f (1) = O, thereexistsa t, €
[0,1] such that f (t,) = 0. Lett" = sup{t € [0,1]] f(t) = 0}and
choose k' € {1,...,n} such that t' € [sy/_;,5K) (with k' = n if

t" = 1). Notice this implies

Skl

fos"'_l T, (s)ds < fl " (s)ds sf T, (s)ds .

0 0
Choose g € [0, 1] such that

1 Spl_1 Syt
f wr(s)ds :f w(s)ds + qf w(s)ds
0 0 0

andletq = qP,, + Zﬁ'z‘f Py . Clearly ||A]| < 1and
k'-1

A'T'A = qay Py + Z Py .
k=1

Furthermore, one may verify using integral arguments that
S' <. A*T'A.
Proposition (1.2.12)[1]: Let A be a unital C*-algebra with real rank
zero and strong comparison of projections with respect to a faithful

tracial state . If S,T € U are positive operators, then
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S € Tonv{A'TA| A € U, ||A]| < 1})
ifandonly if S <¥ T.
Proof. If {4, }i_; €U are such that ||[A;|| < 1 for all k, {t;}p-; S
[0,1] are such that }};;_, t, and S" = }.3_, t,, AyTA, ,then S’ > 0 and

t

t t
f A5 (s) ds Sf Z tr 14?25 (s) ds < f T(s) ds
0 0 &4 0

Thus one inclusion follows.

For the other direction, suppose S <y T.Lete > 0.By Lemma
(1.2.11) there exists positive operators S, T’ € A and an A € A with
IA]] < 1such that

IS = S'II<ellT —T'NI< e and S’ <, A'T'A.
As
S" e tonv(U(A'T'A))
the result follows.
Proposition (1.2.13)[1]: Let U be a unital C*-algebra with real rank
zero, stable rank one, and strong comparison of projections with
respect to a faithful tracial state . If S,T € U, then
S econv({ATB | A,B € %, ||A]|,||IB]| < 1})
ifandonly if S <} T.
Proof. If {4 }t_1 , IBllR=; S A are such that ||A]l,||Bxll < 1 forall
k,{t,}i=1 € [0,1] are suchthat ¥}_;t, =1and S’ = Y}_; t, AxTBy,
then

t t t
[ sy ds < [ eullad? (o) ds < [ i) ds
0 0 0

k=1
Thus one inclusion follows from Lemma (1.2.7).
For the other direction, suppose S <Y T. Thus |S|<¥ |T| so
Proposition (1.2.12) implies

|S| econv({A*|IT |A|A €U |A|| < 1}).
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The result then follows by approximation arguments along with
Lemma (1.2.5).

We will show the following result describing the closed convex
hulls of unitary orbits of self-adjoint operators T in unital, simple,
purely infinite C*-algebras (pure infiniteness C*-algebras A are
compared, and equivalence between them is obtained if the primitive
ideal space of A has real rank zero, of if A is Approximately divisble)
[6] based on the spectrum of T, denoted o (T).

Since unital, simple, purely infinite C*-algebras have real rank
zero, to verify the reverse inclusion it suffices to consider self-adjoint
S, T € A with finite spectrum and o(S) < conv(a(T)) by the
continuous functional calculus. Furthermore, note this problem is
invariant under simultaneous multiplying the operators by non-zero
real numbers and simultaneous translation of the operators by a real
constant. As such, it suffices to prove the result for positive T with
IT]| = 1and 0,1 € o(T).

We will demonstrate it suffices to prove the result when T is a
projection. This will be done by constructing (possibly non-unital)
embeddings of arbitrarily larger matrix algebras into .
Subsequently, we will verify that the result holds for T a projection
and S € Cly. The result will follow for arbitrary S with finite
spectrum by an application of K-Theory.

We begin with the following well-known result for purely infinite C*-
algebras.

Lemma (1.2.14)[1]: Let A be a unital, simple, purely infinite C*-
algebra and let P,Q € U be orthogonal non-zero projections. For any
n € N there exists a collection {P,}r-,of pair-wise orthogonal

subprojections of P such that each P, is Murray-von Neumann
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equivalent to Q.

By ‘a non-trivial projection’, we mean a non-zero projection P
with P # Iy.

Lemma (1.2.15) [1]: Let A be a unital, simple, purely infinite C*-
algebra and let P € A be a non-trivial projection. If o, € Rand T =
aP + B(Iy — P),then aly € cONV(U(T)).

Proof. Clearly the result holds if « = B so suppose a« = . By
scaling and translating, we may assumethata = 1and g = 0.

Let n € N be arbitrary. By Lemma (1.2.14) there exists a
collection {P,}%-, of pairwise orthogonal subprojections of P such
that P, ~ Iy — P forall k. Using the partial isometries implementing
the equivalence of {Iy — P} U{P.};-,, a copy of M, ,,(C) may be
constructed in 2 such that the unit of M, 1(C) is B;:= Iy — P +

=1 P, and T may be viewed as the operator
T = diag(0.1,....1) @ (ly — F)
€ Mp1(C) @ Uy —B)UUy—FB) SA

Since any self-adjoint matrix majorizes its trace, we obtain that
n

— 1 In+1 € TONV (’u(diag(o, 1., 1)))

where the unitary orbit is computed in M,,,{(C). Thus, by a direct

sum argument, we obtain

— 7 (= B) € conv(W(T)).

By taking the limitas n — oo, we obtain Iy € conv(U(T)).

Lemma (1.2.16)[1]: Let A be a unital, simple, purely infinite C*-
algebra and let {P,}:-, be a collection of pairwise orthogonal, non-
zero projections. If T = Y7_, A, P, for some real numbers {4}, € R,

then
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n—1
A, (Z Pk> + 2P, € CONV(U(T)).

k=1
Lemma (1.2.17)[1]: Let A be a unital, simple, purely infinite C*-
algebra and let P € & be a non-trivial projection. For eachy €

[0,1] n Q, there exist pairwise orthogonal, non-zero projections

le QZ! Q3 such that Ql + Qz + Q3 = 1‘21 and
00, + yQ; + 1Q3 € conv(U(P)).

Proof. Note the cases y = 0,1 are trivial. Otherwise, fix n € N and

choosek € {1,...,n—1}sothaty = S Let Q € U be any non-trivial

projection. By Lemma (1.2.15) there exists a collection {PJ}’j: of
pairwise orthogonal subprojections of Psuch that P; ~ @ for all j.
Similarly there exists a collection {Pj’}?__fﬂ of pairwise orthogonal

subprojections of Iy — P such that P; ~ Q for all j.

Let

n—1 k n-—1 k
Ql:(lm_P)_ZF)JI,QZ:ZPJ_FZF)J,andQB:ZPJ
j=1 j=1 j=1 j=1

Since Py, < Qs and P,_; ., < Qq, itis clear that Q,, Q,, and Q5 are
pairwise orthogonal, non-zero projections such that Q, + Q, + Q; +

Iy. Using the partial isometries implementing the equivalence of
{Pj};{:l U {P;} =1,acopy oM,(C)can be constructed in A such that

the unit of M,,(C) is Q, and

P =00, @D & 103 € Q1UQ; ® M,(C) © QsUQ; A
where D is a diagonal matrix with 1 appearing along the diagonal
exactly k times and O appearing along the diagonal exactly n —
k times. Since any self-adjoint matrix majorizes its trace, we obtain

and a direct sum argument that
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0Q; + yQ; + 1Q3 € conv(U(P)).
Lemma (1.2.18)[1]: Let A be a unital, simple, purely infinite C*-
algebra and let P € A be a non-trivial projection. For each y €
[0.1], vy € CONV(U(P)).
Proof. By applying approximations, it suffices to prove the result for
Yy € (0,1)) NnQ. By Lemma (121816 there exists pairwise
orthogonal, non-zero projections Q4,Q,, Q3 such that Q; + Q, +
Q; = Iy and

0Q, + yQ, + 1Q; € Tonv(U(P)).

Choose two non-zero subprojections Q; and Q5 of Q, such that

Q.+ Q3 = Q. By applying Lemma (1.214) to 0Q, + yQ; €
(Q1 + Q))A(Q, + Q1), we obtain that

y(Q1 + Q1) € Tonv(U(0Q, + yQ1))
(where the quantity on the right-hand side is computed in
((Q1 + QDA(Q, + Q1)) Similarly

y(Qs +Q3) € Tonv(U(1Q; + yQ3))
Hence, by the fact that 0Q; + yQ, + 1Q5 is a direct sum of 0Q, +
yQ; and 1Q; + yQ3, we obtain that

vly = y(Q1 + Q1) + y(Q1 + Q3) €TONV(U(P)).
Theorem (1.2.19)[1]: Let A be a unital, simple, purely infinite C*-
algebraand let T € U be self-adjoint. Then
conv(U(T)) = {S € A|S* = S,a(S) < conv(a(T))}

Proof: We may assume o(S) and o(T) are finite so that there exists

{Aj};nzl,{ak}k L SR with A, < A4, for all k and a,€
conv ({Aj};nzl) for all k, and two collections of pairwise orthogonal
non-zero projections {Pj};n=1 and {Qiti=; with Y7L, P = Iy =

k=1 @k such that
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n

m
T:ZAkPk and S:ZQka.
k=1

k=1

The result is trivial if m = 1 so we assume m > 2.
Furthermore, by translation and scaling, it suffices to prove the result
when 1; = 0 and 4,, = 1. Furthermore, by Lemma (1.2.16) and the
fact that ; < A, < A, for all k, we may assume that m = 2. For
simplicity,letP = B, soP; = Iy— Pand = P.

Since AU is a unital, simple, purely infinite C*-algebra, there
exists a collection {P;}?-11 of non-zero, pairwise orthogonal
subprojections of Pand a collection{P;'}?-1 of non-zero, pairwise
orthogonal subprojections of Iy — P such that P’ ~ Q,,B, = P —
>n-1p, is non-zero, and P) = Y%Z1 P, is non-zero. For each k €

{1,...,n}, let Q; = P, + P, . Therefore

n n n-—1
D10 = o = ) 101 = [@:do + ) [Qclo.
k=1 k=1 k=1

Hence [Q,]o = [Qnlos0Qn ~ Q.

Notice
n

T =@®p, (1P + 0P/ )e D QpuQ;.
k=1

Since Pand P, are non-zero for each kand since Q;2Q,, is a unital,
simple, purely infinite C*-algebra, by applying Lemma (1.2.18) in

each Q,2Q;and by taking a direct sum, we obtain

n

D @0 € SomY(U(T),

k=1

Since Y-, a;Q;, is unitarily equivalent to S by the fact that Q;, ~ Q;
for all k, we obtain that S € conv(U(T)).

We note the following .
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Corollary (1.2.20)[1]: Let & be a unital, simple, purely infinite C*-
algebra. If S,T € A are self-adjoint, then

dist (S conv(’u(T))) = sup dist(x,conv(a(T))).

xea(S)
Proof. First, suppose T’ € conv(U(T)). Letm: A — B(H) be a
faithful representation of 2 (whose existence is guaranteed by the
GNS construction). For every self-adjoint operator A € B(H),
conv(o(4)) = {{An.m|n € H, lnll = 1}

Letn € H besuchthat||n|| = 1.Since

IT" = Sl = (T = S)n. )l = dist(m(S)n, n), conv(a(T ))),
we obtain that

dist (S conv(’u(T))) > sup dist(x,conv(a(T))).

XEo S
For the reverse inclusion, defined a continuous function f : R = R
so that f(x) € conv(a(T)) forall x and
|x — f(x)| = dist(x, conv(a(T )))
forall x € R. Let T' = f(S). Therefore, by the continuous functional
calculus, o(T") = f(a(S)) € conv(a(T)). Hence T’ € conv(a(T))
by Theorem (1.2.19). Since
IS = T'Il = sup llx — f(x)Il = sup dist(x, conv(a(T))),

x€a(S) x€a(S)
the reverse inclusion holds.

We note the proof of Theorem ((1.2.19) can be improved to
normal operators provided K, () is trivial or, more generally, for
normal operators N such that Alyy — N is an element of the connected
component containing Iy in the set of invertible elements of ¥,
denoted UL, for all 2 & o(N). This is a generalization and we only
sketch the modifications to the proof.

Theorem (1.2.21)[1]: Let A be a unital, simple, purely infinite C*-
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algebra and let N;, N, € U be normal operators with Aly — N, € Ayt
for all 1 € o(N)and for all k. Then N, € conv(U(N,)) if and only if
o(N,) < conv(a(N,)).

Proof. Suppose N, € conv(U(N,)). Let (M,)),=1 S conv(U(N,)) be
such that N, =Ilim M,and let w:UA—->B(H) be a faithful

n—-oo

representation of 2. For every normal operator 2 € B(H),

conv(a(4)) = {(4An,n)ln € H,|In|l = 1}
Since M,, € conv(U(N,)), we obtain (m(M,)n,n) € conv(a(N,)) forall

n € H with ||n|| = 1. Therefore, since (m(N,)n,n) = lim{(x(M,)n,n),

we obtain a(N,) < conv(ag(N,)).

For the converse direction, note that N; and N, can be
approximated by normal operators with finite spectra. Thus, by an
application of the continuous functional calculus, it suffices to prove
that if o(N,) and o(N;) are finite and o(N,) < conv(g(N;)), then
N, € conv(U(N,)). Furthermore, by using similar direct sum
arguments as in the proof of Theorem ((1.2.19), it suffices to prove
the result in the case that N, € Cly,.

Note that Lemma (1.2.15) holds when a and £ are complex
numbers by applying rotations and translations. Hence by applying
the same ideas as in Lemma (1.2.16), we may reduce to the case that
N has exactly three points in its spectrum.

Suppose a(N,) = {a;, a,, a3} and y € conv(a(N,)). Then there
exist a permutation ¢ on {1, 2, 3} and ¢t,r € [0,1] such that if y' =
taya) + (1 — t)age) then y = ry’ + (1 — r)ays). Consequently, by
applying rotations, translations, compressions, and Lemma (1.2.18)

first with the spectral projections corresponding to a,(;) and ag ),

and then again with the result and the spectral projection
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corresponding to a, sy, the result is obtained.

Chapter 2

Smooth Banach Spaces

We show that this holds for any equivalent norm on cy(T),
where I is an arbitrary set. We also give a necessary condition for the
existence of a polyhedral norm on a weakly compactly generated
Banach space, which extends a well-known result of Fonf
Section (2.1): Approximation of Norms a Necessary Condition
for Polyhedrality in WCG Spaces

Given a Banach space (X, || - ||) and € > 0, we say that a new
norm ||| - ||| is € -equivalent to ||-|if

HIx[l < llxll < @+ a)lllx]ll,
for all x € X. Suppose that P is some geometric property of norms,
such as smoothness or strict convexity. We shall say that a norm ||-||
can be approximated by norms having P if, given any € > 0, there
exists a norm having P that is € -equivalent to ||-||. That is ||-|| may be
approximated uniformly, and with arbitrary precision, on bounded
subsets of X by norms having P.

The question of whether all equivalent norms on a given
Banach space can be approximated by norms having P is a recurring
theme in renorming theory. It is known to be true if P is the property
of being strictly convex, or locally uniformly rotund. (In fact, in these
two cases, it is possible to show that if ||-||has P, then the set of
equivalent norms on X having P is residual in the space of all
equivalent norms on X, which is completely metrisable).

Definition (2.1.1)[2]: We say the norm ||| of a Banach space X is C*
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smooth if its kth Fréchet derivative exists and is continuous at every
point of X \ {0}. The norm said to be C* smooth if this holds for all
k € N.

For separable spaces, we have the following recent and conclusive
result.

Theorem (2.1.2)[2]: Let X be a separable Banach space with a C*
smooth norm. Then any equivalent norm on X can be approximated by
C* smooth norms.

There is an analogous result to Theorem (2.1.2) for polyhedral
norms.

Definition (2.1.3)[2]: We say a norm [|-|| on a Banach space X is
polyhedral if, given any finite-dimensional subspace Y of X, the
restriction of the unit ball of ||-|]| to Y is a polytope.

Theorem (2.1.4) [2]: Let X be a separable Banach space with a
polyhedral norm. Then any equivalent norm on X can be approximated
by polyhedral norms.

Definition (2.1.5)[2]: Let T be a set. The set cy(I") consists of all
functions x : I' - R, with the property that {y € I': [x(y)| = €} is
finite whenever ¢ > 0. We equip cy(I") with the norm ||-||, , where
Ixllee = max{|x(¥)| : v €T}

When I is uncountable, c,(I") is non-separable. The structure
of co(I'") strongly promotes the existence of the sorts of norms under
discussion. For example, it is well known that the canonical norm on
co(I") is polyhedral, and that it can be approximated by € smooth
norms. In terms of finding positive non-separable analogues of
Theorems (2.1.2) and (2.1.4), this class of spaces is a very plausible
candidate.

The most general result concerning this class to date is given
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below. We shall call a norm ||-[lon cy(I")a lattice norm if ||x|| < ||¥]|
whenever x,y € cy(I') satisfy |x(y)| < |[y(¥)]

foreach y € T.

Theorem (2.1.5)[2]: Every equivalent lattice norm on c,(I")can be
approximated by € * smooth norms.

The following result completely settles the approximation
problem in the case of ¢y (I"), from the point of view of C* smooth
norms and polyhedral norms. It solves a special case .

Definition (1.1.6)[2]: Let (X, ||-||) be a Banach space. A subset B of
the closed unit ball By~ is a called a boundary of ||-|| if, for each x in
the unit sphere Sy, there exists f € B suchthat f(x) = 1.

This is also known as a James boundary of X. The dual unit
sphere Sy« and the set ext (By-) of extreme points of the dual unit
ball By~ are always boundaries of ||-||, by the Hahn-Banach Theorem
and (the proof of the) Krein-Milman Theorem, respectively. It is
worth noting that the property of being a boundary is not preserved
by isomorphisms in general: a boundary of ||-|| may not be a

boundary of ||| - |||, where ||| ||| is an equivalent norm. Since we will
be changing norms, it will be necessary to bear this in mind.

Boundaries play a key role in the theory of both smooth norms
and polyhedral norms. If (X, ||-]|) has a boundary that is countable or
otherwise well-behaved, then X enjoys good geometric properties as
a consequence .

Recall that an element f € By- is called a w*-strongly exposed
point of By if there exists x € By such that f(x) = 1 and,
moreover, |f- f,| > O whenever (f,) € By is a sequence
satisfying f,,(x) — 1.Itis asimple matter to check that the (possibly

empty) set w*-str exp(By~) of wx-strongly exposed points of By« is
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contained in any boundary of ||-||. We recall the following important
result of Fonf, concerning polyhedral norms.

Theorem (2.1.7)[2]: Let ||-|| be a polyhedral norm on a Banach space
X having density character x. Then w*-str exp(By+) has cardinality x
and is a boundary of [|-|| (so is the minimal boundary, with respect to
inclusion). Moreover, given f € w*-str exp(By+), the set A N By has
non-empty interior, relative to the affine hyperplane A := {x € X:
f(x) = 1}

In particular, if X is separable and ||-|| is polyhedral, then w*-
strexp(Bx+) is a countable boundary. Conversely, if (X, || is a
Banach space and ||| has a countable boundary B, then X admits
equivalent polyhedral norms that approximate ||-||. Thus, in the
separable case, the existence of equivalent polyhedral norms can be
characterised purely in terms of the cardinality of the boundary.

In the non-separable case however, any analogous
characterizations, if they exist, must generally rely on more than the
cardinality of the boundary alone. There exist Banach spaces
(X, ||-IDhaving no equivalent polyhedral norms, yet X has density the
continuum ¢, and ||-|| has boundary B of cardinality c¢. Such Banach
spaces can take the form X = C(T), where T is the 1-point
compactification of a suitably chosen locally compact scattered tree.

Recall that a Banach space X is weakly compactly generated
(WCG) if X = span'll(k), where K < X is weakly compact.
Separable spaces and reflexive spaces are WCG. Examples of WCG
spaces that are neither include the cy(I") spaces above. The following
is the main result. It provides a little more information about the
structure of the set w*-str exp(By-), besides cardinality, given a WCG

polyhedral Banach space.
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Definition (2.1.8)[2]: We call an indexed set of pairs (ey €y )yer c

X x X*a Markushevich basis (or M-basis) if

(i) es(eg) = 84p. (thatis, (e, ,e; )yer is a biorthogonal system);
(ii) sparri(e,) .= X.and
(i) (e, )yerseparates the points of X.

Furthermore, an M-basis is called strong if x € spanili{e,: e;(x) =
0} for all x € X, shrinking if X* :W”'”(e;j)yg, and weakly
compact if {e,. y € I'} U {0} is weakly compact.

The existence of an M-basis allows us to define supports of
functionals in the dual space.
Definition (2.1.9)[2]: Let X be a Banach space with an M-basis

(ey ey )yEF and let f € X*.Define the support of f (with respect to

the basis) to be the set
supp(f) = {r € I'f(e,) # O}.

We say f has finite support if supp(f) is finite.
The main result of this section, Theorem (2.1.15), states that if X has
a strong M-basis then, given the right circumstances, the norm on X
can be approximated by norms having boundaries that consist solely
of elements having finite support. The following result illustrates the
relevance of such boundaries to the current discussion. It
amalgamates two theorems, both of which are stated with broader
hypotheses in their original forms.
Theorem (2.1.10)[2]: Let a Banach space X have a strong M-basis,
and suppose that the norm ||-|| has a boundary consisting solely of
elements having finite support. Then ||-|[can be approximated by both

C* norms and polyhedral norms.
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Now we will assume that the Banach space X has a strong M-

basis (e, , e; )yEF ,suchthat ||e, || = 1forally € I'.Furthermore, we

< L for

will suppose that there is some fixed L > 0 satisfying | ey
ally e T.

Given € X*,set|Ifll, = X,er|f (e, )|, whenever this quantity is
finite, and set || f||; = oo otherwise. Observe thatif x =3, cre;(x)e,,

for some finite F € T, then

FI < ) ey @IIF(e)] < Ll ) If(e)] < Lixlifl,

YEF YEF

whence ||f|| < L ||fll,forall f € X™*.Itisalsoeasy to see that ||-||; is
a w™ -lower semicontinuous function on X* , and that given r > 0,
the norm-bounded set
W, ={f € X" lfll. < 2},

Is symmetric, convexand w* -compact.

Letus considerthesetB = {f € Sx-:||f|l; < oo}. Evidently, B
is the countable union of the sets Sy- N W, ,r € N, which are w*-
closed in Sy . If Sx» N W, contains a non-empty norm-open subset of
Sy+, for some r € N, then it is a straightforward matter to show that
there exists M > Osuch that |[f]l; < M ||f]| forall f € X*, whence

Sx» N Wy = Sy~ and X is isomorphic to cy(I') via the map x +—

(e)’; (x)) . If there is no such r, then of course B is of first category
yer

in Sy« . If X is not isomorphic to any space of the form cy(I),
then B # X* , but B may still be a boundary of ||-|| .

We shall be interested in cases where B is a boundary of ||-||.

The following lemma will be used in Theorem (2.1.12).

Lemma (2.1.11)[2]: Suppose that B as defined above is a boundary of
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Il Then X* = spanli(e;),ie., the M-basis of X is shrinking.
Proof: Let F < T be finite, and define

Xp = W”'”(ey)yerw and Wy = span “.”(e;)yezv '

Then W, = X# (the inclusion X3 € W; follows from the fact that
the basis is strong), and thus X* /W, naturally identifies with X , and
If tx |l = d(f we)forall f € X,
where

d(f, Wg) =inf{llf — gll: g € W} .
Suppose, for a contradiction, that there exists f € X*and ¢ > 0,
such that d(f,Wy) > ¢ for all finite F € I'. Let F, be empty. Since

IfIl = d(f,Wg,) > &, take a unit vector x, € X having finite

support, such that f(x,) > ¢. Set F; = supp x, . Since ”f e,

d(f, WFJ > ¢, there exists a unit vector x; € X having finite support
in '\F; , such that f(x;)> e Define F, = F, U supp x;
Continuing like this, we get a sequence of unit vectors (x,,) having
finite, pairwise disjoint supports, such that f(x,) > efor all i.
Clearly, (x;) is not weakly null.

On the other hand, if f € B and y =% crey(x)e,is a unit

vector, where F € T is finite, then

FoN ), lsolels ), (el

It follows that f(x,,) - 0asn — oo. This holds for every element of

B, which is a boundary, so x,, = 0 weakly, by Rainwater’s. This is a
contradiction.

We can now prove Theorem (2.1.12), although the
approximation scheme used in that result fails in the case under

consideration here, and substantial modifications must be made.
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Theorem (2.1.12)[2]: Let a Banach space X have an M-basis as
above, and suppose that B as above is a boundary. Given € > 0, there
exists an eg-approximation ||| - ||| of [|-|l, which has a boundary
consisting solely of elements having finite support. Consequently, by
Theorem (2.1.10), ||-|| can be approximated by €* smooth norms and
polyhedral norms.

Proof. Fix € € (0,1). Suppose f € X* satisfies ||f||; < co. We define a
sequence of positive numbers and a sequence of subsets of T

inductively. To begin, set
p(f,1) = max{|f(e,)|:¥ €T} and G(f,1)
={r er:|f(e)| = pz D}

Givenn > 2,we define

p(f.n)
_ {max{|f(ey)|1)/€ MNG(f,n — 1)} ifM\G(zn —1) # @
0 otherwise,

and G(f,n) = {y € I': If(ey)l = p(f,n)}

Observe that the set G(f,n) is finite if and only if p(f,n) # 0and, in
this case, ||fl; = p(f,n)|G(f,n)|. By induction, |G(f,n)| = n for all
n, so p(f,n) < |Ifll;n~! and, in particular, p(f,n) - 0. By
construction, the sequence (p(f,n)) is decreasing, and strictly
decreasing on the set of indices n at which it is non-zero. If p(f,n) =
0 for some n € N ,then f(e,) # O for at most finitely many y and
hence f has finite support. Thus, when f has infinite support, we get a
strictly decreasing sequence of positive numbers p(f,n) — 0,and a
strictly increasing sequence of finite sets (G (f, n)).

Provided G(f, n) is finite, we define

wirm = S ¢msan (1)

YEG
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and
h(fFm) = ) () - p(f i+ D)w (£ D).
i=1

Lety € I If y € I'\ Up-, G(f,n), then h(f m)(e,) = 0 = f(e,)
for all m. Otherwise, let n be minimal, subject to the condition y €
G(f,n). By minimality, we have p(f,n) = |f(e,)|. If m <n, then

h(f,m)(e,) =0.1f m > n,then we can see that

h(F.m)(ey) = ) (p(F.0- p(F.1 + 1)san(f ()
i=1

= p(f.n) - p(fin + 1)
+p(fin + 1) — p(fin + 2)
+...— ...
+p(f.m) — p(f.m + 1)lsgn (f(e,))
= |f (el san(f(e_y)) — p(f.m + Dsgn(f(e,))

= f(e,) - p(f.m + Dsgn(f(e,))
From the calculation above and the fact that p(f,m + 1) < |f(e,)],
we have
[h(F.m)(ey)| = Isan(F(ey)(If (ey)] = p(F.m + 1))

= Ifenl = p(f m + 1).
Since p(f,m + 1) > 0,we obtain |h(f,m)(e,)| < |f(e))|-
Therefore, for all y € I',|h(f, m)(e,)| < |f(e,)| and
h(f,m)(e,) - f(e,)as m — co. We apply Lebesgue’s Dominated
Convergence Theorem to conclude that ||f — h(f,m)|l; = O.
Since ||'llg < L |||, we also get |[|[f — h(f,m)|]| — O. Since the signs

of w(f,i)(e,) and w(f, i)(e,) agree whenever they are non-zero,
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Il = ) (00,0 = p(f.i + D) w0l
i=1

= > 0. - p(fi + DG DI
i=1

Therefore, if f has infinite support, then |[[f]|; =

=@, ) —p(fii + DG DI

Givenm > n, define

— h(f, _
9(f mm) :{”f IG((];,T;r)zgllw(f'm) TGS m = oo,
0 otherwise.

and j(f,n,m) = h(f,n) + g(f,n,m),m >n. Observe that
supp(j(f,n,m))

C G(f,m).Let B, = By-nN W, = {f € By : ||fll; < r}. Of course,
B € U%-1B,.Welet

V. = j(f.nm)f€B.,,m > nand|f — j(f.nm)|| < 2=+ ¢ |

and set
— U 1+ 277 e .
r=1
Define |||x||| = sup{f(x) : f € V } This is the norm that we claim
¢ —approximates ||| and has a boundary consisting solely of

elements having finite support.

First of all, we prove that ||x|| < |||X]|| < (1 + €)|]|x||| whenever
x # 0. Take x € X with ||x|| = 1andlet f € B suchthat f(x) = 1
(which is possible as B is a boundary of ||-]|). Let r be minimal, such
that € B, .Since ||f|| < LIIfll;forall € Xx* and ||f - j(f.nm)|, <
2|If — h(f,n)|l;, it follows that there exists n such that

If — j(f,n,m)|| < 2=+2¢ whenever m > n. In particular,
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Xl = (@ + 27e)j(finn + 1)(x) 2 (1 +27Te)(1 — 270+2e)
> 1+27(MD ¢

To secure the other inequality, simply observe that if f € B,,m >
nand ||f — j(f,n,m)|| <2 T+2 ¢ then

(1 +27ej(f nm)(x) < (L +27e)(1 +270+D¢)

<1+ (27 4270 4 2-@re2)e < 1 4 ¢,

This means that [||x||]]| < 1 + & By homogeneity, ||x|]| < ||Ix||| <
(1 + &) ||x|| whenever x # 0.

Now we show that ||| - ||| has a boundary consisting solely of
elements having finite support. By Milman’s Theorem we know that

ext(B(X,”””)*) c Vw*.Define

*

(o'e] [o'e] w
D:ﬂ U(1+2-Se)vs |
r=1 S=1

andletd € D.Foreachr €N, ||d|| < (1 + 277 &)(1 + 270+ ¢),
and hence ||d|| < 1. Therefore, if |||x]||]] = 1,then
d(x) < llallllx]l < llxll < 1.

It follows that, with respect to ||| - |||, none of the elements of D are

norm-attaining. Consequently, B = ext(B p-)\P is a boundary
of ||| - |]]. We claim that every element of e B has finite support.
Given f e Bwehave f € (1 + 2 —r¢e)*  forsome €N .
For a contradiction, we will assume that f has infinite support.
According to Lemma (2.1.11), our M-basis is shrinking. It follows that
supp g is countable for all € X* . Thus, V" is Corson compact in the
w™ -topology which implies that it is a Fr'echet-Urysohn space . In
particular, there exist sequences (f;) € B,-,and (n),(m;) €N |

with n, < m, for all k €N, such that (j(f; ,n,,m,)) SV and
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J(fe e mi) — Lwherel = (1 + 277 &)71f.

w
We claim that, in fact, f,— [. First, we show

that h(f,, ny) =, 1. To this end, suppose that |G(f; ,my)| » . Then
by taking a subsequence if necessary, there exists N € N such that

| supp(G(fie . ni )| < 1G(fie M)l <N for all k. But as

J(fie s i ,mk)Ll, this would force | supp(l)] < N < oo, which is
not the case. Thus we must have |G(f;, ,m;)| — oo. Therefore, for all
y € I'g(fr nx . mp)(ey) = 0 as k - oo. Since ||| < L|Ill;, the

sequence (g9(fic .7 ) is bounded. Therefore,

9(fi \ g, my) =, 0and hence h(fy, ., ng) 1

We will now show that f, — h(fk,nk)—qﬁ 0. For each y €
r, |fk (y) — h(fy vnk)(e)/)| S |fk (ey)|' so  |fk = hA(fi ndlly <
I fll.. Therefore, (fi, — h(fi .,ny)) is a bounded sequence. Given
y €T,

G = HG DN £ PG+ D S iy

T
ST6Ge e+ DI’

Since (fx . nk) it [, as above, the infinite support of [ ensures that
|G (fy. )| = oo. Therefore, (f, — h(f; . ni)(e,) » 0 and hence

fi — h(fx ,nk)—qﬁ Oas k — oo. It follows that fkg [ as claimed,
and hence € B,.
Fix n € N such that ||l — h(l,n)|l; < L™! 2=+3) ¢ Then for all
m > n,
It = jnm)|l < LIIL-jinm)ll; < 2L [ — h(,n)lly

< 2—(T'+2)€.
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Soj(l,n,m) € V, forallm > n.Let

L m) - pm + D)IGEm)]
" Il = h(m)ll; |

Note that 4,, > 0 wheneverm > n. Since ||l — h(l,n)||; =
e (@) — p(Li +1DIGL D] we get X —niq A = 1.

i Anjlin,m) = i An h(l,n) + i Am g(l,n,m)

m=n+1 m=n+1 m=n+1

= h(l,n) + Z (D) — pli + D)w(l,i) = L

m=n+1
Therefore, f is a nontrivial convex combination of elements of (1 +
277e)W r S B n) SO f € ext(Bu . p:) and hence f ¢ B. This
gives us our desired contradiction. In conclusion, e B is a boundary of
[I] - []] consisting solely of functionals having finite support.
Theorem (2.1.13) becomes a trivial consequence of Theorem
(2.1.12).
Theorem (2.1.13)[2]: 14 Let I" be an arbitrary set, and let [|-]| be an
arbitrary equivalent norm on cy(I'). Then ||-|| can be approximated by
both € norms and polyhedral norms.

Theorem (2.1.13) is a consequence of a more general result,
Theorem (1.1.12), which involves spaces having Markushevich bases.
The proofs of both results are given.

Proof: Inthis case B = S, (r),-)* » SO it is a boundary of ||-|.

It is worth remarking that the implication (d) = (c) is essentially
Theorem (2.1.12), but with the additional assumption that the M-
basis is countable. The method of proof in that case is completely
different from the one presented here.

We begin with a lemma. It is based on straightforward

geometry and is probably folklore, but is included for completeness .
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Lemma (2.1.14) [2]: Suppose that D S By- has the property that for
all f € D, there exists x; € X and r; > 0 such that ||x; + z| =
f(xg + z)whenever ||z || < r¢. Then
@) 1 < ||x], and
(iDllzll < rrand g € D\{f}implies g(x; + z) < ||xf +Z||.
In particular, if f, g € D are distinct then ||x, - x¢|| = rf.
Proof.
(i) Suppose that ||x;|| < r; . Let y € X satisfy [lyll < r; — ||x¢|.
Tnen ||£y - x¢|| < r fandso
f@) =lyll=l=yll = f(=y) = =f®).

meaning that y € ker f. It follows that f = 0, which is impossible.
(i) Suppose |z || <77,g € D{f} and g(x; + z) = ||x; +z||. Since
g # fwecan find y € ker f such that g(y) > Oand [ly|l < r —
||z|| . Otherwise we would have ker f < ker g,so g = af for some
a, and since f(xf + z) = ||xf +Z|| = glxs + 2) =af (xf +
z),and||x; + z|| > 0 by (1), we conclude that g = f, which is not
the case. Thus ky + zk < r fand so

by +y+2ll = fGy + v + 2) = £y + 2.
On the other hand,

lxs +y +zl| = gGy + v + 2) > gl + 2) =[x +2]
= f(xf + 2).
Finally, if f,g € D are distinct and ||x, — x¢|| < 77, then by (2) we
would have
lxgll = 9Cg) = gCer+ Cig = %)) <llxr + g = x| = Il

Armed with this lemma, we can give the proof of Theorem (1.16).
Theorem (2.1.15)[2]: Let X be WCG, and let the norm ||-|| on X be
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polyhedral. Then the boundary w*-str exp(By+) of ||:|| may be written

as
w*-str exp(By+) = U D,,
n=1

where each D,, is relatively discrete in the w*-topology.

The theorem above should be compared to the following
sufficient condition: if the norm ||-|| on X admits a boundary B such
that B = Uy, D, and = Um-1K,, , where each Dn is relatively
discrete in the w*-topology, and each K,,, is w*-compact, then ||-|| can
be approximated by polyhedral norms. Thus Theorem (2.1.15) can be
considered as a step towards a characterisation of the existence of
polyhedral norms, in the WCG case.

The main results concern a class of spaces which include all

spaces of the form c,(I"), namely those that admit the following type
of basis.
Proof: Since X is WCG, we can find a weakly compact M-basis
(ey .e))yer Of X. Let E,, be the set of x € X that can be written as a
linear combination of at most n elements of (e, ),¢r . Let us define B :
= w”* —strexp(By-). for each f € B, we can find a point x €
span(e,),cr that lies in the interior of Ar N By , where Af is the
supporting hyperplane as defined in that theorem. By a
straightforward argument, it follows that there exists » > 0 such
that ||x + z|| = f(x + z) whenever ||z|| < r. Any such x belongs to
some E, . Therefore, given f € B, we can define ny to be the minimal
n € N for which we can find an x and r as above, with x € E,, .

Define D, ,, to be the set of all f € B such that n; = n, and
there exist x and r, as described above, which in addition satisfy r >
2”™ and
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x = Z aey,

YEF

where F < I has cardinalitynand [a,| < mforally € F.Anysuch
pair (x, ) will becalled a witness for f € D, ,, .

Evidently, = Uy p=1Dpnm - We claim that each D,,, is
relatively discrete in the norm topology. For a contradiction, suppose
otherwise and let f, fi, € D, ,, such that |[[f — fi|l — 0. For each €

N, select a witness (x; , 1) for fi . The set

L = Zayey: F < T hascardinalitynand [a,| < mforally € F ,
YEF

is weakly compact, being a natural continuous image of [-m, m]™ %

({e,: ¥ € r}u{0})".Thus, by the Eberlein- Smulyan Theorem, and

by taking a subsequence of (x;) if necessary, we can assume that the
xy tend weakly to some y € L. We claim that y € E; for some j <

n. Indeed, if

y = Zayey,

YyEF
where F € I has cardinalitynanday # Oforally € F,then there
exists a K for which e; (x;) # O for all y € F and all k = K.
Because each x; can be expressed as a linear combination of n
elements of (e,),er . it follows that x, € span(e,),er
whenever k > K.

Indeed, if

w = Zbyey,

where G € T has cardinality n, and if e, («w) # Oforally € F,then
necessarily F € G, and equality of these sets follows since their
cardinalities agree. Because the x;,k = K, belong to a finite-
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dimensional space, it follows that |y- x| - 0. However, by
Lemma (2.1.14), we know that the x;, are uniformly separated in
norm by 2™ (< 1), so they cannot converge in norm to anything.

Thus y € E; for some j < n, as claimed. Now fix z € X such
that ||z]| < 27™. We have ||x;, + z| = fi(x; + z) for all k, because
27 < 1. As ||[f-fi]| » 0 and x, + z > y + z weakly, we get
lx, + zl| > f(y+ 2z) < |ly + z||. On the other hand, by w-lower
semicontinuity of the norm, ||y + z|| < f(y +z). So the equality
ly + z|l = f(y + z) holds whenever ||z|| < 27™. In particular, 1 =

lx][ = llyll. However y € E; and j < n, and this contradicts the
minimal choice of ny = n.

Thus each D, ,, is relatively discrete in the norm topology.
Since D,,,, € B and since the norm and «w* —topologies agree on B,
it follows that Dn,m is relatively discrete in the «w* —topology as well.

Finally, we recall that a Banach space X is called weakly Lindel of
determined (WLD) if Bx- is Corson compact in the «w* —topology.
The class of WLD spaces includes all WCG spaces. Any polyhedral
Banach space is an Asplund space, and any WLD Asplund space is
WCG. Therefore Theorem (2.1.13) extends to all WLD polyhedral
spaces.

Chapter 3
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Positive Linear Maps and Pinchings

We deduce two recent theorems of Kennedy-Skoufranis and
Loreaux-Weiss for conditional expectations onto a masa in the
algebra of operators on a Hilbert space. We also get a few results for
sums in a unitary orbit
Section (3.1): Pinching Theorem and Sums in A Unitary Orbit

We recall two theorems which are fundamental to obtain
several results about positive linear maps, in particular conditional
expectations, and unitary orbits. These theorems were established
we also refer to this article for various definitions and properties of
the essential numerical range W_(A) of an operator A in the algebra
L(H) of all (bounded linear) operators on an infinite dimensional,
separable (real or complex) Hilbert space H.

We denote by D the unit disc of C. We write A ~ B to mean
that the operators A and B are unitarily equivalent. This relation is
extended to operators possibly acting on different Hilbert spaces,
typically, A acts on H and B acts on an infinite dimensional subspace
Sof H,oronthespacesH @ Hor @ H.

Theorem (3.1.1)[3]: Let A € L(¥) with W,(4A) > Dand {X;}{2, a

sequence in L(H) such that sup||X;|| < 1. Then, a decomposition H =
i

@:2, H; holds with As;, ~ X; forall i.

The direct sum refers to an orthogonal decomposition, and AHi
stands for the compression of A onto the subspace ;.

Theorem (3.1.1) tells us that we have a unitary congruence

between an operator in L(@* H) and a "pinching” of A4,

0 oo
@ Xi = Z EiAEi
i=1 i=1
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for some sequence of mutually orthogonal infinite dimensional
projections {E;};2; in L(H) summing up to the identity I. Thus
{H;};2, can be regarded as an operator diagonal of A. In particular, if
X is an operator on A with || X|| < 1, then, A4 is unitarily congruent to

an operator on H @ H of the form,

! o

-
For a sequence of normal operators, Theorem (3.1.1) admits a
variation. Given A, B c C, the notation A c; B means that A +
rD c Bforsomer > 0.
Theorem (3.1.2)[3]: Let A € L(¥) with W.(4) oD and {X;};2,a
sequence of normal operators in L(H) such that
Uiz, W(X;) s W.(A). Then, a decomposition # = @;2; H; holds
with Ay, = X; foralli.

Our concern is the study of generalized diagonals, i.e.
conditional expectations onto a masa in L(#), of the unitary orbit of
an operator. The pinching theorems are the good tools for this study;
we easily obtain and considerably improve two recent theorems, of
Kennedy and Skoufranis for normal operators, and Loreaux and
Weiss for application to the class of unital, positive linear maps which
are trace preserving.

The next gives applications which only require (1). These
results mainly focus on sums of two operators in a unitary orbit.

We recall a straightforward consequence of (1) for the weak
convergence.

Corollary (3.1.3)[3]: Let A, X € L(H) with W.(4) oD and ||X| <
1. Then there exists a sequence of unitaries {U,,};>~, in L(H) such that
wot limU,AU;, = X.

n—+oo
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We cannot replace the weak convergence by the strong
convergence; for instance if A4 is invertible and || X, || < ||A7Y||"? for
some unit vector h, then X cannot be a strong limit from the unitary
orbit of A. However, the next best thing does happen.

Moreover, this is even true for the *-strong operator topology.
Corollary (3.1.4)[3]: Let A, X € L(H) with W.(4) oD and || X|| <
1. Then there exist two sequences of unitaries {U,}r=; and {V,};r=; in
L(7) such that *

U, AU+ V AIL*
«sot lim——2 % — x
n—+oo 2

Proof. From (1) we also have
X —R
4= 1)
Hence there exist two unitaries U,V : H - H @ H such that
UAU* + VAV*  x 0
2 (o 1) @)
Now let {{e, };—, be a basis of 7 and choose any unitary W,,: H @
H — H suchthat W, (e; @ 0) = e;forallj < n.Then

X, = W, (g 2)Wn*

strongly converges to X. Indeed, {X,,} is bounded in norm and, for all

Ji Xnej = Xej.

Taking adjoints,

) m

we also have X, — X strongly. Setting U,, = W,,U and Vj, = W,V

X = W, (

and using (2) completes the proof.
Remark (3.1.5)[3]: Corollary (3.1.4) does not hold for the
convergence in norm. We give an example. Consider the permutation

matrix
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0 01
T=(1 0 O)

010
and set A = 2 @* T regarded as an operator in L(H#). Then

W.(A) > D, however X = (1/2)I is not a norm limit from the
unitary orbit of A. Equivalently, (1/2)I is not a norm limit from the
unitary orbit of (A + A*)/2. Indeed, (A + A*)/2 = 1 — (3/2)P for
some projection P.

We reserve the word "projection” for selfadjoint idempotent. A
strong limit of idempotent operators is still idempotent; thus, the
next corollary is rather surprising.

Corollary (3.1.6)[3]: Fix a > 0. There exists an idempotent Q €

L(#) such that for every X € L(H)with [|X|| < a we have two

sequences of unitaries {U,}—; and {V; };—; in L(#) for which
«sotlimU,QU,; +V,QV = X.

n—+oo

Proof. Let a > 0, define a two-by-two idempotent matrix

_(1 0
Moo=, o) 3)
and set Q =@* M, regarded as an operator in L(#). Since the
numerical range W (+) of
2 0
(6 o)

is D, we infer that W(a M,) = W.((2a~1Q) o> Dfor a large
enough a. The result then follows from Corollary (3.1.4) with A =
2a~1(Q and the contraction a~1X.

Corollary (3.1.7) does not hold for the convergence in norm.
Proposition (3.1.7) [3]: Let X € L(H) be of the form Al + K for a
compact operator K and a scalar A /€ {0,1,2}. Then X is not norm
limit of U, QU;, +V,QV, for any sequences of unitaries {U,}r,and
{V,.};>~, and any idempotent Q in L(¥).
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Proof. First observe that if {4,,};—; and {B,};-, are two bounded
sequences in L(#) such that A, — B, — 0 in norm, then we also
have A2 — B2 — 0innorm; indeed

Ap - Bi = An(An — Bn) + (An — Bp)B,.
Now, suppose that A # 1 and that we have the (norm) convergence,

Uu,Qu, + v, Qv - Al + K.

Then we also have

W,QW, — (—Q + Al + UKU,) — 0 (4)
where W, := U'V,. Hence, by the previous observation,

(MLQWE )? = (=Q + Al + UzKUyp)? > 0,
that is

WoQWy — (=Q + Al + UzKUyp)? > 0 (5)
Combining (4) and (5) we get

(—Q + Al + U;KU,)—(—Q + Al + U}KU,)?
hence
(=2+20)Q + M-AHDI + K, - 0

for some bounded sequence of compact operators K,,. Since 1 # 1,

we have

—AI+L
Q_z

for some compact operator L. Since Q is idempotent, either A = 2 or
A =0.

The operator X in Proposition (3.1.7) has the special property that
W.(X) is reduced to a single point. However Proposition(3.1.7) may
also hold when W, (X) has positive measure.

Corollary (3.1.8)[3]: Let Q be an idempotent in L(H) andz €
C\ {0, 1, 2}. Then, there exists @ > 0 such that the following property
holds:
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If X € L(H) satisfies || X — zI|| < a, then X is not norm limit of
UnQUp + V,QVy

for any sequences of unitaries {{U,,};—; and {V},,},;—; in L(H).

More operators with large numerical and essential numerical
ranges are given in the next proposition. An operator X is stable
when its real part (X + X*)/2 is negative definite (invertible).
Proposition (3.1.9)[3]: If X € L(H) is stable, then X is not norm
limit of U,,QU,, +V,QV," for any sequences of unitaries {U,},-; and
{V,,};>-,and any idempotent Q in L(H).
Proof. We have a decomposition H = H; @ H,, in two invariant
subspaces of Q such that Q acts on Hs as a selfadjoint projection P,
and @ acts on Hns as a purely nonselfadjoint idempotent, that is As;

is unitarily equivalent to an operator on F @ F of the form

_ (I O
where R is a nonsingular positive operator on a Hilbert space F , so
I O
Q=P®=(, o) )

LetY be a norm limit of the sum of two sequences in the unitary orbit
of Q. If the purely non-selfadjoint part #,, is vacuous, then Y is

positive, hence Y # X.If H,, is not vacuous, (7) shows that

e+o =200 (3 §)

N I 1 R 0
_ZP@{(I 1)+(o —R)}'
This implies that |[(Q + Q) .|| = [[(Q + Q*)_|| , therefore Y + Y*

cannot be negative definite, hence X # Y.

Section (3.2): Unital, Trace Preserving Positive Linear Maps
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With Pinchings in Factors

Kennedy and Skoufranis have studied the following problem:
Let X be a maximal abelian *-subalgebra (masa) of a von Neumann
algebra 9, with corresponding expectation Ex: I — X (ie, a
unital positive linear map such that Ex(XM) = X Ex(M) forall X €
X and M € I) . Given a normal operator € Mt , determine the
image by Ej of the unitary orbit of 4,

Ax(A) = {Ex(UAU %) : Uaunitaryin 9t }.
In several cases, they determined the norm closure of Az (A4). We have
the following two propositions.
Proposition (3.2.1)[3]: Let X be a masa in (), X€ X ,and 4 a
normal operator in L(H).
If ¢(X) c convo,(A), then X lies in the norm closure of Ay (A).
Proposition (3.2.2) [3]: Let X be a continuous masa in L(H),X € X,
and A a normal operator in L(H). If X lies in the norm closure of Ax(A),
then a(X) c convao,(4).

Since we deal with normal operators, o(X) c convo,(A4)
means W(X) < W.(A). Proposition (3.2.2) needs the continuous
assumption. It is a rather simple fact; we generalize it in Lemma
(3.2.4): Conditional expectations reduce essential numerical ranges,
W(Ex(T)) c W.(T) for all T € L(#). Thus, the main point which
saysthatif W(X) c W.(A) then X can be approximated by operators
of the form Ex(UAU™) with unitaries U. With the slightly stronger
assumption W(X) c,, W.(A), via the following corollary, that X is
exactly of this form, furthermore the normality assumption on XA is
not necessary.

Corollary (3.2.3)[3]: Let X be a masa in L(H),X € X and A €
L(H). If W(X) cg W.(A), then X = Ex(UAU*) for some unitary
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operator U € L(H).
Proof. First, we note a simple fact: Let {P;};2, be a sequence of
orthogonal projections in X such that /2, P, =1, and let Z €

L(#) such that P;ZP; € X foralli. Then, we have a strong sum

i=1
Now, denote by #; the range of P; and assume dim Hi = oo for

all i. We have W, (X3,) © W.(X), hence

U~ W) < wa.

We get a unitary U on H = @72, H; such that
. * Xj-[ k  eee
A= UAU* =| : | BpEE.o

Since 0 D Xy, B 0 --€ X for all i, the previous simple fact

shows that

oo
Ex(UAU") = @ Xy, = x.
i=1
The following result extends Proposition (3.2.2), the "easy”
part of Kennedy-Skoufranis’ theorem .
Lemma (3.2.4)[3]: If X is a masa in L(H) andZ € L(H), then
W(Ex(2)) © W(Z)and W, (Ex(2)) < W.(2).
Proof. (i) Assume Z is normal. We may identify the unital C*-algebra
Aspanned by Z with C°(a(Z)) via a *-isomorphism ¢: C°(c(2)) » «A
with ¢@(z » z) = Z. Let h € X be a unit vector. Forf €
C°(a(2)), set
W(f) = (hEx(p(f)h).
Then y is a positive linear functional on €°(s(Z)) and y(1) = 1.

Thus y is a Radon measure induced by a probabilty measure y,
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P(f) = f f(2)du(z)

a(2)
We then have (h,Ex(Z)h) = Y(z) € conv(o(Z)). Since conv(o(Z))
= W(Z), we obtain W (E¢(2)) c W(2).
(ii) Let Z be a general operator in L(#) and define a conditional
expectation

E:L(HOH) > X @ X

A A 0
IEZ((S §)>= ( i IE;(B))'

From the first part of the proof, we infer

vy < w (B0 0 Y)ew (2 9))

whener (g g )is normal. Since we have, by a simple classical fact

W@ =) W((g g)) )
g g) is

by

where the intersection runs over all B,C,D such that (

normal, we obtain W (Ex(2)) c W(Z).
(ili) We deal with the essential numerical range inclusion. We can
split X into its discrete part ©® and continuous part € with the
corresponding decomposition of the Hilbert space,
X =20 C  hh =H,; OH,.
We then have
W.(Ex(2)) = conv {W, (Ep(Zs,)): We (Es(Zx,))}. (8)

We have an obvious inclusion

W, (Es(Zs,)) © We(Zs,). (9)

On the other hand, for all compact operators K € L(H),
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We (]EG(Z%C )) = We(Eg(Zs, ) + K,) = We (]EG(ZHC + Ky, ))
C W(Zy, + Ky, )
by the simple folklore fact that a conditional expectation onto a
continous masa vanishes on compact operators and part (ii) of the

proof. Thus, when K runs over all compact operators, we obtain

W, (En(Zs,)) © We(2s,). (10)
Combining (8) (9) and (10) completes the proof.

For discrete masas, unlike continuous masas , there is a unique
conditional expectation, which merely consists in extracting the
diagonal with respect to an orthonormal basis. In a recent article,
Loreaux and Weiss give a detailed study of diagonals of idempotents
in L(H). They established that a nonzero idempotent Q has a zero
diagonal with respect to some orthonormal basis if and only if Q is
not a Hilbert-Schmidt perturbation of a projection (i.e., a self-adjoint
idempotent). They also showed that any sequence {a,} € [ such
that |a,| < «a for all n and, for some a,_ ,a;, = a,, for infinitely
many k, one has a idempotent Q such that [|Q]|| < 18a + 4 and Q
admits {a,,} as a diagonal with respect to some orthonormal basis.
Using this, they proved that any sequence in [ is the diagonal of
some idempotent operator answering a question of Jasper. Further,
it is not necessary to confine to diagonals, i.e., discrete masas, and the
constant 18« + 4 can be improved; in the nEXt corollary we explicit
the best constant when o = 1.

Corollary (3.2.5)[3]: Let X be amasa in L(H) and o > 0. There exists
anidempotent Q € L(H),suchthatforallX € X with || X | < a,we
have X = Ex(UQU™) for some unitary operator U € L(H). If a =

1,11Q || = V5 + 2+/5 is the smallest possible norm.
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Proof. We have an idempotent Q such that W.(Q) > aD, hence the
first and main part of Corollary (3.2.5) follows from Corollary (3.2.3).

The remaining parts require a few computations.

To obtain the bound \/m when @ = 1 we get a closer look at
@ M, with M, where a is a positive scalar. We have
W(Mg) = {(h,Mzh): H € C|Inll = 1}
= {lh|* + ahyhy : |Ry|? + |hy|* = 1},

hence, with h, = re'® h, = /1— rieta,

wM,) = U {rz + ar\/l— r2ei0-a): 9 ¢ € [0,27‘[]} .

0=sr<1

Therefore W(M,) is a union of circles I. with centers r2? and radii

ar /1— r2. To have D ¢ W(M,) it is necessary and sufficient that

-1 € I, forsomer € [O,1], hence
1+ r?
R (D

Now we minimize a = a(r) given by (11) when r € (0,1) and thus

obtain the matrix M, with smallest norm such that W(M, ) > D.
Observe thata(r) » +wasr - Oandasr — 1,and
r2(1-r2)32a'(ry = r* + 4r? — 1.

Thus a(r) takes its minimal value a, when r? = V5 — 2. We have

a? = 4+ 2+/5, hence
Mo = J5+245

Now, letting = ®* M,_, we have W,(Q) = W(M, ), so that Q is an
idempotent in L(#) such that W.(Q) o D, and thus by Corollary
(3.2.3) any operator X such that || X|| < 1 satifies Ex(UQU*) = X for
some unitary U.

85



It remains to check that if Q is an idempotent such that

Corollary (3.2.5) holds for any operator X such that ||X || < 1, then

lQll = v5+ 2V5. To this end, we consider the purely nonselfadjoint

part Qs Of |,

I O
Qf]‘[ns - (R O)
We have W.(Q) o D ifand only if W.(Qy,. ) > D.By Lemma (3.2.5)
this is necessary. We may approximate W, (Qy;, ) withsligthly larger

essential numerical ranges, by using apositive diagonalizable

operator R, suchthatR, = R > R, — &l, for writing which

ol $)=w (B 8)

where {a, };—; is a sequence of positive scalars, the eigenvalues of R,.
By the previous step of the proof, this essential numerical range

contains Dif and only if im a,, > a,. If this holds for all ¢ > 0, then

o]l = v5+ 2V5.

Unital positive linear maps @ : M,, - M,,, the matrix algebra,
which preserve the trace play an important role in matrix analysis
and its applications. These maps are sometimes called doubly
stochastic.

We say that ®: L(H) — L(H) is trace preserving if it preserves
the trace ideal 7and Tr ®(Z) = TrZforall € T .

Corollary (3.2.6)[3]: Let A € L(H). The following two conditions are
equivalent:

(HWe(4) > D.

(ii) For all X € L(#) with |[X]|| < 1, there exists a unital, trace
preserving, positive linear map @ : L(H) — L(#) such that ®(A) =
X.
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We may further require in (ii) that & is completely positive and sot-
and wot-sequentially continuous.
Proof. Assume (i). We have a unitary U : H -@* H such that

A = UAU" =

Now considerthemap ¥ : L(* H) - L(H),

Zl,l Zl,2
(Z%l 7 )
and define ® : L(H) —» L(H) as &(T) = Y(UTU"). Since both ¥
and the unitary congruence with U are sot- and wot-sequentially
continuous, and trace preseverving, completely positive and unital, so
is ®. Further ®(4) = X.

Assume (ii) and suppose that z ¢ W.(A) and |z| < 1in order
to reach a contradiction. If z = |z|e'?, replacing A by e =94, we may
assumel > z > 0. Hence,

W.((A + A)/2) c (—,2]

and there exists a selfadjoint compact operator L such that

A+ AF
5 < zI[ + L.

This implies that X := %I cannot be in the range of & for any

unital, trace preserving positive linear map. Indeed, we would have
1+z X + X* A+ A"

> =75 = CD( 2
which is not possible as ®(L) is compact.

) < 21 + B(L)

In the finite dimensional setting, two Hermitian matrices A and
X satisfy the relation X = ®(A) for some positive, unital, trace
preserving linear map if and only if X is in the convex hull of the

unitary orbit of A. In the infinite dimensional setting, if the norm
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closure of the unitary orbit of A. This is easily checked by
approximating the operators with diagonal operators. Such an
equivalence might not be brought out to the setting of Corollary
(3.2.5).

Here we mention a result of Wu: If A € L(H) is not of the form
scalar plus compact, then every X € L(H) is a linear combination of
operators in the unitary orbit of A.

If one deletes the positivity assumption, the most regular class of
linear maps on L(H) might be given in the following definition.
Definition (3.2.7) [3]: Alinearmap W : L(H) — L(¥) is said ultra-
regular if it fulfills two conditions:

(ul) W(I) = Iand V¥ is trace preserving.

(u2) Whenever a sequence 4,, — A for either the norm-, strong-, or
weak-topology, then we also have W(4,)) — ¥ (A) for the same type
of convergence.

Any ultra-regular linear map preserves the set of essentially
scalar operators (of the form Al + K with A € C and a compact
operator K). For its complement, we state our last corollary.
Corollary (3.2.8)[3]: LetA € L(#) be essentially nonscalar. Then,
forall X € L(¥) there exists a ultra-regular linearmap ¥ : L(H) -
L(#) suchthat ¥ (4) = X.

Proof. An operator is essentially nonscalar precisely when its
essential numerical range is not reduced to a single point. So, let
a,b € W.(A),a # b. By a lemma of Anderson and Stampfli, A is
unitarily equivalent to an operator on H @ H of the form

B=(] 1)

Where D = @,-; D, with two by two matrices D,,,
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= (5 b)
such thata,, - aand b,, - b asn — o. We may assume that, for
somea,f > O,wehavea > |a,| + |b,|and|a, — b,| > B.Hence
there existy > 0 and two by two intertible matrices T,, such that, for
all n,W(T,,D,T;*) 2Dand [Tl + IT;*]l < y. So, letting T =
(B7-1 T,) @ I, we obtain an invertible operator T on H @ H such
that W.(TBT™!) o D.

Hence we have an invertible operator S on H such that
W.(SAS™1) o D. Therefore we may apply Corollary (3.2.7)and
obtain a wot- and sot-sequentially continuous, unital, trace
preserving map & such that ®(SAS™!) = X. Letting ¥() =
®(S - S71) completes the proof.

We cannot find an alternative proof, not based on the pinching
theorem, for Corollaries (3.2.6) and (3.2.8).

If we trust in Zorn, there exists a linear map ¥ : L(H) - L(H)
which satifies the condition (ul) but not the condition (u2). Indeed,

let {ap}pEQ be a basis in the Calkin algebra € = L(H)/K (%), indexed

on an ordered set (, whose first element a,, is the image of I by the
canonical projection m : L(H) — C. Thus, for each operator X, we

have a unique decomposition m(X) = Zpeﬂ(n(X))pap with only
finitely many nonzero terms. Further (n(X))p = 0 if X is compact,
0

and (n(l))p = 1.Wethendefineamapy : L(H) - L(H @ H)by

X 0
YX) = <O (ﬂ([))p01>'
Letting ¥(X) = VyX)V* where V:H @ H — H is unitary, we
obtain a linear map ¥ : L(H) — L(#) which satifies (ul) but not
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(u2): it is not norm continuous.

Let w be a Banach limit on [* and define a map ¢ : [* -
[*{a,} ~ {b,}, where b, = w({a,}) and b, = a,_;,n = 2.
Letting W(X) = ¢(diag(X)), where diag(X) is the diagonal of X €
H in an orthonormal basis, we obtain a linear map W which is norm
continuous, satisfies (ul) but not (u2): it is not strongly sequentially
continuous.

However, it seems not possible to define explicitly a linear map ¥ :
L(#H) — L(H) satisfying (ul) but not (u2).

We discuss possible extensions to our results to a von
Neumann algebra R acting on a separable Hilbert space H . First, we
need to define an essential numerical range W for R. Let € R . If R
is type-I11, then W2 (4) := W, (A4). If R is type-11°, then

wx (A):= ﬂ W(A +K)
KeT
where T'is the trace ideal in R (we may also use its norm closure K,

the "compact” operators in R, or any dense sequence in K)
Recently, Dragan and Kaftal obtained some decompositions for
positive operators in von Neumann factors, which, in the case of
L(#) were first investigated. This suggests that our questions
dealing with a possible extension to type- 11 and -1l factors also
have an affirmative answer.

Let R be a type- 11 or -1l factor.
Definition (3.2.9): A sequence {V;};2, of isometries in R such that
Y2, V;V;_ is called an isometric decomposition of .
Conjecture (3.2.10): Let A € R with W*(4) oD and {X;}2, a
sequence in R such that sqplle- || < 1.Then, there exists an isometric

i

decomposition {V;};2; of R suchthat V;" AX; = X; foralli.
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Chapter 4
Nontrivial Twisted Sums of €, and C(K)

We obtain a new class of compact Hausdorff spaces K for which

Co can be nontrivially twisted with C(K).

Section (4.1): Nontrivial Twisted Sums for Corson Compacta Toward the

General Valdivia Case

We present a broad new class of compact Hausdorff spaces K
such that there exists a nontrivial twisted sum of ¢, and C(K), where
C(K) denotes the Banach space of continuous real-valued functions
on K endowed with the supremum norm. By a twisted sum of the
Banach spaces Y and X we mean a short exact sequence 0 - Y —
Z - X — 0,where Z is a Banach space and the maps are bounded
linear operators. This twisted sum is called trivial if the exact
sequence splits, i.e., if the map Y — Z admits a bounded linear left
inverse (equivalently, if the map Z — X admits a bounded linear
right inverse). In other words, the twisted sum is trivial if the range
ofthemap Y — Ziscomplemented inZ;inthiscase,= X @Y. We
denote by Ext(X, Y ) the set of equivalence classes of twisted sums of
Y and X and we write Ext(X, Y ) = 0 if every such twisted sum is
trivial.

Many problems in Banach space theory are related to the quest
for conditions under which Ext(X, Y ) = 0. For instance, an equivalent
statement for the classical Theorem of Sobczyk is that if X is a
separable Banach space, then Ext(X,c,) = 0 . The converse of the
latter statement clearly does not hold in general: for example,
Ext(#,(I),cy) # O, since ¢,(I) is a projective Banach space.
However, the following question remains open: is it true that

Ext(C(K), cy) # O for any nonseparable C(K) space? This problem
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was stated and further studied in which proves that, under the
continuum hypothesis (CH), the space Ext(C(K), cy) is honzero for a
nonmetrizable compact Hausdorff space K of finite height. In
addition to this result, everything else that is known about the
problem is summarized namely that Ext(C(K),c,) is nonzero for a
C(K) space under any one of the following assumptions:

() K isanonmetrizable Eberlein compact space.

(i) K is a Valdivia compact space which does not satisfy the

countable
(iii) chain condition (ccc);
(iv) the weight of K is equal to w1 and the dual space of C(K) is not
weak*-separable.

(v) K has the extension property and it does not have ccc;

(vi) C(K) contains an isomorphic copy of £,
Note also that if Ext(Y,c,) # 0 and X contains a complemented
isomorphic copy of , then Ext(X,c,) # 0=0.
Here is an overview of the main results of this article. Theorem
(4.1.3) gives a condition involving biorthogonal systems in a Banach
space X which implies that Ext(X,c,) # 0. We discuss some of its
implications when X is of the form C(K). It is proven that if K contains
a homeomorphic copy of [0, w] % [0, c] or of 2¢c, then Ext(C(K), cy) is
nonzero, where c¢ denotes the cardinality of the continuum. We
investigate the consequences of the results Valdivia and Corson
compacta. Recall that Valdivia compact spaces constitute a large
superclass of Corson compact spaces ( This, let x is Corson compact
spaces with a Radon probability measure u- by removing all open
subset of x) [7] closed under arbitrary products; moreover, every

Eberlein compact is a Corson compact devoted to the proof that,
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under CH, it holds that Ext(C(K),c,) # O for every nonmetrizable
Corson compact space K. The question of whether Ext(C(K),cy) # O
for an arbitrary nonmetrizable Valdivia compact space K remains
open (even under CH), but we solve some particular cases of this
problem.

The weight and the density character of a topological space X
are denoted, respectively, by w(y) and dens(y) . Moreover, we
always denote by y, the characteristic function of a set A and by |A]|
the cardinality of A. We start with a technical lemma which is the
heart of the proof of Theorem (4.1.3). A family of sets (Ai)i€l is said
to be almost disjoint if each Ai is infinite and 4; n A4; is finite, for
alli,j € Iwithi = j.

Lemma (4.1.1)[4]: There exists an almost disjoint family

(Ana) o, 4e. OF Subsets of w satisfying the following property: for
every family (47q) _ _ with each A4}, c A4, cofinite in An,a, it

holds that sup |[M,,| = +oo, where:

PEW
Mp:{nEw:pEU A;m}.
aec

Proof. We will obtain an almost disjoint family (Anﬂ)nauaec

subsets of 2~ with the desired property, where 2<¢ = U, 2*
denotes the set of finite sequences in2 = {0,1}. Foreach e € 2%, we
set:

Ae = {elx: k € w},
so that (A,).epo is an almost disjoint family of subsets of 2<%, Let
(B,) 4cc be an enumeration of the uncountable Borel subsets of 2¢.
Recalling that

|B,| = cforalla € c,one easily obtains by transfinite recursion a
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family (€,4) of pairwise distinct elements of s2®uch that

NneEw,a€c

€nag € By, for all n € wa € c. Set A, = Ae,, and let
(4n.4) be as in the statement of the lemma. For n € w,
Y new,acc

denote by D, the set of those e € 2% such that n € M, for all but
finitely many p € A.. Note that:
D, = U ﬂ U{Cp: p E 2k withn € Mp},
koEw k=k,

where C, denotes the clopen subset of 2¢ consisting of the
extensions of p.
The above equality implies that D,, is an F,; (and, in particular, a Borel
subset of 2¢. We claim that the complement of D,, in 2®is countable.
Namely, if it were uncountable, there would exist « € ¢ with B, =
2°\ D,,. But,sincen € M, forallp € A;,, we have that €,,, € Dy,
contradicting the fact that €,, € B, and proving the claim. To
conclude the proof of the lemma, note that for each n > 1 the
intersection U;., D; is nonempty; for € € U;., D;, we have that {i :
i <n} c My, forall butfinitely manyp € A..

Let X be a Banach space. Recall that a biorthogonal system in X is
a family (x;,v;)ies With x; € X,¥; € X", y;(x;) = 1 and y;(x;) = 0
for i # j. The cardinality of the biorthogonal system (x;,y;)ie; iS
defined as the cardinality of I.
Definition (4.1.2)[4]: Let (x;,v;)ie;be a biorthogonal system in a

Banach space X. We call (x;,y;);e; bounded if sup|lx;|| < +o and
i€l

suplly;ll < +o weak*-null if (y;);e; is a weak*-null family, i.e., if
iel
(yi(x))ia isin co(D), forallx € X.

Theorem (4.1.3) [4]: Let X be a Banach space. Assume that there
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exist a weak*- null biorthogonal system (xp¢ ¥na) ., .o iN X and a

w,ae
constant C > 0O such that:

k

i=1

< C,

foralln,,...,n, € w pairwise distinct,all a4,...,a; € c,andallk >
1.

Then Ext(X,cy) # O.

Proof. We have that Ext(X,c,) = O if and only if every bounded
operator T: X — ¢,/c, admits a lifting 1, i.e, a bounded operator
T:X - £, with T(x) = T(x) +co, for all x € X. Let us then show
that there exists an operator T : X — f,/c, that does not admit a

lifting. To this aim, let (4,,) ____ bean almost disjoint family as

in Lemma (4.1.1) and consider the unique isometric embedding S :
co(w % ¢) = £/¢c such that S(e,q) = Xan, Tt Cos where
(en,a)new’aec denotes the canonical basis of c,(w % c¢). Denote by I' :
X = cy(w % c¢) the bounded operator with coordinate functionals
(yn,a)nEw’aec and set T =S ol: X - £,/c,. Assuming by
contradiction that there exists a lifting T of T and denoting by

(wp).__ the sequence of coordinate functionals of T we have that the
P/pew

set:

, 1
An,a = {p € An,a: Up(xn,a) = E}

is cofinite in 4, 4. It follows that for each k > 1, there existp € w,
ny...,n, € w pairwise distinct, and «a4,...,a; € c such that p €

A;li,ai,fori = 1,..., k. Hence:
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k k
s< (Y mn ) = Il

i=1
which yields a contradiction.
Corollary (4.1.4)[4]: Let K be a compact Hausdorff space. Assume

that there exists a bounded weak*-null biorthogonal system

(fn,avyn,a)
withn # mandall a,f € c. Then Ext(C(K),cy) # O.

in C(K)such that f, ,fmp = 0, for all nm € w

Nnew,a€c

Definition (4.1.5)[4]: We say that a compact Hausdorff space K
satisfies property (x)if there exist a sequence (E,),e, Of closed
subsets of K and a bounded weak*-null biorthogonal system

(fn,av yn,a) in C(K) such that:

Nnew,a€c

anUFm=® (1)

m#n

and supp f,,C F,, forall n € w and all @ € ¢, where suppf, ,
denotes the supportof f, , .

In what follows, we denote by M(K) the space of finite
countably-additive signed regular Borel measures on K, endowed
with the total variation norm. We identify as usual the dual space of
C(K) with M(K).

Lemma (4.1.6)[4]: Let K be a compact Hausdorff space and L be a
closed subspace of K. If L satisfies property (), then so does K.
Proof: Consider, as in Definition (4.1.5), a sequence (F,) <, of closed

subsets of L and a bounded weak*-null biorthogonal system
(fn,avyn,a)

sequence (U, ),c,0f pairwise disjoint open subsets of K with each Un

in C(L). By recursion on n, one easily obtains a
NneEw,a€c

containing E,. Let V,, be an open subset of K with F, c Vj, ¢ ,, c U,,.

Using Tietze’s Extension Theorem and Urysohn’s Lemma, we get a
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continuous extension fn,a of f, o to K with support contained in 1},
and having the same norm as f, ,. To conclude the proof, let 7, , €
M(K) be the extension of y,, € M(L) that vanishes identically

outside of L and observe that (fnﬂ’ynﬂ)n@) . s @ bounded weak*-

null biorthogonal system in C(K).

As an immediate consequence of Lemma (4.1.6) and Corollary
(4.1.4), we obtain the following result.

Theorem (4.1.7)[4]: If a compact Hausdorff space L satisfies property
(*), then every compact Hausdorff space K containing a homeomorphic
copy of L satisfies Ext(C(K), c,) # O.

We now establish a few results which give sufficient conditions
for a space K to satisfy property (*). Recall that, given a closed subset
F of a compact Hausdorff space K, an extension operator for F in K is
a bounded operator E : C(F) — C(K) which is a right inverse for
the restriction operator C(K) 3 f » f|F € C(F). Note that F
admits an extension operator in K if and only if the kernel C(K|F) =
{f € C(K): flp = 0} of the restriction operator is complemented
in C(K). A point x of a topological space X is called a cluster point of a
sequence (S,),c, Of subsets of X if every neighborhood of x
intersects Sn for infinitely many n € w.

Lemma (4.1.8)[4]: Let K be a compact Hausdorff space. Assume that
there exist a sequence (F,) ¢, Of pairwise disjoint closed subsets of K
and a closed subset F of K satisfying the following conditions:

(a) F admits an extension operator in K;

(b) every cluster point of (E,),cpiSinFand E, NF = @, foralln €
W,

(c) there exists a family (fq ¥na) where (fna¥na) .. is a

new,aec’ aEc
weak*-null biorthogonal system in C(F,) foreachn € w and
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sUP |[fuell < +oo, sup [lynell < +o.
new,a€c Nnew,a€c

Then K satisfies property(+) .

Proof. From (b) and the fact that the F, are pairwise disjoint it

follows that (1) holds. Let (Up)new: (V)new: and (frq) be as in

NneEw,a€c

the proof of Lemma (4.1.6); we assume also that V,, nF = @, for
alln € w. Let #,, € M(K) be the extension of y, , € M(F,) that
vanishes identically outside of F,.

We have that (f, 4, 7na) is a bounded biorthogonal system in

NneEw,a€c

C(K) and that(?nﬂ)aa is weak*-null for each n, though it is not true

in general that the entire family (Vn,a)nEw Cis weak*-null. In order

ae
to take care of this problem, let P : C(K) — C(K|F) be a bounded
projection and set #, , = #,4° P. Since all “fn,a are in C(K|F), we

have that (f,4 7ne) is biorthogonal. To prove that

new,a€c

() ey ace 18 Weak*-null, note that (b) implies that Nim \fle |l =

0, forall f € C(K|F).

Corollary (4.1.9)[4]: Let K be a compact Hausdorff space. If C(K)
admits a bounded weak*-null biorthogonal system of cardinality c,
then the space [0,w] x K satisfies property (*). In particular,L x K
satisfies property (*) for every compact Hausdorff space L containing
a nontrivial convergent sequence.

Corollary (4.1.10)[4]: The spaces [0,w] x [0,c]and 2°¢ satisfy
property (). In particular, a product of at least ¢ compact Hausdorff

spaces with more than one point satisfies property (*).

Proof. The family ()([Oa],da — 6a+1) is a bounded weak*-null
' aec

biorthogonal system in C([0,c]), where §, € M([O, c]) denotes the

probability measure with support {a}. It follows from Corollary
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(4.1.9) that [0, w] x [0, c] satisfies property (). To see that 2¢ also
does, note that the map [0,c] 3 a » y, € 2° embeds [0,c] into 2¢, so
that 2¢ = 2° x 2¢ contains a homeomorphic copy of [0, w] % [O,c].
Recall that a projectional resolution of the identity (PRI) of a
Banach space X is a family (P,)<a<dens(x) Of projection operators
P,: X — X satisfying the following conditions:
(i) Pa= 1,forw < a < dens(X);
(if) Pgens(x) IS the identity of X;
(iii) P[X]c PglXland Ker(Pg) c Ker(B,), for w < a < B <
dens(X);

(iv) B, (x) = Ein Pp(x) forallx € X,ifw <a < dens(X) is alimit
a

ordinal;
(V) dens(P,[X]) < |a],forw < a < dens(X).

We call the PRI strictly increasing if B,[X] is a proper subspace of
PplX], forw < a <p < dens(X).
Corollary (4.1.11)[4]: Let K and L be compact Hausdorff spaces such
that L contains a nontrivial convergent sequence and w(K) = c. If
C(K) admits a strictly increasing PRI, then the space L x K satisfies
property (*).
Proof. This follows from Corollary (4.1.9) by observing that if a
Banach space X admits a strictly increasing PRI, then X admits a

weak*-null biorthogonal system (x4, Va)w<a<dens(x) With |lxq|l =

1and |ly,ll < 2, for all a. Namely, pick a unit vector x, in P,..[X] N

Ker(R,) and sety, = ¢, ° (Py+1— P,), Where ¢, € X is a norm-
one functional satisfying ¢,(x,) = 1.
Let us recall some standard definitions. Given an index set I, we

write 2(I) = {x € R’: suppx is countable}, where the support
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suppx of x is defined by suppx = {i € I : x; # 0}. Given a compact
Hausdorff space K, we call A a X -subset of K if there exist an index set
I and a continuous injection ¢ : K —» R! such that A = ¢ 1[Z(])].
The space K is called a Valdivia compactum if it admits a dense Z-
subset and it is called a Corson compactum if K is a Z-subset of itself.
We dedicated to the proof of the following result.
Lemma (4.1.12)[4]: Let K be a compact Hausdorff space and F be a
closed non- open G& subset of K. Then there exists a sequence (F)new
of nonempty pairwise disjoint regular closed subsets of K such that
condition (b) in the statement of Lemma (4.1.12) holds.
Proof. We can write F = N,¢, V,, with each ¥}, open in K and V,,,
properly contained in V. Set U,, = V,,\V,,,,, so that all cluster points
of (Uy)qeo are in F. To conclude the proof, let £, be a nonempty
regular closed set contained inU,,.
Once we get the closed sets (F,)ne, from Lemma (4.1.12). First, we
need an assumption ensuring that w(F,) = c, for all n. To this aim,
given a point x of a topological space y, we define the weight of x in y
by:

w(x,X)=min{fw (V) : V neighborhood of x in x}.
Recall that if K is a Valdivia compact space, then C(K) admits a PRI .
Moreover, a trivial adaptation of the proof shows in fact that C (K)
admits a strictly increasing PRI. Thus, by the argument in the proof of
Corollary (4.1.11), C(K) admits a weak*-null biorthogonal system
(fo:Yo)w < a <w(K) such that f, < 1 and y, < 2, for all a. The
following result is now immediately obtained.
Corollary (4.1.13)[4]: Let K be a Valdivia compact space such that

w(x,K) = c, for all x € K. Assume that there exists a closed non-
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open Gg subset F admitting an extension operator in K. Then K satisfies
property (x).

Assuming that K has ccc, the next lemma allows us to reduce
the proof of Theorem (4.1.15) to the case when w(x,K) = c, for all
x € K.

Lemma (4.1.14)[4]: Let K be a ccc Valdivia compact space and set:
H={x¢€K: w(lxK) = c}.

Then:

@H = ¢, ifw(K) = c

(b) w(K \int(H)) < ¢, where int(H)denotes the interior of H;

(c) H is aregular closed subset of K;

(d) w(x,H) = c,forallx € H.

Proof. If H = @, then K can be covered by a finite number of open

sets with weight less than c, so that w(K) < c. This proves (a). To

prove (b), let (U;);¢; be maximal among antichains of open subsets of

K with weight less than c. Since | is countable and c¢ has uncountable

cofinality, we have that U = U;¢; U; has weight less than c. From the

maximality of(U,);¢,, it follows that K\ H c U; then K \ int(H) =

K\ H c U.To conclude the proof of (b), let us show that w(U) <

c. Let A be a dense Z-subset of K and let D be a dense subset of A N

U with |D| < w(U). Then Dis homeomorphic to a subspace of

R“(U), so that w(U) = w(D) < w(U) < c. To prove (c), note

that H is clearly closed; moreover, by (b), the open set K\int(H) has

weight less than ¢ and hence it is contained in K\H. Finally, to prove

(d), let V be a closed neighborhood in K of some x € H. By (b), we

have w(V \ H) < c. Recall that if a compact Hausdorff space is the

union of not more than k subsets of weight not greater than k, then

the weight of the space is not greater than x. Since w (V) = c, it
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follows from such result that «w(V n H) = c.

Theorem (4.1.15) [4]: If K is a Corson compact space with w(K) =
c, then Ext(C(K),co,) = 0. In particular, under CH, we have
Ext(C(K),cy) = 0 for any nonmetrizable Corson compact space K.
The fact that Ext(C(K), c,) # 0 for a Valdivia compact space K which
does not have ccc is already known . Our strategy for the proof of
Theorem (4.1.15) is to use Lemma (4.1.14) to show that if K is a
Corson compact space with w(K) = c¢ having ccc, then K satisfies
property (x). We start with a lemma that will be used as a tool for
verifying the assumptions. Recall that a closed subset of a topological
space is called regular if it is the closure of an open set (equivalently,
if it is the closure of its own interior). Obviously, a closed subset of a
Corson compact space is again Corson and a regular closed subset of
a Valdivia compact space is again Valdivia.

Proof: By Lemma (4.1.14), it suffices to prove that if K is a nonempty
Corson compact space such that w(x,K) = c for all x € K, then K
satisfies property (x). Since a nonempty Corson compact space K
admits a G5 point , this fact follows from Corollary (4.1.14) with F =
{x}.

In this section we prove that Ext(C(K),cy) # O for certain
classes of nonmetrizable Valdivia compact spaces K and we propose
a strategy for dealing with the general problem. First, let us state
some results which are immediate consequences of what we have
done so far.

Proposition (4.1.16)[4]: If K is a Valdivia compact space with
w(K) = candLisacompact Hausdorff space containing a nontrivial

convergent sequence, then L x K satisfies property (x).
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Proof. As we have observed, if K is a Valdivia compact space, then
C(K) admits a strictly increasing PRI. The conclusion follows from
Corollary (4.1.13).

Proposition (4.1.17)[4]: Let K be a Valdivia compact space admitting
a Gg point x with w(x,K) = c. Then Ext(C(K),c,) # 0 and, if K has
cce, then K satisfies property ().

Proof. As mentioned before, the non-ccc case is already known.
Assuming that K has ccc, define H as in Lemma (4.1.14) and conclude
that H satisfies property (*) using Corollary (4.1.18) with F = {x}.
Corollary (4.1.18)[4]: Let K be a Valdivia compact space with
w(K) = c¢ admitting a dense X-subset A such that K \ A is of first
category. Then Ext(C(K),c,) # 0 and, if K has ccc, then K satisfies
property ().

Proof. K has a dense subset of G5 points. Assuming that K has ccc and
defining H as in Lemma (4.1.14), we obtain that H contains a G5 point
of K, which implies that K satisfies the assumptions of Proposition
(4.1.17).

Now we investigate conditions under which a Valdivia compact
space K contains a homeomorphic copy of [0, w] x [0, c]. Given an
index set | and a subset J of I, we denote by r; : R' — R’ the map
defined by setting r;(x)|; = x|;and r;(x)|n; = O, for all x € RI.
Givena subset K of RI, we say that ] < [ is K-good if r; [K] c K.Itis
proven that if K is a compact subset of Rl and £(I) n K is dense in K,
then every infinite subset J of I is contained in a K-good set /' with
Ul = Ul
Proposition (4.1.19) [4]: Let K be a Valdivia compact space
admitting a dense X-subset A such that some point of K\A is the limit of

a nontrivial sequence in K. Then K contains a homeomorphic copy of
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[0, w] % [0, w1]. In particular, assuming CH, we have that K satisfies
property ().
Proof. We can obviously assume that K is a compact subset of some
Rfand that A = X(I) n K. Since A is sequentially closed, our
hypothesis implies that there exists a continuous injective map
[O,w] 2 n » x,, € K\A. Let ] be a countable subset of | such
that x,|, =x,|;, for all n,m € [0,w] with n = m. Using and
transfinite recursion, one easily obtains a family (/) <., of K-good
subsets of | satisfying the following conditions:
() Jais countable, for a<wl;
(i) Jc Jo;
(iii) Jo € Jpfor0 < a < B < wy;
(iv)  Jo = Upenlp ,forlimit @ € [0, w,];

(v) for all n € [0,w], the map[0,w,]2 @ ~ J, Nsupp x,, is

injective.
Given these conditions, it is readily checked that the map

[0, w] % [0,w4] 2 (@) » 17, (x,) EK

is continuous and injective.

We observe that the validity of the following conjecture would
imply, under CH, that Ext(C(K),c,) # 0 for any nonmetrizable
Valdivia compact space K.

Conjecture. If K is a nonempty Valdivia compact space having ccc,
then either K has a Gg point or K admits a nontrivial convergent
sequence in the complement of a dense X-subset.

To see that the conjecture implies the desired result, use
Lemma (4.1.14) and Propositions (4.1.17) and (4.1.19), keeping in

mind that a regular closed subset of a ccc space has ccc as well. The
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conjecture remains open, but in what follows we present an example
showing that it is false if the assumption that K has ccc is removed.

Recall that a tree is a partially ordered set (T, <) such that, for
allt € T ,theset (,t) = {s € T: s <t}iswell-ordered. We define
a compact Hausdorff space from a tree T by considering the subspace
P(T) of 27 consisting of all characteristic functions of paths of T; by a
path of T we mean a totally ordered subset A of T such that (-, t) c
A, forallt € A. Itis easy to see that P(T) is closed in 27 ; we call it
the path space of T.

Denote by S(w,) the set of countable successor ordinals and
consider the tree = U,¢g(,,,) @1 . partially ordered by inclusion. The
path space P(T) is the image of the injective map A 3 1 » y,) €
2" ,where A = Ugep, wfand A1) = {t € T: t c A},
Proposition (4.1.20)[4]: If the tree T is defined as above, then its path
space P(T) is a compact subspace of RT satisfying the following
conditions:

(1)) P(T) n 2(T) isdensein P(T), so that P(T) is Valdivia;

(ii) P(T) has no Gg points;

(iii) no point of P(T)\X(T) is the limit of a nontrivial sequence in P(T).
Proof. To prove (i), note that y,) = ali<r21)(A(,1|a) for all 1 € w{‘“.
Let us prove (ii). Since P(T) is Valdivia, every Gg point of P(T) must
be in 2(T), i.e., it must be of the form y,;), with1 € wf , a < w;. To
see that y 4y cannot be a G5 point of P(T), it suffices to check that for

any countable subset E of T, there exists u € A,p = 4, such that

Xa and x4, are identical on E. To this aim, simply take p = AU
{(a, )}, with g € w; \{t(a) : t € Eand a € dom(t)}. Finally, to

prove (iii), let ()((,111),4)1121 be a sequence of pairwise distinct
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elements of P(T) converging to some € € P(T) and note that the
support of e must be contained in the countable set U, (4(4,;) N
A1) .

It is easy to see that, for T defined as above, the space P(T)
does not have ccc. Namely, setting U; = {e € P(T) : €(t) = 1} for
t € T, we have that U; is a nonempty open subset of P(T) and that

Usn Us = @,whent,s € T areincomparable.
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List of Symbols

Symbol page
min : minimum 1
max : maximum 1
conv: convex 3
inf : infimum 6
L. : Lebesque space 6
L, : Hilbert space 7
@ : Orthogonal sum 17
diag: diagonal 19
dist : distant 23
sup : supermum 35
ext: extreme o4
str: strongly 54
WCG: weakly compactly generated 55
Supp: support 56
sgn: signal 59
WLD: weakly Lindelof determined 68
WOT: Weak operator topology 71
*SOT: Strong operator topology 71
£% : Hibber space 84
ccc: chain condition 86
CH: confinuum hypothesis 86
debs: dense 93
Ker: kernel 93
PRT: projectional resolution of the identity 93
int: interior 95
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