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Abstract

The two-dimensional an incompressible rotating viscous fluid flow over unsteady

stretching surface is investigated. Using the boundary layer approximation, the two-

dimensional axial and angular momentum equations are transferred into highly non-

linear partial differential equations form and solved numerically using the spectral

local linearisation method. The effects of rotating coefficient on the fluid properties

are determined and shown graphically and in tabular form.
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Chapter 1

Introduction

The unsteady boundary layer flow over a moving surface has been an

active area of investigation for along time due its wide range of applica-

tions in industrial processes such as the cooling of an infinite metallic

plate in a cooling bath, the aerodynamic extrusion of plastic sheets,

boundary layer along the material handling conveyers, the boundary

layer along a liquid film and condensation processes. The quality of

the final product depends on the skin friction coefficient and the rate

of heat transfer. The most earliest studies in the unsteady boundary

layer flow was curried out by Sakiadis [1, 2]. Later Cranke [3] studied

the problem in two-dimensional for the elastic flat plate. Studies have

been carried out for the case of the axisymmetric and three-dimensional

flow by Brady and Acrivos [4], and Wang [5]. Investigations by, among

others, Afzal [6], Prasad et al. [7], Abel and Mahesha [8], Abel et al.

[9], Bataller [10], have also provided examples of various aspects of this

important field.

Rotating effect on the unsteady flow and the surface included in many
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applications such as chemical and geophysical fluid dynamics and me-

chanical nuclear engineering. The problem of unsteady rotating flow

of incompressible, viscous fluid past an infinite porous plate was inves-

tigated by Soundalgekar [11] using the Fourier series. The boundary

layer flow problem formed in a rotating fluid by oscillating flow over an

infinite half-plate has been examined Bergstrom [12]. Abbas et al. [13]

studied the unsteady boundary layer MHD flow and heat transfer on

a stretching continuous sheet in a viscous incompressible rotating fluid

numerically using the Keller-box method. Nazar et al. [14] investigated

unsteady flow due to the impulsive starting from rest of a stretching

surface in a viscous and incompressible rotating fluid. Zheng et al.

[15] studied the unsteady rotating flow of a generalized Maxwell fluid

with fractional derivative model between two infinite straight circular

cylinders. Using the shooting method Fang [16] studied the problem of

the laminar unsteady flow over a stretchable rotating disk with decel-

eration is investigated. Rashad [17] investigated the unsteady magne-

tohydrodynamics boundary-layer flow and heat transfer for a viscous

laminar incompressible electrically conducting and rotating fluid due

to a stretching surface embedded in a saturated porous medium with

a temperature-dependent viscosity in the presence of a magnetic field

and thermal radiation effects. Nageeb et al. [18] used the Runge-Kutta

method based on shooting technique to investigate the unsteady MHD

flow and heat transfer of a couple stress fluid over a rotating disk. For

the case in which steady flow rotating flow involve the power-law, very

recently, Hajmohammadi et al. [19] developed an analytical solution for

two-phase flow betwen two rotating cylinders filed with power law liq-

uid and a micro layer of gas. Moreover Hajmohammadi and Nourazar

[20] the problem of heat transfer repercussions thin gas layer in micro

cylindrical Couette flows involving power-law liquids.
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Unsteady flows are mostly defined or modeled by systems of nonlinear

PDEs which more difficult to solve than steady flows problems which

are often simplified into system nonlinear ODEs using the so-called sim-

ilarity transformations (see Motsa et al. [21]). Finding solutions of the

PDEs governing the fluid model plays a crucial role in understanding

the behavior of this model. Mostly, these PDEs are highly nonlinear

and not easy to find exact solution, hence various analytical and nu-

merical methods have been employed to approximate the solutions of

these problems such as homotopy analysis method, spectral method,

Keller box method, finite difference method, finite element and finite

volume methods. Spectral methods are generally the most accurate

through all these method for problems with smooth solutions. Based

on spectral method Motsa et al. [22] established the so called spectral

relaxation method (SRM) to solve nonlinear differential equations. The

method has been used in the solution of PDEs by Motsa et al.[21] and

ODEs for example the chaotic and hyper-chaotic systems [23, 24]. The

SRM is based on simple decoupling and rearrangement of the governing

nonlinear equations in a Gauss-Seidel manner. The resulting sequence

of equations are integrated using the Chebyshev spectral collocation

method.

The aim of this work is to investigate the problem of an unsteady flow

over stretching surface in a rotating fluid, which has been introduced

by Nazar et al. [25]
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Chapter 2

Unsteady flow over stretching

surface in a rotating fluid

Consider the two dimensional stretching of a surface in a rotating fluid.

At time t = 0, the surface at z = 0 impulsively stretched in the x

direction in a rotating fluid. Due to the Coriolis force, the fluid mo-

tion is three-dimensional. Let (u, v, w) be the velocity components in

the direction of the Cartesian axes (x, y, z), respectively, with the axes

rotating at an angular velocity Ω in the z direction. The unsteady

Navier-Stokes equations governing the flow are

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− 2Ωv = −1

ρ

∂p

∂x
+ νO2u, (2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
− 2Ωu = −1

ρ

∂p

∂y
+ νO2v, (2.3)

∂w

∂t
+ u

∂w

∂x
+ ν

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ νO2w, (2.4)
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where p is the pressure, ρ is the density, ν is the kinematic viscosity and

O2 denotes the three-dimensional Laplacian. Let the surface be impul-

sively stretched in the x direction such that the initial and boundary

condition

t < 0 : u = v = w = 0 for any x, y, z,

t ≥ 0 : u = ax, v = 0, w = 0 at z = 0, (2.5)

u −→ 0, v −→ 0, w −→ 0 at z −→∞,

where a > 0 has the dimension of [t−1] and represents the stretching

rate. We now introduce the following similarity variables

η = (a/ν)1/2ξ−1/2z, u = axf ′(ξ, η), v = axh(ξ, η),

w = −(aν)1/2ξ1/2f(ξ, η), ξ = 1− exp−τ , τ = at. (2.6)

Substituting Eqn(2.6) into the governing equations (2.2)-(2.4), yield to

f ′′′ +
1

2
(1− ξ)ηf ′′ + ξ(ff ′′ − f ′2 + 2λh) = ξ(1− ξ)

∂f ′

∂ξ
, (2.7)

h′′ +
1

2
(1− ξ)ηh′ + ξ(fh′ − f ′h− 2λf ′) = ξ(1− ξ)

∂h

∂ξ
, (2.8)

subject to the boundary conditions

f(ξ, 0) = 0, f ′(ξ, 0) = 1, h(ξ, 0) = 0, f ′(ξ,∞) = 0, h(ξ,∞) = 0,

(2.9)

where λ = Ω/a.

The non-dimensional skin friction in both the x and y directions are
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defined in the form

Cx
f =

τx
w

ρ(ax)2 , Cy
f =

τ y
w

ρ(ax)2 , (2.10)

where, the wall shear stresses τx
w, τ y

w, respectively, are given by

τx
w = µ

(
∂u

∂z

)

z=0
, τ y

w = µ

(
∂v

∂z

)

z=0
. (2.11)

By substituting (2.11) into Eqn (2.10), we obtain

Cx
f Re1/2

x = ξ−1/2f ′′(ξ, 0), Cy
fRe1/2

x = ξ−1/2h′(ξ, 0), (2.12)

where Rex = (ax)x/ν is the local Reynolds number.

2.1 Initial solution at ξ = 0

For ξ = 0 (initial unsteady flow), corresponding to τ = 0, Eqn.(2.7)

can be written in the form

f ′′′ +
1

2
ηf ′′ = 0, (2.13)

subject to the boundary conditions

f(0, 0) = 0, f ′(0, 0) = 1, f ′(0,∞) = 0. (2.14)

Hence, solution of this equation takes the form

f(η) = ηerfc(η/2) +
2√
π

(1− e−η2/4), (2.15)
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with f ′(η) = erfc(η/2), where erfc(η/2) is the complementary error

function defined as

erfc(η/2) =
2√
π

∫ ∞

η
2

e−s2

ds, (2.16)
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Chapter 3

The Spectral Local Linearisation

3.1 General governing equation system

Consider a system of m nonlinear ordinary differential equations in m

unknowns functions zi(η) i = 1, 2, 3, ....., m where η is the independent

variable. The system can be written as a sum of it’s linear L and

nonlinear components N as

L [z1 (η) , z2 (η) , ...., zm (η)]+N [z1(η), z2 (η) , ...., zm(η)] = H (η) , (η) ∈ (a, b),

(3.1)

subject to the boundary conditions

Ai [z1 (a) , z1 (a) , ...., zm (a)] = Ka,i, Bi [z1 (b) , z2 (b) , ...., zm(b)] = Kb,i,

(3.2)

where Ai and Bi are linear operators and Ka,i and Kb,i are constants for

i = 1, 2, ...., m. Define the vector Zi to be the vector of the derivatives
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of the variable zi with respect to the dependent variable η, that is

Zi =
[
z

(0)
i , z

(1)
i , ..., z

(ni)
i

]
, (3.3)

where z
(0)
i = zi, z

(p)
i is the pth derivative of zi with respect to η and

ni (i = 1, 2, .., m) is the highest derivative order of the variable zi ap-

pearing in the system of equations. In addition, we define Li and Ni

to be the linear and nonlinear operators, respectively, that operate on

the Zi for i = 1, 2, .., m, with these definitions,equation (3.1) and (3.2)

can be written as

Li [Z1, Z2, ...Zm] + Ni [Z1, Z2, ...Zm] =
m∑

j=1

ni∑
p=0

α
[p]
i,jz

(p)
j + Ni [Z1, Z2, ....Zm] = Hi,(3.4)

where α
[p]
i,j are the constant coefficient of z

(p)
j , the derivative of zj (j = 1, 2, ...m)

that appears in the ith equation for i = 1, 2, ..., m. Noting that, for each

variable zi in the derivatives in the boundary conditions can at most be

one less than the highest derivative of zi in the governing system (3.1)

we define the vector Z̃i to be the vector of the derivatives of the variable

zi with respect to the dependent variable η from 0 up to (ni − 1), that

is

Z̃i =
[
z

(0)
i , z

(1)
i , ..., z

(ni−1)
i

]
, (3.5)

The boundary conditions(3.2) can be written as

Aν

[
Z̃1(a), Z̃2(a), ..., Z̃m(a)

]
=

m∑

j=1

nj−1∑
p=0

β
[p]
ν,jz

(p)
j (a) = Ka,ν, ν = 1, 2, ..., ma,

(3.6)
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Bσ

[
Z̃1(b), Z̃2(b), ..., Z̃m(b)

]
=

m∑
j=1

nj−1∑
p=0

γ
[p]
σ,jz

(p)
j (b) = Kb,σ, σ = 1, 2, ..., mb,

(3.7)

where β
[p]
ν,j and γ

[p]
σ,j are the constant coefficients of z

(p)
j in the boundary

conditions, and ma, mb, are the total number of prescribed boundary

condition, at x = a and x = b respectively. We remark that the sum

ma + mb is equal to the sum of the highest orders of the derivatives

corresponding to the dependent variable zi,that is

ma + mb =
m∑

i=1

ni, (3.8)

3.2 Spectral Local linearisation Method (SLLM)

Let us consider a system of m nonlinear ordinary differential equations

in m unknowns functions zi(η) i = 1, 2, 3, ....., m where η is the inde-

pendent variable. The system can be written as a sum of it’s linear L

and nonlinear components N as

L [z1 (η) , z2 (η) , ...., zm (η)] + N [z1(η), z2 (η) , ...., zm(η)] = H (η) , η ∈ [a, b], (3.9)

To develop the iteration scheme, we apply local linearisation of Ni

about Zi,r (the previous iteration) to the ith non-linear equation as-

suming that all other Zk,r(k 6= i) are known. Thus, at the ith equation,

Ni is linearised as follows

Ni[Z1, Z2, ..., Zm] = Ni[Z1,r, ..., Zm,r] +
∂Ni

∂Zi
[Z1,r, Z2,r, ..., Zm,r](Zi,r+1 − Zi,r),(3.10)

Li[Z1,r+1, ..., Zm,r+1] +
∂Ni

∂Zi
[...]Zi,r+1 = Hi +

∂Ni

∂Zi
[...]Zi,r −Ni[Z1,r, ..., Zm,r],(3.11)
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where [...] denotes [Z1,r, Z2,r, ..., Zm,r] and Zi,r+1 and Zi,r are the approx-

imations of Zi at the current and the previous iteration, respectively.

Thus, starting from an initial approximation Z1,0, Z2,0, ..., Zm,0, the pro-

posed iterative scheme (3.9) is then solved as a loop until the system

converges at a consistent solution for all the variables. To solve the

iteration scheme (3.9), it is convenient to use the Chebyshev pseudo-

spectral method as in previous section. For this reason the proposed

method is referred to as the spectral local linearization iteration method

(SLLM). Before applying the spectral method, it is convenient to trans-

form the domain on which the governing equation is defined to the in-

terval [−1, 1] on which the spectral method can be implemented. We

use the transformation η = (b− a)(t+1)/2 to map the interval [a, b] to

[−1, 1]. The basic idea behind the spectral collocation method is the

introduction of a differentiation matrix D which is used to approximate

the derivatives of the unknown variables zi(η) at the collocation points

as the matrix vector product

dZi

dη
=

m∑

j=1

N̂∑

k=0

DlkZi(tk) = DZi, l = 0, 1, ..., N̂ (3.12)

where N̂ + 1 is the number of collocation points (grid points), D =

2D/(b − a), and Z = [z(t0), z(t1), ..., z(tN)]T is the vector function at

the collocation points. Higher order derivatives are obtained as powers

of D, that is

Z
(p)
j = DpZj. (3.13)
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Chapter 4

Numerical Solution

In this part we present the numerical method used to solve the govern-

ing nonlinear system of PDEs (2.7)− (2.8) along with boundary condi-

tions (2.9). For the implementation of the spectral collocation method,

at a later stage, it is convenient to reduce the order of equation (2.7)

from three to two. To this end, we set f ′ = u, so that equation (2.7)

becomes

u′′ +
1

2
η(1− ξ)u′ + ξ(fu′ − u2 + 2λh) = ξ(1− ξ)

∂u

∂ξ
, (4.1)

f ′ = u. (4.2)

The spectral local linearisation method(SLLM) approach is used to

decouple the equations leading to a linear system which is subsequently

solved using the Chebyshev spectral collocation method. The basic

idea behind the SLLM stems from the combination of the Gauss-Seidel

method for decoupling equations and the Newton-Raphson based quasi-

12



linearisation. In this regard, linearisation in the momentum equation

(4.1) is applied only in terms involving u(η) and its derivatives. All

other terms are assumed to be known from previous iterations. The

terms involving h(η) are assumed to be known from previous iteration

while the updated solution for u(η) at the current iteration is used.

Similarly, in Eqn (2.8), only terms in h(η) are linearised while terms in

u(η) are assumed to be now known at the current iteration (denoted by

(r + 1)). Thus applying the LLM on Eqns (2.9), (4.1) and (4.2) gives

u′′r+1 + a1,ru
′
r+1 + a2,rur+1 = a3,r + ξ(1− ξ)

∂ur+1

∂ξ
, (4.3)

f ′r+1 = ur, (4.4)

h′′r+1 + b1,rh
′
r+1 + b2,rhr+1 = b3,r + ξ(1− ξ)

∂hr+1

∂ξ
, (4.5)

where the primes denote partial derivatives with respect to η. The

boundary conditions are given by

fr+1(η, 0) = 0, ur+1(η, 0) = 1, hr+1(η, 0) = 0,

ur+1(η,∞) = 0, hr+1(η,∞) = 0. (4.6)

The coefficients in (4.4) and (4.5) are defined as

a1,r =
1

2
(1− ξ)η + ξfr, a2,r = −2ξur,

a3,r = −ξu2
r − 2λξhr,

b1,r =
1

2
(1− ξ)η + ξfr, b2,r = −ξur, b3,r = 2λξur. (4.7)

To solve the linearised system of (4.3)−(4.5) we employ the Chebyshev

spectral collocation method to discretize in the η- direction and use an

implicit finite difference method in the ξ-direction. To this end, we
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define the grid points on (η, ξ) as

ηj = cos
πj

Nη
, ξn = n∆ξ, (4.8)

j = 0, 1, ....., Nη; n = 0, 1, ....., Nξ,

where Nη, Nξ are the total number of grid points in the η- and ξ-

direction, respectively, and ∆ξ is the spacing in the ξ-direction. The

finite difference scheme is applied with centering about a midpoint

halfway between ξn+1 and ξn. This midpoint is defined as ξn+ 1
2 =

(ξn+1 + ξn)/2. The derivatives with respect with η are discretized in

terms of the Chebyshev differentiation matrices. Applying the center-

ing about ξn+ 1
2 to any function, say f(η, ξ) and its associated derivative,

we obtain

f(ηj, ξ
n+1/2) = f

n+1/2
j =

fn+1
j + fn

j

2
, (4.9)

(
∂f

∂ξ

)n+1/2

=
fn+1

j − fn
j

∆ξ
.

In applying the Chebyshev spectral collocation method, the continu-

ous derivatives in the unknown functions are approximated by matrix-

vector products of the so-called differentiation matrices at the col-

location points. Before the spectral method is applied, the domain

η ∈ [0, η∞] is transformed to the domain Y ∈ [−1, 1] by using the map-

ping η = η∞(Y + 1)/2. The basic idea behind the spectral collocation

method is the introduction of a differentiation matrix D which is used

to approximate the derivatives of the unknown variables f, u and h, at

14



the collocation points Yj (j = 0, 1, ...., Nη).

∂f

∂η

∣∣∣∣
η=ηj

=

Nη∑

k=0

Djkf(Yk, ξ) = DF, j = 0, 1, ...., Nη, (4.10)

where Nη + 1 is the number of collocation points, D = 2D/η∞, where

the matrix D is of size (Nη + 1)(Nη + 1) and its entries are defined as

Djk =
cj(−1)j+k

ck(Yj − Yk)
, j 6= k; j, k = 0, 1, 2, 3, ..., Nη,

Dkk = − Yk

2(1− Y 2
k )

, k = 1, 2, 3, ..., Nη − 1,

D00 =
2N 2

η + 1

6
= −DNηNη

,

with

ck =





2, k = 0, Nη;

1, −1 ≤ k ≤ Nη − 1.
(4.11)

which

F = [f(Y0, ξ), f(Y1, ξ), ...., f(YNη
, ξ)]T ,

U = [u(Y0, ξ), u(Y1, ξ), ...., u(YNη
, ξ)]T ,

H = [h(Y0, ξ), h(Y1, ξ), ...., h(YNη
, ξ)]T ,

are the vector functions at the collocation points. In general, a deriva-

tive of orders for the function f(η) can be transformed as

f (s)(η) −→ DsF, u(s)(η) −→ DsU, h(s)(η) −→ DsH, (4.12)
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where s is the order of the derivative. Thus, applying the spectral local

linearisation method in η and finite difference method in ξ gives

A1U
n+1
r+1 = B1U

n
r+1 + K1,

A2Fr+1 = K2, (4.13)

A3H
n+1
r+1 = B3H

n
r+1 + K3,

where

A1 =
1

2

(
D2 + diag[a1,r]D + diag[a2,r]I

)− ξ(1− ξ)

4ξ

B1 = −1

2

(
D2 + diag[a1,r]D + diag[a2,r]I

)− ξ(1− ξ)

4ξ
K1 = a1,r

A2 = D, K2 = ur

A3 =
1

2

(
D2 + diag[b1,r]D + diag[b2,r]I

)− ξ(1− ξ)

4ξ

B3 = −1

2

(
D2 + diag[b1,r]D + diag[b2,r]I

)− ξ(1− ξ)

4ξ
K3 = a1,r

with boundary conditions

ur+1(η0, ξ
n) = 0, ur+1(ηNeta, ξ

n) = 1,

fr+1(ηNη
, ξn) = 0,

hr+1(η0, ξ
n) = 0, hr+1(ηNη

, ξn) = 0,

In the above equations H, U and F correspond to the approximate

values of h(η, ξ), u(η, ξ) and f(η, ξ) at the collocation points. The ap-

proximate solutions for f and h are obtained by solving (4.13). The

convergence and stability of the iteration schemes are assessed by con-

16



sidering the norm of the difference in the values of the approximate

functions between two successive iterations. Thus, for each iteration

scheme, we define the following maximum error E at the (r + 1)th

iteration:

E = max(‖Fr+1 − Fr‖∞, ‖Hr+1 −Hr‖∞). (4.14)

The unknowns f and h were iteratively calculated, for a given number

of collocation points Nη, until the following criteria for convergence was

satisfied at iteration r :

E ≤ ε, (4.15)

where ε is the convergence tolerance level.
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Chapter 5

Results and Discussion

In this part we present the SLLM results for the solution of the gov-

erning equations(2.7) – (2.8). Numerical simulations were carried out

to obtain approximate numerical values of the quantities of physical in-

terest. In all the spectral method based numerical simulations a finite

computational domain of extent η∞ = 20 was chosen in the η−direction

with Nη = 60. Through numerical experimentation, the computation

of the value of any unknown, say F n+1
r+1 , at each time step is achieved

by iterating using the local linearization method using a known value

at the previous time step n as initial approximation. The iteration cal-

culations are carried until some desired tolerance level, ε, is attained.

In this study, the tolerance level was set to be ε = 10−8. The tolerance

level is defined as the maximum values of the infinity norm of the dif-

ference between the values of the calculated quantities and its first two

derivatives at successive iterations. For example, in calculating F n+1
r+1 ,

the tolerance level and convergence criteria is defined as

max{‖F n+1
r+1 −F n+1

r ‖∞, ‖Un+1
r+1 −Un+1

r ‖∞, ‖Hn+1
r+1 −Hn+1

r ‖∞} < ε. (5.1)
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Table 5.1: Values of −f ′′(0, ξ) and −h′(0, ξ) at different values of time ξ and λ

λ ξ f ′′(0, ξ) h′(0, ξ)

0.1 0.599346 0.331116

0.3 0.598355 0.976621

1 0.5 0.500012 1.604727

0.7 0.304455 2.229005

0.9 0.013901 2.864634

0.1 0.334264 1.673600

0.3 -1.683855 5.409250

5 0.5 -5.090392 10.176826

0.7 -9.269168 15.887446

0.9 -14.042088 22.458498

0.1 0.072655 2.367761

0.3 -3.692311 8.148140

7 0.5 -9.522775 15.873009

0.7 -16.631247 25.193909

0.9 -24.688053 35.974353

0.1 -0.472176 3.455217

0.3 -7.419078 12.912358

10 0.5 -17.651836 25.815203

0.7 -30.001110 41.553782

0.9 -43.935681 59.843950
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To obtain clear insights into the unsteadiness λ effects on the physics of
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Figure 5.1: velocity profile in ξ direction for different value of λ
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Figure 5.2: Velocity profiles for different values of λ

the problem, our approximate results for the axial velocity, angular ve-
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locity and skin friction are presented graphically and in tabular forms.

Table. The influence of λ on the fluid properties is give in Table 5.1

and Fig. 5.1 - 5.8.

Table. 5.1 gives the approximate numerical values of both the skin fric-

tion f ′′(0, ξ) and h′(0, ξ) for various values of λ. It is evident that as λ

increases, the axial momentum boundary layer thickness decreases fol-

lowed by a reduction in f ′′(0, ξ), while the opposite behavior obtained

in the case of h′(0, ξ).

Fig. 5.1 and Fig. 5.2 show the variation of the axial velocity compo-

nents f(η, ξ) and f ′(η, ξ), respectively, for different values of λ. We

observe that an increase in the values of λ leads to monotonic decrease

in f(η, ξ), while f ′(η, ξ) an increase in λ causing increasing in f ′(η, ξ)

up to a certain critical point and then an exponential decay in the ve-

locity profile obtained.
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Figure 5.3: Velocity profiles for different values of λ

Fig. 5.3 illustrates the effects of λ on the angular velocity of the fluid
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h(η, ξ). We observe that h(η, ξ) increases as λ increases.

Fig. 5.4 and Fig. 5.5 depict the variation of the skin friction coefficients

f ′′(0, ξ) and −h′(0, ξ) respectively for different values of the λ. It is ev-

ident that as λ increases, the boundary layer thickness increases, then

increase f ′′(0, ξ) and −h′(0, ξ). The axial and angular velocities vari-
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Figure 5.4: Skin friction variation for different values of λ

ation for different values of ξ are shown in Figs .5.6 - 5.8 respectively.

From these figures, we observed that the transition from the initial un-

steady state flow to the final steady state flow takes place smoothly

and without any singularity.
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Figure 5.5: Skin friction variation for different values of λ

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

η

f
(ξ
,
η
)

 

 

ξ = 0.1

ξ = 0.3

ξ = 0.5

ξ = 0.7

ξ = 0.9

Figure 5.6: velocity profile for different value of ξ
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Figure 5.7: Velocity profiles for different values of ξ when λ = 1
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Figure 5.8: Velocity profiles for different values of ξ when λ = 1
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Conclusion

In this thesis, we considered the spectral local linearisation method

approach for solving an coupled non-linear partial differential equation

system that governs two-dimensional an incompressible rotating viscous

fluid flow due to unsteady stretching surface. A considerable advantage

was found with the use of a transformed, finite time scale in which

τ = ∞ corresponds to ξ = 1, when the governing equation can be

solved by means of smooth transition from the small time solution to the

large time solution. The effect of the physical parameters λ on the flow

characteristics as well as the axial and angular skin friction coefficients

have been studied graphically and in tabular form. The most important

finding is that the transition from the initial unsteady state flow to the

final steady state flow takes place smoothly and without any singularity.
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