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Abstract 

 

    In this thesis we paid a tension  on two kind of fluid flow problems, the 

the non-Newtonian fluids flow include the Couette flow, Poiseuille flow, 

Couette Poiseuille flow, and the convection heat and mass transfer in 

non-Darcy porous medium. The highly nonlinear differential equations 

governing the fluid flow transferred into ordinary differential equations. 

Later the resulting equations solved numerically by using the spectral 

local linearization method (SLLM). The effects of the governing 

parameters such as Brinkman number, Nusselt number, Sherwood 

number, Lewis number, the buoyancy ratio, the pore diameter dependent 

Rayleigh number, and other parameters have been shown graphically.  
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Abstract (Arabic) 

 

النوع الأول تدفق الموائع غٌر .فً هذا البحث ركّزنا فً دراسة نوعٌن من مسائل تدفق المائع 

بواسوٌل، والنوع الثانً - تدفق كوٌت و تدفق بواسوٌل و تدفق كٌوت النٌوتونٌة وٌحتوي علً 

المعادلات التفاضلٌة . ظاهرة الحمل الحراري ونقل الكتلة فً وسط ذو مسامً غٌر دارسى

المعادلات الناتجة حلت . عالٌة اللاخطٌة تُحّكم بتدفق المائع المحّول إلً معادلات تفاضلٌة عادٌة

تأثٌرات المعاملات الحاكمة مثل رقم برٌنكمان، . عددٌاً بإستخدام طرٌقة الخطٌة المحلٌة الطٌفٌة

رقم نٌوسلت، رقم شورود، نسبة الطفو، رقم رٌالٌغ و رقم لوٌس توضُع عددٌاً فً صورة 

 . رسومات بٌانٌة
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Chapter 1 

 

Introduction 

The study of the phenomenon of thermal and solutal transport by fluid flow 

through porous media is of great interest. The flow phenomenon relatively 

complex rather than that of the pure thermal convection process. Heat and mass 

transfer processes in porous media are often encountered in the study of 

dynamics of hot and salty springs of a sea, and in the chemical industry, in 

reservoir engineering in connection with thermal recovery process. 

Underground spreading of chemical wastes and other pollutants, grain storage, 

evaporation cooling, and solidification are the few other application areas where 

the combined thermo-solutal natural convection in porous media are observed. 

Coupled heat and mass transfer in porous media has been analyzed in [5-8]. 

Cheng [8] presented a comprehensive review about heat transfer in geothermal 

systems. Plumb and Huenefeld [10] and  Nakayman et al. [11] used the 

Forchheimer extension to study the non-Darcy natural convection from the 

vertical wall. 

Study of the thermal dispersion effects become prevalent in the porous media 

flow region. The thermal and solutal dispersion effects become more important 

when the inertial effects are prevalent. Fried and Combarnous [12] proposed a 

linear  function to expressed the thermal dispersion. Also, a linear dispersion 

model takes the porosity of the porous medium into account is used for free 

convection in a horizontal layer heated from below was introduced by 

Georgiadis and Catton [13]. Cheng [14] and Plumb[15] gave another model for 

flow and heat transfer in porous media by taking thermal dispersion effects into 

consideration. An analysis of thermal dispersion effect on vertical plate natural 

convection in porous media is presented by Hong and Tien [16]. Lai and 

Kulacki [17] investigated thermal dispersion effect on non-Darcy convection 

from horizontal surface in saturated porous media. Effects of thermal dispersion 

and lateral mass flux on non-Darcy natural convection over a vertical flat plate 

in a fluid saturated porous medium were studied by Murthy and Singh [18]. 



2 
 

The complexity of the flow increases when higher order effects like  thermal 

and solutal dispersion are considered in the medium. Karimi-Fard et .[19] has 

been presented a numerical study of double-diffusive free convection heat and 

mass transfer in a square cavity filled with a porous medium. Began [20] has 

been analyzed the effect of solutal and thermal dispersion in Darcian porous 

medium. The double dispersion phenomenon in a free convection boundary 

layer adjacent to a vertical wall in Darcian porous medium, using scale analysis 

arguments, has been investigated byTelles and Trevisan [21]. Effects of double 

dispersin on mixed convection heat and mass transfer in non-Darcy porous 

medium has been investigated by Murthy [22]. 

The present investigation is devoted to study the combined effect of solutal and 

thermal dispersion on Forehheimer natural convection heat and mass transfer 

over a vertical flat plate in a fluid saturated porous medium. The Forehheimer 

flow model is considered and the porosity of the porous medium is assumed to 

be low, so that the boundary effects in the medium may be neglected. The heat 

and mass transfer in the boundary region has been analyzed for aiding and 

opposing buoyancies. The flow, temperature and concentration field in Darcy 

and non-Darcy porous media are observed to governed by complex interactions 

among the diffusion rate 𝐿𝑒, buoyancy ratio 𝑁, 𝑅𝑎d, the dispersion thermal and 

solutal diffusivity parameter. The wall temperature and the wall concentration 

distribution are assumed to be uniform.  
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Chapter 2 

 

 

Spectral Local Linearization Method (SLLM) 

 

To describe the spectral local linearization method .We are illustrating the 

behaviors and approach for this method through the following steps. 

Considering a system of 𝑚 non-linear ordinary differential equations in 𝑚 

unknown functions 𝑍𝑖(𝜂), 𝑖 = 1,2,… ,𝑚, where 𝜂 𝜖[𝑎, 𝑏] is the dependent 

variable. The system can be written in terms of 𝑍𝑖 as a sum of its linear (𝐿𝑖)and 

nonlinear components 𝑁𝑖 as  

𝐿𝑖[𝑍1, 𝑍2, … , 𝑍𝑚] + 𝑁𝑖[𝑍1, 𝑍2, … , 𝑍𝑚] = 0, 𝑖 = 1,… ,𝑚.      (2.1) 

To develop the iteration scheme, we apply local linearization of 𝑁𝑖 about 𝑍𝑖,𝑟 

(the previous iteration) to the 𝑖𝑡ℎ nonlinear equation assuming that all other 

𝑍𝑘,𝑟(𝑘 ≠ 𝑖) are known. Thus, at the 𝑖𝑡ℎ equation, 𝑁𝑖 is linearized as follows. 

𝑁𝑖[𝑍1, 𝑍2, … , 𝑍𝑚] = 

𝑁𝑖[𝑍1,𝑟 , 𝑍2,𝑟 , … , 𝑍𝑚,𝑟] +
𝜕𝑁𝑖

𝜕𝑍𝑖
[𝑍1,𝑟 , 𝑍2,𝑟 , … , 𝑍𝑚,𝑟](𝑍𝑖 − 𝑍𝑖,𝑟).   (2.2) 

Thus, at the current iteration with 𝑍𝑖 = 𝑍𝑖,𝑟+1,equation (2.1) becomes  

𝐿𝑖[𝑍1,𝑟+1, … , 𝑍𝑚,𝑟+1] +
𝜕𝑁𝑖

𝜕𝑧𝑖

[… ]𝑍𝑖,𝑟+1    

=
𝜕𝑁𝑖

𝜕𝑧𝑖

[… ]𝑍𝑖,𝑟 − 𝑁𝑖[𝑍1,𝑟 , 𝑍2,𝑟 , … , 𝑍𝑚,𝑟], (2.3) 

where[…] denotes [𝑍1,𝑟 , 𝑍2,𝑟 , … , 𝑍𝑚,𝑟] and 𝑍𝑖,𝑟+1 and 𝑍𝑖,𝑟 are the 

approximations of 𝑍𝑖 at the current and the previous iteration, respectively. To 

obtain a decoupled iteration scheme, we appeal to the Gauss-Seidel approach of 

decoupling linear algebraic systems in linear algebra applications. We therefore 
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arrange the equations in a particular order and solve them in a chronological 

order. In seeking the solution of 𝑍𝑖 in the current iteration level, 𝑍𝑖,𝑟+1,we use 

updated solutions of 𝑍𝑠(𝑠 < 𝑖) obtained as solutions of the previous (𝑖 =

1,2,… 𝑠)equations. Thus, for a system of 𝑚 equations, the local linearization 

iteration scheme becomes  

𝐿1[𝑍1,𝑟+1, 𝑍2,𝑟 … , 𝑍𝑚,𝑟] +
𝜕𝑁1

𝜕𝑧1

[… ]𝑍1,𝑟+1 =
𝜕𝑁1

𝜕𝑧1

[… ]𝑍1,𝑟 − 𝑁1[𝑍1,𝑟 , , … , 𝑍𝑚,𝑟], 

𝐿2[𝑍1,𝑟+1, 𝑍2,𝑟+1, 𝑍3,𝑟 … , 𝑍𝑚,𝑟] +
𝜕𝑁2

𝜕𝑧2

[… ]𝑍2,𝑟+1 

=
𝜕𝑁2

𝜕𝑧2

[… ]𝑍2,𝑟 − 𝑁2[𝑍1,𝑟+1, 𝑍2,𝑟 , … , 𝑍𝑚,𝑟], 

 

⋮ 

𝐿𝑚[𝑍1,𝑟+1, 𝑍2,𝑟+1 … , 𝑍𝑚,𝑟+1] +
𝜕𝑁𝑚

𝜕𝑧𝑚

[… ]𝑍𝑚,𝑟+1 

=
𝜕𝑁𝑚

𝜕𝑧𝑚

[… ]𝑍𝑚,𝑟 − 𝑁𝑚[𝑍1,𝑟+1, … , 𝑍𝑚−1,𝑟+1, 𝑍𝑚,𝑟], (2.4) 

where[… ] ≡ [𝑍1,𝑟+1, 𝑍2,𝑟+1 … , 𝑍𝑖−1,𝑟+1, 𝑍𝑖,𝑟 , … , 𝑍𝑚,𝑟] at the 𝑖th equation.Thus, 

starting from an initial approximation 𝑍1,0, 𝑍2,0, … , 𝑍𝑚,0, the proposed iterative 

scheme (2.4) is then solved as a loop until the system converges at a consistent 

solution for all the variables. To solve the iteration scheme (2.4), it is 

convenient to use the Chebychev-Pseudo spectral method. For this reason the 

proposed method is referred to as the spectral local linearization iteration 

method (SLLM. Spectral methods are now becoming the preferred tools for 

solving ordinary and partial differential equations because of their elegance and 

high accuracy in resolving problems with smooth functions.  

Before applying the spectral method, it is convenient to transform the domain 

on which the governing equation is defined to the interval [−1,1] on which the 

spectral method can be implemented. We use the transformation 𝜂 = (𝑏 −

𝑎)(𝜏 + 1)/2 to map the interval [𝑎, 𝑏] on  [−1,1]. The basic idea behind the 

spectral collocation method is the introduction of a differentiation matrix 
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𝐷 which is used to approximate the derivatives of the unknown variables 𝑍𝑖(𝜂) 

at the collocation points as the matrix vector product  

𝑑𝑍𝑖

𝑑𝜂
= ∑ 𝐷𝑙𝑘𝑧𝑖(𝜏𝑘) = 𝐃𝑍𝑖 ,

�̅�

𝑘=0

  𝑙 = 0,1,… , �̅�,                                    (2.5) 

where�̅� + 1 is the number of the collocation points (grid points),  

𝐃 = 2𝐷/(𝑏 − 𝑎), and 𝑍 = [𝑧(𝜏0), 𝑧(𝜏1),… , 𝑧(𝜏𝑁)]𝑇 is the vector function at 

the collocation points. Higher order derivatives are obtained as of  𝐷, that is  

𝑍𝑗
(𝑝) = 𝐃𝑝𝑍𝑗 ,                                                                                       (2.6) 

where 𝑝 is the order of the derivative. 

We can express equation (2.5) in a matrix form in following 

[

𝐷0,0 ⋯ 𝐷0,𝑁

⋮ ⋱ ⋮
𝐷𝑁,0 ⋯ 𝐷𝑁,𝑁

]

[
 
 
 
𝑍1(𝜏0)

𝑍2(𝜏1)
⋮

𝑍𝑚(𝜏𝑁)]
 
 
 
= [

R1,𝑟

R2,𝑟

⋮
R𝑚,𝑟

],                                           (2.7) 

And after apply Chebyshev pseudospectralmethod, notice that every interval 

[𝑎, 𝑏], to be transform to interval [−1,1] then we can write that in the form  

[

𝐷1,1 ⋯ 𝐷1,,𝑁+1

⋮ ⋱ ⋮
𝐷𝑁+1,1 ⋯ 𝐷𝑁+1,𝑁+1

]

[
 
 
 
 
𝑍𝑚(𝜏𝑁+1)

𝑍2(𝜏𝑁)

⋮
𝑍1(𝜏0) ]

 
 
 
 

= [

R1,𝑟

R2,𝑟

⋮
R𝑚,𝑟

],                             (2.8) 

where 𝑧𝑖(𝜏𝑘), R𝑖,𝑟 are vectors of size ( 𝑁 + 1) × 1 and 𝐷𝑖.𝑗 are (𝑁 + 1) × (𝑁 +

1) matrixes. 
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Chapter 3 

 

The Couette Flow 

 

𝟑. 𝟏 − Third Grade Fluid 

Third grade fluid is considered one of the subclasses of the non-Newtonian 

fluids and depends on the shear stress and shear rate. Refs [1-4]. 

In general the governing equations for conservation of mass, momentum and 

energy for an incompressible fluid in tensor notation which are given by Refs. 

[3-4] as follows: 

𝑢𝑗,𝑗 = 0,                                                                                           (3.1)  

𝜌 (
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
) =  𝜌𝑓 + 𝜏𝑖𝑗,𝑗 ,                                                         (3.2)  

𝜌𝑐𝑝 (
𝜕𝜃

𝜕𝑡
+ 𝑢𝑗

𝜕𝜃

𝜕𝑥𝑗
) =  𝜅𝜃𝑗𝑗 + 𝜏𝑖𝑗𝑢𝑖,𝑗 ,                                                 (3.3) 

  𝑖, 𝑗 = 1,2,3.                     

where 𝑢 is the velocity, 𝑓 is the body force, 𝜏 is stress tensor, 𝜃 is the 

temperature, 𝜌 is the constant fluid density, 𝜅 is the thermal conductivity, 𝑐𝑝 is 

the specific heat. The constitutive equation for a third grade fluid given by Refs. 

[3-4] as follows: 

𝜏𝑖𝑗 = −𝑝𝛿𝑖,𝑗 + 𝜇𝑆1𝑖𝑗 + 𝛼1𝑆2𝑖𝑗 + 𝛼2𝑆
2
1𝑖𝑗 + 𝛽1𝑆3𝑖𝑗 

+𝛽2(𝑆1𝑖𝑗𝑆2𝑖𝑗 + 𝑆2𝑖𝑗𝑆1𝑖𝑗) + 𝛽3(tr𝑆2𝑖𝑗)𝑆1𝑖𝑗 ,            (3.4) 

where 𝑝 is the fluid pressure, 𝜇 is the coefficient of viscosity, 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛽3 

are material constants and 𝑆1𝑖𝑗 ,  𝑆2𝑖𝑗 , 𝑆3𝑖𝑗 are line kinematics tensors defined by 

𝑆1𝑖𝑗 = (𝑢𝑗,𝑖 + 𝑢𝑖,𝑗),                                                                                     (3.5) 
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𝑆𝑛𝑖𝑗 = 
𝐷𝑆(𝑛−1)𝑖𝑗

𝐷𝑡
+ 𝑆(𝑛−1)𝑖𝑗𝑢𝑖,𝑗 + 𝑢𝑗,𝑖𝑆(𝑛−1)𝑖𝑗 , 𝑛 = 2,3.                     (3.6) 

 

𝟑. 𝟐 −  Couette flow 

    Consider the steady state flow of a third grade fluid all a long tow parallel 

plates the distance between them 2h. The lower plate is stationary and the upper 

plate is moving with a constant speed  𝑈. The temperature of the lower plate is 

𝜃0 and that of the upper plate is 𝜃1.The lower and upper plates are located in the 

planes 𝑦 = −ℎ and 𝑦 = ℎ. The pressure gradient is zero, and the velocity and 

temperature fields are assumed to be of the form 

𝑢 = 𝑢(𝑦),          𝑣(𝑦) = 0, 𝑤(𝑦) = 0, 𝜃 =  𝜃(𝑦)                      (3.7) 

The equation of continuity is satisfied and the momentum and energy equations 

become (𝛽1 = 𝛽3) 

𝜇
𝑑2𝑢

𝑑𝑦2
+ 6(𝛽1 + 𝛽2) (

𝑑𝑢

𝑑𝑦
)
2 𝑑2𝑢

𝑑𝑦2
= 0,                                                  (3.8) 

𝜅
𝑑2𝜃

𝑑𝑦2
+ 𝜇 (

𝑑𝑢

𝑑𝑦
)
2

+ 2(𝛽1 + 𝛽2) (
𝑑𝑢

𝑑𝑦
)
4

= 0.                                      (3.9) 

As a result, the problem reduces for solving the equations (3.8) - (3.9) subject to 

the conditions of no slip and no temperature jump at both of the plates 

𝑢(−ℎ) = 0,    𝑢(ℎ) = 𝑈  and   𝜃(−ℎ) = 𝜃0  , 𝜃(ℎ) = 𝜃1.                      (3.10) 

We consider ℎ as the characteristic length,  𝑈 as the characteristic velocity, and 

𝜃0 and 𝜃1 as characteristic temperature and rewrite the above equation in 

dimensionless form by using transformations 

𝑦∗ =
𝑦

ℎ
,   𝑢∗ =

𝑢

𝑈
, 𝜃∗ =

𝜃 − 𝜃0

𝜃1 − 𝜃0
.                                                      (3.11) 

Therefore 𝑦 = ℎ𝑦∗, since 

𝜕

𝜕𝑦∗
=

𝜕𝑦

𝜕𝑦∗
.
𝜕

𝜕𝑦
   ⇒  

𝜕𝑢∗

𝜕𝑦∗
=

𝜕𝑦

𝜕𝑦∗
.
𝜕𝑢∗

𝜕𝑦
 and 

𝜕𝑢

𝜕𝑦
=

𝑈

ℎ
.
𝜕𝑢∗

𝜕𝑦
.                                    

 Then  
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𝜕2𝑢

∂y2
=

𝑈

ℎ

𝜕2𝑢∗

∂𝑦∗2 .                                                                                           (3.12) 

By substituting equation (3.12) in equation (3.8), we have  

𝜕2𝑢∗

∂𝑦∗2 + 6(
𝛽1 + 𝛽2

𝜇
) (

𝑈

ℎ
)
2

(
∂𝑢∗

∂𝑦∗
)
2 𝜕2𝑢∗

∂𝑦∗2 = 0.                                       (3.13) 

 And on the other side,  𝑦 = ℎ𝑦 ⇒ 𝜃∗(𝑦) = 𝜃∗(ℎ𝑦∗) = ℎ. 𝜃∗(𝑦∗) 

𝜕𝜃∗

𝜕𝑦∗
=

𝜕𝑦

𝜕𝑦∗
.
𝜕𝜃∗

𝜕𝑦
 = (

ℎ2

𝜃1 − 𝜃0
)

𝜕𝜃

𝜕𝑦
.                                                     (3.14) 

Then  

𝜕2𝜃

∂y2
= (

𝜃1 − 𝜃0

ℎ2
)
𝜕2𝜃∗

∂𝑦∗2   .                                                                      (3.15) 

 By substituting equation (3.15) in equation (3.9), we have 

𝑘 (
𝜃1 − 𝜃0

ℎ2
)
𝜕2𝜃∗

∂𝑦∗2 + (
𝑈

ℎ

𝜕𝑢∗

𝜕𝑦∗
)
2

+ 2(𝛽1 + 𝛽2) (
𝑈

ℎ

𝜕𝑢∗

𝜕𝑦∗
)
4

= 0,            (3.16) 

𝜕2𝜃∗

∂𝑦∗2 +
𝜇𝑈2

𝑘(𝜃1 − 𝜃0)
(
𝜕𝑢∗

𝜕𝑦∗
)
2

+ 2(
𝛽1 + 𝛽2

𝜇
) (

𝑈

ℎ2
)
2 𝜇𝑈2

𝑘(𝜃1 − 𝜃0)
(
𝜕𝑢∗

𝜕𝑦∗
)
4

= 0, 

(3.17) 

In a non-dimensional form, after dropping the asterisks and using ODEs style, 

equations (3.13) and (3.17) become 

𝑑2𝑢

𝑑𝑦2
+ 6𝛽 (

𝑑𝑢

𝑑𝑦
)
2 𝑑2𝑢

𝑑𝑦2
=  0,                                                                     (3.18) 

𝑑2𝜃

𝑑𝑦2
+ 𝜆 (

𝑑𝑢

𝑑𝑦
)
2

+ 2𝛽𝜆 (
𝑑𝑢

𝑑𝑦
)
4

= 0.                                                       (3.19) 

where  𝛽 = (
𝛽1 + 𝛽2

𝜇
) (

𝑈

ℎ
)
2

, 𝜆 =
𝜇𝑈2

𝜅(𝜃1 − 𝜃0)
=

𝜇𝑐𝑝

𝜅

𝑈2

𝑐𝑝(𝜃1 − 𝜃0)
= 𝑃𝑟𝐸𝑐,

𝑃𝑟 =
𝜇𝑐𝑝

𝜅
, 𝐸𝑐 =

𝑈2

𝑐𝑝(𝜃1 − 𝜃0)
 ,         
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where 𝑃𝑟𝐸𝑐  is the Brinkman number that is the product of the Prandtl number 

𝑃𝑟 and Eckert number 𝐸𝑐.The corresponding boundary conditions are 

𝑢(−1) = 0 , 𝑢(1) = 1, 𝜃(−1) = 0, 𝜃(1) = 1.                        (3.20) 

𝟑. 𝟑 −  Numerical Solution 

The momentum and energy in which governing Couette flow along with the 

boundary can be written as  

𝑢′′ + 6𝛽𝑢′2𝑢′′ = 0,                                                                                               (3.21) 

𝜃′′ + 𝜆𝑢′2 + 2𝛽𝜆𝑢′4 = 0,                                                                                    (3.22) 

𝑢(−1) = 0 , 𝑢(1) = 1, 𝜃(−1) = 0, 𝜃(1) = 1,                      (3.23) 

where 𝛽, 𝜆 are constants. To linearize the above system of nonlinear ordinary 

differential equations, one can use the so called local linearization method. We 

appeal to the Gauss-Sedeil approach of decoupling linear algebraic, then the 

solutions can be obtained in the following steps: 

In equation (3.21) the term 𝑢′′ is the linear denoted by 𝐿 and the term 𝑢′2𝑢′′ is 

non-linear say 𝑁1, now rewrite (3.21) 

𝐿[𝑢] + 𝑁[𝑢] = 0. 

 From Taylor series,  

𝑁1(𝑢′, 𝑢′′) = 𝑁1(𝑢′, 𝑢′′) +
𝜕𝑁1

𝜕𝑢′
(𝑢′𝑟+1 − 𝑢′𝑟) +

𝜕𝑁1

𝜕𝑢′′
(𝑢′′𝑟+1 − 𝑢′′𝑟).          (3.24) 

Applying the local linearization on the nonlinear term gives 

𝑢′2𝑢′′ = 2𝑢′𝑟𝑢′′𝑟𝑢′𝑟+1 − 2𝑢′2𝑟𝑢′′𝑟 + 𝑢′2𝑟𝑢′′𝑟+1.                                             (3.25) 

Substituting equation(3.25) into equation (3.21) gives decoupled equations, 

from this point an iteration scheme is developed  by evaluating linear terms at 

the current iteration level 𝑟 + 1 and the nonlinear terms at the previous iteration 

level 𝑟, now one can write the following 

(𝑢′′𝑟+1 + 6𝛽𝑢′𝑟
2)𝑢′′𝑟+1 + 12𝛽𝑢′𝑟𝑢′′𝑟𝑢′𝑟+1 = 12𝛽𝑢′𝑟

2𝑢′′𝑟,                      (3.26) 

𝜃′′𝑟+1 = −𝜆(𝑢′𝑟)
2 −  2𝛽𝜆(𝑢′𝑟)

4,                                                                 (3.27) 
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subject to 

 𝑢𝑟+1(−1) = 0,          𝑢𝑟+1(1) = 1,  𝜃𝑟+1(−1) = 0,         𝜃𝑟+1(1) = 1. 

Applying the Chebyshev Pseudo-spectral method on equations (3.26) − (3.27) 

we obtained the following decoupled system of equations 

(diag[1 + 6𝛽𝑢′𝑟
2]𝐃𝟐 + 12𝛽diag[𝑢′𝑟𝑢′′𝑟]𝐃)𝑢𝑟+1 = 12𝛽𝑢′𝑟

2𝑢′′𝑟,                 (3.28) 

𝐃𝟐𝜃𝑟+1 = −𝜆(𝑢′𝑟)
2 −  2𝛽𝜆(𝑢′𝑟)

4,                                                                      (3.29) 

 subject to the boundary conditions 

𝑢𝑟+1(−1) = 0,       𝑢𝑟+1(1) = 1,  𝜃𝑟+1(−1) = 0,  𝜃𝑟+1(1) = 1.         

Starting from given initial approximations 𝑢0 and 𝜃0, equations (3.28)–(3.29) 

can be solved iteratively the spectral collocation methods for its accuracy. We 

find the unknown function at collocation points by requiring that equations 

(3.28)–(3.29) be satisfied exactly at these points. A convenient set of collocation 

points is the Gauss-Lobat to points defined by 

𝜔𝑗 = 𝑐𝑜𝑠
𝜋𝑗

𝑁
 , 𝑗 = 0,1 ,2,3,⋯ ,𝑁, 

where 𝑁 + 1 the number of collocation points is, 𝐃 is defined by equation 

(2.15) and 𝑢 = [𝑢(𝜔0), 𝑢(𝜔1), 𝑢(𝜔2),… , 𝑢(𝜔𝑁), ]𝑇 is the vector of unknown 

functions at the collocation points. In the matrix form, one can rewrite equations 

(3.28) - (3.29) in the form 

𝐀𝟏𝑢𝑟+1 = 𝑅1 ,   𝑢𝑟+1(𝜔𝑁) = 0,    𝑢𝑟+1(𝜔0) =  1,             (3.30) 

𝐀𝟐𝜃𝑟+1 = 𝑅2 ,   𝜃𝑟+1(𝜔𝑁) = 0,    𝜃𝑟+1(𝜔0) =  1,             (3.31) 

where, 

𝐀𝟏 = diag[1 + 6𝛽(𝑢′𝑟)
2]𝐃𝟐 + 12diag[𝛽𝑢′𝑟𝑢′′𝑟]𝐃,     𝑅1 = 12𝛽(𝑢′

𝑟)
2𝑢′′

𝑟,         

𝐀𝟐 = 𝐃𝟐,     𝑅2 = −𝜆(𝑢′𝑟)
2 −  2𝛽𝜆(𝑢′𝑟)

4, 

where, diag[.] denotes a diagonal matrix. We choose suitable initial 

guesses 𝑢0 and 𝜃0 which satisfy the boundary conditions of governing 

equations. 
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𝟑. 𝟒 −  Results and Discusses 

The governing equations of the momentum and energy of the Couette flow, 

which are represented in equations (3.21) – (3.22) along with the boundary 

conditions (3.23), are solved numerically by using the spectral local 

linearization method. The results showing the effects of Brinkman number 𝜆, 

and the parameters 𝛽 on the velocity and temperature are given graphically. 

 

 

Fig3.1 Effects of𝛽on temperature 𝜃with𝜆 = 1. 

 

Fig 3.2 Effects of the Brinkman number 𝜆 on temperature 𝜃 for 𝛽 = 1. 

Fig 3.1 illustrates the variation of temperature profile 𝜃 with 𝛽 as Brinkman 

number 𝜆 is taken to be one. It clear that, the temperature profile increases with  

increasing 𝛽 leading to a thinness in the thermal boundary layer, hence 
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increases the fluid temperature. Fig 3.2 shows the effects of the Brinkman 

parameter 𝜆 on the temperature profile when 𝛽 = 1. We notice that thermal 

boundary layer thickness decreases when the Brinkman parameter increases, 

and hence enhancing the fluid temperature. 
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Chapter 4 

 

The Poiseuille flow 

 

This a type of the fluid flow ,the mathematical formulations for it are reduced 

from third grade fluid through Chapter 3.  

𝟒. 𝟏 −  The governing Equations 

Let us consider the problem in Chapter 3 when both plates are stationary and the 

fluid motion is induced by constant pressure gradient, other conditions on the 

velocity and the temperature fields remain unchanged. In this case, the 

momentum and energy equations with (𝛽1 = 𝛽3) yield 

𝜇
𝑑2𝑢

𝑑𝑦2
+ 6(𝛽1 + 𝛽2) (

𝑑𝑢

𝑑𝑦
)
2 𝑑2𝑢

𝑑𝑦2
=

𝜕�̂�

𝜕𝑥
,                              (4.1) 

𝜕�̂�

𝜕𝑦
=

𝜕�̂�

𝜕𝑧
= 0,                               (4.2) 

𝜅
𝑑2𝜃

𝑑𝑦2
+ 𝜇 (

𝑑𝑢

𝑑𝑦
)
2

+ 2(𝛽1 + 𝛽2) (
𝑑𝑢

𝑑𝑦
)
4

= 0,                      (4.3) 

where �̂� denotes the generalized pressure which given by 

�̂� = 𝑝 − (2 ∝1+∝2) (
𝑑𝑢

𝑑𝑦
)

2

.                                                         (4.4) 

We find from (4.1) that 

𝜕�̂�

𝜕𝑥
= constant.                                                                 (4.5) 

Thus, the problem reduces to the following differential equations 

𝜇
𝑑2𝑢

𝑑𝑦2
+ 6(𝛽1 + 𝛽2) (

𝑑𝑢

𝑑𝑦
)
2 𝑑2𝑢

𝑑𝑦2
=

𝜕�̂�

𝜕𝑥
,                                                                 
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𝜅
𝑑2𝜃

𝑑𝑦2
+ 𝜇 (

𝑑𝑢

𝑑𝑦
)
2

+ 2(𝛽1 + 𝛽2) (
𝑑𝑢

𝑑𝑦
)
4

= 0,                                             (4.6) 

𝑢(−ℎ) = 0, 𝑢(ℎ) = 0, 𝜃(−ℎ) = 𝜃0, 𝜃(ℎ) = 𝜃1.                      (4.7) 

By using transformations in equation (3.11), we will obtain 

𝑑2𝑢

𝑑𝑦2
+ 6𝛽 (

𝑑𝑢

𝑑𝑦
)
2 𝑑2𝑢

𝑑𝑦2
= −𝐵,                                                                      (4.8) 

𝑑2𝜃

𝑑𝑦2
+ 𝜆 (

𝑑𝑢

𝑑𝑦
)
2

+ 2𝛽𝜆 (
𝑑𝑢

𝑑𝑦
)
4

= 0,                                                          (4.9)  

Subject to the boundary conditions 

𝑢(−1) = 0,          𝑢(1) = 0,      𝜃(−1) = 0, 𝜃(1) = 1,                    (4.10) 

where  𝐵 = −
ℎ2

𝑈𝜇

𝑑�̂�

𝑑𝑥
. 

 

𝟒. 𝟐 −  Numerical Solution 

Equations(4.8) − (4.9) can be written in form 

𝑢′′ + 6𝛽(𝑢′)2𝑢′′ = −𝐵,                                                                             (4.10) 

𝜃′′ + 𝜆(𝑢′)2 + 2𝛽𝜆(𝑢′)4 = 0,                                                                 (4.11) 

with the boundary conditions, 

𝑢(−1) = 0, 𝑢(1) = 0, 𝜃(−1) = 0, 𝜃(1) = 1,             (4.12) 

where 𝛽, 𝐵, 𝜆 are constants. Also we use the same style to get the solutions of 

these equations. Applying the local linearization method we end up by  

𝑢′′𝑟+1 + 6𝛽𝑢′2𝑟𝑢′′𝑟+1 + 12𝛽𝑢′𝑟𝑢′′𝑟𝑢′𝑟+1 = 12𝛽𝑢′2𝑟𝑢′′𝑟 − 𝐵,                     (4.13) 

𝜃′′𝑟+1 = −𝜆(𝑢′𝑟)
2 −  2𝛽𝜆(𝑢′𝑟)

4,                                                                        (4.14) 

Subject to the boundary conditions, 

  𝑢𝑟+1(−1) = 0,          𝑢𝑟+1(1) = 0,   𝜃𝑟+1(−1) = 0,         𝜃𝑟+1(1) = 1.  
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Applying the Chebyshev Pseudo-spectral method on equations (4.13) − (4.14), 

we obtain the following decoupled system 

(𝑑𝑖𝑎𝑔[1 + 6𝛽𝑢′𝑟
2
]𝑫𝟐 + 𝑑𝑖𝑎𝑔[12𝛽𝑢′𝑟𝑢′′𝑟]𝑫)𝑢𝑟+1

= 12𝛽𝑢′𝑟
2
𝑢′′𝑟 − 𝐵,                                                                         (4.15) 

𝐃𝟐𝜃𝑟+1 = −𝜆(𝑢′𝑟)
2 −  2𝛽𝜆(𝑢′𝑟)

4,                                                                    (4.16) 

subject to the boundary conditions 

𝑢𝑟+1(−1) = 0,   𝑢𝑟+1(1) = 0,  𝜃𝑟+1(−1) = 0,  𝜃𝑟+1(1) = 1.                   (4.17) 

Starting from given initial approximations 𝑢0 and 𝜃0, equations (4.15)–(4.16) 

can be solved iteratively by using the spectral collocation  method to that end, it 

is convenient set of collocation points in terms of Gauss- Lobat to points 

𝜔𝑗 = 𝑐𝑜𝑠
𝜋𝑗

𝑁
, 𝑗 = 0,1 ,2,3,⋯ ,𝑁, 

where 𝑁 + 1 denotes the number of collocation points, 𝐃 is differentiation 

matrix and 𝑢 = [𝑢(𝜔0), 𝑢(𝜔1), 𝑢(𝜔2), … , 𝑢(𝜔𝑁), ]𝑇 is the vector of unknown 

functions at the collocation points. In the matrix form, one can rewrite equations 

(4.15) - (4.16) in the form 

𝐀𝟏𝑢𝑟+1 = 𝑅1,   𝑢𝑟+1(𝜔𝑁) = 0,    𝑢𝑟+1(𝜔0) =  0,                                    (4.20) 

𝐀𝟐𝜃𝑟+1 = 𝑅2 ,   𝜃𝑟+1(𝜔𝑁) = 0,    𝜃𝑟+1(𝜔0) =  1,                                     (4.21) 

where, 

𝑨𝟏 = diag[1 + 6𝛽𝑢′
𝑟
2
]𝑫𝟐 + diag[12𝛽𝑢′

𝑟𝑢
′′

𝑟],   𝑅1 = 12𝛽𝑢′𝑟
2
𝑢′′𝑟 − 𝐵          

𝐀𝟐 = 𝐃𝟐,            𝑅2 = −𝜆(𝑢′𝑟)
2 −  2𝛽𝜆(𝑢′𝑟)

4, 

where, diag[.] denotes a diagonal matrix. We choose suitable initial guesses 𝑢0 

and 𝜃0 which satisfy the boundary conditions of governing equations. 

 

𝟒. 𝟑 −  Results and Discusses 

The governing equations (4.10) – (4.11) along with the boundary conditions 

(4.12) solved numerically using spectral local linearization method (SLLM). 

The effects of the governing physical parameters on the properties of the fluid 

have been presented graphically. 



16 
 

 

Fig. 4.1 Effects of 𝛽 on the velocity and temperature respectively. 

 

Fig 4.1 shows the velocity and temperature profiles for difference values of 𝛽. It 

clear that the velocity profile decreases with increase in 𝛽. On the other hand 

increasing in 𝛽 leads to slight increases in the temperature field.  
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Chapter 5 

 

The Couette- Poiseuille Flow 

  

The Couette-Poiseuille flow is the flow which is component between the 

Couette flow and Poiseuille flow , the mathematical formulations for it are 

reduced from third grade fluid through Chapter 3.      

𝟓. 𝟏 −  The governing Equations  

For the Couette-Poiseuille flow, we assume that the fluid motion is produced by 

both the motion of the upper plate with constant velocity 𝑈  and by a constant 

pressure gradient. All other conditions on the temperature and the velocity 

remain unchanged. Thus, the momentum and energy equations with (𝛽1 = 𝛽3) 

take the form 

𝜇
𝑑2𝑢

𝑑𝑦2
+ 6(𝛽1 + 𝛽2) (

𝑑𝑢

𝑑𝑦
)
2 𝑑2𝑢

𝑑𝑦2
=

𝜕�̂�

𝜕𝑥
,                                          

𝜕�̂�

𝜕𝑦
=

𝜕�̂�

𝜕𝑧
= 0,                                             (5.1) 

𝜅
𝑑2𝜃

𝑑𝑦2
+ 𝜇 (

𝑑𝑢

𝑑𝑦
)
2

+ 2(𝛽1 + 𝛽2) (
𝑑𝑢

𝑑𝑦
)
4

= 0,                                                       

with the boundary conditions 

𝑢(−ℎ) = 0,        𝑢(ℎ) = 𝑈, 𝜃(−ℎ) = 𝜃0 , 𝜃(ℎ) = 𝜃1.              (5.2)  

From equation (5.1), we obtain the non-dimensional form as follows: 

𝑑2𝑢

𝑑𝑦2
+ 6𝛽 (

𝑑𝑢

𝑑𝑦
)
2 𝑑2𝑢

𝑑𝑦2
= −𝐵,                                                                       (5.3) 

𝑑2𝜃

𝑑𝑦2
+ 𝜆 (

𝑑𝑢

𝑑𝑦
)
2

+ 2𝛽𝜆 (
𝑑𝑢

𝑑𝑦
)
4

= 0,                                                            
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with the boundary conditions 

𝑢(−1) = 0,          𝑢(1) = 1, 𝜃(−1) = 0, 𝜃(1) = 1.      (5.4) 

                                                

𝟓. 𝟐 −  Numerical Solution 

To solve the system (5.3) along with the boundary conditions (5.4), first of all 

we have to linearize the non-linear term using Taylor’s series as follows 

𝑁1(𝑢′, 𝑢′′) = 𝑁1(𝑢′, 𝑢′′) +
𝜕𝑁1

𝜕𝑢′
(𝑢′𝑟+1 − 𝑢′𝑟) +

𝜕𝑁1

𝜕𝑢′′
(𝑢′′𝑟+1 − 𝑢′′𝑟).             (5.6) 

Applying the idea of (5.6) in the system (5.4), yields    

𝑢′′𝑟+1 + 6𝛽𝑢′2𝑟𝑢′′𝑟+1 + 12𝛽𝑢′𝑟𝑢′′𝑟𝑢′𝑟+1 = 12𝛽𝑢′2𝑟𝑢′′𝑟 − 𝐵,                     (5.10) 

𝜃′′𝑟+1 = −𝜆(𝑢′𝑟)
2 −  2𝛽𝜆(𝑢′𝑟)

4,                                                                        (5.11) 

subject to the boundary conditions,  

  𝑢𝑟+1(−1) = 0,          𝑢𝑟+1(1) = 1,  𝜃𝑟+1(−1) = 0,         𝜃𝑟+1(1) = 1. 

Again by applying the Chebyshev Pseudo-spectral method on equations (5.10)-

(5.11) we obtain the following decoupled system of equations: 

(diag[1 + 6𝛽𝑢′𝑟
2
]𝐃𝟐 + diag[12𝛽𝑢′𝑟𝑢′′𝑟]𝐃)𝑢𝑟+1 = 12𝛽𝑢′𝑟

2
𝑢′′𝑟 − 𝐵, (5.12) 

𝐃𝟐𝜃𝑟+1 = −𝜆(𝑢′𝑟)
2 −  2𝛽𝜆(𝑢′𝑟)

4,                                                                     (5.13) 

subject to the boundary conditions 

𝑢𝑟+1(−1) = 0,    𝑢𝑟+1(1) = 1,  𝜃𝑟+1(−1) = 0,  𝜃𝑟+1(1) = 1.     (5.14) 

Then the matrix form for the above system is  

𝐀𝟏𝑢𝑟+1 = 𝑅1,   𝑢𝑟+1(𝜔𝑁) = 0,    𝑢𝑟+1(𝜔0) =  1,             (5.15) 

𝐀𝟐𝜃𝑟+1 = 𝑅2 ,   𝜃𝑟+1(𝜔𝑁) = 0,    𝜃𝑟+1(𝜔0) =  1,             (5.16) 

where, 

𝐀𝟏 = diag[1 + 6𝛽𝑢′
𝑟
2
]𝐃𝟐 + diag[12𝛽𝑢′

𝑟𝑢
′′

𝑟], 𝑅1 = 12𝛽𝑢′𝑟
2
𝑢′′𝑟 − 𝐵 

𝐀𝟐 = 𝐃𝟐,            𝑅2 = −𝜆(𝑢′𝑟)
2 −  2𝛽𝜆(𝑢′

𝑟)
4. 
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We choose suitable initial guesses 𝑢0 and 𝜃0which satisfy the boundary 

conditions. 

 

𝟓. 𝟑 −  Results and Discusses 

The highly nonlinear ordinary differential equations which governed the 

Couette- Poiseuille flow have been solved numerically using the spectral local 

linearization method (SLLM). The effects of the physical parameters such as 

Brinkman number 𝜆, 𝛽 and the parameter 𝐵 on the properties of the fluid as well 

as the velocity and temperature have been presented graphically. 

 

Fig. 5.1 Effects of 𝛽 and 𝐵on the velocity profile respectively. 

Fig 5.1demonstrates the effects of 𝛽 and 𝐵 the velocity profile respectively. As 

it is shown, increasing in𝛽 leads to an increasing in momentum boundary layer 

thickness and hence reduced the velocity field. On the other hand side which the 

velocity profile increases with increasing 𝐵. 
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Fig 5.2 Effects of 𝛽and 𝐵on temperature profile, respectively. 

Fig. 5.2 illustrates effects of both 𝛽 and 𝐵 on the temperature profile 

respectively. It is clear that the thermal boundary layer thickness decreases with 

increasing values of both 𝛽 and 𝐵 this is as expected, thermal conductivity will 

be reduced, hence the temperature decreases. 
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Chapter 6 

 

Double dispersion effects on convection heat and 

mass transfer in non-Darcy porous medium 

 

Consider the non-Darcy natural convection heat and mass transfer over a semi-

infinite vertical surface in a fluid saturated porous medium. The 𝑥-axis is taken 

along the plate and 𝑦- axis is normal to it. The wall is maintained at constant 

temperature and concentration, 𝑇𝑤and 𝐶𝑤 respectively, and these values are 

assumed to be greater than the ambient temperature and concentration, 𝑇∞ and 

𝐶∞, respectively. The governing equations for this problem are given through 

next section. 

𝟔. 𝟏 −  The governing equations  

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                                                               (6.1) 

𝑢 +
𝑐√𝐾

𝑣
𝑢𝑞 = −

𝐾

𝜇
(
𝜕𝑝

𝜕𝑥
+ 𝜌 g ),                                                              (6.2) 

𝑣 +
𝑐√𝐾

𝑣
𝑣𝑞 = −

𝐾

𝜇
(
𝜕𝑝

𝜕𝑦
),                                                                           (6.3) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝜕

𝜕𝑥
(𝛼𝑥

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝛼𝑦

𝜕𝑇

𝜕𝑦
),                                          (6.4) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
=

𝜕

𝜕𝑥
(𝐷𝑥

𝜕𝐶

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐷𝑦

𝜕𝐶

𝜕𝑦
),                                         (6.5) 

𝜌 = 𝜌∞[1 − 𝛽(𝑇 − 𝑇∞) − 𝛽∗(𝐶 − 𝐶∞)]                                               (6.6) 

Along with the boundary conditions 

𝑦 = 0, : 𝑣 = 0, 𝑇𝑤 = constant, 𝐶𝑤 = constant,                                      (6.7) 

𝑦 → ∞: 𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞,                                                                          
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where 𝑢 and 𝑣 are the velocity component in the  𝑥 and 𝑦 directions, 

respectively,  𝑝 is the pressure, 𝑇 is the temperature, 𝐶 is the concentration,  𝐾 is 

the permeability constant, 𝑐 is an empirical constant, 𝛽 is the thermal expansion 

coefficient, 𝛽∗ is the solutal expansion coefficient,  𝜇 is the viscosity of the 

fluid, 𝜌 is the density, and g is the acceleration due to gravity, 𝛼𝑥 and 𝛼𝑦 are the 

components of the thermal diffusivity in 𝑥 and 𝑦 directions, respectively, 𝐷𝑥 

and 𝐷𝑦 are the components of the mass diffusivity in 𝑥 and 𝑦 directions, 

respectively. The normal component of the velocity near the boundary is small 

compared with the other component of the velocity and the derivatives of any 

quantity in the normal direction are large compared with derivatives of the 

quantity in direction of the wall. Under these assumptions, equations(6.1) −

(6.6) become 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                                                                (6.8) 

𝑢 +
𝑐√𝐾

𝑣
𝑢|𝑢| = −

𝐾

𝜇
(
𝜕𝑝

𝜕𝑥
+ 𝜌 g ),                                                         (6.9) 

𝜕𝑝

𝜕𝑦
= 0,                                                                                                       (6.10) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝜕

𝜕𝑦
(𝛼𝑦

𝜕𝑇

𝜕𝑦
),                                                                 (6.11) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
=

𝜕

𝜕𝑦
(𝐷𝑦

𝜕𝐶

𝜕𝑦
),                                                                  (6.12) 

Following Telles and Trevisan [21], the variables 𝛼𝑦 and 𝐷𝑦 are defined as 

𝛼𝑦 = 𝛼 + 𝛾𝑑|𝑢| and 𝐷𝑦 = 𝐷 + ζ 𝑑|𝑢|, where, 𝛼 and 𝐷 are the molecular 

thermal and solutal diffusivities, respectively, whereas 𝛾𝑑|𝑢| , ζ 𝑑|𝑢| represent 

dispersion thermal and solutal diffusivities, respectively, where 𝛾 and ζ  are the 

coefficients of dispersion thermal and solutal diffusivities, respectively. This 

model for thermal dispersion has been used extensively by researchers like 

Cheng [14], Pumb [15], Hong and Tien [16], Lai and Kulack [17] and, Murthy 

and Singh [18] in studies of convective heat transfer in non-Darcy porous 

media. 
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Having invoked the 𝐵oussinesq approximations, with substituting 𝐸𝑞𝑠. (6.9)and 

(6.10), eliminating the pressure between equations (6.9) and (6.10) and using 

the stream function 𝜓 to define the velocity component 𝑢 and 𝑣 as: 𝑢 = 𝜕𝜓/𝜕𝑦 

and 𝑣 = −𝜕𝜓/𝜕𝑥, we obtain: 

𝜕2𝜓

𝜕𝑦2
+

𝑐√𝐾

𝑣

𝜕

𝜕𝑦
(
𝜕𝜓

𝜕𝑦
)
2

= −
𝐾 g 𝛽

𝜇

𝜕𝑇

𝜕𝑦
+ 

𝐾 g 𝛽∗

𝜇

𝜕𝐶

𝜕𝑦
   ,                      (6.13) 

𝜕𝜓

𝜕𝑦

𝜕𝑇

𝜕𝑥
−  

𝜕𝜓

𝜕𝑥

𝜕𝑇

𝜕𝑦
=

𝜕

𝜕𝑦
[(𝛼 + 𝛾𝑑

𝜕𝜓

𝜕𝑦
)
𝜕𝑇

𝜕𝑦
],                                        (6.14) 

𝜕𝜓

𝜕𝑦

𝜕𝐶

𝜕𝑥
−  

𝜕𝜓

𝜕𝑥

𝜕𝐶

𝜕𝑦
=

𝜕

𝜕𝑦
[(𝐷 + ζ 𝑑

𝜕𝜓

𝜕𝑦
)
𝜕𝐶

𝜕𝑦
].                                      (6.15) 

Introducing the similarity variable and similarity profiles 

𝜂 = 𝑅𝑎𝑥

1

2
𝑦

𝑥
 , 𝐹(𝜂) =

𝜓

𝛼𝑅𝑎𝑥

1

2

, 𝜃(𝜂) =
𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
, 𝜙(𝜂) =

𝐶 − 𝐶∞

𝐶𝑤 − 𝐶∞
, (6.16) 

Where  𝑅𝑎𝑥 is the Rayleigh number 𝑅𝑎𝑥 = 𝐾 g 𝛽(𝑇𝑤 − 𝑇∞)𝑥/𝛼𝑣. 

The problem statement then becomes 

𝐹′′ + 2𝐹0𝑅𝑎𝑑𝐹′𝐹′′ = 𝜃′ + 𝑁𝜙′                                                           (6.17) 

𝜃′′ +
1

2
𝐿𝑒𝑅𝑎𝑑𝐹𝜃′ + 𝛾. 𝑅𝑎𝑑(𝐹′𝜃′′ + 𝐹′′𝜃′) = 0,                             (6.18) 

𝜙′′ +
1

2
𝐿𝑒𝑅𝑎𝑑𝐹𝜙′ + ζ 𝐿𝑒. 𝑅𝑎𝑑(𝐹′𝜙′′ + 𝐹′′𝜙′) = 0,                      (6.19) 

with the boundary conditions becomes  

𝐹(0) = 0, 𝜃(0) = 𝜙(0) = 1,   𝐹′(∞) = 𝜃(∞) = 𝜙(∞) = 0,           (6.20) 

where the parameter 𝐹0 = 𝑐√𝐾𝛼/𝑣𝑑 represents the structural and thermo-

physical properties of the porous medium, 𝑅𝑎𝑑 = 𝐾 g 𝛽(𝑇𝑤 − 𝑇∞)𝑑/𝛼𝑣 is the 

pore diameter dependent Rayleigh number which describes the relative intensity 

of the buoyancy force, such that 𝑑 is the pore diameter,  𝑁 = 𝛽∗(𝐶𝑤 − 𝐶∞)/

𝛽(𝑇𝑤 − 𝑇∞) is the buoyancy ratio, and 𝐿𝑒 = 𝛼/𝐷 is the diffusivity ratio (Lewis 

number) which is the ratio of Schmidt number 𝑣/𝐷 and Prandtl number  𝑣/𝛼. 
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It is noteworthy that 𝐹0 = 0, corresponds to the Darcian free convection, 𝛾 = 0, 

representsthe case where the thermal dispersion effect is neglected and ζ = 0,  

represents the case where the thermal solutal dispersion effect neglected. In 

equation (6.17), values of 𝑁 > 0  indicates the aiding buoyancy and 𝑁 < 0  

indicates the opposing buoyancy. 

From the definition of the stream function, the velocity components become  

𝑢 =
𝛼

𝑥
𝑅𝑎𝑥𝐹

′ ,      𝑣 = −
𝛼

2𝑥
𝑅𝑎𝑥

1

2[𝐹 − 𝜂𝐹′].                                                

The local heat transfer rate which is the primary interest of the study is given by  

qw = −ke

∂T

∂y
⃒y=0 = −(k + kd)

∂T

∂y
⃒y=0 ,                                      (6.21) 

where 𝑘𝑒 is the effective thermal conductivity of the porous medium which is 

the sum of the molecular thermal conductivity 𝑘 and the dispersion thermal 

conductivity 𝑘𝑑 . 

The local Nusselt number 𝑵𝒖𝒙 can be obtained from 

𝑁𝑢𝑥 =
𝑞𝑤

𝑇𝑤 − 𝑇∞

𝑥

𝑘𝑒
,                                                                                  (6.22) 

one can write 

𝑁𝑢𝑥𝑅𝑎𝑥
−1/2 = −[1 + 𝛾𝑅𝑎𝑑𝐹′(0)]𝜃′(0).                                         (6.23) 

Also, the local mass flux is given by  

𝑗𝑤 = −𝐷𝑦

𝜕𝐶

𝜕𝑦
⃒𝑦=0.                                                                                  (6.24) 

Therefore, Sherwood number is defined by  

𝑆ℎ𝑥𝑅𝑎𝑥
−1/2 = −[1 + ζ 𝑅𝑎𝑑𝐹′(0)]𝜙′(0).                                          (6.25) 

 

𝟔. 𝟐 −  Numerical solution  

We have given three governing equations for momentum fluid and temperature 

and concentration respectively 
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𝐹′′ + 2𝐹0𝑅𝑎𝑑𝐹′𝐹′′ = 𝜃′ + 𝑁𝜙′ ,                                                            (6.26) 

𝜃′′ +
1

2
𝐿𝑒𝑅𝑎𝑑𝐹𝜃′ + 𝛾. 𝑅𝑎𝑑(𝐹′𝜃′′ + 𝐹′′𝜃′) = 0,                                (6.27) 

𝜙′′ +
1

2
𝐿𝑒. 𝑅𝑎𝑑𝐹𝜙′ + ζ 𝐿𝑒. 𝑅𝑎𝑑(𝐹′𝜙′′ + 𝐹′′𝜙′) = 0,                       (6.28) 

with the boundary conditions  

𝐹(0) = 0, 𝜃(0) = 𝜙(0) = 1,    𝐹′(∞) = 𝜃(∞) = 𝜙(∞) = 0,    (6.29) 

Where 𝐹0, 𝑅𝑎𝑑 , 𝐿𝑒, 𝛾, ζ  are constant parameters. 

Again, we appeal to the spectral local linearization method, equations (6.27) – 

(2.29) give, 

𝐹′′𝑟+1 + 2𝐹0𝑅𝑎𝑑𝐹′′rF′r+1 + 2𝐹0𝑅𝑎𝑑𝐹′rF′′r+1  

= 2𝐹0𝑅𝑎𝑑𝐹′′rF′r + 𝜃′𝑟 + 𝑁𝜙′𝑟                                                     (6.31) 

𝜃′′𝑟+1 +
1

2
𝐹𝑟+1𝜃′r+1 + 𝛾. 𝑅𝑎𝑑(𝐹′

𝑟+1𝜃
′′

𝑟+1 + 𝐹′′
𝑟𝜃

′
𝑟+1) = 0 ,                   (6.32) 

𝜙′′
r+1

+
1

2
Le. RadFrϕ

′
r+1

+ ζ 𝐿𝑒. 𝑅𝑎𝑑(F′
r+1ϕ

′′
r+1

+ F′′
r+1ϕ

′
r+1

)

= 0 ,                                                                                                     (6.33) 

with boundary conditions 

𝐹r+1(0) = 0, F′r+1(∞) = 0 , 𝜃𝑟+1(0) = 1,   𝜃𝑟+1(∞) = 0,  

𝜙𝑟+1(0) = 1,            𝜙𝑟+1(∞) = 0.                                                       (6.34) 

Applying the Chebyshev spectral collocation method to the system Eqs(6.31)-

(6.33) along with boundary conditions, we obtain the following matrix 

equations 

𝐀𝟏𝐹𝑟+1 = 𝑅1 ,   𝐹𝑟+1(𝜔𝑁) = 0,    𝐹′𝑟+1(𝜔0) =  0,             (6.39) 

𝐀𝟐𝜃𝑟+1 = 𝑅2 ,   𝜃𝑟+1(𝜔𝑁) = 1,    𝜃𝑟+1(𝜔0) =  0,              (6.40) 

𝐀𝟑𝜙𝑟+1 = 𝑅2 ,   𝜙𝑟+1(𝜔𝑁) = 1,    𝜙𝑟+1(𝜔0) =  0,            (6.41) 

where, 

𝐀𝟏 = (1 + 2𝐹0𝑅𝑎𝑑𝐹′
𝑟)𝐃

𝟐 + (2𝐹0𝑅𝑎𝑑𝐹′′
𝑟)𝐃, 
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𝑅1 = 2𝐹0𝑅𝑎𝑑𝐹′
𝑟𝐹

′′
𝑟 + 𝜃′𝑟 + 𝑁𝜙′𝑟 , 

𝐀𝟐 = (1 + 𝛾. 𝑅𝑎𝑑diag[𝐹′
𝑟+1])𝐃

𝟐 + (
1

2
diag[𝐹𝑟+1] + 𝛾. 𝑅𝑎𝑑diag[𝐹′′

𝑟+1])𝐃, 

𝑅2 = 0, 

𝐀𝟑 = 1 + ζ 𝐿𝑒 . 𝑅𝑎𝑑diag[𝐹′
𝑟+1])𝐃

𝟐 + (
1

2
𝐿𝑒. diag[𝐹𝑟+1] + ζ 𝐿𝑒. 𝑅𝑎𝑑𝐹′′

𝑟+1)𝐃, 

𝑅3 = 0. 

 

𝟔. 𝟑 −  Results and discussion  

We have started from suitable initial guesses 𝐹0 , 𝜃0and 𝜙0which satisfy the 

boundary conditions (6.29), the governing equations (6.26) – (2.28) have been 

solved numerically using the local linearization method.  Effects of the physical 

governing parameters on the fluid properties have been obtained graphically.   

 

Fig 6.1 The heat transfer rate in terms of Nusselt number 𝑁𝑢𝑥𝑅𝑎𝑥
−1/2 with Lewis number 

𝐿𝑒, for varying 𝐹0, 𝑁 when 𝑁 = −0.5, 𝛾 = ζ = 0, and 𝑅𝑎𝑑 = 1. 

The combined effects of 𝐿𝑒, 𝐹0 and 𝑁 on the heat transfer rate in terms of the 

Nusselt number 𝑁𝑢𝑥𝑅𝑎𝑥
−1/2 is depicted in Fig 6.1. Clearly increase in 𝐹0 leads 

to decrease in the heat transfer rate. While increase in 𝑁 with leads enhanced 

the heat transfer rate through. 
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Fig 6.2The mass transfer rate in terms of Sherwood number 𝑆ℎ𝑥𝑅𝑎𝑥
−1/2 with Lewis number 

𝐿𝑒, for varying 𝐹0, when 𝑁 = −0.5, 𝛾 = ζ = 0, and 𝑅𝑎𝑑 = 1. 

 

Fig 6.2 Illustrates the Sherwood number 𝑆ℎ𝑥𝑅𝑎𝑥
−1/2as a function of Lewis 

number 𝐿𝑒 at difference values of heat 𝐹0 and 𝑁, respectively. The results show 

that the rate of heat transfer reduced with 𝐹0, the clear fact is that, increasing 𝑁 

enhances the mass transfer rate. 

 

Fig 6.3 Effects of 𝐹0and 𝐿𝑒 on the velocity profiles for 𝑁 = −0.5, 𝑅𝑎𝑑 = 1.0, 𝛾 = ζ = 0.5. 

 

    Fig 6.3 represents the variation of velocity component 𝐹′(𝜂) with 𝐹0 and 𝐿𝑒, 

respectively. The velocity of the fluid is found to be decrease with F0and 

increase with  𝐿𝑒. 
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From Fig 6.4 we notice that slight effects of 𝑅𝑎𝑑 on the velocity of the fluid. On 

the other hand as 𝑁 increase the velocity increases. 

 

 

Fig 6.4 The velocity profile varying the buoyancy 𝑅𝑎𝑑 and 𝑁, when 𝐹0 = 0.5, 𝐿𝑒 = 1.0 and 

𝛾 = ζ = 0.5. 

 

Fig 6.5. Effects of 𝑁 and 𝐹0 on the temperature profile, respectively for 𝑅𝑎𝑑 = 1.0, 𝐿𝑒 = 0.5 

and 𝛾 = ζ = 0.5. 
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Fig. 6.6 Concentration profile for varying 𝑁 and𝐿𝑒, when 𝑅𝑎𝑑 = 1, 𝐹0 = 0.5, and 𝛾 = ζ =

0.1. 

 

 

Fig 6.7  Effects of ζ and 𝑅𝑎𝑑,on the concentration for𝑁 = 0, 𝐹0 = 0.1, 𝐿𝑒 = 1.0, and 𝛾 =

 0.1. 

Fig. 6.5 shows the effects of 𝑁 and 𝐹0 on the dimensionless temperature 

respectively. It can be seen from this figure that the thermal boundary layer 

thickness decreases with an increasing in 𝑁, thus leading to temperature profile 

decreasing in the boundary. On the other hand, we observe that dimensionless 

temperature increases with an increase in 𝑅𝑎𝑑 that is due to increase in the 

thermal boundary layer thinness. 

The effect of 𝑁 and 𝐿𝑒 on the solute concentration is shown in Fig. 6.6. An 

increase in both 𝑁 and 𝐿𝑒 reduces concentration within the solute boundary. 
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Fig. 6.7 shows the effects of ζ and  Rad, on the concentration profile 

respectively. It is clear that increase in both  ζ and Rad, leads to increase in the 

concentration profile. 
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conclusion 

  

In this work, we have studied the non- Newtonian fluids, convection heat and 

mass transfer in non-Darcy porous medium. The classical boundary conditions 

of the velocity and temperature and concentration has been substituted by the 

more realistic condition where the velocity is not controlled at the boundary. the 

effects of the governing parameters such as the Brinkman number, parameter 𝛽, 

Nusselt number, Sherwood number, heat transfer coefficient, pore diameter 

dependent Rayleigh number, buoyancy ratio, Lewis number and fluids flow 

characteristic have been studied. Here 𝛽 represents the viscoelastic properties of 

the fluid and resists the motion of the fluid, and  𝐵 represents  the viscoelastic 

properties with the variation of pressure rate, and  The effects of the heat 

transfer coefficient , buoyancy ratio, Lewis number and pore diameter 

dependent Rayleigh number enhances and some cases reduces the velocity and 

temperature and concentration with according of variation the parameters 

values. 
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