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Abstract

We give the global and Strichartz estimates for the Schradinger maximal operators,
end point maximal and the local smoothing estimates for Schradinger equation. The
singular continuous and pure point spectrum of self-adjoint extensions and
Laplaceians of fractul graphs are shown with the spectral Localization in the
hierarchical Anderson model. The radial positive definite function with bases of
subspaces, property of x-positive definiteness, general Cwikel-Lieb-Rozenblum and
Lieb-Thirring inequalities are investigated. The space time estimates and the negative
spectrum of the three dimentional hierarchical Schrodinger operaters with pure point
spectrum interactions are discussed.
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Introduction

In higher dimensions, we show that sup|e*2f|and sup |ei*f| are bounded from H*(R™) to
t 0<t<1

L9(R™) only if s > 1 — - We also show that the Schrodinger maximal operator sup |e’**f|is
o<t<1

bounded fromHS (R™) toL?,.(R™)whens > s, if and only if it is bounded fromHs(R™) to L?(R™)

loc

when s > 2s,. A corollary isthat sup |e?*f|is bounded fromH*(R?) to L?(R?)when s >3/4.

0<t<1

When n = 2, we unconditionally improve the rangefor which the mixed norm estimates hold.We
shall show that a symmetric operator with infinite deficiency indices and some gap has self-adjoint
extensions with non-empty singular continuous spectrum.

We establish the pure point spectrum of Laplacians o two point self-similar fractal graph.We show
that a large class of hierarchical Anderson models withspectral dimensiond > 2 has only pure point
spectrum.

We strengthen the fixed time estimates due to Fefferman and Stein, and Miyachi. As anessential
tool we establish sharpLP space-time estimates (local in time) for the samerange of p.We show
mixed norm space-time estimates for solutions of the Schrodingerequation, with initial data inL?P
Sobolev (or Besov) spaces, and clarify the relation withadjoint restriction.

A number of results on radial positive definite functions onR™ related to Schoenberg’s integral
representationtheorem are obtained. They are applied to the study of spectral properties of self-
adjoint realizationsof two- and three-dimensional Schrédinger operators with countably many point
interactions.

These classical inequalities allow one to estimate the number of negative eigen-values and the sums
S, = Xly:|* for a wide class of Schrodinger operators. We provide a detailed proof of these
inequalities for operators on functions in metric spaces using the classical Lieb approach based on
the Kac-Feynman formula. The main goal is a new set of examples which include perturbations of
the Anderson operator, operators on free, nilpotent and solvable groups, operators on quantum
graphs, Markov processes with independent increments. Since the spectral dimension of the
operator under consideration can be an arbitrary positive number, the model allows a continuous
phase transitionfrom recurrent to transient underlying Markov process. This transition is also
studied.

The contents
V
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Chapter 1
Global and Local Smoothing Estimates
The Schrodinger equation, id,u + Au = 0, in R™*1, with initial datum f contained in a Sobolev
space HS(R™), has solution e’ f. We give sharp conditions under which sup|e*2 f|isbounded from
t
H3(R)toL?(R) for all g, and give sharp conditions under which sup |eimf|is bounded from H*(R)

0<t<1

to LI(R) for allg # 2.We show that the Schrodinger operatore®® is bounded from W®*4(R™)to
LA(R™ x [0, 1]Dfor alla > 2n (% — %) — gandq > 2+ 2 _ this is almost sharp with respect to the

(n+1)’

Sobolev index.

Section (1.1): Schrodinger Maximal Operator and Global Estimates:
The Schrodinger equation, id,u + Au = 0, in R™*1, with initial datum f contained in a Sobolev
space HS(R™), has solution e*2 fwhich can be formally written as

el f (x) = f f(&)ezmibes-2mtlé) gg 1)
We will consider the Schrédinger maximal operators S*and S**, defined by
S*f = sup |e®Af|andS** f = supl|e’Af|.
0<t<1 teR
The minimal regularity of funder which e fconverges almost everywhere to f, as ttends to zero,
has been studied extensively. By standard arguments, the problem reduces to the minimal value of s
for which
”S*f”Lq(Bn) < Cn,q,s”f”HS(R") (2)
holds, where B™is the unit ball in R™.
In two dimensions, that is one spatial dimension, Carleson [4] (see also [10]) showed that (2) holds
when s > 1/4. Dahlberg and Kenig [6] showed that this is sharp in the sense that it is not true when
s <1/4.
In three dimensions, significant contributions have been made by Bourgain [1, 2], Moyua, Vargas
and Vega [12, 13], and Tao and Vargas [21, 22]. The best known result is due to Lee [11] who
showed that (2) holds when s > 3/8.
In higher dimensions, Sjolin [15] and Vega [23, 24] independently showed that (2) holds when s >
1/2. It is conjectured that, in all dimensions, the minimal value of sfor which (2) holds is 1/4.
Replacing the unit ball B™in (2) by the whole space R™, we consider the global estimates
”S*f”Lq(Rn) = Cn,q,s”f”HS(R") (3)
and

”S**f”Lq(Rn) = Cn,q,s”f”HS(R")- (4)
In one spatial dimension, Kenig, Ponce and Vega [9] proved that (4) holds when g =4 and s = i.
This was extended by Giilkan [7] who proved that (4) holds when g € [4, ) if and only if s >
1/2 — 1/q, and it is well known that (4) holds when q = ooif and only if s > 1/2 (see [19]). Sj6lin

[16] proved that if g = 2, then (4) does not hold for anys, and we will show that this is also the case
when g € (2,4). Thus, we have the following theorem.



Theorem (1.1.1)[25]:Letn = 1. Then (4) holds if and only if q € [4, ©)ands > 1/2 — 1/q, or q =
coands > 1/2.

The following theorem extends a result of Vega [23, 8] (see also [17]) by the endpoint s = 1/qin
the range q € (2,4).

Theorem (1.1.2)[25]:Let n = landq € (2,): Then (3) holds if and only if s = max{1/q,1/2 —
1/q}.

Vega [23, 8] (see also [16]) proved that (3) holds when g =2 and s > 1/2, and this is not true
when g = 2 and s < 1/2, or for any value of s when g < 2. As in Theorem (1.1.1), when q = oo,
(3) holds if and only if s > 1/2 (see [19]). Thus, in order to have complete results in Theorem
(1.1.2), the only case that remains undecided is g = 2,s = 1/2.

In higher dimensions, we show that (3) holds only if
n

S22 —F——.
—2(n+1)

We note that the minimal sis thus strictly greater than 1/4 when n > 2. A plausible conjecture is
that these are indeed the minimal values of sthat can appear in (3).
Throughout, Cwill denote an absolute constant whose value may change from line to line.
First, we consider one spatial dimension, and extend the argument of Carleson as in [14]. We
employ the Kolmogorov—Seliverstov—Plessner method and the following two lemmas. The first is
proved by a very slight modification of a lemma due to Sjélin [20]; The second is proved by
refining the ideas of Carleson.
Lemma (1.1.3)[25]:Let x,t € Rand a € [1/2,1). Then there is a constant C such that

eZn’i(xf—tfz) C
—_— ] < —.
f a+iene ¥ =

R
Lemma (1.1.4)[25]:Let x € R, t € [-1,1]and a € [1/2,1]. Then there is a constant C such that

eZn’i(xf—tfz) C
_——dE < —.
f a+iene % S ke

R
Proof.Splitting the integral in two and taking the complex conjugate if necessary we can suppose
that x > 0, and consider the integral over (0, ). When x < 4 and a < 1, we are done by Lemma
(1.1.3), so we can suppose that x > 4 and 1/x < C/x*“.
When t < 0, there exist ¢, ¢, € (0,1) such that

< eZn’i(xf—tfz)

) G as

C1 C2

< f cos(2m(xé — t&?))dé| + f sin(2m(x& — t£2))dé|,
0 0
by the Bonnet form of the second mean value theorem for integrals. The derivative of the phase,
x — 2t€, is monotone, and bounded below byx, so by van der Corput’s lemma,
< eZn’i(xf—tfz) C C
————dé| < —<—.
J (1+[¢De =% =xa

and we are done.
Now we suppose that t > 0, and make the change of variablesé — & + 1, so that



< eZn’i(xf—tfz)

f eZn’i((x+2t)f—tfz)

) @ene | T |
As x + 2t = x, it will suffice to show that
< eZn’i(xf—tfz) C
f —5“ dé| < et

1
Changing variables again, & — +/t&, and denoting 24 = x/+/t, we are required toshow that

1 fezm(ZA—fz) 2| < C
\/El—a - *

ga x(l
Note that A > 2, as we have that x > 4.
Consider first the integral over (\/E, A/2). By the change of variables, ¢ = A&, we are required to
show that

vt

272
1 f eZTL’i(ZE—EZ/AZ) C

xl-a fa xa'
x/2

The derivative of the phase, 2 — 2é/A2?, is bounded below by one on (x/2,4%/2), so that, by the

mean value theorem and van der Corput’s lemma,
2

2
1 eZTL’i(ZE—EZ/AZ) C C
xl—(l f é——a dé— S ; S x_a!

x/2
and we are done.
Finally, we are required to show that

1 f o2mi(245-8%) i:

\/El—a p fa - xa'

By the mean value theorem, and the fact that modulus of the second derivative of the phase is
bounded below by one,

T 2mi(248-§2) 2a-1| £
1 f e dé| < C\/E erTti(ZAf—fz)df < i,
\/El—a fa x% xa
A/2 A/2

and we are done.

The following theorem is an endpoint improvement of result of Vega [23, 8] (see also [17])
in the range (2; 4).
Theorem (1.1.5)[25]:Let n = 1. If q € [4,00)and s = 1/2 — 1/q, then (4) holds. If g € (2,)and
s = max{1/q,1/2 — 1/q}, then (3) holds.

Proof.By duality, it will suffice to show that
2

feif(x)Af(x)W(x)dx < Cq”f”]Z-IS(R)”W”Z

L7 (R)
R



for all positive w € L9'(R), where the measurable function tmaps into R when weare considering
the bound (4) and into (0,1) when we consider (3).

By Fubini’s theorem and the Cauchy-Schwarz inequality, the left hand side of this
inequality is bounded by

2

f PO @+ e de f f 26— () x|
R R R

@+nz

Thus, by writing the squared integral as a double integral, it will suffice to show that

f ff (-8 (¢G) -t ())2? )W(X)W(}’)dxd}’(l s = < Gliw ”iq ) ®)
By Lemma (1.1.3), we have
eZm'((x—y)f—(t(x)—t(y))fz) C
| a4 <me
when ttakes values in R, and 2s € [1/2,1), and by Lemmas (1.1.3) and (1.1.4), we have
e2m’((x—y)f—(t(x)—t(y))fz) C
| — | e

when ttakes values in (0,1). Thus, by Fubini’s theorem, the left hand side of (5) is bounded by a
constant multiple of

f f W(x)W(y) dxdy

Jx —y[t=2

in the first case, and

ylmax{ZS 1-2s}

in the second. Finally, by Holder’s mequallty and the Hardy-L.ittlewood-Sobolev inequality, these
are bounded by

w(x) 5
il f | = Clwl
LI(R)
where s = 1/2 — 1/qand q = 4 when we are considering the bound in (4), and
w(x) 5
||VV”Lq’(R) f |x _.|max{25,1—25} dx =C ”W”Lq (R)’
R LI(R)

where s = max{1/q,1/2 — 1/q}and q > 2 when we consider (3).

In higher dimensions, we simply interpret the known results. By modifying very slightly the proof
of Theorem 2.2 in [21] due to Tao and Vargas, the following result is proved using bilinear
restriction estimates.



Theorem (1.1.6)[25]:Let q € (2 +— oo] DE (max {q,_nq_jzlnﬂ)},oo], and s >n G _ %) _2
Then there exists a constant Cy, 4,

||€itAf||Lq(R",LP(R)) < Cuapsllfllscery

As usual, we define a%bydZg(r) = (2n|t|)*§(r), where @ > 0. Observingthat aZe*Af = eltAf,,
where b £, (&) = (4n2|&|2)2£ (&), and applying the Sobolevimbedding theorem with a > 1/p, we
recover their theorem in the following corollary.

Corollary(1.1.7)[25]:1f g € (2 + ﬁ, oo] and s > n(1/2 — 1/q), then (3) and (4) hold.

We will see below that these kind of global bounds do not hold when g < 2. Thus, for
completeness, we provide sufficient conditions, albeit not sharp, for the remaining values of gin (3).

Theorem (1.1.8) [25]:Ifq € (2,2 + 2 _land s > 3/q —1/2, then (3) holds.
n+1

Proof.Carbery [3] and Cowling [5] independently proved that if g = 2 and s > 1, then (3) holds.
Considering HSto be a weighted L2space, we can interpolate between this and the bound in
Corollary 1 to get the result.

We consider one spatial dimension and complete the proof of Theorem (1.1.1). The novelty in the
following is that if n = 1 and q € (2,4), then (4) cannot hold for any value of s.

Theorem (1.1.9)[25]:Let n = 1. If (4) holds, then g € [4,0)and s = 1/2 —1/q, or ¢ = o and
s>1/2.

The following theorem is due to Sj6lin [17], but it will also follow easily from the following proof
of Theorem (1.1.9).

Theorem (1.1.10)[25]:Let n = 1. If (3) holds then q € [2,)and s = max{1/q,1/2 — 1/q}, or
q=oands>1/2.

Proof.By a change of variables,

1 (/&N .
*x — - 2 ) ,i(xE-t&?) |
) = sup 5 | £ (g V|
Define A = [N,N + N%], where N >» 1 and A € (—oo, 1], and consider f,defined byf,(£/2m) =
e~iN"* 5 (). We will show that for a range of values of x, a time t(x) can be chosen so that the
phase,

such that

(&) = (x = N7)& — t(x)&?,

is roughly constant on A. With the phase roughly constant, we have

S F(x) = C f o= DE—E) gl 5 )01,
A
As Ais an interval of length N4, in order to insure that the phase is roughly constant, we impose the
condition | ¢, (£)| < N~%on A. This insures that for all N and A, there exists a ,such that
0, —1/2 < () < 0, + 1/2.
As ¢, (8) = x — N=* — 2t(x)¢&, the condition can be rewritten as

x —2N"*4 X

BT < t(x) < %
for all £ € A. Define aand bby



— -1

X N R 4
a(x) = SégETand b(x) = gg}‘li

To be able to choose the time t(x) we require that a(x) < b(x). This is clear when x € [0,2N %],
o we suppose that x > 2N ~*. Now, when x > 2N 4,

x — 2N~ x
a(x) = Tand b(x) = m,
so that we can choose a t(x) when
x —2N~* x

2N = 2(N + N?)’
This condition can be rewritten as x < 2N ~* + 2N1~2%, so we will consider the set E = [0, N1~24].
As S**f, = C|Alon E, we see that
1S* fallLacry = CIAIIE[M.
On the other hand,

2

il < ¢ [@righ) <clare(en+ 2y
A

so that, as [|S™* fall Lacry < Cllfalluscry, we have
|AIIE|Y4 < C|AIM2(1+ N + N4,
Recalling that |A| = N*and |E| = N2, we see that

A 122
NzN ¢ < CN?,
so that, letting Ntend to infinity,
1 1 2
s2_+a(5-)
q 2 q

for all A € (—o0,1]. When g < 4, we let Atend to —ooto obtain a contradiction for all s. Letting 1 =
1 we recover the fact that s > 1/2 — 1/q.
Finally, by a well-known counterexample (see [19]), s > 1/2 is necessary when g = «, and we are
done.
In order to prove results for S*, we have the added requirement that
[a(x),b(x)INn(01) # @

for all x € E. We have that a(x) < 1 when

x —2N~*

— <1,

2N

which we rewrite as

x <2N + 2N,
When A < 0, this is an added restriction so we reanalyze in this case. Redefining a smaller E =
[0,2N + 2N ], we see that

NY2(N + N2 < cNs
for all A € (—, 0], so that, letting Ntend to infinity,

SZE‘FE (6)

6



and
s> A(l—l). )

When q < 2, we see by (7) that, letting Atend to —oo, we have a contradiction for all s. If we let A =
0 in (6), we see that s > 1/q, and from before, when A = 1, we have that s > 1/2 — 1/q.

Again, by the well-known counterexample (see [19]), s > 1/2 is necessary when g = oo, and so we
are done.

Remark (1.1.11)[25]: We note that taking A = 1/2 in the above proof, E = [0,1], the time t(x) can
be chosen to be a member of (0,1) for all x € E, and s > 1/4 for all g, so we recover the fact that
s > 1/4 is necessary in (2). It is easy to generalize this to higher dimensions. Indeed, it can be
shown that gdefined by

[0¢]

g‘ = Z Z_QjX[zzj,22j+2j_3]><[1,9/8]n_1 )

j=2
where a € (2s +1/2,1) and s < 1/4, is a member of HS(R™) such that e‘*2 gdiverges on the set
[8/9,1]™as ttends to zero.

We now consider higher dimensions. A corollary of the following theorems is that the minimal
1
2(n+1)’

value of sthat can appear in (3) or (4) is greater than or equal to i— Again, both theorems

will follow from the same proof.
It can be seen by scaling that if ¢ <2 or s <n(1/2—1/q), then (4) does not hold. Theorem
(1.1.12) is that if g € (2,2 + 2/n), then (4) cannot hold for any value of s. That gcannot equal 2 is
due to Sjolin [16].
Theorem (1.1.12) [25]:1f (4) holds, then g € [2 + % oo)and s >n(1/2—-1/q), or ¢ = ccand s >
n/2.
Theorem (1.1.13) [25]:1f (3) holds, then g € [2,)and s = max{1/q,n(1/2 —1/q)}, or g = »
and s > n/2.
Proof.We consider S**and argue as in the proof of Theorem (1.1.9). Define Aby
A=[N,N+N*",

where N > 1 and 2 € (-0, 1], and consider f,defined byf,(§/27) = e N2y, (€), where N, =
(N2, ,N7%).
In order to show that the phase in (1) is roughly constant on A, we will need that the partial
derivatives of the phase are small. we require that

|x; — N = 2t(x)§;| < N4,
for all j = 1, ..., n. Rewriting this condition, for each xwe need to choose a t(x) so that

 —2N~* ;
x]— < t(x) < i
28 28
forall £ € Aand j = 1,..., n. Define aand bby
(x) = sup su %~ 2N and b(x) = inf inf a
a\x) — I — x)= 1 Int —.
1sj£n Eefl) zfj 1<j<n §€A ij

To be able to choose the time t(x) we need that a(x) < b(x). As before, we require that x; > 0 and

7



xj— 2N~ - X
2N ~2(N+N?1)'
forall j,k = 1,...,n. We rewrite this as

. Ay
0<x;<2N +2(N+N’1)xk

for all j,k =1,..,n. Now, the set Edefined by these conditions, is the convex solid body with
vertices (0, ...,0),2(N1"22 + N=4)(1,...,1), and 2N~*e;for all j=1,..,n, where ejare the
standard basis vectors. Thus,
|E| = CN~Hn=y1-22,
As S***f, = C|Alon E, we see that
IS* fallaamy = CIAIE]MA,

As before,
1/2

Wallasny < €[ [ @+1eD> | < clap2(in + ),
A

so that, as [|s** fallLazrny < Cllfallgsgny, We have
CIAlIE|Ya < ClA|Y2(1 + N + N2)’,
Recalling that |A] = N™and |E| > CN1~(+D”* e see that

na  1-(n+1)A

Nz2N ¢ <CN°®

forall 1 € (=, 1], so that

1 n n+l
s=>—+1 (— - ) .
q 2 q
When g < 2+ 2/n, we let Atend to —ooto obtain a contradiction for all s, and letting A = 1 we
recover the fact that s > n(1/2 — 1/q). We also note for later thatby letting A = 0, we have s >
1/q.
By a well-known counterexample (see [19]), s > n/2 is necessary when g = oo, so we have
finished the proof of Theorem (1.1.12).
In order to prove results for S*, we have the added requirement that
[a(x),b(x)INn(01) # @
for all x € E. Now, we can ensure that a(x) < 1 when
xj— 2N~

<1
2N

for all j = 1 ... n, which we rewrite as

xj <2N~*+2N.
When 1 < 0, this is an added restriction so we reanalyze the case when Atends to negative infinity.
As before, we consider the set Edefined by

Nx,
N + N2’

0<ux < 2N"1+min{ ZN}
forall j,k = 1..n.Itisclear from here that
|E| = CN*",

so that, as before,



Nn/I/ZN—n/llq < CNS.

> 1 (1 1)
s=>n > q’
so that when g < 2, we can let Atend to —ooto obtain a contradiction for all s.

From before we have that s > n(1/2 —1/q) and s = 1/qare necessary conditions, and by the
well-known counterexample (see [19]), s > n/2 is necessary when g = oo, and so we are done.

Letting Ntend to infinity, we have

Section (1.2): Schrodinger Equation and Local Smoothing Estimate:
The solution to the wave equation, d,,u = Au, with initial data u(:,0) = fand u'(:,0) = 0,can be
formally written as the real part of

VB f(x) = f F(£)e?mitE-cEN g (8)
Rn

Let |-||, ,denote the inhomogeneous Sobolev norm with aderivatives in LY(R™). J.C. Peral [39]
proved that for any fixed time tand q € (1, ),

le®=2f|| . < Cealifllge

LIR™)
foralla = (n—1) E - ﬂ and this is sharp. Sogge [41] conjectured that
itvV—-A
e o gnngs gy S ol o

for alla > (n — 1) G - %) - iandq >2+ ﬁ This is known as the local smoothing conjecture

due to the potential gain of 1/qderivatives.

In two spatial dimensions, Mockenhaupt, Seeger and Sogge [38] showed that the local smoothing
estimate holds at the critical exponent g = 4 for all « > 1/8, and this was improved by Bourgain
[2], Tao and Vargas [22], and Wolff [45] to a« > 5/44.

Moving away from the critical exponent, but remaining in two spatial dimensions, Wolff [44]
proved the (almost) sharp estimate in the range g > 74, and Laba andWolff [33] generalized this to
higher dimensions. Garrigoés and Seeger [32] have recently refined their arguments, so that, in
higher dimensions for example, the (almost) sharp estimate holds in the range

q>2+ 8 <1 — ! )
n—3 n+1
The Schrodinger equation, id,u + Au = 0, with initial datum fhas solution e*2fwhich can be
formally written as

et f(x) = f f(&)e2miCxs=2mtiél®) g 9)
]Rn
Miyachi [37] (see also [31]) proved that for any fixed time tand g € (1, ),
||€ltAf||Lq(Rn) < Ct,a”f”q,a
forall « = 2n E - ﬂ and this is sharp. When n > 2, square function estimates (see [27, 34, 36])

yield



||€itAf||Lq(Rnx[1'2]) < Cq,a”f”q,a
1

for all @ > 2n (5 — %) — éand q > 2 + 4/n. We see that averaging locally in time yields a gain of

2/qderivatives.

We extend the range of gby taking advantage of all n + 1 dimensions of curvature. This also allows
us to treat the n = 1 case for which we obtain almost sharp estimates. In higher dimensions, it may
be possible to extend the range to g > 2 + 2/n, and we shall see later that this would follow from

the restriction conjecture for paraboloids.

Theorem (1.2.1) [46]: Let g >2+ ﬁand a>2n (1 - 1) - 5. Then there exists a constant

2 q
Cq Suchthat

||€itAf||Lq(Rnx[0'1]) < Cq,a”f”q,a'

(8

n

\
\
\

(nt+l) 1 1 1

2(n+3) 2 q
Fig. 1. Region of local smoothing in Corollary (1. 2. 2)

Although there is a formal similarity between this and the estimates of Wolff et al., the question for
the Schrédinger equation is not as deep, and the arguments will bear no resemblance. An obvious
difference is that the wave operator, for finite time, is a local operator, whereas the Schrodinger
operator is not. We will see however, that one can decompose the initial data so that the
Schrodinger operator, for finite time, may essentially be treated as a local operator.
Before proceeding further, we should mention that there are estimates for the Schrdodinger equation,
independently due to Sjolin [15], Vega [23, 24], and Constantin and Saut [29], which are more
deserving of the description ‘local smoothing.” They proved that

itA
e f||L2(Ian[O,1]) < Csllfllg-v72gmy,
where B™is the unit ball in R™, and |[|-||ysgnydenotes [|-||,,. Thus, the solution is locally half a

derivative smoother than the initial datum. We will see later that this is equivalent up to endpoints
with the global estimate

”eimf”LZ(Rnx[o,ﬂ) < Gsllfll 2y,
which we will refer to as simply the conservation of charge.
Interpolating between this and the bound in Theorem (1. 2. 1)yields the following corollary. In one
spatial dimension, it is almost sharp in the range g € [1, o], and in higher dimensions it is almost

sharp in the ranges q € [1,2]and q € [2 + ﬁ, oo].
Corollary (1.2.2)[46]: Let g € [1,]and a > max {Zn G - %) ,(n—1) G - %) ,2n (— - —) - —}.
Thenthere exists a constant Cr ,such that

e £l oqunnrry < Cralflea

10



(see fig 1)
We will consider the minimal value of sfor which

sup |eitAf|
0<t<1

< Cn,s”f”HS(]Rn) (10)

L*(B™)
holds. By standard arguments, the estimate implies the almost everywhere convergence of e fto
f, as ttends to zero. The minimal sfor which the global bound
sup [e"*f| < Cosllflluscamy (11)
0<t<1 L2(R™)
holds, has also been considered in connection with the well-posedness of certain initial value
problems (see [8]).
In one spatial dimension, Carleson, Kenig and Ruiz [4, 10] showed that (10) holds when s > 1/4,
and Dahlberg and Kenig [6] showed that this is sharp. Vega [8, 23] (see also [16]) showed that the
global bound (4) holds when s > 1/2, and this is also sharp.
In higher dimensions, it was independently proven by Sj6lin [15] and Vega [24] that (10) holds
when s >1/2, and the bound cannot hold when s < 1/4. Carbery [3] and Cowling [5]
independently showed that (11) holds when s > 1, and in this case, the bound cannot hold when
s < 1/2. It is conjectured that, the minimal value of s for which (10) holds is 1/4, and the minimal
value for which (11) holds is 1/2.
We will put these results and conjectures in proving the following theorem.
Theorem (1.2.3) [46]: (10) holds for s > s, <(11) holds for s > 2s,,.
In two spatial dimensions, more was known for the local bound than for the global bound. Bourgain
[1] showed that there exists an s strictly less that 1/2 for which (10) holds, and this was improved
by Moyua, Vargas and Vega [13], and Tao and Vargas [21, 22]. The best known result is due to S.
Lee [11], who showed that (10) holds when s > 3/8.
Therefore, as a consequence of the equivalence, we have the following corollary, which improves
the result of Carbery and Cowling in two spatial dimensions.
Corollary (1.2.4)[46]: For all s > 3/4, there exists a constant C;such that

< Cs”fHHS(RZ)-
L?(R?)
The result of Cowling also holds when the Laplacian is replaced by a more general class of
operators that includes

sup |€ itAf|
0<t<1

O=07 — 0%, *0z, £ x0; .
For physical applications of the nonelliptic Schrédinger equation, see for example [42]. We will
also prove the equivalence in this case, so that, by a local result of VVargas, Vega and [14], the global
result of Cowling is almost sharp. We state this as a corollary.
Corollary (1.2.5) [46]: For all s > 1, there exists a constant C,such that

sup |ei=f| < Gllf s mmys
0<t<1 L?(R?)

and this is not true when s < 1.

Throughout, cand Cwill denote positive constants that may depend on the dimensions and
exponents of the Sobolev spaces. It will be made explicit when they depend on other factors like,
for example, the Sobolev index. Their values may change from line to line. The following are

11



notations that will be used frequently:
1/q

q/r
J, fGoylrae" ax)
W*4(R™): The inhomogeneous Sobolev space with aderivatives in L7(R").
II-l4,¢: The inhomogeneous Sobolev norm with aderivatives in L7(R™).
HS(R™) :== WS2(R").
O=07 — 0z, 05, - *07 .
B" = {x € R": |x| < 1}.
A" :={x e R":1/2 < |x| < 1}.
Br == {x € R": |x| < R}.
Ap ={x e R":R/2 < |x| < R}.
Xy the indicator function of By.

oo () o= R0 (140 20) ™

Lp2f = gz * gz * @pz * |f].

v;: a member of the lattice R~2Z".

x). a member of the lattice R2Z™.

Ty = {(x, t) € R" x [0, R*]: |x — (xk + 47rtvj)| < RZ}.

{Q:}en: a partition of R™into cubes of side R?, centred at x; € R2Z™.

P a positive and smooth function, supported in B .

1j: a positive and smooth function, supported in B™, and equal to 1 at the origin.

Let fjbe a positive and smooth function supported in B™, and denote byfj,-1 the scaledversion

LL(R™,L7(I)): The Lebesgue space with norms( S

ﬁ(E) Correspondingly, we let nz-: denote its inverse Fourier transform R™n(R ). Weconsider
initial data frdefined by

~ — 2”2“5'2 ﬁR_l(g)
fR(f) e (1 + |€|2)0£/2 .
We note that
.1
”fR”r,a = ||€ lenR_l L’"(]R{n),

and by a change of variables,

e_i%AnR—l(X) =R" f (&) e2mi(ReE+R*TE1?) g

]Rn
When |x| > 27R, by repeated integration by parts, there exists constants C, such that
-N
i |x|
|€ lenR_1(x)| < Cy (ﬁ) (12)
for all N € N. When |x| < 2#R, by the dispersive estimate,
.1
e ng-1 ()| < Cling-sllaamy < €. (13)
Combining these two bounds, we see that
_ ||, -ica n
fellra = [le™%ne]] , .., <" (14)

12



On the other hand, by a change of variables,

~(§
|eitA]cR (x)| — - _:7 (E? _ e21'L'i(x.§—21-r(t—%)mz)df
JReEanD

— Rn—af : 1) _ eZTL’i(Rx-E—Zn'RZ(t—%)KF)dé—,
(—+I€I2)

s0 when x| < —and |t ——| < ——, we have |e?*2fp (x)| < CR*%. Thus,
n+2
itA
||e fR||Lq(RnX[O o = CRVaR™T
and combining this with (14), we see that for
||eitAf||Lq(Rnx[O'1]) S Ca”f”r,a(ls)

to hold, it is necessary that « > n (1 —-=— —) — 3’

By considering frdefined byfr = 7iz-1, we reverse the previous focusing example. Note thatthe
rapid decay (12) and upper bound (13) remain true for all t € [1/2,1]. This forces |e®*2fz| > con a
set of measure cR™as otherwise the conservation of charge would be violated. We see that

”eltAfR ||LQ(]RTL><[0 ) > CRy,

and as || fzll;qo < CR“R”“ for (15) to hold it is also necessary that « > n + 1-1).
T

Finally, we consider initial data fdefined byf, (¢) = (R’l(f (R,.. R))), where 1 > 1, so that
eitAfR(x) = fﬁ (Rl(f _ (R, o ,R))) eZn’i(x-f—ZTL’ﬂﬂZ)d f

A
One can calculate that |27V, (x - & — 2mt[¢[?)] < % in the region defined by
A
1
<
x| < 755 1t < 7505 @dlE = (R,....R)] <

so that the phase is almost constant for each pair (x, t)in the region. Thus,
ni

A 1

” lt fR”Lq(Rnx[o 1) — = CR™ Rq

and combining this with
nai
Ifzllyq < RERT,

1 1
ezm(t-2)
q r

Setting A =1 and letting A — ooyield the necessary conditions a > nG - %)and q=r,

we see that

respectively.
In particular, ignoring endpoint issues, one may hope that

e Fll o gngoyy = CallFllga
forall a > max{Zn(;——) 0,2n (——1) —3}.



As in the arguments of Fefferman [30], Bourgain [2], Wolff [45], Tao [21], and others, we
decompose the solution of the Schrodinger equation into wave packets at scale R? > 1.
Fix a positive and smooth function v, supported in B . such that

ZI/;(S( —R?v;) =1,

where v; € R2Z™ We also fix a positive and smooth 7, supported in B", that satisfies 7(0) = 1,0
that, by the Poisson summation formula,

where x, € R72Z™. Now for any Schwartz function f, we define fiand fj,implicitly in the
following decomposition:

7() = Z £ = Z B (R - v)) F©). (16)
) = Z @ =) 0 () . (17)
J.k

Note that fjis supported in the ball of radius (vn + 1)R~2 with centre v;.
We also partition R"into cubes Q,of side R?, centred at x; € R?Z™, and define the function @2 by

(pRz(x)_R 2n<1+| l) :
and the operator Lzz by

Le2f = @z * @gz * @z * |f].
We state a slightly refined version of a lemma which can be found in [21], or more explicitly in
[35], where we replace the Hardy-Littlewood maximal operator by a convolution operator. It is

clear from their proofs that this is permissible.
Lemma (1.2.6)[46]: Let t € [0,R*]. Then for all N € Nthere exists a constant CNsuch that

|x (xk + 4ty )|>

|eitAf;'k(x)| < CN(pRz * |f;(xk)| (1 +

We note that when ¢ € [0,R*], the wave packets e’™f;,are essentially supported in the tubes
Tjdefined by
Ty = {(x,t) € R® x [0,R*]: x — (x}, + 4ntv;) < R?}.

Lemma (1.2.7)[46]: For all ffrequency supported in B"and ¢ > 0, there exists functions
f,, fisatisfying

. 2n(2-2)+e) 2

0) Willary < CR0* il ogqmy
forall p < q,

(") Z ||fl||Lq(Rn) < CRE”f”LQ(]RTL):
and for all I, N € Nand (x, t) € Q, x [0, R?],

(iii)[e’*2f (x)| < e f,(x)| + CyR™NLg2f (x).
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Proof. We decompose the solution into wave packets, e®™f = ¥; , e’ f;,, at scale R%. We recall
that

fiel) =1 (F5) @),
and we define f;, by

Fe() = 12 (52525) £,Go)
As ndecays rapidly and )., 1 (x — —") =1, it is easy to see that

Zlnll’z ) C
Z Zf,k <c Zf,k < CIFogeny (18)

LIY(R™) LIY(R™)
As supp f c B™, we have that the v;’s are contained in a slight enlargement of B™. Thus, the tubes
Tjxmake angles with the spatial hyperplane which are uniformly bounded below. Letting
R£Q,denote the cube of side R2*éwith centre x;, we write
fiz D Qhe

k:QNREQ#0 j
so that e‘*2f;consists of the wave packets that pass through or near to Q, x [0,R?]. Similarly, we
define f;by

so that

f= ) Qe
k:QkﬂRng;t@ j
To prove property (i), we note that

h@l= > ()@

k:QrNREQ;#0

< C<1+ l’;;;ﬂ)_ Z Inll’z( ) f )

k:QrNREQ;#0

_ lx — x| ™
=1+ R2+2¢ |fl(x)|
for some large M € N, so that, by Holder,

Ifllprmy < CR
To prove property (ii), we note that a cube Q,can intersect R¢Q,for at most 2R™different cubes Q;,

so that
q
Yl <c> > >
l

I k:QrNREQ=0 || J LA(R™)

2(1+£)n ”fl”Lq(Rn)
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q

<Y (IS 7
k J

> 1l < RN W aemy
l

To prove property (iii), we consider the pointwise bound

LA(R™)
Thus, by (18), we see that

|eitAf| < |eitAfl| + Z Z eitA]t}k . (19)
k:QkﬂRng=® ]
By construction and Lemma (1.2.6),

cR2M | |( )
. 2 * | [i|\X
E eithf (x)| < CyrR2Y E E' %
X, — X
k:QENREQ=0 "] =1 ke yeglzirzee

for all (x,t) € Q, x [0,R?], and all N’ € N. Choosing an N’ > (4n + N)/& + 2n, we have

CRZn
- _ g2 * || G
2D SR ) ),
k:QNREQ =0 j J=1 ke |xge—x|2;R2*E
for all N € N. Now, by (16),
il < R72P(R2 ) *|f] < Copge  If],

so that
CRZn
: _ Prz * gz * |f100)
k:QNREQ#0 | J=1 ke |xge—x)|2;R2*E

Now, it is easy to see that
Prz * Qg2 * |f(x) = Qg2 * Qg2 * [f[(x")
when |x — x'| < +VnR?, so that

@rz * gz * |1 (x;)
[xg — x,[27

< Cogz * @gz * @z * | f(x))

1
k: |xk—xl|25R2+5

< Coppa * @z * @pz * |f|(x)
for all x € Q;. Substituting into (19), we have

le2f (x)| < |e®2f;(x)| + CyR™N gz * @z * @z * | f1(x)
for all (x,t) € Q, x [0, R?], and we are done.
Lemma (1.2.8) [46]: Let ¢ = p; = poand I c [0, R?]. Suppose that

e iy 700) = RN Mrrocars
whenever R > 1, and fis frequency supported in B". Then for all ¢ > 0,
1 1
||€”Af||LZ(BRz,L’E(1)) = CSRS+2n(p° p1)+£||f||Lp1(R")-

Proof. By Lemma (1.2.7), for all € > 0, there exists functions f;and f;such that
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Zn(i—i)hs =
”fl”LpO(]Rn) < CR ‘o 1 ”fl“Lm(Rn)’

leflllmw) CRENFIP, oy (21)

and for all N,l € Nand (x,t) € Q, x [0, R?],
le2f (x)| < |e®2f,(x)| + CyR™V Lgaf (x).
We use these pointwise bounds on cubes, to obtain an L4(R™, L7(I) )bound. We have

e M zen) = 22N (o)
l
< S el + R Iy gy
l

and using the fact that ||g + h||? < 29(||g||? + ||h[|7), we see that

e ) (;Z”elt%nﬂ (ausin) * OOk ZIIL ea(ouizn)
Now, byYoung’s inequality,

Z“L f”Lq Q LT(I)) RZCI”(PRZ * (Pp2 * Qp2 * |f|||Zq(Rn)

(20)

< CR2||f 1l (gny:
so that

” ltAf”Lq RnL’"(I) CZ”e“Afl”Lq Q L’”(I) +(yR N”f”Lq(lR")' (22)
By translation invariance and the hypotheSIS,
”eimfl“Lq(Ql,L’g(z)) < CRIlfull oo mmy
for all [ € N, and combining this with (20),
”eimﬁ”Lq(Ql,L’E(l)) CR

On the other hand, as supp f < B™and p, < g, by Bernstein’s inequality,
If lLagny < ClIfllLpa(mry. (24)
Substituting (23) and (24) into (22), we see that

. 2
||€“Af||zq(my;u>) < CR" el o) Z”fl”Lpl(Rn) CuR N”f”L”l(R")'
Finally, as g > p,, by convexity,

a/p1
Sl = (SN )

so that, by (21), we can sum to obtaln the required bound.

s+2n(

+£||fl||Lp1(]Rn)' (23)

We denote byLS(g — g)the estimate
”eimf”Lq(Rnx[o,ﬂ) S C“”f”Lp(]R")

2

forall a > Zn(——i) g
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We denote byR*(p — q)the (adjoint) restriction estimate
el o oy < €17y
where p’ = —. It is conjectured that R*(p — q)holds for all> 2 + =, and it has been provenin the

affirmative by Tao [32] inthe range ¢ > 2 + —

n+1’
Theorem (1.2.9)[46]: R*(p — q) = LS(q - q).
Proof. Suppose first that supp f c B™. Considering (9), we see that ei*2fcan be viewed as the

convolution of fwith the Fourier transform of e ~*7*il¢1* 5o that we can also write

el f (x) = n f FOe i dy. (25)

(4mit)z 2,
As in [28], we ‘complete the square’ in (9), and compare the representations, so that

n/2 1 cx
itA —lCZ—A 7
e f G| = e (7))
Making a ‘pseudo-conformal’ change of variables, we have

le lmf“Lq(B 2x[R2/2,R?]) = < CR™ ” | Af (é)||Lq(BR2"[R2/2'RZD
2(n+2)

(26)

-n+

=<CR ||eitAf||Lq(Bn+1)'

Now, by hypothesis,
”eitAf“Lq(Bm_l) < Clif e (rmy,

where p’ = , SO that

2(n+2
_p42nt2)

“eimf“Lq(BRZX[RZ/Z,RZD = CR " Wy
Thus, by Lemma (1. 2. 8)

2(n+2) 11
el = 7670

_ CR (1——)+£

If I army

I Il Laqmmy.
Finally we scale, so that

itA _2k Tl(l—z)—£+£
”e f||Lq(Rnx[2—k'2—k+1]) <C(C2 4R v 4 ”f”Lq(]Rn)
whenever supp f c B,kpWith k > 0. Summing, we see that

2
”eltAf”Lq(Rnx[O DS < CR" ( ) q+€||f||Lq(Rn)

whenever supp f < By, and the proof is completed with the standard Littlewood—Paley arguments.
We consider the local bound,

itA
||elt f”LZ([B%n'L’E[O,l]) < Cllf 1 ys(mny, @7
and the global bound,
itA
e £l g g0y < CslF sy =

Theorem (1.2.10) [46]: Let g, = 2. Then (27) holds for all s > s,if and only if (28) holds for all

18



>25,-n(3-2)+
Letting g = 2 and r = oo, we obtain Theorem (1.2.3). Letting g = r = 2, we see the equivalence up
to endpoints of the conservation of charge and the local smoothing theorem of Sjélin, Vega, and
Constantin and Saut, mentioned.

We will need the following lemma due to Lee.

Lemma (1.2.11)[46]: (See [31].) Let q,r = 2. Suppose that
”elmf”LZ(BR,L’;[o,R]) < CRENIf N2 ey,
whenever R > 1, and fis frequency supported in A™. Then for all € > 0,
||elmf||L?c(BR,L’E[o,R2]) < GRTEIf M 2 ey

By the standard Littlewood—Paley arguments and scaling, to prove Theorem (1.2.10), it will suffice
to prove the following theorem, where (ii) and (iii) correspond to (27) and (28), respectively.
Theorem (1.2.12) [46]: Let q,r = 2, and consider functions fwhich are frequency supported in
A™. Then the following bounds are equivalent:

(i) ||eitAf||LZ Gnziory S CRIfllz@mfor all R > 1and s > sq,

(i) lle®F 1l g gy urfo ey < CREIFllznyfor all R > 1and s > s,
(iii)||eifAf||LZ @ for]) S CR*||f |l 2gmfor all R > land s > s,.

Proof. By changing variables R — R'/Z in (iii), we see that (ii) and (iii) trivially imply (i). Thus, it
will suffice to show that (i) implies (ii) and (iii). Now, (i) implies (ii) is precisely the content of
Lemma (1.2.11). Similarly, by changing variables and letting po =p;, =2 and I =[0,R?] in
Lemma (1.2.8), we see that (i) implies (iii).
By the local result of Lee [11], mentioned, and Theorem (1.2.10) with gand rtaken to be 2 and oo,
respectively, we obtain the following corollary.
Corollary (1.2.13)[46]: For all s > 3/4, there exists a constant C,such that

< Cs”fHHS(RZ)-
L?(R?)
We note that as (28) cannot hold for any value of swhen g < 2 (see for example [25]), there can be
no such equivalence wheng < 2. Letting r = oo, we also see that the necessary conditions for (28)
to hold given in [25], are equivalent to the necessary conditions for (27) to hold given in [40].
The generalised Schrodinger equation, id,u + ¢(D)u = 0, where ¢(D)u = ¢(&)a(&)and $(&)is
real, has solution e*®(®) fwhich can be formally written as

eitd)(D)f(x):ff(g)ezmx-fﬂtd)(f)dg.

In the local case, Kenig, Ponce and Vega [9] showed that if there are at most N € N solutions to

sup |€ itAf|
0<t<1

G &0 X Errr e Gnm) =T (29)
forallé eR*" L, re R k=0,...,n—1,and
| ()

mﬁ C(1+ |&]%)%,

then for s > s,
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sup [e"¢)f| < Collf sy, (30)
0<t<1 L2(B™)
In the global case, Cowling [5] showed that if |¢p(&)| < C(1 + |&]?)%°, then for s > s,
sup |ei¢@)f| < Cllf l gs(wmy- (31)
0<t<1 L2(R™)

In particular, both these results hold for smooth ¢that are homogeneous of degree m > 1. The
injectivity condition (29) is fulfilled and
lp ()
1401691
so that (30) holds for all s > 1/2. On the other hand | ()] < C(1 + |€]?)™2, so that (31) holds
forall s > m/2.
For such ¢, these results are again equivalent. Indeed, for anygsatisfying |D%¢(¢)| <
Col&I™~19!, where |a| < 2, and [V (£)| = C51|E]™1, there is an equivalence.
We consider the local bound,

< C(l + |€|2)1/2,

||elt¢(D)f||LZ([Ban'L’£[0,1]) = Cs”f”HS(R")’ (52)
and the global bound,
||elt(p(D)f“LZ(Rn'L?tﬂ[O,l]) = Cs”f”HS(R")' (33)

By scaling, it will suffice to consider e*?r(®) fdefined by
eitd)R(D)f — ff(f)eZHix-f+tR_m¢(Rf)d€,

where ¢ = R™™¢(R -), fis supported in A"and t € [0, R™]. It is easy to see that |[D%¢pr(&)| <

ColéI™1eland |7 g (£)] = C51|E[™=1 for all R, so that |V (v;)| =~ |vy|™ .

Now, Lemma (1.2.6) generalises to ¢such that [D%¢(&)| < Col&|™19!for |a| < 2 (see [35]). The

2v;is replaced byV¢(v;), and the constants depend only on C,.

To prove versions of Lemmas (1.2.7) and (1.2.8) with e*®r(®)fin place of ei2f, only the

numerology changes. The important point is that the tubes make angles with the spatial plane which

are uniformly bounded away from zero, which we have insured by requiring that |V ¢ (£)] < C, for

all & e A™.

Lemma (1.2.11) can be similarly generalised. The important point there is that the tubes make

angles with the t-axis which are uniformly bounded away from zero, which we have insured by

requiring that |V ¢z (§)] = %Co‘l for all & € A™.

Thus, considering ffrequency supported in A", and q,r = 2, the following bounds are equivalent:
(i) ||eitd)R(D)f“LZ(BR,L’E[OvR]) < CRS”f”Lz(Rn)fOI’ allR » land s > s,

(ii) ”eltd)R(D)f“LZ(BR,L’E[Ova]) < CRS”f”Lz(Rn)fOI’ all R > land s > s,
iii) || e it 4R (D)
(i e e=®f ”LZ(R",L’E[o,Rm]) =
By scaling and the usual arguments of Littlewood and Paley, this yields the following theorem.

Theorem (1.2.14) [46]: Let q,r =>2. Suppose that|D¥¢(&)| < ColéI™ '®land |V¢(&)] =
Cyt1&I™ forall ¢ € R™\{0}, where |a| < 2andm > 1. Then (32) holds for all s > s,if and only if

CR™||fl 2(gmyfor all R > land s > s,.
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(33) holdsfor all s > ms, — (m — 1) (n (1 — i) — m).

2 r
A corollary of this and the generalised result of Lee [19], is that Corollary (1.2.13) also holds for the

generalised Schrddinger equation; where |[D%¢p(&)| < C|¢]?~1land |V¢p(€)| = C~I¢], and the
Hessian of ¢phas two nonzero eigenvalues of the same sign.

For completeness, we note that when m < 1, we no longer need Lemma (1.2.11), so that we have
the following theorem.

Theorem (1.2.15) [46]: Let g = 2and suppose that |D%¢p(&)| < Colé]™lfor all ¢ € R™\{0},
where |a| < 2and m < 1. Then (32) holds for all s > s,if and only if (33) holds for all s > s,,.
In particular, we consider ¢(&) = (2r|&])™so that ¢(D) = (—=A)™? with m € (0,1). The
conditions of Theorem (1.2.15) are fulfilled, and we see that global bounds are equivalent to local
bounds.
We consider the nonelliptic Schrédinger equation; where ¢is defined by ¢(§) = —4n2(§7 — &2 +
& % 2£7), and

¢(D) == 07, — 0%, £ 0%, £ - - *07 .
Note that the conditions of Theorem (1.2.14) are fulfilled with m = 2. Vargas, Vega and the author
[14] showed that, in this case, the bound of Kenig, Ponce and Vega is almost sharp, in the sense that

sup |e®f| < Csllf s mmy
0<t<1 L2(B™)

does not hold when s < 1/2.

Therefore, by Theorem (1.2.14), we see that the bound of Cowling is similarly sharp, and we state
this as a corollary.

Corollary (1.2.16) [46]: For all s > 1, there exists a constant C,such that

sup |eiof]| < Gllf s mmy,
0<t<1 L2(R™)

and this is not true when s < 1.

Theorem (1.2.9) also generalises to the nonelliptic case, so the well-known Stein—Tomas-Strichartz
estimate yields an almost sharp local smoothing estimate in the range g = 2 + 4/n. In two spatial
dimensions, by a restriction theorem independently due to Vargas [43] and Lee [35], we have the
result in the range g = 10/3.

Corollary (1.2.17) [210]. Let n = 1. If e > 0 and 4€% + 15€¢ > O, then (4) holds. If € > Oand

~+e=max{l/(2+¢€),1/2 — 1/(2 + €)}, then (3) holds.
Proof. By duality, it will suffice to show that

2

f et FO)W(X)dX| < Ciapgllfil?
H
R

2

”W”L(‘H'E),(R)

T+e ®)

for all positive w € L(*++ e)/(R), where the measurable function t maps into R when we are

considering the bound (4) and into (0,1) when we consider (3).
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By Fubini’s theorem and the Cauchy-Schwarz inequality, the left hand side of this inequality is

bounded by

2

f {1+ )2 de f f 27 (-t )y () dx dé
R R |R

(1 + [g)2G+o
Thus, by writing the squared integral as a double integral, it will suffice to show that

dg

2
W < Cpllw|] . (5)

L(2+€),(R)

fffe2ni(eE—(t(x)—t(x—E))EZ)W(x)W(x—e)dxd(X—6)
R R R

By Lemma 1, we have

e2mi(e §—(t()-t(x-€))8?) C
di| < ——=
f (1+ |§|)2(%+e) § le|—2€

when(1 — ¢€) takes values in R, and —X < € < 0, and by Lemmas 1 and 2, we have

1
4

e2mi(e E-(t()-t(x-€))&?) C
[,
(1+ [g)?E

= | € | max{2 (%+e),1—2 (%+E)}

when(e) takes values inO < € < 1 Thus, by Fubini’s theorem, the left hand side of (5) is bounded

by a constant multiple of

f WOOWK =€) 4 e — o)

29 |e|1—2(%+e)

in the first case, and

w()W(x — €)
ff | e]max{(1+2€) ~2€} dxd(x — €)
R R
In the second. Finally, by Hélder’s inequality and the Hardy-Littlewood-Sobolev inequality, these
are bounded by

w(x) g <C 2
W vy Tz X = (2+e)||W||L<z+e>’(R),
R

L(2+€) (R)

Where €2 + 2e¢ + 1 = 0 and € = 2 when we are considering the bound in (4), and

WL ey wix) X < Copro WP
L2+ (R) [x _.ImaX{Z(%+e)1—2(%+e)} = Y@ o (r)
R

L(2+€) (R)

Where 2+ € = max{1/(2 + €),1/2 — 1/(2+ €)} and (2+€) > 2 when we consider (3).
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in [21] due to Tao and Vargas, the following result is proved using bilinear restriction estimates.
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Chapter 2
Strichartz Estimates and Singular Continuous Spectrum
We consider the Schrodinger operatore'*® acting on initial datafin HS.We show that an affirmative
answer to a question of Carleson, concerning the sharp range of s forwhichltiig el f(x) =

f(x) a.e.x € R, would imply an affirmativeanswer to a question of Planchon, concerning the sharp
range of q and r for whiche'®® is bounded in L}(R", LE(R). We have shown that every kind of
absolutely continuous spectrum within a gap J of H can be generated by a self-adjoint extensionH™
ofH, cf. [61.

Section (2.1): The Schrodinger Maximal Operator
The Schrodinger equation, id,u + Au =0, in R™*!, with initial datum fin the Sobolev space
H*(R™), has solution ei*2 fwhich can be formally written as

e4f(x) = f f(@ermilxi-zmkiP)gg, 1
R

We define the dimensional or scaling relation s(q, )by

1 1 2
)=+

Stein [55], Tomas [58], Strichartz [56], Ginibre and Velo [47], and Keel and Tao [49] have all

played a role in proving the following theorem.

Theorem (2.1.1)[ 59 ]: [49] Let g € [2, ), 7 € [2,00]and s +§ < % Then
itA
e f“L’E(R,LZ(R")) < Cliflstan my:

The theorem is sharp in the sense that it is not true when g < 2,r <2, or s +§ > %.When q = o,

the estimate holds only occasionally (see [51,19]).
Changing the order of the integrals, the problem is more difficult. We will ignore the subtle
endpoint questions. In connection with his work on the cubic semilinear Schrodinger equation,
Planchon [52] asked whether the following is true:

Conjecture(2.1.2) [59] Let q € (Z(”H—“) oo] ,17 € [2,)and

n+1

a
||eitAf||LZ(Rn'L1tﬂ(R)) < C”f”HS(q,r)(Rn)-

In one spatial dimension, this had already been proven in the affirmative, including the endpoints,

by Kenig, Ponce and Vega [9, 23].

In higher dimensions, arguments originally due to Tao and Vargas [22] which were then refined by

Planchon [52] (see also [25]), can be combined with Tao’s bilinear restriction estimate [21] to yield

1
+-<Z Then
r 2

the conjecture in the range q > % When q > r, the endpoints can be included, and the key

bound follows from the original Stein~Tomas theorem (see [48,52,23]). Note that s(q,r)can be
negative in this range.

We will prove that the conjecture would follow from a positive resolution of a question of Carleson
concerning the sharp range of sfor which
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Iti_rj(')l e f(x) = f(x), ae.x €eR™ f e H(R").

By standard arguments, the convergence follows from the estimate

< Csllf Nl s mny, (A)
L3(B™)
where B™is the unit ball in R™. If we restrict time to a sequence, then the convergence and a
nonendpoint version of the maximal estimate are equivalent (see [54]).
Conjecture (2.1.3) [59] (A) holds for all s > 1/4.
In one spatial dimension, the convergence was originally proven by Carleson [4] via an L!-estimate,
and Kenig and Ruiz [10] showed that (A) holds for all s > 1/4. Dahlberg and Kenig [6] showed
that this is sharp in the sense that (A) cannot hold whens < 1/4.
In two spatial dimensions, significant contributions were made by Bourgain [1,2], Moyua et al. [12,
13], and Tao and Vargas [21 - 22]. The best known result is due to Lee [11] who showed that (A)
holds when s > 3/8.
In higher dimensions, significant contributions were made by Carbery [3] and Cowling [5]. The best
known result is independently due to Sjolin [15] and Vega [24] who showed that (A) holds when
s>1/2.
We rewrite estimate (A) as

sup |eitAf|
0<t<1

sup |eitAf|

0<t<1

S C||f||H1/4+K(]Rn)’ (AK)
L3(B™)

where k > 0, and define the dual exponents g,.and g, by
_n+1+8k n+1+ 8k
1+4k

Theorem (2.1.4) [59] Let g € (2g,, ©],7 € (2qL, ©)and % + g + 1 < Z. If (4,) holds,then

le 1l g am iy gy < EM Miastancany

Note that 2¢,.and ‘;—"both tend to Z(Tln—“)as ktends to zero. Comparing with Conjecture (2.1.2), we see

that (g, r)can approach the endpoint (2(”n+1) , oo);

Corollary (2.1.5)[59]: Conjecture(2.1.3)= Conjecture (2.1.3).
Combining the identityDfe? f = e!*2D2s fwith Sobolev embedding, Theorem (2.1.1) also yields
estimates for the maximal operator. Indeed, applying Holder to obtain localL?-bounds, we see that

A4a)=> ), K >n <1 — i) _ l

There is an improvement in regularity whenk > (n — 1)/8. Taking n = 2 and iterating, we can
suppress kto be arbitrarily close to 1/8, which recovers Lee’s result.

We see that a global version holds;

Corollary (2.1.6)[59]: Let ¢ > 16/5. Thenforall s > 1 — 2/q,

SUpleitAfl < CS”f”HS(]RZ)'

teR L9(R?)

Taking more care with the range of r, we will also improve Planchon’s estimate.

Theorem (2.1.7)[59]: Let n = 2. Then Conjecture 1 is true for g > 16/5.

25



To illustrate, this is a nonendpoint version of

||eitAf”L;G/S(RZ,L%G(]R)) < C||f||H1/4(R2)'
We follow the approach of Lee in that we adapt the proof of Tao’s bilinear theorem [21], rather than
applying the estimate directly.
Throughout, cand Cwill denote positive constants that may depend on the dimensions and
exponents of the Lebesgue spaces. The constants Cwill sometimes depend on the small parameters
g, 6and B, but never on the functions for g, and never on the large parameters Ror N. It will
occasionally be made explicit when they depend on other factors like the Sobolev index. Their
values may change from line to line. The following are notations that will be used frequently:

1/q

f, 1fCeorar” ax)

DS: the derivative defined byDSg (&) = (2r|&])sG (&)

H3(R™): the homogeneous Sobolev space with sderivatives in L2 (R")

HS (R™): the inhomogeneous Sobolev space with sderivatives in L2(R™)

B" = {x € R": |x] < 1}

Bi(Ne,) ={{ € R™|{ — Ney| < 1}

&;: a member of the lattice R~/2Z"

x,. a member of the lattice RY/27Z"

Ty = {(x,t) € R* x [0,R] : |x = (o, + 4nt€j)| < RV2}.

Qr :=[—-R/4,R/4] x ... x [-R/4,R/4]

Pr(l) :={(x,t) € R* x [R/2,R] : x — (IR/2 + 47ttN)e, € Qxr}

s(q,r) =n(1/2—-1/q) — 2/r

_n+l+ 8k

U ™= " ¥ ax

P a positive and smooth function, supported in B .

1j: a positive and smooth function, supported in B™, and equal to 1 at the origin.
The following lemma provides convenient estimates with which we will interpolate.
Lemma (2.1.8)[59]: Forall N » 1,r = 2, and f frequency supported in B;(Ne,),

||€itAf||L;°(Rn,L§(R)) < CNY\Ifll 2 wrny-

LL(R™, L7(I)): the Lebesgue space with norms( S

Proof.We suppose that n > 2; the 1-dimensional case was proven in [9]. By interpolation with the
trivial L*-estimate, we may also take r = 2. By writing the square as a double integral,

le®f @l ) = Jn | | r@ier et -v)agayar

R R"
so that, by an application of Fub|n|, and integrating in t,

it f@f ()

"”mhw-fszwﬂ“”

Writing |€]2 — |y|? = (£ +y) - (¢ — y), and recalllng that v, & € B;(Ne,), we see that
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FOf D) 4 If(E)f(y)|
f f TIeP — 44 = f f didy.
Thus, by the Hardy—thtIewood Sobolev inequality,
” lmf(x)“Lz(R) <CN~ L2n (R

and, as supp f  B;(Ne,), by Holder and Plancherel we complete the proof.

As in the arguments of Fefferman [30], Bourgain [26], Wolff [45], Tao [21], and Lee [11], we
decompose into wave-packets at scale R > 1.

Fix a positive and smooth function v, supported in B . such that

S i - R ) =1
where ¢; € R~27™. We also fix a positive and smooth function 7, supported in B™and equal to
one at the origin, so that by the Poisson summation formula,

2.1 (x =) =1

k
where x;, € RY27™. Now, for any Schwartz function fwe have the decompositions

GE Z £ = Z B (R2(5 - 6)) F). @
Fx) = 2 i) = Z (S @, ©)
Jk

Note that £}, is supported in the ball of radlus (vn + 1)R=Y2 with centre &;.
We recall the Hardy-L ittlewood maximal operator M : L},.(R™) — L,.(R") defined by

MFG) = sup o f Gy — )ldy.

For a proof of the following lemma see [21] or [35].
Lemma (2.1.9)[59]: Let t € [—R, R]. Then for all K € Nthere exist constants Cy, such that
-K
. |x — (x, + 4mté;
|elmfjk(x)| < CxMf;(x) (1 + (1’;1/2 ]|
We note that when ¢ € [0, R], the wave-packets e*“;, are essentially supported in the tubes T}, with
direction (4m¢;, 1)defined by
Tj = {(x, t) e R" x[0,R] : |x — (xk + 4nt€j)| < R“Z}.
We see that a translation of the frequency support of the data corresponds to an affine translation of
the essential supports of the wave-packets.
Similarly, for | € Z, we define parallelepipeds P (1)by
Pr(l) ={(x,t) e R* x [R/2,R] : x — (IR/2 + 4mtN)e, € Qx},
where Qgis the n-dimensional cube of side R/2, centred at the origin. Note that when ¢; €
B;(Ne,), the tubes and parallelepipeds point approximately in the same direction.
Definition (2.1.10)[59]: We say that E; and E, are 1-separated if they are measurable sets that
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satisfy

inf{l$; — &l : & €y, & € B} > 1/2.
The following lemma is a key ingredient. It allows us to deduce estimates on balls from estimates
restricted to parallelepipeds. We will see later that parallelepipeds are the natural domain on which
to attack the problem.

Lemma (2.1.11)[59]: Letr > g and a > % — % Suppose that
le®fe“gll,a,r(p oy < CRENIflIzNgll2

whenever R, N > 1, and f, § are supported on 1-separated subsets of B, (Ne;). Then
itA itA ENQ
le™f e gll a ou sriaramp < CRENIF NG

Proof.We decompose the solution into wave-packets at scale R,

eitAf - Z eitA]t}k.
j.k
Letting P,denote the short, fat tubes defined by
P, ={(x,t) e R" x [R/2,R] : |x — (IR/2 + 4mtN)e,| < 50R},

where [ € Z, we write

fi= Z fiie s

J kT jpNP#0

so that ei*“f,consists of the wave-packets that pass near to Pr(l). As the tubes and the
parallelepipeds point in essentially the same direction, a tube Tj.can intersect P, for at most a
constant number of [, so we note for later that

DMl <€ > el e
l

l j,kiTjknPl;t@

2
< 15l
ik

J
< ClIFI% gy,
and we will refer to this as almost orthogonality.
We consider the pointwise bound

leitaf| < |eitof| + Z elthf |, (4)
j,kiTjknPl;t@
and use the rapid decay to show that the last term is of negligible size on P (1).
Writing x = x — 4mtNe,, we have |x — (x; +4nt;)| = |x — x;lwhenever (x,t) € Pg({)and
Tix N P, = @, so by Lemma (2.1.9),
CRn/Z
eitAfjk ()| < CK,RK'/Z
jvk:TjknPl=® j=1 k:|9?—xk|2R
for all K" € N. Choosing K'sufficiently large, we see that for all K € N,
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CRn/Z

. Mf;(x
et (x)| < CkR7K Z _f’—(") (5)
. ¢ p |x — xk|2n
]vk:TjknPl=® j=1 k:|x-xy|2R
Writing ¥ = R™2(R~Y2-), by (2) we have
£l = e = £1, (6)
so that Mf;(x") = Mf;(x;)whenever |x’ — x;| < vnR'2. Now observe that
Mf;(xx) . -l ) _
2. o R\t gm) MG
k:|x—x|2R
< CMMf;(%), (7

so the error term is not only going to be small, but also square integrable. Substituting (6) and (7)
into (5),

e fi ()| < CkR™¥MM [y * f1(x),
Jk:T jpNP =0
and substituting this into (4), we see that for all K € N there exist Cisuch that
e ()| < [e2fi(x)| + CxR¥ MMy * f1(x — 4mtNe,)
whenever (x,t) € Pr(1).
We use these pointwise bounds on parallelepipeds, to obtain an L9(Qg, Ly[R/2, R])bound. Fix a
large Kand define Lf(x,t) := R-XMM[yy * f](x — 4ntNe;). We also write Pz(1):= Qg X
[R/72,R] n Px(1), so that by concavity

“eltAfeltAg“Lq(QR LE[R/2.R])
< Z e fettg ||ZgL;(ﬁR(l>)
l
<2 > el + L) (e gl + L fasy 5.0
l

<G’ Z”"’Mﬁ"’imgl”Z‘;L’;(ﬁRa)) +lLre il )

+||€ltAfng||Lqu(P (l)) ”Lf Lg”LqLT(P (l)) (8)
Now, by two applications of Holder,
1 1
En U ommtarmrny < R 7 2 WA o

1 1
nq ——= e
= CR q (Z”Lf”LZ’”LZ’”(PR(l))>

By summing up, applying Fubini and making an affine change of variables,
Z“Lf”LZTLZ’”(P ) S CRTEHIM M *f]”LZ’”(R")
< CR 2TK+1||]¢'| LZT(RTL),

where the second inequality is by the Hardy-L.ittlewood maximal theorem and Young’s inequality.
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As fis supported in B;(Ne,), together with Bernstein’s inequality, these estimates yield
1 1
2 —qk G5 2q
S ULF I oy < CREN TG FI
l

We have the same inequality for g, so that, by two applications of Cauchy—Schwarz,

11

ILF Lol sy < CR-EN G,
On the other hand, by Holder and Lemma (2.1.8),
e fillzo ooy = CRZNE ™ All e unnny

< CRaN | fil,.
Thus, by two applications of Cauchy-Schwarz,

' _gk 4t 1 ; 2
Z”eltAﬁLg“ZZLTE(PR(l)) <(CR = NZ(q r) (Z||eltAfl||quL%r(pR(l))>
- l

- 1/2
_aK (i1
< CR EnG) (ZIIﬁIIﬁ") lgll3
l

_aK g(:-1
< cr SN @ ngne,
where in the third inequality we have used convexity and the almost orthogonality derived earlier.
Similarly, we have

1/2

lglld

. _gK 11
3 L gl < CR 5N ENAINgI.
l

Finally, by spatial translation invariance and the hypothesis,
”eimfleimgl”LZL?E(pR(l)) < CREN“|Ifill 11 gull2,
so that, by Cauchy-Schwarz,

1/2 1/2
. ; q 2
Sl = oY) (o)
l l l

< CREN|IfIIZllgll3,
again using convexity and the almost orthogonality.
Comparing the terms in (8), we see that
le® e gl 0 o, criarany < REN“IFN2llgllz,
and we are done.
The following mixed norm ‘epsilon removal’ lemma is due to Lee and Vargas [50] (see also [2,57]).
In their work, the spatial integral is evaluated before the temporal integral and as such the estimates

are invariant under translation on the frequency side. A careful reading of the proof reveals that only

small changes are required to reverse the order.

Lemma (2.1.12)[59]: Suppose that for all ¢ > Oand a > -2

do To

et fe gl au g, roparan < CeaNlfLllgll

whenever R, N > 1, and f, § are supported on 1-separated subsets of B;(Ne,). Then provided that
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g>@,q(1—%)>q0(1—%),and05>1—1,

r To q r

||eitAfeitAg||Ll}CL1tﬂ(Rn+1) S Cq,r,aNallf”Z”g”Z-

Proof.The proof is the same as that of Lemma 4.4 and Remark 4.5 in [50], with the following
changes:
The measures do;are replaced by the canonical pull-back measure on

{(§, —2r|¢]?) e R*™*: & € Bi(Ney)}
which we denote byday. By a well-known calculation,

_ , v
|d0N(X, t)| = |et® (XBl(N31)) (x)| < C(1+ |x — 4mtNey| + |¢[)7/2

< CN™2(1+ |x| + [¢])~™2.

We replace the estimate
le“fe gl a0,r0 gy < CeRNf 2 llgllz
for all n + 1 dimensional cubes Qof side length R/2, by
le“fe®gll 00,70 gy < CoaR°N I lI2lgll2(9)

forall a > qi — ri which follows from the hypothesis and translation invariance. The estimate
0 0

itA itA
le®**fegll o1 (gnesy < 1Nl
is replaced with
le™f e gll e,y gmrsy < CNTHIF I 2qaeny g 2y

= CN="1]Ifll;llgll2, (10)
Which follows by Cauchy-Schwarz from Lemma (2.1.8). The third interpolation point is unchanged

“eitAfeitAg”L%oLgco(RnH) < Clifll:llgll2

= CN="=||fll,llgll,. (11)
Interpolating between (9), (10), and (11), we note that

ag :=0ay,+ (1 —0)a,

29<i—i)+(1—9)<qi—3)

qo 7o 1 N
<9 1—9) <9 1—9)
=|—+ —(—+
qo q1 To 6]
_1 1
Qo To

so that the powers of Nbehave as desired.

We will require a version of the previous lemma for dealing with nonsharp powers of N. Note that
the interpolation points with g = coof the previous proof are a-improving so that the following
lemma follows in the same way.

Lemma (2.1.13)[59]: Suppose that for some «a, > Oand for all ¢ > 0,

itA itA
le“fe“all 000, rotmranyy = CeRENNF N llglz

wheneverR, N > 1, andf, Gare supported onl-separated subsets ofB,(Ne,). Then provided thatg >
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a2 e
||eimfeitAg||LZL¥(Rn+1) < CaraNlf 2Nl gll.

By the globalizing lemmas, it will suffice to prove local estimates.
Definition (2.1.14)[59]: Let R*(2 x 2 - q,r, a, B)denote the estimate

||eitAfeitA'g||LZLr(PR) < CREN*||fll,llgll,

t
whenever R, N > 1, f, Gare supported on 1-separated subsets of B;(Ne,), and Pis a parallelepiped
of side R/2 and direction (47Ne,,1).
Recall the notional estimate

sup |€itAf| < C||f||H1/4+x, (AK)
0<t<1 L%(B™)
and the dual exponents g,and g, defined by
n+1+ 8k , _n+1+38k
U= "0+ ax andq, = 1+ 4k
Theorem (2.1.15)[59]: Suppose that(4,)holds. Then for allg > q,,r > g.anda > :—,,C - %

||€imfeimg“Lgyg(R”,L’;(R)) < C.NeIfll2lgll2

wheneverN > 1, andf, gare supported on 1-separated subsets ofB; (Ne, ).

Proof.As fis frequency supported in B;(Ne,), it is easy to calculate that the temporal Fourier
transform of e‘*2 fis supported in an interval of length CN. Similarly this is true for e®*2fe't2g, so
that by Bernstein’s inequality,

. : iz .
||eLtAfeltAg||L¥(R) < CNvr r||eltAfeltAg||tho(R)-

Thus, by Lemmas (2.1.11) and (2.1.13), it will be enough to show that

n 1
le2fe gl o ar . < CpRENG acllfll,llgll (12)
Ly Lt (PR)
whenever R > 1,8 > 0, and Pyis of side R/2 and direction (47Ne,,1).

We proceed by induction on scales. As Pgis contained in a cuboid, with long side 4rRN, and short
side R, by Hélder,

1 1
”eitAfeitAg” ) < C(RnN)E_E”eitAfeimg”

1 1

< C(R"N) ax||fll,llgll.
where the second inequality is by Cauchy-Schwarz, Fubini, and the linear Strichartz estimates of
Theorem (2.1.11). Thus we have R*(2 x 2 = q,, q,., (n — 1)/q,., B)for some large B. In fact we
have a better power of ahere than the (n — 1)/g,.that we get in the induction step. From now on we
denote (n — 1)/q;.bya,. It will suffice to prove
R*(2%x2- qy,qr, e, B) = R* (2% 2 > qy, g, @, max{(1 — 8)B,cb} + ¢)
for all §ande > O, where cis independent of §and &, as (12)would follow by iteration.
First we consider the problem when the frequency supports are close to the origin. We define fand

ghy

/ /
LZKL;]K(PR L‘}CK'LZK'(RTL+1)

f = (€ — Ney)and§ = (¢ — Ney),
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and we break up the solutions into wave-packets at scale R, so that
eitAf — Z eitAfjk andeimg” — Z eitAgjk _
jik jik

Recall that the wave-packets e‘t? fjkare essentially supported on tubes Tjk, and we denote the tubes
associated to e’ g, byT},.We also cover the cube Q x [R/2,R] by cubes P € Pof side R*~°. The
following orthogonality lemma is the key ingredient of Tao’s bilinear restriction theorem.
Lemma (2.1.16)[59]: [21] There exists a relationship ~between tubes Tj; and cubes P such that,
for all tubes Ty,

# {PeP: Ty, ~ P} <CR?, (13)
and for a constant ¢ independent of§ande,

o o s-n—1

Yo )| D et < CRTCTE I f NI Ngll
Tjk~P Tjic+P 12(P)
and

o ] _n-1
> )| D et < CRTCTE I f Il Ng

T ip+P T! +P -
jk jk LZ(P)

see [21] for the precise definition of the relation ~. It can be thought of as saying that the wave-
packets are concentrated on the cubes.

As a translation of the frequency supports corresponds to an affine translation of the spatial support,
returning to the original problem, we can suppose that Pgis the affine translation of Qi < [R/
2, R]under the mapping x; — x; + 4mtNe,. We cover this by parallelepipeds P € Pthat correspond
to the cubes Punder the same affine translation. Similarly we break up the solutions into wave-
packets with associated tubes Tj,and Tj,, that correspond to Tj.and T, under the affine translation.
Thus, we have the induced relation T;;, ~ Pif Tj; ~ P.

As we have covered Pzby smaller parallelepipeds P, by the triangle inequality, it will suffice to
show

Z Z eitAfjk Z eitAgjk < CﬁRmaX{(1_5)B'C5}+£NaK”f”z”9”2-
P ik 1Lk p)
By the triangle inequality again, it will suffice to bound the ‘local’ part,
ST e 3 e
PEP Tjx~P Tj'k~P LZKL?'IC(P)
and the ‘global’ parts,
ST e (T o))
PeP || \Tjx~P Tj'kobP L?C"Lg’,‘(P)
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itA itA
E E e fjk E e Jjk ,
PEP T ig*P Tl ~p ’
J jk LZK’L?KZ(P)
itA itA
E E e fjk E e Jjk
PEP T ix+P T! P /
J jk LZK’L?KZ(P)

To bound the local part, we simply invoke the induction hypothesis;

Z Z eitAf}k Z eitAgjk

PeP Tjk~P T.’kqu

Y LZ"L?"C(P)
<y erone 5l |5 on
PEP Tj~P 2 Tj'k*P 5
5. 1/2 P
scromes( S5l | (5[5 0
PeP Tjk~P P PeP Tj’kqu )

< CRU=DB*eNa||f ]|, llgll,
where the second inequality is by Cauchy-Schwarz, and the third by (13) and almost orthogonality.
This bound is acceptable.
Considering the first global part, by Fubini and the affine change of variables x; = x; + 4ntNe,,
followed by Lemma (2.1.16), we have

' , _n—1
Y oen )| D ety < CRTTTUf Mgl (14)

T i,~P T 4P
jk
Jk L3L%(P)

On the other hand, by scaling and the hypothesis,

Z eitA]t}k SC(RN2)1/4+K Z f;’k
Tjk=P L%L¥ (BNR) Tir=P

< CRN)Y*|If]l,.

2

Similarly
i, < CRNHV*gll,
Tjk*P L%L¥ (BNR)
so that by Cauchy-Schwarz,
> oep )| D ety < CRNDY 2| £l gl (15)
T jk~P Tjic+P LI (P)

Interpolating between (14) and (15), using Holder, gives
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Yoemp )| D ey < CRENf gl
Tjx~P Tj’k"”P L?CKthb,C(P)
so that, by summing,

DD et || D egn < CREm D8N || £, |l

LA 1Lk p)

which is acceptable. The other two global parts are bounded in the same way, which completes the
proof.

We now pass to the unconditional result in which the powers of Nare improved. we will see that
this improvement allows us to obtain the almost optimal range of rin Theorem (2.1.15). A
refinement of Lemma (2.1.12), which preserved the precise powers of N, would allow ato equal

1/q — 1/rin the following.

Theorem (2.1.17)[59]: Suppose that q € (g,g)and % + % < 3. Thenfor all @ > i -3

T
||€imf€im9“Lg(RZ,L’;(R)) < CeNlIfll2llgll;

wheneverN > 1, andf, gare supported onl-separated subsetsofB; (Ne,).
Proof.Combining the bilinear theorem of Tao [28] with Bernstein’s inequality as before, we see that

11
”elmfelmg||LZ(R2'L,E(R)) < CNa7lIfll;llgll; (16)

for all r > g > 5/3. Now, by interpolation combined with Lemmas (2.1.11) and (2.1.12), it will
suffice to show that

le™fe“gll,ors ) < CRENYEIfIIz g
whenever R » 1,8 > 0, and Pzhas side R/2 and direction (4nNe,, 1).
Again, we proceed by induction on scales. As Pgis contained in a cuboid, with long side
AmRN, and short side R, by Holder,
”eimfeimg”LilsL%(PR) < C(RZN)1/8”eimfeimg”Li/SL%(RZH)a
so that by (16), we have
lef et gl ors 2,y < CR2NIVEIF NI Ng .

We see that R*(2 x 2 —» 8/5,2,1/8, B)holds for a large 8. Therefore, by iterating,it will suffice to
prove that
R*(2x2-8/5,2,1/8,8) = R*(2x 2 - 8/5,2,1/8, max{(1 — §)B,c6} + €)
for all 6and € > 0, where the constant cis independent of §and «.
As before, we cover Pyby smaller parallelepipeds P, so that it will suffice to bound the local

itA itA
> e )| 2 el

PEP T i,~P T! ~p
Jk 8/5
Jk Ly "LF(P)

which is dealt with via the induction hypothesis, and the global parts of type
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itA itA
> i )| 2 e

PEP Ti~P T! +P
jk 8/5
Jk Ly "LZ(P)

By Holder, followed by Fubini and the affine change of variables x; — x; + 4ntNe,,

e itA]t}k Z e itAgjk
TP Tjic*P L¥512(p)
< (RZN)1/8 Z eitA]l;k Z eitAgjk ,
Tji~P Tj*P 2(p)
so that by Lemma (2.1.16),
D etthi || D ety < CRNNf L gL,
Tjk~P Tj’k’*P Li/SL%(P)
where the constant cis independent of §and €. Summing, this yields
Z eitAfjk Z eitAgjk < CR(C+3)5+£N1/8||]C||2||g||2,
PEPII\Tji=P Tjie*P 18/512(p)
which is acceptable. The other two global parts are bounded in the same way, which completes the

proof.
The following lemma is a simple consequence of the Littlewood—Paley inequality (see [24]). Let
9 € ¢ (R)and ¢ = 9(27x]| - |?)satisfy

Z 9(47*|-)=1 and Z dQ7k D=1

k=—c0 k=—c0

Defining fi,byf, = ¢(27%| - |)f, it can be calculated that

(st ) @) © = e
Lemma (2.1.18)[59]: Let g € [2,c0]and r € [2,0). Then

. 2 ' 2
o g ) < € 2, 1Al
k=—o0

We are now in a position to prove the linear estimates. There are two types of restriction on r; those
which come from the restriction on rin the bilinear theorem are generally less restrictive than those
related to the power of N.

Theorem (2.1.19)[59]: Let g € (2g,, 1,7 € (2¢L, »)and % + g + l <. If (4,) holds,then
||€itAf||LZ(Rn'L1E(R)) < Clif llgstam (mny-
Proof.By scaling and Lemma (2.1.18), it will suffice to prove that
el sy < Cl iz camy

whenever fis supported in {1/2 < |&| < 1}. In order to apply our bilinear theorem, we square the
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integral, so that
itA £||? — ||pitA £ pitA
”elt f||LZL’E(Rn+1) - ”elt f e’ f”LZ/ZL’;/Z(Rn"'l)'
Now, for each j € N we can break up the support of finto dyadic cubes r,{of side2~/. We write
1] ~ ©),if jand 7/, have adjacent parents, but are not adjacent.Writing £ = ¥, £/, where £/ =
fx ;+ e have
Tk

et f(x)e f(x) = fff(g)f(y)ezﬂi(X'(f+y)—2ﬂt(IEIZ+IyI2))dgcdy
= > [ [ R @pmemammmtitateg,

j,k,k’:‘t{(vti,

— Z eitAfkf(x)eitAfkf, (x).

AEI ) B |
j.k.k Ty ‘L'k

By the triangle inequality, we see that
ith £||? ith £J ith £J
”elt f”L‘}CL’{(]R{"“) < Z ”elt fk (x)e k’(x)”LZ/ZL’;/Z(R”“)'

A B |
j.k.k Ty ‘L'k

Now, scaling out, applying Theorem (2.1.15) taking into account the rotational symmetry, then
scaling in again, we see that

”eimf”i%(RnH)SCa Z 2—1’(n_

A B |
j.k.k Ty ‘L'k

2

n 4 . .
2N e I

for all a > :—,,C — % where g > 2q,.and r > 2q/..

Finally, as supp £/, supp fkj, C supp fkj,TZ for some k"', we have
. . 5
D IR a2y = Py,
k,k’:‘tivri
and the sum in jconverges by hypothesis, which completes the proof.
Observe that if the power of Nin the bilinear estimate was improved to a« > 1/q — 1/r, then we

would obtain the almost sharp restriction, nT“+%<§, in thelinear estimates. We state this

formally.
Definition (2.1.20)[59]: Let R*(2 x 2 — g, r)denote the estimate

e e gl g sy < CaN“IIf Nalgllz
whenever N > 1, a > % - % and f, gare supported on 1-separated subsets of B, (Ne, ).
Definition (2.1.21)[59]: Let R*(2 — g, r)denote the estimate
itA
le! f||Lg(Rn,L’;(R)) < Clf Mz rmy
whenever fis supported in {1/2 < |&] < 1}.
Lemma (2.1.22)[59]: LetnT+1 + % < % Then R* (2 x2 - %g) = R*(2 - q,7).
It remains to prove Theorem (2.1.7). By scaling and Lemma (2.1.18), it suffices to consider
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functions with frequency support in the unit annulus. Combining Theorem (2.1.17) with Lemma
(2.1.22), we note that the condition 8/q + 2/r < 3 that comes from the former is less restrictive
than 3/q + 1/r < 1 which comes from the latter, and we are done

Section (2.2): Self-adjoint Extensions and Singular Continuous Spectrum:

In [66] and [68] by Friedrichs and Krein it has been shown that every closed symmetric operator H
in a Hilbert £ space with gap J has a self-adjoint extension H such that J is contained in the
resolvent set of A; an open interval (a,b) is called a gap of H if

”(H_a;b)f”gbz;a”f”, fE€DH), if —co<a<bhb<o,

(Hf,f) 2 blIfIIZ, fEDH), if—co=a<bhb<om.

Moreover Krein has found that if in addition H has finite deficiency indices (n, n), then within the
gap J the spectrum of every self-adjoint extension consists of a finite number of eigenvalues such
that the sum of their multiplicities does not exceed n, cf. [68], Conversely, if {1;}j_;,1 = s < oo, is
an arbitrary sequence of points of / and {p;};-, is an arbitrary sequence of positive integers obeying
X7_1p;j = n, then there exists a self-adjoint extension H of H such that within the gap J the spectrum
of H coincides with the points A; which are eigenvalues of multiplicityp;,1 = j = s[68], So the
problem which spectrum can the self-adjoint extensions have within the gap is completely solved
for finite deficiency indices.

In [62, 63, 64] and [69] an attempt was made to extend these results to the case of infinite
deficiency indices. It turned out that Theorem 23 of [68] has a straightforward generalization. Let #
be a countable set within the gap J and let p: # = N U (IV;) be an arbitrary function. Then there
exists a self-adjoint extension Hof H such that ap(ﬁ) N J = #, the multiplicity of each eigenvalue

A € # equals p(1) and no point of the gap J belongs to the continuous spectrum of H. In other
words, any pure point spectrum can be generated within the gap / by choosing an appropriate
extension. Here o, (-) denotes the set of eigenvalues of an operator.

However, provided the deficiency indices of H are infinite it seems naturally to believe that other
kinds of spectra (singular and absolutely continuous spectra) can arise within the gap /. In fact, for a
large class of operators H, including all symmetric operators with infinite deficiency indices and
compact resolvent, we have shown that every kind of absolutely continuous spectrum within a gap /
of H can be generated by a self-adjoint extensionH of H, cf. [61. we shall show that a symmetric
operator with infinite deficiency indices and some gap has self-adjoint extensions with non-empty
singular continuous spectrum.

Theorem (2.2.1) [70]: (A. Gordon [67]; R. del Rio, N. Makarov, B. Simon [65], Theorem 3) Let A
be a self-adjoint operator and g a cyclic vector of A. Then the set{a € R: A + a(g,)go(4) has no
eigenvaue in o(A4)}is a dense Gg subset of R.

we shall give a proof of the existence of the auxiliary operator H,,,,, which is more simple and much
shorter than our original proof in [62]. Moreover we shall need the mentioned result by A. Gordon
and by R. del Rio, N. Makarov and B. Simon only in a very special case. Instead to show that this
result can be used in our situation we shall give a short direct proof that the operator H, has the
required spectral properties.

In our very special case we get absence of eigenvalues in J, N J even for everya €=+ 0.
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Finally we mention that Theorem (2.2.3) allow only to generate so-called “fat” singular continuous
spectrum by extensions, i.e., singular continuous spectrum which coincides with the closure of its
inner points. For spectrum which does not have this property (so-called “thin” spectrum) we cannot
make any conclusions, we cannot generate singular continuous spectrum which is a Cantor set. The
problem is that for thin sets the used proof technique does not allow to decide whether the generated
spectrum is really singular continuous or results from the closure of the discrete spectrum which is
outside the thin set.
Lemma (2.2.2) [70] Let H be a symmetric operator in some separable Hilbert space 4. Let b he a
strictly positive real number and /] = (—b,b) or | = (—oo,b). Suppose that J is a gap of H. For
everyl € JletP;:ker(H*) - ker(H* — 1) be the mapping given by

Prf = Prerr-nyf f € ker(H"), (17)

where P, denote the orthogonal projection in £ onto the subspace €. Then for everyA € J the

mapping P; is bijective and

Il = il g € rancey) 1®)

when J = (=b, b) and

b E}g € ran(Py), (19)

P gl < max—— =
When | = (=, b).

Proof. Since J is a gap of H the symmetric operator H has a self-adjoint extension H such that J N

a(ﬁ) = @, e.g., the Friedericsh and the Krein extension of H in the case when ] = (—o,b) and | =

(—b, b), respectively. Note that

| FaEwr9 =0
J
for all f, g € £ and every Borel-measurable function F where {E (t)};cg denotes the spectral family

of the self-adjoint operator H.
Let A €]. Let f € ker(H*) = rank(H)*, f # 0 and g € D(H). We have

(A =2)"7, (1= Dg) = [ =€~ DAEOF.9) = [ taE©F.9) = (1, Hg) = 0
Thus f: A(A — 1) f € ran(H — 2)* ker(H* — ) and consequently we have
fR\ t/(t — D)A|E@®)fI?

2 1/2°
(o, (/= D) alE@F11?]

THE (i f) -

. (20)
I£1l

Since
b t b
< <
b+ Al “t—2"b—|A|’
when J = (=b, b) and

teRNJ,

b }< ‘< {1 b }tER
bAoA m by tER

when | = (—oo, b) this implies that

min{l
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b—1al
1P fIl 2

2 o 12D

and
by fil 2 DL DD = D}
max{1,b/(b — 1)}
when J = (=b, b) and ] = (—o0, b), respectively. Thus P; is invertible and (18) and (19) hold.
By (21) and (22) the operator P, has a trivial kernel and a range. Hence it remains to show that f €
ker(H* — 1) and (f, h) = O for each h € ker(H*)yields f = 0. Since
D(H*) = D(H) + ker(H*),

we obtain elements g € ker(H*) such that f = g + k. ByH*f = Af and (f,h) =0, h € ker(H"),
we find H*f € ran(H). Hence one gets H*f = H, € ran(H). However, this yields g € D(H).
Using that we obtain.

(22)

(H-21g = Ak.
Since k € ker(H*) we have
(Hg,(H—A)g) = lHgll> — A(Hg,g) =0
which implies
IHgll = |Alllgll
Let || < b. Since bllgll < ||H, || we immediately find.
bllgll = lIHgll = 12llIg]

which proves g = 0. If A = —b, then the result is obvious. Therefore k = 0 and f = 0.
Theorem (2.2.3) [70]: Let H be a symmetric operator in some Hilbert space #. Suppose that the
operator H has some gap J and infinite deficiency indices. Let J, be any open subset of /. Then H
has a seif-adjoint extension H with the following properties:

o (H)n] =0.(H)NnjynJ.

aac(l:f) nj=a.

H has no eigenvalue in J, N J.
Here o, 0,., 0, and o,,s denote the spectrum, the absolutely continuous, the singular continuous
and the essential spectrum, respectively. S denotes the closure of the set S.
Without loss of generality we assume O € J. First one constructs an auxiliary invertible self-adjoint
extension H,,,, of H such that H,,, has pure point spectrum within the gap J of H, the eigenvalues
of H,,,,, within J are simple and form a dense subset of J,. Then one chooses a vector g € ran(H)*
such that (g,e) # O for every eigenvector e of H,,, corresponding to an eigenvalue in J and shows
that the operator Hz,L, + a(g,)g is invertible and its inverse H, is a seif-adjoint extension of H for
every real number a. Finally one proves that for everya in some dense Gg-subset of R the operator
H,, has the required spectral properties. This easily follows from the following recent result by A.
Gordon resp. by R. del Rio, N. Makarov and B. Simon.
Proof.Since H has a self-adjoint extension A such that the gap J is contained in the resolvent set of
H the theorem is true (with H = H) in the special case when J, = @. Moreover we may assume that
J = (=b,b) or ] = (—o0, b) for some strictly positive real numberb.
It suffices to show that there exists a self-adjoint extension H of H such that o,.(H) nJ =], N

Jooac(H)nJ =9 and H has no eigenvalue in J, nJ. In fact, then on the one hand everyA € J,
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belongs to the singular continuous spectrum of H and consequently we have J, N a,.(H), on the
other hand we have o, (H) < a,s(H) and consequentlya,.(H) nJ < Jp.
We chose any square summable sequence {a,,},,en Of numbers such that «,, # 0 for everyn € N and
any sequence {n,}nen in Jo == {1/t:t € J,,t # O} such that n,, # n,,, for n # m and for everyn €
Jot

17, — 1l < la,[(23)
for infinitely manyn € N.
Such sequences always exist. For instance we start with a partion T; of the real axis into intervals

[k, k + 1),k € Z. Dividing the intervals [k, k + 1) into two intervals [k, k + %) and [k + i k+1)

into two subintervals of half length we get a further partions I';. Repeating this procedure again and
we obtain a sequence of partions {I}};cy. Choosing now from the intersection of J;1 with the
intervals of the partion I, provided this intersection is not empty, points we get for each [ € N a
sequence of points {n;,},cz. Obviously all those points 7,,,, can be chosen different from each
other. Making a suitable renumeration of the sequence {1, };enmez We find the desired sequence
{nn}nen Of J5 .
For notational brevity we put 4,, := 1/n,, and p,, := P, for every n € N where for everyA € ] the
linear mapping P;: ker(H*) — ker(H* — A1) is given by (17).
We choose anye; € ker(H* —A;) such that|le;|| =1. Letn € Nand suppose that e; €
ker(H* — /1]-), 1 = j = n, have been chosen. Then we choose anye,,,; € ker(H* — ;) such that
llens11l =1,
en+1 L €, en+1 L pj_lej,
pr:-ll-len+1 1 Pj_lej Prnii€n+1 L €;
1=j=n. Since, by Lemma (2.2.2), for everyA € J the linear mapping P, is bijective and
consequently the space ker(H* — A1) is infinite dimensional each of these choices is possible. we
get, by induction, an orthonormal system {e,, },cn With the following properties:
e, € ker(H* —1,), mne€N, (24)
(gn  gm) = 0= (gn en)forn + m(25)
where
Jn =Dpnle,, ne€EN, (26)

Next we shall show that there exists an auxiliary self-adjoint extensions H,,, of H with the
following properties:

(1 H .., has a pure point spectrum within J.

(i) A, is a simple eigenvalue of H,,,,, and e,, a corresponding eigenvctor for everyn € N.

(i)  0p(Haux) NJ ={A,:n € N}
Since {1,;:n € N} is a dense subset of ], and 1,, # O for everyn € N it follows from (i) and (iii) that
such an operator also satisfies

(V) Oess(Haux) N =Jo N J.

(V) H g, 1S invertible.
We denote by#, the closure of the span of the span of {e,:n € N} and byM the self-adjoint
operator in the Hilbert space £, given by
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D(M) = {Z Buen Z(1+/12)Iﬁnlz < oo}
MZﬁn Zlnﬁn en, Z(1+/12)|ﬁn|2<oo

Obviously the operator M has a pure pomt spectrum, An is a simple eigenvlaue of M and e, a
corresponding eigenvector for everyn € N.
o,(M) = {A,:n € N}

and

(Mf,f) = blIfII?,  f € DM)(27)
in the case when ] = (—o0, b) and

IMfIl = blIfll,  f € D(M),
in the case when J = (=b, b).
M s a restriction of H*since e, € ker(H* — A,,) for everyn € N and H* is a closed operator. Thus
we can define an extension H' of H by
D(H') =D(H)+ D(M), H'g:=H*g, g€ D(H').

A short computation shows that H' is a symmetric operator.
Let f € D(H'). For everyn € N we have

(H'f,e,) — (f,Me,) = 1,(f, e,).
Thus

D RIF. el = [[Pay ] < o
n=1

Hence P, f € D(M). For everyn € N we have

(P, H'f,en) = (f,Mey) = (MP, f, e,)
Thus
Py H'f = MP, f, f € D(H).
This implies that the operator H' can be written in the form

= M6601
where the symmetric operator G, in the Hilbert space 43 is given by
Go = H|D(H’)rmL

We shall show by contradiction that the gap J of H is also a gap of G,. We shall give the proof for
J = (—o0, b). The proof in the other case is virtually the same. Suppose that
(Gof.f) < blIfII*(28)
for some f € D(G,). We choose g € D(H) and h € D(M) such that f = g + h. Then we have
(Hg,g) = (H'(f —h),f —h) = (Gof, f) + (Mh, h) < blIf|I* + blIR|I> = blIf — RII*> = blIgllI*.

Here we have used that H' = M@G,, as well as our assumption (27) and (28). Thus the assumption
(28) leads to a contradiction to the hypothesis that (—oo, b) is a gap of H. Thus J is also a gap of G,,.

Since J is a gap of symmetric operator G, in £ there exists a self-adjoint operator G in A3
such that G, ¢ G and o(G) N J = @. We put

Hy = M®G.
ObviouslyH,,,, has the required properties.
42



We put

[0¢]

g Z o, In
" lgall’
n=1

where the g,,n € N, are given by (26) and the «,,,n € N, are any numbers different from zero such
that the sequence {a,},en IS Square summabe (23) holds. Since, by (25), {9,/1lgn|l}nen is an
orthonormal system the series converges and g is well-defined. Since g,, € ker(H*) for everyn € N
and ker(H*) is closed we have that g € ker(H*).
Obviouslyg # 0.
we choose anya € R, a # 0. Since along with H,,,, also the inverse Hz,L, of H,,,, is a self-adjoint
operator and a € R, a #. Since along with H,,, also the inverse Hjl, of H,,, a self-adjoint
operator and a(g, .) is a bounded self-adjoint operator the sum H;l, + a(g,.)g is also self-adjoint.
Let h € D(HZ1L,) be such that
Hzl.h+a(g,h)g = 0.
Then (g,h)g € ran(H;L,) = D(H,,,). If g would be in D(H,,,) then we would have H,,,g =
H*g = 0 with is impossible since H,,, is invertible. Thus we have (g,h) = 0. It follows that
HzL.h = 0 which implies that h = 0. Thus we have shown that the operator H;l, + a(g,)g is
invertible. Along with this operator also it’s inverse
H = (Hgy + a(g)g)™?
is self-adjoint
Let h € D(H™!) = ran(H). Since H c H,,, and g € ker(H*) = ran(H)* we have that H=1h =
H;L.h = H 'h. Thus H is a self-adjoint extension of H. Since the resolvent difference H~* — H_L,
of the self-ajoint operator H and Hy,, is nuclear we have that o, (H) = 04 (Hay) and opgs(H) =
Opss (Hgyy ). In particular, we have
oo (H)N] =0, oaus(H)nj=Jon]J.
Thus we have only to show that A has no eigenvalue in J, N J.
The point zero is not an eigenvalue of H since H is invertible. Let 1 € J, nJ and A # 0. We have
only to show that 5 := 1/ is not an eigenvalue of 1. Let h € D(H~) = D(HzL,) and
H*h=H;Lh+ a(g, h)g = nh.
By taking the scalar product with e,, we get from the last realtion that

an
nn(en, h) + alg, h)m =n(ey, h)

for everyn € N. Thus we have
|ay |

[ —llen, hl = la(g, PI o "€ N. (29)
By (23), there exists a subsequence {Tlnj}, y of {n,}en Such that
JE
|77nj - 77| < anj’ ] E N (30)
By (18) resp. (19) in the Lemma (2.2.2) and (26) there exists a finite constant ¢ such that
|gn|| < jen. (31)

Since ¥%_,le,, hl? = ||P/L0h||2 < oo it follows from (29), (30) and (31) that
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(g.h) =0.
Thus we have
Hguxh = nh.
Since the only eigenvlues of operator Hzl, in J~1 are the numbers n,,,n € N, and n,, is a simple
eigenvalue H,,, with corresponding eigenvector e, for everyn € N this implies that h = ae,, for
some constant a and some n € N. Since

a
0=(g,h =—aq—=
(9.1 =aqo

It follows that a = 0 and h = 0. Thus 7 is not an eigenvalue of the operator H~* and the theorem is
proven.

Example (2.2.4) [70]: Let Q be a bounded non-empty domain in R%,d > 1. Then the minimal
Laplacian on Q, i.e. the operator —A% . in L2(Q) given by

D(=Amin) = C5°(Q),
—Dminf = —Af,  f € C5(Q),

Is a symmetric operator with infinite deficiency indices. Here Cg° (1) denotes the space of infinitely
differentiable functions with compact support in Q. Thus, by Theorem (2.2.3), there exist self-
adjoint realizations of the Laplacian on Q, i.e. self-adjoint extension of —A%, . with non-empty
singular continuous spectrum. Thus (the proof of) Theorem (2.2.3) enables us to construct self-
adoint realizations of the Laplacian on a bounded domain Q in d¢,d > 1, with spectral properties

very different from the properties of the self-adjoint realizations investigated before.
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Chapter 3
Pure point Spectrum and Spectral Localization

All eigenvalues have infinite multiplicity and acountable system of orthonormal eigenfunctions with
compact support is the corresponding Hilbert space.

Section (3.1): The Laplacians on Fractal Graphs:

Considerable attention has been paid by graph theorists to the study of spectra of the difference
Laplacians on infinite graphs. We refer to Mohar and Woess [82], which is an excellent survey of
this theory, Explicit computational results about the spectrum of the Laplacians are known only
when the graph under consideration satisfies certain kind of regularity property that leads to the
existence of the absolutely continuous spectrum (see [82, 71]).

If we study fractal or disordered materials and the difference Laplacians are some discrete
approximations, we should expect the spectrum to be pure point.

The first result is [83] where the spectrum of the Laplacian on the Sierpinski lattice is considered,
an application of the very interesting Renormalization Group method to this case was given by
Bellissard in [73].

We study the spectrum of Lablacians on so-called two-point self-similar fractal graphs (TPSG) (we
mean the Lablacians which correspond to the adjacency matrix and the simple random walk). A
good example of such a kind of graphs is modified Koch graph which can beconsidered as the
discrete approximation of the fractal set, namely the modified Koch curve [789].

We will show that if the TPSG has an infinite number of cycles and the length of these cycles
approaches infinity, then the spectrum of the Laplacians is pure point.

The problem of the description of the spectrum as a set in IR is not trivial as shown by the example
of the modified Koch graph. The spectrum for this graph is the union of two sets. The first set is the
Julia set of the rational function

R(z) =9z(z-1) (z — ;) (z — g) (z - ;)_1.
This is a Cantor set of Lebesgue measure zero which may be obtained as a closure of a countable set
of eigenvalues of the Laplacian with infinite multiplicity. The second set is a discrete countable set
of eigenvalues with infinite multiplicity which has the limit points in the first set.
We note the new property of the eigenfunction of the Laplacians on TPSG: a countable system of
orthonormal eigenfunction with compact support is complete in the Hilbert space where this
operator is defined.
We consider in Theorem (3.1.11) the Anderson localization for the Schrodinger operator with
Bernoulli potential on TPSG. It was proven that any eigenvalue of the Laplacian is an eigenvalue of
infinite multiplicity of the Schrodinger operator for any coupling constant. Unfortunately, we
cannot prove that the spectrum of such operator is pure point. However, we note that Aizenman and
Molchanov [72] proved the localization of the spectrum in the standard Anderson model for
suffiently large disorders on general graphs.
The two-point self-similar fractal graphs can be considered as nested pre-fractals with two essential
fixed points introduced by Lindstrom [78]. We also note that some questions about the integrated
density of states of the Laplacian on fractal graphs were studied in [80, 75].
Some special examples of TPSG were considered in physical models (see [85, 74])
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I. Let G = (V,E) be a connected infinite locally finite graph, with vertex set V and edge set E. We
suppose that the degree d, of all vertices x E V is finite.
Let A = A(G)be the adjacency matrix of the graph G and P = P(G) = (PIl.,.) U,vEV be the
transition matrix, where
F)u,r = au,r/du

And a, ., is the number of edges between N and E.
Associated with each of the preceding two matrices are the difference Laplacians

A,=D(G) — A(G) (1)
And

A,= 1(G) — P(G) (2)
Where D(G) is the diagonal matrix of d.,x € V, and 1(G) is the identity matrix over V
Let us introduce the space of functions on V

L,(V) = {f(X),x eV, Zlf(X)l2 < OO} 3)

XEV

With inner product
0.0 = ) It <o

X€EV

And
E(\V) = {f(x),x € V; Z|f(X)|2 < oo} (4)

XEV

With inner product
0.0 = ) Al <0

XEV
I the function deg(x) = d.,x € V is bonded, then the operators A, and A, are self-adjoint bounded
operators in I, (V) and 5 (V), respectively.
ii. Let us introduce so-called two point self-similar graphs. Suppose M = (Vy,Ey) and G, =
(Vo, Eo) are finite connected graphs and M is an ordered graph. We fix some e,eEy;, which is not a
loop, and vertices «, BeVy and ag, Bo€eVy, @ # B,ay # Bo-
Informally speaking, the construction of a TPSG G is as follows: to get G, from M and G,
we replace every edge (a, b)eEy;, a, beVy, by a copy of G, such that a, goes to a and
B, to b. Then we take a, = a,3; = B and proceed by induction. If a graph G, = V,,E,,.
with fixed vertices a,, B,, V, Is defined then the graph G, ;is obtained by replacement
of every edge (a, b) ofM by the copy of G, such that a,, goes to a and B,, goes
to b. The vertices a, .1, Bn+1 are the vertices a,  after this replacement.
We can assume that G, € G, Is the copy corsponding to e, and define infinit graph G = U3_,G,,.
Let us give a more formal.
Definition (3.1.1) [86]: A graph G is called TPSG with model graph M and infinite graph G, if the
following holds:
(1 There are finite subgraphs G,, G;,G,, ... such that G, € G,,,;,n = 0and G = U,5,6,.
(i) For any n = 0 and e€Ey; there is graph homomorphism ¥§ : G,,,; = G, such that
Gnt1 = Ueery Pr(Gy) and W0 is inclusion of G, t0 Gy 4.
(iii)  Forall n = 0 there are two vertices oy, B,€V, such that ¥} restricted to G, \{a,, B,} is a
one-to-one mapping for every eeEy. Moreover Y& (V,\{a,,, Bo}) N P2V, \{a,, B, }) =
Qife; #e,.
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(iv)  Forn = 1,thereis an injection K, : Vyy = V, such that a, = K, (), B, = K,(B) and
for every edge e = (a, b)eEy, ¥i(0n—1) = Ky (a), Pa(Br-1) = K, (b).

We say that the vertices «,,, 8, are the boundary vertices of G,,, i.e., 3G, = {a,, B,.} and interior
vertices of G,,.

Remark (3.1.2) [86]: One we can see the vertices a,,, B, are the boundary vertices of G, i.e.,

0G, = {a,, B,}and int G,, = V,\{a,, B,.} are interior vertices of G, are given.

Suppose M dose not have loops and G, is just two vertices and one edge. Then two-point self-
similar graphs are in one-to-one correspondence to so-called post-critically finite (p.c.f) self-similar
sets with post-critically for such p.c.f. sets. However, G is not a p.c.f. set since the limiting
procedures in these two cases are different. The definition of a p.c.f. set can be found in [76] or
[77].

3. We need some auxiliary result on the structure of graph G.

Definition (3.1.3) [86]: Two different vertices x and y of graph I" are equivalent if there is
automorphisim ¢ of I such thatp(x) = v, p(y) = x.

By induction it is easy to prove the following lemma.

Lemma (3.1.4) [86]:if the vetices a,,, Br€Vy and a,, Bo€B, are equivalent in M and G,
respectively, then vertices a,, 3, are equivalent in G,, for all n.

Remark (3.1.5) [86]:We will suppose in what follows that M and G, satisfy assumptions of Lemma
1.1 We call such graph G symmetric. In this case the graphG does not depend in orientation of M.
Although our results are valid for nonsymmetrical graphs (with some additional assumption on the
orientation of M) we do not consider such graphs for the sake of simplicity.

Let us introduce the graph M = (V, E )G, which can be obtained in the same way as G, if we take
the graph M instead of G, and the verticesa, 8 play the role of «y, S,.

We define the graph G,,., by replacement of every edge of M by the copy of G,, such that for every
edge (a, b)eE;, «, beVy we say x,, goes to a and B, to b.

iii. we neet some axillary result on structure of graph G.
LLemma (3.1.6) [86]:The graphs G,,., and G,,.., are isomorphic.
Proof. By definition G,,., can be written as

Guz = | ] TG ®)

ecEq;

Where the maps %,¢ have the same properties as ¥¢ in definition (3.1.1) The proof follows by
induction.
Let us introduce the space I,(X) by I,(X) = {fel,(V) : f(x) = 0 forxeV\X}, where X c V.T5(X)
is defined analogously. By A,(X), A, (X) we denote the restriction of A,, A, to 1,(X), 15 (X). More
precisely, A, , P, where P is orthogonal projector to [, (X) or % (X). We will call this operators the
Laplacians with zero boundary conditions on V\X. For simplicity, we denote the Laplacians with
zero boundary conditions on 9G,, by A,(n) and A, (n).
By Lemma (3.1.4) there is isomorphism ¢, : G, — G,, such that ¢,(a,) = Bn, ©,(B,) = a,. This
isomorphism induces unitary maps U,, : 1,(G,) - 1,(G,) and U¥ : 15(G,) - 1% (G,,) by formula
URf = fon-
Lemma (3.1.7) [86]:U,,(U#) commutes with A,(G,,) and A,(n) (Ap(Gn)andAp(n)).
Proof of this lemma immediately follows from the definition of A, and A,,. Let us consider the

function deg(x) = d,,. It can occur that the function deg(-) is not bunded in general. Moreover,
there can exist a point x,eA, such that deg(x,) = oo. The next Lemma should be more clear from

47



the following examples (see Figs. 2 and 3).
For an arbitrary graph G let us denote by d, G the degree of the vertex x in G.
Lemma (3.1.8) [86]:
(I) dZn(Gn) = dZn(GO) ' (dZ(M))n = dZn—l(Gn—l) ' Gn—l(M)-
(i)  ifxeint G, then (deg(x) = d,(G,) = d,(G,_,)foreveryn = 1.
(iii)  Thefunctiomdeg(x) isbundedifandonlyifd,(M) = 1.
(iv)  ifxeVandx # xq, Bothendeg(x) < .
(v)  deg(x,) = o(deg(B,) = ) if and only if e, is indicent to and d,(M) = 2 (B is
incident to e, and dg (M) = 2).

Proof. The first statement can be proved by induction. The second follow from (ii) and (iii) of
Definition (3.1.1) Statement (iii) follow from (i) and equality maxyg, , ,dx(Gn41) =

max{maxy .y d,(Gy,), maxyeg, dy (M)}.
(iv)  There exists n, € N such that x € 1, for every n > n,. if x € intG,, the statement
follows from (ii). Otherwise, x € 0G,, for every n € n, and consequently x is equal to
Qg or Bo.
(v) By (iV), it follows thata, € 0G,, for any n = nyn, € N. if a is not incident to e, thena,
is an interior point of G, for some n;. Let a be incident to e, and(M) = 2. Then
statement (V) follows from (i).

Definition (3.1.9) [86]: We denote bydG = {x, deg(x) = oo}
The boundary of the graph G. If dG = @, we say that G is a graph without boundary.
By Lemma (3.1.10) we obtain the following lemma:
Lemma (3.1.10) [86]:
(i) eo = (a,B) and d,(M) = 2, if and only if 3G = {a, B}.
(i) The boundary dG has only one point if and only if the points « vertex of e, and the
degree of this vertex in M is not less than 2.
(iit)  If conditions (i), (ii), are not satisfied for the graph G then G = @.

If G has the boundary, we define the operator A,, with zero boundary condition, i.e.,
ASIE(WVO) - 13(V9),
where
L) ={f e 5(V),f(x) = 0,x € 3G}.
The A} is a self-adjoint bounded operator, too.
Theorem (3.1.11) [86]: Let m € N,§ > 0 and ¢ < oo be fixed numbers and for everyn = 1,2, ...,
there exists a linear operator ®,,: £, = £, such that [|®, || < ¢, (f,®,(f)) = SlIfII? for anyf €
fon and HO,, (f) = 24D, (f) foranyf € L i =1,..., K.
Then the following statements hold:
(1 The operator H has only pure point spectrum. The set of eigenvalues is
Uns1 UtsiskyiAn )
(i) There is a countable set S c £ of orthonormal eigenfunctions of the operator H which is
complete in 4.
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(iiiy  If d,(f) & £, for any nonzero f € 4, and everyn > 1, then each eigenvalue of H has
infinite multiplicity.
(iv)  Hisaself-adjoint operator in 4.
Proof. At first we note from the definition of H,, that £,, = EBZ?E{.
Let
S, =1{f € £ Hf € £,}.
It is easy to see that S,, c §,,,, for everyn > 1.
We introduce the set S by the formula
S = U U (Eins,)
nz1 1<i<K(y)
and we note that the set S, N E! is not empty for n > m + 1 because ®,,(f) € £, for everyf €
#,, and

Hrem@n(f) = PrsmHPrsm®n(F) = Py (A4 ®n(F)) = 2,0, (f), f € Fi(6)
One can see from the condition of Theorem (3.1.11) and (6) that if 2 € o(H,) then A is an
eigenvalue of H. That gives us the inclusion

U U (AL} € o(H). @)

nz1 1SiSK(n)
We will prove that the set S is complete in £. Suppose that there exists f € £ such that (f,g) =0
for anyg € S.
Let A be a subspace of £ and P, be the orthogonal projection to A.
Then

1
IPafll = ||g_|||(g’f)| (8)

for everyg € A,g # 0, and f € 4. This follows from the expression
Hgll=*(g, £) = llgli=*1(Pag, OI = llgll = 1(PZg, £) = llgl=* (g, PaOI < NG~ IGIPAf Il < IPAS
Let us introduce the subspace A,, of £,, by the formula

K(n)

A, = & (Eins,)

i=1
and let Q,, be the orthogonal projector to A4,,.
If f, =P,f,n=1.2,.., by (8) and the conditions of Theorem (3.1.11) we have
1Qnsmfall Z [P (£, fulll@r (FINI™H = (el D H( @R (), Sl = 725NN (9)
Since 4,4, € Span S we obtain Q,,,,.f = 0. Hence.

0= ”Qn+mf|| = ”Qn+mfn” - ”f _fn” = C_15I|fn|| - ”f _fn”-

This implies f =0 since ||f — f,|l » 0 as n — oo. Therefore S is complete in £ and (i), (ii) is
proved.
(iii) For arbitrary eigenvalue A of H there exists a corresponding egenfunction f €S and
consequently there are such ng,i that f € Fi NS, . We denote gy = @, (f) and g1 =

@, 41m(@1)- Then {g f}:;o is a linearly independependent sequence of eigenfunctions of the

operator H because, by the definition of @, .= & £n01km -

(iv) It is enough to prove that Ran(H = i) are complete sets in £ (see [84, Vol. 1. Theorem V1I1.3)
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that follows from (ii) of our theorem.
The theorem is proved.
Theorem (3.1.12) [86]: Suppose that the graph M has a cycle and the edge e, belongs to this cycle.

Then the spectrum of the operator A,,(Ag) IS pure point. Moreover, a countable set of orthonomral

eigenfunctions of A,,(Ag) with compact support is complete in 15 (V) (lf(VO)) and every

eigenvalue has infinite multicity.
If e, does not belong to the cycle, we do not know the structure of the spectrum in general.
However, there is the following theorem in a particular case.
Theorem (3.1.13) [86]: Suppose all conditions for the graph G in Theorem (3.1.13) hold. Then:
(i) The operator A4 (A9) is self-adjoint.
(i) All statements of Theorem (3.1.13) are true.

Proof.By Theorem (3.1.11) it is enough to construct the operator ®,,: £, = %, m m = 1 with
required properties. We will prove Theorem (3.1.12) only for the operator A, because the case of
the A, is the same.
Let £, = IF(int G,). We suppose that the cycle in M is defined by the set of vertices {v,}._,, v, €
Vi, 0o = ;.
If l = 2m, m € N, we can introduce sets of edges.

E* = {(vak, V241D =0 € En,

E™ ={(vak-1, va)}iz1 € En,
We note that for anyx € ¥£(V, \ 9G,,) there is a unique y € V, \ 9G,, such that x = ¥2(y),e € Ey,.
We may suppose that the maps ¥,f,e € E* U E~ can be chosen such that if different edges e; and
e, have a common vertex, then at least one of the following equalities holds.

Vo (an) = ¥ () or®, (By) = ¥, 2 (B,)(10)
Let us define operators ®¢: £, = #,,, for anye € E,; as follows:
c _( 0 ifre ¥4\ 0G,)
PO =i = w26 U\ 36,

Then we define the operator

o= ) vp- ) @,
eeE* eeE~

which maps into #,,, . We will verify that it satisfies the conditions of Theorem (3.1.11).
we note that if e;, e, € Ey, and e; # e, then ®2(f) and ®.2(f) have disjoint supports. Thus
®;1(f) is orthogonal to ®;2(f) and the bound ||®, || < c =1 is obtained. By condition (ii) of
Definition (3.1.1) we have ®;°(f) = f and
(f. @n()) = 117

for everyf € #£,. Now if f € E! then the equality.

—A, @, (f) = 2, @, (f)
follows from the definition of the operator ®,,.

-(f+H(@)) 1+1{®) ()

f ) X4 X



Diagram 1
Fig. 2

Since @, (f) is an eigenfunction of the operator A, with compact support by the definition of the
set S in the proof of Theorem (3.1.11) we find that S is a set of eigenfunctions with compact
supports
Let . =2m + 1,m = 1. The construction of the operator @,, in this case is more delicate. In graph
M (see Lemma (3.1.6)) we have at least two cycles of length [, joining by a path, and e, belongs to
one of these cycles.
Say these cycles are {vy}._o {urtico.vo = nyug =u; and they are joined by a path v, =
X0y X[y -y Xp = Ug-
Let Ef, E; are defined similarly. Also, we define operators ®¢ analgously to ®¢, using W¢ instead
of W¢ (see Lemma (3.1.6)).

Then
e, = Z o5 — Z e
e€E; eE€Eyx
— Z(¢$l+¢$loU#)+ Z(¢g+¢goyﬁ)+(_l)r+1 Z e — Z P2
e€E; eE€Ey e€Ey ecE,

We suppose that condition (10) is satisfied in this case, too. This construction is sketched in
Diagram 1 if r is odd and on Diagram 2 if r is even.

We note that ®,,: G,.,, and this operator satisfies the condition of Theorem (3.1.11) that can be
proved analogously to case 1 using Lemma (3.1.6) and (3.1.7) The theorem is proved.

-(f+1(¢)) f+H{¢)

Fig. 3

Theorem (3.1.14) [86]: Suppose that the graph M has an odd cycle and there is an isomorphism
@:M — M such that (a) = B,9(B) = «a, and (ey)#e,. If

(1 The edge e, belongs to a path joining a and S or

(i) The edge e, belongs to a path joining « (or B) with the cycle then the conclusions of

Theorem (3.1.13) hold for A,, and A3.
Let us now consider the operator A4. If the boundary of G is empty its action is well defined on all
functions with compact support which form a dense subspace of 12(V). If 3G # @ we define AJ as
an operator with zero boundary conditions (See above definition for A3). This operator is symmetric
and thus closable. We will denote its closure by the same symbol A,(A9).
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Theorem (3.1.15) [86]:if all conditions of Theorem (3.1.14) are satisfied for the graph G, then the
operator A,(A9) is self-adjoint and the statements of Theorem (3.1.14) hold for A,(A9).
We note that the operator A4 is not self-adjoint in general. An example of a locally finite graph with
no unique self-adjoint extension of A, was given in [81].
The condition of the existence of a cycle in the graph M is not a necessary condition for the
spectrum to be pure point. Moreover the graph G may be a tree in this case
Proof.We will consider only operator A, because the case of A, is the same. Also we assume that
e, does not belong to a cycle, otherwise it is a special case of Theorem (3.1.12).
We define

fon ={f € B(INtG,), A, f = A, (n)forUif = f}.
We have #£,, C #,.,. Let us show that £ = U5, %, is complete in £ = [§(V). For anyf € £ there
is such n that ||f — £, |l < illfll f, is the restriction of f to V,. Since ¢(ey) # e, we have

(U#+1fn’fn) = 0and so
|(f’fn + U#+1f)| |(fn,fn + U#+1fn)| If = full - ”(fn + U#+1fnafn)|| > I£ll? _£||fn||2

2
> 2

because ||f,|l = —||f|| and ||f, + U¥,1£.|| = V2IIf,ll. This implies that £ is complete since f is

arbitrary and £, + U¥, . f, € £ .
Therefore we need only construct operator ®,, which satisfies the conditions of Theorem (3.1.11).
(1 One can see that the graph M has two odd cycles joining by a path such that e, belongs
to this path. In this case, ®,, can be defined exactly the same way as in the proof of
Theorem (3.1.13) for an odd cycle.
(i) If, for example, « is incident to e, then there is a path x = x, x4, ..., x; = u, and an odd
cycle {u,}—o, un, Where ey = (xg, x1). Then &,, can be defined by

= Y @+ 050U - Y (@5 + 05 UN+ (-1 D dp- > @f

e€E} e€EE, e€EEn, e€Ey,
where ®¢, Ef E; E;} E, are defined the same way as in the proof of Theorem (3.1.12).
If a is not incident with e, the proof is analogously (i). The theorem is proved.
Theorem (3.1.16) [86]: Suppose there exist different vertices y,, y1, v, € V(M) such that there are
edges (¥o, ¥1), (v1,¥2) € E(M), ey = (¥o,¥1), dyo(M) = d,,,(M) = 1 and the set {y,,y,} does not
coincide with the set {x, 8}.
Then all results of Theorem (3.1.11) and (3.1.13) hold.
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Figure 4
The simple example of a two-point self-similar graph such that the conditions of Theorem (3.1.13-
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3.1.16) are not satisfied is the lattice Z. It is well known that the spectrum of the Laplacian in this
case is absolutely continuous.
Condition (iv) in Definition (3.1.1) defines the structure of eigenfucntions of the Laplacians. It is
easy to see that conditions (i)-(iii) of Definition (3.1.1) are satisfied for Sierpinsky lattice but
Theorem 1 — 2° are not true in this case. By [75] it follows that there are such eigenvalues that if a
function ¢ is an eigenfunction corresponding to one of them, then ¢ cannot have a compact
support.
The problem of describing the spectrum as a set in R is hard enough as shown by the example of the
operator A,, on the modified Koch graph in [79].
Let us introduce functions W:V — R which do not change the nature of the spectrum of the
Laplacian; i.e. the spectrum of the Schrodinger operator.

H=A+W(11)
will be pure point, too. Here we denote A4 and A, by the same symbol A.
We note that periodic functions are potentials of this sort for the Schrédinger operator in I, (Z™) but
only in the case of absolutely continuous spectrum.
Suppose that Wy:V, — R is a function such that W,(¢(x)) = Wy(x), where ¢:G, - G, is an
automorphism of G,,, p(a,,) = Bn. ©(B,) = «,. Let us define the potential W:V — R by induction.
We denote byW,,, the restriction of W on V,, ;.41 and we suppose W, (x) = W, (y), where
x =¥ sm(¥)y € Vo 1m, e € Ey for everym > 0.
Proof. At first we suppose that a, 8 are not from the set {y,, y,}. Without loss of generality we can

assume that d,. (G,) < dg (Gpr1) and W2 (B,) = B,
Let us define
#n ={f € 3(G):f(x) = 0ifx € (V\ )}
The operator ®,,: #%,, = #%,,,, Ccan be given by the formula
fx)ifx €V,
P, () = —fF(x)ifx € ¥ (y),y € 6,(12)

0 otherwise
If @ = y, the definition of the operator @, is the same.

Let @ = y,. Then we have to consider the graph M (Lemma (3.1.6)) instead of M which has the
necessary properties to construct ®,, by the formula (12). The theorem is proved.

Theorem (3.1.17) [86]: If the function W is defined as above, all results of Theorems(3.1.12 ),
(3.1.15), (3.1.16) hold for the Schrodinger operator (6).

Let us consider the so-called Bernoulli potential {W (x),x € V} made of a sequence of i.i.d random
variables taking only two values 0 and 1.

We set.

P{W(x) =0} =P{W(x) =1} = % x€V.

We are interested in the random Schroédinger operator.
with a coupling constant g > 0.
Proof.The proof is one-to-one to the proof of Theorem (3.1.12 — 3.1.15, 3.1.16).

Theorem (3.1.18) [86]: Let G satisfy conditions of one of the Theorem (3.1.12), (3.1.15), (3.1.16).
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Then for anyg > 0 with probability one, every eignavalue of A is an eigenvalue of Hg of infinite
multiplicity.

Let £ be a Hilbert space with the inner product (,) and #,,= 1,2,..., be a sequence of finite
dimensional subspaces of % such that £,, € #,,, and £ = Uy~, £, is dense in £.

We suppose that H is a closed symmetric operator on £ such that £ belongs to the domain of
definition of the operator H and H,, = B,HPB,, where B, is the orthogonal projector on £,,.

Then H,: %, — #, and H,, is symmetric, too.

Let AL, ... ,/1',‘1" be all distinct eigenvalues of the operator H,, (restricted to £,,).

Let £} be the eigenspace corresponding to AL and let E! be an orthonormal basis of E.

Proof.It is easy to see that if W is an eigenfuction of the operator A with compact support and supp
¥ nsupp W = @ then the function ¥ is an eigenfucntion of the operator Hg.

Let A be a set of all eigenvlues of the A and let S be a countable set of orghonormal eigenfunctions
of the A with compact support. For everyA € A there is an eigenfunction f € S and the integer n,
such that supp f < Gy,

We note that graph G can be written as the union of copies of G, . With the probability one there is
an infinity set of disjoint copies of G,, where W is zero. ConsequentlyZ is an eigenvalue of the
operator Hy of infinite multiplicity. The theorem is proved.

Section (3.2): The Hierarchical Anderson Model
We devoted to study of the spectral properties of the hierarchical Anderson model and is motivated

by the work of Molchanov [114]. we recall the definition of the model and its basic properties. For
additional information about the hierarchical structures and the hierarchical Anderson model we
refer to [111, 109, 108, 113, 114].
Let X be an infinite countable set. Throughout the sectiond, will denote the Kronecker delta
function at x € X. A partition 2 of X is a collection of its disjoint subsets whose union is equal to X.
Let n = (n,.),so be a sequence of positive integers and P = (#.),», a sequence of partitions of X.
The elements of B. are called “cluster” of rank r. We say that (X,P,n) is a hierarchical if the
following hold:

(i) mny = land everyQ € P, has exactly one element.

(if) Forr = 1, everyQ € &, is a disjoint union of n,. clusters in P,_;.

(ii)  Given x,y € X, there is a cluster Q of some rank containing both x and y.
Let us state some immediate consequence of this definition. Every cluster of rank r > 0 has size
N,:[li=ons. Given x € X and r > 0, there is a unique cluster of rank r containing x. We denote
this cluster byQ,.(x). The map.

d(x,y) = min{r:y € Q,(x)},

is a metric on X and Q,(x) = {y:d(x,y) < r}. Note that Q,(x) = Q,-(y) whenever d(x,y) <r.
Given an integer n > 2, a hierarchical structure is called homogeneous of degree n if n,, = n for all
r=>1.
The free Laplacian on the hierarchical structure (X,P,n) is define as follows. For each r > 0, let
E,:12(X) - [2(X) be the aver operator.
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ED© =1 Y b)
d(x y)<r
Let P = (p,),»1 be a sequence of positive number such that }.°>, p, = 1. In the sequel we set p, =

0 and
Npi= Zps, r=01,..,00
s=0

The hierarchical Laplacian A on [2(X) is defined by

A= Z prEy
r=0

Clearly, A is a bounded self-adjont operator and 0 < A< 1.

A hierarchical model is a hierarchical structure (X, P, n) together with the hierarchical Laplacian A.
The spectral properties of A only depend on nand P and are summarized in:

Theorem (3.2.1) [95]: (i) The spectrum of A is equal to {»,:7 =0,...,»}. Each x,,r < oo, is an
eigenvalue of A of infinite multiplicity. The point »,= 1 is not an eigenvalue.

(i) E,. — E,, is the orthogonal projection onto the eigenspace of X, and

[0¢]

A= Zxr (E, —E...).

r=0

(iii) For everyx € X, the spectral measure for 5, and A is given by

p= Z(N Nm)ri(xr),

where §(,.) stands for the Dirac unit mass at x,.. Note that u does not depend on x.

The spectra measure u can be naturally interpreted as the integrated density of states of the operator
A. Let x, € X be given and consider the increasing sequence of clusters Q,.(x,),r = 0. Let P. be the
orthogonal projection onto the N,.-dimensional subspace.

12(Q,(x)) = { € P(X):(x) = 0 forx & Q,(xo)}.

Let e <e) <. <e(r), be the eigenvalues of the restricted Laplacian P.AP. acting on
1 Ny

12(Q,(xp)) and
= Z 5(€_g(r)),
s=1
the corresponding counting measure.

Proof. For r > 0, let H, = Ran(E,).H, is the closed subspace of [2(X) consisting of functions
that are constant on each cluster of rank r. Note that

PX)=HyD>H;DH, D HzD
and that N 7, = {0} since a nonzero function constant on every cluster would have infinite 12 nom.
These observations yield that

rX) © Ly, (13)
r=0
where L, is the orthogonal complement of H,,; in H,. Note that L, is the infinite dimensional
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subspace of function y s.t. Eqyp =1 for 0 < s <r and Esip =0 for s > r. Hence for everyy €
L, AY =X, 1, and this proves parts (1) (2).
The spectral measure p, 5 for 6, and A is the unique Borel probability measure on R s.t.

(S 1F(8)6,) = f F()diia(8),
R

for every bounded Borel function f: R — C. To compute u, », we decompose &, according to (13):

[0¢]

Z‘” Z 1 1
6x = (Er - Er+1)6x = <N 1Qr(x) - N 1Qr+1(x))’
Y=o r r+1

r=0

where 1Qr+1(x) = ZyEQr(x) 6,. Hence

()6, = Zf(x )( 1Qr(x) — erﬂ 1Qr+1(x))’

and
1 2
(B.F(1)8,) = Z PO 3 10 = 57— 10
r+1
Since ||—1Qr(x) 1Qr+1(x) = 1/N, — 1/N,,, (3) follows.
The analysis of the den5|ty of states of A us facilitated if one introduces the cut-off Laplacians

T
A= ) piEs, r>0.
s=0

It is technically easier to work with A, than with P.AP.. Note that [2(Q,(x,)) is an invariant
subspace for A,. One can exactly compute the eigenvalues and eigenvectors of restricted operator
B.AP. acting on [%2(Q,(xy)). If 0 <s <, then everyy € L, N 1%(Q,(x,)) is an eigenvector of

B.AP. with eiegnvalue x,. The subspace Lg N I12(Q,(x,)) has dimension D(r) N, (/N —
1/N,,,) for 0<s <r—1, and the subspace L, N1%(Q,(x,)) has dimension Dr(r) == 1. Since
r_OD(r) = N, the spectrum of B.A, is equal to {xs:s =0,...,7} and each eigenvalue g has

multiplicityD{.
Proposition (3.2.2) [95]: The weak-* limit lim v, exists and is equal to u. if
lo 1-t¢1
jim 129 D_un
tlo logt

then the number d is called the spectral dimension of A. This definition is motivated by the analogy
with the edge asymptotic of the density of states of the standard discrete Laplacian on Z4, for which
the spectral and spatial dimensions coincide.
The relation Zyex(6x|A6y) = lyields that A generates a random walk on X. We recall that the
random walk on Z9 generated by the standard discrete Laplacian is recurrent if d = 1,2 and
transient if d > 2. The corresponding result for the hierarchical Laplacian is:
Proposition (3.2.3) [95]: Consider a homogeneous hierarchical structure of degree n > 2. Suppose
that there exist constants C; > 0,C, > 0 and p > 1 such that

Cip™" Spr <Cp™"

for r bit enough. Then:
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(1) The spectral dimension of the model is

_ logn
d(n,p) - 2@

Hence 0 < d(n,p) <2ifn < p.

(i) The random walk generated byA is recurrent if 0 < d(n, p) < 2 and transient if d(n, p) > 2.
We now define the hierarchical Anderson model associated to (X,P,n) and the hierarchical
Laplacian A. Consider the probability space (Q,F,P) where Q := RX,F is the usual Borel o-
algebra in Q, and IP is a given probability measure on (Q, F). For w € Q, we set

v, = 2 w(x)(8,]") 8y

xX€X
V,, is a self-adjoint (possibly unbounded) multiplication operator on [2(X). Let
H,=A+V,, w € Q.

The family of self-adjoint operators {H,},cq indexed by the events of the probability space
(Q,F, P) is called the hierarchical Anderson model.

Concerning the probability measure P, we will need only one technical assumption having to do
with the notion of conditional density. Throughout, m will denote the Lebesgue measure on R. For
anyx € X, Q can be decomposed along the x'th coordinate as Q@ = R x O, 0 = R*\(*}, Let P, be the
corresponding marginal of P defined byP, (B) := P(R x B), where B < {1 is a Borel set. Then for
P,-a.e. @ € (, there is a probability measure P2 on R s.t. the conditional Fubini theorem holds: for
all f € L1(Q, P) we have.

[ r@ar@=[ ([ reaapee |d@.
Q Q R

If for P,-a.e. @ € O, P? is absolutely continuous (a.c.) with respect to m, then we say that IP has a
conditional density along the x'th coordinate. An important special case of a conditionally a.c.
probability measure is the product measure P = ®,.xP,, where each P, is a probability measure
on R a.c. with respect to m.

We denote byo,.(H,) the absolutely continuous part of the spectrum of H,, and byo,,,.(H,) the
continuous part.

Proof. Let v* be a weak-* limit point of the sequence v,. Let v,, be a subsequence converging to

v*. We claim that
v ({xs}) = u({x}), (14)
for all s>0. Indeed, let & :=minj.s|xs—x;|/2 and 0 <e<§/3. Since [|BAP, — BA,|l <
JLr+1Pj,» We have that ||P.AP. — P.A,|| < e for all v big enough. For such r, the spectrum of A,A,
is contained in U§=0[>~j— ex+ e|. Let R be the spectral projection of B.AP. on [x¢— &,x¢+ ] and
T the spectral projection of B.AP. on the same interval. Let y be the circle {z € C: |z —x¢| = 6},
oriented counterclockwise. Then

1
R-T= —f (z—P.AP.) dz
2mi ),

1 1
- 55 (2~ BA)Mdz = f (z— PAP)"1(P.AP. — P.A,) (z — P.A)dz,
Y Y
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and thus
IR—TI| <6(26/3)te(26/3) 1 <3/4 < 1.
It follows that Ran(R) and Ran(T) have the same dimension and that
+ {s: e € [ng— eng+ s]} =p{".
Then for all k big enough
v (Dng— g3 g+ €]) = DIVIN, = 1/N, — 1/Ng, 4.
Letting k —» oo, we get v*([»¢— e s+ €]) = 1/N, — 1/N,,, and (14) follows by taking £ { 0.
Since Y22,(1/N, —1/N,,;) =1 and v* is a probability measure, we must have that v* = p.
Therefore p is the unique weak-* limit point of the sequence v, and rILrDo v = U

Note that u([1 — ¢, 1]) is a piecewise constant function of ¢ with jump discontinuities at the points
1 —>x,. Since

Cllo—1D)p 7" <1—x= Z ps < C(p—1)"'p7",
s=r+1

and u([1 —x,,1]) = 1/N, = n~", we have that
__logu([1—t¢,1]) logn
lim = ,
tlo logt logp

which proves (i).

The random walk on X starting at x is transient if R :== Y5_,(8,|A¥6,) < o and recurrent if R =
oo, Part (iii) of Theorem (3.2.1) allows to compute R explicitly:

du(€®) O Nt - NoY

1-¢ 1—x,

r=0

R=(la-n0=
The bounds
Cllp—1)(@—-1/n) ) (p/n)" <R<C;'(p—-1)Q—-1/n) ) (p/n)"

show that R < oo for p < n and R = oo for p > n, and part (2) follows.

We first derive a hierarchical approximation formula for the resolvent (H,, — z)~1. Then we use the
formula to obtain a bound on the resolvent matrix elements. This bound combined with the Simon-
Wolff localization criterion yields the statement.

Set

T
Hyp =Y+ ) pofs 720,
s=0

Fix w € Q. For anyQ, € 3., the subspace [%(Q,) is invariant for H,, ,.. Let o(w, Q,-) be the set of the
eigenvalues of the restricted operator H,, ,. I 1*(Q,) and o,,: U o(w, Q,) where the union is over all
clusters of all ranks. Clearly, o, is a countable subset of R. Forz € C\ a,,,v = 0, and x,y € X, we
set

-1
Cw,r(xay; z) = (6 (Hw,r - Z) 63’)-
Forz € C\ o,,r=0andt€X, let g,,(t; z) be the average of C,, (", t; z) over the cluster Q,(¢),
I.e.
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Jor(t;2) ==Ni Z Cor(t' t;2).

r d(t' t)sr
Since the joint spectral measure for 8;, 6,» and H,, - is real, C,, . (t',t; z) = C,, (¢t t'; z) and
1 1 -1
gw,r(t; z) = N_ Z Cw,r(t’ t'z) = N_(5t|(Hw,r - Z) 1QT(t)>' (15)
T

r d(t' t)sr
Proposition (3.2.4) [95]: Letw € Q,x,y € C\ g, and r = O be given. Then
T

var(x’y; Z) = Cw,O(x’y; Z) - Z pst—lgw,s(y; Z)- (16)
s=d(xy)
Proof. The formula holds for » = 0 since p, = 0. For s > 1, the resolvent identityyields.

- -1 -1 -1
(Hw,s - Z) 5y - (Hw,s—l - Z) 5y = _(Hw,s—l - Z) psEs(Hw,s - Z) 5y
Observe that Es(H,, s — z)_16y = 9uws(¥; 2)1g,(y)- Taking (8| -) in the above equation yields
-1
Gw,s(x’y; Z) - Gw,s—l(x’y; Z) = _psgw,s(y; Z) (6x|(Hw,s—1 - Z) 1Q5(y)>- (17)

Note that by (15),

- Ns— U)S—(;)’.d(!)su
B A A/

The formula (16) follows after adding (17) fors =1.2,...,r
Theorem (3.2.5) [95]: Suppose that p,- and N, satisfy (24). Let w € Q and x € X be fixed. Then
for m-a.e.e € R\ o,

sup ) (G, (x,y: )] < 0.(18)

r=0
yeEX

Proof. We shall use the following general results, proven in [M2]:
Let A be a hermitian N x N matrix and v € CV. Then for all M > 0.

m{e: (A -e)"'wll3 = M}) < 4]% vl (19)

where [|-||, stands for the {2 norm on CV,
Since 12(Q-(x)) is an N,-dimensional invariant subspace for H,,, and since ||1o, x|, = v/Ny we
have from (19) that for M, > 0O,

m ({e € R\ o,,: ”(HW - e)_llQr(x)

2 4N,
> M}) <—
2

JM,
Let M, >0 be a sequence satisfying },;2, N,M, " “ < oco. By the Borel-Cantelli lemma, for
m,e.ee € R\ o,, there exists a finite constant C, such that

-1
”(Hw,r - e) 1o,
for all r > 0. From now on, such an e € R\ g, is fixed. Using the representation formula (16), we
get the estimate.

2\ 1/2
(ZyeX'Gw,r(x’ y; €)| ) S |Gw,0(x’ X, €)| Z§=1 pst—1|gw,s—1(x; e)|(2d(x,y)ss|gw,s(y; €)|)(21)
Observe that

1/2

2
< CeMr, (20)
2
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1/2 1/2

2 1 -1 2
9ol | = [ (015 = €) 10,6
d(xy)s<s d(xy)ss s
1/2
1 -1 2 1 -1
= Z (81 (Huvs = €)™ Loy =N | (Hars =€) 1000 ,
s d(xy)s<s s
Inequality (20) gives the bound
1/2
JM
|ngs(y; e)|2 < Cell2 TS (22)
N

d(xy)ss
Moreover,

<cM* /M,_,. (23)

-1
Ns—1|gw,s—1(x; €)| = |(5x|(Hw,S—1 - e) :I'Qs—1(x)>
Combination of (21) with (23) and (22) yields the estimate

1/2

T
Mg/ M_
Z|Gw,r(x,y; e)|2 < |Gw,o(X,x; €)| +C, Zps %
s=1 s

yeX
By hypothesis (24), the sequence M, = (u,.N,.)? satisfies

[0¢]

(o]

-1/2 —
D Y <
r=1

r=1

Since

(o] ,—M ,—M . (o]
Z pr % = Z prNr—lur—lur < ™,

S

r=1 r=1

the result follows.
Let us recall the Simon-Wolff localization criterion. For x € X and w € (, denote byuy the spectral
measure for A +V,, and &, byuy ... the continuous part of u and byu?,. the a.c. part. Define the
function G, ,: R — [0, +oo] by

o dug(N)
Gw,x(e) = . m

By the Theorem of de la Valle Poussin,

dpiac(e) = =t (limIl(A +V,, — e — ie) 5,17 de.

€

Hence, if for a fixed w € Q we have that G, ,(e) < oo for m-a.e. e € R, then u$,. = 0.
The Simon-Wolff localization criterion is summarized in:
Theorem(3.2.6) [95]: Assume that IP has a conditional density along the x’th coordinate. Let B <
R be Borel set such that G,, ,(e) < oo for P @ m-a.e. (w,e) € Q x B. Then puy ., (B) = 0 for P-
a.e.w € Q.
Theorem (3.2.6) is a well known consequence of the rank-1 Simon-Wolff theorem [115] and the

conditional Fubini theorem.
Theorem (3.2.7) [95]: Assume that there exists a sequence u, > 0 such that Y.°2; u; ! < oo and

=1lim||(A+V, —e —ie) 16,
elo
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ZprNr—lur—lur < 0o, (24)
r=1

Then:

(i) Forallwe Q,0,.(H,) =0

(i) If P is conditionally a. c. then oy, (H,) = @ for P-a.e. w.
Proof. Fix w € Q and fix e € R\ g, for which the bound (18) holds. By monotone convergence

f dug () “mf dpe (™) _ s f dug (2)
(e —x)2  elo r (e=x)2+€2 ol (e—X2)2+e%

Since forany z € C\ R,
lim || (Hor —2)" = (H, —2)7| =0

T—00
we have that the weak-* limit Iim uy - equals uy?, where ug,. is the spectral
dO) f W f " () _ dp” ()
g (—2)2 " Gorowly (e—x)2+e€? —>\)2 + 62 T esorai g (e—2)F+e2 T Ty iy (e—x)?
= sup ”(er = supZ|var(x,y)| < oo,
r21 r21

yeX

In the final equality we used the fact that {6y:y € X} is an orthonormal basis for [2(X). Since
m(o,) = 0 and since the bound (18) holds for m-a.e. e € R\ a,,, we have that for every fixed w €
Q,G, x(e) < oo for m-a.e. e € R. This proves part (i). Part (ii) follows from the fact that G, ,(e) <
oo for P @ m-a.e. (w,e) € Q x R and the Simon-Wolff criterion.

Remark (3.2.8) [95]: Theorem (3.2.7) and Proposition (3.2.3) allow to construct hierarchical
models with spectral dimension d < 2 that exhibit Anderson localization at arbitrary disorder. If
(X,P,n) is a homogeneous hierarchical structure of degree n = 2 and p,, = Cp~" with p > n, then
the hypothesis (24) is fulfilled for u, = r'*¢. Given 0 < d < 2, one can adjust p > n to make
d(n,p) =d. If p, = Cr=37n"", then the model has spectral dimension d = 2 and (24) is verified
for u, = r'*&/3, One can also construct trivial models with d = 0 by taking p, to decrease faster
than p~" for anyp. We emphasize that homogeneity of the hierarchical structure is not required for
Theorem (3.2.7).
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Chapter 4
Endpoint Maximal and Space-TimeEstimates
For a > 1we consider the initial value problem for the dispersive equationid,u + (—A)%/?u =

0.We show an endpointL?inequality for the maximal function sup |u(:, t)|with initial values in LP-
tefo,1]

Sobolev spaces, forp € (2 +4/(d + 1), ).

Section (4.1): Smoothing Estimates for Schrédinger Equation
For a 1 we consider LP estimates for solutions to the initial value problem
{i du+ (=A)*?u=0
u(.,0)="1
The case a = 2 corresponds to the Schrodinger equation. We will not consider o« =1 which
corresponds to the wave equation and exhibits different mathematical features.
When fis a Schwartz function, the solution can be written as u(x,t) = U2f(x),  where
UZf(e) = eltleI"f(¥) 1)
with (&) = [f(y)e"'¥¥dy as the definition of the Fourier transform. The sharp end point
LP-Sobolev bounds for fixed t are due to Fefferman and Stein [31] and Miyachi [37]. Their result

. su
states that for any compact time interval | and anype(1, ), i EDIIIUSfIILp(Rd),g =d|2-2;

2wl

This is sharp with respect to the regularity index {3 and can also be deduced from

certain endpoint versions of the Hérmander multiplier theorem (96, 103).

We strengthen the fixed time estimates as follows.

Theorem (4.1.1) [108]:Letpe(2 + ﬁ)oo and o > 1. Then, for any compact time interval |,

sup B 1). 2)

* — 1
I ¢ e Vel o) Cipe I Flp ey = =d (5=
(04

This implies point wise convergence results; indeed we shall prove a little more, namely if xe

CO:(]R) then the function t+— (t)U?f(x) belongs to the Besov space Bf,, (R), for almost

every xeR¢. These functions are continuous (for almost everyx) and there for this implies almost
everywhere convergence to the initial datumas t — O.

The maximal function result is closely related to certain space-time estimates which improve the
regularity index. The first such bounds are due to Constantin and Saut [29], Sj6lin [15], and vega
[24] who showed that better L? regularity properties that hold locally when ae(1,); namely, if
fel” (_1y,2(RY) then uel}, (RI*1). However it is not possible to replace the L2-norms over

compact sets bylL2-norms which are global in space. This is known as the local smoothing
phenomenon. For functions in L? -Sobolev spaces the various local and global problems for
smoothing and for maximal operators have received a lot of attention, starting with [4]. We do not
have a contribution to the LP —Sobolev problems but rather consider corresponding questions with
initial data in LP —Sobolev spaces for p > 2, wit p not close to 2.

In [46] considered LP regularity estimates which are global in space but involve an integration over
a compact time interval 1,
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1/p
( f ||ut°‘f||gdt> < Cyllfll pgay. 3)
1 B

This question was motivated by the similar (although deeper) question for the wave equation
(cf.[41]). In [46], it was proven that (3) holds for a =2 when p=>2+4/(d+ 1)with
B/2>d(1/2—-1/p) — 1/p. We remark that smoothing results of this type could also be deduced
from square-function estimates related to Bochner-Riesz multipliers such as in [27], [98], [102] and
[36] however these arguments do not apply when d = 1, an din dimensions p = 2 they are currently
limited to the smaller range p > 2 + 4/d.

The LP smoothing result in [46] was obtained from an LP — LP estimate for the adjoint Fourier

restriction (or ‘extension’) operator associated to the paraboloid, and the range p > 2+ﬁ

corresponds to the known range ofLY — LP bounds for the extensions operator; see [99], [100] and
[107] for the sharp bounds when d = 2. The reduction in [46] to the extension estimate used the
explicit formula

eitAf(x) — fei|x_Y|2/4tf(y)dy

1
(4mit)d/2
Together with ‘completing of the square’ trick; see [28] for similar argument. Unfortunately this
reasoning is not available when o # 2.

We generalize to all a > 1, and establish the endpoint regularity result.
Theorem (4.1.2) [108]: Letp € (2 + ;% =)anda > 1. Thenforanycompacttimeintervall.

1/p
o P B_ (f1 1 1

In Theorem (4.1.9) below we formulate a slightly improved version of this result which canalso be
used to prove Theorem (4.1.1) We remark that for d = 1 our argument also give the analogous
results for therange 0 < a < 1.
We mention an application in one spatial dimension where we obtain sharp estimates for the initial
value problem for the Airy equation

Ug + U = 0. 4)
For f := u(.,0) a Schwartz function, we can write u(.,t) = U3,p + f+ U3,p — f, where p, and p_
are the projection operators with Fourier multipliers o ..y and x(—« o), respectively.

Thus, for initial values in L‘é the solution of (4) satisfies the sharp bound

3(p-
lullLpry-r.17) < CrlluC ,O)HLE(R),B = (§p4),4 <Pp<ox

And if u(.,0)el’(R) for anye > 0 with 2 < p < 4, thenuelP(R x |-T, T]).

The proofs will be based on the bilinear adjoint restrictions theorem for elliptic surfaces due to Tao
[21], having discussed the necessary conditions, we combine Tao’s theorem with a variation of a
localization technique employed in [30] to prove LP estimates for same oseillatory integrals with
elliptic phases; this yields the smoothing estimate for functions which are frequency supported in
annulus. we extend to the general case by decomposing the Fefferman-Stein sharp function; here we
use a variant of an argument in [103].

Throughout, ¢ and C will denote positive constants that may depend on the dimension, exponents or
indices of the Sobolev spaces, or the parameter o, but never on the functions. Such constants are
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called admissible and their values may change from line to line. We shall mostly use the notation
A < B if A < CB for an admissible constant C. We may sometimes indicates the dependence on a
specific parameter ¢ by using the notation <. We write A= Bif AsS BandB < A

Let 8 be a nonnegative and smooth function supported in {271 < |¢| < 2} and equal to 1 in{2 /2 <

|g] < 2/2}. For large , we consider initial data f, defined byf, (§) = e~ BI"'8(x~1 £) and note
that, by a change of variables,

EAY i(n.E)—x U[E] )
— (2. E) =X X|E|*
fw = <2n) f@({)e d

Thus |f, (x)| <245 , by the method of the stationary phase (keeping in mind that o # 1). On the
other hand, when |x| x*~1, by repeated integration by parts, there exists constants Cy such that

If, (x)] < Cy(lx] X1=*)~N for all N € N. Combining the low bounds, we see that
da  d(a—1)
-2 +B.
N[N N RSN

Next we consider

|U?f*(x)| - ‘(%)d fRde(E) eilx B+ (e-1)IEl g

So when |x] < (10 x)7! and |t—1| < (10 x%)~1, we have |U€‘fx(x)| > ¢ x4 for some positive

constantc. Thus,
1 1p g d+a
(f ||U§xfx||gdt> >Cx P,
1

_(10>\OL)—1
Comparing this with upper bound for ||fx||L1§(Rd), and letting x— o, we see that

B/a=d(1/2—1/p) — 1/p is necessary condition for (3) to hold when a # 1.

Note that alternatively one can argue that by Sobolev embedding any improvement in the
smoothing would give a better fixed time estimate than the sharp known bounds in [31], [37], which
is impossible.

The range p > 2 + 4/(d + 1) for the smoothing estimate in Theorem (4.1.2) is sharp for d = 1, and
for d > 2 it is conceivable that it holds for p > 2 + 2/d, see [46].

For Theorem (4.1.1) however our range may not be sharp even in one dimension. We can say that
the maximal estimate (2) cannot hold when p + 1/d. this follow from the necessary condition
B/a = 1/2p which we now show, modifying a calculation in [6].

Let x be a nonnegative and smooth function supported in (—¢, €) where £ will be small depending
onlyon «, Lete; = (1,0, ...,0) and define

a—2

g,.(x) = (Zi)dfx(x7|§+e1|)ei(x.i) de,.

Then immediately

d(a—2)
gy llp 2P 7 G,
B

Now

o—2 X o
U'gg)\(x)= 1 fX(XT |§ + X el|)el((x,E)+t|§| )dE

(em)d
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1 fX(X“Tﬁlhl)ei¢x(x,t,h)dh

(2m)d
Where ¢ » (x,t,h) =t x%|—e; +h/X\|%+ (x,— x e; + h). A Taylor expansion gives for term in
the phase is << 1 on the support of the cutoff function (provided that ¢ is sufficiently small).
Let 0 <c <« a and let R be the rectangle where 0 < x; < ¢ 21, and |x;| <x(@®2/2 for i=
2....,d. We define t(x) = a™t x17% x, for x € R so that t(x) € [0,1] for x € R, and for x & R we
may choose any (measurable) t(x) € [0,1]. Then for x € R, we have |UZ g (x)| = ¢y x~4(@-2)/2
and thus

a-1 (a-2)(d-1) (a+1)d

sup +
Uggnl|| 2 luggslyzn? ™ %
p

lo<s<1
Comparing with upper bond for ||g >\||L1§ leads to the condition B/a > 1/2p.

We will rescale inequalities for Ug* when acting on functions with compact frequency support. This
process will give rise to the operator S define by

Sf(xt) = SPf(x 1) = 5 f X(©)e® F(R)ei=D g )

Where x € C3(U) and @is elliptic C* function ¢ on an open set U in RY is called elliptic if for ever
¢ € Lthe Hessian ¢” is positive define.

We ask for LP — (R x [0,x]) bounds for S. Note that for |t| < 1 and x € C7’ the function xe'*® is
Fourier multiplier of LP, 1 < p < o0, and consequently the question is only nontrivial for large .
The key ingredient will be Tao’s bilinear estimate for the adjoint restriction operator [21] which
applies to phase which are small perturbations Of |€]?/2. We need to formulate more specific
assumptions on the phases allowed and follow [105]. LetN > 10d. We say¢ : [-2,2]¢ > R is a

class ®(N, A) if [0 ¢(x)| < A for all x € [-2,2]% and all |ay| < N, where j=1....,d. To add an
ellipticity condition we say that ¢ is of class @, (g, N,A) if $(0) = Vdp(0) = 0, and if for all x €
[—2,2]9 the eigenvalues of the Hessian ¢”(x) lie in [1 — £,1 + £].

We define the adjoint restriction operator £ = £® by

eh(x,t) = f SI<EHO® (E)dE h

[-22]4
So that Sf = (2m) ~def,, where u = (—2,2)4. Now Tao’s theorem can be stated as follows: Suppose
p>2+_-. Then there exists an N (depending on d andp) and for A >1 there exists € =
£(A,N,d, p) > 0 so that the following holds for ¢ € ®(g, N, A): For all pairs of L? functions h;, h,
so that dist(supp (h,), supp(h,))= ¢ > 0 the inequality
llehshz Ml 22 NN 21102 112, p > 2+dL+1, (6)
Holds. In what follows we fix N, A and € for which Tao’s theorem applies. The constants may all
depend on these parameters.

Lemma (4.1.3) [108]: Letp >2+ - By, B, c [-1, 119 be bals so that dist (B;,B,)c, and let

Pedyy (e, N, A). Then for ff, g with supp fcB, supp fc

B., ||Sf59||Lp/2(Rdx[0'x]) Sc.pxd(l_Z/p) ”f”LP(Rd)gLP(RP)-

Proof.LetC, = 10(1 + maxe,_, ,a|V(¥)]), and letn);, 1,€CH be supported in (=2,2)¢ so that

N, (¢) =1 on B; and 1,(¢,) =1 on B,. Moreover assume that I]; and I, are supported
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onlyslightly larger concentric balls B;, B, with property that dist (§1, §2) > ¢/2. We also set
rf=F"1ndf], i=12
Let Ki = F-1[el*®1);x], for i = 1,2, so that
Sif(x, t) := SPf(x, t) = Ki * f(x).
Then SfSg = S, fS,g. We first note that for all t € [— »,x]
|Kilzl| s lel™,  if |2l 2 Co » (7)
This follows by a straightforward N-fold integration by parts, which uses the inequality|VE((x, &) +
tp®)| = |xl/2if || = Co >, [t] <.
Now let () to be a tiling of RY by cubes of sidelength x, and for each Q € Q(x) letQ, denote the
enlarged cube with sidelength 2C, %, with same center as Q. For each cube we split each function

into a part supported@.and a part supported in its complement.
Thus we can write

||5f59||552(Rdx[0'x]) =l+11+1+1V
Where
/2
I = Z ||51 [fXQ*]SZ [QXQ*] iP/Z(Qx[O,x]) ’
QeQ(»)
/2
= Z ||51 [fXQ*]SZ [QXRd\Q*] EP/Z(QX[O,x]) :
QeQ(™)
_ p/2
I = Z ||81 [fX]Rd\Q*]SZ [gXQ*] LP/Z(QX[OQ\]) !
QeQ (™)
/
IV = Z ”51 [fXRd\Q*]Sz [QXRd\Q*] EJZ(QX[O')\]) '
QeQ (™)

The first term gives the main contribution and estimated using Tao’s theorem, i.e. (6). One obtains,

/
[ < Z ISPy [fxq. ]SP2 [9xq. ] ngZ(Rde) e Z”P1[9XQ*] 2/2 IP2[9xo. ] E i
QEQ(n)

1/2 1/2

/2 /2

< D el loxa 1 5 { D M.y ) (D lloxe I

Q Q Q
By Hdolder’s inequality,

1/p 1/p

Yl | s DIr i [  sxerzm i,

Q Q

And we have the same estimate for g. Thus 12/P < x9(=2/P) |If|| ||g]l,, which is the desired bound
for the main term.

The corresponding estimates for I, 111, 1V are straightforward as we use (7) for the terms supported
in RY \ Q.. We examines Il and begin with
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/2 /2
= Z 191100 e oo 182910 Mo o
QeQ(»)
1/2 1/2
= (ZQEQ(%)”Sl[fXQ*] EP(QX[OQ\])) (ZQEQ(%)”SZ [fX]Rd]”EP(Qx[O)\])) (8)

We use the trivial bound ||S;f(.,t)|l, = (1 + |t|)d||f||p for f replaced with fxq, , so that the first
factor in (8) is bounded by(C x9+1 ||f||p)p/2. By (7) we get

1/p
p/2
(Z ” S, [gXRd\Q*] LP (Qx[o,x])>
R p 1/p
s(f f U Izl_ng(x—z)Idzl dxdt) SN (gl
—x JxeRd L/|z|=x

Hence [12/P s »2@HD-N|if|| Jigll,. As N> 10d this estimate is negligible. Because of
symmetrylll is estimated by the same term. For the estimation of IV we proceed in the same way but
use (7) for both terms, the result is the (again negligible) bound 1V2/P Sx\4+1=N||g]| .

We now formulate an analogous result for functions with smaller frequency support and smaller
separation.

Lemma (4.1.4) [108]: Let p>2+ -~ and x'/2>2J > 1.LetQ;,Q, c [—-1,1]¢ be cubes of side
21 x71/2 5o that dist (Q;,Q,) = c2 x™/2 and let ¢ped,y (g, N,A). Then for all £ and g such that

supp S350 3

ppfc Qz,||Sf(59)||Lp/2(Rdx[0,x]) Sc 2 P /NP ||f||Lp(Rd)||9||Lp(Rd)-

Proof.By finite partitions and the triangle inequality, we may suppose that Q, and Q. are balls of
radius 20 x~1/2, We reduce matters to the statement of Lemma (4.1.3) by scaling. Let &, be
midpoint of the interval connecting the center of the balls. We change variables § = §, + &én where
8 = 20 x~1/2, Then a short computation shows that

SPf(x, t) = el E)+10E)SOf, (§(x + tVP(Ey)), 52t) where f,(y) = f(5-1y)eld 'W&) and the
phase Y is given by

1
) =3 f (" (§o + s8n)n,n)ds.
0

The same consideration is applied to S®g. Note that s is elliptic (with estimates uniform in &, and
6) and the frequency supports of f, and g, are now separated, independently of §, jand x. Thus we
can apply Lemma (4.1.3) to obtain

||3¢f5¢g|| = 5—(d+2)/p/2”3¢f*s¢g*

LP/2(R4x[0,x]) LP/2(Rdx[0,x82])
S §7@4/p (5 §2)4-2/D)If ||, llg. ]I,
< 52d—4(d+1)/p >\d(1—2/p) ”f”p”g”p
As § = 2i x~1/2 the assertion follows.
We will also require the following lemma for when we have no frequency separation.
Lemma (4.1.5) [108]: Let P > 1, let Q = [—1,1]¢ be a cube of side x~1/2, and let ¢ € @ (N, A).
Then for all f such that supp f c Q, ISFC, )ll.» (R), |t] <.

Proof. LetEg bethecenterofthecubeQ, and let xeC¥ so that x(£) = for |§] <+/d. It suffices to
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show that x(x1/2 (€ — &5))e'**® s a Fourier multiplier of LPfor all [t| >, with bound uniform in
t. By modulation, translation and dilation invariance of the multiplier norm it suffices to check that
h(.,t) defined by

h(n. 1) = x(n)elt(@(x 2 n+88)-0Es) (" *n.V0(Ep)),
is a Fourier multiplier of LP, uniformly in [t| >x. However this follow since dyh(n,t) = O(1)for
[t] <x as one can easily check.
Propsition (4.1.6) [108]: Lets > 2 + -~ x € C7(U), andletdbeanellipiticphaseonU. Then

”Sf“ Lp(RdX[—x,x])sxd(l/Z‘l/p)IIfIILp(Rd).

Proof.By partition of unity and compactness argument it suffices to show that for everyg, € U
there is neighborhood U(E,) so that the statement of the theorem holds with y replaced byy, € Cg
supported in U(€,). Now let H be the (symmetric) positive definite square root of ¢" (£,) and let
U() = e7%(d (G + & H ') — d(E) — e1(H M, V(o))
Then it suffices to show that S¥(defined with amplitude x(&, + £, ~'n)) satisfies the asserted
estimates, with a dependence on g;. If g; is chosen sufficiently small then we have reduced matters
to a phase function in @y n4) With parameters for which Tao’s Theorem and therefore Lemma
(4.1.4) applies.
We now return to our original notation and work with ¢ a phase function but assume now that ¢ €
Dgpena). We may also assume that the amplitude function x is smooth and supported in
[—(2d)~10,2d~10]-4, We make a decomposition of the product SfSgin terms of bilinear operators,
localizing the frequency variables in terms of nearness to the diagonal in (€,n)-space; this is similar
to arguments in [34], [104] and [105].
Let x, be a radial C3(RY) function so that xo(w) =1 for |w| < 8d'/? and so that supp x, is
contained in {w : |w| < 16d'/2}. Fix x> 1 and set
@ (EM) = xo(x2 (§—1))
0;(&E M) = X0 (X2 271(€ = 1)) = xo(2 22 271(E=n)), j= 1,
So that ©, is supported where [ —n| > 16d'/2 x~1/2 and, @, is supported in the region
4d1/22i x~1/2< |E — | > 16d1/2 x~1/2,
We may then decompose

sfsq = Z B,[f,q]

=0

Where

B,[f,g](x,t) = ff el xErM i@ ®+e @ (£ n)(E)(n)dedn

(211:)2d
Only values of j > 0 with 2) <x1/2 will be relevant, as otherwise B; is identically zero. We will
prove the estimate

4@y 2 2(d+3)
_ )27 PO il lgll, Ccpsa,
”Bi[f’ g]” ~ d_d+1y d 2(d-1) 9)
p/2 j( )
272 e iz e Il llgllp, 4<p<w

And use this to bound
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18p(rongongy = IS0 WMoy < | D IBEEAL,
0s<jzlog, (x1/2)
And then sum a geometric series.
In order to prove (9), we decompose B; into pieces on which we may
apply Lemma (4.1.4) Let 9 € C3(RY) a function supported in [-3/5,3/5]9, equal to 1 on

[-2/5,2/5]4, and satisfying
Z 9E-n)=1

nezd
Forall Z € RY. Forj > 0,n € Z4, define

Bin(® = 9(x1/2 27 —n)
And, for (n,n’) € Z4 x 74,
9 nn’ (6 1) = 05(8,n)B; 1 (E)B; v ()
Observe that B, B; v are supported in cubes Q;, Q;,» Which have sidelengths slightly larger than
»~1/2 2, and that aare centered at the points &, =x~*/2 2Inand & ,» =x~/2 2In’, respectively.
Now let
Ap={(n,n") €74 x 74 : |n—n'| <18d'/?},
A={(n,n") € 24 x 29 : 2d¥/2 < |n — n’| < 18d%/2}.
Then if 9,/ is not identically zero then we necessarily have (n,n") € A, and if, for j > 1 the
function 9, , v is not identically zero then we necessarily have (n,n’) € A,. These statements
follow by the definitions of our cutoff functions. Moreover,
dist(Qjn, Q;nr) < 18d/220 %12 if(n,n’") € A,,
and
271d/220 %712 < dist(Qjn, Qj ) < 18d1/220 x"/2if j > 1 and (n,n’) € A,
For the application of Lemma (4.1.4) it is convenient to eliminate the cutoff ®; but still keep the
separation of the supports off ; ,and B; ,,v. Set, for j = 1,

Bi[f,gl(xt) = 2 f f QIR EEH) @it (9 B+ () Z Bi.n (B, (MI®)3(n)dEdn

(211:)2d

n,n’eA
And define §j [f, 9] similarly by letting (n,n") sum run over A,. The reduction of the estimate for B;
to the estimate for §j is straightforward; by an averaging argument. Indeed, x; = xo — X0(2 -) and
use the Fourier inversion formula

O = f (e TENdy, 2 1

nd

Then
Bilf.gl = 5 f 2By, 9y ]dy
Where f_,(x) = f(x +x1/2 27Jy) and g, (x) = g(x —x/2 27Jy). A similar formula holds for j = 0,

only then x; is replaced with x,. Thus in order to finish the argument it is enough to show that
||B;F, g]||p , Is dominated by the right hand side of (9).
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Define convolution operators PjvnbyP:;f = B]-'nf. Note that for fixed j, each & is contained in only a
bounded number of the sets Q;, + Q; . this implies, interpolation of £2(L?) with trivial £*(LY)or
£”(L*) bounds that, forj > 1,p = 2,

|IB;Lf. g1l (10)

LP/2(Rx[0x])

2/p
_i\d(1-4/p) /2
< max {1, (=12 270) ’ }( Z ”Spl'vnspjvn'g”zP/Z(Rdx[O,x]))

n,n’eA

The analogous formula for j = 0 holds if we replace AbyA,. Notice that for all j,

1/p
(anj,nf”i) <Ifl,, p=2 (11)

Now if j = O we use Lemma (4.1.5) to estimate
[Pyt 08P GC Ol s gy = ISPoaC O] ISPora. O,

S [IPofll, lIPonall .
Hence, after integrating in t,
2/p
p/2
p

p/2

"2yl

1Bolf, 61l /2 getuongy S Max{LnA/272/P2} 5 P/2 Z 1Pyl

nn’eaq

1/p
< max{1,x4(1/2=2/p)} 5 2/p (Z“PO,nf“i) (Z”Po,n'9”5>
n n’

The asserted bound for j = O follows from (11).
Next for j > O we use Lemma (4.1.4)and thus the assumption p > 2 + =, and estimate

4
d+

1/p

ISP SP; v
Therefore by (10)

i(d_d+1
wrasstony S 2000 Bl [Pyl

||§] [f, 9] ||Lp/2(Rdx[O'>\])

1/p
< max {1, (x1/2 2‘1')d(1_4/p)} 2455 s 2/p (Z“Pi,nf”i) (Z”Pi,n’9”5>
n n’

and again asserted bound for ||B;l[f, g]||p/2 follows from (11).

1/p

We now prove the endpoint estimates of Theorems (4.1.1) and (4.1.2) First we remark that by
various scaling and symmetry arguments we assume that | = [0,1].
Consider x,,x € cg(R) supported in (—2,2)and (1/2,2), respectively, such that

Yo + Zx(z—k) =1
k=1
We define the operators TY = T, by

Tof(, D(8) = X0 ())e™FI*F(¥).

Tof (L D(®) = x(27*Ig)eH1*5(®), k> 1,
So that Ug = ZkZO Tk( ,t)
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Our main result is the following inequality for vector-valued functions {fi }i.—, € €P(LP).
Theorem (4.1.7) [108]:Letp € (2 + T w),a# 1,d=1ora>1,d>2andB = ad (% — l) - g

p p

Then
1 1/p 1/p

Z( f |2—kBTk|pdt> < (ankng) (12)

k=0 0 Lp(Rd) k=0

We now discuss the implication to Theorem (4.1.1) 1nd (4.1.2) in fact strengthened versions
involving Triebel-Lizorkin spaces Fglq.

Here the norms in this spaces are given by the LP(#%)and £9(LP) norms (resp.) of the sequence
{Zk“ka}:=O, with usual inhomogeneous dyadic frequency composition | = Y., Li. See [26]. The

following corollary is an immediate consequence of Theorem (4.1.7) by Minkowski’s inquality and
Fubini’s theorem.
Proof.The localization of the multiplier near the origin T, is easily handled as
17 [xo(I-De™ ]|, < C

uniformly for t € [0,1]. To see this, since F~1[x,(]-])] € L1, it suffices to show that for ¢
supported in (1/2,2), the L* norm of F~1[xo(27%.) (e ™ |-|* — 1) (I-)] is 0(2=*<) which
follows from the standard Bernstein criterion.
Now, by scaling and Proposition (4.1.6) with x~ 2% u ={¢: 1/2 < |§| < 2}and ¢(€) = [§|%, we
have already proven the estimates

ITfll ooy S 2PNl ey, B=B() :=ad (2-2) =2 (14)
fork>0and p > 2+%.
It suffices thus to show that if (14) holds for all k > 0 and all p > q, then (4.1.7) holds for all p €
(9, ). Due to our restriction on (14) we let q = 2+ and fix2+- < r < p. We can make the
additional assumption that the k sum on the left hand side is extended over a finite set (with the
constant in the inequality independent of this assumption); the general case then follows by the
monotone convergence theorem.
For later reference we state a Sobolev inequality which is proved linking frequency decompositions

in gand T and Young's inequality (just as in the argument used to deduce Corollary(4.1.9) from
Theorem (4.1.7) Namely

[imupron ], = 265 Mgl (15)

holds for r < p < « (including the endpoint). Alternatively one can also apply the fundamental
theorem of calculus to [T f(x,.)|" (see e.g. [55]) for p = ocand the general inequality follows by
convexity.

The main ingredient in the proof of (4.1.7) will be the Fefferman-Stein sharp function [31] and their
inequality

IFll, < IF¥1l;,
Where p € (1,) and aparioriF € LP. We apply this to
ko0 27 KBP) || Ty f (X, lippos; and by (14) this function is aparioriinLP as the sum in K is assumed

to be finite. Thus it will suffice to prove that
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sup
e fQ > 2 KO Tyl g0 — f > 2 KO ITfy lpyo 12

k>0 k>0 LE
is dominated byC(Zk>02 ||fk||p) . Here the supremum is taken over all cubes containing X,
and the slashed integral denotes the average |Q|~1f Q By the triangle inequality the previous bound
follows from

su
Xeg[ Zf 2-KBO®) || T, fi (y,) — Tufi (2, )||Lp[0 gdzdy|[ s kag
Q o\

k>0

Denoting the sidelength of Q byt(Q), we observe that, by Minkowski's inequality, this would follow
from the inequalities

1/p
su
Xeg[ Z f 2 kﬁ(p)“kak(y ) kak(z )”Lp[O 1]dzdy S kag (16)
2k{’(Q)<1 LE -
1/p
sup ~
XGQ Z f 2 kB(P) ”kak(ya) - kak(z,-)lng[Ovl]dZdy < Z fkg (17)
Zk{;(Q)>2ak Q LE 4

and

sup _
e f Z f 27 K@ Tefi(y,) = Tich@ )l ppo ydzdy|| kag (18)

Q 20k>2kp(Q)>1 Q
Proof of (16). It is enough to consider cubes Q of diameter ~ 2J with x,y,z€ Q and j+k <
0.LetH, = F~[%1(27K]-]), where % is smooth, equal to one on (1/2, 2), and supported in (1/3, 3).
Then

kd
[VH ()] = 2% 2

)ZN

With large N > 10d. Thus
Ty, ) — Tufi(z,0) = f [H (Y — ) — Hi(Z — 0T (o, D e

1
= ﬂ ((y = 2), VH (z + s(y — 2) — w)) Ty fi (w0, t)dwwr
0
Which is controlled by a constant multiple of
pi+kd f 27w, Dl dw,
(1+2k|x wl)
Thus, using the embedding ¢P & €, the right hand side of bounded by

2| 2

i |o>k=—j

p\ 1/p

21'+ka2 kB | T, f, (wwr,) | dawr

(1+2K]- wl)

LPo,1]
P
LX
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1/p
p

e (1+2—(n+j|<—w|))

B ~(+)(d-B(p))
= Z 2 Z Hf : ¥l =y f- ey ()| dowr
> j< LP(R%x[0,1])

1/p
) , P
< Z 27" Z ”2(n+])8(p)T—(n+j)f—(n+i)“LP(Rdx[o,ﬂ)
n=0 j<-n

By the (14) the last expression is dominated by a constant times
1/p

1/p
D2 D !l s(Znung)
k

n=0 j<—n
And (16) is proved.
Proofof(17). For fixed t, the operator Ty has convolution kernel K}, given by
de

£ ei(x)+2%"t[g|% 4
2] e :

By () = {x: |x| < 4C(a)2KD},
Integration by parts yields favorable bounds in the complement of this ball. Observe that
|V (2K (x, §) + 2%t[g])| = c,2K|x| if x ¢ By (a), te [01],

K (x) =

And we obtain

IKE()| < Cy2Kd(1 + 2K|x]) " if x & Bi(a), te [0,1], (18)
Consequently the main contribution of K£(x) comes when |x| < 4C(a)2K@D),
We prove the estimate (17) by interpolation between

sup B sup
erf Z 27Ty Mpody|| S 7 Miclloo
Q 2kp(Q)>20k .
And
1/r
sup B
27O T (y ) o ndy|| < | D Ifill
XeQ Pl0,1]
Q 2kp(Q)>22k . m

Where 2 + = <r <p.
Now, as B(p) > B(r) + a (% - %) , the L" bound is proven by applying Hélder in k, followed by the

inequality

1/ /r

r 1

sup —k(BM)+(5-3) )r r r

o, Y2 O G Tty My |l P
k k

This is a consequence of the L™ -boundedness of the Hardy-Littlewood maximal operator, the
interchange of the spatial integral and the sum, an application of (15), followed by Fubini and the
estimate (14)
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(for the admissible exponentr > 2 + 4/(d + 1)).
To prove the L™ bound, we let Q* be a cube with same center as Q satisfying #(Q*) =
10dC(a)?(Q). By Minkowski’s inequality itwill suffice to prove that

Su
2750 T QT 4 S o Il (19)
Q e t[[0,1]]
2X2(Q)>2
And

su
2760 T [fxQIYe a4y Ml (20)
Q Jkp(Q>2ak o]

Uniformly in Q.
To prove (19), again we apply Holder a number of times and (15);

Z Z 2-KkB(p) ||Tk[kaQ*](y")”Lf[[omdy

QK 2Kp(Q)>20k

11 1/r
< IQIr Z ) ( | IMlfo@ 1)y, ”dy>
t|l0,1

1/r
SU
o 1QI /278 ( f ITlfoQ@IN, dy)
t 01

1/r
Su Su
<SPt ([l ax) =PIl

Where the third inequality holds again by the L* version of (14).
For (20), we note that as £(Q) > 2X(«=1 and the function is supported in the complement of Q* we
can use the rapid decay in formula (18). We have that

27K ® T [fixQ 1)l dy
Q ok ak e
2%4(Q)>2

Squ f fi.(2)|dz
(1+2K]y- z|)2“1| <2

Supf f kd
< — =  |f.(2)|dz
< )y H (1+2k|-—z|)2d| k(DI )

This concludes the proof of (17)
Proof of (18). We let ¢;(x) = d2i~% if Ix| <d2) and ¢(x) =0if |x| < d2'. replacing cubes
bydyadic balls we see that (18) follows from

1/p
sup _
i Si* Z 2k8(p)||kak||Lp S(lefk||g> , (21)
t[[0,1]] -
LP

dy
Lf[[o 1]

Su
< "Il

k+j>0
(a—1)kzj

Now, for fixed k we cover RY by a grid R~ consisting of cubes of sidelength 2%~ For each

74



R € RY! let R* be the cube with same center as R and sidelength C(a)2K(®-1+10d) where C(a) is

as in the proof of (17)
For R € Rt we let fR = xxfi. We may then split the left hand side of (21) as | + Il where

| |
sup _ )
1= s D) 2ol > xRl I
l k+j>0 ReRy~1 LP J
(a—1)k=j t[[0,1]1] LP

And II'is analogous expression where xR™ is replaced with xpa /-
By Hardy-L.ittlewood, Minkowski, Fubini, (18), and Young’s inequality, we dominate

s Z 27kB(®P) Z Xrd /- Tific
k=0 REfR%_l Lp(]RdX[O.l])
p 1/p

| okd
< —-kB(p) R _
) ZZ fo f ,[(1+2k|x_y|)2d E |fk (Y)Idy dxdt S
L R 1

k=0 [
1/p

eRY

Su
s > 2w | S el <5 Pl < | ) I
k

k=0 ReRry~1

p
Concerning the main term | we use the embedding P < £, interchange a sum an integral, and

apply Minkowski’s, so that
p p
(o] ] |
| s Z G *| Z 27KB®P) Z XRTf o .
j [ k+j>0 ReRy~1 t[[o’ﬂ]J
(a—1)kzj LE

Now for R € R¢™! has sidelength greater than 2J, so for fixed k. Setting n=k+j> 0 and

ISEIH

n>k

applying Minkowski’s inequality, we get

Where
1/p

p
I, = Z Z o-(n-)B(P)p

i a—1
j>n ReReRn_j

As before chose r so that 2 + diﬂ < r < p. It will suffice to show that

1/p
1, s 2746 (Znung) . (22)
k

Observe that byYoung’s convolution with ¢; maps L*(R?) to LP(RY) with operator norm

G * ||Tn—ifrl§—j”Lp[[ .
t[l0,1

Lk

0(214(t/r=1/p)). Moreover by (15) we have
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<2(n Da(i-1)

ITa-

[ Taifaill o
t[[01]]

]n—]'”L{[O.l] Lp

Thus we can bound

TR

ZZ ]d p2(n J)a(r p)pz (n-j)B(P)p Z ||Tn_jfrl§_j||]_,r(]Rdx[0 -
RERER{T] '

Which by (14), is

TR

ZZ ja(3-% p2(n Da(3- p)pz (n—))B(p)p Z ||Tn_jfrl§_j||]_,r(]Rdx[0 -
RERER{T] '

Since f25" is supported on the cube R of size 2(n=D(*=1d e see by Holder’s inequality that the last
dlsplayed expression is dominated by a constant times

TR

Z 514(-5)P o (=Da(5-5)P o~ (n-B(IP o~ (n—)B(r)Pp M =DA(i—5)p Z IfR ]||
j RERER]T]
Now this simplifies after summation in R, to

1
P

w5270 an i | < oG (anknp>

This finishes the proof of (18) and concludes the proof of Theorem (4.1.7).
Corollary(4.1.8) [108]Letp, a, B be as in Theorem (4.1.7) then
1/p

[ Ny it 5 Wy
This implies Theorem (4.1.2) since for p > 2 the space Bg | = Fj; ) contain the Sobolev space Fj =
ng, via the embedding (P & (P followed by the Littlewood-Paley inequality, and by the same

reasoning Ff,"l is imbedded in LP = ng. We remark that a similar sharp inequality for the wave
equation is proved in [101], in sufficiently high dimensions.
Another consequence of Theorem (4.1.7) is
Corollary(4.1.9) [108]:Letp, abeasinTheorem (4.1.7)Lett = 9(t)besmoothand
completlysupported. Then

= ”9”13%(11&‘1)’ =ad(1/2-1/p). (13)
LP(RY) ’
Theorem (4.1.1) is an immediate consequence of Corollary(4.1.9) since the Besov space BY, | (R%)
is continuously embedded in the space CO of continuous bounded functions which vanish at
infinity.
To see how Corollary(4.1.9) follows from Theorem (4.1.7) we introduce dyadic frequency cutoffs
in the t variable. We decompose the identity as | = ¥;—, £; where Z]\f(T) =% (1) = X; (1)f(t) where

[ oot

1/p 1 (R)
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% = x(279]']) for j > 1, with suitable % € Cg supported in (1/2,2) and ¥, is smooth and vanishes
for || = 2. Now we applyLto 9T, If 2)~%k ¢ (2710, 2%0), then we apply an integration by parts in
s to terms of the form

[ @z [ a(syentsdsdga
One finds that for this range the contribution of £;[9T,g] is negligible; namely
1/p
(f f |£;[9T gl (x, s)|pdxds> < Cymin{2~kN 2-IN}Y||g|| jif2i-ak ¢ (210 210),
R JRd

Thus a localization in ~ where corresponds to a localization in T where ITI We combine this with
Theorem (4.1.7) applied to and obtain

Section (4.2): Schrodinger Operator and Space-TimeEstimates
We consider the Schrodinger equation, i d,u + Au = 0, with initial datau(.,0) = f.
When fis a Schwartz function, the solution can be written as u = Uf, where

Uf(x. t) = elf(x) = - [ F(§)eitll*+itx®) g, (23)
2md Rd

And ~ denotes the Fourier transform defined byf(g) = [ f(y)e=i0®dy. We fix a compact time
interval | and L9(RY; L7 (1)) be the space equipped with mixed norm

a/r
Ilu”LQ(Rd;Lr(I)) = f (f |U(x, t)lr dt) dx
R \/1

Our aim is to bound the solution in this space whet h initial data are given in the Sobolev spaces L?,
with norm [[fllp = [|(1 — A)“/2f||Lp(Rd). We shall always assume that g, > 2, and we will mostly

1/q

assume p = 2 as well. The cases r = 2,r = q and r = o are of particular interest.

Theorem (4.2.1) [118]:Let2 < p < .

Then U : LP(R) — LP(R; L"(I)) is bounded if and only if r < 2.

The sufficiency of the condition follows from [16]. The necessary is a consequence of the following
more precise bounds for frequency localized functions which also illustrated the sharp of the
necessary conditions of [16] (at least in the casesr < gand d = 1).

Corollary (4.2.2) [118]:Suppose that2 <r <p < q,g +1<1- %

ThenU : BY, ((R) - L"(1)isboundedwitha = 1 — % - % -2

When p = q one could hope for the following estimates.

Conjecture(4.2.3) [118]:Letp € [2,«]r € [2, oo]satisfy% +i< gandz‘j‘p+1 +i<d

ThenU : B%,(R?) - L (R L7(1)) isboundedwithe = d (1 - 2) -2,
To prove the conjecture it would suffice to prove the sharp estimates with r = c,p and 2. The
estimates with r = oo strengthen the sharp LP-Sobolev bounds for fixed t and « = 2d|1/2 — 1/p|
due to Fefferman-Stein [31] and Miyachi [37]. In [114], the conjecture was proven in the reduced
range p e (242, «0), and for d = 1 it was proven in the range p € (4,). In [108], the conjecture

2(d+3)
d+1

,oo), with r > p; moreover a related result was proven for the semigroup
7

was proven for pe(




exp it((—A)“/Z) for a = 1. A nonendpoint result for a = 2, p = r has been previously obtained in
[46].

In the case of the Schrodinger semigroups (a = 2) it is well known that the local something and
maximal inequalities are closely related to estimates for the adjoint restriction operator for a
compact portion of the paraboloid in R4+ (see [15], [24], [110], [11], [46]). Here we improve the
known L9(L") bounds for g = r by establishing the actual equivalence of the space-time regularity
estimates with estimates for the adjoint restriction operator (a related result establishing the the
equivalence between the ajoint restriction and Bochner-Riesz for paraboloids was found by Garbery
[28]).

Let £ denote the adjoint restriction (or Fourier extension) operator given by

ef(E 5) = fl | H(y)ev-idy (£, s)eRIXR. (24)
ylz1

Definition (4.2.4) [118]: We say that R*(p - @) holds true if £ : LP(RY) - L9(R%*1) is bounded.

it — d+2p47 i i
In the critical case q(p) = <2p’ it follow from the explicit formula

— 1 ilx-yl?
UfG6 ) = g | &0 (B27) 1)y (25)

And scaling that R*(p — q(p)) implies the LP(RY) - L9® (R4 x 1) boundedness of U.
Moreover it was also shown in [46] it implies the L’ — L9(R% x I) bound for a > 2d (% — l) -2

p
we strengthen these results as follows.
Corollary(4.2.5) [118]:Let 2 < g, < o0, 1 K Py < q,, and suppose that R*(p, = g,)holds.

Letq, < g < ,q < r < wandsupposethat 0 < % sttt

4~ Po do
. BP(Rd drrn)i T _1_1)_2
ThenU : BE(R®) - L9 (RY;L7(1)) isboundedwitha = d (1 -2 —2) -2

Using also the trivial R*(1 — o) one can deduce the conclusion in the larger range p,(q) <p <q,
where p,(q) < p, is defined by@ =1+ (1 - q—O) (1 -2 )

~ po q Po

Given Theorem (4.2.8) the recent progress on R*(p — p) by Bourgain and Guth [110] can be used
to verify Conjecture (4.2.3) for new parameters (see also [16] below for the case p # Q). In two
dimensions their implies that the conjecture holds in the case p = q < r for p > 33/10; moreover,
in higher dimensions, it holds for p = PBG(d) with PBG(d) =2 + 3d~! + 0(d~2) (see [110] for
their exact range of p).

In two dimensions a better range for p can be obtained for large r; this is closely related to previous
results on maximal operators for L2 function and result on Planchon’s conjecture in R? (cf. [52],
[11], [59], [115]).

Corollary (4.2.6) [118]:Let2 < p < 16/5.

Then U : BE(R?) - LP(R?;L*(1)) isboundedwitha > 3/4.

Unlike the rest of the estimates in this article, there is no reason to suspect that this is sharp with
respect to the regularity in the range 2 < p < 16/5.

By m(D) we denote the convolution operator with Fourier multiplier m; that is to sayrﬁ(—ﬁ)f = mtf.
For two nonnegative quantities A, B the notation A S Band B < A

We formulate a more technical version of Theorem (4.2.8) that applies to mixed norm inequalities.

In what follows let
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A(p) :={geR?: 3p < [g] < 12p}. (26)
Theorem (4.2.7) [118]:Letp, q,re[2,«],p < q,B > —d (% — %) . Thentheinequality
1/q

sup »F sup 25 N
1 ||f||p31(f (f E{ED)] ds) de) < wo(27)
A(X) N

Holds if and only if for 7= d (1 -1 ) — 2+ 2,

q
1 1/r
( | |eitAf|rdt>
-1
q

Taking Theorem (4.2.7) for granted we can quickly give
Theorem (4.2.8) [118]:Suppose 2 < p < g < «. The the following are equivalent:
() R*(p » g)holds.

(i) TheoperatorU : B, (R%) - L9(RY x I)isbundedwitha = d (1 — % — &) — %‘

We can also obtain result on larger spaces (including the Sobolev space L) if we give up endpoint
in the g-range.
Proof. By Theorem (4.2.7) we just have to show that R*(p — q) with equivalent to (6) for large x,
in the case q = rand 3 = 0. Clearly the later is implied by bounded above and below in the region
where s =X.Vice versa, supposing that (28) holds in the case q = rand 3 =0, by the chang of
variables, we have that € : LP(R?) - L9(W, ), where

W, = {(£s) : se[x .2 x], xeA(s)}.
For weR*+? define f@(y) = eiley)-iwd+1lyI*f(y) and observe that ef® = f(. —w). Thus using a
finit number of translations we see that € : LP(RY) — L9(B, ), where B, of radius » centered at the
origin, and the operator norm is uniformly bounded in x. Letting x— ooyieds R*(p — q).
Lemma (4.2.9) [118]:Letp, q, re[2, o]withp < gandlet x> 1.supposethat

a/r 1/q
f (f ef (255 ds) dg | <Alifll, (29)
A(R2) \Uxn2

holds. Then, foryreC?withsupportin{¢ : < [§| < 5},
1 . 1/r
eitdyy D) ¢ )
(L))

Proof.If f, is characteristic function of a ball of radius (100x)72 then |e(f,)(3%s)| =
x~2d for(x g s)eA((=2))x[»2, 2 x2].The resulting lower bound A > ¢ x24(=1+1/p+1/)+2/r (which

is far from being sharp) will be used repeatedly to dominate certain error terms which decayfast in
.

The convolution kernel for ei®ys(2) can be written as

k0= (2)’ f P(E)e N D g

Su

p
”f”BEl <1 < o0, (28)

s Axefll, a=d(1-2-2)-2  (30)

2
By integration by parts it follows that
kr()|< CylxI™N, | = 11 x. (31)
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Hence, by a standard argument,

1 q/r
(f (f |k?*f|Q/rdt>> dx < A X [Ifll,, a=d-4-94_-2 (32
|x|s11x \Y1/2 p q T

For f supported in the cube of the sidelength x 2d~ centered at the origin. Indeed, suppose that
(32) is verified, let Q, = {Q}be a grid of cubes with sidelength x 2d~*, and centres xq, and let Bq

be the ball of radius 11 » centred ro. Then we may estimates the LY(RY; L7([2,1])) norm of
eitALp(g) by
1/q

1 /r H/a r r
( f Z XQW ( f / |k * [fo](x)|rdt>q dx) ( f Z XQ<x>(|k§ * [f;(Rd\BQ] (x)| dt)q/ dx) (33)
Q 172 Q

By Minkowski’s inequality in L*. We use the finite overlap of the balls, the translation invariance of
the operators and (32) to estimate the first term by

CA n© lefoIIE < CARE|Ifll,
Q

Where for the last inequality we have used the assumption p < g. For the second term in (33) we
use (31) with N > 2d and then Young’s to bound it by

q 1/q
c(f U IWI‘Nf(x—W)dWl dx> <N 05 11 < A e il
w|=10x

We used the trivial lower bound for A in the last step.
Our task is now to prove (32). We use a stationary phase calculation to see that k{ = H} +E,

where

M v

N 1|x| /4t X
k ( ) (4-1Tlt)d/2 Z va (m)

v=0
And [E, (x,t)] < C, x7 T
Where we chose L > d. For the leading term Y5, = s, and the functions s, are obtained by letting
certain differential operators act on s; thus yr, («) = 0 for |w| < 4 and |w| = 5.

For the error we use a trivial bound
1/q

1 r q/r
(f (f UlE*(X —Y t)”f(y)ldy] dt) dX) SN fll, s AXIfll,.
[x[s11x \/1/2

For the oscillatory terms we have to prove the inequality

q/r 1/q
f (f ftpv exp( L y' f(y)dy| dt) dx) SANfll,.  (34)
Ixl<11x \Y1/2 2”

Whenever f is supported in {|ly| < %/2}. By a change of variable t > u =1/t (withu = t = 1) and
the support properties for ys, this follows from

(f (fz f by (M) exp <i5(|y|2 —2(x— y))) (35)
sl 1 iylsn/z 2 4

Whenever f is supported in {|y] < x/2}. We now use a parabolic scaling in the (x, u) variables and
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setx =x"lawr, u=x"%s; y=2xz
The previous inequality becomes

(f ( 2)\2
7.2 21, 2 .[2
> slw|s5ox N

We have the Fourier series expansion s, (X) = X a Ce€'(¢® for Xe[_l—“ n] and for each v the

'10

Fourier coefficients are rapidly decaying, |C;,| < Cx (1 + |€])~N. Thus
Uy (Sw 22 SZ Z C, eir HowD/2g-in"25(2d)
f

f L|JV(sw 2% sz)ee(i(S|Z|2—(i—g,Z)))f(sz)(Zx)ddﬂr%)q/ri_g)l/q
lz|=1

254

< AxIfll,, (36)

234

Using Minkowki’s inequality for the sum and the rapid decay of the Fourier coefficients the
previous inequality (35) follows from

r q/r

dS) dw

f ( 2)\2
7,2 21, 2 .[2
> slwls5x N

a—d+2+4
< @+ [EDMAXTTT A |, (37)
The left hand side is trivially bounded byC x2/7+24/4 and therefore the displayed inequality holds
for |£] = x2/4.if |£| < x?/4, we change variable and see that for (37) we only need to show

o5 2 r q/r /a
f f f (i(slel? - €,2) ) 9@ ds ) duwr
3nZg|wr 1102 \ N2 |z|]=1 »

S AN |lg]
The right hand side is just Al|gl|,,, So that this would follow from (29).
Lemma (4.2.10) [118]:Let p, g, re[2,00] and x> 1.Let 2 < oy < «; and let a radial C
functionwhichsatisfiesn (§) = 1 for“* < [¢] < 2(ay.,). Suppose

1/q

i _ (sw+d)
f|z|51eXp <I (S|s|2 ( N ,Z)))f(2>\z)dz

1/r
sup fl a (DY 4|
e n(=)f| dt <B. 38
Ifl, < 1 (1/2| 1) q (38)
Then
1/q

22 NG d.d
f ( f &f (2%s) ) dg | sBXRTalifl,.  (39)
apn2<|Esayx2 \Ix2 »

Proof. In what follows let « = d (1 — % — %) — 2. We begin by observing the lower bound B > ¢ X%

which follows from the example in (ii).
By a change of variable £ =x x,s =x2 p,y = 2 x z we see that (39) is equivalent with

) 2 q/r 1/q
f(2)eilplyl?/4-pixy)/2)gy| dp dx
L0x25|§|5a1x (L f|y|52x (2*)

< CB X" (2 )4 nd/a=2/r ||f]|,.
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By inverting t = 1/p the previous inequality follows from

1 ' ° r q/r
1 ilx-yl|*
— gly)e =t dy‘ dt] dx
Lovﬂasalx (fl/z (4mit)4/2 f|y|sx
Which can be rewritten as

1 q/r 1/q
(f (f |e“g<x)|rdt> dx) < Blgll, (40)
aor2<|E o x \Y1/2

For g supported in{y : |y| < 2 x}. By assumption

1/q

S CB x~axd=d/p=2/ry ~d/p ||f|| .

1/q

1 - q/r
(Loxzsmsallfm |eitAn (2) 9(x)| dt) dx) < Bllgll,,.

And thus (39) follows from the straightforward estimate

LOxZSIHSal)\ (EZ et (1 —n (g)) g(x)

Whenever g is supported in {y : |y] <2 x}.
To see (41) we decompose the multiplier. Let xo be smooth and supported in{|§| < 2}
And xo(§) = 1for || < 1, and let xx(¥) = x0(27%€) — xo(217%¢),for k > 1. Let

E (X)) = — fXK(E) (1 — (E)) eI+ g

(2m)d N
And we need to bound the expression

(1-0(D)) o0 =) J B yratiay

We now examine V¢({x —y,§ —t&®) =x— y — 2t&. since a, > 2, foe the relevant choices
aoIx < Ixl <a; 2, 1/2<t<1,|y|] <2 wehave
Howo—2)x iflEl <,
max {'Zﬂ (a; — 2) x} if |€] = (a; —2) ».
Since 1 —n(x) = 0for2=2 < [¢| < 2(a, + 2), after an N-fold integration by parts we find that

[E, (X —y, )] < Cy(2¢ x)9-N for this choice of x, y, t, and the estimate (19) follows.
To complete the Theorem (4.2.7) we also need the following scaling lemma.

1/q

r Q/r
dt) x| <CunMigl,  (41)

[x —y —2t¢] >

Lemma (4.2.11) [118]:Lety > d (% — %) — 2. Supposethat for x> 1
1 r 1/q
( f leex (%) dt) <N Ifl,, (42)
1/2 » .
where xeC is supported in (1/2,2) (with suitable bounds). Then, for x> 1.
1/r
eitdy (2)f rolt) <Y Ifll,. (43)
(] lex®1 :
q
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Proof. It is easy to calculate that

SUPgete(eny? |F 7 X (2) exp(=ith12)] (] < Cy 28 (@ 45 Ix)™
And thus, byYoung’s inequality,

(81)~2 r
( f |e2x (§)f|rdt> s |2 f (@ YD NIFC -y)ldy
° q
< GaF e (44)
Now letting (8 x) 2 <b <1,

b S r 1/r 1 o ' - 1/r
(fb le2x (2) 09| dt) :bl/r<f [ (o) €52 [f(b2/2.)] (b72/2%) | ds)

/2 1/2
Thus by change of variable (42) implies

b itA,, (D r v
(] e @reof e

/2

q

< (vB) ¢ (o vB) I,
q

We chose b = 271.and sincey > d (% - %) — 2 we may sum over | with (8 x)™* <27 <1 and
combine with (44). Hence we get
SNY Il

1 . 1/r
(f e )
q

Now (43) with | =[—1,1] follows using the formula eit2f = e®fand the triangle inequality.
Finally, by scaling, we can enlarge the time interval (so that the implicit constant is of course
dependent on the interval), and we are done.

Proposition (4.2.12) [118]:Let 2 < p,q, r < «, andsuposethatthereconstantCsuchthat

”Uf”LQ(Rd;LT(I)) < C”f”]_,g(]Rd) (45)
wheneverfeL(R?). Then
(Dp=<aq,

.. 1 1 2
(")a = d(l_g_a) _;1

1 1

(i > T

1 1

i - 1
(iv)a > -
1 1.
(vi)a>0 ifr=2p=qgq>2d=>2
The proposition can be strengthened by replacing the Sobolev norm by the Besov norm BE.v, for
anyv > o, where [fllgp = (k=0 2k°‘V||Pkf||‘I§)1/V. Here, for k> 1, the operators p, localize

frequencies to annuli of width ~ 2X and p, = 1 — X, P. Recall that BY. v is contained in L, for
v < min {2, p}.

The inequality (45) has been considered in many especial cases and some of the necessary
conditions in Proposition (4.2.12) are related to similar conditions for other problems in harmonic
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analysis. In what follow we set a..(p;q,r) :=d(1 — % - %) -2

(a) If p =2, then the condition (ii)coincides with (iii)if % +2 =42 This is the condition in the
end point version of Planchon’s conjecture (cf. [52], [115]).

(b) If p =2 and r = oo, then the condition (iii) follow from the necessary conditions for carleson’s
problem [4, 15], via an equivalence between local and global estimates [46].

(c) If p=2 and 2 <r <q. then the condition o = a..(p;p,r) is more restrictive than (iv) if

d (% — %) —1>0. In particular, if r =2, and a = a.(p;p,2), the range p > 2% is necessary (in

analogy to the Bochner-Riesz conjecture in RY), and for r = p, a = a..(p;p, r) the range p > 24+

d
is necessary (as to equivalent adjoint restriction theorem for the sphere in R4+1,

d+1 d-

. (d) If p < g = r then the condition a = a..(p;p, 2) is more restrictive than (iv) if v < p,l, the

familiar range for the adjoint restriction theorem for the sphere in RY. Likewise if, p < g = r then

the condition a > max a..(p;q,q) implies % < % the range for the adjoint restriction theorem

for the paraboloid in R4+,
(e) The necessity of the strict inequalities in(v), (vi) is proved by considerations which involve the
Besicovich set. The necessity of the condition (vi) in dimensions d > 2 comes from the fact that a
sharp square function estimate for the Schrodinger operator implies sharp bounds on Bochner-Riesz
multipliers. The necessity for the open range (v) in one dimension was left open in [16].
Proof. First we discuss the easier necessary conditions (i)-(iv).
1) The conditionp < g. This follows from the translation invariance (see an argument in [112]).
More precisely, the L%(R?) - LI(RY; L"(1)) boundedness is equivalent with the LP(RY) -
L9(RY; L7(1)) boundedness of the operator U[(l — A)“/Zf] which commutes with translation on RY.
Let A = supyg, < 1[|U[(1 —A)*/*f]|[ 4 Then by the density argument, for e > O there isa g €
C&(R?) such that A— e> [JU[(1 - 2)*?g]|| 4, and llgll, = 1. One may test the inequality
with f =g+ g(.+ae;). Letting a > oo, we see that (A — €)2¥/9 < A2Y/P, which gives A21/9 <
A21/P py letting € - 0, and thus p < Q.
ii) The condition a > d (% — %) — 2 This condition follows by a focusing example (see for
example [46]). Let n e CZ be radial and supported in {€ : 1 < [§| < 2}. Moreover |Uf(x, t)| =>4 if,
for suitable ¢ >0,|x] <cx~* and |[t—2| <x72. For Large  this leads to the restriction o >

1 1 2
d(2-2)-2
iif) The conditiona > S — & Let g,be defined byd, (§) = x(|€ —x e;]),x supported in an € —
niighborhood of 0 (see [7], [24]), so that g ngSx“. Also

Ugx () = i [ XDt tgh

Where ip X (x,t,h) = —t|h|?2 —t X2+ r; x +(r—2txe;). Then |Ugx (x,t)]=¢c,>0 if
[t—(@2x)Ix1| <cx7t for 0<x1<x|xj|<ci=2...,d It follows that ”Uf”Lq(Lr(I)) >

x1/4-1/T Hence the condition a > 1/q — 1/r follows.
iv) The condition a > = — 1 Let x> 1 and set ho () = d(M') x d(x (n; —x)) with ¢ e CC(R).
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Then h, p SX*»*/P. Note that
Uhx(x, t) = (2:[)61 f e_itln'|2+i(xlvﬂ'))¢(|n’|)dn'ei>‘2t+i>‘xl f ei(—tE%—th51+x1§1) N (1)(>\ 51)d§1,

So that [Uh x (x,t)] =c >0 if |t],|x’] <c and |x;| < ¢ x for small enough ¢ > 0. This shows the
necessity of a > 1/q —1/p.

To show the conditions (v) and (vi), we use sharp bounds in the construction of Besicovich sets
[113] and adapt Fefferman’s argument for the disc multiplier [111] (see also [109]).

V) The condition a > % — 2 ifr>2. This follows from

Proposition (4.2.13) [118]:Letp, q,7 € (2,0). Let n be a radial C function satisfying n(¥) = 1 for
1/4 < |§] < 12. Define a, by

/r
>uP (f | (g)frdt)1

o, (p,q,r) = Ifll, < 1 P (46)

LI(RY)
Then for x> 1.
o, (p, g, r) = ¢ x1/a71/P (Jogx)1/a-1/r, (47)
Proof. In what follows we set
A,(22) ={x:3x2< || < 42},
By Lemma (4.2.10) wit parameters oy = 3,a; = 4,for x> 1

1
9 q

sup 252 s r T _d+g+g+%
Iflle <1 L‘}()\Z)(»f |8f(ﬁ E,S) dS) dg | s o (par)» "Pa

N
Let
S
Tf(E,s) = «f (F 13 s).
Using Khintchine’s inequality we also get

1
q

R

sup

> 2 % —d+84+2,2
||f,-||L(€2)s1ka(2) [l | as de) < g T ag)
P 4 (XN N ]

For integers |j| < x/10, Letz) = (x7},0,...,0) in RY. Let |; = {y : |y — 2/ < (100d »)~*|}. Let
Ry ={(§s)eR¥*!: [ —2jx71s| <1071 x| <1071 %,i=2,..,d,[s| <1007 »2}.
For a pointwise lower bound we use the following lemma.
Lemma (4.2.14) [118]:Let a eR%, b € R, and gj(y) = xI;(y)e!®¥~®I¥1*, Then there is a constant ¢
> 0, independent of X, ] so that

Re [ei@‘avzj)‘i(s‘b)wzs[ngE(E, S)] >cx"4if (§s) e R + (a b).
Proof. Let I, ={y : |y] < (100d »)~1}. We have

. . . i . i 2 .
ng(g, s) = fels|y|2—1(z,v)gj(y)dy — fe—l(E—a,zl+h)+1(s—b)|zl+h| le(Z] + h)dh

— e—i(E—a,zj)ei(s—b)|zj|2 f e~ Xlo(h)dh
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The pointwise lower bound follows quickly.

Let N, to be the largest integer which is smaller than x /10. By making use of the Besicovich set
construction of Keich [113]. There are vectors v; € R4*! such that Vv; = aje; + bjeq,, for some
aj, b € R,v; +R; € {(§,s) : x?< s > 2 »?} and

£d+3

N,
meas U(vj+R]-) S o
j=1

This is just obvious extension of the two dimensional construction which gives a collection of
rectangles {REZ'} and vectors aj,b; such that meas (Uf’;l(vj + R]-)) s> and ajb +

log

RFl{El’S :>‘2S S < 2 >\2}-
Let ®(Es)=(%&s) which is 1—1 0n A,(x?) x[x2%,2x2], and has Jacobian J, with
|det(Jo (5 5))|~1. Let

v i= @71y + R) N (A, (32) x [x2,2x%]), E:= U Vi,

Then it follows that

£ d+3

24*25 meas(v;),  meas(E) s (49)

log ™'
Let fi(y) = xy, (y)ei@y=ibv1* Then by Lemma (4.2.14),
|Tfj(§)| sx9, EEV, (50)

And
1/2
H(Z|fj|2) SX1-d/p, (51)
p
We now modify argument in [109]. By (49), we have
N,
xdt2g N, nd+2g Z meas(v;) (52)

j=1

N, N
= (& s)dsd¢e < 2d Tf: (€, Zd dg,
L;xv](ES) sdf S L;I ((§9)| dsdg

And by application of HOlder’s inequality,

N
xzdf Z|Tfj(§,s)|2 <SN2d A B, (53)
E i

Where

2

5 2
Z q

I r

2

{clr st

)
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(a/2)’

232 r/2)
B= f ( f xe S)dS> dg
A (n2) NG

From (48) and (51) we obtain,

1-d _a+isdy2)?
As <>\ P o, (p;g,r)» P a r) : (54)

In order to estimate B we set

o(®) = f pacrs

The measure of the vertical cross section of E at & For M > 0. we break

@2’ \'a @2’ \'q
Bs< (f 0(§) @/’ dE) + (f ()" dg | .
{€eAL(»2) : v(§)<M} {€eAL(»2) : v(§)<M}

From the construction of E it is obvious that v is supported in a tube where |€;] < C X2 and |§,;| <
Cx,2<i<d,sothat

(a/2)’ a 2
(f D(E)(r/z)l dE) S Ml—% >\(d+1)(1—a).
{5eAL(»?) : v(§)=M}

Moreover since r < g and therefore (1 — %) > 0, by (49)

2
@2’ \'"a @»' \'"a
( | o(§) 072 d%) </ (n(z)M«m'dz)
{EeAL(»2) : n())<M}

2 2 _2 2, d+3 a
< Ma rmeas(E)' " < Ma r(x ) .

logx

Combining these two bounds, we have
2
B < M2/r \(@+)(1-9) [M 5208 ¢ Ma(logx)é_l],
And choosing M =x2 (logx)~1, with optimizes the above, we obtain

B <x (@19, 57 (log» ). (55)
Finally, we combine (55), (54), (53) and (52) to obtain

2
r

_2y 4.4 2[ 1=d d,d, 212
N (4+3) g5 243, (@A 5 375 (Jogn )7 [x » o, (p;q,r) >\d+p+q+r] :

Which yields o, (p;q,r) = c(logx)%‘% DA,
vi) Relation with Bochner — Riesz and the conditiona > 0if r =q > 2,d > 2.
The LP - LP(LZ(I)) estimate implies sharp results for the Bochner-Riesz multiplier in the same
way as the wave equation in [116].
For small § >0, let us set hs(8) = &(871(1 — [E?)) with & € C®(—1,1). Let ¢ be radial,
supported in {1/2 < |¢| < 2} so that yr = 1 on the support of hs Then by the Fourier inversion
formula and the support property of s it follows that

hs(D)f = - f 53(55)eieis y(D)f ds.
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By the Schwarz inequality we get

Ihs(D)fl < |66 (85)|ds™/2|eis2ys(D)f|*|66(5s)|ds/2.
Thus we see that
sup , 2y 1/2
Ihsllm, = Ifll, < 1 <f|GISALII(D)f| |8d)(83)|ds) :
which after rescaling becomes
sup isA N 2\"/?
Ihsll, = oy < 1|[( [ le**9(vE0)IBOIdt)
p

Hence, using the rapid decay of ¢ and a further rescaling we see that the sharp bound ”h'd”Mp <

§1/2-40/2-1/9),for p > 2 + ;2 would follow from U : BY, — LP(L2()), witha =d (1 -2) -1,
for anyv > 0.
We see that the LP(LZ(I)) inequality for some p > 2 would imply that hg is a multiplier of FLP

with bounds independent of 6. However a variant of Fefferman’s argument for the ball multiplier
[111]. Based on a Kakeya set argument, shows that

lIhslly, < log(1/8)*/2~1/P. (56)
This establishes the final necessary condition (vi) in Proposition (4.2.12) For completeness we
include some details of the argument.
Proof of (56). By de Leeuw’s theorem it suffices to prove the lower bound for d = 2. We may
assume that § < 10719, By Khintchine’s inequality, we have

O IO, Q Il
v p v

Forv € Z N[-1072671/2,10728~%/2], let us set

hsy(®) = hs(®d(67728, —v), &= (§,&) € R?
Where . is the characteristic function of the upper half plane. Define T, byT,f = hs,f. Let n, be
the inverse Fourier transform of a bump function which is supported on a half of radius C8~1/2 so

that 0, (§) = 1 for & in the support of hs,. Define &, by, (8) = n,(E)d(8671/28, — v)x, (§). Then
|0, (x)| < 692(1+ 8—1/2|x|)_(d+1) for the v's under consideration, so that [I{®, * g, }lyp(,2) S
{9y}l p(¢2)- Since T,g = hs(D)[®, * g, inequality (57) applied to f, = ®, * g, implies that

1/2
Q Igel 2| < INsll, (Zlg#) . (58)
v p v

p
Let 8, = (8%/2v,v/1 — &v2,) let 62 be a unit vector perpendicular to 6, and
Ry = {(x1. %) ¢ 1(x,8,)] < 1072671, [(x, )| < 1071571/2},
Letting f,(y) = xg, (y)e®¥’, we have that
e i*®T g, (x)| = c > 0forx €R,,. (59)
Here we use again sharp bounds in the construction of Besicovich sets [113]. There are vectors
ay, [v] < 10726712 so that with E:=U,R, the measure of E is O(5§72/logs~') but the
88
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corresponding translation a, +R, have O(1) overlap. Define g,(x) =f,(x—a,), which is
supported in a, + R,. Then |T,g,| = con a, + R,. Thus we get

5725 ZIRVI = Z f Xay+R, ()dX S ZITvgvlzdx

And also by Hoélder’s inequality and (58) the last one in the above string of inequalities is bounded

by
1/2]|? B
meas(E)*~*/P (ZITVQVP) < llhsll§ (10g8 (ZlgvP)

p p
Now by the bounded overlap of the translated rectangles a, + R, we see

1/2||? 2/p 2/p
(ZIQVP) = (f ZxavmvdX) S (ZIRJ) < 874/,
A% p A%

Combining the three displayed inequalities we get 6§72 < ||h5||12v[p(8‘2/log §~1)1-2/p§=4/P and
thus the desired (55).
Theorem (4.2.15) [118]:Forlarge x, let
A, (p; g, 1) = sup {IUfllLagrrayy ¢ IIfll, <L suppfe {€: x/5<[g] <15x}}
Thenfor x> 1, thefollowingnormequivalenceshold.
(JFor2>r<p<qg<om,

x1/4-1/p [|og x]l/r‘l/zif% +o>
%.(p;q,r) = s1-1/p-1/q-2/r jfl 1 o1

q r 2
(iDFor2=p<r<q<om,
s\/a-1/pjf2 +1>1 -1
U (p;q,r) = T, P

s 1-1/p-1/q9-2/r If% +% <1-— 1

One can obtain sharp estimates for functions in Sobolev and Besov spaces. In order to compare such
results recall that By, < BR,, for q; <, that By, c By < B, when p = 2, and that Bf , is the
same as the Sobolev-Slobodecki space W*P when 0 < a < 1.

Proof. The lower bounds for 2L, (p; g, r) were established in the previous. And here we prove the
upper bounds. Mainly by interpolation arguments. By Lemma (4.2.11), we can take | = [1/2.1].
We consider the cases l + - > and l + = < > separately.

The case ¢ + >1 Notethatthe set

Is closed tetrahedron with vertices (2, 2, 1), (%, %, 1),(40,2), and (0,0, ). Hence by interpolation
it is enough to show the estimate

A, (p; g, 1) S 3 ? [logn]e+ (60)
For (p;g,r) =(4,4,4),(2,2,2),(2,%,2) and (o0, ,2). The estimate for (p;q,r) =(2,2,2) is
immediate from Plancherel’s theorem. More generally we recall from [114] the estimate
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A, (p;g,r) <1 with 2 < p < oo, which is related to a sgare-function estimate for equally spaced
intervals. So we also get the estimates for (p;q,r) = (o,0,2). For (2,0,2) we choose a
nonnegative x, € CZ(R), so that x,(t) =1 on[1/2,1]. We need to estimate, for fixed x,

f x®[un (20| dt=_1 ff ex=if I () n (%) % (812 — Iwl2)dedw

And since [€| + |w| =X, the above is bounded by

[ (@ i = ol ]) ™ @)oo ds =x =

This is gives the desired estimate for (p, g, r) = (2, 0, 2).For (p,q,r) = (4,4,4) we use the bound
1/4

dEds) <272 (log»)z[Ifll,.

(ﬂ ‘LD(E ? Iyl f(y)e> G -&)f(y) dy
yls1

Where § € C°. This is implicit in [100] (see also [117] for more discussion and related issues).
The by rescaling, Lemma (4.2.9) and Lemma (4.2.11) we get (60) for (p,q,r) = (4,4,4).
The case % + 2 < 2. We begin as before by observing that the set

_(,111 1

Al_{(pa_) 2<r<p<q<ooq+r>2}
Is closed tetrahedron with vertices (0, 0, 0), (2, % 2),(%,0,2) and (0,0,2) and (0,0, %), from which
the triangle with vertices (%, 2, 1),(%0,2) and (O 0,1) is removed. We use a bilinear analogue of
our adjoint restriction operator, and rely on rather elementary estimates from [100]. Define x, so

that ¥, x» = 1%, =x1(2¢.) and y, is supported in (33). Let

B, ,f.ql = f f e IPH) K042, 1y — 2]) f(y)g(2)d ydz,
[-1,1]%
So that
(EIEN(5E59) = ) B, (ENES).

£20
We shall verify that for £ > 0

By (F, Dl arz(a(nzynrz|nz 2nz)) S 2 2€(T5_F)||f|| pllgllp (61)
When (2,2,1) is contained in the closed tetrahedron with vertices (0, 0, 0), (3, 3, 3),(2,0,%) and

(0,0,). By summing a geometric series, this yields (61)
For (%, %;) € A; which by Lemmata (4.2.9) and (4.2.11 )yields the desired

A (p,g,r) S par, (62)

We remark that conversely, if (62) holds, then we can use Lemma (4.2.10) and a Fourier expansion
of x,(y — z) to bound the left hand side of (61) byCl|fll,llgll,. with C independent of £.

It remains to show (61). By interpolation it is enough to do this with (p,q,7) = (o0, 00, ), (2, x, 2)
The last two estimates were already obtained; not that the bounds (60) and (62) coincide for the
cases (p,qg,r) = (2,0,2) and (o0, 0, 2) and the bounds for (61) are independent of #. Hence from
the bounds (60) previously obtained and the discussion above we have the required bounds for
(p,q,r) = (2,,2) and (o0, ,2). We note that the argument of the poof of the endpoint adjoint
restriction theorem in [100] gives
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1Bse(F DIz = Ifllallglls. (63)

Uniformly in £ > 0, where B, ,(f,g)(§,s) = B(f,9)(*> & 5), and by a change of variables we obtain
(61) holds with (p,q,r) = (4,4,4). To get the inequality (61) for (p,qg,r) = (0, o0, ) we need to
integrate » £(Jy — z|) over [—1, 1]? which yields the gain of 2.
We also consider the cases 1 — l < 5 + = We note that the set

111

AZ_{(BEF) 2<p<r<q<oo + = >1—_}
Is the closed tetrahedron with vertices (2, 2, 1), (% % (3, ¢ 1 1) and (2,0,2), from which the face

with vertices (%, 2, 1), (4 % 1) and (4,0,2) is removed. Note that from the previous bounds (60)
and (62) we already have the required bounds

1 1

A (p, Q. r) S (64)
For (p,a,r) = (2,2,2) and (2, o, 2). ObviouslyA, is contained in the convex hull of (£,0,2), (%, 2,

%) and the half open line segment [G%%) (1 2 1)) Hence by it is enough to show (64) for

=
4’4’ 'r

.:JIH

containe in the half closed line segment G%%) G i 1)) but these follow from Lemmata (4.2.9)

and (4.2.11) combined with restriction estimate for the parabola which gives (29) for(%,a,;) €

G5 .Gid)
The case 1 — % + % We note that the set

1
111
{(g,a;) 62<p<r<q<oo + - <1_B}

Is contained in the equatrangular pyramid Q with vertices (0,0, 0), (Z’ 0, 0) , (1 2 1) (1 2 1), and

4'4'4)\2'6"'6

G,O,l). We need to show (62) for (%%%) contained in the above set. Repeating the above

argument, the asserted estimates follows if we establish, for £ > 0 and (1 L 1) € Q.

1B, o Dllavzayirrzpn aney S 272Dl gl (65)
We only need to verify it for (p, g, r) = (o0, ®, ), (4,4,4),(2,%,2),(2,6,6), and (2, o0, ).
The first three cases were already obtained when we showed (61), and the case (p,q,r) = (2,6,6)
follows from the linear adjoint restriction estimate for the parabola as before. Finally the case
(p,g,1) = (2,00, 00) wit a gain of 27¢/2 follows from the Schwarz inequality, and so we are done.
One can use the uniform regularity results for the frequency localized pieces to prove sharper
bounds such as Sobolev estimates by using argument based on the Fefferman-Stein #-function
supported in{€ : 1/4 < || < 4}, not identically 0. Let | = [-1,1 ]Jand

SUP | —a(-3-1)42
» ( ) LP—>Lq(]Rd Lr(I))

F(p.ar) =,
It is not hard to verify that the finiteness of I'(p,q, r) is independent of the particular choice of .
The following statement is a special case of the result in [114].
Proposition (4.2.16) [118]: Letpy, qo,7o € [1,0],q € (qg, ©),15 <1 < 00,py < q, and assume
1/po —1/q, = 1/p — 1/q, suppose that I'(py; qo, 75) < 0. Then
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1/r

(fl |Uf(.,t)|rdt> < Ifllsp, ey @ d(l—;—%)—é.

LY(R?)

The Sobolev estimates follow from this since forq = p = 2 one has L}, c B}, € B} .
We note that the result in [16] is slightly sharper. Namely the left hand side can be replaced by the
LI(R%) norm of (Tyso(fIUFC, t)lrdt)”/r)l/v, where v > 0.
Proposition (4.2.17) [118]: Suppose that R*(q, — d,) holds for some g, € (2, Zfid:f)). Then
(DR*(p — q) holds q = %Zp’ provided that

1 d+1

l4 — “2(d+3)
0>0, 283 y@q o) Where Y(d,qo) = % 24+
2d qu
(ii) Let g, < g < ,q < o and suppose that 0 < % —% <1- 2(3;3)_

Then U : L%(R%) - L9(R%) is bounded with a = d (1 - > =2) -2
In two dimensions R*(p — ) was proven in [3] for g > 33/10 and the sharp inequalityR*(p — q)
for g > 63/19.
Proof. By Theorem (4.2.8) and Proposition (4.2.16) it suffices to prove the first part.
Let E; and E, be 1/2-separated sets in the unit ball of RY and define &f = e[fxg, |. By Theorem 2.2
in [105], suffices to prove the estimate

€ F1E2F2lg 2 = 1Tl ||fz||p (67)
For g > g. and p in a neighborhood of ——£— (i.e. the p which satisfies q = d“p ).

By hypothesis and Holder’s inequality, (67) holds with p > q = g,. withp > 2 and g/2 > 22 The

d+1

theorem then follows by interpolation of bilinear operators. Indeed, we determine 6 € (0,1) and
Q* € (QO!ZEid:f)) by

1-6 , 0 _ d+2 d+1 g2 _ 2
T+E_1 R (1-6) 5+ q——a
We compute 6 = (j—‘;z - %)/(% - %) and 0 = (qi - Zfd’fs))/(;* Zfd’fs)), from which we obtain
d .
1/q. = (2((;13) —E)/(l &2h) with b = (E_ zdes))/(%_%)- A further computation shows

that . is equal to 2¢*2(1 —y(d, q,)) as in the statement of the Lemma.
Definition (4.2.18) [118]: Fixd = 1, and let p, g, r € [2,]. for N > 1, let
Apar(N.p) = Ay qr (N, p,d) = supllUf,Uf, Il a2 (ga 1120 )
Where the supremum is taken over all pairs of function (f;,f,) whose Fourier transforms are
supported in 1-separated subsets of {€ : |¢— N, | < 2d}, and which satisfylIfll,,, lIf,ll, < 1

We remark that the unit vector e; does not play a special role here. It could replace by any unit
vector, by rotational invariance.
By considering two bump functions, it is easy to calculate that

Apar(N, p)>N(21 : 1< pqg,r<oo, (68)
sup 22
A, qr(N,p) S Nar, g=>16/5, r>4, (69)
p>1-ra

Which was proven in [115] (see also [11] and [46]). We will combine this with following two
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lemmata.
Corollary (4.2.19) [118]:Let2 < p < q < r <25 Suppose that

su
D >p1Ap'q'r(N, p) S NV, for somey < 2d (1 - % - &) — 4. (70)
Thenifd (1 -1 1) > 0,then forall x> 1,
p q
: d(1-3-2)-2
”ULlJ (;)f”Lq(Rd:Lr[O,l]) s st il (71)

Supposing this for the moment we give the
Theorem (4.2.20) [118]:Let:* <p < wand 4 < r < o,

Then U : BY(R?) — LP(R?; L7(I)) isboundedwitha = 2 (1 - g) -2
The r-range can be further improved for 16/5 < p < 4, by interpolating with above mentioned
LP(LP (1)) bounds for p > 33/10 (|3|) and the LP(L2(1)) bounds in [114] for p > 4. Moreover one
can intermediate LY — LA(L*(1)) bounds with critical a by interpolating with the L? — L9(L")
bounds in [115].

One can also interpolate with best known L2(R?) estimates for the maximal operator f—
sup|Uf(., t)], which are equivalent to the best known local estimates (see [34, 59]).

Proof. By Proposition (4.2.16) it suffices to prove, in two spatial dimensions, the estimate (71) for
p=q>16/5and r > 4. Using (69), we put y = 2/q — 2/r and verify that the condition (70) with
d=2intherange p =q > 16/5and r = 4. Thus (71) holds in this range, and we are done.
Lemma (4.2.21) [118]:Letp, <p <g<randg, > 0.Then, for N,p > 1,

Apqr(N.p) S N®op2dA, o.(N,p). (71)
Proof.Letm;,n, be smooth in balls of diameter 1/2 which are contained in {€: |§— N, | < 2d},
and which are separated by 1/2. Define the operators s,,s, bysf(§t) =n;(®U(E),i=1,2. it
suffices to prove that ||81f182f2||Lq/2(Rd:Lr/z[Ovp]) is dominated by||f;[|,[[f,ll, times a constant
multiple of the expression on the right hand side of (71).

We partition RY into cubes Q,, of side p with centre pv € pZ<, and define

{py = (x,t) € RY x [o,p] : x — 2tNe; € Q,}. (72)

The parallelipipeds form a partition of R x [0, p]. For fixed x the intervals 1¥ = {t: (x,t) € p,}
are disjoint. Thus

q/r
q/2 /2 q/2 :
|||:”Lq/z(ﬂ%‘j‘: L"/2[0,p]) = »f]Rd (Z“:(X, vF dt) dx < anvalqu/z(Rd?[Ovpl)’
A\ A\

Here we used the triangle inequality for ||-||%;r asq/r < 1.

Taking F = S;f;S,f,, and denoting byQ;, the enlarged cube with side 50dpN?, where 0 < & <
4de,, we obtain

a/2 q/2
|| Slflszfz ||Lq/2 (Rd: Lr/2 [0,p]) < Z ”vaS1f182f2 ” Lq/Z(Rd: Lr/2 [0,p])
\%

< Z (192 + 3% + mP2 /%),

v

Where
93



IV = ”vasl [leQ:/]SZ [fZXQ:/] ||Lq/2 (]Rd: Lr/2 [pr]),

I, = “vasl[leRd‘Qé]Sz [f2xo;] L9/2(RY: L/2[0,p])’

M, = [|xpuSe[fixo; ISz |faxang; | L9/2(RA: L¥/2[0 p])

Ve = [[xpuSi|fixmongg |82 foxmengs | L9/2(R%: L72(0 pl) "

First we consider the main terms |,. By Holder’s inequality,

2
2d(2-%
- Apoqur(N’ p) n”leQ:/ Po S Apoqur(N’ p)(pNs) (pO p) n”leQ:/ p
i=1 i=1

We use the Schwarz inequality, the embedding #P c £9,p < q, and the fact that everyx is contained

in onlyO(Ne4) of the cubes Q: to get
1/2 ed : q
l_[ (ItoxgslI?) ™ = Nes T s
i=1

anlfov
i=1
Combining the previous two estimates we bound
2
Z.q/z)z/q < N24(5575+3) p246s ?(N,p)ﬂnfinp. (74)
We use very crude estimates to handle the remaining three terms which can to be dominate
byCp (Np) M |If, 1l [l 1l . which finishes the proof since

2 2

Ap,qr(N,p) = Na™ By: (68)
We only give the argument to bound ZVII“}/2
N2 py
1/2

Schwarz inequality we estimate X, 1,
1/2
E q
Lq/Z(Rd: Lr/z [O,p])) (Z ||Sl [fZXQ\*/] ||Lq/2(]Rd : [0,p])> (75)
v

(3 o]

For the second factor we use a wasteful bound, namely that the LP — L9(R¢ ; [0,p]) Operator

norm of S, is O(pl/rNd). consequently, the second factor in (75) can be bounded

2
Cpararatera/lIf I 2.

We consider the first factor in (75) and write S;f(x,t) = K. f(x)wherewith x € C equal to one in
the ball of radius 2d centered at the origin. Integration by parts yields that for everyt € [0, p]

IKe(W)| < Culy — 2tNe, | ™ if ly — 2tNe, | > 4d,,.
Let c, be the center of Q;. If x— y € R\Q; and (x,t) € p,, then |x — y —¢,| = 10d,N¢, |x —
2tNe; —¢,| < 2d,N. and therefore also |y — 2tNe, | > 8d,N*. thus for this choice of (x,t) and y
we have

as the other terms are handled similarly by the

s)—M+d+1 If1 (x=y)I y
ly—2tNeq[d+1

|81 [flde\Q:}] ~
l[y—2tNe;[>8dpNE
And the integral is bounded by(pN)4*+* [(1 + |y[)=94-1|f, (x — y)| dy. Here we use p > 1.
Now Let Q;*Be the cube of sidelength p(2 + N) centered at c,; Q;* x [0, p]contains p,. Letting
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vaN = pl/r(pNs)—M+d+1(pN)d+1 we have

|f1 (x=y)I
Z ||X Pv Sl[flde\Qv] LQ/Z(]Rd LY/2[o, p])Zf** f(1+|Y|)d+1 v

Which is < Cg'N(pN)d“IIflllq, here one uses young’s inequality and the fact that each x € RY is

dx

contained in at most O((pN)9+1) of the cubes Q;*. collecting the estimates yields the crude bound
DY < Cu (PN MN) 2 18, 1 1111

And we conclude by choosing M sufficiently Iarge
Lemma (4.2.22) [118]:Let2 <p<Qg<T <= 4 and € > 0. Let € CZ be supported in the annuls

{geRd: 1/2< IEI < 2}.Then,for x> 1,
||U¢( ) ||Lq(]Rd 'L[0,1])

1/2
4 d 1 v Sup F_zd _2 d
< <>\q 24(5-3) 1<N <>\N G- ) Apqr(N,C >~2/N2)> N Ifll,.  (76)

Lemma (4.2.21) realize on localization argument such as in [34] and Lemma (4.2.22) relies on a by
now standard scaling argument in [105] which reduces estimates for bilinear operators with
separation assumptions to estimates for linear operators.

We may combine (71), with p, = 2, and (76) to obtain

2-dG-D)

su
Proof. for j > 0, we writeA(j,») := 22’( ) P

2j-1 <N< 21+1 Po.q.r
Define T = Uy(D), and thus Utp(g)f(x, t) = T 1)1~ x,22 t). By scaling.

(N Cx22- 2]+1)

D —2+d(2-1
Uy () =569 Tl gt o 77)
” AW LP>L9(RY: LF[0,p]) LPLA(RE: LM[0,22])
So that the statement of the lemma is an immediate consequence of
1/2
1.1 .
Tl oo paqra: Lrfonz)) S NTGD ¢ Z AGX) | (78)
1<2jsx
Now by scaling we have that
2
1T Tl arzguactvzponzy S AG. | Il (79)
i=1

Whenever f; and f, are supported in a 277+ ball, contained in {& : < |§] < 2}, and their supports are
27 separated. We will also require the following simpler estimates

ITE Tl arzgne rzgozyy S35 | Ul (80)

Whenever f; and f, are supported in an ball of radius x~1, contained in {£: < |g| < 2}, by the

Schwarz inequality, this follows from ”Tfllqu(Rd:Lr/Z[OAZ]) SXa 4G If:ll,. Let t > w(t) be a
Schwartz function which is positive on [0, 4d] and whose Fourier transform is supported in
[—1, 1]. by scaling and rotation this would follow from
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2

2
Tl a5, rgay) 527 Il (81)

Whenever f is supported in {€ : |€ —x e;| < 2d}. by a change of variables and trivial estimates it is
easy to see (81) for 1 < p < q=r < oo. the estimate for r > q follows by applying Brenstein’s
inequality in t since the temporal Fourier transform of wTf is contained in {s : s ~ X2}

We now argue similarly as in [105]. Write || Tflqu(Rd: L (®) = ||Tf; szlqu/Z(Rd: L*/2[0 n2]): For each

1< 2 <x, we Write £ ~; ¢ if si, and sjz have adjacent parent, but are not adjacent. When x<
2/ < 2 %, we mean by#¢ ~; ? that the distance between s} and s} is Sx . then, we can write for
every(§,n) € RY, with € = n.

D X @Oxy =1 (82)

1<2j<2x (gj)
0~ 7

Define pi, by@f = XSL f; then the operators pl, are bounded on LP,1 < p < oo, with operator norms
independent of £ and j. For any Schwartz function f we have by (82)
[Tf(x )]? = Z Z TRI(x, Y TPI(, 1)
15222 (£,2)2 ~; 2
Let ¢ € CZ be supported in [—1,1]9, satisfying Yiez+ @(§— 8) = 1 for all £ € RY. Define r)i3 as
acting on L*(L") functions by G(E t) = @(E— &). We use the inequality

o

ZpaGa
8

< C”{Gé}llga(]_‘a(]_‘b))a 1<a<?2 a<b<d, (83)
L*(LP)
The constant C in (83) is independent of j. the inequality follows from Plancherel’s theorem in the
case « = b = 2, and from an application of Minkowski’s inequality in the case a = 1,1 < b < 2,
The intermediate case follow by interpolation. Note that for anyj and anyd € €4 the number of pairs
(¢,%) with £~ for which p’ [Tp}fTp}] # 0 is uniformly bounded (independent of j, 8,f). Thus
inequality (83) applied with a = q/2 implies.
2/q

s oy S ). Z”Tp{,pr{,” S | (84)

1=2j<2x \£~;¢
Here we usethat 1 < q/2<r/2<(q/2) ie.q<r< :_—qzwhich implies that /2 < 2.
Now by (79) and (80) the right hand side of (84) is dominated by constant times

2/q 2/q
. i /2 /2
> AG| D IR | a6 (S R e
1<2jsx g~-? £~t
2/q
Z_ 1 . iagnd
SAINCT VS (S
1=<2jsx £

Here jO is the integer such that x> j& < 2 » , and we have used the Schwarz inequality and the fact
that for each (j,#) the number of € with € ~; € is uniformly bounded. Since 2 < p < g, We also
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have

1/q
i q
(an;fnp) < Il
£

And thus we have shown (78)
Corollary (4.2.23).Lety >

{

1
where yeC2 is supported in (5’ 2) (with suitable bounds). Then, for x> 1.

—2€ —4

m .Supposethat for x> 1

] (2+E) (2+2¢€)
ey (2) 7| dt) SNATE P (85)

2+3€

] (2+E) (2+2€)
ey (2) 17| dt) SN TE s (86)

(2+2¢)

{

Proof. It is easy to calculate that
sup |71 [x (1) exp(=itl )] ()| < Gy 2@ (@ 4+ [x)V

0sts(8x)2

And thus, by Young’s inequality,

1
(2+€) (2+2¢) —2_
(f/ | itA ( )f2| dt) < ”>\(2+e) fx(2+€) (]_ +X |y|)—Ndy
1/2

(2+2¢€)

(2+2¢€)
3e2—2¢ -4
<\ (2+2€)(2+3€) ||f2 ”(2+e)- (87)
Now letting (8 x) 2 <1—¢,

1

(1-e) ' _1 (2+€)
(f( |eltAX (g) fZ(x) (2+ )dt>

1-€)/2

1
1

= o ([ r(gtom)elra el s )

Thus by change of variable (2.17) implies

1

b (2+€) (2+e)
([l ae)

(2+2¢€)
_(2+6)((241-e) (2+126))+(2+236) Vg2
s(Y@-9) (V@ =) 12l z+e).
We choose b =2"landsincey > (2+¢) ((m) - (216)) - (Zie) we may sum over | with
(8 »)7%2 <271 < 1 and combine with (2.19). Hence we get
1
(2+ ) (2+e)
( f lex (2) 2 dt) N 12l zre)-
(2+2¢€)

Now (86) with I = [—1,1] follows using the formula e*2f2 = e*Af and the triangle inequality.
Finally, by scaling, we can enlarge the time interval (so that the implicit constant is of course
dependent on the interval), and we are done
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Chapter 5
Spectral Theory of Schrédinger Operators
We find conditions on the configuration of point interactions such that any self-adjoint realization
haspurely absolutely continuous non-negative spectrum. We also apply some results on Schrodinger
operatorsto obtain new results on completely monotone functions.

Section (5.1): Radial Positive Definite Function with Bases of Subspace and
Property of x-positive Definiteness

An important topic in quantum mechanics is the spectral theory of Schrédinger Hamiltonians with
point interactions. These are Schrédinger operators on the Hilbert space LZ(IR{d), 1<d< 3, with
potentials supported on a discrete (finite or countable) set of points of RY . There is an extensive
literature on such operators, see e.g. [122, 124, 129, 140, 145, 147, 149, 162].

Let X = {xj}in be the set of points in RY and let a = {a]-}in be a sequence of real numbers, where

m € N U {o}. The mathematical problem is to associate a self-adjoint operator (Hamiltonian) on
L2(R?) with the differential expression

m
Ly=LyX a):=—-A+ Z a]-S(- —x]-), o € RmeNuU{wo}, (1)
j=1
and to describe its spectral properties.
There are at least two natural ways to associate a self-adjoint Hamiltonian Hy , with the differential
expression (1). The first one is the form approach. That is, the Hamiltonian Hy ,, is defined by the
self-adjoint operator associated with the quadratic form

m

WM = f WHzdx+ > olf(x)]. dom(E) = WE,(RY). (2
Rd j

j=1
This is possible for d =1 and finite m € N, since in this case the quadratic form f;‘}'a IS semi-
bounded below and closable (cf. [164]). Its closure t)((li is defined by the same expression (2) on the

domain dom(tgi) =W2(R). For m=oco the form (2) is also closable whenever it is
semibounded (see [125, Corollary 3.3]).
Another way to introduce local interactions on X := {x]-}jn;1 c R is to consider the minimal operator

corresponding to the expression £; and to impose boundary conditions at the points x;.

inthe case d = 1 and m < oo the domain of the corresponding Hamiltonian Hy , is given by
dom(Hx o) = {f € W22(R\ X) n W2(R): f'(x; +) — f'(x; —) = of(x;)}.

In contrast to the one-dimensional case, the quadratic form (2) is not closable in L2 (Rd) ford > 2,

so it does not define a self-adjoint operator. The latter happens because the point evaluations f —

f(x) are no longer continuous on the Sobolev space W'?(IR¢) in the case d > 2.

However, it is still possible to apply the extension theory of symmetric operators. F.A. Berezin and
L.D. Faddeev proposed in [129] to consider the expression (1) (with m = 1and d = 3).
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They defined the minimal symmetric operator H as a restriction of —A to the domain domH =
{f e W22(R%): f(x,) = 0} and studied the spectral properties of all its self-adjoint extensions. Self-
adjoint extensions (or realizations) of H for finitely many point interactions have been investigated
since then in numerous sections (see [122]). In the case of infinitely many point interactions X =
{xj}io the minimal operator H,,;,, is defined by

Hg = Hamin == =AM domH,  dom(Hy) = {f e W22(R?):f(x;) =0,je N}.  (3)
we investigate the “operator” (1) (with d = 3 and m = o) in the framework of boundary triplets.
This is a new approach to the extension theory of symmetric operators that has been developed
during the last three decades (see [139, 64, 134, 166]). A boundary triplet IT = {H,T,, T} for the
adjoint of a densely defined symmetric operator A consists of an auxiliary Hilbert space H and two
linear mapping Ty, I;:dom(A*) —» # such that the mapping T := ([y, I}):dom(A*) > H@® H is
surjective. The main requirement is the abstract Green identity.

(Af,0)g — (fA"Q)g = (I4f, rog)}[ — (Tof, rlg)}[, f.g € dom(A*)(4)

A boundary triplet for A* exists whenever A has equal deficiency indices, but it is not unique. It
plays the role of a “coordinate system” for the quotient space dom(A*)/dom(A) and leads to a
natural parametrization of the self-adjoint extension of A by means of self-adjoint linear relation
(multi-valued operators) in #, see [139] and [166].
The main analytical tool is the abstract Weyl function M(-) which was introduced and studied in
[64]. This Weyl function plays a similar role in the theory of boundary triplets as the classical
Weyl-Titchmarsh function does in the theory of Strum-Liouville operators, its allows one to
investigate spectral properties of extensions (see [133, 64, 155, 158]).
When studying boundary value problems for differential operators, one is searching for an
appropriate boundary triplet such that:
The properties of the mapping ' = {FO, Fj} should correlate with trace properties of functions from
the maximal domain dom(A*).
The Weyl function and the boundary operator should have “good” explicit forms.
Such a boundary triplet was constructed and applied to differential operators with infinite deficiency
indices in the following cases:
(1 Smooth elliptic operators in bounded or unbounded domains ([141, 172], see also [142]),
(ii)  The maximal Strum-Liouville operator —d?dx? + T in L2([0,1]; %) with an unbounded

operator potential T = T* > al, T € (H) ([139], see also [64] for the case of L2(R,; H)),
(iif)  The ID Schrodinger operator £, x in the cases d.(X) > 0[150,160] and d.(X) = 0[151],

where d, (X) is defined by (5) below.
Constructing such a “good” boundary triplet involves always non-trivial analytic results. For
instance, Grubb’s construction [141] for (i) (see also the adaptation to the case of Definition 4 in
[156]) is based on trace theory for elliptic operators developed by Lions and Magenes [153] (see
also [142]). The approach in (iii) is based on a general construction of a (regularized) boundary
triplet for direct sums of symmetric operators (see [158, Theorem 5.3] and [151, Corollary(5.1.36)].
We study all (that is, not necessarily local) self-adjoint extensions of the operator H = Hj
(realizations of L3) in the framework of boundary triplets approach. As in [122] our crucial
assumption is
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d.(X) = ]'Qﬂxk —x;| >0, (5)

Our construction of a boundary triplet TT for H * is based on the following result: The sequence

o-lx-x)”
{|x — X |}j=1 ©

forms a Riesz basis of the defect subspace 9t_;(H) = ker(H* + I) of H* (cf. Theorem (5.1.43)).
Using this boundary triplet TT we parameterize the set of self-adjoint extensions of H, compute the
corresponding Weyl function M(:) and investigate various spectral properties of self-adjoint
extensions (semiboundedness, non-negativity, negative spectrum, resolvent comparability, etc.).

The main result on spectral properties of Hamiltonians with point interactions concerns the

absolutely continuous spectrum (ac-spectrum). For instance, if

ce N 1 o @)

2
i=KI>0 % =i
We prove that the part HEg(C, o) of every self-adjoint extension “H of H is absolutely continuous
(cf. Theorems (5.2.25) and (5.2.26)). Moreover, under additional assumptions on X, we show that
the singular part of H,. := HE{(0, ©) is trivial, i.e. H, = Ha°.
The absolute continuity of self-adjoint realizations H of H has been studied only in very few cases.
Assuming that X =Y + A, where Y = {yj}T € R? is a finite set and

A ={¥3nja € R%:(ny,ny, n3) € Z%} is a Bravais lattice, it was proved in [121, 123, 135, 140, 145-
147, 124] (see also [122] and the references in [122] and [124]) that the spectrum of some periodic
realizationsis absolutely continuous and has a band structure with a finite number of gaps.

An important feature of the investigations is an apparently new connection between the spectral
theory of operators (1) for d = 3 and the class @ ; of radial positive definite functions on R3. We
exploit this connection in both directions. We combine the extension theory of the operator H with
Theorem (5.1.34) to obtain results on positive definite functions and the corresponding Gram
matrices (8), while positive definite functions are applied to the spectral theory of self-adjoint
realizations of operators (1) with infinitely many point interactions.

We deal with radial positive definite functions on R and has been inspired by possible applications
to the spectral theory of operators (1). If f is such a function and X = {x,};° is a sequence of points
of RY, we say that f is stronglyX-positive definite if there exists a constant ¢ > 0 such that for all

E.,.... &, €C
Z Ex; (X _Xj) > CZEklZ, m € N.
=1

jk=1
Using Schoenberg’s theorem we derive a number of results showing under certain assumptions on X
that f is stronglyX-positive definite and that the Gram matrix

Gre(f) = (f(|xi = %;])) jen(8)
defines a bounded operator on 12(N). The latter results correlate with the properties of the sequence
{el:¥k)},  of exponential functions to form a Riesz—Fischer sequence or a Bessel sequence,
respectively, in L2(SP; o ,,) for some r > 0.
We prove that the sequence (6) forms a Riesz basis in the closure of its linear span if and only if X
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satisfies (5). This result is applied to prove that for such X and any non-constant absolute monotone
function f on R, the function f (|-|3) is stronglyX-positive definite. Under an additional assumption
it is shown that the matrix (8) defines a boundedly invertible bounded operator on I2(N) .

We collect some basic definitions and facts on boundary triplets, the corresponding Weyl functions
and spectral properties of self-adjoint extensions.

Also we construct a boundary triplet for the adjoint operator H* for d = 3 and compute the
corresponding Weyl function M(:). The explicit form of the Weyl function given by (101) plays
crucial role in the sequel. For the proof of the surjectivity of the mapping I = (I, I ;) the strong
X-positive definiteness of the function e~!'l on R3? is essentially used. The latter follows from the
absolute monotonicity of the function e on R,

We describe the quadratic form generated by the semibounded operator M(0) on I?(N) as strong

resolvent limit of the corresponding Weyl function M(—x) as x — +0. For this we use the strong X-
1-e M

positive definiteness of the function on R3 which follows from the absolute monotonicity of

_a-—t
the function 1% on R, . The operator M(0) enters into the description of the Krein extension of H

for d = 3 and allows us to characterize all non-negative self-adjoint extensions as well as all self-
adjoint extensions with x (< o) negative eigenvalues. Using the behavior of the Weyl function at
—oo we show that any self-adjoint extension Hg of H is semibounded from below if and only if the
corresponding boundary operator B is. A similar result for elliptic operators on exterior domains has
recently been obtained byG. Grubb [143].

We apply a technique elaborated in [133,158] as well as a new general result to investigate the ac-
spectrum of self-adjoint realizations, we prove that the part HE;(C,o0) of any self-adjoint
realization H of £; is absolutely continuous provided that condition (7) holds. Moreover, under
some additional assumptions on X we show that the singular non-negative part HE(0, ) of any
realization H is trivial. Among others, provide explicit examples which show that an analog of the
Weyl-von Neumann theorem does not hold for non-additive (singular) compact (and even

sin st
t

noncompact) perturbations. The proof of these results is based on the fact that the function

sin s|+|

belongs to @, for each s > 0. Then, by Propositions (5.1.17) and (5.1.19), m

positive definite for certain subsets X of R3 and anys > 0. The latter is equivalent to the invertibility
of the matrices

is stronglyX-

- t _ Ry
SIn(Vexi = g forte R,
Vi|xi — le + 8y, ket

Throughout and H are separable complex Hilbert spaces. We denote byB(H', $) the bounded linear
operators from # into $, by B(H) the set B(H, H), byC(H) the closed linear operators on H and
bySp(#) the Neumann-Schatten ideal on 7. In particular, G, () and &, () are the ideals of
compact operators and trace class operators on H’, respectively.

For closed linear operator T on §, we write dom(T), ker(T), ran(T),gr(T) for the domain, kernel,
range, and graph of T, respectively, and o(T) and p(T) for the spectrum and the resolvent set of T.
The symbols 6.(T),0,c(T),05(T),05(T),0,(T) denote the continuous, absolutely continuous,
singular, singularly continuous and point spectrum, respectively, of a self-adjoint operator T. Note
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that o5(T) = 05.(T) U 0,(T) and o(T) = 0,.(T) U o5(T). The defect subspaces of a symmetric
operator T are denoted by%t,. [164-166, 148].

ByC[0, ) we mean the Banach space of continuous bounded functions on [0, o) and bySP the
sphere in R™ of radius r centered at the origin and S™ := ST. Further, Z; .y denotes the sum over all
K # jand Zj;_j|>o is the sum over all k,j € N with k # .

Let (u,v) =uyvy +---+u,v, be the scalar product of two vectors u = (uy,..,u,) and v=
(vq,...,vy) from R® n €N, and let |u] = |ul, =/ (u,u) be the Euclidean norm of u. First we
recall some basic facts and notions about positive definite functions [1].

Definition (5.1.1) [176]: (See [119]). A function g:R"™ — C is called positive definite if g is
continuous at 0 and for arbitrary finite sets {x4, ..., X, } and {&,, ..., €, }, where x, € C, we have

Z &.&i9(x — %) = 0. 9)
Kkj=1
The set of positive definite function on R" is denoted by®(R™).
Clearly, a function g on R™ positive definite if and only if it is continuous at 0 and the matrix

G(X) = (gk]- = g(x — xj)):j=1is positive semi-definite for any finite subset X = {x]-}in of R".

The following classical Bochner theorem gives a description of the class ®(R™).

Theorem (5.1.2) [176]: (See [132]). A function g(+) is positive definite on R" if and only if there is
a finite non-negative Bore measure p on R™ if and only if there is a finite non-negative Borel
measure such that

() = f el du(u) forall x € RN, (10)
]Rn
Let us continue with a number of further basic definitions.
Definition (5.1.3) [176]: Let g be a positive define function on R™ and let X be a subset of R".
()  We say that g is strongly X-positive definite if there exists a constant ¢ > 0 such that.

Z &&9(xx — %;) > CZ|§1<|2, §=1{&, ....&m} € C™ \ {0}(11)
k=1

Kj=1
for any finite set {xj}jril of distinct points x; € X.

(i) It is said g is strictly X-positive definite if (3) is satisfied with ¢ = 0.

Any stronglyX-positive definite g is also strictlyX-positive definite. For finite sets X = {x]-}in both

notions are equivalent by the compactness of the sphere in C™.
Definition (5.1.4) [176]: (See [173]). Let F = {fi .}y, be a sequence of vectors of a Hilbert space .
(1 The sequence is called a Riesz-Fischer sequence if there exists a constant ¢ > 0 such that

m 2
Z &k
k=1 >

(i)  The sequence F is said to be Besel sequence if there is a constant C > 0 such that.

> CZ|§k|2 forall (§;,...,&,) € C"andm € N. (12)
k=1
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m m
Z Efdl < CZ|Ek|2 forall ¢;,...,&,) € C™andm e N (13)
k=1 > k=1
(iii)  The sequence F is called Riesx basis of the Hilbert space H if its linear span is dense in H
and F is both a Riesz-Fischer sequence and a Bessel sequence.

Note that the definitions of Riesz-Fischer and Bessel sequences given in [173] are different, but
they are equivalent to the preceding definition according to [173]

The following proposition contains some slight reformulations of these notions.

If A= (ak]-)kjEN is an infinite matrix of complex entries ay; we shall say that A defines a bounded

operator A on the Hilbert space I?(N) if

(Ax,y) = Z agXyj for x = {Xken, Y = {Yitken € IP(N).  (14)
Kkj=1
Clearly, if A defines a bounded operator A, then A is uniquely determined by Eq. (14).
Proposition(5.1.5) [176]: Suppose that X = {x,}7° is a sequence of pairwise distinct points of R"

and g is a positive definite function given by (10) with measure p. Let F = {f; = ei("xk)}:;l denote
the sequence of exponential function in the Hilbert space LZ2(R"; ). Then:
(1 F is a Riesz-Fischer sequence in L2(R™®; w) if and only if g is strongly X-positive definite.
(i) F is a Bessel sequence if and only if the Gram matrix.
GrF = ((fkafj>L2(]R2;u))k,jEN =. er(g) (15)
defines a bounded operator on 12(N).
Proof. Using Eq. (10) we easily derive
2
du(w = | (16)

Z Ec5i0(Xi — X)) = J 2 £, el (ux0 2 Excfic(U) 2 &l
k=1 R lk=1 k=1 L2(R™:u)

kj=1 RN
for arbitrarym € N and £ = {¢;, ..., §,} € C™. Both statements are immediate from (16).
Taking in mind further applications to the spectral theory of self-adjoint realizations of £; we will
be concerned with radial positive definite functions. Let us recall the corresponding concepts.
Definition (5.1.6) [176]: Let n € N. A function f € C([0, +)) is called a radial positive definite
function of the class @,, if f(|-|,,) is a positive definite function on R", i.e., if f(|:],) € ®(R™).
It is known that ®,,; ¢ &, and &, # &, ,, for anyn € N (see, for instance, [171, 175]).
A characterization of the class @, is given by the following Schoenberg theorem [167, 168], see,
e.g., [119] or [130, 170]. Let o,, denote the normalized surface measure on the unit sphere S™.
Theorem(5.1.7) [176]:A function f on [0, +o0) belong to the class @, if and only if there exists a
positive finite Borel measure v on [0, +o0) such that

2
du(u) =

#(t) = f Q. (r) dv(Ddv(r),  t e [0, +oo). 17)
where i
Q. (Ix]) = f el ds (u), X € R™, (18)
Sn
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Moreover, we have

e T .

p=0
The first three function Q,,,n = 1,2,3, can be computed as
sint

where ], is the Bessel function of first kind and order zero (see e.g., [163]).

It was proved in [138] using Schoenberg’s theorem that for each non-constant function f € &,,n >
2, the function f(|-]) is strictlyX-positive definite for any finite subset X of R".

Definition (5.1.8) [176]: A function f € C[0,) N C*(0,+) is called completely monotone on
[0,00) if (—1)%fX(t) >0 for all ke NuU{0} and t> 0. The set of such functions is denoted
byM[O0, ).

By Bernstein’s theorem [1], a function f on [0, o) belongs to the class M[0, «) if and only if there
exists a finite positive Borel measure t on [0, o) such that

[0¢]

#(t) = f e-t5de(s), t € [0, o). (21)

0
The measure t is then uniquely determined by the function f.

Schoenberg noted in [167, 168] that a function f on [0, o) belongs to Npey @, if and only if f(v/+) €
MI[O0, ). The following statement is an immediate consequence of Schoenberg’s result.
Proposition(5.1.9) [176]: If f € M[0, ), then f € N ey Py.
Proof. For s > 0 the function g,(t) := e=sV1 is completely monotone for t > 0. Schoenberg’s result
applies to g(t?) and shows that g,(t?) = e™St € N,y ©,. Therefore the integral representation
(21) implies that f(-) € Nyey Pp.
For any sequence X = {x,};° of points of R™ we set

d.(X) == Lrlﬂxk — X
The following proposition describes a large class of radial positive definite functions that are
stronglyX-positive definite for any sequence X of points of R3 such that d,(X) > 0.
Corollary(5.1.10) [176]: Suppose X = {xj};:1 is a sequence of points of R3 and T is a finite

positive Borel measure on [0, +c0). Then:
If d,(X) > 0 and t((0, +0)) > 0, then ® forms a Riesz-Fischer sequence in L2(R3).
If d,(X) > 0 and (67) holds, then ® is a Bessel sequence in L2(RR3).
Ifd,(X) > 0 and (67) is satisfied, then ® forms a Riesz basis in its closed linear span.
If the sequence ® is both a Riesz-Fischer and a Bessel sequence in L2(R?3), then d,(X) > 0.
An immediate consequence of the preceding corollary is
Corollary(5.1.11) [176]: Let f,X and T be as in Theorem (5.1.37) and assume that condition (67)
holds. Then the sequence ® = {(ﬁj}f forms a Riesz basis in its closed linear span if and only if
d,(X) > 0.
Remark(5.1.12) [176]: Let f be an absolutely monotone function with integral representation (21).
Then.
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Grx(M = (F(|x; — xi))jxen = (@, Prdiz(r?))jken = Cro. (22)
Proposition(5.1.13) [176]: Suppose that f € &, and let v be the corresponding representing
measure form (17). Let X = {xj}io be an arbitrary sequence from R". Then f is stronglyX-positive
definite if and only if there exists a Borel subset K < (0, +) such that v(x) > 0 and the system
{ei('vxk)}:;l forms a Riesz-Fischer sequence in L2(S™; 6,,) for everyr € .

Proof. From (17) and (18) it follows that for (£, ...,&,) € C™ and m € N,

m too " ,
Z Ejzk f(lxj - X]-|) = Of f ;Ekei(umk)

j k=1 sn
Suppose that there exists a set k as stated above. Then for everyt € K there is a constant c(r) >0

such that
m
Z Ekei(u,rxk)
k=1 L2(S™M)

Choosing c(r) measuring and combining this inequality with (23) we obtain

= m 2
Z E]Ek f(|Xj - Xkl) = f Z Ekei(u,rxk)
K k=1

jk=1
where ¢ := [ c(r)dv(r). Since v(x) >0 and c(r) >0, we have ¢ > 0. That is, f is stronglyX-
positive definite.

The converse follows easily from E.q. (23).

Remark(5.1.14) [176]: Or course, the set k in Proposition (5.1.13) is not unique in general. If the
measure v has an atom r, € (0, +), i.e., v({ro}) > 0, then one can choose k = {r,}. For instance,
for the function f(-) = Q,(r,) the representative measure from formula (17) is the delta measure &,

do,(u) |dv(r). (23)

2

> c(r)ZIEkIZ. (24)
k=1

av(r) > CZ|zk|2, (25)
k=1

LZ(sM)

at ro. Therefore, f(-) = Q,(r,) is stronglyX-positive definite if and only if the system {ei("xk)}:;l
forms a Riesz-Fischer sequence in L2(SE : o,,).
Let A = {A\}7° be a sequence of reals. For r > 0 let n(r) denote the largest number of points A, that

are contained in an interval of length r. Then the upper density of A is defined by.
D*(A) = lim n(r)r1.

r-+oo

Since n(r) is subadditive, it follows that this limit always exists (see e.g. [131]).

In what follows we need the classical result on Riesz-Fischer sequences of exponents in L2(—a, a).
Proposition(5.1.15) [176]: Let A = {1, }& be a real sequence and a > 0. Set E(A) = {ei"\kx}f.

(i) If d,(A) > 0 and D*(A) < a/mw, then E(A) is a Riesz-Fischer sequence in L2(—a, a).

(i) IfFE(A) is a Riesz-Fischer sequence in L2(—a, a), then d,(A) > 0 and D*(A) < a/m.
Assertion (i) of Proposition (5.1.15) is a theorem of A. Beurling [131], while assertion (ii) is a result
of H.J. Landau [152], see e.g. [174]. Proposition (5.1.15)yields following statement.
Corollary(5.1.16) [176]: If d,(A) > 0 and D*(A) = 0, then E(A) is a Riesz-Fischer sequence in
L?(—a,a) foralla > 0.

From this corollary it follows that E(A) is a Riesz-Fischer sequence in L2(—a,a) for all a > 0 if
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lli_m)(lkﬂ —A) = +oo.

Now we are ready to state the main result of this subsection.

Proposition(5.1.18) [176]: Let f € &, f # const, and let X = {x,}7° be a sequence of points x; €
R™,n > 2, of the form X, = (0, Xyz, ..., Xkn)- If the sequence X, := {Xxntpe; Of N-th coordinates
satisfies the conditions d,(X,) > 0 and D*(X,) = 0, then f is stronglyX-positive definite.

Proof. By Schoenberg’s Theorem (5.1.7), f admits a representation (17). Let € = (§;,...,&,) €
C™, m € N. It follows from (17) and (18) that

2

geiwrxd| do.(u) |dv(r). (26)

m o
> adflx=xD=[ | [|Y
kj=1 0 gn lk=1
Next, we transform the integral over S™ in (26). Recall that in terms of spherical coordinates
U; = COS @y, Up—1
=sin@; ...SIN@y_, COS P,_1,
Up =SiN@q ...SINQ,_5 SIN@L_1, @1, ..., n—» € [0, 1] and ¢,_, € [0,27]
the surface measure o, on the unit sphere S™ is given by
do,(u) =do,(uy,...,uy) =sin® 1@, sin® 3 @, ...sing,_, ...de,_;
Set v = (Uy,...,uy) and B,_; := {v € R*1:|< 1|}. Writing u € S™ as u = (u,,Vv), we derive from
the previous formula.

do,(u) =

1
————dv, whereu?+|v[2?=1veB,;. (27)
V1—1v|?
Further, we write v = (W, t), where w € R"2 and t € R, and X = (0, Xk, ..., Xnk) = (0, Vi, Xkn),
where y,. € R""2, Then we have (u, rx) = r(w,yy) + rtx,,. Let B,_, denote the unit ball B,_, :=

{w € R""2:|w| < 1} in R"~2, Using the equality (27) we then compute
2

m 2 m
f ngei(u,er) do,(u) = f ngeir(Wva)eiank ;dv (28)
gn lk=1 B,_, lk=1 v1-— [v]?
m 2 Vi-lwiz 2
f ngeir(w,yk)eirtxnk dv = f f ngeir(Wva)eiank dt | dw
By, k=1 Bn-1 \ J1-|w]2 k=1
rfi-wlz 2
= f r-1 f Zékeir(""'yk)eisxnk ds |dw. (29)
By, e iz k=1

Since d.(X,) > 0 and D*(X,) = 0 by assumption, Corollary(5.1.16) implies that for anya > 0 the
sequence {eisxkn}:;l is a Riesz-Fischer sequence in L2(—a,a). That is, there exists a constant
c(a) > 0 such that

m
Z (Ekeir(w,yk))eisxnk
—a k=1

Inserting this inequality, applied with a =./1 — |w|? >0, into (29) and then (29) into (26) we

a

2 m m
ds > o(a) ) 5w = c@) ) [l
k=1 k=1
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obtain.

> 6 > f [

kj=1 Bn-2 —r1-|w

2

r/1-TWIZ
f ds |dw |dv(r)

-
2 O g
k=

.

f f f rre (1= Wi (ZIEkP)dw dv(r)

0 Bp—;

f f ric (ryI— WP?) dwdv(r) Z|gk|2

0 Bp—
The double integral in front of the last sum is a finite constant, sayy, by Since f is not constant by

assumption, V((0, +)) > 0. Therefore, since r~1c (rw/l - |W|2) >0 forall r>0and |w| <1,

we conclude that y > 0. This shows that f is stronglyX-positive definite.
Assuming f € &, ; rather that f € &, we obtain the following corollary.
Corollary(5.1.18) [176]: Assume that f € ®,,, and f is not constant. Let X = {x,}5° be sequence of
points Xx = (Xk1, Xkz, - » Xkn) € R™. If the sequence X, := {Xyn ey O N-th coordinate satisfies the
conditions d,(X,) > 0 and D*(X,,) = 0, then f is stronglyX-positive definite.
Proof. We identifyR" with the subspace 0 R"*1. Then X is identified with the sequence X =
{(0,x,)}>,. Since f € ®, .4, Proposition (5.1.17) applies to the sequence X, so f is stronglyX-
positive definite. Hence it is stronglyX-positive definite.
The next proposition gives a more precise result for a sequence X = {x;}p=, of R3 which are
located on a line.
Proposition(5.1.19) [176]: Suppose that A = {A,}° is a real sequence and r > 0. Let X be the
sequence X = {xy = (0,0, A )}, in R3 and let f.(x) := Q;(r|x]),x € R3.
If d,(A) > 0 and D*(A) < r/m, then the function f, is stronglyX-positive definite.
If f. is stronglyX-positive definite, then d,(A) > 0 and D*(A) < r/m.
Proof. Suppose that £ = (§,,...,&,) € C™, m € N. We introduce spherical coordinates on the unit
sphere S in R3 by.

u; = sin 6 cos o, U, =sin@sing,u; = coso, where 0 € [0, ].
Then the surface measure o, on the sphere S? is given bydo,(u) = sin8d@d6 and (u,rxy) =

rAy cos 0. Using these facts and Eq. (18) we compute.
2

Z EkE]f (|Xk ]|) = Z EkE]Q3(r|Xk ]D = f el do, (u)
kj=1 k=1
2T T | m T, m 2
ff ZE girék cos® smedcpde—an Zékei”‘kcose sin 6de.
o k=1
Transforming the latter mtegral by setting t = r cos 0 obtain
3 6 (e xl) = f Zz oo (30)
k] 1 -r k=1

107



Equality (30) is the crucial step for the proof of Proposition (5.1.19).
Since d,(A) >0 and D*(A) < r/m, (A) = {eikkt}lio:1 is Riesz-Fischer sequence in L*(—r,r) by
Proposition (5.1.15) (i). This means that there exists a constant ¢ > 0 such that

r ' m 2 m
Z geet| dt > cZIEkIZ.

Combined with (30) it follows that f is stronglyX-positive definite.
Since f is stronglyX-positive definite, there is a constant ¢ > O such that

Z & 5f(|x — x;|) = CZ|§k|2-
=1

kj=1
Because of (30) this implies that E(A) is stronglyX-positive definite. Therefore, d,.(A) >0 and
D*(A) < r/m by Proposition (5.1.15) (ii).
Corollary(5.1.20) [176]: Assume the conditions of Proposition (5.1.19) and r, > 0. Then the
functions f,. are stronglyX-positive definite for anyr € (O, r,) if and only if d,(A) > 0 and D*(A) =
0.
Here we discuss the question of when the Gram matrix (15) defines a bounded operator on I2(N). A
standard criterion for showing that a matrix defines a bounded operator is Schur’s test. It can be
stated as follows:

Lemma(5.1.21) [176]: Let A = (ak].)k be an infinite Hermitian matrix satisfying.
JEN

C:= supZ|ak]-| < . (31)
g v

Then the matrix A defines a bounded self-adjoint operator A on t2(N) and we have ||A]| < C.
A proof of Lemma (5.1.21) can be found, e.g., in [173, p. 159].
Lemma(5.1.22) [176]: Let A = (ax;)xjenbe on infinite Hermitian matrix. Suppose that (akj)z-, €

t2 forall j € Nand
. sup .
TLILnOO j=m E |akj| | = 0. (32)

k=m
Then the Hermitian matrix A = (akj)k, j € N defines a compact self-adjoint operator on t2(N).

Proof. For m € N let A,, denote the matrix (aff},‘l))k,jeN, where af(rjn) =0 if either kK=mor j>

mand al((’j“) = ay; otherwise. Clearly, A, defines a bounded operator Ay, on I2(N). From (32) it

follows that the matrix A — A, satisfies condition (31) for large m, so A — A,, defines a bounded
operator B,,. Therefore A defines the bounded self-adjoint operator A := A, + B,
Let € > 0 be given. By (32), there exists m, such that Yysm|ay] < & for m>mg and j > m,.
Using the latter, the Cauchy-Chwarz inequality and the relation ay; = a;, we derive
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IBnxl? = >

ji>m

Yon

k>m

g D, (Z Iajk|> (Z 35k |xk|2> =<e ) ) laglhl

ji>m \k>m k>m k>m ij>m

<& ) bl < P

k>m
for x = {xj}io € 12(N) and m > m,. This proves that lim||B,,|| = lim||A — A, |l = 0. Obviously,
m m
A, is compact, because it has finite rank. Therefore, A is compact.
An immediate consequence of Lemma (5.1.22) is the following matrix satisfying
Corollary (5.1.23) [176]: IfA = (Aki)keN is an infinite Hermitian matrix satisfying.

lim (sup |aj |> -0, (33)
e NIeN =

then the matrix A defines a compact self-adjoint operator on I2(N).

Proposition(5.1.24) [176]:Let f € ®,,n = 2, and let v be the representing measure in Eq. (17). Let
X = {x.J3° be a sequence of pairwise different points x, € R". Suppose that for each j, k € N, j # k,
there are positive numbers ay; such that

1
K: sup Z ! — < o0, (34)
JEN fev (agjlxk — x1) 2~
L:sup ) "v([0,ay]) < oo. (35)

JEN (&N
Then the matrix G.x(f) == (f(|xx — X;|))xjen defines a bounded self-adjoint operator on 12(N).
Proof. By (19) the function Q,(t) has an alternating power series expansion and Q,(0) = 1.

Therefore we have Q,(t) <1 for t € [0,). It is well known (see, e.g., [163. P. 266]) that the

2

Bessel function Jn-z(t) behaves asymptotically as \/% ast — oo. Therefore. It follows from (19) that

there exists a constant C,, such that

10,(O] < Cot = for t € (0,0). (36)
Using these facts and the assumptions (34) and (35) we obtain.
0 O(kj 0
Z T(|x — x]) = Z ’f Qn (r|x = x;])dv(r) < Z / f 1dv(r) + C, f(r|xk — x]-|)1_Tndv(r)
keN keN o keN 0 A
< Z v([0, a]) + Z 'C, f (o X — xj|)_T dv(r)
keN keN i
—L+C, Z (¥ =X [) 2 | V(R) < L+ CoKv(R).
keN
so that
sup > f([xc = x[) < (0) + L+ CuKv(R) < co. 37)
JEN =
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This shows that the assumption (5.1.24) of the Schur test is fulfilled, so the matrix G,x(f) defines a
bounded operator by Lemma (5.1.21).

The assumptions (35) and (34) are a growth condition of the measure v at zero combined with a
density condition for the set of points x,. Let us assume that v([0, €]) = O for some € > 0. Setting
ay; = € in Proposition (5.1.24), (35) is trivially satisfied and 34) holds whenever.

1
sup ) '————5 < . (38)

NN |} — x| 2
Because of its importance we restate this result in the special case when v = §,. is a delta measure at
r € (0, ) separately as
Corollary(5.1.25) [176]: If X = {x,}* is a sequence of pairwise distinct points x,, € R" satisfying
(38), then for anyr > 0 the infinite matrix (,(r|xx — X;|))x;n define bounded operator on I*(N).
An example is the next proposition.
Proposition(5.1.26) [176]'Suppose X = {x}° is a sequence of distinct points x;, € R® such that

K := supZ (39)
JEN |Xk - X]|
Letr € (0,) and let A be the infinite matrix given by
sin(t|xx — x;])

Q3(t, X) = (Q3(tIxx — X)) kjen = (ﬁ) (40)
% kjeN

1n0

where we set := 1. If rr'IK < 1, then A defines a bounded self-addjoint operator A on I?(N)
with bounded mverse; moreover, ||Al]] < 1+ r *Kand [JA7Y] < (1 —r1K)~L

Proof. Set S = (ayj)kjen = A — I, where | is the identity matrix. Since ay; = 0, one has

LIsin(rxx — x;1)
rlxx — X1

<rtsup ) '——=r"1k
jen 4 [k — X;]

sup ) [ag| = sup

jEN r jEN
This shows that Hermitian matrix S satisfies the assumption ((5.1.24)) of Lemma (5.1.21) with C <
r—1K. Thus S is the matrix of a bounded self-adjoint operator S such that ||S|| < r~tK. We have S :=
A — |. This implies that A is the matrix of a bounded self-adjoint operator A= 1+ Sand ||A|| < 1+
r1K < 1,4 has a bounded inverse and ||A™Y|| < (1 — r 1K) 1,
Let A denote the Laplacian on R3 with domain dom(—A) = W22(R3) in L2(R3). It is well known
that —A is self-adjoint. We fix a sequence X = {x,};° of pairwise distinct points x; € R* and denote
byH the restriction

H:= —Ar domH domH = {f e W22(R®):f(x;) =Oforallje N}.  (41)
We abbreviate rj == |x —x;| for x = (x*,x?,x3) € R%. For z € C\[0,0) we denote byvz the
branch of the square root of z with positive imaginary part.
Further, let us recall the formula for the resolvent (—A — zI)~1 on L2(R3) (see [159]):
1 elVx|x—t|
(-8 - 2D = o f O feB®). (42)
3

—X—X
1 eI

Lemma (5.1.27) [176]:The sequence E := {r Pih21 = {m -

}] , 1S normed and complete in
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the deficit subspace 9t_, (c L2(IR3)) of the operator H.
Proof. Suppose that f € :t_; and f L E. Thenu := (1 — A)~1f € W22(R3). By (42), we have

1 [ e lxl
ue0 = Rf Tt (43)

Therefore, the orthogonality condition f L E means that

e—|X—r| .
n dt=u(x;)), JjeN. (44)

1
O:(f’(pj>:Eff(t) x—
R3

By (44) and (41), u € dom(H) and f = (I — A)u = (I + H)u € ran(l + H). Thus
feN_; nran(l + H) = {0},
i.e., f = 0 and the system E is complete.

The function el'l(e W22(R?)) is a (generalized) solution of the equation (I — A)e~ Xl = 2%}"").
e—Ix-vl
Therefore it follows from (43) with f = f,(x) = |x—y|y that

e~ Ix-yl 1 e~ Ix=tl a=Ix-yl

2 ) k=d e )
R

Setting here x =y = x; we get ||¢;||* = 2, i.e., the system E is normed.
In order to state the next result we need the following definition.
Definition(5.1.28) [176]:A sequence {fj}zo of vector of a Hilbert space is called w-linearly

independent if for any complex sequence {c]-}:o the relations.

[0¢] [0¢]

D cfy=0 and ) [o[°lf][* <o (46)
j=1 j=1
imply that ¢; = O for all j € N.

Lemma(5.1.29) [176]:Assume that X = {x]-}zo has no finite accumulation points. Then the sequence

—|x—xj|

1 3 —{Le
Vam Pidi=1 T \2E x|

E{ }2, is w-linearly independent in 9t = L*(R?).

Proof. Assume that for some complex sequence {c]-}:o conditions (46) are satisfied with ¢; in place

of f;. By Lemma (5.1.27), ||;]| = v2m. Hence the second of condition (46) is equivalent to {c;} €

2. Furthermore, since each function ¢;(x) is harmonic in R® \ {x;}, this implies that the series
i21 Cjp; converges uniformly on each compact subset of R3 \ X.

Fix k € N. Since the points x; are pairwise distinct and the set X has no finite accumulation points,

there exists a compact neighborhood Uy of xi and such that x; & Uy for all j = k. Then, by the

preceding considerations, the series ;.. Cj; converges uniformly on Uy.

From the first equality of (46) it follows that

—Cx = Z cie Nl x — x| 72 x —
jeN

111



for all x € Uy, x # X. Therefore, passing to the limit as x — x;, we obtain ¢, = 0.
Definition(5.1.30) [176]:

(i)  Asequence {fj}io in the Hilbert space $ is called minimal if for any k
dist{fy, 50} = &, >0, $® := span {fj:j EN\ {k}}, keN a7
(i) A sequence {fj}io is said to be uniformly minimal if inf &, > 0.
(i) A sequence {gj}io c $ is called birothogonal to {f]-}io if (f;, gy) = & for all jk € N.
Let us recall two well-known facts (see. e.g. [137]): A birothogonal sequence to {fj}io exist if and
only if the sequence {fj}io is minimal. If this is true, then the biorthogonal sequence is uniquely

determined if and only if the set {fj}io is complete in .
Recall that the sequence {¢;} is complete in %_; according to Lemma (5.1.27).
Lemma(5.1.31) [176]:Assume that X = {x,}7° has no finite accumulation points.
(i)  The sequence E := {(p]-}io is minimal in 9_;.
(i) The corresponding biorthogonal sequence {ij}io is also complete in n_;.
Proof. (i) To prove minimality it suffices to construct a biorthogonal system. Since X has no finite
accumulation point, for anyj € N there exists a function 0; € Cy(€3) such that
0(x;)) =1 and ©;(x,) =0 fork =] (48)
Moreover, {;(-) can be chosen compactly supported in a small neighborhood of x;.
Let §; :== (I — A)T;,j € N. In general, §; & 9_,. To avoid this drawback we put
P =P @5 €N, and g;=y;—¢;, jEN. (49)
where P_; is the orthogonal projection in 3 onto :¢_;. Then g; € ran(l+H) = H S N_;,j € N.
Setting v; = (1 — A)~'g;, we get v; € dom(A). Therefore, by the Sobolev embedding theorem, v; €

C(R?). Together with the sequence {Dj}io we consider the sequence of functions.

U]' = ﬂ] —V]' € WZ'Z(R3), J € N. (50)
Since v; € dom(H), the functions u; satisfy relations (48) as well. Thus,
—Au;+u; =P € -y and uj(x) = 8y; forj,k €N. (51)

Combining these relations with resolvent formula (42) we get

—|x—x|
(0101 = - [ w0 T ——dx=1- 0wy =y ) = g €N (52)

nR3 [x — ]
These relations means that the sequence {ij}io is biorthogonal to the sequence {ij}io. Hence the
latter is minimal.
(i) Let $, denote the closed linear span of the set {u;; j € N} in W22(RR?).
We prove that W22(R3) is the closed linear span of its subspaces $; and dom(H). Indeed, assume
that g € W22(R3) and has a compact support K = supp g. Then the intersection X n K is finite
since X has no accumulation points. Therefore the function.
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0= Y ot 2

ijK
is well defined and g, € $,. It follows from (51) that g, := g, € dom(H) and g =g, +g,. It
remains to note that C5° (R3) is dense in W22(RR3).
Suppose that f € 9t_; and (f, ;) = 0,j € N. Then, by (51).
0=(fy)) =((-A+Du;)). jEN. (54)
The inclusion f € t_; means that f L (I — A)dom(H). Combining this with (54) and using that
W22(RR3) is the closure of $,; + dom(H) as shown above, it follows that f L ran(l — A) = L2(R3).

Thus f = 0 and the sequence {Lp]-}:o is complete.
Lemma(5.1.32) [176]:IfE = {cpj}zo is uniformly minimal, then X has no finite accumulation points.
Proof. Since {cpj}zo is minimal in 9t_,, there exists the biorthogonal sequence {ij}zo in N_;. It was

already mentioned that the uniform minimality of E = {cpj}zo is equivalent to sup||;||. [|[w;]| < <.
jeN

Therefore, since ||¢q;|| = 2vm, by Lemma (5.1.27), the sequence (;;] € N) is unitofmly bounded
i.e., sup;||W|| =:Co < 0. Setting u; = (1 — A)~'y; € WZ(R®) we conclude that the sequence
{uj}zo is uniformly bounded in W22(R?), that is, sup||uj]|, ., = C; < .

jeN

Now assume to the contrary that there is a finite accumulation point y, of X. Thus, there exists a
subsequence {xjm}: , such that y, = lim x;,,. By the Sobolve embedding theorem, the set
= m-—oo

{u]-;j € N} is compact in C(R3). Thus there exists a subsequence of {ujm} which converges
uniformly to u, € C(R®). Without loss of generality we assume that the sequence {u;_} itself
converges to Uy, i.e. nI1|£7;1>o||ujm — u0||C(R3) = 0. Hence

1= ujm(xjm) e Uo(yo) = 1, 0= ujm(ujm—l) e Uo(Ye) =0
which is the desired contradiction.
Lemma(5.1.33) [176]:Suppose that d,(X) =0. If the matrix 7, == (% e Py oy defines a
bounded self-adjoint operator T, on 12(N), then 0 € 6.(T,), hence T, has not bounded inverse.
Proof. Let € > 0. Since d,(X) = 0, there exist number n; € N such that rj = |Xn; = X, | <. Let
e, denote the vector e, == {5p,m}:=1 of 12(N). Then 2 T, (e; — e,) = {e™ ™ —e™"rk}>, € I2(N).
Since [rp; — rpk| < Ik < € by the triangle inequality, e™* < exp(ry,; — rpk) < €® and hence
|eTpi — e~ Trk| = 7 Tpi|1 — e"PiTTPk| < eCe TP, j,k,p € N.

where C > 0 is a constant. Using the assumption that T, is bounded we get

4|1, (e; —e)||” < e2c? Z e 2 = 4e2C2|| Ty |* < 4€2C2|IT, |12 (55)

p

Since & > 0 is arbitrary and ||e; — e[| = V2 for j # k, it follows that 0 € o (T).
Theorem(5.1.34) [176]:The sequence E = {@,}7° forms a Riesz basis of the Hilbert space 9t_; and
only if d,(X) > 0.
Proof. Sufficiency. Suppose that d,(X) > 0. By Lemma (5.1.27) and (5.1.31), both sequences
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{cpj}io and {ij}io are complete in 9t_;. Therefore, by [137, Theorem 6.2.1], the sequence {¢p;} forms
a Riesz basis in 9t_; if and only if.

Z|(f, (p]-)|2 <o and Z|(f, (p]-)|2 <o forallfeN_,. (56)
j=1 j=1

Let B; denote the ball in R* centered at x; with the radius r = d.(X)/3,j € N. ClearlyB; n B, = @
for j # k. By the Sobolve embedding theorem, there is a constant C > 0 such that

V)| < CliVilwzzs), veEW?*(B;),  jEN, (57)
where C is independent of j and v € W22(B;).

Let fe 9_; and set u = (I — A)*fu € W22(RR3). Combining (57) with the representation (5.1.28)
for u we get

Z'(f, (p])|2 = Z'U(X])'Z < CZ”U”\ZNZ*Z(B]-) < CIlU”‘ZNz,z(Rs),f € 9?_1(58)
=1 =1 =1

This proves the first inequality of (56).
We now derive the second inequality. Let B, be the ball centered at zero with the radius r =
d,(X)/3. We choose a function T, € C5*(R3) supported in B, and satisfying ti,(0) = 1. Put

0;(x) =0o(x —x;), €N, (59)
Clearly, the sequence {Gj}io satisfies conditions (33). Then repeating the reasonings of the proof of
Lemma (5.1.31) (i) we find a sequence {vj}io of vectors from dom(H) such that the new sequence
{uj =1, - vj}io satisfies relations (51). Hence for anyf € 9t_;.

(F ) = (f, (A + Duy) = (f, (A + D(0; —vi)) = (L, (-A+ D), jeEN, (60)
Since {;(-) is supported in the ball B;, it follows form (59) and relation (60) that

D K1 = Y [(f (4 + Dap)
=1 j=1
%) , 5
= CZ”f”LZ(Bj)”ui”WZ,Z(B,)
=1 ’
= C ) 1225 1002y
=1

= ClUo ey D 1225 < Clllazayy 12 )
j=1

Thus, the second inequality (56) is also proved, hence {(p]-} forms a Riesz basis.

Necessity. Suppose the d,(X) = 0. By [137, Theorem 6.2.1], a sequence |y = {ij}io of vectors is a
Riesz basis of a Hilbert space & if and only it is complete in $ and its Gram matrix er =
({Wj, Y1) xen defines a bounded operator on 12(N) with bounded inverse.

By (45), E= {(p]-}io has the Gram matrix G, = ({0, Yi))jken = (Tre""l""k')jkEN = 2n7;.
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Therefore, by Lemma (5.1.30), if G, defies a bounded operator, this operator is not boundedly
invertible. Hence E = {(p]-}io is not a Riesz basis by the preceding theorem.
Remark(5.1.35) [176]:Note that the proof of uniform minimality of the system E is much simpler.
Combining (59) with (60) we obtain.

[l < Ml - |0 = )Gl| o < WG]y = WPl NTollwezges),  JEN. (61)

Since f € 9t_ is arbitrary, one has sup||ej|| , 5 < l8ollwez(gs), s0 {W;}. . is uniformly minimal
jeN L?(R?) JEN

Next we set
ei\/§|x—xj| '
0;,(0) =——— and e,(x):eVxl jen. (62)
' [x = x| '
Cleal’ly, (Pj,—l = (p],J € N.
Corollary(5.1.36) [176]:Suppose that d,(X) > 0. Then for anyz € C \ [0, ), the sequence E, :=
{% ®j2}j=1 forms a Riesz basis in the deficiency subspace 9t, of the operator H. Moreover, for z =

Va

—a? < 0(a> 0) the system+aE_,z = {595

Proof. It is easily seen that

2}21. Is normed.

e—lx-yl givzlu—xj] eivzlx-yl  g=ly-xj|
RJX—ﬂ W—Mwwévv_w V—&W% €N. (63)
Using (42) we can rewrite this equality as
(1=, =(-A-2)"g, jEN,z€e C\R,. (64)
Therefore, we have
®jz = Usg,, where U, =(—-A)(-A-2z)t=1-(1+2)(A+2)"L (65)

Obviously, U, is a continuous bijection of :_, ontoN,. therefore, since E=E_, = {cpj}jEN is

Riesz basis of 9t_; by Theorem (5.1.31), E, = {cpjvz}; is a Riesz basis of N,.
To prove the second statement we note that for anya > 0 the function e~2I1(e W22(R?)) is a
(generalized) solution of the equation (a2l — A)e=2Xl = ZaW. Taking this equality into

e—alx

-yl
ly that

account we obtain from (42) with z = —a* and f = f,(x) = =

e—a|X_Y| 1 e—a|X—t| e_a|t_Y|
Z = - dt,
2a am ) |x—t] |t—y]
]R3

a>o0. (66)

Setting here x =y = x; we get ||, _,2||* = 2n/a, i.e., the system vaE_,2 is normed.
Theorem(5.1.37) [176]:Let f be a non-constant function of M[0, ) and let t be the representing
measure in Eq. (21). Suppose that X = {x,.}° is a sequence of points x, R3. Then:

(i) Ifd, (X) > 0, then the function f(|-]) is strongly X-positive definite.

(i)  Suppose that d,(X) > 0 and

f (s +5~3)d(s) < oo. (67)
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Then the Gram matrix Gry(f) = (f(|xk—x]-|))kjEN defines a bounded operator with bounded

inverse on 12(N).
(iii)  If the Gram matrix Gry(f) defines a bounded operator with bounded inverse on 12(N), then
d,(X) > 0.

Proof.(i) Suppose that s € (0, +) and set

1 1 e-sk—xl
E‘Pj,_sz (X)E—lx — Xj| ,
Eq. (45) shows that Gry(gs) = (9s(Xk — X;))xjen IS the Gram matrix of the sequence E_g =

gs(x) = s7te s @ (x) = jeEN.

{@j,s};- Since d,(X) > 0 by assumption, E_.. forms a Riesz by Corollary(5.1.33). Therefore it
follows from [137, Theorem 6.2.1] that for anys > 0 the Gram matrix ((fﬁj,s, (Tjk'S>L2(R3)).k W

],.k€e
Gy, (95) defines a bounded operator on I*(N) with bounded invese. Hence for anys > 0 and c(s) >
0 such that

e D I5° = D @js Bsdoqe) 58 = ) s lgE > o) 5| (69)
j=1 jk=1 jk=1 j=1

for all (§;,...,&,) € C™ and m € N. Clearly, the function c(s) on (0,+) can be chosen to be

measurable. Since c¢(s) >0 on R, and t(R,)>0, we have c: sc(s)dt(s) > 0.

= Jio4)
Combining (21) with (68) we arrive at the inequality.

Z F(J%; — e &8 :f Z e~shixd gE | dr(s)
jik=1 0 \jik=1

Zfs c(s,)i|gj|2 dr(S)=Ci|Ej|2, (69)
j=1 j=1

0
This means that the function f(|-|) is stronglyX-positive definite.
(ii) By (65), U_2 = (1 —A+s?)7", hence [[U_g|l =max(1.s?). Moreover, by (65). §;s=
U_s2®;,1. Using the preceding facts we derive
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D 10 = xd)gE = | (2 e ;-a) de(s)(70)

jk=1 o \jk=1
m *®
= Z f S((p]s (pksﬁ]%kdr(s)
jk=1¢

dt(s)

+00 2
f S Z &P
j=1

2
U_s2 (Z Ejfﬁm)
=

= 2] sllU_g2|I? Z (Bj1, Pr1) §&dT(S) <f s(1+s7*)C(1) (ZIE, )dr(S)

j k=1 0

= CZ|§] | (71)

where C := C(1) fo (s + s72)dt(s) < o by assumption (67).

It follows from (69) and (70) that the matrix G.(f) defines a bounded operator with bounded
inverse.

(iii) Suppose that d,(X) = 0. Assume to the contrary that the Gram matrix G, (f) defines a bounded
operator, sayT, with bounded inverse on I?(N).

Fix € € (0,t(]0, ))). Since the measure T is finite, there exists s, > 0 such that

2

dt(s)

+ 0o

de(s) < f sIlU_.21?

0

m

2 51

j=1

Il
O — -é— o
w

f de(s) < & < 7([0, 0)). (72)
[s0,)
By the assumption d.(X) =0 we can find points x;,x; € X, k, I € N, such that rj, = |x; — x| <
so 1 In(1 + £(0,50]1)))7Y). Fix a number | € N. First suppose rji < Na. Then
S(T([O 50]))
1 +¢(t([0,30))

0< (1 _ es(rkl_rjl))z <1 — e STk T < 8(‘[([0,30]))_1, s€[0,s,]. (73)

Using (72) and (73) we derive

(f (esril — esrkl)dr(s)> = (f 1-— eS(rklrjl)esrjldT(S)>
0

0

— (f (1 _ e—S(rkl—rjl))ZdT(S) 4 f (1 _ eS(rklrjl))ZdT(S)> (f eZSI"jld-[(S)>

0

IA

28] e~ 2Tl (s). (74)
0
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If rj; > ryy then the same reasoning yields.
2

[0¢]

f (et — e=5)d(s) | <2, f 62Tl (s), (75)

0
Summing over | in (74) respectively (75) we obtain.

2
||T(e] - ek)”]Z(N)

= Zl(T(ej —e).e)| = Z f(e‘Srjl — e7*)d(s)
I I\o

< ZSZ fe_zsrjld'f(s)‘Ff e_zsrkldr(S) = 28<| o + ” ” )
I 0 0
< 4¢||T||2. (76)

and hence
2 2
4= ey —ex]l” < IT2(T(ey — ) |” < 4l T2 2NTI(77)
for j # k. Since € > 0 is arbitrary, this is a contraction.

Now we return to be considerations related to Theorem (5.1.34) and recall the following.
Definition(5.1.38) [176]:

A basis {fj}io of a Hilbert space $ is called a Bari basis if there exists an orthonormal basis {gj}io of
$ such that

2
Dl =gl <eo (78)
jEN
It is known that each Bari basis is a Riesz basis. The converse statement is not true.
Proposition(5.1.39) [176]:Assume that X has no finite accumulation points. Then the sequence

X—X;
1 e I

1 © .
E{E(p]}]=1 = {\/ﬁ |x—x;]

}]°°1 forms a Bari basis of 9t_; if and only if

e 2%kl < oo, (79)
jKEN j2k
Moreover, this condition is equivalent to
= lim D(@y, .., ¢n) >0, (80)

where D(¢;, ..., ¢,,) denotes the determinant of the matrix ({¢;, cpk))jnk=1

Proof. By (45), we have (@;j, @) = 2mexp(—|x; —xi|) for j,k € N. By Lemma (5.1.29), the
system E is w-linearly independent. Therefore, by [137, Theorem 6.3.3], E is a Bari basis if and
only if.

(@, 1) — 21T5jk);1=1 = 2m(exp(=1%; — Xil) — Sji)ihe1 € S, (17),
i.e. condition (79) is satisfied. The second statement follows from [137, Theorem 6.3.1].

Section (5.2): Three Dimensional Schrodinger Operator with Point Interactions
Here we briefly recall basis notions and facts on boundary triplets (see [64, 139, 166] for details). In
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what follows A denotes a densely defined closed symmetric operator on a Hilbert space $,9t, :=
N, (A) = ker(A* — z),z € C,, is the defect subspace. We also assume that A has equal deficiency
indices n, (A) := dim(N;) = dim(N_;) =:n— (A).
Definition (5.2.1) [176]: (See [139]). A boundary triplet for the a joint operator A* is a triplet IT =
{H, T,, I } of an auxiliary Hilbert space #£ and of linear mapping Iy, I';: dom(A*) — H such that
(1 The following abstract Green identity holds:
(A'f,9)g — (f,A"9) g = (T1f To@)3c — (T, f, 119D, f,g € dom(A); (81)
The mapping (I, I;): dom(A*) - H@H is surjective.
With a boundary triplet IT one associates two self-extensions of A defined by
A, = A" [ ker(T,) andA; := A* I ker(I'}). (82)
Definition (5.2.2) [176]:
(1 A closed extension A of A is called proper if A c A c A*. The set of all extensions of A is
denoted by Ext,.

(i) Two proper extensions A; and A, of A are called disjoint if dom(A;) n +dom(A;) =

dom(A*).
Remark(5.2.3) [176]:
(1 If the symmetric operator A has equal deficiency indices n, (A) = n_(A), then a boundary

triplet IT = {#, T, I';} for A* always exists and we have dim H = n..(A). [139]
(i) For each self-adjoint extension A of A there exists a boundary triplet IT1 = {7, T, I;} such
that A = A* [ ker(T,) = A,.
(iii) 1t 0 ={# T, I} is a boundary triplet for A* and B = B* € B(H’), then the triplet Iz =
{7, T8, T8} with I := I, and T := BT, I; is also a boundary triplet for A*.
Boundary triplet for A* allow one to parameterize the set Ext, in terms of closed linear relations.
For this we recall the following definitions.
Definition (5.2.4) [176]:
(1 A linear relation © in H is a linear subspaces of ' @ . It is called if the corresponding
subspaces is closed in H @ H.
(i)  Alinear relation © is called symmetric if (g,,f,) — (f;,g,) = 0 for all {f;,g,},{f,,9,} € ©.
(iii)  The adjoint relation ®* of a linear relation ® in # is defined by
0* = {{k, k1}: (h',k) = (h,k") forall {h,h'} € G)}.
(iv)  Aclosed linear relation O is called self-adjoint if ® = O~.
(v)  The inverse of a relation @ is the relation ®~* defined by 8~ = {{n’,h}:{h,h'} € ©}.
Definition (5.2.5) [176]:Let © be a closed relation in . The resolvent set p(®) is the set of
complex numbers A such that the relation (6 — Al)~1 := {{h’ —2Ah,h}:{h,h'} € G)} is the graph of a
bounded operator of B(F'). the complement set 6(0) := C \ p(0) is called the spectrum of 0.
For a relation © in H we define the domain dom(®) and the multi-valued part mul(®) by
dom(®) ={h e H:{h,h'} € ® forsomeh’ € H}. mul(®) ={h’' € H:{0,h'} € B}.
Each closed relation © is the orthogonal sum of @, := {{0,f'} € ©} and 0., := ® © 0,,. Then O,
is the graph of a closed operator, called the operator part of ® and denoted also by®,,, and 0, is a
“pure” relation, that is mul(©.) = mul(®).
Suppose that © is a self-adjoint relation in . Then mul(®) is the orthogonal complement of

op’
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dom(®) in H and O, is a self-adjoint operator in the Hilbert space H,, == dom(®©). That is, @ is
the orthogonal sum of an “ordinary” self-adjoint operator ©,, in H,, and a “pure” relation @, in
Ho = mul(0).
Proposition(5.2.6) [176]: 4.6. (See [64, 139, 166] Let IT1 = {#, [, [';} be a boundary triplet for A*.
Then the mapping.

Exty 3 A = Ag - 0 :=I'(dom(A)) = {{I,f, I, f}: f € dom(A)} (83)
Is a bijection of the set Ext, of all proper extensions of A and the set of all closed linear relations
C(H) in H. Moreover, the following equivalences hold:
(i) (Ag)* = Ag- for any linear relation @ in 7.
(ii)  Ag is symmetric if and only if © is symmetric. Moreover, n..(Ag) = n.(0). In particular,

Ag is self-adjoint if and only if @ is self-adjoint.
(iii)  The closed extensions Ag and A, are disjoint if and only if ® = B is a closed operator. In
this case.

Ag = Ag = A* I dom(Ag), dom(Ag) = ker(T, — BI}). (84)
The notion of the Weyl function and theyy-filed of a boundary triplet was introduced in [64].
Definition (5.2.7) [176]: (See [64, 166]). Let IT = {#, T, I;} be a boundary triplet for A*. The
operator-valued functions y(-): p(A,) = B(#,$) and M(-): p(A,) — B(H') defined by

v(@2) = [T I M)~ and M(2) =Tyv(2),  z € p(Ay), (85)
are called the y-field and the Wey!| function, respectively, of IT = {H, [y, [, }.
Note that the y-field y(-) and Weyl function M(-) are holomorphic on p(A,).
Recall that a symmetric operator A in § is said to be simple if there is no non-trivial subspace which
reduces it to a self-adjoint operator. In other words, A is simple if it does not admit an (orthogonal)
decomposition A = A'@ S where A’ is a symmetric operator and S is a self-adjoint operator acting
on a non-trivial Hilbert space.
It is easily seen (and well known) that A is simple if and only if span {9t,(A):z € C\ R} = $.
If A is simple, then the Weyl function M(-) determines the boundary triplet IT uniquely up to the
unitary equivalence (see [64]). In particular, M(-) contains the full information about the spectral
properties of A,. Moreover, the spectrum of a proper (not necessarily self-adjoint) extension Ag €
Ext, can be described by means of M(+) and the boundary relation 0.
Proposition(5.2.8) [176]: (See [64, 166]). Let A be a simple densely defined symmetric operator in
$,0 € C(H) and z € p(A,). Then:
(i z e pifandonlyif 0 € p(® — M(2));
(i) z€eo(Ag)ifandonlyif0 € o.(0 —M(2)) T € {p,c}
(iiiy € ker(Ag — z) if and only if T,f € ker(® — M(z)) and

dimker(Ag — z) = dimker(0 — M(2)).

For any boundary triplet IT = {#, T}, I';} for A* and any proper extension Ag € Ext, with non-
empty resolvent set the following Krein-type resolvent formula holds (cf. [64, 166])/

Ae—2)'=A—2) t+y(@)(0 - M(z))_ly(i)*, z € p(Ag) N p(A,). (86)
It should be emphasized that formulas (82), (83), and (85) express all data occurring in (86) in terms
of the boundary triplet. These expressions allow one to apply formula (86) to boundary value
problems.
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The following result is deduced from (86).
Proposition(5.2.9) [176]: (See [64, Theorem 2]). Let I1 = {H, I}, I';} be a boundary triplet for A*
and ©’,0 € C(3). Suppose that p(Agr) N p(Ag) # @ and p(0’) N p(O) # @.
(i) For z € p(Ag) N p(Ag),T € p(0") N p(B®), and p € [0,0] the following equivalence is
valid:
(Agr —2) 1= (A —2) T EGLH) = (0 -1 - (0-07' € S,(H) (87)
In particular, (Ag — )" — (A; —2)~" € &,(9) of and only if (6 — {)~* € S,(H) for € p(0).
(i)  1fdom(®") = dom(®), then the following implication holds:
0 —0€eG,(H) = (Ag —2) ' = (Ag —2) 1 € 5,(9). 2 € p(Ag) N p(Ag). (88)
In particular, if ©', 0 € (H), then (87) is equivalent to @' — 0 € &, ().
In this subsection we assume that the symmetric operator A on & is non-negative. Then the set
Ext, (0, ) of all non-negative self-adjoint extensions of A on $ is not empty. Moreover, there
exists a maximal non-negative extension Apg, called the Friedrichs extension, and a minimal
nonOnegative extension Ak, called Krein extension, in the set Ext, (0, o) and
A+ < (B+x) <(Ag+x)7L,  x€(0,0)A € Ext,(0, ).
Proposition(5.2.10) [176]: (See [117]). Let IT1 = {H,T,, I';} be a boundary triplet for A* such that
A, = 0 and let M(-) be the corresponding Wey! function.
(1 There exists a lower semibounded self-adjoint linear relation M(0) in H which is the strong
resolvent limit of M(x) as x T 0. Moreover, M(0) is associated with the closed quadratic
form.

to[h] = lim(MGOh,h), dom(to) = {h:lim(M()h,h) < oo} = dom ((M(0) - M(-2))").

(i) The Krein extension A is given by
Agx = A* I dom(Agk), dom(Ag) = {f € dom(A*):{H,T,,T;} € M(0)}.(89)
The extensions Ag and A, are disjoint if and only if M(0) € C(#). In this case dom(Ag) =
ker(I'; — M(0)I,).
(iii) A, = Agifand only if XITi[Qo(M(X)f’ f) = —oo for f € H \ {0}.
(iv) A, =Agifandonly if XITi[rgo(M(x)f, f) = +oo for f € H \ {0}.

If Ag is lower semibounded, then © is lower semibounded too. The converse is not true in general.
In order to state corresponding result we introduce the following definition.

We shall say that M(-) tends uniformly to —oo as x - —oo if for anya > 0 there exists x, < 0 such
that M(x,) < —a. l4. In this case we write M(x) =3 —o0 as X —» —oo,

Proposition(5.2.11) [176]: (See [64]). Suppose that A is a non-negative symmetric operator on $
and IT1 = {#,T,,I}} is a boundary triplet for A* such that A, = Ag. Let M be the corresponding
Weyl function. Then the two assertions:

(i) a linear relation © € Gy () is semibounded below.

(i) a self-adjoint extension Ag is semibounded below.

are equivalent if and only if M(x) = —oo for x —» —oo.

Recall that the order relation for lower semibounded self-adjoint operators T,, T, is defined by

T, < Ty ifdom(tr,) © dom(tr,) and tr, [ul > tr [ul, u e dom(tr,), (90)

where tr is the quadratic form associated with T;.
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If T is a self-adjoint operator with spectral measure Erput,_(T) := dimran(Er(—o,0)). For a
self-adjoint relation © we sety_(0) :=_ (G)Op), where ©,, is the operator part of ©. For a
quadratic form t we denote byk_(t) the number of negative squares of t (cf. [155]).
Proposition(5.2.12) [176]:(See [64]). Suppose A is a densely defined non-negative symmetric
operator on $ and IT1 = {#, I\, I, } is a boundary triplet for A* such that A, = Ag. Let M be the Weyl
function of this boundary triplet and let © be a self-adjoint relation on . Then:
(i) The self-adjoint extension Ag is non-negative if and only if ® > M(0),
(i) 1f Ag is lower semibounded and dom(te) < dom(tyg)), then k_(Ag) = K_(te — tm(o))- I,
in addition, M(0) € (%), then k_(Ag) = k_(® — M(0)).
In what follows we will denote.

M}, (2) :== (M(2)h,h), ze C, and M,(x+i0) = I;[Q My (x +iy),h € H.

Since Im(My(2)) > 0,z € C,, the limit My, (x + i0) exists and is finite for a.e. x € R. We put
Q.c(Mp) == {x € R:0 < ImM,(x) < +oo}.

We also set dy(x) := rank (Im(M(x + iO))) < oo provided that the weak limit M(x + i0) == w —

limy,o M(x + iy) exists.

Proposition(5.2.13) [176]: (See [133]). Let A be a simple densely defined closed symmetric

operator on a separable Hilbert space $ and let IT1 = {H, T, I';} be a boundary triplet for A* with

Weyl function M. Assume that {h, }i=;,1 < N < oo, is a total set in . Recall that A, is the self-

adjoint operator defined byA, = A* I ker(T).

(i A, has no point spectrum in the interval (a, b) if and only if I;[E‘ yM,, (x +iy) = O for all

x € (a,b)andk € {1,2...,N}.
(i) A, has no singular continuous spectrum in the interval (a, b) if the set (a,b) \ Qac(th) is
countable for each k € {1,2, ..., N}.
To state the next proposition we need the concept of the ac-closure cl,.(8) of a Borel subset § ¢ R
introduced independently in [133] and [136]. We refer to [136, 158] for the definition of this notion
as well as for its basic properties.
Proposition(5.2.14) [176]: (See [157, 158]). Retain the assumptions of Proposition (5.2.13) Let B
be a self adjoint operator on 7, Ag = A" I ker(T'; — BIy), and Mg(2) = (B — M(z))_l.
(i) If the limit M(x +i0) := w —log,,o M(x + iy) exists ae. on R, then oc,.(A,) =

Clyc (supp(dM(x))).
(i) For any Borel subset D c R the ac-parts AoEZ° (D) and AgEZS (D) of the operators A E, (D)
and AgE,, (D) are unitarily equivalent if and only if dy(x) = dy,(x) a.e. on D.
Throughout we fix a sequence X = {x, }3° of points x,, € R3 satisfying.
d.(X) = inf ¢j|xk —x;| >0,

KkjEN,k
denote byH the restriction of —A given by (41), and set.
elvz|x — x .
9z (X) = % and e;,(x) =eV?x Xl 7€\ [0,+w),jEC (91)
j

Clearly, @; = @; 1 and e; = €;_,. Recall from Lemma (5.1.33) that T, is the bounded operator on
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12(N) defined by the matrix 73 = (2‘e"xi‘xk|)j'ke.
The following lemma is a special case of Example 14.3 in [166]
Lemma(5.2.15) [176]: Let A be densely defined closed symmetric operator on . Suppose that A is
a self-adjoint extension of A on $ and —€ p(A). Then:
(i) dom(A*) =domA
+ker(A + 1) + (A+1)9_ A" (fA +f,+ (A + I)_lfl)

= Afy — T, + AR+ 1)1,
where f, € dom(A) and f,, f; € N_; = ker(A* + I).
(i)  Definition 2’ =R _, and T} (fA +f, + (A+ |)‘1f1) =f; for j = 0,1. Then 1 = {#,T,, I}
form a boundary triplet for A*.
Proof. Assertion (i) is well known in extension theory (see e.g. [166], formula (14.17), so we prove
only assertion (ii). Let f=f,+f,+ (1+ Z‘\)_lf1 and g=ga+go+(1+ 7‘\)_191 , where
f0,1,00,01 € Jt_4. Then
(Af,g) — (f,A"g)
= (:‘\(' + 'K\)_lfla go) — (fo, 1 + A™1)g,) + (:‘\(' + 'K\)_lfb (1 + 'K\)_191>

— (o AL+ B) "g0) + (1 + B) 1, g0) — (1 + B) ', A(1+ A) gp)

= - (fo(l + 'K\)(l + 'K\)_191> + ((' + K)(' + 'K\)_lfla Jo) = —{fo, 91) 5 + (f1, Go) g
= (T1, To@) g — (Tof, T109) 47 (92)
The surjectivity of the mapping (I'3f, I';) is obvious.
Next we apply Lemma (5.2.15) to the minimal Schrédinger operator A = H.
Proposition(5.2.16) [176]: Suppose H is the minimal Schrodinger operator defined by (41) and
d,(X)>0. Let T, be the bounded operator on I[?(N) defined by the matrix 7;:=

(2‘1e‘|xi‘xk|). e’ Then
)

(1 H is a closed symmetric operator with deficiency indices (o, ). The defect subspace 9t_; =
ker(H* + 1) is given by

N_, = {Z oy {c), € IZ(N)}. (93)

j=1
(i)  dom(H*) is the direct sum of vector spaces domH, 9t_; and (—A + I)"1%_,, that is,
dom(H*) = {f = fH + fO + (_A + I)_lfl: fH E domH,fo,f1 E m_l}

j=1

= {f = fir+ > (0,0 + 56y ) i € domH,§g o= [5y]. 5 = {55} € IZ(N)},<94)

H'f = —Afy — fo + (A) (A + )71, = —fyy + Z (%005 + 55 (0 — ©72)). (95)
=1
The triplet IT = {7, T,, T} }, where
H = 12(N), rf=%¢, Lf=T%, fedom(H*). (96)
is a boundary triplet for H*.
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Proof. (i) By the Sobolev embedding theorem, f — f(xj) is a continuous linear functional on
W?2(R?) (see [159]). Therefore, dom(H) = W??(R*) I N2, ker (SX].) is closed in the graph
norm of —A, so the operator H is closed. Since —A is self-adjoint, H is symmetric.

Since d,(X) > 0 by assumption. Theorem (3.1.34) applies and shows that {cpj}io is a Riesz basis of

the Hilbert space 9t_,. In particular, n,(H) = oo.

(i1) All assertions of (ii) follow from (i) and Lemma (5.2.15) (i), applied to the self-adjoint operator

A= —A on L*(R?). For the formula of H*f we recall that e;/2 = (=A +1)~'¢; and therefore,

H*e; = —A(=A+1)"1o; = @; — &/2.

(iii) From (45) it follows that (¢;, @y ) = 27 *e M7l j.e., the Gram matrix of E = {cp]-}jEN is 7. Th

defines the bounded operator 7; on 12(N) with bounded inverse. Hence T, and T, are well defined

and the map (T, ;) are well defined and the map (T, [y ): dom(A*) > H@H is surejctive.

Next we verify the Green formula. Let f,g € dom(H*). By (93), these vectors are of the form
f=fy+fo+(-A+1)"M, g=gu+go+(-A+D"g;

with fy, gy € domHand f,,f, € 9t_, f,,f;, 00,9, can be written as

fo:ZEOjCPj, f1:ZE1jCPj, go:Znol-cpj, 91=Zno]-¢>j-
=1 j=1 j=1 =1

where {on}jEN,{Elj}jEN{an}jEN,{nlj}jEN € I12(N). Using the Green identity for the boundary triplet

I’ = (H',T,T;) in Lemma (5.2.15), applied to A = Hand A = —A, we derive the identity.
(H*f,0) — (f, H*g) = (T{f,T30) — (TG 10 = (Fy, 9odn_, — (Fo,Ox)o,
= Z (Euﬁ - Eo]'m)(ﬂpj, Px)
jk=1

[0¢]

= Z ((T1§1)kn0k - Eok(Tml)k) = (T8, 10) — (81, TiMo) = (Tif, To0)se
k=1
— (TofT19)s¢,
which complete the proof.
However, we prefer to work with another boundary triple. For this purpose we define

= Ixx=xl

e ]

T =5+ ) § ol Erm. @)
jEN £k

It follows from the assumption d,(X) > 0 and the fact that the matrix (2-"ePs™l), | = defines a

[k — X;]

bounded operator T, on 12(N) be Lemma (3.1.33), that T, is a bounded self-adjoint operator on
12(N).

Next we slightly modify the boundary triplet TI{#, T, T} } and express the trace mappings T in
terms of the “boundary values”. We abbreviate

ei\/zlxl
G =T X*O (98)
0, X =0,

Proposition(5.2.17) [176]: Let H be the Schrodinger operator defined by (41). Suppose that
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d,(X) > 0.
(i) The triplet TI{#, Ty, I'}}, where H = I2(N),

ot im 10— xl} = {0,

1
ryf{lim 160 — glx—xid ™ (99)
X—XKk 1
is a boundary triplet for H*.
(i)  The deficiency subspace 9t, = N, (H) is N, = { 2 G {c} € IZ(N)} z€ C\R.
(iii)  The gamma field y(-) of the triplet I1{7(, [, [, } is given by

YD) =) e ()] eFM).zeC\[0,+). (100)
(iv) The correspondtr?gl Weyl function acts by
M@ {c; Dk = crivz + Z e‘l/;lx—k {c} € I>(N),ze N\ [0,+), (101)
that is, the operator M(Z;E;\; given by the matrix.
M(2) = (iﬁajk + G5 (% — xk)) e (102)

Proof. (i) Since T, = T € [H] and II is boundary triplet for H* by Proposition (5.2.16) (iii), so is
the triplet " = {H, Ty, I|}, where
= I2(N), Iy =T, and Ty =T, + T, (103)
It therefore suffices to show that I} = F1 j=0.1.
Let f € domH*. By Proposition (5.2.16) (ii), f is of the form f=fy + f, + (—A + 1)71f;, where
fy € dom(H),fy = Xien &35 Then (A + )71, = 271 38556
Fix k € N. Since the series f, = Xen §o;@; converges uniformly on compact subsets of R3 \ X and
fy € W22(R3) is continuous and fy(x;) = 0 by (41), we get
o = )!Lr}rtk fFOOIX = Xl = Eoie = (Fof), = (gD
This proves the first formula of (99). the second formula is derived by
)!LTk(f(X) — ok X — Xl ™)

[0¢]

e|xx]|_1 e|xx]
= lim | gy ——— Zzol rTREEDI Tl Rt

X—Xg

j=1

[k —

where T, is defined by (97), and T1 IS mtroduced in Proposition (5.2.16).
(i) follows at once from Corollary(5.1.36).
(iii) Clearly, lim ((pkz(x) — @r(X))Ix — x| = 0. Therefore, by (99), To(@r, — @x) =0 and so

had = |xk—xjl
Y g+ 2 Zzle 51 = (T )i+ (TG = (TP
j2k

Topkz = Togk = €k = {SJk} is the standard orthonormal basis of 12(N). Hence, by (85) combined
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with (ii), the gamma field is of the form given in (100).
(iv) Next we prove the formula for the Weyl function. Since M is linear and bounded, it suffices to
prove this formula for the vectors e, € N. The function ¢,;, € dom(H*)f, , ¥en &;(2) ;. Then,
by (99) and (91),
£i(@) = lim @, () |x—x;| =8, JEN, ie,  fo, () =Ix—x|"te =l (104)
X—>Xj

so f, , does not depend on z. Since &y (z) = 0 for k # I, (99) and (91) yield.

elVz|x—x|

(F1(P1,Z)k = xli—g(]k((Pl,z - EOle - Xkl_l) = )(ILTk Pz (X) - m

Similarly, using that £,,(z) = 1 if follows from (99) and (91) that (I;¢,,z), = ivz. Inserting these
expressions into (85) with account of (100) we arrive at the formula (101) for the Wey! function.
Proposition (5.2.18) [176]: Let IT1 = {# T, I';} be the boundary triplets for H* defined in
Proposition (5.2.17) (see (99)). Let T, be defined by (97) and T, = 2‘1(e‘|xi‘xk|)j'kEN. Then:

, k=+1kl€eN

(1 The set of self-adjoint realization H € Exty is parameterized by the set of linear relations © =
0* € C(H) as follows: Hg = H* I dom(Hg), where

[00)

—1x—xj]
dom(He) = {f =fu+ 2 <on ﬁ + Elje_lx_X”) Ty € dom(H). (8, To§o + T181) € @} (105)
j

j=1
Moreover, we have ® = 0,,00,, where 0, is the graph of an operator B = B* in },, := dom(0)
and O, is the multi-valued part of ©, and # = HgH .., Where H,, := mul(®) and
0 = {0, Ho} = {{0, T& 8 L T8 8 € 7'[0}- (106)
Opp = {{EO’TOEO + T8} & € Hy, & = T H(Bg, — TOEO)}- (107)
In particular, H = Hg is disjoint with H, if and only if dom(@) = #12(N). In this case © = @, is
the graph of B, so that Hg = H* I (ker(T'; — BI,)).
(i) LetzeC\R,.Thenz € o,(He) ifand only if 0 € o, (@) — (iz8y + 6 ﬁ(xl));l).

The corresponding eienfunctions s, have the form

v, = Z glx — x| eVl where (%) € ker(eM(2)) < I2(N). (108)
j=1
(i)~ The resolvent of the extension Ag x:= Hg admits the integral representation.
((—Lex — z)_lf(x) = (x) f Tox (X, y; 2) f(y)dy, z € p(—Aex), (109)
]Rl
with kernel Tg x(-,, ; ) defined by
( ) ei\/E|x—y| ( )eiﬁly—XjI ei\/E|X—Xk| ( )
Tox(XY; Z :—+Z(§)- z . . 110
O by T L Ty =l T

where (0x(z));en is the matrix representation of the operator (0 — M(z))~* on I>(N).

Proof. (i) Formula (105) is immediate from Proposition (5.2.6), formula (83).

Both formulas (106) and (107) are proved by direct computations. We show that (106) and (107)
imply the self-adjointness of O; the proof of the converse implication is similar. Indeed, it follows,
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(106) and (107) that (T,&7,&,) = 0= (&, T,") and

(T181,80) = (B&o — To&0, &0 — To8o) = (80, T1E1). (111)
Hence we have (T;&,,&,) = (§,,T,&,) for all (&, &) € 0. It is easily checked that the latter
condition is equivalent to the self-adonintness of the relation ©.
(if) The symmetric operator H is in general not simple. It admits a direct sum decomposition H =
He@ H’ where H is a simple symmetric operator and H' is self-adjoint. Define T = {#(, [, T},
where Tj:Tj I dom(H*),j € {0,1}. Clearly, TT is a boundary triplet for H* and the corresponding
Wely function M(-) coincides with the Weyl function M(-) of I1. Further, any proper extension H =
He of H admits a decomposition Hg = Hg@H'. Being a part of H,, the operator H’ is non-
negative. Therefore, for z € C\ R,, we have z € ,(He) is and only if z € 6,(Hg). Thus, it
suffices to prove the assertion for extension Hg of the simple symmetric operator H. But then the
statement follows from Proposition (5.2.8) and 93 (ii) and formula (100).

(iii) Noting that ivZ = 1z it follows from (91) that (p]- ; = @,5. Therefore, (100) implies that

Oo iVz|x—xg|
y*(Z)f:Z f 0000 dx | ey = f 00— ey, (112)
]R3

] [X — X
where e = {Sjk};is the standard basis of 12(N).

Inserting (112) and (100) into the Krein-type formula (86) and applying the formula (43) for the
resolvent of the free Hamiltonian —A, we obtain

ivz|x-y] - .
(Box =200 = | o)y + [0 =M@) ] (F.01)1.00.
R3 ik '

Clearly, the latter is equivalent to the representations (109) — (110).

Next we turn to non-negative or lower semibounded self-adjoint extensions of H. For this we need

the following technical result.

Lemma(5.2.19) [176]:Retain the assumptions of Proposition (5.2.17) and let TI{H T}, I';} be the

boundary triplet for H* defined therein. Then;

(i) There exists a lower semibounded self-adjoint operator M(0) on # = I?(N) which is the
limit of M(—x) in the strong resolvent convergence as x — +0.

(i) The quadratic from tyy of M(0) is given by

1
tm(o)[E] = T
A0 P X

(iif)  The operator M(0) = M(0)* associated with the form ty oy is uniquely determined by the
following conditionS' dom(M(0)) = dom(tyg)) and

(M(0)g ) = o o8 = {§} edom(M(0)), n={n}e€ (tme) (@14

I “KI>0
If, in addition, Yy [X; — x| ™2 < oo for everyk € N, then e, € dom(M(0)),k € N, where e, =

= 1 _
§& < o0, dom(tm(o)) = {E = {g} e P(N): Z —k|E]Ek < 00} (113)

li—k|>0 |

{Sjk}; is the standard orthonormal basis of 12(N), and the matrix.
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Xie = %5 + 8y

1-84
M'(0) = (—) : (115)
jk=1

define a (minimal) closed symmetric operator M’(0) on I2(N). Moreover,

2
Z 1% — Xl Tk

keN

dom(M’(0)") = {Ej}EIZ(N):Z <w}. (116)

jEN

The operator M’(0) is semibounded from below and its Friedrichs extension M’(0) coincides with
M(0), that is, M’(0)r = M(0).

Proof. (i) The assertion follows by combining Proposition (5.2.10) (i) and (5.2.17) (iv) (cf. formulas
(102) and (98)).

(i) By Proposition (5.2.10) (i).

two & = IMM(-088 . §€ dom(tu(y) = {n:limM(-Dn.m) <oof.  (117)

Let us denote for the moment the form defined in (113) byt, = ty(g).

Note that the function f(t) = (1 —et)/t = f01 e~Stds is absolutely monotone f € M[0, o). Hence
f € ®5. This fact together with (102) and (113) yields
— e tx—xxl
to[€] — (M(=1)§,8) = —— 07
Mo IX; — Xl
j1>0
Thus, for any€ € dom(t,) the Itiw(M(—t)E, £) is finite and by (117), dom(ty) = dom(tyyo))-

Now we prove that tyo)[€] = t,[€] for all § € dom(t,). For finite vectors this follows at once from
(118) and (117). fix § € dom(t,). Given € > O if follows from (113) and (117) that there exists N €

N such that the finite vector &N := {Ej}T satisfies.

|to[8] = to[E™]] < & and [tuo)[8] — tmoy [E™]| < &.
Then |to[€] — tmoy[E]| < 2. Since & > 0 was arbitrary, this implies that ty oy [€] = t, [£].
The equalitydomt, = dom(tyo)) is obvious.
(iii) follows from (ii) and the first form representation theorem (cf. [121]. Theorem 6.2.1]).
(iv) By the assumption Zjcy|X; — Xg| 7% < com we have e, € dom(M(0)). Now [120, Theorem
56.4] gives the first assertion, while the second follows from [120, Theorem 56, 2].
(v) Define a quadratic from t; byt [€] := (M’(0)% € € dom(ty)) = dom(M’(0)). Clearly, the finite
vectors are dense in dom(tyyg)) with respect to the norm [§]3 = ty o) [€] + CIIE||* for sufficiently
large C > 0. Since t5[n] = ty(oy[nl, the closure of the form t; is tyg). Since M(0) = M(0)* and
dom(M(0)) c domty,), this complete the proof.
Theorem(5.2.20) [176]:Let II{#,T,,T;} be the boundary triplet for H* defined in Proposition
(5.2.17), M the corresponding Weyl function and let © be a self-adjoint relation on 7. Then:
(i) The operator H, := H* I'ker I, is the free Lapacian H, = —A,dom(H,) = dom(A) =
W22(R?). Moreover, H, is the Friedrichs extension Hg of H and dom(ty, ) = W*2(R3).
(i) The operator Hy oy is the Krein extension Hy of H and given by Hx = H* I dom(Hg),
where the domain dom(Hy) is the direct sum of dom(H) and the vector space

58 >0,6>0,¢ = {§} e dom(ty). (118)
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{Z(Eo]' @+ &;8): {8} = TTTM(0) — Tp)&o{E;} € dom(M(O))}.
=1

The extensions H, = Hy and Hy are disjoint. They are transversal if and only if the operator M(0)

is bounded on 12(N). For instance, this is true whenever condition (40) is satisfied.

(iii)  Hg =0 if and only if @ is semibounded below, dom(tg) < dom(tM(O)) and tg = ty(g). IN
particular, Hg = 0 when dom(®) c dom(M(0)) and ® — M(0) > O.

(iv)  Hg is lower semibounded if and only if © is. In this case the quadratic from ty is

dom(tye )W?(R) + {Z 5018 = {5} € (t) < P (N)}, (119)
j=1
—Ixj=xkl
tig [ + 1122 = f (VM + 90Ok + tolE] = ' AL (120)
R K70 1% T X
where f = g + ey §iop; € dom(ty, ) with g € W2(R®) and § = {Ej}jEN € dom(tg).
(v) In particular, for the quadratic form ty;, = tHM(O)We have
) -1 —
dom(ty,) = W2(R) +4 > G {5}, € PO, > I —xi| "gho<eoy.  (121)
j=1 |k—j|>0
X — e Ix=x«l
tuo [f] + NIflIf2 = flVg(X)IZdX+ llgllz= + o %%k (122)
. & |%j — Xl
R [k—j|>0

where f = g + Tien §i¢p; € dom (tHM(O)) with g € W12(RR3) and {Ej}jEN € dom(tw(o))-
(vi)  If © is lower semiboudned and dom(te) < dom(tw(gy), then k_(He) = K_(te_m(oy)- I, in
addition, dom (8) c dom(M(0)), then k_(© — M(0)).
(vii)  1f M(0) is bounded, i.e., Hy and Hg are transversal, we have the implication.
(© = M(0))Ep_(0)(=0,0) € &,(H) = HeEyy(—,0) € S, ($). (123)
For instance, implication (123) holds whenever condition (123) is satisfied
Proof. (i) The first statement is immediate from (94) and definition (99) of T}.
Further, integrating by part one gets

£, + [1F112 = (HEf) + [Ifl1% = f|\7f(x)|2dx+ 1112, =: [Ifl12,12.F € dom(H).  (124)
R3

Since dom(H) is dense in W12(R3), the closure t; of ty is defined by (124) on the domain
dom(ty) = W2(R®). Noting that dom(ty, ) = W2(R*) = dom(ty) we get the result.

We present another proof that is based on the Weyl function. it follows from (102) and (98) that
XIli[rgo(M(x)h, h) = —co for h € 7 \ {0}. It follows from (102) and (98)

(ii) By Proposition (5.2.10), dom(Hg) = ker(I'; — M(0)I,) since Hx and H, = Hg are disjoint.
Inserting the expressions from (99) and (103) for I'; and I, we get the result.

(iii) follows immediately from Proposition (5.2.12) (i).

129



(iv) Let &€ = {Ej}f € 12(N). Set |g] == {|Ej|}jEN. Then we derive from (102)

t|X] Xk|
[k—jl>0 X _Xk
ST (X) 2 et~ [g g | < d.(X) e~ (t-DAK) 2 “bg=xd g 8, |
j,kEN j,KEN
= d,(X)"te” VL2 (T[E], [Eegyy| < . 0O T || - [IE]1% ) (125)
For anys > 0,¢ < || T, |1d.(X)~1, we define t, = t,(g) by
ty = to(e) = 1 — In(ed. (X)II T [I7H). (126)
Then it follows from (125) that
1
MEPED 2 = (o +e) I8 t2t, (127)

and hence M(—I?) =3 —co. Now Proposition (5.2.11)yield the first assertion.
Next we prove the second statement. By [155, Theorem 1], the domain dom(tHG) is a direct sum
dom(ty,) = dom(ty) + y(—e?)dom(te), &> 0, (128)
Hence anyf € dom(ty,) can be written as f=g+ Y (—€?)h, where g € dom(ty) and he
dom(tg). Noting that dom(ty) = W12(R3), and combining (128) with (100) yields (119).
Further, by [155, Theorem 1] we have the equality
tue [fl + IIflI* = tylg] + llgll* + to[] — (M(=1)h,h),  f:=g+y(=1)h. (129)
Using Proposition (5.2.17) (iv) and the equalityty[g] = ng [Vg(x)|? dx we obtain (120).
(v) follows from (iv) with © = M(0).
(vi) By (i), Hy = Hg. Hence the assertion is immediate from Proposition (5.2.12) (ii).
(vii) Since HO is the Friedrichs extension of H, [155, Theorem 3] implies the assertion.
Remark(5.2.21) [176]:1t follows from (5.2.21) and (9) that the inclusion
dom(ty, ) = W22(R®) + y(—1)domty gy > W22(R®) + 9N_,domH"(130)
holds if and only if the operator M(0) is bounded. This fact illustrates the following general result:
for any non-negative operator A the inclusion dom(t,, ) © dom(A") holds if and only if Ak and Ag

are transversal (see [155, Remark 3]).

Remark(5.2.22) [176]: (i) The Krein-type formulas (109)-(110) were established in [122, Theorem
H®

X,a

3.1.1.1] for a special family of self-adjoint extensions by approximation method. In our

notation this family is parameterized by the set of self-adjoint diagonal matrices B, =
diag(®4,..., & ,...). Inthis case

HE) = H 1= fy + ZEOJ|

where B, = (b (@))er i (Ba — To). It is proved in [122] that HY», is self-adjoint. Other
parameterizations of the set of self-adjoint realizations are also contained in [149] and [161].
Another version of formulas (109)-(110) as well as an abstract Krein-like formula for resolvents
can also be found in [161].

(ithe case of finitely many point interactions (m < o) different descriptions of nonnegative
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realizations has been obtained in [127,144,138].
(iii) In connection with Theorem (5.2.20) (iv) we mention the sections [151] and [143] where
similar statements have been obtained for realizations of 1D Schrodinger operators (1) with
d,(X) = 0 and elliptic operators in exterior domains, respectively.
Theorem (5.2.23) [176]: Let d,(X) >0 and let TT ={H, Iy, [ 1} be the boundary triplet for H*
defined in Proposition (5.2.17). Suppose that O is a self-adjoint relation on 7. Then:
(1 For any p € (0, o] we have the following equivalence:
(Ho—=)'(Hy—D)1ec () @ (0©-i)tec,(H). (132)

(i)  If(@—1i)"" € &,(#), then the non-negative ac-part H3°Ey, (R,) of the operator Hg = Hg

is unitarily equivalent to the Laplacian —A.
(iii)  Suppose that (6 — i)~ € S, (#) and condition (40) is satisfied, i.e.,

1
C, = supZ T cw (133)
X = ]

Then the ac-part Hg® = Hg Ey, (R, ) of Hg is unitarily equivalent to the Laplacian —A.

Proof. (i) This assertion follows at once from Proposition (5.2.9).

(ii)By Proposition (5.2.20) (i) Ho, = —A. Therefore, by (132) with p = 1,[(He — i) '—A —i)7'] €

61(5). It remains to apply the Kato-Rosenblum theorem (see [148]).

(iv) (ii)Letz=t+iy€eC,,t>0and+z=a+ip.Clearly,a>0,8>0 and ivz =ia—B. It
follows from (98) that

e—BlX]‘—Xkl

Calby —xl) = = e ik 139

It follows from (102) combined with (133) and (134) that

|e(—B+ioc)|xj—xk|

1
IM(t +iy)ll < a2+ p2+eBsup ,|X X|:\/O(2"'BZ+C19_B
JEN fen PR

<Vt+1+1+C, y € [01]
Thus, for any fixed t > 0 the familyM(t + iy) is uniformly bounded for y € (0, 1], hence the weak
limit M(t + iy) == w — Ii[g M(t + iy) exist and
y

o = lim M(t+iy) =:M(t +i0) =:M(t) = iVtl + (G (|%; — Xi|)){x=1(135)

From (132), applied with p = o, we conclude that [(Hg —2)™! — (Hy — 2)71] € G, () since

(0 —1i)"1 € S, (H). To complete the proof it suffices to apply [122], Theorem 4.3] to Hg and

H, = —A.

We need the following auxiliary lemma which is of interest in itself.

Lemma (5.2.24) [1767]: Suppose that A is a simple symmetric operator in $ and {H, [ ,, I ;}is a

boundary triplet for A* with Weyl function M. Assume that for anyt € («, 3) the uniform limit
M(t) := M(t+i0) :== u — I;[Q M(t + iy)(136)

exists and 0 € p (M;(t)) fort € (@, B). Then the spectrum of any self-adjoint extension A of A on
$ inthe interval (o, B) is purely absolutely continuous, i.e.,

8s(A) n (o, B) = 0. (137)
131



The operator AEj(a,B) = A*°Ex(a,B) is unitarily equivalent to AyE, (a,B), where A, =
A*[ker T,.

Proof. Without loss of generality we can assume that the extensions A and A, are disjoint. Then, by
Proposition (5.2.6) (iii), there is a self-adjoint operator B on  such that A = Ag, where Ag = A* T
ker(T; — BI).

We set Mg(t + iy) = (B — M(t + iy))_1 and note that

Im(Mg(t + iy)) = (B — M(t + iy)) "t Im(< (t + iy))(B — M*(t + iy))_l,y € R,. (138)
Fix t € (a, B). By assumption we have 0 € p(M,(t)), i.e., there exists € = £(t) such that
(M, (t+iy)h,h) = €||h||?, hexH, (139)
It follows from (136) that there exists y, € R, such that
[IM;(t +iy) — M;(t)]| < /2 for € [0,y,). (140)

Combining (139) with (140) we get
(M;(t + iy)h,h) = (M;(t)h, h) + ((Ml(t +iy) — Ml(t))h, h) = 27¢[[h||?,y € [0,y,).
Hence, for anyh € dom(B),
I(M(t +iy) — B)hl| - [[h]| = K(M(t +iy) — B)h,h)| = Im((M(t + iy) — B)h,h) = (M;(t + iy)h, h)
> 2"¢||hlI?,y € 0,y,)
Since 0 € p(M(t + iy) — B), the latter inequality is equivalent to
I(M(t+iy) —B)7'|| < 2e7%, y €[0,y,). (141)
It follows that
I(B —M(t+iy))~" — (B— M)l
= [|(B = M(t+iy) " MCE + iy) — Mt +iy) - MOI(E - M®) |
< 4e?[IM(t+iy) —M@®Il,  y€[0,y,)
Hence
u— |yi[g(B —M(t+iy)) " = (B - M) (142)

Next, it is easily seen that [[z = {#, T&, T }, where TE=Br, — I, T= 0, isa
generalized boundary triplet for A, c A*,dom(A,) = dom(AO0) + dom(Ag) (see [64] for the
definitions). The corresponding Weyl function is Mg(-) = (B — M(:))~1. Therefore, combining
(142) with [131,Theorem 4.3], we get t4(Ag) N (a,B) = @, i.e., AEx (o, B) = A%°Ex (a, B).
Moreover, passing to the limit in (138) asy | 0, and using (136) and (142), we obtain
Im(Mg(t +i0)) = (B— M(t + i0))"IM, (t+i0)(B— M*(t+i0))"1 t (a, B). (143)

Since ker B — M*(t + i0))~* = {0}, we have

rank Im(Mg(t + 10))) = rank Im(M;(t + i0))),t € («,B).(144)
By Proposition (5.2.14) the operators AgE, (o, B) and AgE,  (a, B)are unitarily equivalent.
Now we are ready to prove the main result of this section.
Theorem (5.2.25) [176]: Let H be a self-adjoint extension of H. Suppose that

1
CZ = ﬁ (145)
1G5 P %
(i) Then the part HE;(C,, o) of H is absolutely continuous, i.e.,
os(H) n (Cy, ) = 0. (146)
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Moreover, HE;(C,, o0) is unitarily equivalent to the part —AE_, (C,, o0) of —A.

(if) Assume, in addition, that the conditions in Proposition (5.1.17) are satisfied, i.e., d,(X,) > 0
and D*(X,) = 0. Then H, := HEg (R,) is unitarily equivalent to H, = —A. In particular, H, is
purely absolutely continuous, H, = Hac .

Proof. As in the proof of Proposition (5.2.18) (ii) we decompose the symmetric operator H in a
direct sum H = H @ H’ of a simple symmetric operator H and a self-adjoint operator H’. Next we
definea boundary triplet T = {# I, ,[; } for H* by setting [ := jIdom(H"),j € {0,1},
and note that the corresponding Weyl function M(-) coincides with the Weyl function M(-) of II.
Further, any proper extension H = Hgof H admits a decomposition Hg = H, @ H’. In particular,
the operator H, = —A is decomposed as H, = H, @ H’, where H, = A* | ker([, ) = H; .
Being a part of H, the operator H" = (H')* is absolutely continuous and o(H") = o0,.(H") < R,,
because o(H,) = o,.(Hy) = R,. Therefore, it suffices to prove all assertions for self-adjoint
extensions Hgof the simple symmetric operator H .

(i) To prove (146) for any extension of H it suffices to verify the conditions of Lemma (5.2.24)
noting that M(:) = M(). First we prove that for anyt € R, the uniform limit

eiVtlxi—xj| 8k;
+i0) :=u—li +iy) ==|{i C+
M(t+i0) :=u I;mM(t iy) iVt 8k; e —x |+ ok, k tER, (147)
jk=1

exists, where the symbol T = T means that the operator 7 has the matrix T'with respect to the
standard basis of 12(N).
Indeed, it follows from (102) that for any¢, n € I2(N),

(M(t + iy) =MD, = (Jt + iy =)

fot|xj— x|

+ e Blx. — x| — 1) ——Eny. 148
Zj'kEN( | ] kl ) |X] _Xkl E]nk ( )

Fix € > 0. By to the assumption (145) there exists N = N(&) € N such that

! 1 ! 1
_—+ — < (e/2)%. 149
ijN ZkeN [X; — X |? ZkzN ZjEN IX; — X |2 (e/2) (149)

Then
S ON TEadrY Y g
j=N L=iken [Xj — Xl ik k=N £=jen [Xj — Xl ik
1/2 o 1/2 1/2
< (YwE) (Dme) (XY )
N ) N j=N &=IkeN |Xj — Xg|?
1/2 o 1/2 1/2
e Yme) (Ynr) (YUY )
N = ) k=N &=djeN |Xj — Xg|?
< 27%¢[lElyz - [nll2. (150)
On the other hand, since d,(X) > 0, we can find B, = Bo(N) such that
N
1 — e Blxj—xl
Z ( ) < ed.00 for B € (0. By). (151)
= |%j — Xl
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Combining (148) with (160) and (161) we get
KM(t + iy) =M@)g)] <& (1 + d.CO™DIEl2 - Inlli2,y € (0, o), (152)
that is,
IM(t + iy) —M®)| < e (1 + d.(X)"Dfory € (0,y,). (153)
Thus, the uniform limit (147) exists for anyt € R,.
Further, it follows from (147) that

[ee]

sin(\/t|xx — X;
(Ve = 1) ) tER,.  (154)
VE(|xic = x| + 8k;) ket

This relation combined with assumption (145) yields 0 € p (M;(t))for t > C,. The assertion
Ofollows now by applying Lemma (5.2.24) to the operator bH and the interval (C,, o).

(i) By (20) the function Q5(t) = Si?tis in ®;. Hence, by Proposition (5.1.17), the matrix function

Qs (tll-I) is stronglyX-positively definite for anyt > 0, ie., the matrix Qz(t||x; — Xi|Djken is
positively definite for any t > 0. By (154) we have

Mi(t): = M;(t + i0) = ViQ;(V||x; - Xk”)j,keNt € R,.
Hence MI(t) is positively definite for t € R,. It remains to apply Lemma (5.2.24) to the boundary
triplet IT and the interval R,.
Next we present another result on the ac-spectrum of self-adjoint extensions that is based on
Corollary(5.1.23).
Theorem (5.2.26) [176]: Let H be an arbitrary self-adjoint extension of H. Assume that

! 1
r!LrEL (?gl\? keN Xk — X; |> =0 (153)

and let C1 be defined by (133). Then:
(i) The part HE (C? , 00) of H is absolutely continuous, i.e.

o(H) n (C?,) = 9. (156)
Moreover, HEg (C?, o) is unitarily equivalent to the part —AE_, (C? , oo of—A.
(if) Assume, in addition, that the conditions of Proposition (5.1.17) are fulfilled, i.e. d,(X,) > 0
and D*(X,) = 0. Then HE; (R,) is unitarily equivalent to H, = —A. In particular, eH + is
purely absolutely continuous, i.e. H, = Hac.
Proof. (i) The proof is similar to that of Theorem (5.2.25) (i). Indeed, by assumption (155), for
anye > 0onecanfind N = N(g) € NN such that

! 1 ! 1
?gl\? keN [Xj — Xl " iﬁﬁ ZjEN [X; = X < &2 (157)

Starting with (157) instead of (149), we derive

! 1 ! 1
— |&iNk| T+ — [&Nk| < 271 : 158
Z]‘zN ZkEN |X]- - Xk| |Emk| ZkzN ZjEN |X]- - Xk| |E]nk| ”EHIZ ||T]||12( )

which implies (153). That the operator MI(-) has a bounded inverse if t > C2 follows from (154)

and Proposition (5.1.26). It remains to apply Lemma (5.2.24) to the operator H and the interval
(Cf, ).
(i) follows by arguing in a similar manner as in the proof of Theorem (5.2.25) (ii).

M (t) := M;(t +i0) = \/T(Skj +
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Chapter 6

General Inequalities and Negative Spectrum

In some cases the kernel decays exponentially as t — «This allows us to consider very slow
decaying potentials and obtain some results that are precise in the logarithmical scale. We devoted
to the spectral theory of the Schrodinger operator on the simplest fractal: Dyson’shierarchical
lattice. An explicit description of the spectrum, eigenfunctions, resolvent and parabolic kernelare
provided for the unperturbed operator, i.e., for the Dyson hierarchical Laplacian. Positive spectrum
is studied for the perturbations of the hierarchical Laplacian.

Section (6.1): Cwikel-Lieb-Rozenblum and Lieb-Thirring Inequalities
Lets us recall the classical estimate concerning the negative eigenvalues of the operator H = —A +
V(x) onL2(R%),d > 3. Let Ng(V) be the number of eigenvalues, E; of the operator H that are below
or equal to E < 0. In particular, N, (V) is the number of non-positive eigenvalues. Let

N(V) = #{E; < 0}
be the number of strictly negative eigenvalues of the operator H. Then the Cwikel-Lieb-Rozenblum
and Lieb-Thirring inequalities have the following form, respectively, (see [180], [191]-[194],[198],
[197]).

NQV) < Cy f WE()dx, (1)
Rd

DUIENY < Cay [ WETGOd 2)

iZEi<O Rd

Here W = |V_|,V_(x) = min(V(x),0),d = 3,g = 0. The inequality (1) can be considered as a
particular case of (2) with y = 0. Conversely, the inequality (2) can be easily derived from (1) (see
[197]). So, below we will mostly discuss the Cwikel-Lieb-Rozenblum inequality and its extensions,
although some new results concerning the Lieb-Thirring inequality will also be stated.

A review of different approaches to the proof of (1) can be found in [200]. We will remind only
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several results. E. Lieb [191], [192] and I. Daubechies [181] offered the following general form of
(1) and (2). Let H = Hy + V(x), and V(x) = V. (x) — V_(x), V4. = 0. Then

1t(t)
NV < (1)] dtf G(tW(x))u(dx). (3)
“n(t)

Here W = V_ = max(0,—V(x)), G is a continuous, convex, non-negative function which grows at
infinity not faster than a polynomial, and is such that z=1G(z) is integrable at zero (hence, G(0) =
0), and the integral (3) is finite. The function g(x),x= 0, is defined by

[0¢]

g(»x) = fooz‘lG(z)e‘Z*dz, i.e.,g(1) :f z71G(2)e2dz. (5)

d
Note that (t) = (2mt) "z in the classical case of H, = —A on LZ(Rd) and (1) follows from (3) in

this case by substitution t - 7 = tW(x) if G is such that fO z 1“G(z)dz < .

The inequalities above are meaningful only for those W for which integrals converge. They become
particularly transparent (see [192]) if G(z) =0 forz < 0,G(z) =z — o for z > 0,0 = 0. Then (3),
(4) take the form

NOY) < = f W) f n(0)dtp(dx), 6)
W(x)
ZlE-lv<iwv+1(x) [, nodtu(an @
AR O o
where ¢(c) = e~ "foozezsz.

1. Daubichies [181] used Lieb method to justify the estimates above for some pseudo-differential
operators in RY. She also mentioned there that the Lieb method works in a wider setting. A slightly
different approach based on the Trotter formula was used by G. Rozenblum and M. Solomyak
[199], [200]. They proved (3) for a wide class of operators in L2(X, u) where X is a measure space
with a o-finite measure p = p(dx). They also suggested the following form of (3). Assume that the
function mt(t) has different power asymptoticsast — 0 and t — oo. Let

Po(t,X,X) < c/t*?, t<h,  po(tx,x) <c/tY? t>h (8)
where h > 0 is arbitrary. The parameters o and 3 characterize the “local dimension” and the “global
dimension” of X, respectively. For example a = 3 = d in the classical case of the Laplacian H, =
—A in the Euclidean space X = RY. If H, = —A is the difference Laplacian on the lattice X = Z¢,
then a =0, =d. If X =S xRY is the product of n-dimensional sphere and RY, then a = n +
d,p=d.
If o, B > 2, inequality (3) implies (see [200]) that

N(V) < ) W2 (m(dx) + f W U@L, (9)

{W(x)<h~—1} {W(x)>h~1}
Note that the restriction § > 2 is essential here in the same way as the condition d > 2 in (1). We
will show that the assumption on o can be omitted, but the form of the estimate in (9) changes in
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this case.

We will consider operators which may have different power asymptotics of m(t) ast - 0ort - o
or exponential asymptotics as t — oo. The latter case will allow us to consider the potentials which
decay very slowly at infinity. This is particularly important in some applications, such as Anderson
model, where the borderline between operators with a finite and infinite number of eigenvalues is
defined by the decay of the perturbation in the logarithmic scale.

We will assume that X is a complete o-compact metric space with Borel o-algebra B(X) and a o-
finite measure p(dx). Let H, be a self-adjoint non-negative operator on L%(X,B,u) with the
following two properties:

(a) Operator —H,, is the generator of a semigroup P; acting on C(X). The kernel p,y(t,x,y) of P, is
continuous with respect to all the variables when t > 0 and satisfies the relations

ap
(3_'[0 = _HOpO!.t = O! pO(OaX! y) = (Sy(X), f pO(ta X, Y)ll(dY) = 1! (10)
X
I.e. po is a fundamental solution of the corresponding parabolic problem. We assume that p, (t, X, y)
IS symmetric, non-negative, and it defines a Markov process X, s = 0, on X with the transition
densityp, (t, X, y) with respect to the measure p.
Note that this assumption implies that p, (t, x, X) is strictly positive for all x € X, t > 0, since

Po(t 0 = [ P3G xIu(ey) > 0. (1D
X

(b) There exists a function mt(t) such that p,(t,x,x) < m(t) for t > 0 and all x € X. We also assume
that m(t) has at most power singularity at t — O and is integrable at infinity, i.e. there exists m such
that

(o8] tm
fo 1+ m T[(t)dt < 00, (12)
Note that condition (b) implies that
Po(tx,y) <m(t), Xxye€X (13)

In fact,

t t t 1 t 1
Poltxy) = | PG 1 DPul 2 YWD = (| PG DN Gz YD)

which implies (13) due to (11). Let us note that (12), (13) imply that the process X, is transient.

We decided to put an extra requirement on X to be a metric space in order to be able to assume that
po is continuous and use a standard version of the Kac-Feynman formula. This makes all the
arguments more transparent. In fact, X is a metric space in all examples below. However, all the
arguments can be modified to be applicable to the case when X is a measure space by using L2-
theory of Markov processes based on the Dirichlet forms.

Many examples of operators which satisfy conditions (a) and (b) will be given later. At this point
we would like to mention only a couple of examples. First, note that self-adjoint uniformly elliptic
operators of second order satisfy conditions (a) and (b). Condition (b) holds with mt(t) = Ct=%2 due
to Aronson inequality.

Another wide class of operators with conditions (a) and (b) consists of operators which satisfy
condition (a) and are invariant with respect to transformations from a rich enough subgroup T of the

group of isometries of X. The subgroup I" has to be transitive, i.e., for some reference point x, € X
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and each x € X there exists an element g, € I' for which g4(X,) =x. Then py(t,x,x) =
Po(t, %o, Xo) = m(t). The simplest example of such an operator is given byH, =—A on
L2(RY, B(RY),dx). The group T in this case is the group of translations or the group of all Euclidean
transformations (translations and rotations). Another example is given byX = Z9 being a lattice and
—H, a difference Laplacian. Other examples will be given later.

(c) Our next assumption mostly concerns the potential. We need to know that the perturbed operator
H =H, + V(x) is well defined and has pure discrete spectrum on the negative semiaxis. For this
purpose it is enough to assume that the operator V (x)(H, — E)~! is compact for some E > 0. This
assumption can be weakened. If the domain of H, contains a dense in L2(X,B, ) set of bounded
compactly supported functions, then it is enough to assume that V_(x)(H, — E)~! is compact for
some E > 0 and the positive part of the potential is locally integrable (see [177]).

Typically (in particular, in all the examples below) H, is an elliptic operator, the kernel of the
resolvent (H, — E)~? has singularity only at x =y, this singularity is weak, and the assumptions (c)
holds if the potential has an appropriate behavior at infinity. Therefore we do not need to discuss the
validity of this assumption in the examples below.

Remark (6.1.1) [202]:Note that (16) differs from (3) only by inclusion of the dimension of the null
space of the operator H into the left-hand side of (16). This difference is not very essential, and the
first goal of this part of the section is to give an alternative proof of (3) suitable for readers with a
background in probability theory.

Remark (6.1.2) [202]: If G(z) =0 for z < 06,G(z) =z — o for z> 0,0 = 0, then (16), (17) take
the form

1 (oe]

No(V) < =5 fx W(x) fw(zx)n(t)dtu(dx), (14)
1 1 o

;lEilvs@ fx WY+ (x) fﬁn(t)dtu(dX), (15)

where c(o) = e~ ° f0°° ze”* ;2. Some applications of these inequalities will be given below.

z+o

Remark (6.1.3) [202]: Inequalities (16), (17) are valid with m(t) moved under sign of the interior
integrals and replaced byp, (t, X, x). For example, (16) holds in the following form

1 “1
No(V) < @fo ¥fx Po (t, X, X)G(tW(x)) u(dx)dt.

The same change can be made in (14), (15). A very minor change in the proof of the theorem is
needed in order to justify this remark. Namely, one needs only to omit the last line in (32).
Theorem (6.1.4) [202]: Let (X,B,u) be a complete o-compact metric space with the Borel o-
algebra B and a o-finite measure p on B.

Let H=H, + V(x), where H, is a self-adjoint, non-negative operator on L2(X, B, ), the potential
V=V(x) =V, —V_,V, =0, is real valued, and the assumptions (a)-(c) hold.

Then

1 °n()
No(V) < o5 f =Y fx GAW()u(dx)dt. (16)
and
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where W(x) = V_(x), and functions G and g are introduced above in (3) and (5).
Proof. Step 1. Since the eigenvalues E; depend monotonically on the potential V(x), without loss of
generality one can assume that V(x) = —W(x) < 0.
First (steps 1-6), we’ll prove inequality (16) for N(V) instead of No(V). Here we can assume that
V(X) € Ceom(X). Indeed, when N(V) is considered, inequality (16) with V(X) € C.,m (X) implies the
same inequality with anyV such that the integral in (16) converges (see [197]). Then (step 7), we’ll
show that inequality (16) for N(V) leads to the same inequality for N, (V). Finally (step 8), we will
remind the reader of standard arguments which allow us to derive (17) from (16).
Step 2. We denote byB and B,, the operators

B = Wl/Z(HO + ){2)_1W1/2, Bn — W1/2 (HO + K2+ nW)_1W1/2,W — W(X)
If N_,2(V) = #{E; < —x? < 0},x are eigenvalues of the operator B and n(», B) = #{k:x =X},
then the Birman-Schwinger principle implies

N_,2(V) =n(1,B). (18)

Thus, if F = F(x\),»= 0, is a non-negative strictly monotonically growing function, and {u,} is the
set of eigenvalues of the operator F(B), then

(V) < Z 1< () Z uk_F(l)TrF(B) (19)

kipr=F(1) kipr=F(1)
This inequality will be used with the function F of the form
[e'e] —z N
F() = f Ple)ertz, PO = c,l" (20)
0

The exponential polynomial P(e~%),z > 0, will be chosen later, but it will be a non-negative
function with zero of ordermatz = 0, i.e.

m

Ple®) <C 23>0, (21)

1+zm’
where m is defined in the condition (b). Since P(e™%) > 0, (20) implies that F is nonnegative and
monotonic, and therefore (19) holds.

From (20) it follows that

$ N
FOD = ) ear
n=0
and the obvious relation B, = B(1 + nB)~! implies that
N N
1 1
F(B) = Z CaBp = W2 Z cn(Ho + K2 + NW) LW,
n=0 n=0

For an arbitrary operator K, we denote its kernel byK(x,y). The kernel of the operator F(B) can be
expressed trough the fundamental solutions p = p,(t, X, y) of the parabolic problem

p; = (Ho +nW(x))p, t > 0,p(0,x,y) = 8,(x).
Namely,
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N

FE(XY) = Wit [ e cpy(txy)dtwi(). (22)

n=0
It will be shown below that the integral above converges uniformly in x and y when k = 0. Hence,
the kernel F(B)(x,y) is continuous. Since the operator F(B) is non-negative, from the last relation
and (19), after passing to the limit as x — 0, it follows that

N
1 (oe]
NOY) < 7755 fo fx W(x);cnpn(t,x,x)dtu(dx). (23)

Step 3. The Kac-Feynman formula allows us to write an”explicit” representation for the
Schrodinger semigroup et(-Ho-nW() ysing the Markov process X, associated to the unperturbed
operator H,y. Namely, the solution of the parabolic problem

Jdu

i —Hou — nW(X)u, t>0, u(0,x) = @(x) € C(X), (24)
can be written in the form

t
u(t,x) = Ege o WE)ds ().

Note that the finite-dimensional distributions of x; (for0 <t; <.-- <t,, I}, ... I}, € B(X)) are given
by the formula

Pe(Xe, € Ty, X, €Ty)

= f po(t1,X, X1)p0(t2 - tlaxl’ XZ) po(tn - tn—1,Xn—1Xn)H(dX1) u(dxn)'
r

1 I'n
If po(t,x,y) > 0, then one can define the conditional process (bridge) by = bX " € [0, t], which
starts at x and ends at y. Its finite-dimensional distributions are
Peoy(by, €Ty, ...,Dy, €Ty)

frl frn Po(ty, X, X1) ... Po(tn — th1,Xn—1,Xn)Po (t — t, Xy, YIu(dx,) ... u(dxy,)
pO(ta X, y)
In particular, the bridge bX~** s € [0,1], is defined, since p,(t, x,x) > 0 (see condition (a)).
Let p = p,(t,x,y) be the fundamental solution of the problem (24). Then p,(t,x,y) can be
expressed in terms of the bridge b, = bX77"s € [0, t]:

Pt X Y) = PoltX,y)Eye ™o W, (25)
One of the consequence of (25) is that
pn (t! X! y) S pO (t! X! y) (26)

Another consequence of (25) is the uniform convergence of the integral in (22) (and in (23)). In
fact, (21) implies that
N

Z ¢ e W(Bs)ds < ¢

n=0

Hence from (25) and (13) it follows that the integrand in (22) can be estimated from above

m

1+tm’

byCm(t) % Then the uniform convergence of the integral in (22) follows from (12).
Now (23) and (25) imply
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N
1 (” o o o
NV < — f f WP (t, X, X)Ex [Z cne ™o WIS (x)dt, by = B,
F(1)J, Jx o
Step 4. We would like to rewrite the last inequality in the form
N
1 (- R -
N(V) < — f f Po(t, X, X)Exx [W(b7) Z cne—nfot w(bs)ds1,(dx)dt (27)
F(1)J, K o
with an arbitraryT € [0, t]. For that purpose, it is enough to show that

| poltx 0B IW(B,)e S mEN ()
X

= [ poltx OWGIE . [eam B o). (28)
X
The validity of (28) can be justified using the Markov property of by and its symmetry
x>y, T

(reversibility in time). We fix 7 € (0,t). Let y = b,. We spilt by into two bridges b}, " ,u €
[0,77, and BY"*" v € [T, t]. The first bridge starts at x and ends at y, the second one starts at yand
goes back to x. Using these bridges, one can represent the left hand side above as

f f WP (T, % Y)Po(t = T2, %) — P(T, %, Y)Pam(t = Ty, )T pcly)
X X

- f W) IPo (LY. Y) — Pt y, y)1u(dy),
X

which coincides with the right hand side of (28). This proves (27).
Step 5. We take the average of both sides of (27) with respect to 77 € [0, t] and rewrite it in the form

N
L7 Po(txX) (R — (S mw(B)ds
NOY) < £y fo fx t EHZ):(Cm fo w(b,)dse Yu(dx)dt

_ 1 ® Po (L, X, X) u B £
‘@fo f — 1 Bex(UPE™)uld)dt, u= f w(bBs)ds,  (29)

where P is the polynomial defined in (20) and (23).
Let now P be such that
uP(e™) < G(u), (30)
where G is defined in the statement of Theorem (6.1.4) Then one can replace uP(e™) in (29)
byG(u). Then the Jensen inequality implies that

([ W(b.)ds = e [ tw(e.)yas < Low(B,))ds.

This allows us to rewrite (29) in the form

1 po(t,x,x)1 [t -
N(V) < @fo fx f¥f0 EX%XG(tW(bS))dSM(dX)dt (31)

It is essential that one can use the exact formula for the distribution above:
- S, X, Z t—s,z,x
Eox G(tW(B,)) = f 6(tw(zy) P 2P )
X

Po(t, X, X)
Form here and (31) it follows that

u(dz).

141



1 @1 (t
N(V) < —F(l)fo t—zfo dsfX fx G(tW(2)po(s, X, 2)po(t — s, z, x)u(dx)u(dz)dt
1 @1 (t
= @fo t—zfo dsfX n(dz)G(tW(2))p,(t,z,z)d
1 <1
-5 fo = fx (W (2))p, (.2, 2)p(dz)dt

1 [“n(t)
< @fo fo G(tW(2))u(dz)dt, (32)

where F(1) is defined in (20).

Step 6. Now we are going to specify the choice of the polynomial P which was used in the previous
steps. It must be non-negative and satisfy (12) and (30). Polynomial P will be determined by the
choice of the function G. Note that it is enough to prove (16) for functions G which are linear at
infinity. In fact, for arbitraryG, let Gy < G be a continuous function which coincides with G when
z < N and is linear when z > N. For example, if G is smooth, Gy can be obtained if the graph of G
for z > N is replaced by the tangent line through the point (N, G(N). Since Gy < G, the validity of
(16) for Gy implies (16) with the function G in the integrand and g(1) being replaced bygy(1).
Passing to the limit as N — oo in this inequality, one gets (16), since gn(1) = g(1) as N — co.
Similar arguments allow us to assume that G = 0 in a neighborhood of the origin (The validity of
(16) for G.(z) = G(z — €) < G(z) implies (16)). Now consider G%(z) = max(G(z),y(g,z)) where
y(g,2)) =zm*1 z < g y(g,2) = (M+1)(z — &) + £tz > ¢, with m defined in condition (b).
We will show later that the right-hand side of (16) is finite for G = G#. Thus if (16) is proved for
G = G&, then passing to the limit as € — 0 one gets (16) for G. Hence we can assume that G = az at
infinity and G = z™** in a neighborhood of the origin. Note that a # 0, since G is convex.

A special approximation of the function G by exponential polynomials will be used. Consider

function H(z) = %

z — oo, Hence there is an exponential polynomial P.(e~%) which approximates H(z) from below,
Le.

z > 0. It is continuous, nonnegative and has positive limits as z — 0 and

[H(@Z) — pe(e™®)] <&,0 <p.(e™®) <2p.(e7?), z>0.
In order to find pg, one can change the variable t = e™* and reduce the problem to the standard
Weierstrass theorem on the interval (0,1). If P.(e7%) = (1 — e %)™ P.(e"?) then

[z71G(z) — P.(e7™®)| < &,0< P(e7?) <z71G(2),z>0; P.(e72) < Cz™, z - 0. (33)
We will choose polynomial P in (20) and (23) to be equal to P;. The last two of relations (33) show
that P = P, satisfies all the properties used to obtain (32). Function F in (32) is defined by (20) with
P = P, and therefore F(1) = F.(1) depends on &. From the first relation of (33) it follows that
F.(1) » g(1) as € » 0. Thus passing to the limit in (32) as € > 0 we complete the proof of
inequality (16) for N(V).
Step 7. Now we are going to show that inequality (16) for N(V) implies the validity of this
inequality for Ny (V) under the assumption that integral (16) converges. We can assume that G is
linear at infinity and G(z) = z™*! in a neighborhood of the origin (see step 6). Then G(2tW(x)) <
CG(tW(x)), and therefore the convergence of the integral (16) implies the convergence of the same
integral with W replaced by2W.
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Let n be the dimension of the null space of the operator H. We need to show that n is finite and
N(V) + n does not exceed the right-hand side of (16).
Consider the operator
H. = H+eV(x) = H, + (1 +¢)V(x),e > 0.
The Dirichlet form of this operator

(e, &) = (Hb, ) + ¢ f VOISO 121(dx)
X

is strictly negative on the space T\{0}, where the (N(V) + n)-dimensional space T is spanned by
the eigenfunctions of H with negative or zero eigenvalues. Indeed, both terms on the right in the
formula above are non positive on T. If ¢ € T does not belong to the null space N of H, then the
first term is strictly negative. If ¢ € N\{0}, then the second term is strictly negative since otherwise
there exists ¢ = ¢, € N\ {0} such that V¢, = 0. Then ¢, belongs to the null space of the
unperturbed operator H,. This contradicts the assumption (b) on the decay (integrability) of the heat
kernel po(t, %, X) as t — oo (since py = |de(X)]?).

The negativity of the Dirichlet form on T\{0} implies that operator H has at least N(V) + n strictly
negative eigenvalues. Hence from inequality (16) for strictly negative eigenvalues of the operator
H, it follows that

1 [“n()
N(V) +n < @fo fo G(t(1 + e)W(x))u(dx)dt. (34)

One may assume that the double integral in (16) converges. It was shown above that this
assumption leads to the convergence of the integral in (34) when € = 1. Then one can pass to the
limit as € — 0 in (34) and get

1 °n()
N(V) +n < @fo fo G(tW())u(dx)dt.

Hence (16) is proved
Step 8. In order to prove (17), we note that

DR =y [ ENg(v)dE

iZEi<O 0

<vy f EV-IN (—(W — E), )dE
0

[0¢]

<Y
— gD J,

oo w
=L [ ) [ [ ere(toweo - )@t
0 X 0

“ r(t
Ev-1 fo # fx G(HW(X) — E). ) p(dx)didE

- ﬁfoﬁf f uY~tWY (x)G(tW(x) (1 — u))dup(dx)dt.
0 X Yo

One can replace G(tW(x)(1 — u)) here byG(tW(x)), since G is monotonically increasing. This
immediately implies (17).
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Theorem (6.1.5) [202]: Let H = H, + V(x), where H, is a self-adjoint, non-negative operator on
L2(X, B, ), the potential V = V(x) is real valued, and the assumptions (a)-(c) hold.
If

B a

(t) < c/tz, t—- oo; m(t) < ctz, t-0 (35)
For some > 2 and a > 0, then

No(V) < C(N)[| WP Zu(dx) + | bw(x)max(*2/Dy(dx)], (36)

Xn Xy

where Xj; = {x:W(x) < h 1} X{ = {x W) >h"}b=1ifa#2b=In(1+W(X))ifa =2,
in some cases (a/2,1) can be replaced bya/2, as will be discussed in Section 3.
Proof. We write (14) in the form Ny(V) < I_ + I, where I+ correspond to integration in (14) over
X{ respectively.
Let x € X;, i.e., W < h™. Then the interior integral in (14) does not exceed

ch) f t-B/2dt = C(hyW(B/D1, 37)
w
Thus 1_ can be estimated by the first term in the right-hand side of (36). Similarly
h [ h o)
I, < C(h)f W(f +f Yyn(t)dt < C(h)f W(f t‘“/zdt+f t=P/2dt)dx,
X; = “h X; - h

which does not exceed the second term in the right-hand side of (36).

Theorem (6.1.6) [202]: Let H = H, + V(x), where H, is a self-adjoint, non-negative operator on
L2(X, B, w), the potential V = V(x) is real valued, and the assumptions (a)-(c) hold

If

() < ce™ t > o0} m(t) < c/tz, t—0 (38)
for some y > 0 and o > 0O, then for each A > 0O,
No(V) < C(h,A)[| e AW u(dx) + | bW()m™(/2Dp(dx)], (39)
Xp X5
where Xi,, Xi, b are the same as in the theorem above,

Proof. The proof is the same as that of the theorem above. One only needs to replace (37) by the
following estimate

c(h) L e~at’ dt
W

© a,T
= c(h)w-1! f e 2w dT

o

_a. 0.y © a, T
< c(h)w-tee 2W f e 2@ dT
o

< c(hyw-! f e 27 477e 2@,
0

and note that o can be chosen as large as we please.
1. Operators on lattices and groups. It is easy to see that Theorems 6.1.6 and 6.1.5 are not exact if
a < 2. We are going to illustrate this fact now and provide a better result for the case a« = 0 which
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occurs, for example, when operators on lattices and discrete groups are considered. An important
example with a = 1 will be discussed in next subsection (operators on quantum graphs).
Let X = {x} be a countable set and H, be a difference operator on L2(X) which is defined by

Ho)0) = ) aku(),  (40)

yeX
where

a(x,x) >0, a(x,y) = a(y,x) <0, Z a(x,y) =0
yeX
A typical example of H, is the negative difference Laplacian on the lattice X = Z9, i.e.,

HW)0) = —ab= > WK —w] xezd, (4)
yezd:ly—x|=1
We will assume that 0 < a(x,x) < ¢, < o. Then SpH, c [0, 2c,]. The operator —H, defines the
Markov chain x(s) on X with continuous time s > 0 which spends exponential time with parameter
a(x,x) at each point x € X and then jumps to a point y € X with probabilityr(x,y) =

a(xy)
a(xx) '

the parabolic problem

, 2yy=x (X, y) = 1. The transition matrix p(t, x,y) = P,(x, = y) is the fundamental solution of

d
a_i) + HOp = O! p(oax! y) = Sy(x)-

Obviously, p(t,x,x) < n(t) <1, and t(t) - 1 uniformly in x as t » 0. The asymptotic behavior of
1t(t) as t — oo depends on operator and can be more or less arbitrary.
Consider now the operator H = H, —m&,(x) with the potential supported on one point. The
negative spectrum of H contains at most one eigenvalue (due to rank one perturbation arguments),
and such an eigenvalue exists if m > c¢,. The latter follows from the variational principle, since

< Hydy,8, > -m<§,,6,> <c,—m<Q0.
However, Theorems 6.1.5 and 6.1.6 estimate the number of negative eigenvalues N(V) of the
operator H byCm. Similarly, if

and m; = c¢,, then N(V) =n, but Theorems 6.1.5 and 6.1.6 give only that N(V) < CY, m;. The
following statement provides a better result for the case under consideration than the theorems
above. The meaning of the statement below is that we replace max(a/2,1) =1 in (36), (39)
bya/2 = 0. Let us also mention that these theorems can not be strengthened in a similar way if 0 <
a < 2 (see Example 3).

Theorem (6.1.7) [202]: Let H = H, + V(x), where H, is defined in (40), and let assumptions of
Theorem 6.1.4 hold. Then for each h > 0,

No (V) < c(h)[n(h) + f “mv) Z GAW())dE], n(h) = #{x € X;'}.
xEXh

If, additionally, either (35) or (38) is valid for m(t) as t — oo, then for each A > 0,
B
Np (V) < C(h)[Z W)z +n(h)],  n(h) = #xeXi} (42)

x€Xy
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No (V) < C(h, A)[ Z e=AW™Y 4 n(h)], n(h) = #{x € X{},
x€Xy
respectively,
Remark (6.1.8) [202]: Estimate (42) for N(V) in the case X = Z4 can be found in [200].
Proof. In order to prove the first inequality, we split the potential V(x) = V;(X) + V,(x), where
V,(x) = V(x) for x € X, V,(x) = 0 for x € X;,. Now for each ¢ € (0,1),
No(V) < No(e7'Vy) + No((1 — &) 7'V;) = No(e71Vy) + n(h). (43)
It remains to apply Theorem 6.1.4 to the operator —A + &1V, and pass to the limit as € —» 1. The
next two inequalities follow from Theorems 6.1.5 and 6.1.6.
2. Operators on quantum graphs. We will consider a specific quantum graph I'Y, the so called
Avron-Exner-Last graph. Its vertices are the points of the lattice Z9, and the edges are all segments
of length one connecting neighboring vertices. Let s € [0,1] be the natural parameter on the edges
(distance from one of the end points of the edge). Consider the space D of smooth functions ¢ on
edges of I'? with the following (Kirchoff’s) boundary conditions at vertices: at each vertex ¢ is
continuous and

d
> ei=0 (44)
i=1

where «; are the derivatives along the adjoint edges in the direction out of the vertex. The operator
2
H, acts on functions ¢ € D as —;?. The closure of this operator in L2(I'?) is a self-adjoint operator

with the spectrum [0, o) (see [179])
Theorem 6.1.9 Let d > 3 and V be constant on each edge e; of the graph: V(x) = —v; < 0,x € ¢;.
Then
No (V) < c(h)( Z v 4 Z ).
izvish~1 ivi>h—1
Proof. Put V(x) = V;(x) + V,(x), where V;(x) = V(x) if [V(x)| > h™1,v;(x) =0 if [V(X)] < h™1.
Then (see 43))
No(V) < No(2V;) + No(2V,).
One can estimate N(V;) from above (below) by imposing the Neumann (Dirichlet) boundary
conditions at all vertices of I'. This leads to the estimates
‘/Z_Vi < Ny(V) < Z ‘/Z_Vi+ 1
> N s Hinsam Y W
irvi>h—1 B O( ) i:vi>h‘1( B ivi>h—1 \/_
which, together with Theorem 2.5 applied to N, (2V,), justifies the statement of the theorem
The same arguments allow one to get a more general result.
Theorem (6.1.10) [202]: Let d > 3. Let I'Y be the set of edges, e; of the graph T'Y where W <
h=1,T9 be the complementary set of edges, and
SUPxee; W(X) <
Minyee, W(x) ~

ko = ko(h),x € T,

where W = V_. Then
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No(V) < C(h,ko)(f W(x)2dx +f v W(X) dx).
rd r¢

Example. The next example shows that there are singular potentials on I' for which max(a/2,1) in
(36) can not be replaced by any value less than one. Consider the potential V(x) = —AY ™, 6(x —
X;), where x; are middle points of some edges, and A > 4. One can easily modify the example by
considering &-sequences instead of 8-functions (in order to get a smooth potential.) Then

f We(x)dx = 0
.

for anyo < 1, while N(V) = m. In fact, consider the Sturm-Liouville problem on the interval [1 —
2/2,1/2]:

—y" —AS(X)y =xy,y(-1/2) =y(1/2) =0, A>4
It has (a unique) negative eigenvalue which is the root of the equation tanh(v/— x/2) = 2v/— X/A.
The corresponding eigenfunction is y = sinh[v/— > (Jx| + 1/2)]. The estimate N(V) > m follows
by imposing the Dirichlet boundary conditions on the vertices of I'd.
I. Discrete case. Consider the classical Anderson Hamiltonian Hy, = —A + V(X, w) on L2(Z9) with
random potential V(X, w). Here

MPGO = Y W) - 20000,
x":|x'—x|=1

We assume that random variables V(x, ). on the probability space (Q,F,P) have the Bernoulli
structure, i.e., they are iid. and P{V(:)=0}=p=> O,P{V(:))=1}=q=1—-p>0. The
spectrum of H, is equal to (see [178])

Sp(Hy) = Sp(—A)®1 =[0,4d + 1].
Let us stress that 0 € Sp(H,) due to the existence P-a.s. of arbitrarily large clearings in realizations
of V, i.e., there are balls B, = {x : |[x — x,| < r,} such that V(x) =0,x € B,, and r, - o as n -
oo (see the proof of the theorem below for details).
Let

H=H, —W(x), W(x) > 0.

The operator H has discrete random spectrum on (—oo, 0] with possible accumulation point at x=
0. Put Ng(—W) = #{>; < 0}. Obviously, Ny(—W) is random. Denote byE the expectation ofar.v.,
ie.

EN, = f NP (deo).
Q
Theorem (6.1.11) [202]:(a) Foreachh >0 andy < ﬁ,

ENo(=W) < ¢, (h)[#{x € Z&:W(x) = h™1}] +c,(h,Y) Z )

xW(x)<h~1

In particular, if W(x) < logilxl , |X| = oo, with some o > %, then ENy(—W) < o0,i.e,Ny(—W) <
oo almost surely.
(b) If
2
w > — < —
(x) TREE IX| >, and o<, (45)
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then No(—=W) = o a.s. (in particular, ENy(—=W) = o).

Proof. Since V = 0, the kernel p,(t,x,y) of the semigroup exp(—tH,) = exp(t(A — V)) can be
estimated by the kernel of exp(tA), i. e., by the transition probability of the random walk with
continuous time on Z4. The diagonal part of this kernel p,(t, X, X, ) is a stationary field on Z9. Due
to the Donsker-Varadhan estimate (see [182],[183]),

1 4
Epo (t, X, X, w) = Epy(t, X, X, ®) 2 exp(—cqtd+2), t - oo,

e,
4
logEpy ~ — cqta+z, t — oo,

On the rigorous level, the relations above must be understood as estimates from above and below,
and the upper estimate has the following form: for each § > 0,

d
Ep, < C(8) exp(—c4ta+z %), t— oo. (46)
Now the first part of the theorem is a consequence of Theorems 6.1.4 and 6.1.6 In fact, from
Remarks 2.3 and 2.4 and (46) it follows that

EN, (V) < Tlo) fx W(x) f  Epo(tx, %, w)dtu(d) < f W(x) f a7 g (),
W(x) W(x)
Then it only remains to repeat the arguments used to prove Theorem 6.1.6.
The proof of the second part is based on the following lemma which indicates the existence of large
clearings at the distances which are not too large. We denote byC(r) the cube in the lattice,
C(r) ={xez%|x|l<r,<i<d}
Let’s divide Z¢ into cubic layers L, = C(a*1)\C(a") with some constant a > 1 which will be

selected later. One can choose a set '™ = {z(“) € L,} in each layer L,, such that

1
|zi(“) ](n) > ond + 1, d(zi(n),aLn) > nd,

and
(Za)n(d—l)an+1

1

(2na)d
Let C(n'/4,i) be the cube C(n*9) with the center shifted to the point zi(n). Obviously, cubes
Cn1/d,; do not intersect each other, C(n'/4,i) c L, and |C(n'/4,i)| < c¢'n.

Consider the following event A, = {each cube C(n*/4,i) c L, contains at least one point where
V(x) = 1}. Obviously,

Ir™| >¢ >ca", n- oo,

|c(n1/d,i)|

!
1/di|F(“) nd g/ yn—g-c(@dpcHn

P(A,) = (1 —pl ) <eIr®lp < g-cac'p

We will choose a big enough, so that adpc' > 1. Then Y P(A,) < o, and the Borel-Cantelli lemma
implies that P-a.s. there exists ny(w) such that each layer L,,n > ny(w), contains at least one
empty cube C(n/4,i),i = i(n). Then from (45) it follows that
C
W) > —5—=¢g, xecC(n¥di), i=i(n).
na ®
One can easily show that the operator H = —A — ¢ in a cube C < Z4 with the Dirichlet boundary
condition atdC has at least one negative eigenvalue if |C|e%/2 is big enough. Thus the operator H in
C(n%4,i(n)) with the Dirichlet boundary condition has at least one eigenvalue if n is big enough,
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and therefore N(—W) = .
[I. Continuous case. Theorem 6.1.11 is also valid for Anderson operators in RY. Let Hy = —A +
V(x, w) on L2(RY) with the random potential

V(o) = ) elg,00.x € RN = (ny,....ny),

nezd
where Q, ={x €RE:n; <x; <x;<n;+1,i=12,..d} and g, are independent Bernoulli r.v.

with P{e, =0} =p,P{e, =1} =q=1—p. PutH=H, — W(x) = —A + V(X, ») — W(X).
Theorem (6.1.12) [202]: () If d = 3, then foreachh > 0 and y < %

1
ENo(—W) < ¢, (h) W(x)42dx + c,(h,y) e WY dx.
W(x)=h~1 W(x)<h™1

In particular, if W(x) < iw |x| — 0o, With some 0 < —then ENg(—W) < o0, i€,

No(—W) < o almost surely
(b) if W(x) > ——, |x| - o0, and o <2, then No(—=W) = oo a.s. (in particular, ENy(=W) = o).

"I I’

The proof of thls theorem is identical to the proof of Theorem 6.1.11 with the only difference that
now p,(t, 0, 0) is not bounded as t — 0, but py(t,0,0) < c¢/t%2,t - 0.
1. Lobachevsky plane (see [184], [196]). We will use the Poincare upper half plane model, where
X ={z =x+1iy:y > 0} and the (Riemannian) metric on X has the form

ds? = y~2(dx? + dy?). 47)
The geodesic lines of this metric are circular arcs perpendicular to the real axis (halfcircles whose
origin is on the real axis) and straight vertical lines ending on the real axis. The group of
transformations preserving ds? is SL(2,R), i.e. the group of real valued 2 x 2 matrices with the

determinant equal to one. For each A = [i 3] € SL(2,R), the action A(z) is defined by

az+b
A(z) = Srd
For each z, € X, there is a one-parameter stationary subgroup which consists of A such that Az, =
z,. The Laplace-Beltrami operator A’ (invariant with respect to SL(2,R)) is defined uniquely up to a
constant factor, and is equal to

2 62
I— \/2
A'=y*A=y (6x2 6y2)’ (48)
The operator —A’ is self-adjoint with respect to the Riemannian measure
n(dz) = y~2dxdy, (49)

and has absolutely continuous spectrum on [1/4,00). In order to find the number N'(V) of
eigenvalues of the operator —A’ + V(x) below 1/4, one can apply Theorem 6.1.4 to the operator

Hy = 2" =<1,

One needs to know constants a, § in order to apply Theorem 6.1.5. It is shown in [188] that the

fundamental solution for the parabolic equation u, = —A’u has the following asymptotic behavior
p(t,00)~c,/t,  t—0; p(t00)~c,e ¥*4/t3/2 t - oo.

Thus a =2, =3 for the operator H, = —A’ —il. A similar result for the Laplacian in the

Hyperbolic space of the dimension d > 3 can be found in [200].
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2. Markov processes with independent increments (homogeneous pseudo

differential operators). We will estimate N, (V) for shift invariant pseudo differential operators H,
associated with Markov processes with independent increments. Similar estimates were obtained in
[181] for pseudo differential operators under assumptions that the symbol f(p) of the operator is
monotone and non-negative, and the parabolic semigroup e~*Ho is positivity preserving. This class

includes important cases of f(p) = |p|*, « < 2 and f(p) = /p% + m2 — m. Note that necessary and
sufficient conditions of the positivity of p,(t, X, x) are given by Levy-Khinchin formula. We will
omit monotonicity condition. What is more important, the results will be expressed in terms of the
Levy measure responsible for the positivity of p,(t, X, x). This will allow us to consider variety
estimates with power and logarithmical decaying potentials.

Let H, be a pseudo-differential operator in X = RY of the form

Hou = F1aG)FU, (Fu)(k) = f

R
where the symbol ®(k) of the operator H, has the following form

u(x)e =R dx, u e S(RY),
d

d(k) = f (1 — cos(x, k))v(x)d. (50)
Rd

Here p(dx) = v(x)dx is an arbitrary measure (for simplicity we assumed that it has a density) such
that

f V(x)dx + f IXI2v()dx < oo. (51)
|x|>1

|x|]<1
Assumption (50) is needed (and is sufficient) to construct a Markov process with the generator L =
—H, (see below). However, we will impose an additional restriction on the measure p(dx)
assuming that the densityv(x) has the following power asymptotics at zero and at infinity
vO)~Ix|79472 x - 0,v(x)~|x|79475,x - oo,
with some p, 8 € (0,2). Note that assumption (51) holds in this case. To be more rigorous, we
assume that

v(x) = a(%)IXI‘d“’(l +0Ix[%),  x-0, (52)
v(x) = b(%)lxl-d-ﬁa +OIxI%), x>, (53)

where a, b, ¢ > 0. we also will consider another special case when the asymptotic behavior of V (x)
at infinity is at logarithmical borderline for the convergence of the integral (51).
Namely, we will assume that (52) holds and

V(x) > Clx|"%log=9|x|,x = 0,0 > 1.
The solution of problem (10) is given by

po(t,x —y) = % fR de—f‘"(k”i(x—va)dK.
A special form of the pseudo differential operator H,, is chosen in order to guarantee that p, = 0. In
fact, let x5, s > 0, be a Markov process in RY with symmetric independent increments. It means that
for arbitrary0 <'s; <,< -+, the random variables Xs, — Xo,Xs, — Xs,,... are independent and the
distribution of x.,s — X is independent of s. The symmetry condition means that Law(xs — X,) =
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Law(X, — Xs), or p(s,x,y) = p(s,y,x), where p is the transition density of the process. According
to the Levy-Khinchin theorem (see [186]), the Fourier transform (characteristic function) of this
distribution has the form
Eei(kxt+S_XS) — e—tCD(k),

with @ (k) given by (50). Moreover, each measure (51) corresponds to some process. One can
consider the family of processes xg"") =X, +X,S>0, with an arbitrary initial point x,. The
generator L of this family can be evaluated in the Fourier space. If @(x) € S(RY) and @(k) = Fo,
then

: (0) .
L Ee(x+xM -0 1 Eeier” k) _ gitxl)
Lo09 = i t =l Gy r oWk
~1 .
= I(Xvk) N —-
o fR €0 @ ()9 (K) dk = ~Hyp

Thus, function (55) is the transition density of some process, and therefore p,(t,x) =0, i.e.,
assumption (a) of Theorem 6.1.4 holds. Since operator H, is translation invariant, assumption (b)
also holds with m(t) = p,(t, 0). Hence, Theorem 6.1.4 can be applied to study negative eigenvalues
of the operator H, + V(x) when (Levy) measure vdx satisfies (51). If (52), (53) or (52), (54) hold,
then Theorems 6.1.5, 6.1.6 can be used. Namely, the following statement is valid.

Theorem (6.1.13) [202]: If measure vdx satisfies (52) and (53), then (35) is valid with =
2d/6, a2d/p.

If measure vdx satisfies (52) and (54), then (38) is valid with y = 1/0,a = 2d/p.

Proof. Consider first the case when (52) and (53) hold. Let us prove that these relations imply the
Following behavior of ®(k) at zero and at infinity

k
(k) = f(m)lkls(l +0(lk|**)),k - 0;
k
(k) = Q(M)lklp(l + O([k[ 1)),k - o, (56)

with some f,g,e; > 0. We write (50) in the form

d(k) = f 2sin?(x, k))v(x)dx + f 2sin(x, k))v(x)dx = &, (k) + ®,(k). (57)

Ix|<1 |x|>1
The term @, (k) is analytic in k and is of order O(]k|?) as k — 0. We represent the second term as

f 2 sin(x. Kb (x| ~4-8clx — f
Rd

|x|]<1

2sin?(x, k))b () |x|~4-8dx + f 2 sin%(x, k))h(x)dx,

|x|>1
where x = x/|x| and
h(x) = v(x) — b(x)[x|7978, |h] < C|x|4-8-¢,
The middle term above is of order O(]x|?) as k — 0. The first term above can be evaluated by
substitution x — x/|k|. It coincides with f(%)lkls. One can reduce € to guarantee that § + € < 2.

Then the last term can be estimated using the same substitution. This leads to the asymptiotics (56)
ask - 0.

Now let |k| = oo. Since @, (k) is bounded uniformly in k, it remains to show that &, (k) has the
appropriate asymptotics as |k| = oo. We write v(x) in the integrand of @, (k) as follows
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V() = a()IX|=97P + 909, 1900l < Clx|=4-p+
Then

o, (K) = f

2 sin?(x, k)a(x)[x|~9-Pdx
Rd

—f 2sin?(x, k)a(x)|x|‘d‘pdx+f 2 sin(x, k))g(x)dx.
|x|>1

|x|<1
The middle term in the right hand side above is bounded uniformly in k. The substitution x — x/|k]|

justifies that the first term coincides with g(%)lklp. The same substitution shows that the order of

the last term is smaller if € < p. This gives the second relation of (56), and therefore, (56) is proved.
Let us estimate (t) when (56) holds. From (55) it follows that

1
(t) = =—=3 e~ M dk + O(e )as t — oo, n=>0. (58)
M <

Now the substitution k — t=1/8k leads to

1 P ST
T()~ct¥S t— o0 c= i f o EBGRDI® 41
Rd

Hence, the first of relations (35) holds with B = 2d/8. In order to estimate m(t) ast — 0, we put

() = ——
(2m)¢ [k|<1
and make the substitution k — t~1/Pk. This leads to

e Mgk + 0(1) ast— 0,

IEE
Hence the second of relations (35) holds with a = 2d/p. The first statement of the theorem is
proved.
Let us prove the second statement. If (52) and (54) hold, then

1 ke
n()~ct=4°  t->0, ¢ f e T gy,
Rd

k
O(K) > c(logﬁ)“’, ko0 &) =g <M) IKlP(1 + O(lKkI =),k
S (59)

In fact, only integrability of v(x) at infinity, but not (53), was used in the proof of the second
relation of (56). Thus the second relation of (59) is valid. Let us prove the first estimate. Let Q, =
{x: k|2 > |x| > |k|71}, |k] < 1. We have

®(k) 2] 2sin?(x, k))v(x)dx = Cf sin?(x, k) |x|~4log=° |x|dx
Qg Qg
1 )
> C(2 Iogm)“’ sin?(x, k) |x|~4dx, |k| = 0.
Qg
It remains to show that
1
f sin? (x k) ~dx=log 7, 1Kl 0. (60)
Q

k
After the substitution x = y/|k|, the last integral can be written in the form
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1 d 1 —d
o] o way-3 [ coskylyl-ay,
[k|=*>]y|>1 [kI=*>y|>1

This justifies (60), since the second term above converges as |k| — 0. Hence (59) is proved.
Finally, we need to obtain (38). The estimation of t(t) as t — O remains the same as in the proof of
the first statement of the theorem. To get the estimate as t — oo, we use(58) (with a smaller domain
of integration) and (59). Then we obtain
1 —ct(lo i)l_a
m(t) < =7 e 8/ dk+O(e™™ast— oo, 1>0.
(2m) [k|<1/2
After integrating with respect to angle variables substitution log =z we get

m(t) < e

The asymptotic behavior of the last integral can be easily found using standard Laplace method, and
2d-1 1

the integral behaves as C,tzds e =1t when t — oo. This completes the proof of (38).
1. Free groups. Let X be a group I' with generators a,, a,,...aq, inverse elements a_;,a_,,...a_g,
the unit element e, and with no relations between generators except a;a_; = a_;a; =e. The
elements g € I" are the shortest versions of the words g = a;  -...-a;_ (with all factors e and a;a_;
being omitted). The metric on T is given by

d(91,92) = d(e,91"92) = m(971'9>),
where m(g) is the number of letters a.; in g. The measure p on I is defined byu({g}) = 1 for each
g€eTl. It is easy to see that|{g:d(e,g) =R} = 2d(2d — 1)R"1, ie., the group T has an
exponential growth rate.
Define the operator Ar on X = T' by the formula

Ab@ = ) [b(oa) — b)) (61)
—d<i<d,i#0

Obviously, the operator —Ar is bounded and non-negative in L2(T'®, u). In fact, ||Ap]l4d. As it is
easy to see, the operator Ay is left-invariant:

(Arg)(9x) = Ar(b(gx)), X ET,
for each fixed g € T'. Thus, conditions (a), (b) hold for operator —Ar. In order to apply Theorem 2.5,
one also needs to find the parameters o and 3.
Remark 6.1.14 Since the absolutely continuous spectrum of the operator Ar is shifted (it starts from
v, not from zero), the natural question about the eigenvalues of the operator —A + V(g) is to
estimate the number N(V) of eigenvalues below the threshold y. Obviously, N(V) coincides with
the number N(V) of the negative eigenvalues of the operator H, + V(g), where H, = —Ar —yl.
Hence one can apply Theorems 2.1, 3.1 to this operator. From (62) it follows that constants «, 3 for
the operator H, = —Ar — yl are equal to 0 and 3, respectively, and

Np(V) < c(h)[n(h) + Z W(X)*2], n(h) = #{g € I:W(g) > h~1}.

germW(g)<h~1
Theorem (6.1.15) [202]: a) The spectrum of the operator —Ap is absolutely continuous and
coincides with the interval Iy = [y,y + 4v2d — 1],y = 2d — 2v/2d — 1 > 0.
b) The kernel of the parabolic semigroup mp(t) = (e**r)(t, e, e) on the diagonal has the following
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asymptotic behavior at zero and infinity
eVt
mir(t) > cas t - 0, “F(t)"czth ast— oo, (62)
Let us find the kernel R, (g4,9,) of the resolvent (Ar —x)~1. From the T'-invariance it follows that
R, (01,92) = R,(e,g7'g,). Hence it is enough to determine u, = R, (e,g). This function satisfies

the equation

D un(g) - (2d +)u, (@) = ~5.(9). (63)
i#0
where 8.(g) =1 if g=¢e,8.,(g) =0 if g+ e. Since the equation above is preserved under
permutations of the generators, the solution u, (g) depends only on m(g). Let y,(m) =
u, (g),m = m(g). Obviously, if g # e, then m(ga;) = m(g) — 1 for one of the elements a;,i # O,
and m(ga;) = m(g) + 1 for all other elements a;, i # 0. Hence (63) implies
24y, (1) — (2d +3)y, (0) = -1, (64)
Y, (m-1)+@2d -y, (m+1) —(2d+>)P,(m) =0, m=>0.
Two linearly independent solutions of these equations have the form s, (m) = v, where v, are
the roots of the equation
vi+@d-1Dv-(Q2d+x)=0
Thus,

_2d+x £,/(2d +x)2 — 4(2d — 1)
Ve = 2(2d— 1) '
The interval 14 was singled out as the set of real X such that the discriminant above is not positive.
Since v, v_ =1/(2d — 1), we have

1 1 1
V| = for xely; |v.| > ——, v_| < for real xée ;.
V- = =1 o M= M d

Now, if we take into account the set Ay, ={g € I'm(g) =m,} has exactly2d(2d — 1)™o~*
points, i.e., p(Ay,) = 2d(2d — 1)™o~t, we get that

vm® e L2(T, ), vii® ¢ L2(T, ) for real x¢ I, (65)
and

f |vi|2m(g)u(dg)~ m, as my — oo for x¢ 1,(66)

rN{g:m(g)sme}
Relations (65) imply that R\l4 belongs to the resolvent set of the operator Ar and that R, (e, g) =
cv™(®), Relation (66) implies that 14 belongs to the absolutely continuous spectrum of the operator

Ar with functions (v™® — vm®) being the eigenfunctions of the continuous spectrum. Hence
r +

statement a) is justified.
Note that the constant ¢ in the formula for R, (e, g) can be found from (64). This gives

1
Ra(®9) = g —2av V-
Thus
~ 1
R.(8.€) = Ga) —2av_

Hence, for each a > 0O,
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joo joo
a+l1 a+l1 d N

1
() = Ef ' e*R, (e,e)d x= Ef et (2d +x) — 2dv_"

oo
The integrand here is analytic with branching points at the ends of the segment |4, and the contour
of integration can be bent into the left half plane Re X< 0 and replaced by an arbitrary closed
contour around lg. This immediately implies the first relation of (62). The asymptotic behavior of
the integral as t — oo is defined by the singularity of the integrand at the point —y (the right end of
Id). Since the integrand there has the form e>t[a + by/* +y + O(x +y)],» +y — 0, this leads to the
second relation of (62).

The examples below concern differential operators on the continuous and discrete non-commutative
groups I' (processes with independent increments considered in the previous section are examples of
operators on the abelian groups RY).

First we will consider the Heisenberg (nilpotent) group T = H3 of the upper triangular matrices

1 x z

g= [0 1 y] ,(x,y,2) € R3, (67)
0 0 1

with units on the diagonal, and its discrete subgroup ZH3, where (x,y,z) € Z3.

Then we study (solvable) group of the affine transformations of the real line: x - ax +b,a> 0,
which has the matrix representation:

aR) = {o=[2 2].a>0,0p) er?}

— -1 _
And its subgroup generated bya, = [8 i] and a, = [8 1e] and their inverses a_, = [e 0 11]

-1

and a_, = [eO ﬂ

There are two standard ways to construct the Laplacian on a Lie group. A usual differential-
geometric approach starts with the Lie algebra AT on I', which can be considered either as the
algebra of the first order differential operators generated by the differentiations along the
appropriate one-parameter subgroups of T', or simply as a tangent vector space TT to I' at the unit
element I. The exponential mapping A" - I" allows one to construct (at least locally) the general
left invariant Laplacian A on I as the image of the differential operator }; a;;D;D; + X; b;D; with
constant coefficients on AT. The Riemannian metric ds? on I' and the volume element dv can be
defined now using the inverse matrix of the coefficients of the Laplacian Ar. It is important to note
that additional symmetry conditions are needed to determine Ar uniquely.

The central object in the probabilistic construction of the Laplacian (see, for instance, McKean [14])

law
is the Brownian motion g, on I'. We impose the symmetry condition gt:gt‘l. Since AT is a linear
space, one can define the usual Brownian motion b, on AT with the generator Y; a;D;D; + ¥; b;D;.

law

The symmetry condition holds if (I + db)== = (I + db,)~%. The process g, (diffusion on T) is
given (formally) by the stochastic multiplicative integral

t
O¢ = 1_[0 + dby),
s=0

or (more rigorously) by the Ito’s stochastic differential equation
dg, = g.db,. (68)
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The Laplacian Ay is defined now as the generator of the diffusion

i@ = i EOETOD 1D oy g

The Riemannian metric form is defined as above (by the inverse matrix of the coefficients of the
Laplacian).

We will use the probabilistic approach to construct the Laplacian in the examples below, since it
allows us to easily incorporate the symmetry condition.

3. Heisenberg group T' = H3 of the upper triangular matrices (67) with units on the diagonal. We
have

af
0 a vy 1 a y+—
Ar=JA=10 0 B| (aBy)ER3, eA= 2|
000 01 B
0O O 1

Thus A — exp(A) is a one-to-one mapping of AT onto I'. Consider the following Brownian motion
on AT

=10 0 v

0O 0 O
where o is a constant and u, Vv, w, are (standard) independent Wiener processes. Then equation

(68) has the form
0 dx, dz (& 0 du, odw;
dg; = [ dYt] [O 1 Yt] [ th ]’

dx; = du,, dy, = dv,, dz, = odw, + X dv,.
Under condition g(0) = I, we get

0 u ow;
b |:

which implies that

t

|[1 U¢ owt+fusdvs]|
0

gt[O 1 Vi J
0 O 1
Let us note that the matrix
t t
|[1 —Uy UtVt—GWt—f usde] |[1 —Uq —owt+fvsdu51|
(g) 1= 0 = 0
s v Tk i
0O O 1 0O O 1

Has the same law as g.. Now from (69) it follows that
1
(AHxy,z) = [fXX + Ty, + (02 + Xx2)f,, + 20xf,,].

The matrix of the left invariant Rlemannlan metric has the form

0 0 o 1' 0 0
0 1 oX = [O o2 + x? —GX],
0 ox o?+x? 0 —ox 1

ie.,
ds? = dx? + (0% + x?)dy? + dz? — 2oxdydz, dV = dxdydz.
Denote byp,(t,x,y,z) the transition density for the process g, (fundamental solution of the
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parabolic equation u;, = Ar). Let 4 (t) = p,(t,0,0,0).

Theorem (6.1.16) [202]: Function 4 (t)has the following asymptotic behavior at zero and infinity:
C

TO~2,  to0 TO~g tow,  c=p(100),  (70)
{2
I.e., Theorem 6.1.5 holds for operator H = Ar + V(X,y,z) with a« = 3,3 = 4.
Proof. Since H3is a three dimensional manifold, the asymptotics at zero is obvious. Let us prove
the second relation of (70). We start with the simple case of o = 0. The operator Ay in this case is
degenerate. However, the densityp,(t,x,y,z) exists and can be found using H"ormander
hypoellipticity theory or by direct calculations. In fact, the joint distribution of (xi,V;,z;) is self-

similar

t
u, v, J,Uusdv t
S = @ [ v,
0
ie.,
1 X X Zz
Po(t X y,z) = t_ZpO(l’ﬁ’ﬁ’f)’
and therefore,
c
Po(t,0,0,0) = o ¢ = p,(1,0,0,0).
Let 62 > 0. Then
1 _(z-224)?
po'(t! X! y! Z) = \/m pO(t’ X’ y’ Zl)e ZGZt dzl
Rl
. X y z
After rescaling ROXNFOY o we get

t(z—zzl)2

Po(L Xy, z1)e 20 dz;.

(t ) vt

o 1X1 L] Z -

P y t2v2mo? Jr1
From here it follows that p,(t, 0,0,0)~c/t?,t - oo, with ¢ = p,(1,0,0,0).

Theorem 6.1.16 can be proved for the group H™ of n < n upper triangular matrices with units on the

diagonal. In this case,

a:dimH“:@,B:(n—1)+2(n—2)+3(n—3)+---:M.

I' = ZH3 of integer valued matrices of the form

1 x vy
g=(0 1 z),x,y,zezl.

0 0 1
Consider the Markov process g, on ZH3 defined by the equation
1 dg dg
Ot+at = 9¢| 0 1 dne | (71)
0 O 1

where &, 1, {; are there independent Markov process on Z! with generators

Ag(n) =P(n+1)+y(n—1) —2¢(n), neZz.

Equation (71) can be solved using discretization of time. This gives
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Zy
0 0 1 1 Nt
0 1

The generator L of this process has the form (61) with
1 1 O 1 0 O 1 +1
(o 1 o)(o ! 1)(0 o),
0O 0 1 0O 0 1 0 1

L=8b@ = ) [h(ga) — b(@)] (72)

i=%1,+2 +3

(1 X yt> 1§ g+ f £,dn.
g:=|0 1 0

[l ]

If ¢ = () is considered as a function of (x,y, z) € Z3, then
Ly(x,y,z) =v(x+1y,2)+y(x—1y,2) +PXxy+1,z+x) +P(x,y—1,z—x)
+P(x,y,z+ 1)+ P(x,y,z—1) —6y(xy,2)(73)
The analysis of the transition probability in this case is similar to the continuous case, and it leads to
the following result
Theorem (6.1.17) [202]:1f g, is the process on ZH3 with the generator (73), then

P{og. =1} =P{x; =y =z, = O}~ —t—>00

with ¢ defined in (70). can be applied to operator H, = L with B 4.
This result is valid in a more general setting (see [13]). Consider three independent processes
&, Mo & t = 0, on Zt with independent increments and such that

Eelkét = o—t(1-X2, p; cos ki),z 0 =1,
Eeiknt — e—t(l—nglqi cos ki),Z q; = 1,

Eelklt = g—t(1-Xf2, 1 cos ki),Z =1,
i=1
Assume also that there exist a4, a5, as on the interval (0,2) such that
C1 C2 Cs3
Pi~ jltog’ i~ jl1toz’ i j1tas
as i — oo, i.e., distributions with characteristic functions X2, p; coski, 2:i2; g; cos ki, 22, rj cos ki
belong to the domain of attraction of the symmetric stable law with parameters a4, a,, a;. Let g, be

the process on ZH3 defined by (71). Then

C 2 21
Plge = 1~ t = oo,y = max( -+ —, =),
a1 01 Q3
This group of transformations x — ax + b,a > 0, has a matrix representation:
r=AfR) = {g = [3 2 a>0,(ab) € R},
We start with the Lie algebra for Aff(R?):

AT = {[g g] (o, B) € R?},
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Obviously, for arbitraryA = [g g] one has

exp(A) = o
0 1
I.e., the exponential mapping of AT coincides with the group I'. Consider the diffusion
[wt +at v
B 0
on AT, where (w,, Vv,) are independent Wiener processes. Consider the matrix valued process g, =

Xt

e —1
e* B ]

] 90 = [0 Cl)] on I satisfying the equation
— _ Xt dw; + adt dv X¢(dwy + adt) X dv
dg, = g.db, = [0 [ t t] [ t t tO t]
This implies

dx, = x.(dw, + adt),
dy, = xdv,,
i.e. (due to Ito’s formula),

t
1
Xt — eWi+(0(—E)t,yt — f XSdVS.
0

We impose the following symmetry conditions:

(90 "2, (74)
It holds if o = % In fact,

t t
_ Iewt foewsdvs gt‘l _ e~ Wt _foews—WthS , (75)

0 1
and (74) follows after the change of variables s = t — t in the matrix g *. Then the generator of the

process g, has the form
2[o%*f o2%f] xof
Arf:?[m+ﬁ " 2ox
Remark (6.1.18) [202]: Let H = A +V, where the negative part W = V_ of the potential is
bounded: W < h~1. From (76) and Theorem 2.5 it follows that

3/2
No(V) < C(h) f 09 ey,
Remark (6.1.19) [202]: The left-invariant Riemannian metric on Aff(R?) is given by the inverse
diffusion matrix of A, i.e.,
dg? = x~2(dx? + dy?) (g = [O 1] X > 0)

After the change (x,y) — (Y, x), this formula coincides with the metric on the Lobachevsky plane
(see the previous section). However, one can not identity the Laplacian on Aff(R') and on the
Lobachevsky plane L2, since they are defined by different symmetry conditions. The plane L2 has a
three dimensional group of transformations, and each point z € L? has a one-parameter stationary
subgroup. The Laplacian on the Lobachevsky plane was defined by the invariance with respect to
this three dimensional group of transformations. In the case of B’ = Aff(R!), the group of

transformations is two dimensional. It acts as a left shift g = g,0,9,,9 € ', and the Laplacian is
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specified by the left invariance with respect to this two dimensional group and the symmetry
condition (74).

Theorem (6.1.20) [202]:Operator Ay is self-adjoint with respect to the measure x~9dxdy. The
function 1t(t) = p(t, 0,0) has the following behavior at zero and infinity:

()~2t - 0; n(t)~t3%, t - oo, (76)
Proof. Since T is a two dimensional manifold, the asymptotics of n(t) at zero is obvious. One needs
only to justify the asymptotics of m(t) at infinity.
Let’s find the density of (x.,y,) = (e, fot e“sdv,). The second term, for a fixed realization of w.,

has the Gaussian law with (conditional) variance 0% = fot e*Wsds, and
1

V2 tE

m \/2nf0t e2Wsds
Here W,,s € [0, t], is the Brownian bridge on [0, t] . The distribution of the exponential functional
Al) = fot e?%sds and the joint distribution of (A(t) ,w (t)) were calculated in [201]. Together with
(77), these easily imply the statement of the theorem.

Let T be a discrete group generated by elements a,,...,aq,a_; = at,..,a_q = az*, with some
identities. Define the Laplacian on I by the formula

P{x, € 1 +dx,y, € 0+ dy} = p(t,0,0)dxdy = (77)

d
AP = ) Wlga) —2du(@). geT.
i=—d
Consider the Markov process g, on I' with continuous time and the generator A. Let §y, k =
0,1,2,..., be the Markov chain on I' with discrete time (symmetric random walk) such that

P{i, = e} =1, P{Un+1 = 0ail0, =g} = %,i =+1,+£2 ..+d
Then there is a relation between transition probabilityp(t,e,g) of the Markov process g, and the
transition probabilityP{g, = g} of the random walk. In particular, one can estimate m(t) = p(t,e,e)
for large t through Tt(2k) = P{g, = €} under minimal assumptions on 7t(2k). For example, it is
enough to assume that ©(2k) = k¥YL(k),y = 0, where L(k) for large k can be extended as slowly
varying monotonic function of continuous argument k. We are not going to provide a general
statement of this type, but we restrict ourself to a specific situation needed in the next section. Note
that we consider here only even arguments of T, since 7t(2k + 1) = 0.
Theorem (6.1.21) [202]:Letft(2n) < e~<@M“ n 5 00,cp > 00 < a < 1.
Then
m(t) < e~ ¢ > ¢,

Proof. The number v, of jumps of the process g, on the interval (0O,t) has Poisson distribution. At
the moments of jumps, the process performs the symmetric random walk with discrete time and
transition probabilities P{g — ga;} = 1/2d,i = +1,%2,..+d. Thus (taking into account that
2k +1) =0),

n(t) = p(tee) = Z #(2n)P{v, = 2n}.

n=0
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Due to the exponential Chebyshev inequality
P{lv, — 2dt| > et} < e~¢=’t t - oo,
Secondly,

1
P{v, is even} = 5+ O(e™*dt), t - oo.

These relations imply that, fort — oo and 6 > 0,
m®= ) R@n)P{v, = 2n}+ 0(e w007
n:|2n-2dt|<et
< Z e~cm*ply, = 2n} + O(e~0(dDY)

n:|2n-2dt|<et

< (1 + S)G_CO(Zdt)a P{Vt = 2n) + O(e—co(zdt)a) < %Se—co(zdt)“

n:|2n-2dt|<et
+ O(e—CO(Zdt)“)_
7. Random walk on the discrete subgroup of Aff(RY). Let us consider the following two matrices
e e e —e] . . -1 _1q
o = [0 1] and o, = [0 1] in Aff(R1) and their inverses a_; = [eO 1] and a_, =

[e 0 ﬂ Let G be a subgroup of Aff(R?) generated bya,; and a.,. Consider the random walk on
G of the form

On = h1hZ hn’
where one step random matrices h; coincide with one of the matrices o..q, o, With probability 1/4,
ie.,
_ et §.
hi = [ 0 11]’
where

Ple; = 1,8, =e} =P{g; = 1,8, = —e} = P{g; = —1,6; = =1} = P{g; = —1,6; = 1} = 1/4. (78)
Let A; be the Laplacian on G which corresponds to the generators a..;, a5, i.€., (compare with (61)

(72))
L= Apg(g) = Z [W(gay) — (@)l

i=%1,%2
Theorem (6.1.22) [202]: (a) The following estimate is valid for (2n):
#(2n) < e~%CM* 5 00 ¢, > 0.
(b) Theorem 6.1.7 can be applied to operator H = Ag + V(g) withy = 1/3, i.e.,

No (V) < C(h, A)[ Z e AW® ™ 4 n(h)],  n(h) = #{g: W(g) > h-1}
gV(g)sh™t
Proof. The random variables (g;, 8;) are dependent, but (78) implies that (g;, 8;), where §; = sgn §;,
are independent symmetric Bernoulli r.v. It is easy to see that

n
_ eSn Z 5kesk—1
On = k=1

0 1
where Sy =1,S, =& + -+ g,k >0, is a symmetric random walk on Z. This formula is an

obvious discrete analogue of (75). Our goal is to calculate the probability
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t(2n) = P{g,, = I} = P{S,,

2n-1

1
=0, Zakesk =0} = (2” ) 5o P{Z 5 ekt = O}~—P{Z 81,15k = O},
— OO0

Here S,k = 0,1, ...,2n, is the discrete bridge, i.e., the random walk S, under conditions S, = S,,, =

0.

Put M, = max Sk, My, = min Sy. Let TS, T be the sets of moments of time k when the bridge
<2n <2n

Sk changes value from s —1 to s or from to s — 1, respectively. Introduce local times t7_, =
Card Iy, and t; = Card I, i.e., T7_; = # (jumps of S, from s — 1 to s) and T = # (jumps of S

fromstos —1). Note that 8k+1e§k = 84165 When k € TS, U TS, and therefore
2n-1 Mzn

Sz 3 o 3
k=1

s=mzn+1  jery_ ,urg
Since r.v. {Sj} are independent of the trajectoryS, and numbers eS,s = 0,x1,%£2, ..., are rationally
independent, we have

P{0zn = I}~ —E 1_[ (ZTS)()ZT L Avanma

S= m2n+ mn 2
= 1 Mzp—mgzp
\/ﬁ (E) [IMZn_mZn>\/ﬁ + IMZn_m2n<\/ﬁ]
< i (l)\/ﬁ
v2n

1 r
+ ) GYPUS <rk=12...2n8,, = 0}

= 1
< e/ 4 Z(z)rp{lskl <rk=12..2n5;, =0}

Lemma (6.1.23) [202]:P{|Sx| < r,1 =1, 2 - 2N, Spn = 0} < (c0S 5 +1)) "

Proof. Let us introduce the operator Hoy(x) = w on the set [-r,r] € Z' with the
Dirichlet boundary conditions (r+1) = ¢(—r — 1) =0. Then @(x)=cos

2 +1) IS an

eigenfunction of H, with the eigenvalue ;= cos Hence

2(

HZ" @ (X) =x§%44 (P(X)-
Let p,(k, X, 2) be the transition probability of the random walk on [— r, r] € Z* with the absorption at
+(r+1). Then

Z Pr(2n,%,2)(2) = X§h11 9 (X).
|z]|sr

Since @(z) < 1, @(0) = 1, the latter relation implies
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Z pr(2n,x,z) < X§h, ..
|z|sr
Since Sy, k = 0,1, ... 2n, is the symmetric random walk on Z?, we have
P{ISk| <r.k=12,..2n,S,, = 0} = p,(2n,0,0) <x3%,;.
Direct calculation shows that
rT%(%)r(COSZ(r“: 1))2n < e—C(Zn)lls,
with the maximum achieved at r = ro~c,(2n)*/3. Thus

1 ~
P{92n = |} < (E)\/ﬁ + /Zn‘eco(zn)1/3 < e_c0(2n)1/3

for arbitraryC, < c, and sufficiently large n. This proves the first statement of the theorem. Now the
second statement follows from Theorem 6.1.20.
Theorem (6.1.24) [202]: The assumptions of Theorems 6.1.4, 6.1.5 hold for operator —H,
introduced in this section with the constants o,  in Theorem 6.1.5 equal to 1 and d, respectively.
One can easily see that there is a Markov process with the generator —H,, and condition (a) of
Theorem 6.1.5 holds, we’ll estimate the function p, in order to show that condition (b) holds and
find constants o, 3 defined in Theorem 6.1.5 In fact, the same arguments can be used to verify
condition (a) analytically.
As we discussed above, Theorem 6.1.5 is not exact if a < 2. Theorem 6.1.7 provides a better result
in the case o = 0. The situation is more complicated if a = 1. We will illustrate it using the
operator H, on quantum graph T'? defined above. We will consider two specific classes of
potentials. In one case, inequality (36) is valid with max(a/2,1) =1 replaced bya/2 = 1/2.
However, inequality (36) can not be improved for potentials of the second type. The first class
(regular potentials) consists of piece-wise constant functions.
Proof. As it was mentioned after the statement of the theorem, it is enough to show the validity of
condition (b) and evaluate a, 3. Let

u, = —Hyu,t > 0, Ulizg = T,
with a compactly supported f and

[0¢]

@ =@Xxx) = f ue*tdt,Re x< —a < 0,x € T'Y,
0

Note that we replaced — x byx in the Laplace transform above. it is convenient for future notations.
Then ¢ satisfies the equation

(Ho —>)p =1, (79)
and u can be found using the inverse Laplace transform
1 —a+ioco
= —xt
u ) f_a_ioo ee " td x. (80)

The spectrum of H, is [0, ), and ¢ is analytic in » when € C\ [0, ). We are going to study the
properties of ¢ when x— 0 and x— o. Let Y(z) = Y(z,»),z € 74, be the restriction of the
function @(x,x),x € I'Y, on the lattice Z4. Let e be an arbitrary edge of I'Y with end points z,,z, €
Z4 and parametrization from z, to z,. By solving the boundary value problem on e, we can
represent ¢ on e in the form

163



_ P(zysink(1 —s) + yi(z,) sinks
¢= sink
where k = /X, Imk > 0, and

G

+ Ppars Ppar = f GG Df®d,  (81)

1 (sinkssink(1-1t), s<t
B m{sin ktsink(1—s), s>t

Due to the invariance of H, with respect to translations and rotations in Z9, it is enough to estimate
Po(t, X, X) when x belongs to the edge e, with z, being the origin in Z¢ and z, = (1,0,...,0). Let f
be supported on one edge e,. Then (81) is still valid, but ¢,, = 0 on all the edges except e,. We
substitute (81) into (44) and get the following equation for ys:

1! 1!
(A~ 2dcosk)p(@) =1 f sink(1 — OIS, + f sin ktf(t)dts,, z € 74,
0 0

Here A is the lattice Laplacian defined in (41) and 8,,8, are functions on Z¢ equal to one at z,y,
respectively, and equal to zero elsewhere. In particular, if f is the delta function at a point s of the
edge e, then

1 . 1 .
(A —2dcosk)y = Esm k(1-s)8, + Esm ks8,. (82)

Let R, (z — z,) be the kernel of the resolvent (A — p)~* of the lattice Laplacian. Then (82) implies

that

Y(2) = ésin\/stu(z) + \/i;sin V(1= 5)R,(z2 —2,), u = 2d cos/» (83)

Function R,,(z) has the form

ei(G'Z)dG
7 (U1sj<a2C0S0j) — '
Hence, function sin(v/> s)R,(z), s € (0,1), = 2dcos+/x, decays exponentially as |[Imvx | -
. This allows one to change the contour of integration in (80), when z € Z9, and rewrite (80) in
the form

T = [-m, n]d

R,(2) =

1
(2m)d
where contour | consists of the rayx= pe~™*4 p € (o0,1), a smooth arc starting at x= e ™4,
ending at x= e™*, and crossing the real axis at x= —a, and the rayx= pe™* p € (1,0). It is
easy to see that [(z,x)| < C/|v/x | as x€ | uniformly in s and z € Z9. This immediately implies
that [u(z,t)| < C/+/t. Now from (81) it follows that the same estimate is valid for p,(t, x, ), X € e,
i.e., condition (b) holds, and o = 1.

From (84)it also follows that the asymptotic behavior of u as t — oo is determined by the asymptotic
expansion of Y(z,x) as x— O,x¢ [0,0). Note that the spectrum of the difference Laplacian is
[—2d,2d], and p = 2d — d » +O(x?2) as x— 0. From here and the well known expansions of the
resolvent of the difference Laplacian near the edge of the spectrum it follows that the first singular
term in the asymptotic expansion of R, (z) as x— 0,x¢ [0, ©), has the form
cq 2271 (1 +0(»)), disodd,
{cd 242= Inx (1 + 0(»)), diseven.

Then (83) implies that a similar expansion is valid for {(z,») with the main term independent of s
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and the remainder estimated uniformly in s. This allows one to replace | in (84) by the contour
which consists of the rays arg ~= %m/4. From here it follows that for each z € Z¢ and uniformly
ins,

U(Z,t)~t_d/2,t — 00,
This and (81) imply the same behavior for p,(t, X, x), X € e, i.e., B = d.

Section (6.2): The Hierarchical Schrodinger Operator
The spectral theory of the fractals, which are similar to the infinite Sierpinski gasket (i.e. the

spectral theory of the corresponding Laplacians) is well understood (see [206, 86, 207]). It has
several important features: the existence of a large number of eigenvalues of infinite multiplicity,
pure point structure of the integrated density of states, compactly supported eigenfunctions. These
features manifest themselves in the unusual asymptotes of the heat kernel, the specific structure

of the corresponding ¢-function, etc., see [203].

Q= Q3" Q™

Fig. 7 oz oz oy o or or ev
T T e
Fig. 7. An example of a hierarchical lattice with X = Z and v = 2.
The next natural step in the spectral theory is to study Schrddinger type operators, i.e., fractal
Laplacian perturbed by a potential. There are two possible directions for such a development:
analysis of the random Anderson Hamiltonians (the potential is stationary in space) or the study
of the classical problem on the negative spectrum when the potential vanishes at infinity. For the
first direction, see [88, 93, 95]. We will concentrate on the second problem in a particular case of
the simplest fractal object: Dyson’s hierarchical Laplacian perturbed by a decaying potential. Our
goal is to prove the Cwikel-Lieb-Rozenblum (CLR) estimates for the number of negative
eigenvalues and estimates for Lieb-Thirring (LT) sums. These estimates depend on the spectral
dimension s, of the fractal (which can take an arbitrary positive value).
The concept of the hierarchical structure was proposed by F. Dyson [205] in his theory of 1-D
ferromagnetic phase transitions. There are several modifications of the hierarchical Laplacian (see
[93]). We will study the simplest one, which is characterized by an integer-valued parameter v > 2
and a probabilistic parameter p € (0,1). More recent results in this area can be found in [204].
Consider a countable set X and a family of partitions I1, c I1; c I1, < --- of X (we write I, < I1,,,

to mean that every element of I1,. is a subset of some element of I1,.,,). The elements of II, are the
(0)
i

singleton subsets of X. They are denoted byQ: ~ and called cubes of rank zero. Each element Q?) of
I1; (cube of rank one) is a union of v different cubes of rank zero, i.e., X =U le), |Q§1)| =V (see
Fig. 7). Each element QEZ) of I, (cube of rank two) is a union of v different cubes of rank one, i.e.,

X=u QEZ), |Q§2)| =v2, and so on. The parameter v > 2 is one of the two basic parameters of the
model.
Each point x belongs to an increasing sequence of cubes of each rank r > 0 which we denote

byQ™(x), i.e., x = Q@ (x) c QW (x) c Q¥ (x) c ---.
The hierarchical distance d,(x,y) on X is defined as follows:

dp, (x,y) = min{r: EIQ?) 3 X, y}. (85)

165



We assume the following connectivity condition holds: for each x,y € X, the cubes Q™ (x) contain
y when n is large enough, i.e., d,(X,y) < co.
Note that for arbitraryz € X, d,(x,y) < max{d; (x,z),dy(y,2)}, i.e., dy,(:,-) is a super-metric which
implies that

p(x,y) = pg(x,y) =ePdn¥) — 1 Bg>0.
is also a metric. We will use it in the form

1 dnp(xy)
p(xy) = (ﬁ) -1, (86)

ie., B=In ip. Here p € (0,1) is the second parameter of the “Laplacian” A; (see formula (3)

7

below).

Now we denote byl?(X) the standard Hilbert space of square summable functions on the set X and
define a self-adjoint bounded operator (the hierarchical Laplacian) depending on the parameter p €
(0,1):

[0¢]

App(x) = Z ar [ZX'EQ(ri,(f) LSO Y(x)|,wherea, = (1 -p)p", Z 0.=1.  (87)
r=1

r=1

The random walk on (X, dy) related to the hierarchical Laplacian has a simple structure. It spends
an exponentially distributed time t (with parameter one) at each site x. At the moment T+ O it
randomly selects the rank k of a cube Q®(x),k > 1, with P{k =r} = a, and jumps inside of
QU9 (x) with the new position x’ € QU (x) being uniformly distributed.

It is clear that A, = A}, A< 0,Sp(A}) € [—1,0]. The following decomposition will play an essential
role. Denote bylg(X) the indicator function of a set K € X,i.e., Ix = 1 on K, Ix = 0 outside of K.
Then, for each y € X,

5,09 = > (IQ(k\_,lﬁfyf 0l OO)- (88)

vk
k=1

The validity of (4) is obvious. It is important that each term on the right is an eigenfunction of Ah

and the kth term belongs to the eigenspace L, defined in the following proposition.

Proposition (6.2.1) [209]:(a) The spectrum of A,, consists of isolated eigenvalues A, = —p¥~1, k =

1,2,.., each of infinite multiplicity, and their limiting point A = 0.

(b) The corresponding eigenspaces L, c 1?(X) have the following structure: For k = 1,

L, =<y € 12(X): Z P(x) = 0foreach Q™ e 1, }.
eri(l)
For k > 1, the space L consists of all { € 12(x) which are constant on each cube ng_l), and have
the property that erQ§1> P(x) =0 for each ng) € I.
(c) The following decomposition holds: 12(X) =X, L,.
Indeed, one can easily check that the space L, defined above, consists of eigenfunctions with the

eigenvalue A, = —pX~1, and for each y € X, the kth term in (4) belongs to L. Thus (4) immediately
implies (c) which justifies (a).
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Let us note that each eigenspace Ly has an orthogonal basis of compactly supported eigenfunctions.
Such a basis in L; consists of functions which are zero outside of a fixed cube Q?) and such that
erQ§1> P(x) = 0. There are v — 1 orthogonal functions with the latter property for each cube Qfl).

The orthogonal complement of L, consists of the functions € 12(X) which are constant on each
cube of rank one. The basis in L, is formed by functions supported by individual cubes of rank two
such that y(x) =c; on sub-cubes Q?) of rank one, and Y.c; = 0. One needs to specifyc; to
guarantee the orthogonality of the elements of the basis. The basis in Ly, k> 1, is formed by
functions which are supported by individual cubes of rank k and which are constant on sub-cubes of
rank k — 1 with the sum of those constants being zero.
Let’s find the density of states for A, and the spectral dimension s;,. We fix x, € X (the origin) and
a positive integer N. Consider the spectral problem

—Ap =Ap; P =0 on X\ QM (x,).
(Now it is more convenient to work with —A, instead of A;.) It is easy to see (compare to
Proposition 6.2.1) that the problem has the following eigenvalues:

Aon = 1 with multiplicity vN~1(v — 1),

M n = 1 with multiplicity vN~2(v — 1),

An—1n = PN~ with multiplicity (v — 1)
Avn = pN with multiplicity 1.
This implies the following relation for

1
Proposition (6.2.2) [209]: AS N — oo,

M@) - NQ) = Z V—1k<1 —E) = Vk:(x)’

k=0:pk<A v
where Ko (A) = min{k > 0: p* < A}. Furthermore,
dN(A) 1 §,(A)  8,:(A)
W =5~ ( ‘v)[w” v Tt
Proposition (6.2.3) [209]:As A { O,
2Inv
— 7sh/2 —

or, more precisely

InA
N()\)"“?\Sh/zh <_)
Inp
for a positive, periodic function h(z) = v=1={# = h(z + 1). Here, {z} is the fractional part of a
numberz € R. The latter proposition is a consequence of the following simple calculation. If [Z] is
the integer part of z € R, then
NQL) = e-ko®nv = e linp Y _ Il CERI-DIY _ oo (:”_7‘)
np
We will call the constant s, = IZHI%‘; the spectral dimension of the triple (X,d,(.,.),Ap).
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Let p(t, x,y) = P{x(t) = y} be the transition function of the hierarchical random walk x(t), i.e.,
ap

o =4, p(0x.y) = 8,(x),

and let

[0¢]

Ry(xy) = f e Mp(t,x,y)dt, A>0.

0
The functions p and R, define the bounded integral operators

(PDK) = > P X I),

yeX

RDK) = D Rultx V),
yeX
acting in 1*°(X) and I12(X), respectively.
Formula (4) (where each term on the rights is an eigenfunction of A,) and the Fourier method lead
to the following statement:
Proposition (6.2.4) [209]: The transition kernel p(t, x, y) has the form:

1 e Pt e Pt
p(t, x,x) = (1 _V) e t+ > + o+ K + --- | for each x € X,
epr—1t 1 e_pr— t e_pr+1t

Here, r = d,(x,y) is the minimal rank of the cube Q®)(x), containing the point y (see (1)).

Similar formulas for R, (X, y) can be obtained from (88) or (easier) from the proposition above (by
integration in t):

Proposition (6.2.5) [209]:For anys;, > 0,1 > 0,

R (. %) = 1 o(1 1 1, 1 .
AXo, X) = ()\ + pr—l)vr < V) <O\ + pr)vr ()\ + pr+1)vr+1 )’
when r = dy, (X,,x) > 0. If X, = X, then (independent of x € X),

R()_111+1++1+(90)
“’X‘< v)[k+1 G+pyv T+ po)vs ]
Corollary (6.2.6) [209]: (a) If pv > 1(s,, = ; lf/Z) > 2), then for each x € X.

Ro(x,x):fp(t,x,x)dt:<1—l)<1 1 ! +--):p(v_1)<oo.

AV (=) I A
If pv<1 (ie, s, = 15(11% < 2), then 7\|1>T0 R, (X,x) = 0. Thus the random walk x(t) with the

generator Ay, is transient for s, > 2 and recurrent for s, < 2.
(b) If s, > 2 and p(x,, X) = oo (see (2)), then

R (1 1 1 1 _ 1-p c
O(XO’X) - <prvr - pr—lvr) + <pr+1vr+1 - prvr+1) +oee= (pr)r—l(pv — ]_) - psh—2 (XO’ x)’
_pv(l-p)
c=———.
pv—1
This is one more indication of a similarity between A, and the lattice Z¢ Laplacian.
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Now let’s find the asymptotic of p(t, x,x) as t = co. The asymptotics will play an essential role in
the spectral theory of the Schrodinger operator H = —A;, + V(x).
Proposition (6.2.7) [209]:For arbitrary spectral dimension sy,.
1
p(t,X,X):tS?, t — oo,

and there exists a positive periodic function h;(z) = h,(z + 1) such that

In
hl(@)
p(t,x,x) = —5>—(1+0(1)) ast— oo. (91)
tz
Proof. The index of the maximal terms in the series p(t,x,x) = (1 —‘—1,) Yezo e:; " has order s =

Int Int

O( ) when t—oo. We put k=] ] and change the order of terms in the series

In1/p In(1/p)
representation of p, first taking the sum over s > k and then taking the sum over s < k:
1 e—pkt e—p(k+1)t e_p(k_l)t
p(tX,X):(l——)( —+ — +...+T+...>
\Y; \Y; \Y; v
1yePt|  epfta-p)  ep*t(1-p?) P(1p) P
= <1 - _) 1 + =+ I o +
v/ vk v V2 vl V2
+-. (92)
. Int _ Int . .
The relation - k + {ln(1/p)} implies that
Int Int Int Int
pkt = p_{ln(1/p)} and V—];( = @ In(1/p) In VV_{ln(llp)} — #V—{m}.

We substitute the latter relations into (8) and note that {x} is a periodic function of x with period
one.

This and (8) would lead to (7) with zero reminder term if both series in square brackets in (8) had
infinitely many terms. Since the second part in the square brackets has onlyk terms we obtain (7)
with an exponentially small reminder.

The next statement provides the asymptotic expansion of R, (x,x) as A — +0. We restrict ourselves
to the more difficult and important case where s, < 2. As in the previous proposition, the main
term of the expansion contains a periodic function. We will use an alternative approach to show
that:

Proposition (6.2.8) [209]: If s, < 2, then

Inv. s

R 00) = 1au (MM e+ 000, Ao +0a=1
AR = u<Inp) Co ' CTRET T T T2

is a constant and u(z + 1) = u(z) is a positive periodic function with period one.

p(v—-1)
1

where ¢, =

Proof. From series representation (6) it follows that
1 _v-—1
Rpx - ER?\ = V—(pl 1)
We put R; = ¢, + f(1). Then
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1 . _pA-Vv)
fpa) — T =

v(pA+1)"
After the substitution f(A) = A~*g(A) we arrive at
— — pz(l — V) 1+a
g(p)&) - 9(7\) - ZO\) — W?\ . (93)

The estimate |Z(A)| < C|AT**|,A > O, is valid for the function  (this estimate was the goal of the
subtraction of the constant ¢, from R, made above). Hence the series g, = X¢ {(pA),A > 0,
converges, has order O(A1*®) as A —» +0 and is a partial solution of Eq. (9). Any solution of the

homogeneous equation (9) is a periodic function of In, A = E with period one. This completes the

proof.

Rmark (6.2.9) [209]:The statement of the proposition and its proof remain valid if A — 0 in the
complex plane, and |arg A| < 3n/4.

We conclude this section by defining two functions, 6(t) and ¢(z), which are the analogues of the
corresponding classical 1-D functions:

+
\Y; V2

e Pt g Pt
+ .,

o(t) = fe_xthOL) = <1 _ %) le—t 4

0

Oy voom= (- Y A= (-

r=0

The formula for ¢(z) is obtained for Re z € (0,8) with a small enough & > 0 (pR¢?v > 1) and
understood in the sense of the analytic continuation for other z. The function ¢ has no complex
S iTtn
?h In1/p’
The functions p(t,x,y) and R, (x,y) play a central role in the analysis of the positive spectrum of
the hierarchical Schrodinger operator

H=A,+V(x), V=0. (94)
With only weak assumptions on V, the positive spectrum A,, = A,(H) = 0 of H is discrete (possibly,
with accumulation at A = 0). Our goals are to find upper bounds on N,(V) = #{A, = 0} and on
the Lieb-Thirring sums S, (V) = ¥,(A,)Y,y > 0. Below, we will provide several estimates on N,
and S, which are valid [202, 208] for general discrete operators and for the operator (10) in

particular (the case of operators on the Euclidian lattice Z¢ can be found in [200]).
Let X be an arbitrary countable set and let H, be a bounded self-adjoint operator on 12(X) given by

How(0 = ) h(x )W) = w0),
Vy#X

h(x,y) = h(y,x) =0 forx # v, Z h(x,y) < C, < oo.
yy£X

zeros, but (compare to [203]) has infinitely many polesatz =z, =

Itis clear that H, = Hg,Hy < O, ||Hyl| < 2C,.
Let p(t,x,y) = P, (x(t) =y) be the transition kernel of the continuous time Markov chain x(t)
generated byH,. Of course,

ap

E = HOp! p(oax! y) = Sy(x)-
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We assume that x(t) is connected which means, since its time is continuous, that p(t,x,y) > 0 for
arbitraryx,y € Xand t > 0.
The bounds for the eigenvalues of H, depend essentially on whether the process x(t) is transient or

recurrent. If fO°° p(t, x,x)dt < oo for everyx € X, then x(t) is transient, i.e., P-a.s., x(t) > w0 ast —

oo, If fO°° p(t,x, x)dt = oo for everyx € X, then x(t) visits each state x € X infinitely many times P-
a.s. and the process is called recurrent. It is a well-known fact that, if the chain is connected, the
convergence or divergence of f0°° p(t, x,x)dt is independent of X, y.

Theorem (6.2.10) [209]: (General CLR estimate for discrete operators). If fO°° p(t, x,x)dt < oo, then
for anya, o > 0 and some ¢, (o),

No(V) < #X € XV0O > a} + ca0) D V() f o(t, x x)dt

x:V(x)<a o
V(x)

Theorem (6.2.11) [209]: (LT estimate). Iffooo p(t, x,x)dt < co then

1 1+ [
SY(V)S@;(V Y(x) !p(t,x,x)dt.

v
Theorem (6.2.12) [209]: If f,” t™Yp(t,x, X)dt < oo for some y > O, then

[0¢]

2y (y)
5, (V) s%;{va) f t=Vp(t, x, X)dt.

(Note that here, the process x(t) may not be transient.)
The following two results are valid in both transient and recurrent cases. These results are based on
the method of partial annihilation, proposed in [202, 208]. In the discrete situation it is equivalent to
the rank-one perturbation technique.
Consider, for a fixed x, € X, the process x(t) with the condition of annihilation at x,. The
corresponding transition probabilityp; (t, X, y) is given by

ap

a_tl =HoP1, XY # XoP1(tXo,y) =0; p1(0,x,y) = 8,(x).(95)
As easy to see, [ p; (t,x, X)dt < 0.

Theorem (6.2.13) [209]: (CLR estimate, the general case). For anya, o > 0 and some ¢, (o),

Ny (V) < 1+ #{x: V() > a} + ¢, () Z V(x) f 0, (t, X, X)dt

x:V(x)<a o

V(x)
Theorem (6.2.14) [209]: (LT estimates, the general case). The following two estimates hold for
each ¢ = 0 and some c(c) > O:

1 (o]
5, (V) < AY + @Zvlﬂ(x) f p(tx,X)dt,  (96)

V(&)
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2yT'(y) [
c(o) ZV(X) !t Yp,(t,x,x)dt, (97)

V(&)

S,(V) <AV +

Here Ais the largest eigenvalue of H.

Remark (6.2.15) [209]:(6.2.13) and (6.2.14) are valid without any assumptions on p,, i.e., in both
transient and recurrent cases.

Note that Theorem (6.2.13) not only covers the recurrent case, but also provides a better results than
Theorems (6.2.10), (6.2.11) in the transient case when the operator H = H* depends on a parameter
a which approaches a threshold a = o, where the process becomes recurrent. In Theorem (6.2.10),
(6.2.11) the integrals in t blow up when o approaches a, whereas they remain bounded in theorem
(6.2.13). A similar remark is valid for Theorem (6.2.14)where the threshold depends on the values
of a and .

In the case where o =0, [11] contains a more detailed description of the results obtained in
Theorem (6.2.10), (6.2.14)

Theorems (6.2.10), (6.2.12) and Proposition (6.2.8), when applied to the operator (10), lead to the
same bound on N, (V) and S, (V) as in the case of the standard Schrédinger operator in RY with the
dimension d replaced by the spectral dimension S;,. and essential difference is that, while d must be
an integer, the spectral dimension S, can be an arbitrary positive number. The corresponding bound

S

hold if s > 2, where s = §;, in the estimate on Ny(V) and s =y + Zh in the estimates on S, (V). The

right-hand sides in these estimates blow up when s | 2 (the integrals in t diverge when s = 2). For
example, Theorem (6.3.10) with o = 0 and Proposition (6.2.8) imply a usual estimate:

C(A) Z \/Sh/2 (X), 2 < Sh < A.
Sp—2
x:V(x)<a
The case s < 2 is covered by Theorems (6.2.13), (6.2.14). In fact, these theorem are valid for
anys > 0 and the estimate proven there are (locally) uniform in s. Hence they provide a better result
in the transient case s > 2 than do Theorems (6.2.10), (6.2.12) when s | 2, see [208].
In order to apply Theorems (6.2.13), (6.2.14), one needs to know an estimate on p; as t — oo and
both the annihilation point x, and x are arbitrary. If o = 0, then only the integral f0°° p, dt is needed,
not p, itself. The corresponding results can be found in [208] (we concentrated on N, (V) in [208],
but S, (V) can be studied similarly). Theorem (6.2.13) with ¢ =0 implies [208] the following
Bargmann type result:
No(V) < 1+ #pcV(X) = 1} + C,(Sp) Z V () p (X, X)2ShS,, < 2, (98)
x:V(x)<1
with C,(S}) —» o« as S;, » 2. A more accurate estimate of f0°° p,dt leads [208] to estimates on
No (V) for all S, and with a uniformly bounded constant:
Theorem (6.2.16) [209]: If e < S;, < £71, Sy, # 2, then

No(V) < #{x e X:V(X) > a} +

[1+p(X,x)]*5h —1

No(V) < 1 +#{x:V(x) = 1} + C, (&) Z V(X)

- - (99)
x:V(x)<1 (ﬁ) h—1

If S, = 2, then
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In[1 + p(Xg, X)]

No(V) < 1 +#{V(X) = 1} +C, Z V(X)
x:V(x)<1 ﬁ
We will obtain an estimate for p; as t — oo, which allows one to use Theorems (6.2.13), (6.2.14)
with arbitraryec > 0. We will restrict ourselves to the case where S;, < 2 and provide an estimate
only on Ny (V). The following refined Bargmann type estimate is an immediate consequence of
Theorem (6.2.13) and Proposition (6.2.19) which will be proven below.
Theorem (6.2.17) [209]:1f S}, < 2, then

No(V) < 1+#{x:V(x) = 1} + C,(Sp) Z veE (C[L + p2(xg, X)]*~5n.
x:V(x)<1
We will conclude with a proof of the estimate on p; as t — co. This estimate is needed to justify the
refined Bargmann estimate stated above and to prove similar estimates for S,.

Remark (6.3.18) [209]:We expect that, in the case of fractal lattices similar to the Sierpincki lattice,
the same estimate will be valid for a random walk with annihilation at a point.

Proposition (6.2.19) [209]:The following estimate is valid.

(pZ + 1)20( Sh

t=1p=pXpX),a=1——.

p,(t,x,x) <C 5

t1+oc !
Proof.Consider the function

[0¢]

RV (xy) = f e Mp, (t,x, y)dt. (100)

0
It is well defined when ReA > 0 and understood in the sense of analytic continuation for complex

A€ C, ={A € C:larg)\| < 3m/4}. From (95) it follows that Rgll) satisfies
(& = DRPO(xY) = =6,(0,  xy#x, RP(xy) =0
Hence R%l)(x, y) = R, (X,y) + cR, (X, Xo), Which together with the second relation in the formula

above implies that

R{V(x,y) = Ry(xy) — %Rm Xo)-

We put here y = x and R, (X, X) = Ry (X0, Xo) + Ry (Xo, X) Where (see Proposition (6.2.5))

_ 1 ne 1
RA(XO,X) = —m - <1 - V);m, r= dh(XO,X)(lol)

Taking also into account that R, (X, X,) = Ry (X, X) and R, (x,x) does not depend on x, we obtain
that

- RZ(Xq,%)
(1) — A\ Ko,
R37(x,x) = —2R, (Xy,X) — =———=. (102)
A Aro Ry (X0, Xo)
We not that (101) immediately implies the following two estimates:
A
|Rx(x0, )| < < v )r, |Rx (%0, X) — Ry (o, )| < ® c )l forallA€C,,r >0,

which together with (18) and the Remark after Proposition (6.2.8) lead to

RV (x,x) = a(r) + g, r),a(r) = =Ry (xo, %), Igl < 2dAl , cAl®

- (|OV)r (pv)2r (103)
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The last estimate is valid for all A € C, with |A| <1 and all r > 0.
Applying the inverse Laplace transform to (100) we obtain

b+ico
1
p.(t,x,x) = o f e“Rgll) (x, x)dA, b> 1
b—ico
Since Rg\l) is analytic in A € C,, and |R§1)| < ﬁ (the resovlent does not exceed the inverse

distance from the spectrum), the last integral can be rewritten as

1
P1(t X X) = == f eMR{Y (x, x)d,
2T
r
where I' = dC, with the direction on I' such that ImA increase along I'. We now use (103), the

decay of Rgll) on T at infinity, and the fact that fr eMdA = 0,t > 0. This leads to
1 2clA]  cq|Al® a; a,
< — et + = -+ :
pl(t,X,X) = 2m |e | ((pv)r (pV)Zr | | t2 (pv)r t1+oc(pv)2r
. _ Inv . _ i _ 1
It remains to recall that o« = 1 e (see Proposition (6.2.8). Thus pv = p%, and T o
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List of Symbols

Symbol Page
Sup Supremum 1
HS Sobolev space 1
L1 Dual Lebasgue space 1
w4 Sobolev space 1
max Maximum 2
L? Helbert space 5
inf Infimum 5
LP Lebasgue space 8
min Minimum 14
Sup Supremum 15
a.e Almost every where 22
L® Essential Lebasgue space 24
Loc Local 25
ker Kernel 37
van Vange 37
ess Essential 38
ac Absolutely 38
Sc Singular continuous 38
Au Auxiliary 40
@ Orthogonal sum 43
TPSG Two- point self- similar fractal | 44
deg Degree 46
int Interior 50
12 Helbert space 56
L1 Lebasgue space on real line 59
X Tensor produil 59
Cont Conditionally 64
dist Distance 69
[® Lebasgue space 70
F, Triebal- lizorkin-spaces 85
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Re Real 85

meas Measene 85

det Determinant 97

dom Domain 97

comp complete 99

Gr Gram 100
gr Graph 100
oy Point spectrum 100
O Single Spectrum 105
Const Constant 111
0 Direct difference 117
ext Extension 118
mul Multi 118
op Operator 120
Im Imaginary 137
tr Trace 145
p.a.s Probably almost sure 145
r.v Random variable 153
aff Affine 162
Par Parametrize 164
CLR Cwikel — lieb rozenblum 164
LT Lieb- Thirring 164

176




References

[1] Bourgain, J.: A remark on Schrodinger operators. - Israel J. Math. 77:1-2, 1992, 1-16.

[2] Bourgain, J.: Some new estimates on oscillatory integrals. - In: Essays on Fourier analysisin
honor of Elias M. Stein (Princeton, NJ, 1991), Princeton Math. Ser. 42, 1995, 83-112.

[3] Carbery, A.: Radial Fourier multipliers and associated maximal functions. - In: Recentprogress
in Fourier analysis (El Escorial, 1983), North-Holland Math. Stud. 111, 1985, 49-56.

[4] Carleson, L.: Some analytic problems related to statistical mechanics. - In: Euclidean

harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), Lecture Notes inMath.
779, 1980, 5-45.

[5] Cowling, M.: Pointwise behavior of solutions to Schrddinger equations. - In: Harmonicanalysis
(Cortona, 1982), Lecture Notes in Math. 992, 1983, 83-90.

[6] Dahlberg, B. E. J., and C. E. Kenig: A note on the almost everywhere behavior of solutionsto the
Schrodinger equation. - In: Harmonic analysis (Minneapolis, Minn., 1981),Lecture Notes in Math.
908, 1982, 205-209.Global estimates for the Schrédinger maximal operator435

[7] Gulkan, F.: Maximal estimates for solutions to Schrodinger equations. - TRITA-MAT-1999-06,
Dept. of Math., Royal Institute of Technology, Stockholm.

[8] Kenig, C. E., G. Ponce, and L. Vega: Well-posedness of the initial value problem for
theKorteweg-de Vries equation. - J. Amer. Math. Soc. 4:2, 1991, 323-347.

[9] Kenig, C. E., G. Ponce, and L. Vega: Oscillatory integrals and regularity of dispersive
equations. - Indiana Univ. Math. J. 40:1, 1991, 33-69.

[10] Kenig, C. E., and A. Ruiz: A strong type (2; 2) estimate for a maximal operator associatedto
the Schrddinger equation. - Trans. Amer. Math. Soc. 280:1, 1983, 239-246.

[11] Lee, S.: On pointwise convergence of the solutions to Schrédinger equations in R2. - Int.Math.
Res. Not., 2006, Art. ID 32597, 21.

[12] Moyua, A., A. Vargas, and L. Vega: Schrodinger maximal function and restriction propertiesof
the Fourier transform. - Internat. Math. Res. Notices 16, 1996, 793-815.

[13] Moyua, A., A. Vargas, and L. Vega: Restriction theorems and maximal operators relatedto
oscillatory integrals in R3. - Duke Math. J. 96:3, 1999, 547-574.

[14] Rogers, K. M., A. Vargas, and L. Vega: Pointwise convergence of solutions to the
nonellipticSchrddinger equation. - Indiana Univ. Math. J. 55:6, 2006, 1893-1906.

[15] Sjo6lin, P.: Regularity of solutions to the Schrodinger equation. - Duke Math. J. 55:3, 1987,699—
715.

177



[16] Sjolin, P.: Global maximal estimates for solutions to the Schrddinger equation. — StudiaMath.
110:2, 1994, 105-114.

[17] Sj6lin, P.: Lp maximal estimates for solutions to the Schrédinger equation. - Math. Scand.81:1,
1997, 35-68.

[18] Sjblin, P.: Homogeneous maximal estimates for solutions to the Schrdodinger equation. -Bull.
Inst. Math. Acad. Sinica 30:2, 2002, 133-140.

[19] Sj6lin, P.: Spherical harmonics and maximal estimates for the Schrédinger equation. -
Ann.Acad. Sci. Fenn. Math. 30:2, 2005, 393-406.

[20] Sj6lin, P.: Maximal estimates for solutions to the nonelliptic Schrodinger equation. -
Submitted.

[21] Tao, T.: A sharp bilinear restrictions estimate for paraboloids. Geom. Funct. Anal. 13:6,2003,
1359-1384.

[22] Tao, T., and A. Vargas: A bilinear approach to cone multipliers. 1. Applications. Geom.Funct.
Anal. 10:1, 2000, 216-258.

[23] Vega, L.: El multiplicador de Schrodinger. La funcion maximal y los operadores de
restriccion.- Universidad Autdnoma de Madrid, 1988.

[24] Vega, L.: - Schrodinger equations: pointwise convergence to the initial data. - Proc.
Amer.Math. Soc. 102:4, 1988, 874-878.Received 22 May 2006

[25] K.M. Rogers, P. Villarroya, Global estimates for the Schrédinger maximal operator, Ann.
Acad. Sci. Fenn.Math. 32 (2) (2007) 425-435.

[26] J. Bourgain, Estimates for cone multipliers, in: Geometric Aspects of Functional Analysis,
Israel, 1992-1994, Oper.Theory Adv. Appl., vol. 77, Birkhduser, Basel, 1995, pp. 41-60.

[27] A. Carbery, The boundedness of the maximal Bochner—Riesz operator on L4(R2), Duke Math.
J. 50 (2) (1983)409-416.

[28] A. Carbery, Restriction implies Bochner—Riesz for paraboloids, Math. Proc. Cambridge Philos.
Soc. 111 (3) (1992)525-529.

[29] P. Constantin, J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math.
Soc. 1 (2) (1988)413-439.

[30] C. Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1973) 44-52.
[31] C. Fefferman, E.M. Stein, Hp spaces of several variables, Acta Math. 129 (3-4) (1972) 137-
193.

[32] G. Garrigds, A. Seeger, A note on plate decompositions of cone multipliers, Proc. Edinburgh
Math. Soc., in press.

[33] I. Laba, T.Wolff, A local smoothing estimate in higher dimensions, J. Anal. Math. 88 (2002)
149-171, dedicated tothe memory of Tom Wolff.

[34] S. Lee, Improved bounds for Bochner—-Riesz and maximal Bochner—Riesz operators, Duke
Math. J. 122 (2004)105-235.

[35] S. Lee, Bilinear restriction estimates for surfaces with curvatures of different signs, Trans.
Amer. Math. Soc. 358 (8)(2006) 3511-3533 (electronic).

[36] S. Lee, A. Seeger, manuscript.

[37] A. Miyachi, On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28
(2) (1981) 267-315.

[38] G. Mockenhaupt, A. Seeger, C.D. Sogge, Wave front sets, local smoothing and Bourgain’s
circular maximal theorem,Ann. of Math. (2) 136 (1) (1992) 207-218.

[39] J.C. Peral, Lp estimates for the wave equation, J. Funct. Anal. 36 (1) (1980) 114 145.

[40] P. Sj6lin, A counter-example concerning maximal estimates for solutions to equations of
Schrodinger type, IndianaUniv. Math. J. 47 (2) (1998) 593-599.

[41] C.D. Sogge, Propagation of singularities and maximal functions in the plane, Invent. Math. 104
(2) (1991) 349-376.

178



[42] C. Sulem, P.-L. Sulem, The Nonlinear Schrodinger Equation, Appl. Math. Sci., vol. 139,
Springer-Verlag, NewYork, 1999, xvi+350 pp.

[43] A. Vargas, Restriction theorems for a surface with negative curvature, Math. Z. 249 (1) (2005)
97-111.

[44] T. Wolff, Local smoothing type estimates on Lp for large p, Geom. Funct. Anal. 10 (5) (2000)
1237-1288.

[45] T. Wolff, A sharp bilinear cone restriction estimate, Ann. of Math. (2) 153 (3) (2001) 661-698.
[46] K.M. Rogers, A local smoothing estimate for the Schrodinger equation, Adv. Math. 219
(2008), no. 6,2105-2122.

[47] Ginibre, J.,Velo, G.: The globalCauchy problem for the nonlinear Schrédinger equation
revisited. Ann.Inst. H. Poincaré Anal. Non Linéaire 2(4), 309-327 (1985)

[48] Kato, T., Yajima, K.: Some examples of smooth operators and the associated smoothing effect.
Rev.Math. Phys. 1(4), 481-496 (1989)

[49] Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955-980 (1998)

[50] Lee, S., Vargas, A.: Sharp null form estimates for the wave equation. Am. J. Math. 130(5),
(2008)

[51] Montgomery-Smith, S.J.: Time decay for the boundedmean oscillation of solutions of the
Schrddingerand wave equations. Duke Math. J. 91(2), 393-408 (1998)

[52] Planchon, F.: Dispersive estimates and the 2D cubic NLS equation. J. Anal. Math. 86, 319-334
(2002)

[53] Sogge, C.D.: Lectures on nonlinear wave equations. Monographs in Analysis, 1. International
Press,Boston (1995)

[54] Stein, E.M.: On limits of sequences of operators. Ann. Math. 74(2), 140-170 (1961)

[55] Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals,
vol 43.Princeton Mathematical Series, Princeton University Press, New Jersey (1993)

[56] Strichartz, R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions
ofwave equations. Duke Math. J. 44(3), 705-714 (1977)

[57] Tao, T., Vargas, A.: A bilinear approach to cone multipliers. 1. Restriction estimates. Geom.
Funct.Anal. 10(1), 185-215 (2000)

[58] Tomas, P.A.: A restriction theorem for the Fourier transform. Bull. Am.Math. Soc. 81, 477—-
478 (1975)

[59] Strichartz estimates via the Schr odinger maximal operator, Math. Ann. 343 (2009),
no.3,604{622.

[60] Brasche, J.F., Neidhardt, H.: Some remarks on Krein's extension theory. Math. Nachrichten
165, 159-181 (1994)

[61] Brasche, J.F., Neidhardt, H.: On the absolutely continuous spectrum of self-adjoint extensions.
J. Funct. Analysis 131, No. 2, 364-385 (1995).

[62] Brasche, J.F., Neidhardt, H., Weidmann, J.: On the point spectrum of self-adjoint extensions.
Math. Zeitschrift 214, 343-355 (1993)

[63] Brasche, LF., Neidhardt, H., Weidmann, J.: On the spectra of self-adjoint extensions. Operator
Theory, Advances and Applications 61, 29-45. Birkhiiuser, Boston-Basel-Stuttgart 1993

[64] Derkach, V.A., Malamud, M.M.: Generalized resolvents and the boundary value problemsfor
Hermitean operators with gap. J. Funct. Analysis 95, 1-95 (1991)

[65] del Rio, R., Makarov, N., Simon, B.: Operators with singular continuous spectrum I1. Rank one
operators. Comm. Math. Phys. 165, 59-67 (1994)

[66] Friedrichs, K.: Spektraltheorie halbbeschr~inkter Operatoren und Anwendung auf die
Spektralzerlegung yon Differentialoperatoren. Math. Ann. 109, 465-487 (1934)

[67] Gordon, A.: Pure point spectrum under |-parameter perturbations and instability of

Anderson localization. Comm. Math. Phys. 164, 489-505 (1994)

179



[68] Krein, M.G.: Theory of setf-adjoint extensions of semi-bounded Hermitan operators and its
application. 1. Mat. Sbornik 20 (1947), No. 3, 431-490 (in Russian)

[69] Malamud, M.M.: On certain classes of extensions of a Hermitean operator with gaps.Ukrainian
Math. Joum. 44, 215-233 (1992).

[70] Johannes Brasche 1, Hagen Neidhardt 20n the singular continuous spectrum of self-adjoint
extensions. Math. Z. 222, 533-542 (1996)

[71] K. AMaTO, Point spectrum on a quasi homogeneous tree, Pacific J. Math. 147

(1991), 231-242.

[72] M. AIZENMAN AND S. MOLCHANOV, Localization at large disorders and at extreme
energies: An elementary derivation, Comm. Math. Phys. 157 (1993), 245-278.

[73] J. BELLISSARD, "Renormalization Group Analysis and Quasicrystals, Ideas and

Methods in Quantum and Stat. Phys.," Vol. 2, pp. 118-149, Cambridge Univ. Press.

Cambridge, UK. 1992.

[74] A. BUNDE AND S. HAVLIN, Eds., "Percolation. I, Fractals and Disordered

Systems," pp. 51-95, Springer-Verlag, Berlin/New York, 1991.

[75] M. FUKUSHIMA AND T. SHIMA, On discontinuity and tail behaviors of the

integrated density of states for nested pre-fractals, preprint (1993).

[76] J. KIGAMI, Harmonic calculus on P.C.F. self-similar sets, Trans. Amer. Math. Soc.

335 (11993), 721-755.

[77] J. KIGAMI AND M. LAPIDUS, Weyl's problem for the spectral distribution of
Laplacians on P.C.F. self-similar fractals, Comm. Math. Phys. 158 (1993), 93-125.

[78] T. LINDSTROM, Brownian motion on nested fractals, Mem. Amer. Math. Soc.

420 (1989), 1-128.

[79] L. MAWZEMOV, The difference Laplacian LI on the modified Koch curve. Russian J. Math.
Phys. 4 (1993), 495-510.

[80] L. MALOZEMOV, The integrated density of states for the difference Laplacian on the
modified Koch graph, Comm. Math. Phys. 156 (1993), 387-397.

[81] V.MULLER, On a spectrum on an infmite graph, Linear Algebra Appl. 93 (1987), 187-189.
[82] B. MOHAR AND W. WOESS, A survey on spectra of finite graphs, Bull. London Math. Soc.
21 (1989), 209-234.

[83] R.RAMMAL, Spectrum of harmonic excitations on fractals, J. Physique 45 (1984), 191-
206.

[84] M. REED AND B. SIMON, "Methods of Modem Mathematical Physics. I. Functional
Analysis," Academic Press, New York, 1972.

[85] R.B.STINCHCOMBE, in "Phase Transitions, Order and Chaos in Nonlinear Physical
Systems” (S. Lundgvist, N. H. March, and M.

[86] LEONID MALOZEMOV* AND ALEXANDER TEPLY AEV+, Pure Point Spectrum of the
Laplacians on Fractal Graphs. JOURNAL OF FUNCTIONAL ANALYSIS 129, 390-405 (1995).

[87] Aizenman M., Molchanov S.: Localization at large disorder and at extreme energies:
anelementary derivation. Commun. Math. Phys. 157 (1993), no. 2, 245-278.

[88] Bovier, A.: The density of states in the Anderson model at weak disorder: a
renormalizationgroup analysis of the hierarchical model. J. Statist. Phys. 59 (1990), no. 3-4,745-
779.

[89] Bleher, P. M., Sinai, Ya. G.: Investigation of the Critical Point in Models of the Type
ofDyson’s Hierarchical Models. Commun. Math. Phys. 33, (1973).

[90] del Rio R., Makarov N., Simon B.: Operators with singular continuous spectrum: I1.Rank one
operators. Commun. Math. Phys. 165 (1994), 59.

[91] Dyson, F.J.: Existence of a phase-transition in a one dimensional Ising Ferromagnet.

180



Comm. Math. Phys. 12, 91 ( 1969).

[92] Molchanov, S.: Lectures on random media. Lectures on probability theory (Saint-Flour,
(1992), 242-411, Lecture Notes in Math., 1581, Springer, Berlin, 1994.

[93] Molchanov S.: Hierarchical random matrices and operators. Application to Andersonmodel.
Multidimensional statistical analysis and theory of random matrices (BowlingGreen, OH, 1996),
179-194, VSP, Utrecht, 1996.

[94] Simon B., Wolff T.: Singular continuous spectrum under rank one perturbations
andlocalization for random Hamiltonians. Communications in Pure and Applied Mathematics49
(1986), 75.

[95] E. Kritchevski, Spectral localization in the hierarchical Anderson model, Proc. Amer. Math.
Soc. 135 (5) (2005)1431-1441.

[96] A. Baernstein and E.T. Sawyer, Embedding and multiplier theorems for Hp(Rn), Mem. Amer.
Math.Soc. 53 (1985), no. 318.

[97] L. Carleson and P. Sj olin, Oscillatory integrals and a multiplier problem for the disc, Studia
Math. 44(1972), 287-299.

[98] M. Christ, On almost everywhere convergence of Bochner-Riesz means in higher dimensions,
Proc.Amer. Math. Soc. 95 (1985), 16-20.

[99] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 1970
9-36.

[100] L. H ormander, Oscillatory integrals and multipliers on FLp, Ark. Mat. 11 (1973), 1-11.
[101] F. Nazarov and A. Seeger, Radial Fourier multipliers in high dimensions, preprint.

[102] A. Seeger, On quasiradial Fourier multipliers and their maximal functions, J. Reine Angew.
Math. 370(1986), 61-73.

[103] , Remarks on singular convolution operators, Studia Math. 97 (1990), 91-114.
[104]Endpoint inequalities for Bochner-Riesz multipliers in the plane, Pacific J. Math. 174
(1996),543-553.

[105] T. Tao, A. Vargas and L. Vega. A bilinear approach to the restriction and Kakeya conjectures,
J. Amer.Math. Soc. 11 (1998), 967-1000.

[106] H. Triebel, Theory of function spaces. Monographs in Mathematics, 78. Birkh auser Verlag,
Basel, 1983.

[107] A. Zygmund, On Fourier coefficients and transforms of functions of two variables, Studia
Math. 50(1974), 189-201.

[108] K.M. Rogers and A. Seeger, Endpoint maximal and smoothing estimates for Schr odinger
equations, J.Reine Angew. Math., 640 (2010), 47-66.

[109] W. Beckner, A. Carbery, S. Semmes, and F. Soria, A note on the restriction of the Fourier
Transformto spheres, Bull. London. Math. Soc. 21 (1989), 394{398.

[110] J. Bourgain and L. Guth, Bounds on oscillatory integral operators based on multilinear
estimates, arXiv1012.527, Geom. Funct. Anal., to appear.

[111] The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330{336.

[112] L. H ormander, Estimates for translation invariant operators in Lp spaces, Acta Math. 104
(1960),93140.

[113] U. Keich, On Lp bounds for Kakeya maximal functions and the Minkowski dimension in R2,
Bull.London Math. Soc. 31 (1999), no. 2, 213-221.

[114] S. Lee, K.M. Rogers and A. Seeger, Improved bounds for Stein's square functions,
arXiv:1012.2159,Proc. London. Math. Soc., to appear.

[115] S. Lee, K.M. Rogers and A. Vargas, An endpoint space{time estimate for the Schr odinger
equation,Adv. Math. 226 (2011), 4266{4285.

[116] G. Mockenhaupt, A. Seeger and C. D. Sogge. Local smoothing of Fourier integral operators
and Carleson-Sj olin estimates, J. Amer. Math. Soc. 6 (1993), no. 1, 65-130.

181



[117] D. M uller and A. Seeger, Regularity properties of wave propagation on conic manifolds and
applicationsto spectral multipliers, Adv. Math. 161 (2001), no. 1, 41130.

[118] S.Lee, K.M. Rogers and A. Seeger, on Space-Time Estimates for the Schrodinger Operator.
Mdison, WI, 53706, USA.

[119] N.I. Akhiezer, The Classical Moment Problem and Some Related Questions of Analysis,
Oliver and Boyd, Edinburgh,1965 (Russian edition: Moscow, 1961).

[120] N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert Spaces, Ungar, New
York, 1961.

[121] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Point interactions in two dimensions:
Basic properties,approximations and applications to solid state physics, J. Reine Angew. Math. 380
(1987) 87-107.

[122] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, SolvableModels in
QuantumMechanics, 2nd edition, AMSChelsea Publ., 2005 (with an Appendix by P. Exner).

[123] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, W. Kirsch, The periodic Schrédinger
operator for a particlein a solid with deterministic and stochastic point interactions, in: Schrodinger
Operators, in: Lecture Notes in Math.,vol. 1218, Springer, 1986, pp. 1-38.

[124] S. Albeverio, V.A. Geyler, The band structure of the general periodic Schrodinger operator
with point interactions,Comm. Math. Phys. 210 (2000) 29-48.

[125] S. Albeverio, A. Kostenko, M. Malamud, Spectral theory of semibounded Sturm-Liouville
operators with localpoint interactions on a discrete set, J. Math. Phys. 51 (2010) 102102.

[126] Yu. Arlinskii, E. Tsekanovskii, The von Neumann problem for nonnegative symmetric
operators, Integral EquationsOperator Theory 51 (2005) 319-356.

[127] M.S. Ashbaugh, F. Gesztesy, M. Mitrea, G. Teschl, Spectral theory for perturbed Krein
Laplacians in nonsmoothdomains, Adv. Math. 51 (2010) 1372-1467.

[128] J. Behrndt, M. Malamud, H. Neidhardt, Scattering matrices and Weyl functions, Proc. Lond.
Math. Soc. 97 (2008)568-598.

[129] F.A. Berezin, L.D. Faddeev, Remark on the Schrodinger equation with singular potential,
Dokl. Acad. Sci.USSR 137 (1961) 1011-1014.

[130] C. Berg, J.P.R. Christensen, P. Ressel, Harmonic Analysis on Semigroups, Springer-Verlag,
New York, 1984.

[131] A. Beurling, Local harmonic analysis with some applications to differential operators, in:
Proc. Annual ScienceConference, Belfer Graduate School of Science, 1966, pp. 109-125.

[132] S. Bochner, Monotone Funktionen, Stieltjessche Integrale und harmonische Funktionen,
Math. Ann. 108 (1933)378-410.

[133] J.F. Brasche, M. Malamud, H. Neidhardt, Weyl function and spectral properties of self-
adjoint extensions, IntegralEquations Operator Theory 43 (2002) 264-289.

[134] J. Bruning, V. Geyler, K. Pankrashkin, Spectra of self-adjoint extensions and applications to
solvable Schrédingeroperators, Rev. Math. Phys. 20 (2008) 1-70.

[135] S. Fassari, On the Schrédinger operator with periodic point interactions in the three-
dimensional case, J. Math.Phys. 25 (1984) 2910-2917.

[136] F. Gesztesy, K.A. Makarov, M. Zinchenko, Essential closures and AC spectra for
reflectionless CMV, Jacobi, andSchrédinger operators revisited, Acta Appl. Math. 103 (2008) 315-
339.

[137] 1.C. Gokhberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators,
Amer. Math. Soc.,Providence, RI, 1969.

[138] N. Goloschapova, M. Malamud, V. Zastavnyi, Radial positive definite functions and spectral
theory of Schrddingeroperators with point interactions, Math. Nachr. 285 (2012),
http://dx.doi.org/10.1002/mana.201100132.

[139] V.I. Gorbachuk, M.L. Gorbachuk, Boundary Value Problems for Operator Differential

182



Equations, Kluwer AcademicPubl., Dordrecht, 1991.

[140] A. Grossman, R. Hoegh-Krohn, M. Mebkhout, The one-particle theory of periodic point
interactions, Comm. Math.Phys. 77 (1980) 87-110.

[141] G. Grubb, A characterization of the non-local boundary value problems associated with an
elliptic operator, Ann.Sc. Norm. Super. Pisa (3) 22 (1968) 425-513.

[142] G. Grubb, Distributions and Operators, Springer-Verlag, New York, 20009.

[143] G. Grubb, Krein-like extensions and the lower boundedness problem for elliptic operators, J.
Differential Equations252 (2012) 852—-885.

[144] S. Hassi, S. Kuzhel, On symmetries in the theory of singular perturbations, J. Funct. Anal.
256 (2009) 777-809.

[145] R. Hoegh-Krohn, H. Holden, F. Martinelli, The spectrum of defect periodic point interactions,
Lett. Math. Phys. 7(1983) 221-228.

[146] H. Holden, R. Hoegh-Krohn, S. Johannesen, The short-range expansions in solid state
physics, Ann. Inst. H.Poincare A 41 (1984) 333-362.

[147] Y.E. Karpeshina, Spectrum and eigenfunctions of Schrodinger operator with zero-range
potential of homogeneous

lattice type in three-dimensional space, Theoret. Math. Phys. 57 (1983) 1156-1162.

[148] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, New
York, 1976.

[149] A.N. Kochubei, Elliptic operators with boundary conditions on a subset of measure zero,
Funktsional. Anal. I Prilozhen. 16 (1982) 137-1309.

[150] A.N. Kochubei, One dimensional point interactions, Ukrainian Math. J. 41 (1989) 1391-1397.
[151] A.S. Kostenko, M.M. Malamud, 1-D Schrodinger operators with local point interactions on a
discrete set, J. DifferentialEquations 249 (2010) 253-304.

[152] H.J. Landau, Necessary density conditions for sampling and interpolation of certain entire
functions, ActaMath. 117(1967) 37-52.

[153] J.L. Lions, E. Magenes, Non-homogeneous Boundary Value Problems and Applications, vol.
I, Springer, Berlin, 1972.

[154] V.E. Lyantse, Kh.B. Maiorga, On the theory of one-point boundary-value problem for
Laplace operator, Theor.Funktsii Funktsional Anal. i Prilozhen. 38 (1982) 84-91.

[155] M.M. Malamud, Certain classes of extensions of a lacunary Hermitian operator, Ukrainian
Math. J. 44 (1992)190-204.

[156] M.M. Malamud, Spectral theory of elliptic operators in exterior domains, Russ. J. Math. Phys.
17 (2010) 97-126.

[157] M.M. Malamud, H. Neidhardt, On the unitary equivalence of absolutely continuous parts of
self-adjoint extensions,J. Funct. Anal. 260 (2011) 613-638, arXiv:0907.0650v1 [math-ph].

[158] M. Malamud, H. Neidhardt, Sturm-Liouville boundary value problems with operator
potentials and unitary equivalence,

J. Differential Equations 252 (2012) 5875-5922, arXiv:0907.0650v1 [math-ph].

[159] V.P. Maslov, Operational Methods, Mir, Moscow, 1976 (translated from the Russian).

[160] V.A. Mikhailets, One-dimensional Schrodinger operator with point interactions, Dokl. Math.
335 (1994) 421-423.

[161] A. Posilicano, A Krein-like formula for singular perturbations of self-adjoint operators and
applications, J. Funct.Anal. 183 (2001) 109-147.

[162] A. Posilicano, Self-adjoint extensions of restrictions, Oper. Matrices 2 (2008) 483-506.
[163] L. Rade, B. Westergren, Mathematische Formeln, Springer-Verlag, Berlin, 1996.

[164] M. Reed, B. Simon, Methods of Modern Mathematical Physics. 11, Academic Press, New
York, 1975.

[165] M. Reed, B. Simon, Methods of Modern Mathematical Physics. 1V, Academic Press, New

183



York, 1978.

[166] K. Schmidgen, Unbounded Self-adjoint Operators on Hilbert Space, Springer-Verlag, New
York, 2012.

[167] 1.J. Schoenberg, Metric spaces and completely monotone functions, Ann. Math. 39 (1938)
811-841.

[168] I.J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44
(1938) 522-536.

[169] K. Seip, On the connection between exponential bases and certain related sequences in
L2(—7, ), J. Funct.Anal. 130 (1995) 131-160.

[170] A.G.M. Steerneman, F. van Perlo-ten Kleij, Spherical distributions: Schoenberg (1938)
revisited, Expo. Math. 23(2005) 281-287.

[171] R.M. Trigub, A criterion for a characteristic function and Polyé type criterion for radial
functions of several variables, Theory Probab. Appl. 34 (1989) 738-742.

[172] M.L. Vishik, On general boundary problems for elliptic differential equations, Trudy Moskov.
Mat. Obsc. 1 (1952)187-246 (in Russian); English translation in: Amer. Math. Soc. Transl. Ser. 2
24 (1963) 107-172.

[173] R.M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York,
1980.

[174] R.M. Young, On a class of Riesz—Fischer sequences, Proc. Amer. Math. Soc. 126 (1998)
1139-1142.

[175] V.P. Zastavnyi, On positive definiteness of some functions, J. Multivariate Anal. 73 (2000)
55-81.

[176] Mark M. Malamud, Konrad Schmudgen, Spectral theory of Schrédinger operators with
infinitelymany point interactions and radial positive definitefunctions. Journal of Functional
Analysis 263 (2012) 3144-3194

[177] M. Birman, M. Solomyak, Estimates for the number of negative eigenvalues of the

Schr odinger operator and its generalizations, Advances in Soviet Mathematics, 7,

(1991).

[178] R. Carmona, J. Lacroix, Spectral Theory of Random Schr odinger Operator,

Birhauser Verlag, Basel, Boston, Berlin, 1990.

[179] K. Chen, S. Molchanov, B. Vainberg, Localization on Avron-Exner-Last graphs: 1.

Local perturbations, Contemporary Mathematics, v. 415, AMS (2006), pp 81-92.

[180] M. Cwikel, Weak type estimates for singular values and the number of bound states

of Schrodinger operators, Ann. Math., (2) 106 (1977), 93-100.

[181] I. Daubichies, An uncertanty principle for fermions with generalized kinetic energy, Comm.
Math. Phys., 90 (1983), pp511-520.

[182] M.D.Donsker, S.R.S.Varadhan, Asymptotic evaluation of the certain Markov process
expectations for large time I.11. Comm. Pure Appl. Math. 1975, 28, pp1-47.

[183] M.D.Donsker, S.R.S. Varadhan, Asymptotics for the Wiener sausage, Comm. Pure

Appl. Math., 28, (1975) no. 4, 525-565.

[184] L. P. Eisenhart, Rimannian geometry, Eighth printing, Princeton Univ. Press, 1997.

[185] B.Gaveau. Principe de moindre action, propagation de la chaleur et estimees sous
elliptiques sur certains groupes nilpotents. Acta Mathematica, vol.139, N.1, 1977, p.

95-153.

[186] I. Gikhman, A. Skorokhod, Introduction to the Theory of Random processes,Dover
Publications, Inc., Mineola, NY, 1996.

[187] N. Guillotin-Plantard, Rene Schott. Dynamic Random Walks on Heisenberg Groups. Journal
of Theoretical Probability, vol. 19, No.2, April 2006, p.377-395.

[188] F. I. Karpelevich, V. N. Tutubalin, M. G. Shur, Limit theorems for the compositions of

184



distributions in the Lobachevsky Plane and Space, Theory of Probability and itsApplications, V.4,
(1959), pp 399-402.

[189] V. Konakov, S. Menozzi, S. Molchanov, in preparation.

[190] H. McKean, Stochastic integrals. Reprint of the 1969 edition, with errata. AMS Chelsea
Publishing, Providence, RI, 2005.

[191] E. Lieb, Bounds on the eigenvalues of the Laplace and Schr oedinger operators. Bull. Amer.
Math. Soc., 82 (1976), no. 5, 751-753.

[192] E. Lieb, The number of bound states of one-body Schroedinger operators and the

Weyl problem. Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ.

Hawaii, Honolulu, Hawaii, 1979), pp. 241-252,

[193] E. Lieb, W. Thirring, Bound for the kinetic energy of fermionswhich proves the

stability of matter, Phys. Rev. Letter, 35 (1975), 687-689.

[194] E. Lieb and W. Thirring, Inequalities for the moments of the eigenvalues of the
Schr'odinger Hamiltonian and their relation to Sobolev inequalities, in “Studies in

Mathematical Physics: Essays in Honor of Valentine Bargmann” (E. Lieb, B. Simon,

and A. Wightman, eds.), pp. 269-303, Princeton University Press, Princeton, 1976.

[195] G.Peccati, M.Yor, Identities in law between quadratic functionals of bivariate Gaussian
processes, through Fubini theorem and symmetric projections. In: Approximations and Probability,
Banach Center Publications 72, Varsovie, Poland, 2005, pp. 235-250.

[196] P. K. Rashevsky, Riemannian geometry and tensor analysis (in Russian), "Nauka”,
Moscow, 1967.

[197] M. Reed, B. Simon, Methods of Modern Mathematical Physics, V 4, Academic press,
N.Y.,1978.

[198] G. Rozenblum, Distribution of the discrete spectrum of singular differential operators,
(Russian) Dokl. Acad. Nauk SSSR, 202 (1972), 1012-1015; translation in Soviet Math.Dokl., 13
(1972), 245-249.

[199] G. Rozenblum, M. Solomyak, CLR-estimate for the Generators of Positivity Preserving and
Positively Dominated Semigroups, (Russian) Algebra i Analiz, 9 (1997), no. 6, 214-236; translation
in St. Petersburg Math. J., 9 (1998), no. 6, 1195-1211.

[200] G. Rozenblum, M. Solomyak, Counting Schr odinger boundstates: semiclassics and beyond,
Sobolev Spaces in Mathematics. Il. Applications in Analysis and Par-

rtial Differential Equations, International Mathematical Series, 8, Springer and T.

Rozhkovskaya Publishers, 2008, 329-354.

[201] M. Yor. On some exponential functionals of brownian motion. Adv.Appl.Prob., 24,

1992, p.509-531.

[202] S. Molchanov, B. Vainberg, On general Cwikel-Lieb—Rozenblum and Lieb-Thirring
inequalities, in: A. Laptev(Ed.), Around the Research of Vladimir Maz’ya, 11, in: Int. Math. Ser.
(N.Y.), vol. 13, Springer, 2010, pp. 201-246.

[203] E. Akkermans, G. Dunne, A. Teplyaev, Thermodynamics of photons on fractals, Phys. Rev.
Lett. 105 (2010) 230407.

[204] A. Bendikov, A. Grigoryan, C. Pitet, On a class of Markov semi-groups on discrete ultra
metric space, J. Potential Theory (2012), in press.

[205] F. Dyson, Existence of a phase transition in a one-dimensional Ising ferromagnetic, Comm.
Math. Phys. 12 (2) (1969) 91-107.

[206] M. Fukushima, T. Shima, On a spectral analysis for Sierpinski gasket, Potential Anal. 1 (1)
(1992) 1-35.

[207] J. Kigami, Analysis on Fractals, Cambridge Univ. Press, Cambridge, 2001.

[208] S. Molchanov, B. Vainberg, Bargmann type estimates of the counting function for general
Schrddinger operators,J. Math. Sci. 184 (4) (2012) 457-508.

185



[209] S. Molchanov *, B. Vainberg,On the negative spectrum of the hierarchicalSchrdodinger
operator. Journal of Functional Analysis 263 (2012) 2676—2688.

[210] Shawgy Hussein and Faris Azhari, On-Space time estimate and Spectral Theory for the
Schrddinger Operators, Phd Thesis, Sudan University of Science and Technology. College of
Science, (2015).

186



