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Abstract 

 

In this research we present a few model cases of how Fourier series can be 

applied. The range of applications is large , so our principle of selection has 

been to choose examples that are both interesting in themselves and have 

connections with different areas. As an applications we discuss two kinds of 

examples, the first one isto heat flow, and the second one is application of 

higher dimensional Fourier series to random walks on a lattice. 
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 الخلاصة

سلسلة فْسيش ّهجال التطبيق ّاسع جذا لزا فاى هبذأ في ُزا البحث ًقذم ًوارج قليلَ لحالات تطبيق 

 الأختباس قذ تن لاًتقاء أهثلَ تكْى هشْقَ في حذ راتِا ّهي ثن رات صلَ بالوجالات الوختلفَ .

في إطاس التطبيقات قذ ًاقشٌا ًْعيي هي الأهثلَ ,الٌْع الاّل ُْ التطبيق علي التذفق الحشاسي , ّالٌْع 

 َ فْسيش رات الأبعاد الكبيشٍ علي السشياى الشبكي .لئي لسلساالعشْالثاًي ُْ تطبيق السلْك 
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Introduction 

The Fourier transform converts a set of time domain data vectors into aset of 

frequency (or per time) domain vectors. 

This transform can be effectively used in many applications for example 

designing and using antennas, image processing and filters, smoothing and 

sharpening, data processing and analysis and  signal and noise estimation . 

Our research will be organized as follows: 

 In chapter one we study Best     Approximation by Finite Fourier Series, 

Fourier Series in Action, The first shot in the second industrial revolution, The 

last shot in the second World War, a nonclassical example: we study  the buzz, 

Convergence of Fourier Series, Rates of convergence and smoothness, 

Pointwise Convergence vs. Uniform Convergence, Studying Partial Sums via 

the Dirichlet Kernel: TheBuzz Is Back, The Complex Exponentials Are a Basis 

for           andMore on the Gibbs Phenomenon 

Chapter two illustrative   is Born, we discuss Convolution, really, Properties 

of Convolution: It‘s a Lot like Multiplication, Convolution in Action I: A Little 

Bit on Filtering, Convolution in Action II: differential equations, Probability 

distributions and probability density functions, The Central Limit Theorem: The 

Bell Curve Tolls for Theeand Fourier transform formulas under different 

normalizations. 

Chapter three discuss The day of reckoning, The right functions for Fourier 

Transforms: rapidly decreasing functions, a Very Little on 

Integrals,distributions, distributions as linear functional, Two important 

examples of distributions, a Physical analogy for distributions,Limits of 

distributions and The Fourier Transform of a Tempered distribution. 

Chapter four study Fluxions Finis: The End of differential 

Calculus,Approximations of distributions and Justifying the ―Try a 

FunctionFirst‖ Principle, The Generalized Fourier Transform Includes the 

Classical Fourier Transform,Operations on distributions and Fourier 

Transforms, duality, Changing Signs, Evenness and Oddness,a Function Times 

a distribution Makes Sense,The derivative Theorem, Shifts and the Shift 

Theorem, Scaling and the Stretch Theorem,Convolutions and the Convolution 

Theorem,δ Hard at Work, Filters, redux and diffraction: The sinc function, live 

and in pure color, with some application. 
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Chapter (1) 

L
2
 Approximation, Uniform Convergence and Gibbs 

Phenomenon 

Section(1.1): L
2
 Approximation and Fourier Series in Action 

We begin this section by studying the Best   Approximation by Finite Fourier 

Series . Here‘s a precise statement, and aproof,that a finite Fourier Series of 

degree   gives the best (trigonometric) approximation of that order in 

         to a function. 

Theorem (1.1.1): 

if                                        are any complex numbers, then 
 

   ∑    

 

    

         ∑        

 

    

 

Furthermore,equality holds only when          for every  . 

It‘s the last statement,on the case of equality ,that leads to the Fourier coefficients in a 

different  

way than solving for them directly as we did originally.          

Another way of stating the result is that the orthogonal projection of   onto the  

subspace of           spanned by the              is 

∑  

 

    

            

Here comes the proof.hold on. Write 

   ∑     

 

    

      ∑    

 

    

      ∑    

 

    

      ∑     
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     ∑    

 

    

        ∑     

 

    

            

We squared all the norms because we wont to use the properties of inner 

products to expand the last line. 

Using the identity we derived earlier ,the last line equals 

    ∑    

 

    

        ∑     

 

    

            

    ∑    

 

    

              ∑    

 

    

      ∑     

 

    

         

  ∑     

 

    

         
 

 

 

This looks complicated ,but the middle term is just asum of multiples of terms 

of the form  

   ∑    

 

    

                 ∑    

 

    

                          

    

So the whole thing drops out .The final term is  

 ∑     

 

    

            ∑     

 

    

         

We are left with 

   ∑   

 

    

         ∑    

 

    

       

 

 ∑     

 

    

         

This completely proves the theorem ,for the right hand side is the sum of two 

positive terms and hence    ∑   
 
               ∑     
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With equality holding if and only if 

∑      
            =0. 

The latter holds if and only if             for all   . 

The preceding argument may have seemed labor intensive, but it was all algebra based  

on the properties of the inner product. Imagine trying to write all of it out in terms of 

integrals. 

Now we discuss Fourier series in Action .we‘ve had a barrage of general 

information  

and structure ,and it‘s time to pass to the particular and put some of these ideas to 

work .in the following  we want to present a few model cases of how Fourier series  

can be applied .the range of applications is vast, so my principle of selection has been 

to choose example that are both interesting in themselves and have connections with 

different areas. 

the first applications are to heat flow ; these are classical , celebrated problems and 

should be in your storehouse of general knowledge . Another reason for including 

them is the form that one of the solutions takes as aconvolution integral . we we‘ll also 

look briefly at how the differential equation governing heat flow . 

the second application is not classical at all ; in fact,  it does not fit into    – theory as 

we laid it out last time. It has to do, on the one hand, with sound synthesis, and on the 

other. when we do higher dimensional Fourier analysis , we‘ll have an application of 

higher dimensional Fourier series  to random walks on lattice . it‘s cool, and, with 

alittle probability thrown in the analysis  of the problem is not beyond what we know 

to this point, but enough is enough. 

the study of how temperature varies over aregion was the first use by Fourier in the 

1820‘s of the method of expanding afunction into aseries of trigonometric function 

.the physical  phenomenon is described ,at least approximately , by apartial  

differential equation , and Fourier series can be used to write down solutions . 

we‘ll give abrief standard derivation of the differential equation in one spatial 

dimension ,so the configuration to think of this one- dimensional rod. the argument 

involves  anumber of common but difficult ,practically undefined terms , first among 

them the term :‗‗heat‖, followed closely by term ‗‗temperature‘‘. 
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As it is usually stated, heat is atransfer of ‗‗energy‘‘(another undefined term) due to 

temperature difference; The transfer process is called ‗‗heat‘‘. What gets transferred is 

energy. Because of this, heat is usually identified as a form of energy and has units of 

energy. we talk of heat as a‗ transfer of energy ‘ ,and hence of ‗heat flow‘ ,because, 

like so many other  physical quantities heat is only interesting if it‘s associated with 

achange. 

Temperature, more properly called ‗‗thermodynamic temperature‘‘ (for merly 

―absolute temperature‖) , is a derived quantity . the temperature of a substance is 

proportional to the kinetic energy of the atoms in the substance .A substance at 

temperature 0 (absolute zero) cannot transfer energy – it‘s not ‗‗hot‘‘. The principle at 

work , essentially stated by Newton, is: 

A temperature difference between tow substance in contact with each other causes 

atransfer of energy from the substance of higher temperature to the substance of lower 

temperature, and that‘s heat ,or heat flow .No temperature difference , no heat. 

Back to the rod. The temperature is a function of both the spatial variable x giving the 

position along the  rod and of the time t. we let         denote the temperature, and 

the problem is to find it .the description of heat just above ,with alittle amplification ,is 

enough to propose apartial differential  equation that        should satisfy . To derive 

it, we introduce        ,the amount  of heat that (flows) per second at x and t (so 

       is the rate at which energy is transfered at        ) . Newton‘s law of cooling 

says that this is proportional to the gradient of the temperature: 

                                 

the reason for the minus sign is that if           , i.e.,if the temperature is 

increasing at   , then the rate at which heat flows at   is negative _from hotter to 

colder , hence back from  . the constant   can be identified with the reciprocal of 

‗‗thermal resistance‘‘ of the 

substance. For agiven temperature gradient , the higher the resistance the smaller the 

heat flow per second , and similarly  the smaller the resistance the greater the heat 

flow per second .and similarly the smaller the resistance the greater the heat flow per 

second. 

As the heat flows from hotter to colder , the temperature rises in the colder part of the 

substance . the rate at which the temperature  rises at     given by        ,is 

proportional to the rate at which heat ‗‗accumulates‘‘ per unit length . Now        is 
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already arate _ the heat flow per second  _ so the rate at which heat accumulates per 

unit length is the rate in minus the rate out per length ,which is (if the heat is flowing 

from left to right) 

                

  
 

Thus in the limit  

                           

The constant   can be identified with the reciprocal of the ―thermal capacity‘‘ perunit 

length. Thermal resistance and thermal capacity are not the standard terms, but they 

can be related to standard terms , specific heat. they are used here because of the 

similarity of heat flow to electrical phenomena. 

Now differentiate the first equation with respect to   to get  

                      

and substitute this into the second equation to obtain an equation  involving  

      alone : 

                      

this  is the heat equation . 

to summarize, in whatever particular context it‘s applied, the  step for a problem based 

on the heat equation involves: 

1.  A region in space. 

2.  An initial distribution of   temperature on that region. 

It‘s natural to think of fixing one of the variables and letting the other change. Then 

the solution        tells you  

1.  For each fixed time    how the temperature is distributed on the region. 

2.  At each fixed point   how the temperature is changing over time. 

We want to look at two examples of using Fourier series to solve such a problem: 

Heat flow on a circle and, more dramatically , the temperature of the earth. These are 

nice examples because they show different aspects of how the methods can be applied 
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and, as mentioned above, they exhibit forms of solutions, especially for the circle 

problem, of a type. 

why a circle, why the earth – and why Fourier methods? Because in each case the 

function      )will be periodic in one of the variables. In one case we work with 

periodicity in space and in the other periodicity in time.     

Heating a circle suppose a circle is heated up , not necessarily uniformly. This 

provides an initial distribution of   temperature. Heat then flows around the circle and 

the temperature changes over time .At any fixed time the  temperature must be a 

periodic function of the position on the circle , for if we specify points on the circle by 

an angle   is the same at ө and      , since these are the same points. 

We can imagine a circle as an interval with the endpoints identified, say the interval  

          , and we let      )be the temperature as a function of position and time 

.Our analysis will be simplified if we choose units so the heat equation takes the form  

            

that is ,so the constant depending on physical attributes of the wire is ½. The function 

       is periodic in the spatial variable   with period 1, i.e. , 

                ,and we can try expanding it as a Fourier series with coefficients 

that depend on time : 

       ∑   

 

    

                      ∫ 

 

 

      

           

This representation of       as an integral together with the heat equation for 

      will allow us to find       explicitly. Differentiate       with respect to   by 

differentiating under the integral sign: 

       ∫ 

 

 

      

            

now using    
 

 
   we can write this as  
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       ∫
 

 
 

 

 

      

           

and integrate by parts (twice) to get the derivatives of   and put them onto 

         using the facts that                               

(both of which come in when we plug in the limits of integration when integrating by 

parts )we get  

       ∫
 

 
      

  

   

 

 

          

 ∫
 

 
              

 

 

          

      ∫      

 

 

                       

We have found that      satisfies a simple ordinary differential equation  

                    

whose  solution is   

                       . 

this solution  involves the initial value      and, in fact, this initial  value should 

be,and will be ,incorporated into the formulation of the problem in terms of the initial 

distribution of heat . 

At time     we assume that the temperature        is specified by some (periodic) 

function       

                                                       

then using the integral representation for      , 

      ∫      
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=∫     
 

 
                 

The n-th Fourier coefficient of f thus we can write  

                    

and the general solution of the heat equation is  

         ∑               
           . 

this is a neat way of writing the solution and we could leave it at that, but for reasons 

we‘re about to see it‘s useful to bring back the integral definition of      and write 

the expression differently. 

write the formula for      as 

       ∫    

 

 

            

(don‘t use   as the variable of integration since it‘s already in use in the formula 

for         then 

       ∑         

 

    

        ∫    

 

 

          

= ∫ ∑          
                  

 

 
   , 

Or, with 

         ∑         

 

    

           

we have  

       =∫             
 

 
     

the function 

       = ∑          
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is called Green‘s function ,or the fundamental solution for the heat equation for a 

circle . Note that g is a periodic function of period 1 in the spatial variable . the 

expression for the solution        is a convolution integral ,a term you have probably 

heard from earlier classes, but new here. In words,         is given by the convolution 

of the initial temperature      with Green‘s function          this is a very important 

fact. 

In general, whether or not there is extra time dependence as the present case, the 

integral   

∫          

 

 

   

Is called the convolution of and   . observe that the integral makes sense only if   is 

periodic .that is for a given   between 0 and 1 and for y varying from 0 to 1 (as the 

variable of integration)     will assume values outside the interval [0,1] . if g were 

not periodic it wouldn‘t make sense to consider         but the periodicity is just 

what allows us to do that. 

If you know the terminology coming from linear systems, the Green‘s function        

is the ―impulse response‖ associated with the linear system ―heat flow on a circle‖, 

meaning 

1- Inputs go in: the initial heat distribution       

2-  Outputs come out: the temperature         

3-  Outputs are given by the convolution of g with the input:  

         =∫             
 

 
     

convolutions occur absolutely everywhere in Fourier analysis and we‘ll be spending a 

lot of time with them this quarter. In fact, an important result states that convolutions 

must occur in relating outputs to inputs for linear time invariant systems. 

In our example, as a formula for the solution, the convolution may be interpreted as 

saying that for each time t the temperature         at a point   is a kind of smoothed 

average of the initial temperature distribution       In other setting a convolution 

integral may have different interpretations. 

Heating the earth, storing  your wine .the wind blows , the rain falls ,and the 

temperature at any particular place on earth changes over the course of a year . let‘s 
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agree that the temperature at any particular place on earth changes over the course of a 

year. so that the temperature at any particular place on earth is roughly a periodic 

function of time ,where the period is 1 year .what about the temperature x-meters 

under that particular place? how dose the Temperature depend on   and  ? 

Fix a place on earth and let        denote the temperature   meters underground at 

time t .we assume again that u satisfies the heat equation ,  

   
 

 
   this time we try a  

Solution of the form  

       ∑       
           , 

reflecting the periodicity in time . 

Again we have an integral representation of      as a Fourier coefficient , 

      ∫       
 

 
          , 

And again we wont to plug into the heat equation and find a differential equation that 

the coefficients satisfy  . the  heat equation involves a second (partial) derivative with 

respect to the spatial variable   ,so we differentiate   twice and differentiate u under 

the integral sign twice with respect to   : 

  
      ∫         

 

 
          . 

Using the heat equation and integrating by parts (once) gives 

  
      ∫        

 

 

          

 ∫           

 

 

                      

We can solve this second – order differential equation in x easily on noting that  

                              

Where we take                                . we‘ll leave it to you to 

decide that the root to take is                   thus 
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What is the initial value              Again we assume that at     there is 

aperiodic function of t that models the Temperature (at the fixed spot on earth ) over 

the course of the year. Call this      .then              and 

       ∫      

 

 

                 

Our solution is then  

        ∑               
 
               

     . 

that‘s not a beautiful expression, but it becomes more interesting if we rearrange the 

exponentials to isolate the periodic parts (the ones that have an i in them)from the 

nonperiodic part that remains. The latter is          
 
     the terms then looke like 

              
 
                

 
    . 

what‘s interesting here? The dependence on the depth,  . Each term is damped by the 

exponential 

         
 
   

And phase shifted by the amount        
 

   . 

Take a simple case. suppose that the Temperature at the surface     is given just by 

sin    and that the mean annual Temperature is 0 ,i.e. 

∫    

 

 

              

All Fourier coefficients other than the first are zero, and the solution reduces to  
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take the depth   so that            . Then thereTemperature is damped by     

    quite  a bit ,and it is half a period (six months) out of phase with the Temperature 

at the surface .the  Temperature  – meters below stays pretty constant because of the 

damping , and Because of the phase shift it‘s cool in the summer and warm in the 

winter.There‘s a name for a place like that. It‘s called a cellar. 

Now we study the first shot in the second industrial revolution .Many types of 

diffusion processes are similar enough in principle to the flow of heat that they are 

modeled by the heat equation , or variant of the heat equation , and Fourier analysis is 

often used to find solutions . One celebrated example of this was the paper by William 

Thomson (later Lord Kelvin): ―One the theory of the electric telegraph‖ published in 

1855 in the proceedings of the Royal Society. 

The high tech industry of the mid to late 19
th
 century was submarine telegraphy. sharp 

pulses were sent at one end , representing the dots and dashes of Morse code, and in 

transit, if the cable was very long and if pulses were sent in too rapid a succession , the 

pulses were observed to smear out and overlap to the degree that at the receiving end 

it   

Was impossible to resolve them .the commercial success of telegraph transmissions 

between continents depended on undersea cables reliably handling a large volume of 

traffic. How should cables be designed? The stakes were high and a quantitative 

analysis was needed.  

A qualitative   explanation of signal distortion was offered by Michael Faraday, who 

was shown the phenomenon by Latimer Clark . Clark ,an official of the Electric and  

International Telegraph company ,had observed the blurring of signals on the Dutch-

Anglo line . Faraday surmised that a cable immersed in water became in effect an 

enormous capacitor, consisting as it dose of two conductors – the wire and the water –

separated by insulating material .when a signal was sent, part of the energy went into 

charging the capacitor , which took  time , and when the signal was finished the 

capacitor discharged and that took time . the delay associated with both charging and 

discharging distorted the Signal and caused Signals sent too rapidly to overlap. 

Thomson took up the problem in two letters to G. Stokes (of stokes‘ theorem fame), 

which become the published paper.  We won‘t follow Thomson‘s analysis at this point 

, because , with passage of time , it is more easily understood via Fourier transform 

rather than  Fourier series . However, here are some highlights. Think of the whole 

cable as a (flexible) cylinder with a wire of radius a along the axis and surrounded by 
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a layer of insulation of radius   (thus of thickness    ). To model the electrical 

properties of the cables, Thomson introduced the depending on  aand   and   the 

permittivity of the insulator .His formula was  

  
   

        
   

He also introduced the ‗‘resistance per unit length‘‘, denoting it  by  . Imagining the 

cable as a series of infinitesimal pieces, and using Kirchhoff‘s circuit law and ohm‘s 

law on each piece , he argued that the voltage       at a distance   from the end of 

the cable and at a time   must satisfy the partial differential equation  

   
 

  
      

Thomson states: ―This equation agrees with the well-known equation of the linear 

motion of heat in a solid conductor, and various forms of solution which Fourier has 

given are perfectly adapted for answering practical questions regarding the use of the 

telegraph wire.‖ 

After the fact, the basis of the analogy is that charge diffusing through a cable may be 

described in the same way as heat through a rod, with a gradient in electric potential 

replacing gradient of temperature. ( keep  in mind, however, that the electron was not 

discovered till 1897 .) Here we see K and C playing the role of thermal and thermal 

capacity in the derivation of the heat equation.  

The result of Thomson‘s analysis that had the greatest practical consequence was his 

demonstration that ―the time at which the maximum electrodynamics   effect of 

connecting the battery for an instant‖ occurs for 

     
 

 
        

the number      is what‘s needed to understand the delay in receiving the 

signal. It‘s fact that the distance from the end of the cable,  , comes in squared 

that‘s so important. This means, for example, that the delay in a signal sent 

along a 1000 mile cable will be 100 times as a large as the delay along a 100 

mile cable, and not 10 times as large, as was thought. This was Thomson‘s 

―Law of squares.‖    

Thomson‘s work has been called ― The first shot in the second industrial 

revolution.‘‘ This was when electrical engineering became decidedly 
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mathematical. His conclusions did not go unchallenged, however .Consider this 

quote of Edward Whitehouse , chief electrician for the Atlantic Telegraph 

Company, speaking in 1856 

I  believe nature knows no such application of this law [the law of squares] and 

I can only regard it as a function of the schools; a forced and violent application 

of a principle in physics, good and true under other circumstances, but 

misapplied here. 

Thomson‘s analysis did not prevail and the first transatlantic cable was built 

without regard to his specifications . Thomson‘s said they had to design the 

cable to make KC small. They thought they could just crank up the power. The 

continents were joined August 5, 1858, after four previous failed attempts. The 

first successful sent message was August 16. The cable failed three weeks later. 

Too high a voltage. They fried it. 

Rather later, in 1876, Oliver Heaviside greatly extended Thomson‘s work by 

including the effects of induction .He derived a more general differential 

equation for the voltage        in the form  

                      

where S denotes the inductance per unit length and , as before, K and C denote 

the resistance and capacitance per unit length . the significance of this equation, 

is that it allows for solutions that represent propagating waves. It is Heaviside‘s 

equation that is now usually referred to as the ―telegraph equation‖. 

in the following we illustrate the last shot in the second world war . speaking of 

high stakes diffusion processes, in the early stages of the theoretical analysis of 

atomic explosives it was necessary to study the diffusion of neutrons produced 

by fission as they worked their way through a mass of uranium .  

An analysis of this problem was carried out by Robert  Serber and some 

students at Berkeley in the summer of 1942, preceding the opening of the 

facilities at Los Alamos(where the bulk of the work was done and the bomb was 

built). they found that the so – called ―critical mass‖ needed for an explosive 

chain reaction was about 60 kg of      , arranged in a sphere of radius about 

9cm (together with a tamper surrounding the Uranium). A less careful model of 

how the diffusion works gives a critical mass of 200 kg .As the story goes , in 

the development of the German bomb project (which predated the American 
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efforts) , Werner Heisenberg worked with a less accurate model and obtained 

too high a number for the critical mass. 

Now we study A non classical example: What‘s the buzz?. we model a musical 

tone as a periodic wave .A pure tone is a single  sinusoid , while more 

complicated tones are sums of sinusoids . The frequencies of the higher 

harmonics are integer multiples of the fundamental harmonic and the harmonics 

will typically have different energies .As a model of the most ―complete ― and 

―uniform ― tone we might take a sum of all harmonics , each sounded with the 

same energy, say 1. If we further assume that the period is 1 (i.e.,that the 

fundamental harmonic has frequency 1)then we‘re looking at the signal  

      ∑         

 

    

 

what does this sound like ?Not very pleasant , depending on your tastes . it‘s a 

buzz; 

all tones are present and the sum of them together is ―atonal‖. we‘d like to hear 

this sometime  , so if any of you can program it I‘d appreciate it . of course if 

you program it  then : (1) you‘ll have to use a finite sum ; (2) you‘ll have to use 

a discrete version .in other words , you‘ll have to come up with the ―discrete-

time buzz‖,where what we‘ve written down here is sometimes called the ― 

continuous-time buzz‖. 

The expression for      is not a classical Fourier series in any sense. It does not 

represent a signal with finite energy and the series dose  not converge in   or in 

any other easily defined sense. Nevertheless, the buzz is an important signal for 

several reasons. What does it look like in the time domain?  

In the first problem set you are asked to find a closed form expression for the 

partial sum  

      ∑         

  

    

 

Rather than giving it away , let‘s revert to the real form . Isolating the  

    term and combining positive and negative terms we get 



16 
 

∑       

  

    

   ∑                      ∑        

  

    

  

  

   

 

One thing to note is that the value at the origin is       by periodicity this is 

the value at all the integers, and with a little calculus you can check that      

is the maximum .It‘s getting bigger and bigger with . (what‘s the minimum, by 

the way?) 

Here are some plots for N = 5, 10, and 20: 

 

 

 

 

 

 

 

 

Figure(1.1) 
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Figure(1.2) 

Figure (1.3) 

 We see that the signal becomes more and more concsentrated at the integers, 

with higher and higher peaks .in fact, as we‘ll show later, the sequence of 

signals      tends to a sum of     at the integers as N →∞: 
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      ∑ δ       

 

    

 

In what sense the convergence takes place will also have to wait till later. This 

all goes to how you that    is not the last word in the development and 

application of Fourier series. 

The sum of regularly spacedδ‘s is sometimes called an impulse train, and we‘ll 

have other descriptive names for it. It is a fundamental object in sampling, the 

first step in   

Turning an analog signal into a digital signal. The finite sum,      is called the 

Dirichlet kernel by mathematicians and it too has a number of applications. 

In digital signal processing, particularly music, it‘s the discrete form of the 

impulse train --- the discrete time buzz --- that‘s used. Rather create a sound by 

adding (sampled) sinusoids one works in the frequency domain and synthesizes 

the sound from its spectrum. Start with the discrete impulse train, which has all 

frequencies in equal measure. This is easy to generate. Then shape the spectrum 

by increasing or decreasing the energies of the various harmonics, perhaps  

decreasing some to zero. The sound is synthesized from this shaped spectrum, 

and other operations are also possible.  

One final look back at heat. Green‘s function for the heat equation had the form  

        ∑         

 

    

        

At   t → 0 this tends to 

∑        

 

    

 

Thecontinuous buzz.  
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Section (1.2): Uniform Convergence, Complex Exponential and 

Gibbs Phenomenon 

We start by studying the convergence of  Fourier  Series  . the first comment on 

convergence is – don‘t go there. Recall that we get tidy mathematical results on 

convergence of Fourier series if we consider   -convergence, or ―convergence 

in mean square‖. Unpacking the definitions ,that‘s convergence  of  the integral 

of the square of the difference between a function and its finite Fourier series 

approximation : 

   
   

∫      ∑            

 

     

        

 

 

 

While this is quite satisfactory in many ways, you might want to know, for 

computing values of a function , that if you plug a value of t into some finite 

approximation 

∑            

 

     

 

You‘ll be close to the value of the function      . and maybe you‘d like to know 

how big you have to take N to get a certain descried accuracy. 

All reasonable wishes, but starting to ask about convergence of Fourier series, 

beyond the   - convergence, is starting down a road leading to endless 

complications, details, and, in the end, probably madness. 

Actually- and calmly- for the kinds of functions that come up in applications the 

answers are helpful and not really so difficult to establish. It‘s when on inquires 

into convergence of Fourier series for the most general functions that the trouble 

really starts. With that firm warning understood, there are a few basic things you 

ought to know about, if only to know that this can be dangerous stuff. 

In the first part of this studying we intention is to summarize the main facts 

together  

With some examples and simple arguments. We‘ll give careful statements, but 

we won‘t enjoy the complete proofs that support them, though in the appendices 

we‘ll fill in more of the picture. There we‘ll sketch the argument for the result at 
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the heart of the   -theory of Fourier series, that the complex exponentials from 

a basis for            . 

In the following we illustrate how big are the Fourier coefficients?. Suppose that 

     is square integrable , and let  

     ∑            

 

     

 

be its Fourier series . Rayleigh‘s identify says  

∑         
 

     

 ∫             

 

 

 

In particular the series  

∑        

 

     

 

Convergence, and it follows that  

                       

This is a general result on convergence series – if the series convergence the 

general term must tend to zero. Knowing that the coefficients tend to zero, can 

we say how fast? 

Here‘s a simple minded approach that gives some sense of the answer, and 

shows how answer depends on discontinuities in the function or its derivatives. 

All of this discussion is based on integration by parts with definite 

integrals.Suppose, as always, that      is periodic of period 1. By the 

periodicity condition we have           let‘s assume for this discussion that 

the function doesn‘t jump at the endpoints 0 and 1 (like the saw tooth function, 

below) and that any ―problem points‖ are inside the interval. (this really isn‘t a 

restriction. We just want to deal with a single discontinuity for the argument to 

follow.)that is ,we‘re imagining that there may be 

 trouble at a point                         jumps there, or      is continuous 

at     but there‘s a corner, so        jumps at    , and so on. 

Then      Fourier coefficient is given by  
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      = ∫                
 

 
 

To analyze the situation near t0 write this as the sum of two integrals: 

      = ∫              
  
 

+  ∫                
 

  
 

Apply integration by parts to each of these integrals. In doing so, we‘re going to 

suppose that at least away from     the function has as many derivatives as we 

want. Then, on a first pass, 

∫              
  
 

 =   
           

     
  
   - ∫

            

     
  

  
 

 

∫              
 

  
 =   

           

     
   
  – ∫

            

     
  

 

  
 

Add these together. Using            this results in  

      =   
           

     
    
  

 

 – ∫
            

     
  

 

 
 , 

Where the notation   
–
 and  

+
 means to indicate we‘re looking at thevalue of 

    as we take left hand and right hand limits at   . If     is continuous at     

then the terms in brackets cancel and we‘re left with just the integral as an 

expression for         

But if     is not continuous at    - if it jumps, for example – then we don‘t get 

cancellation, and we expect that the Fourier coefficient will be of order 1/n in 

magnitude.  

Now suppose that     is continuous at   , and integrate by parts a second time. 

In the same manner as above, this gives 

      =   
            

        
    
  

 

 – ∫
            

        
   

 

 
, 

If       is continuous at    then the bracketed part disappears. If       is not 

continuous at    ,  for example if there is a corner at    ,then the terms do not 

cancel and we expect the Fourier coefficient to be of size 
 

  
. 

We can continue in this way. The rough rule of thumb may be stated as: 

1. if     is not continuous then the Fourier coefficients should have terms 

like      
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2.  if     is differentiable except for corners (    is continuous but       is 

not   then the Fourier coefficients should have some terms like 
 

  
. 

3. If        exists but is not continuous then the Fourier coefficients should 

have some terms like 
 

  
. 

A discontinuity in        is harder to visualize; typically it‘s a discontinuity in 

the curvature. For example,imagine a curve consisting of an arc of a circle and a 

line segment tangent to the circle at their endpoints. Something like 

 

Figure (1.4) 

The curve and its first derivative are continuous at the point of tangency, but the 

second derivative has a jump. If you rode along this path at constant speed 

you‘d feel a jerk – a discontinuity in the acceleration – when you passed 

through the point of tangency. 

Obviously this result extend to discontinuities in higher order derivatives. it also 

jibes with some examples we had earlier. The square wave  
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Has jump discontinuous, and its Fourier series is 

∑
 

   
       

 

 
∑

 

    

 

       

              

The triangle wave 

          
 
               

 

 

 

 
    

 

 
     

 

is continuous but the derivative is discontinuous. (in fact the derivative is the 

square wave.)Its Fourier series is 

 

 
 ∑

 

         

 

   

                 

Now we study Rates of convergence and smoothness .The size of the Fourier 

coefficient tell you something about the rate of convergence of the Fourier 

series. 

There is a precise result on the rate of convergence, which we‘ll state but not 

prove: 

Theorem (1.2.1): 

Suppose that     is        continuously differentiable, where   is at least 1. 

Then the partial sums 

      ∑         
 

    
 

Converge to       point wise and uniformly on               .Furthermore  

                             
 

   
 

 

 

               

We won‘t prove it, but we do want to explain a few things. First, at a meta level, 

this result has to do with how local properties of the function are reflected in 

global properties of its Fourier series. In the present setting, ―local properties‖ 

of a function refers to how smooth it is, i.e., how many times it‘s continuously 
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differentiable. About the only kind of ―global question‖ one can ask about series 

is how fast they converge,at that‘s what estimated here .The essential point is 

that the error in the approximation (and indirectly the rate at which the 

coefficients decrease) is governed by the smoothness (the degree of 

differentiability) of the signal. The smoother the function – a ―local‖ statement – 

the better the approximation, and this is not just in the mean,    sense, but 

uniformly over the interval – a ―global‖ statement. 

Let me explain the two terms ―pointwise‖ and ―uniformly‖; the first is what you 

think you‘d like, but the second is better. ―pointwise‖ convergence means that if 

you plug in a particular value of t the series converges at the point to the value 

of the signal at the point. ―uniformly‖ means that the rate at which series 

converges is the same point in [0, 1]. There are several ways of rephrasing this. 

Analytically, the way of capturing the property of uniformly is by making a 

statement, as above, on the maximum amount the function      can differ from 

its sequence of approximation      for any   in the interval. The ―constant‖ in 

the inequality will depend on   (typically the maximum of some derivative of 

some order over the interval, which regulates how much the function wiggles) 

but not on   – that‘s uniformity. A geometric picture of uniform convergence 

may be clearer. A sequence of functions       converges uniformly to a 

function     if the graphs of the       get uniformly close to the graph of 

    .we‘ll leave that second ―uniformly‖ in the sentence  to you to specify more 

carefully (it would force you to restate the analytic condition) but the picture 

should be clear. 

Interestingly, in proving the theorem it‘s not so hard to show that the partial 

sums themselves are converging, and how fast. The trickier part is to show that 

the sums are converging to the value      of the function at every . At any rate, 

the takeaway headline from this is: 

If the function is smooth, the Fourier series converges in every sense you could 

want;  , pointwise, uniformly. 

Now we discuss convergence if it‘s not continuous?. say 
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and extended to be periodic of period 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1.5) 

The Fourier coefficient are given by  

       ∫            

 

 

 

Integrating by parts gives, when      

       
        

     
  
  ∫

 

     

 

 

            
 

   
 

                                   

Notice a few things. 
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1. the coefficients are of the order    , just as they‘re supposed to be. 

2. the term with            , which we have to get directly, not from the 

integration by parts step. 

(you might also notice the conjugate symmetry in the coefficients,       

  
    

 
). 

So the Fourier series is 

     
 

 
 ∑

 

   
       

 

    

 

Which  means that  

   
   

‖     (
 

 
 ∑

 

   
       

 

    

)‖     

In the   norm. but what do we get when we plug in a value of t and compute the 

sum. Evensetting aside the obvious problem of adding up an infinite number of 

terms?Here are the plots for N = 5 , 10 , and 50 of partial sums 

      
 

 
   ∑

 

    
       

 

    

 

 

 

 

 

 

 

 

 

 

Figure (1.6) 
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Figure (1.7) 

 

Figure (1.8) 
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Theorem (1.2.2):  

At a jump discontinuity (such as occurs in the sawtooth) the partial sums 

      ∑         
 

    
 

Converge to the converge of the upper and lower values at the discontinuities. 

For example, for the sawtooth the partial sums converge to   at the points 

                 

Because of this result some people define a value of a function at a jump  

Discontinuity to be the average of the upper and lower values. That‘s reasonable 

in many contexts – this is one context and we‘ll see others – but it becomes a 

religious issue to some so we‘ll pass without further comment. 

 We can combine this theorem with the previous theorem to state a useful 

resultthat‘s easy to apply in practice: 

Theorem (1.2.3): (on pointwise convergence) 

suppose that      is continuous with a continuous derivative except at perhaps a 

finite number of points (in a period). Then for each a         

                                  ) 

as N → ∞. 

If      is continuous at a then the left and right hand limits are equal and we just 

have                     has jump at a then we‘re in the situation in the 

theorem just above and      converges to the average of the left and right hand 

limits. 

Thefunny behavior near the corners, where it seems that the approximation are 

overshooting the signal. Is more interesting. We saw this also with the 

approximation to the square wave. This is Gibbs phenomenon, named after J.W. 

Gibbs. it really happens, and it‘s time to come to terms with it . it was observed 

experimentally by Michelson and Stratton (that‘s the same Albert Michelson as 

in the famous ―Michelson and Morley‖ experiment) who designed a mechanical 

device to draw finite Fourier series. Michelson and Stratton assumed that the 

extra wiggles they were seeing at jumps that the was a mechanical problem with 
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the machine. But Gibbs, who used the sawtooth as an example,  showed that the 

phenomenon is real and does not go away even in the limit. The oscillations 

many become more compressed, but they don‘t go away. (However, they do 

contribute zero in the limit of the    norm of the difference between the 

function and it‘s Fourier series.) 

a standard way to formulate Gibbs‘s phenomenon precisely is for a square wave 

that jumps from                 when   goes  from negative to positive. 

Away from the single jump discontinuity,      tends uniformly to the values, 

+1 or -1 as the case may be, as 

 N → ∞. Hence the precise statement of Gibbs‘s phenomenon will be that the 

maximum of      remains greater than 1 as N → ∞. And that‘s what is proved: 

   
   

                    

 So the overshoot is almost 9℅ . 

Now, there‘s something here that may bother you. We have the theorem on 

pointwise convergence that says at a jump discontinuity the partial sums 

converge to the average of the values at the jump. We also have Gibbs‖ 

phenomenon and the picture of an overshooting oscillation that doesn‘t go 

away. How can these two pictures coexist ? if you‘re confused it‘s because 

you‘re thinking that convergence of      at, say,     in the sawtooth 

example, is the same as convergence of the graphs of the      to the graph of 

the sawtooth function. But they are not the same thing.      

Finally, you should be aware that discontinuities are not at all uncommon. You 

might introduce jumps via windows or filters, for example. We mentioned 

earlier that this can be a problem in computer music and images as two-

dimensional signals, often have edges. Remember that , a discontinuity or a 

corner means that you must have infinitely high frequencies in the spectrum, so 

cutting off the approximation at a certain point is sure to introduce ripples in the 

computation of values of the function by means of a finite Fourier series 

approximation.   

In the following we illustrate point wise convergence vs. Uniform Convergence. 

Here‘s an example, a classic of its type, to show that point wise convergence is 

not the same as uniform convergence , or what amount to the same thing, that 

we can have a sequence of function      with the property that             
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for every value of t as       but the graphs of the      do not ultimately. 

Look like the graph of        let me describe such a sequence of functions in 

words, draw a few pictures, and leave it to you . 

The      will all be defined on            For each n the graph of the 

function      is zero from     to 1 and for              it‘s an isosceles  

triangle with height n
2
. Here are pictures of             and         

 

 

 

 

 

 

 

Figure (1.9) 

 

 

 

 

Figure (1.10) 
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Figure (1.11) 

The peak slides to the left and gets higher and higher as   increases. It‘s clear 

that for each t the sequence      tends to 0. This is because         for all  , 

and for any       eventually, that is, for large enough n, the peak is going to 

slide to the left of   and      will be zero from that n on out. Thus 

     converges point wise to the constant 0. But the graphs of the      certainly 

are not uniformly close to 0. 

Now we Studying partial Sums via Dirichlet Kernel: The Buzz Is Back. There 

are some interesting mathematical tools used to study the partial sums of 

Fourier series and their convergence properties, as in the theorem we stated 

earlier on the rate of convergence of the partial sums for   times continuously 

differentiable functions. In fact, we‘ve already seen the main tool – it‘s the 

Dirichlet  kernel 

      ∑       

 

    

 



32 
 

We can write a partial sum in what turns out to be helpful way by bringing back 

in the definition of the Fourier coefficient as an integral. 

      ∑           

 

    

 

 ∑ (∫             

 

 

)      

 

    

 

(calling the variable of integration   since we‘re already using  ) 

 ∑ (∫                   

 

 

)

 

    

 

 ∫   

 

 

∑       

 

    

                

 ∫   

 

 

∑           

 

    

           ∫

 

 

               

Just as we saw in the solution of the heat equation, we have produced a 

convolution. The integral 

∫             

 

 

 

Is the convolution of      with the function       and it produces the partial 

sum       

Why is this helpful? By means of the convolution integral, estimates for       

involve both properties of    (on which we make certain assumptions) together 

with properties of      , for which we can find an explicit expression. the idea 

is to view       as a geometric  series. We can simplify the algebra by 

factoring out the term corresponding to –N, thereby writing the sum as going 

from 0 to 2N: 
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∑                ∑       

  

   

 

    

 

        
             

       
 

(using the formula for the sum of a geometric series ∑   with        ) 

It‘s most common to write this in terms of the sine function. Recall that 

     
        

  
  

To bring the sine into the expression, above, there‘s a further little factoring 

trick that‘s used often: 

                                                         

                                 

                                

                   

Therefore 

       
             

       
         

          

    

                  

           

 
                

         
    

Forming the convolution, as in  

      ∫              
 

 
, 

Above, shifts the peak at 0 to t, and integrates. The integrand is concentrated 

around   (as it turns out the peaks at the other integers don‘t contribute) and in 

the limit as N → ∞ the integral tends to       

Carrying this out in detail – which we are not going to do – depends on the 

explicit formula for     . 
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The more one assumes about the signal      the more the argument can 

produce.  

This is how one gets the theorem on order of differentiability and rate of 

convergence of partial sums of Fourier series. 

In the following we illustrate the complex exponentials are a basis for            

Remember  the second point in our hit parade of the     theory of Fourier 

series: 

The complex exponentials                       from a basis for           

, and the partial sums converge to      as N → ∞ in the   -distance. This means 

that 

   
   

‖ ∑                 

 

    

‖     

We said earlier that we wouldn‘t attempt a complete proof of this, and we 

won‘t. but with the discussion just preceding we can say more precisely how the 

proof goes, and what the issues are that we cannot get into. The argument is in 

three steps. 

Let      be a square integrable function and let     . 

Step (1):Any function in            can be approximation in the   -norm by a 

continuously differentiable function. That is, starting with a given   in 

           and any       we can find a function      that is continuously 

differentiable on       for which 

               

Step (2): From the discussion above, we now know (at least we‘ve now been 

told, with some indication of why)that the Fourier partial sums for a 

continuously differentiable function (p = 1 in the statement of the theorem) 

converge uniformly to the function. Thus, with      as in step (1), we can 

choose N so large that  

          ∑             
    |     

Then for the   -norm, 
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∫|     ∑            

 

    

|

 

  

 

 

 ∫             ∑            

 

    

     

 

 

  

 ∫         

 

 

 

Hence  

       ∑                 

 

    

 

Step (3): Remember that the Fourier coefficients provide the best finite 

approximation in    to the function, that is, as we‘ll need it, 

       ∑              

 

    

       ∑               

 

    

 

And at last  

       ∑              

 

    

       ∑             

 

    

 

 =                   ∑              
     

                    ∑                  

 

    

 

This shows that  

       ∑             

 

    

 

Can be made arbitrarily small by taking N large enough.  

In the following we study more on the Gibbs phenomenon. Here‘s what‘s 

involved in establishing the Gibbs‘ phenomenon for the square wave 

     {
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We‘re supposed to show that  

   
   

                    

Since we‘ve already introduced the Dirichiet kernel, we‘ll be content with 

showing the approach and the outcome, and won‘t give the somewhat tedious 

detailed estimates.the partial sum       can be written as a convolution with 

  . in the case of the square wave, as we‘ve set up here, 

       ∫  

 

 

 
 

 

             

   ∫  

 

 
 

 

         ∫  

 

 

 

         

   ∫   
 

 
 

 

        ∫   

 

 
 

         (using that   is even.) 

The idea next is to try to isolate, and estimate, the behavior near the origin by 

getting an integral from        . we can do this by first making a change of 

variable          in both integrals. This results in  

 ∫  

 

 
 

 

        ∫  

 

 

 

           ∫   

  

 
 

 
  

      ∫    

 

 
  

  

       

To this last expression add and subtract    

∫  

 

  

      

And combine integrals to further obtain 

 ∫   

  

 
 

 
  

      ∫    
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  ∫   

 

 
 

 
  

      ∫    

 

 
  

  

     ∫  

 

  

      

Finally, make a change of variable        in the first integral and use the 

evenness  of   . Then the first two integrals combine and we are left with, 

again letting s be the variable of integration in both integrals, 

      ∫  

 

  

       ∫   

 

 
  

 

 
  

       

The reason that this is helpful is that using the explicit formula for DN one can 

show (this takes some work  - integration by parts) that 

|         ∫   
 

  
     | = |∫   

 

 
  

 

 
  

     |  ≤ 
        

 
  

And hence  

      |         ∫   
 

  
     |   . 

This mean that if we can establish for ∫   
 

  
      we‘ll also get one for        

that, too, takes some work, but the fact that has an explicit formula for    

makes it possible to deduce for     small and N large that ∫   
 

  
       and 

hence       is well approximated by  

 

 
∫

    

 
    

        

 

 

This integral has a maximum at the first place where 

   (        )    , i.e., at             at this point the value of the 

integral (found via numerical approximations) is 

 

 
∫
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Chapter (2) 

Properties of Convolution and Central Limit 

Theorem 

Section (2.1):    and Properties of Convolution 

We begin this section by studying the    is Born. Some of the properties 

of the Fourier transform that we have already derived can be thought of as 

addressing the question how can we use one signal to modify another? The 

easiest is the result on additivity according to which 

              

Adding the signal      to the signal      adds the amounts       to the 

frequency components      . (Symmetrically,      modifies      in the same 

way.) The spectrum of     may be more or less ―complicated‖ then the 

spectrum of   and   alone, and it‘s on elementary operation in both the time 

domain and the frequency domain that produces or eliminates the 

complications. It‘s on operation that is also easily undone. 

We can view the question of using one signal to modify another in either the 

time domain or in the frequency domain, sometimes with equal ease and 

sometimes with one point of preferred. We just looked at soms, what about 

products? The trivial case is multiplying by a constant, as in          

      . Theenergies of the harmonics are all affected by the same amount, so, 

thinking of music for example, the signalsounds the same, only louder or softer. 

It‘s much less obvious how to scale the harmonics separately. Thatis, as a 

question ―in the frequency domain‖ we ask: 

Is there some combination of the signals      and      so that in the 

frequency domain theFourier transform is 

             

In other words, in the time domain can we combine the signal      with 

the signal      so thatthe frequency components       of      are scaled 

by the frequency components       of     ?(Once again this is 

symmetric — we could say that the frequency components       are 

scaledby the frequency components      . 
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The product of the Fourier transforms of      and      is 

           ∫        
 

  

       ∫        
 

  

        

We used different variables of integration in the two integrals becausewe‘re 

going to combine the productinto an iterated integral. 

∫        
 

  

       ∫        
 

  

      

 ∫ ∫               
 

  

             
 

  

 ∫ ∫            
 

  

             
 

  

 ∫ (∫            
 

  

      )
 

  

        

Now make the change of variable      in the inner integral. Then    

       , and the limitsare the same. The result is 

∫ (∫            
 

  

      )
 

  

      

 ∫ (∫        
 

  

        )
 

  

       

Next, switch the order of integration: 

∫ (∫        
 

  

        )
 

  

      

 ∫ ∫        
 

  

      
 

  

         

 ∫ ∫        
 

  

      
 

  

         

 ∫        
 

  

(∫             
 

  

)   

The inner integral is a function of  . Let‘s set it up on its own: 

     ∫             
 

  

  

The outer integral produces the Fourier transform of  : 

∫        
 

  

(∫             
 

  

)   ∫              
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Switching the variable name for  from      to      (solely for psychological 

comfort), we have discoveredthat the signals      and      are combined into a 

signal 

      ∫             
 

  

  

In other words, 

                  

We have solved our problem. The only thing to do is to realize whatwe‘ve done 

and declare it to theworld. We make the following definition: 

Definition (2.1.1): (Convolution defined) 

The convolution of two functions      and      is the function 

     ∫             
 

  

  

We use the notation 

         ∫             
 

  

  

We can now proudly announce: 

Theorem (2.1.2): Convolution Theorem 

                     

In other notation: If           and           then  

                 . 

In words: Convolution in the time domain corresponds to multiplication in the 

frequency domain. 

Recall that when we studied Fourier series, convolution came up in the form 

         ∫             
 

 

  

In that setting, for the integral to make sense, i.e., to be able to evaluate 

       at points outside theinterval from 0 to 1, we had to assume that  was 

periodic. That‘s not an issue in the present setting,where we assume that      

and      are defined for all  , so the factors in the integral 

∫             
 

  

 

are defined everywhere.  

Remark (2.1.3): (Remark on notation, again) 

It‘s common to see the people write the convolution as          , puttingthe  
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variable t in each of  and  . There are times when that‘s OK, even sometimes 

preferable to introducinga lot of extra notation, but in general I think it‘s a bad 

idea because it can lead to all sorts of abuses andpossible mistakes. For 

example, what‘s           ? If you plugged in too casually you might write 

this asthe integral 

∫              
 

  

  

That‘s wrong. The right answer in convolving       and      is 

∫  (      )      
 

  

 ∫               
 

  

  

Now we discuss convolving in the frequency domain. If you look at the 

argument for the convolution theorem            , you‘ll see that we 

could have carried the whole thing out for the inverse Fouriertransform, and 

given the symmetry between the Fourier transform and its inverse that‘s not 

surprising. 

That is, we also have 

                     

What‘s more interesting, and doesn‘t follow without a little additional 

argument, is this: 

                     

In words:Multiplication in the time domain corresponds to convolution in the 

frequency domain. 

Here‘s how the derivation goes. We‘ll need one of the duality formulas, the one 

that says 

                                              

To derive the identity            , we write, for convenience,   

  and     . Then we‘re toshow 

              

The one thing we know is how to take the Fourier transform of a convolution, 

so, in the present notation,               . But now          , 

from the identity above, and likewise          .So             

     , or 

            

Now, finally, take the Fourier transform of both sides of this last equation and 

appeal to the   identityagain: 

                             

We‘re done. 
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Remark (2.1.4): 

You may wonder why we didn‘t start by trying to prove  

                    rather than                as we did. That 

is, it seems more ―natural‖ to multiply signals in the time domainand see what 

effect this has in the frequency domain, so why not work with       directly? 

But write theintegral for      ,there is nothing you can do with it to get normal 

     . 

In the following we illustrate what is Convolution, Really? There‘s not a single 

answer to that question. Those of you who have had a course in ―Signals and 

Systems‖probably saw convolution in connection with Linear Time Invariant 

Systems and the impulse response forsuch a system. That‘s a verynatural setting 

for convolution. 

The fact is that convolution is used in many ways and for many reasons, and it 

can be a mistake to try toattach to it one particular meaning or interpretation. 

This multitude of interpretations and applicationsis somewhat like the situation 

with the definite integral. When you learned about the integral, when you learn 

about the integral, chancesare that it was introduced via an important motivating 

problem, typically recovering the distance traveledfrom the velocity, or finding 

the area under a curve. That‘s fine, but the integral is really a much moregeneral 

and flexible concept than those two sample problems might suggest. You do 

yourself no service ifevery time you think to use an integral you think only of 

one of those problems. Likewise, you do yourselfno service if you insist on one 

particular interpretation of convolution. 

To pursue the analogy with the integral a little bit further, in pretty much all 

applications of the integralthere is a general method at work: cut the problem 

into small pieces where it can be solved approximately,sum up the solution for 

the pieces, and pass to a limit. There is also often a general method to working, 

orseeking to work with convolutions: usually there‘s something that has to do 

with smoothing and averaging,understood broadly.  

For example, in using Fourier series to solve the heat equation on a circle, we 

saw that the solutionwas expressed as a convolution of the initial heat 

distribution with the Green‘s function (or fundamentalsolution). That‘s a 

smoothing and averaging interpretation (both) of the convolution. It‘s also a 

linearsystems interpretation of convolution, where the system is described by 

the heat equation. 

In brief, we‘ll get to know the convolution by seeing it in action: 

 Convolution is what convolution does. 
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We now discuss but can I visualize convolution? or ―Flip this, buddy‖. 

Again for those of you who have seen convolution in earlier courses,you‘ve 

probably heard the expression ―flip and drag‖. For 

         ∫             
 

  

 

here‘s what this means. 

1. Fix a value  . The graph of the function        has the same shape as 

     but shifted to the right by  . Then forming        flips the graph 

(left-right) about the line    . If the most interesting or important 

features of      are near    , e.g., if it‘s sharply peaked there, then 

those featuresare shifted to    for the function        (but there‘s 

the extra ―flip‖ to keep in mind). 

2. Multiply the two functions      and        and integrate with respect 

to  . Remember that the value of the convolution         is not just the 

product of the values of  and the flipped and shifted  , it‘s the integral of 

the product — much harder to visualize. Integrating the product sums up 

thesevalues, that‘s the ―dragging‖ part. 

In the following we study Smoothing and averaging. We prefer to think of the 

convolution operation as using one function tosmooth and average the other. 

(Say  is used to smooth  in    .) In many common applications      is a 

positive function, concentrated near 0, with total area 1, 

∫       
 

  

    

like a sharply peaked Gaussian, for example (stay tuned). Then        is 

concentrated near  and stillhas area 1. For a fixed  , forming the integral 

∫             
 

  

 

is like taking a weighted average of the values of      near    , weighted by 

the values of (the flippedand shifted)  . (It‘s a legitimate weighted average 

because∫       
 

  
   ) 

That‘s the averaging part of the description: Computing the convolution    at 

 replaces the value      by a weighted average of the values of  near  . Where 

does the smoothing come in? Here‘s where. 

Changing  (―dragging‖        through different values of  ) repeats this 

operation. 
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Again take the case of an averaging-type function     , as above. At a given 

value of            is aweighted average of values of f near  . Move  a little 

to a point   . Then           is a weighted averageof values of f near   , which 

will include values of  that entered into the average near  . Thus the valuesof 

the convolutions          and           will likely be closer to each other 

than are the values      and 

     . That is,          is ―smoothing‖  as  varies — there‘s less of a change 

between values of theconvolution than between values of  . 

We see example of smoothing. The rectfunction      is discontinuous — it has 

jumps at     . The convolution     is the triangle function , which is 

continuous — the jumps at the endpoints have been smoothed out. There‘s still 

a corner, butthere‘s no discontinuity. 

In fact, as an aphorism we can state 

 The convolution    is at least as smooth a function as  and  are 

separately. 

In the following we discuss A smear job, too Now, be a little careful in how you 

think about this averaging and smoothing process.Computing any value of 

         involves all of the values of  and all of the values of  , and adding 

theproducts of corresponding values of  and  with one of the functions flipped 

and dragged. If both      and     become identically zero after awhile then the 

convolution    will also be identically zero outside ofsome interval. But if 

either      or      does not become identically zero then neither will the 

convolution. 

In addition to averaging and smoothing the convolution also ―smears‖ out the 

factors — not a becomingdescription, but an accurate one. 

Definitely keep the general description we‘ve just gone through in mind, but as 

far as visualizing theconvolution of any two old functions, we think it‘s of 

dubious value to beat yourself up trying to do that.It‘s hard geometrically, and 

it‘s hard computationally, in the sense that one have to calculate some 

tediousintegrals.  

By the way, of course we can try to get some intuition for how the convolution 

looks by thinking of what‘shappening in the frequency domain. It‘s not so 

farfetched to try to imagine the Fourier transforms   , 

  , and their product, and then imagine the inverse transform to get our   . 

Now we study properties of Convolution: It‘s a Lot like 

MultiplicationConvolution behaves in many ways (not all ways) like 

multiplication. For example, it is commutative: 
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So although it looks like the respective roles of  and  are different — one is 

―flipped and dragged‖, theother isn‘t — in fact they share equally in the end 

result. 

We defined the convolution so that the convolutiontheorem holds, that is so that 

             But  and  enter symmetrically on the right hand side,so 

        —       can be used to modify      or      can be used to 

modify     . 

Nevertheless, the commutativity property is easy to check from the definition: 

         ∫             
 

  

 ∫             
 

  

                              

            

The same idea, a change of variable but with more bookkeeping, establishes that 

convolution is associative: 

                 

Much more easily one gets that 

                  

The corresponding statements are easily verified in the frequency domain. 

How about a ―1‖? Is there a function which is to convolution as 1 is to 

multiplication? Is there a function such that 

                                          

What property would such a  have? Take Fourier transforms of both sides: 

                  

Then      must be such that 

           

Is there such a  ? Applying the inverse Fourier transform would lead to 

∫         
 

  

  

and that integral does not exist — even we wouldn‘t try to slip that by the rigor 

police. Something is uphere. Maybe Fourier inversion doesn‘t work in this case, 

or else there‘s no classical function whose Fouriertransform is 1, or something. 

In fact, though the integral does not exist in any sense, the problem of a―1 for 

convolution‖ leads exactly to the delta function, or unit impulse — not a 

classical function, but a―generalized‖ function.  

How about ―division‖? Suppose we know  and  in 
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and we want to solve for  . Again, taking Fourier transforms we would say 

            
  

  
  

We‘d like the convolution quotient to be the inverse Fourier transform of 

     . But there are problemscaused by places where     , along with the 

usual problems with the integral for the inverse Fouriertransform to exist. 

Solving for      is the deconvolution problem, which is extremely important in 

applications. Many timesa noisy signal comes to you in the form      ; the 

signal is  , the noise is  , you receive  . You makesome assumptions about the 

nature of the noise. 

Now we study the identities. It‘s not hard to combine the various rules we 

have and develop an algebra of convolutions. Such identities can be of great use 

— it beats calculating integrals. Here‘s an assortment. (Lowerand uppercase 

letters are Fourier pairs.) 

(           )    (           )    

 (         )  (         )  ((           ))     

               (       )    

Section (2.2): Convolution in Action and Central Limit Theory  

We begin this section by studying the convolution in action. I: A Little 

Bit on Filtering. ―Filtering‖ is a generic term for just about any operation one 

might want to apply to a signal. We haveto be reasonable, of course — there‘s 

usually some feature of the signal that one wants to enhance oreliminate, and 

one expects something of the original signal to be recognizable or recoverable 

after it‘s been filtered. Most filters are described as somehow modifying the 

spectral content of a signal, and they arethus set up as an operation on the 

Fourier transform of a signal. But it‘s worthwhile saying a little bit now because 

themost common filters operate through multiplication in the frequency domain, 

hence through convolutionin the time domain. 

The features are: 

 An input signal      

 An output signal      

 The operation that produces      from      in the time domain is 

convolution with a function     : 

              ∫             
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With this description the Fourier transforms of the input and output are related 

by multiplication in thefrequency domain: 

               

where, following tradition, we denote the Fourier transforms by the 

corresponding capital letters. In thiscontext      is usually called the impulse 

response and      is called the transfer function. It seems tobe a matter of 

course always to denote the impulse response by      and always to denote the 

transferfunction by     .  

Remember that     , hence     , is ―fixed‖ in this discussion. It‘s wired into 

the circuit or coded into thesoftware and it does what it does to any input you 

may give it. Filters based on convolution are usuallydesigned to have a specific 

effect on the spectrum of an input, and so to design a filter is to design a 

transferfunction. The operations, which you‘re invited to draw a block diagram 

for, are thus 

Input → Fourier transform → Multiply by H → Inverse Fourier transform = 

output 

We want to see some examples of this— filters that are in day-to-day use and 

the principles thatgo into their design. 

One preliminary comment about how the spectra of the input and output are 

related. Write 

                              (
       

       
)   

so the phase of      is      , with similar notations for the phases of      and 

    . Then 

                                                       (           )  

Thus the magnitudes multiply and the phases add: 

                    

                   

Multiplying      by      can‘t make the spectrum of      any bigger, but it 

can make the spectrumsmaller by zeroing out parts of it. Furthermore, there is 

no phase change when        , and thishappens when      is real. In this 

case only the amplitude is changed when the signal goes through thefilter. 

Common examples of filters that do both of these things — modify some part of 

the magnitude ofthe spectrum with no phase change — are lowpass, bandpass, 

highpass, and notch filters, to which we‘llnow turn. 

In the following we discuss Designing filters, Lowpass filters An ideal 

lowpass filter cuts off all frequencies above a certain amount    (― ‖ for 
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―cutoff‖)and lets all frequencies below    pass through unchanged. (Hence the 

description ―lowpass‖.) If we writethe operation as 

                             

then the transfer function we want is 

     {
       

        
 

Multiplying      by      leaves unchanged the spectrum of  for        and 

eliminates the otherfrequencies. The transfer function is just a scaled rect 

function, and we can write it (to remind you) as 

         
     (

 

   
)  

{
 

  |
 

   
|  

 

 

 |
 

   
|  

 

 

  {
       

        
 

In the time domain the impulse response is the inverse Fourier transform of 

    
, and this is 

                    

By the way, why is this called just a ―lowpass filter‖; aren‘t the frequencies 

below −   also eliminatedand so not ―passed‖ by the filter? Yes, but remember 

that for real signals      (which is where this isapplied) one has the symmetry 

relation           ̅̅ ̅̅ ̅̅ . The positive and negative frequencies combine 

inreconstructing the real signal in the inverse Fourier transform, much like what 

happens with Fourier series. 

Thus one wants to pass the frequencies with          and eliminate the 

frequencies with      and     . 

And, by the way, why is this called an ideal lowpass filter? Because the cutoff is 

a sharp one — right ata particular frequency   . In practice this cannot be 

achieved, and much of the original art of filter designis concerned with useful 

approximations to a sharp cutoff. 

Now we illustrate Bandpass filters. Another very common filter passes a 

particular band of frequencies through unchangedand eliminates all others. This 

is the ideal bandpass filter. Its transfer function,     , can be constructedby 

shifting and combining the transfer function      for the lowpass filter. 

We center our bandpass filter at     and cut off frequencies more than    above 

and below   ; just as forthe lowpass filter we pass symmetric bands of positive 

frequencies and negative frequencies, and eliminate everything else. That is we 

define the transfer function of a bandpass filter to be 



49 
 

     ,
                

                                                
 

                 

Here‘s the graph. 

 
Figure (2.1) 

From the representation of      in terms of      it‘s easy to find the impulse 

response,     . That‘s givenby 

                              

                                                   

                           

Here‘s a plot of      for       and     : 

 
Figure (2.2) 

 

Now we study highpass filters. The twin to an ideal lowpass filter is an 

ideal high pass filter, where all frequenciesabove a cutoff frequency    are 

passed through unchanged and all frequencies below are eliminated. Youmight 

use this, for example, if there‘s a slow ―drift‖ in your data that suggests a low 
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frequency disturbanceor noise that you may want to eliminate. Highpass filters 

are used on images to sharpen edges and details(associated with high spatial 

frequencies) and eliminate blurring (associated with low spatial frequencies). 

The graph of the transfer function for an ideal highpass filter looks like: 

 
Figure (2.3) 

It‘s easy to write a formula for this; it‘s just 

              
     

where   is the cutoff frequency. At this point we‘re stuck. We can‘t find the 

impulse response becausewe haven‘t yet gained the knowledge that the inverse 

Fourier transform of 1 is the  function. Think ofthe highpass filter as the evil 

twin of the lowpass filter. 

In the following we discuss Notch filters. The evil twin of a bandpass 

filter is a notch filter. The effect of a notch filter is to eliminatefrequencies 

within a given band (the ―notch‖) and to pass frequencies outside that band. To 

get the transferfunction we just subtract a bandpass transfer function from 1. 

Using the one we already have: 

                  (               )  

This will eliminate the positive frequencies between       and      , and 

pass all frequencies outside of these two bands. 

You can draw your own graph of that. 

Unfortunately, for the impulse response we‘re in the same position here 

as we were for the highpass filter.We cannot write down the impulse response 

without recourse to  ‘s, so this will have to wait. 

Now we study Convolution in Action II: Differential Equations 

One of the most common uses of convolution and the Fourier transform is in 

solving differential equations.Solving differential equations was Fourier‘s 

original motivation for Fourier series and the use of the Fouriertransform to this 

end has continued to exercise a strong influence on the theory and the 

applications. We‘llconsider several illustrations, from a simple ordinary 
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differential equation to problems associated with theheat equation. We‘ll also 

revisit the problem of a signal propagating along a cable. 

The derivative formula To put the Fourier transform to work, we need a formula 

for the Fouriertransform of the derivative, and as you found in homework: 

                      

We see that differentiation has been transformed into multiplication, another 

remarkable feature of theFourier transform and another reason for its usefulness. 

Formulas for higher derivatives also hold, and theresult is: 

(     )                   

In general, a differential operator can be thought of as a polynomial in     , 

say of the form 

 (
 

  
)    (

 

  
)
 

     (
 

  
)
   

     

 

  
     

and when applied to a function      the result is 

            
           

       

If we now take the Fourier transform of this expression, we wind up with the 

Fourier transform of   multiplied by the corresponding  -th degree polynomial 

evaluated at     . 

( ( (
 

  
) ))                 

                                               

Don‘t underestimate how important this is. 

A simple ordinary differential equation and how to solve it. You might 

like starting off with theclassic second order, ordinary differential equation 

         

Maybe you‘ve looked at a different form of this equation, but I‘m writing it this 

way to make the subsequentcalculations a little easier.      is a given function 

and you want to find     . 

Take the Fourier transform of both sides: 

                    

                  

                

So we can solve for   as 
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and — with a little struggle — we recognize 
 

         
 as the Fourier transform 

of 
 

 
     , that is, 

     (
 

 
     )      

The right hand side is the product of two Fourier transforms. Therefore, 

according to the convolutiontheorem, 

     
 

 
            

Written out in full this is 

     
 

 
∫              

 

  

  

And there you have the two-sided exponential decay in action, as well as 

convolution. 

The heat equation Remember the heat equation? In one spatial dimension, the 

equation that describesthe rates of change of the temperature        of the body 

at a point  and time  (with some normalizationof the constants associated with 

the material) is the partial differential equation 

   
 

 
     

In our earlier work on Fourier series we considered heat flow on a circle, and 

we looked for solutions thatare periodic function of  on the interval [0, 1], so u 

was to satisfy                . This time we wantto consider the problem 

of heat flow on the ―infinite rod‖. A rod of great length (effectively of 

infinitelength) is provided with an initial temperature distribution      and we 

want to find a solution        ofthe heat equation with 

             

Both      and        are defined for       , and there is no assumption 

of periodicity. Knowingthe Fourier transform of the Gaussian is essential for the 

treatment we‘re about to give.The idea is to take the Fourier transform of both 

sides of the heat equation, ―with respect to  ‖. TheFourier transform of the right 

hand side of the equation, 
 

 
        , is 

 

 
          

 

 
                               

from the derivative formula. Observe that the ―frequency variable‖  is now in 

the first slot of the trans-formed function and that the time variable t is just 
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going along for the ride. For the left hand side,        ,we do something 

different. We have 

         ∫                 
 

  

                        

 ∫
 

  
               

 

  

 
 

  
∫                

 

  

 
 

  
 ̂       

Thus taking the Fourier transform (with respect to  ) of both sides of the 

equation 

   
 

 
    

leads to 

        

  
                 

This is a differential equation in  — an ordinary differential equation, despite 

the partial derivative symbol— and we can solve it: 

                         

What is the initial condition,        ? 

        ∫                
 

  

 ∫              
 

  

       

Putting it all together, 

                       

We recognize (we are good) that the exponential factor on the right hand side is 

the Fourier transform ofthe Gaussian, 

       
 

√   
         

We then have a product of two Fourier transforms, 

                     

and we invert this to obtain a convolution in the spatial domain: 

                    (
 

√   
       )                         

or, written out, 

       ∫
 

√   
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It‘s reasonable to believe that the temperature        of the rod at a point  at a 

time     is some kindof averaged, smoothed version of the initial temperature 

           . That‘s convolution at work. 

The function 

       
 

√   
         

is called the heat kernel (or Green‘s function, or fundamental solution) for the 

heat equation for the infiniterod. Here are plots of       , as a function of  , for 

                       . 

 
Figure (2.4) 

You can see that the curves are becoming more concentrated near    . 

Nevertheless, they are doing soin a way that keeps the area under each curve 1. 

For 

∫
 

√   
 

  

    
 

  

 
 

√   
     

√       

(                         
 

√   
 ) 

 ∫      
  

 

  

   

More on diffusion — back to the cable Recall from our earlier discussion that 

William Thomsonappealed to the heat equation to study the delay in a signal 

sent along a long, undersea telegraph cable. Thephysical intuition, as of the mid 

19th century, was that charge ―diffused‖ along the cable. To reconstructpart of 
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Thomson‘s solution (essentially) we must begin with a slightly different setup. 

The equation is thesame 

   
 

 
     

so we‘re choosing constants as above and not explicitly incorporating physical 

parameters such as resistanceper length, capacitance per length, etc., but the 

initial and boundary conditions are different. 

We consider a semi-infinite rod, having one end (at    ) but effectively 

extending infinitely in thepositive  -direction. Instead of an initial distribution 

of temperature along the entire rod, we consider asource of heat (or voltage) 

     at the end    . Thus we have the initial condition 

             

We suppose that 

           

meaning that at     there‘s no temperature (or charge) in the rod. We also 

assume that        and itsderivatives tend to zero as    . Finally, we set 

                           

so that we can regard        as defined for all  . We want a solution that 

expresses       , the temperature(or voltage) at a position     and time 

    in terms of the initial temperature (or voltage)      at theendpoint    . 

The analysis of this is really involved.  

First take the Fourier transform of        with respect to  (the notation 

 ̂seems more natural here): 

 ̂      ∫                
 

  

  

Then, using the heat equation, 

 

  
 ̂      ∫        

 

  
        

 

  

 ∫        
  

   

 

 
         

 

  

  

We need integrate only from   to  since        is identically   for    . We 

integrate by parts once: 

∫        
  

   
          

 

 

 
 

 
([       

 

  
      ]

   

   

     ∫
 

  
               

 

 

)

  
 

 
            ∫
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taking the boundary conditions on        into account. Now integrate by parts a 

second time: 

∫
 

  
               

 

 

 [       
 

  
      ]

   

   

     ∫                
 

 

             ∫                
 

 

           ∫                
 

  

 

 

(we drop the bottom limit back to   to bring back theFourier transform) 

            ̂       

Putting these calculations together yields 

 

  
 ̂       

 

 
                        ̂        

Now, this is a linear, first order, ordinary differential equation (in  ) for  ̂. It‘s 

of the general type 

                     

and if you cast your mind back and search for knowledge from the dim past you 

will recall that to solvesuch an equation you multiply both sides by the 

integrating factor 

 ∫       
 

  

which produces 

(     ∫       
 

 )
 

  ∫       
 

       

From here you get      by direct integration. For our particular application we 

have 

           

                                                                  

      
 

 
                   

The integrating factor is         and we‘re to solve 

(        ̂   )
 
        ( 

 

 
                 ). 

Write  for  and integrate both sides from   to t with respect to : 
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        ̂       ̂      ∫        ( 
 

 
                 )  

 

 

  

But  ̂        since        is identically 0, so 

 ̂              ∫        ( 
 

 
                 )  

 

 

 ∫             ( 
 

 
                 )  

 

 

  

We need to take the inverse transform of this to get       . Be not afraid: 

       ∫        ̂       
 

  

 ∫       (∫             ( 
 

 
                )   

 

 

)  
 

  

 ∫ ∫                   ( 
 

 
                 )  

 

  

  
 

 

  

Appearances to the contrary, this is not hopeless. Let‘s pull out the inner 

integral for further examination: 

∫       (            ( 
 

 
                 ))  

 

  

  
 

 
       ∫                     

 

  

         ∫                     
 

  

 

The first integral is the inverse Fourier transform of a Gaussian; we want to find 

   (           ). Recallthe formulas 

 (
 

 √  
        

)           
   (        

)   √           
  

Apply this with 

  
 

  √     
   

Then, using duality and evenness of the Gaussian, we have 

∫                    
 

  

    (           )  
 

   

      

  √     
   

In the second integral we want to find    (              ). For this, note that 
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and hence 

∫                        
 

  

    (
 

        

 

  
            )

 
 

        
   (

 

  
            )  

We know how to take the inverse Fourier transform of a derivative, or rather we 

know how to take the(forward) Fourier transform, and that‘s all we need by 

another application of duality. We use, for a generalfunction  , 

                                              

Apply this to 

   (
 

  
            )          (            )

      
 

√       
                                                      

Then 

 

        
   (

 

  
            )  

    

        

           

√       

 
 

  

             

√        
   

That is, 

   (              )   
 

  

             

√        
   

Finally getting back to the expression for       , we can combine what we‘ve 

calculated for the inverseFourier transforms and write 

        
 

 
∫        

 

 

   (           )  

    ∫     
 

 

   (              )  

  
 

 
∫        

 

 

           

√       
   

 

 
∫     

 

 

             

√        
     

We‘re almost there. We‘d like to eliminate         from this formula and 

express        in terms of      only. This can be accomplished by a very 

clever, and We‘d say highly nonobvious observation. We knowthat        is 
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zero for    ; we have defined it to be so. Hence the integral expression for 

       is zerofor    . Because of the evenness and oddness in  of the two 

integrands this has a consequence for thevalues of the integrals when  is 

positive. (The first integrand is even in  and the second is odd in  .) Infact, the 

integrals are equal! 

Let us explain what happens in a general situation, stripped down, so we can see 

the idea. Suppose wehave 

       ∫       
 

 

   ∫       
 

 

   

where we know that:        is zero for            is even in          is 

odd in  . Take    . Then           hence using the evenness of        

and the oddness of       , 

  ∫        
 

 

   ∫        
 

 

   ∫       
 

 

   ∫       
 

 

    

We conclude that for all    ,  

∫       
 

 

   ∫       
 

 

    

and hence for     (writing  for  ) 

       ∫       
 

 

   ∫       
 

 

    ∫       
 

 

  

  ∫       
 

 

                                          

We apply this in our situation with 

        
 

 
       

           

√       
         

 

 
    

             

√        
    

The result is that we can eliminate the integral with the         and write the 

solution — the final solution— as 

       ∫     
 

 

             

√        
     

This form of the solution was the one given by Stokes. He wrote to Thomson: 

In working out myself various forms of the solution of the equation 

              [Note: Heputs a 1 on the right hand side instead of a 

1/2] under the condition     when     from    to        

     when     from     to    we found the solution . . .was . . . 
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 √ 
∫        

 

  
 

  

 (    )

 

 

           

In the following we illustrate didn‘t We Already Solve the Heat Equation? Our 

first application of Fourier series (the firstapplication of Fourier series) was to 

solve the heat equation. Let‘s recall the setup and the form of thesolution. We 

heat a circle, which we consider to be the interval       with the endpoints 

identified. 

If the initial distribution of temperature is the function      then the 

temperature        at a point  attime     is given by 

       ∫             
 

 

   

where 

     ∑               

 

    

  

That was our first encounter with convolution. Now, analogous to what we did, 

above, we might writeinstead 

       ∑               

 

    

 

and the solution as 

                   ∫ ∑                         

 

    

 

 

  

a convolution in the spatial variable, but with limits of integration just from 0 to 

1. Here            , and       are periodic of period 1 in  .How does this 

compare to what we did for the rod? If we imagine initially heating up a circle 

as heatingup an infinite rod by a periodic function      then shouldn‘t we be 

able to express the temperature        for the circle as we did for the rod? We 

will show that the solution for a circle does have the same formas the solution 

for the infinite rod by means of the remarkable identity: 

∑            

 

    

  √   ∑               

 

    

 

Needless to say, this is not obvious. 

As an aside, for general interest, a special case of this identity is 

particularly famous. TheJacobi theta function is defined by 
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     ∑       

 

    

  

for    . It comes up in surprisingly diverse pure and applied fields, including 

number theory,and statistical mechanics (where it is used to study ―partition 

functions‖). Jacobi‘s identity is 

     
 

√ 
 (

 

 
)   

It follows from the identity above, with     and replacing  by      . 

Applying the identity to Green‘s function       for heat flow on the circle we 

have 

       ∑               

 

    

 
 

√   
∑            

 

    

 

Regard the initial distribution of heat      as being defined on all of   and 

having period 1. Then 

       ∫ ∑                         

 

    

 

 

 
 

√   
∫ ∑                    

 

    

 

 

                                     

 
 

√   
∑ ∫                    

 

 

 

    

 
 

√   
∑ ∫                    

   

 

 

    

                   

 
 

√   
∑ ∫                  

   

 

 

    

                          

 
 

√   
∫                  

 

  

  

Incidentally, since the problem was originally formulated for heating a circle, 

the function        is periodicin  . Can we see that from this form of the 

solution? Yes, for 
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√   
∫                    

 

  

 
 

√   
∫                    

 

  

                   

 
 

√   
∫                  

 

  

(                            )

         

Now let‘s derive the identity 

∑            

 

    

 √   ∑               

 

    

 

This is a great combination of many of the things we‘ve developed to this point, 

and it will come up again. 

Consider the left hand side as a function of  , say 

     ∑            

 

    

  

This is a periodic function of period 1 — it‘s the periodization of the Gaussian 

       . (It‘s even not hardto show that the series converges, etc..) What are its 

Fourier coefficients? 

We can calculate them: 

 ̂    ∫              
 

 

 ∫ ( ∑   
      

  

 

    

)         
 

 

 ∑ ∫   
      

           
 

 

 

    

 ∑ ∫   
  

           
    

  

 

    

 

(                                                 )

 ∫   
  

           
 

  

 

But this last integral is exactly the Fourier transform of the Gaussian   
  

   at 

   . We know how todo that — the answer is √           . 

We have shown that the Fourier coefficients of      are 

 ̂     √             

Since the function is equal to its Fourier series (really equal here because all the 

series converge and allthat) we conclude that 
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     ∑            

 

    

 ∑  ̂         

 

    

 √   ∑               

 

    

   

and there‘s the identity we wanted to prove. 

Now we study convolution in Action III: The Central Limit Theorem 

Several times we‘ve met the idea that convolution is a smoothing operation. Let 

me begin with somegraphical examples of this, convolving a discontinuous. 

Here areplots of this, up to        . 

 
 

Figure (2.5) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.6) 
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Figure (2.7)   

 

 

 

 

 

 

 

 

 

Figure (2.8) 

 

Not only are the convolutions becoming smoother, but the unmistakable shape 

of a Gaussian is emerging.Is this a coincidence, based on the particularly simple 

nature of the function  , or is something moregoing on? Here is a plot of, 

literally, a random function      — the values      are just randomly 

chosennumbers between 0 and 1. 

 

 

 

 

 

 

 

 

Figure (2.9) 
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Figure (2.10) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.11) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.12) 
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From seeming chaos, again we see a Gaussian emerging. The object of this 

section is to explain thisphenomenon, to give substance to the following famous 

quotation: 

Everyone believes in the normal approximation, the experimenters 

because they think it is amathematical theorem, the mathematicians 

because they think it is an experimental fact. 

G. Lippman, French Physicist, 1845–1921 

The ―normal approximation‖ (or normal distribution) is the Gaussian. The 

―mathematical theorem‖ hereis the Central Limit Theorem. To understand the 

theorem and to appreciate the ―experimental fact‖, we 

have to develop some ideas from probability. 

In the following we discuss Random variables. In whatever field of 

science or engineering you pursue you will use probabilistic ideas. Youwill use 

theGaussian. I‘m going under the assumption that you probably know some 

probability, and probably somestatistics, too, even if only in an informal way. 

For our present work, where complete generality based 

on exquisitely precise terminology is not the goal, we only need a light dose of 

some of the fundamentalnotions. 

The fundamental notion is the random variable. A random variable is a number 

you don‘t know yet. By that we mean that it, or rather its value, is the numerical 

result of some process, like a measurementor the result of an experiment. The 

assumption is that you can make the measurement, you can performthe 

experiment, but until you do you don‘t know the value of the random variable. 

It‘s called ―random‖because a particular object to be measured is thought of as 

being drawn ―at random‖ from a collection ofall such objects. For example: 

Random Variable Value of random variable 

Height of people in US population Height of particular person 

Length of pins produced Length of particular pin 

Momentum of atoms in a gas Momentum of particular atom 
Resistance of resistors off a production line Resistance of a particular resistor 

Toss of coin 0 or 1 (head or tail) 

Roll of dice Sum of numbers that come up 

 

A common notation is to write  for the name of the random variable and  for 

its value. If you thenthink that a random variable  is just a function, you‘re 

right, but deciding what the domain of sucha function should be, and what 

mathematical structure to require of both the domain and the function,demands 

the kind of precision that we don‘t want to get into. This was a long time in 
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coming. Consider,for example, Mark Kac‘s comment: ―independent random 

variables were to me (and others, includingmy teacher Steinhaus) shadowy and 

not really well-defined objects.‖ Kac was one of the most eminentprobabilists of 

the 20th century. 

Now we illustrate Probability distributions and probability density 

functions. ―Random variable‖ is the fundamental notion, but not the 

fundamental object of study. For a givenrandom variable what we‘re most 

interested in is how its values are distributed. For this it‘s helpful todistinguish 

between two types of random variables. 

1. A random variable is discrete if its values are among only a finite number 

of possibilities. 

For example ―Roll the die‖ is a discrete random variable with values 1, 2, 

3, 4, 5 or 6. ―Tossthe coin‖ is a discrete random variable with values 0 

and 1. (A random variable with values 0and 1 is the basic random 

variable in coding and information theory.) 

2. A random variable is continuous if its values do not form a discrete set, 

typically filling up one ormore intervals of real numbers. 

For example ―length of a pin‖ is a continuous random variable since, in 

theory, the length of apin can vary continuously. 

For a discrete random variable we are used to the idea of displaying the 

distribution of values as a histogram.We set up bins, one corresponding to each 

of the possible values, we run the random process however manytimes we 

please, and for each bin we draw a bar with height indicating the percentage that 

value occursamong all actual outcomes of the runs. Since we plot percentages, 

or fractions, the total area of thehistogram is 100%, or just 1. 

A series of runs of the same experiment or the same measurement will produce 

histograms of varying shapes. We often expect some kind of limiting shape as 

we increase the number of runs, or we maysuppose that the ideal distribution 

has some shape, and then compare the actual data from a series of runsto the 

ideal, theoretical answer. 

The theoretical histogram is called the probability distribution. Andthe function 

that describes the histogram (the shape of the distribution) is called the 

probabilitydensity function or pdf, of the random variable. 

Is there a difference between the probability distribution and the probability 

density function? No, notreally — it‘s like distinguishing between the graph of a 

function and the function. Both terms are incommon use, more or less 

interchangeably. 
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The probability that any particular value comes up is the area of its bin in the 

probability distribution,which is therefore a number between 0 and 1. 

If the random variable is called  and the value we‘re interested in is  we write 

this as 

                                   

Also 

                                           

Thus probability is the percentage of the occurrence of a particular outcome, or 

range of outcomes, amongall possible outcomes. We must base the definition of 

probability on what we presume or assume is thedistribution function for a 

given random variable. A statement about probabilities for a run of 

experimentsis then a statement about long term trends, thought of as an 

approximation to the ideal distribution. 

One can also introduce probability distributions and probability density 

functions for continuous randomvariables. You can think of this — in fact you 

probably should think of this — as a continuous version ofa probability 

histogram. It‘s a tricky business, however, to ―take a limit‖ of the distribution 

for a discreterandom variable, which have bins of a definite size, to produce a 

distribution for a continuous randomvariable, imagining the latter as having 

infinitely many infinitesimal bins. 

It‘s easiest, and best, to define the distribution for a continuous random variable 

directly. 

A probability density function is a nonnegative function      with area 1, i.e., 

∫       
 

  

    

Remember,  is the measured value of some experiment. By convention, we take 

 to go from   to   so we don‘t constantly have to say how far the values 

extend. 

Here‘s one quick and important property of pdfs: 

1. If      is a pdf and     then        is also a pdf. 

To show this we have to check that the integral of        is 1. But 

∫          
 

  

 ∫       
 

 
   

 

  

 ∫       
 

  

    

making the change of variable     . We‘ll soon see this property in 

action. 

2. We think of a pdf as being associated with a random variable  whose 

values are  and we write   if we want to emphasize this. The 
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(probability) distribution of  is the graph of   , but, again, theterms 

probability density function and probability distribution are used 

interchangeably. 

3. Probability is defined by 

                                       

 ∫        
 

  

  

Also 

            ∫        
 

 

  

For continuous random variables it really only makes sense to talk about the 

probability of a range ofvalues occurring, not the probability of the occurrence 

of a single value. Think of the pdf as describing alimit of a (discrete) histogram: 

If the bins are becoming infinitely thin, what kind of event could land in an 

infinitely thin bin? 

Finally, for variable  , say, we can view 

     ∫       
 

  

 

as the ―probability function‖. It‘s also called the cumulative probability or the 

cumulative density function. We then have 

               

and 

                       

According to the fundamental theorem of calculus we can recover the 

probability density function from     by differentiation: 

 

  
           

In short, to know      is to know      and vice versa. You might not think this 

news is of any particularpractical importance, but you‘re about to see that it is. 

Now we discuss mean, variance, and standard deviation.Suppose  is a random 

variable with pdf     . The  ‘s are the values assumed by  , so the mean  of 

  is the weighted average of these values, weighted according to  . That is, 

     ∫        
 

  

  

Be careful here — the mean of  , defined to be the integral of      , is not the 

average value of thefunction     . It might be that       , of course, i.e., 

that the integral of        does not converge. 
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If       then we can always ―subtract off the mean‖ to assume that  has 

mean zero. Here‘s whatthis means, no pun intended; in fact let‘s do something 

slightly more general. What do we mean by    ,when  is a random variable 

and a is a constant? Nothing deep — you ―do the experiment‖ to get a valueof 

 ( is a number you don‘t know yet) then you subtract a from it. What is the pdf 

of    ? Tofigure that out, we have 

                        ∫       
   

  

 ∫          
 

  

                     

This identifies the pdf of    as       , the shifted pdf of  . 

Next, what is the mean of    . It must be       (common sense, please). 

Let‘s check this nowknowing what pdf to integrate. 

       ∫          
 

  

 ∫            
 

  

                    

 ∫          
 

  

∫       
 

  

         

Note that translating the pdf      to        does nothing to the shape, or 

areas, of the distribution,hence does nothing to calculating any probabilities 

based on     . As promised, the mean is       . Weare also happy to be 

certain now that ―subtracting off the mean‖, as in       , really does result in 

arandom variable with mean 0. This normalization is often a convenient one to 

make in deriving formulas. 

Suppose that the mean      is finite. The variance    is a measure of the 

amount that the values of therandom variable deviate from the mean, on 

average, i.e., as weighted by the pdf     . Since some valuesare above the mean 

and some are below we weight the square of the differences, (      )
 
, by 

     anddefine 

      ∫ (      )
 
      

 

  

  

If we have normalized so that the mean is zero this becomes simply 

      ∫         
 

  

  

The standard deviation is     , the square root of the variance. Even if the 

mean is finite it might bethat       is infinite; this, too, has to be checked for 

any particular example. 
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We‘ve just seen that we can normalize the mean of a random variable to be 0. 

Assuming that the varianceis finite, can we normalize it in some helpful way? 

Suppose  has pdf  and let a be a positive constant. 

Then 

    (
 

 
   )             ∫       

  

  

 ∫         
 

  

(                         
 

 
 ) 

This says that the random variable 
 

 
 has pdf       . (Here in action is the 

scaled pdf       , which wehad as an example of operations on pdf‘s.) 

Suppose that we‘ve normalized the mean of  to be 0. Thenthe variance of 
 

 
 is 

  (
 

 
 )  ∫           

 

  

  ∫
 

  
      

 

 
   

 

  

                             

 
 

  
∫         

 

  

 
 

  
      

In particular, if we choose        then the variance of 
 

 
 is one. This is also 

a convenient normalizationfor many formulas. 

In summary: 

Given a random variable  with finite       and       , it is possible to 

normalize and assumethat        and        . 

In the following we discuss two examples:Let‘s be sure we have two leading 

examples of pdfs to refer to. 

1. The uniform distribution ―Uniform‖ refers to a random process where all 

possible outcomes are equally likely. In the discrete case tossing a coin or 

throwing a die are examples. All bins in the ideal histogram have the same 

height, two bins of height     for the toss of a coin, six bins of height     for 

the throw of a single die, and  bins of height    for a discrete random variable 

with  values. 

For a continuous random variable the uniform distribution is identically 1 on an 

interval of length 1 andzero elsewhere. If we shift to the interval from      to 

   , it‘s thegraph of the ever versatile rect function.      is now starring in yet 

another role, that of the uniformdistribution. 

The mean is 0, obviously, but to verify this formally: 
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  ∫        
 

  

 ∫    
   

    

 
 

 
  ]

    

    

    

The variance is then 

   ∫         
 

  

 ∫     
   

    

 
 

 
  ]

    

    

 
 

  
  

perhaps not quite so obvious. 

2. The normal distribution: 

So it seems appropriatethat at some point I mention: 

The Gaussian is a pdf. 

Indeed, the Gaussian 

         
 

 √  
            

  

is a pdf with mean  and variance   . The distribution associated with such a 

Gaussian is called a normaldistribution.  

Now we study Independence. An important extra property that random 

variables may have is independence. The plain English description of 

independence is that one event or measurement doesn‘t influence another event 

or measurement. 

Each flip of a coin, roll of a die, or measurement of a resistor is a new event, not 

influenced by previousevents. 

Operationally, independence implies that the probabilities multiply: If two 

random variables    and   are independent then 

                                           

In words, if     occurs r percent and     occurs s percent then, if the 

events are independent, thepercent that     occurs and     occurs is 

 percent of  percent, or   percent. 

In the following we illustrate Convolution appears. Using the terminology 

we‘ve developed, we can begin to be more precise about the content of the 

CentralLimit Theorem. That result— the ubiquity of the bell-shaped curve — 

has to do with sums of independentrandom variables and with the distributions 

of those sums. 

While we‘ll work with continuous random variables, let‘s look at the discrete 

random variable     ―rollthe dice‖ as an example. The ideal histogram for the 

toss of a single die is uniform — each number 1through 6 comes up with equal 

probability. We might represent it pictorially like this: 
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Figure (2.13) 

We  don‘t mean to think just of a picture of dice here — I mean to think of the 

distribution as six bins ofequal height    , each bin corresponding to one of the 

six possible tosses. 

What about the sum of the tosses of two dice? What is the distribution, 

theoretically, of the sums? Thepossible values of the sum are 2 through 12, but 

the values do not occur with equal probability. There‘sonly one way of making 

2 and one way of making 12, but there are more ways of making the other 

possiblesums. In fact, 7 is the most probable sum, with six ways it can be 

achieved. We might represent thedistribution for the sum of two dice pictorially 

like this: 

 
Figure (2.14) 

It‘s triangular. Now let‘s see , For the single random variable    ―roll one die‖ 

we have a distributionlike a rect function. For the sum, say random variables 

      = ―roll of die 1 plus roll of die 2‖, thedistribution looks like the triangle 

function . . 

The key discovery is this: 

Convolution and probability density functions. The probability density function 

of thesum of two independent random variables is the convolution of the 

probability density functionsof each. 

We can get a good intuitive sense of why this result might hold by looking again 

at the discrete case andat the example of tossing two dice. To ask about the 

distribution of the sum of two dice is to ask aboutthe probabilities of particular 

numbers coming up, and these we can compute directly using the rules 

ofprobability. Take, for example, the probability that the sum is 7. Count the 

ways, distinguishing whichthrow is first: 
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              }          }          }          }          }          } 

                                                        

              

                                                                    

                                                            

               

                                                                   

  (
 

 
)
 

 
 

 
  

The particular answer,                , is not important here — it‘s the 

form of the expressionfor the solution that should catch your eye. We can write 

it as 

            ∑                 

 

   

 

which is visibly a discrete convolution of Prob with itself — it has the same 

form as an integral convolutionwith the sum replacing the integral. 

We can extend this observation by introducing 

     {
 

 
         

                  

 

This is the discrete uniform density for the random variable ―Throw one die‖. 

Then, by the same reasoningas above, 

                        ∑           

 

    

  

one  can check that this gives the right answers, including the answer 0 for n 

bigger than 12 or n lessthan 2: 

               

       
       
       
       
       
       
       
       
        
        
        



75 
 

 

Now let‘s turn to the case of continuous random variables, and in the following 

argument look for similaritiesto the example we just treated. Let    and    be 

independent variables with probability densityfunctions        and       . 

Because    and    are independent, 

                          (∫           

  

  

)(∫           

  

  

) 

Using what has now become a familiar trick, we write this as a double integral. 

(∫           

  

  

)(∫           

  

  

)  ∫ ∫                     

  

  

  

  

  

that is, 

                          ∫ ∫                     

  

  

  

  

  

If we let    and    drop to   then 

                    ∫ ∫                     

  

  

  

  

  

Since this holds for any b1 and b2, we can conclude that 

              ∬                     
       

 

for every  . In words, the probability that        is computed by 

integrating the joint probabilitydensity              over the region in the 

       -plane where        . 

We‘re going to make a change of variable in this double integral. We let 

     

       

Notice that        . Thus under this transformation the (oblique) line 

       becomes thehorizontal line    , and the region 

       in the        -plane becomes the half-plane    in the     -

plane. 
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Figure (2.15) 

 

 

 

 

 

 

 

 

 

 

Figure (2.16) 

The integral then becomes 

∬                     
       

 ∫ ∫        

 

  

 

  

             

 

                                      

 ∫             
 

  

  

To summarize, we now see that the probability               for any t is 

given by 

              ∫             
 

  

  

Therefore the probability density function of       is           . 

This extends to the sum of any finite number of random variables: If 

           are independentrandom variables with probability density 
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functions           , respectively, then the probability densityfunction of 

           is           . Cool. Cool. . . . Cool. 

For a single probability density     we‘ll write 

                    

                                                      

In the following we discuss The Central Limit Theorem: The Bell Curve Tolls 

for Thee. The Central Limit Theorem says something like the sum of 

 independent random variables is well approximated by a Gaussian if  is large. 

That means the sum is distributed like a Gaussian. To make a truestatement, we 

have to make a few assumptions — but not many — on how the random 

variables themselves are distributed. Call the random variables           . 

We assume first of all that the  ‘s areindependent. We also assume that all of 

 ‘s have the same probability density function. There‘s someterminology and 

an acronym that goes along with this, naturally. One says that the  ‘s are 

independentand identically distributed, or    . In particular the  ‘s all have the 

same mean, say  , and they all havethe same standard deviation, say  . 

Consider the sum 

                

We want to say that    is distributed like a Gaussian as  increases, but which 

Gaussian? The mean andstandard deviation for the  ‘s are all the same, but for 

   they are changing with n. It‘s not hard toshow, though, that for    the mean 

scales by n and thus the standard deviation scales by√ : 

         

      √    

So to make sense of    approaching a particular Gaussian we should therefore 

recenter and rescale thesum, say fix the mean to be zero, and fix the standard 

deviation to be 1. That is, we should work with 

     

√  
 

and ask what happens as    . One form of the Central Limit Theorem says 

that 

   
   

    (  
     

√  
  )  

 

√  
∫         

 

 

  

On the right hand side is the Gaussian (  √  )       with mean 0 and 

standard deviation 1. Thetheorem says that probabilities for the normalized sum 

of the random variables approach those based onthis Gaussian. 
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We‘ll focus on the convergence of the pdf‘s for    — sort of an unintegrated 

form of the way the CLT isstated, above. Let      be the common probability 

density function for the           . (The pdf for 

the    X‘s, for those who like to compress their terminology.) We‘ll start by 

assuming already that     and     for the  ‘s. This means that 

∫        
 

  

                   ∫         
 

  

     

in addition to  

∫       
 

  

     

which is true for every pdf. 

Now, the mean of    is zero, but the standard deviation is √ , so we want to 

work    √ . What is thepdf of this? We‘ve shown that the pdf for       

     is 

                     

Hence the probability density function for    √ is 

      √    (√   )  

(Careful here: It‘s          (√   ), not  (√   )   (√   )    (√   ).) 

We‘re all set to show: 

Theorem (2.2.5): (Central Limit Theorem) 

Let            be independent, identically distributed randomvariables with 

mean 0 and standard deviation 1. Let       be the probability  

density functionfor 
  

√ 
               √ . Then 

      
 

√  
              

The idea is to take the Fourier transform of   , which, by the Convolution 

Theorem, will essentially bethe product of the Fourier transforms of  . Products 

are easier than convolutions, and the hope is to usethe assumptions on  to get 

some information on the form of this product as    . 

Begin with the Fourier transform of 

      √    (√   )  

We‘ll use the capital letter notation and write           . Then the Fourier 

transform of       is 

  (  √ )                           
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The normalization of mean zero and standard deviation 1 allows us to 

dosomething with  (  √ ). Usinga Taylor series approximation for the 

exponential function, we have 

 (  √ )  ∫  
 

     

√       
 

  

 ∫ (  
     

√ 
 

 

 
(
     

√ 
)
 

      )
 

  

      

 ∫ (  
     

√ 
 

       

 
      )

 

  

      

 ∫        
    

√ 

 

  

∫         
     

 

 

  

∫         
 

  

 ∫               
 

  

   
     

 
        

In the last step we used the normalizations 

∫       
 

  

        ∫         
 

  

          ∫          
 

  

     

That ―small‖ term tends to 0 faster than    as    . 

Using the well known fact that           , we have for large   

  (
 

√ 
)   (  

     

 
)

 

        
   

Taking the inverse Fourier transform of       
and knowing what happens to the 

Gaussian, taking thelimit as    , taking the rest of the day off for a job well 

done, we conclude that 

      
 

√  
        

Now we are discuss Fourier transform formulas under different 

normalizations. With convolution now part of our working lives we‘ve seen the 

major operations and formulas involvingFourier transforms. As above we 

cautioned that there are different conventions for definingthe Fourier transform, 

and different conventions result in different formulas. Here is a summary of 

whatyou‘ll find out there. 

To be as general as possible let‘s write, as we did back, 

      
 

 
∫            

 

  

  

We use     and      but different Fourier practitioners may well use any 

of the following pairs ofvalues: 
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  √                      

                           

                            

Whatever you choose, here‘s what you‘ll then have to live with: 

    
  

     
                              

         (     ) 
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Chapter 3 

A physical Analogy For Distributions 

Section (1. 3): Right Functions for Fourier Transforms and little 

on integrals 

We begin this section by studying the Day of  Reckoning .we‘ve been playing a 

little fast and loose with the Fourier transform – applying Fourier inversion, 

appealing to duality, and all that . ―fast and loose‖ is an understatement if ever 

there was one, but it‘s also true that we haven‘t done anything ―wrong‖ . all of 

our formulas and all of our applications have been correct, if not fully justified. 

Nevertheless, we have to come to terms with some fundamental questions. It 

well take us some time, but in the end we will have settled on a very wide class 

of signals with these properties: 

1. The allowed signals include    , unit steps, ramps,                and all 

other standard signals that the world‘s  economy depends on. 

2. The Fourier transform and its inverse are defined for all of these signals. 

3. Fourier inversion work. 

 These are the three most important features of the development to come, but 

we‘ll   also reestablish some of our specific results and as an added benefit we‘ll 

even finish off differential calculus. 

Now we study   too simple criterion and an example. It‘s not hard to write 

down an assumption on a function that guarantees the existence of its Fourier 

transform and even implies a little more than existence. 

If ∫            
 

  
 then    and  -1  exist and are continuous. 

Existence follows from 

|    (s)| = |∫                
 

  
| 

≤ ∫                   
 

  
  ∫             

 

  
 

 

Here we‘ve used that the magnitude of the integral is less that the integral of the 

magnitude.   

Continuity is the little extra information we get beyond existence. Continuity 

 Follows  as follows. For any s and    we have 

|    (s) -     (s
´
)| = |∫                

 

  
  ∫                 

 

  
| 
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=|∫                          
 

  
| ≤  ∫                            

 

  
 

 

  As a consequence of ∫            
 

  
we can take the limit as        inside 

the integral. if we do that then                      , that is, 

|                              

Which says that       is continuous. The same argument works to show that  -

1  is continuous. 

We haven‘t said anything here about Fourier inversion – no such statement 

appears in the criterion. Let‘s look right away at an example. 

The very first example we computed, and still an important  one, is the Fourier 

transform of    We found directly that 

       ∫               

 

  

 ∫            

   

    

         

No problem there, no problem whatsoever. The criterion even applies;   is in 

      

Since  

∫           

 

  

 ∫        

   

    

 

Furthermore, the transform                 is continuous. That‘s worth 

remarking on: Although the signal jumps (  has discontinuity) the Fourier 

transform does not, 

Just as guaranteed by the preceding result – make this part of your intuition on 

the Fourier transform vis a vis the signal. 

Appealing to the Fourier inversion theorem and what we called duality, we then 

said 

          ∫                        

 

  

 

Here we have a problem. The      function does not satisfy the integrability 

criterion. It is my sad duty to inform you that                                 

∫                
 

  
 

 

We‘ll give you two ways of seeing the failure of          to be integrable. First , 

if      did satisfy the criterion ∫              
 

  
then its Fourier transform 
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would be continuous .but its Fourier transform, which has to come out to be  , 

is not continuous . or, if we don‘t like that, here‘s a direct argument. We can 

find infinitely 

Many intervals where                this happens when t is between 1/6 and 

5/6, and that repeats for infinitely many  intervals, for example on 

                                      because       is periodic of 

period 2. The    all have length 2/3. On    we have                 so 

 

   
   

 
 

 
   

 

And  
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Then 

∫
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∫
       

    
   

 

  

 
 

  
∑

 
 

 
    

 

   

    

It‘s true that                                                       factor 

makes that happen – but not ―fast enough‖ to make the integral of 

         converge.  

This is most basic example in the theory. It‘s not clear that the integral defining 

the Fourier transform of      exists, at least it doesn‘t follow from the criterion. 

Doesn‘t this bother you? Isn‘t it a little embarrassing that multibillion dollar 

industries seem to depend on integrals that don‘t converge? 

In fact, there isn‘t so much of a problem with either   or sinc. It is true that 

∫                  

 

  

  {
             

 

 

                
 

 

 

However showing this – evaluating the improper integral that defines the 

Fourier transform – requires special arguments and techniques. The      

function oscillates, as do the real and imaginary parts of the complex 

exponential, and integrating                involves enough cancellation for the 

limit 

   
    
   

∫                 
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To exist. 

Thus Fourier inversion, and duality, can be pushed through in this case. At least  

Almost .you‘ll notice that we didn‘t say anything about the points       , 

where there‘s a jump in   in the time domain. In those cases the improper 

integral does not exist, but with some additional interpretations one might be 

able to convince a sympathetic friend that 

∫                       

 

  

 
 

 
 

In the appropriate sense (invoking ―principle value integrals‖).at best this is post 

hoc and needs some fast talking. 

The truth is that cancellations that occur in the      integral or in its Fourier 

transform are a very subtle and dicey thing. Such risky encounters are  to 

avoided. 

We‘d like a more robust, trustworthy theory. 

The news so far.Here‘s a quick summary of the situation. The Fourier transform 

of    is definedwhen  

∫              

 

  

 

We allow to be complex valued in this definition. The collection of all 

functions on R satisfying thiscondition is denoted by        the superscript 1 

indicating that we integrate        to the first power.The   -norm of F is 

defined by 

     ∫          

 

  

 

Many of the examples we worked with are   -functions — the rect function, the 

triangle function, theexponential decay (one or two-sided), Gaussians — so our 

computations of the Fourier transforms in thosecases were perfectly justifiable 

(and correct). Note that   -functions can have discontinuities, as in therect 

function. 

The criterion says that                    exists. We can also say 

 

         ∫                  ∫             

 

  

 

  

   

That is: 
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I. The magnitude of the Fourier transform is bounded by the   -norm of the 

function. 

This is a handy estimate to be able to write down — we‘ll use it shortly. 

However, to issue a warning: 

 Fourier transforms of       functions may themselves notbe in   , like for the 

     function, so we don‘t know without further work what more can be done, 

if anything. 

The conclusion is that   -integrability of a signal is just too simple a criterion on 

which to build a reallyhelpful theory. This is a serious issue for us to 

understand. Its resolution will greatly extend the usefulnessof the methods we 

have come to rely on. 

There are other problems, too. Take, for example, the signal               As 

it stands now, this signaldoes not even havea Fourier transform — does not 

have a spectrum! — for the integral 

∫                  

 

  

 

does not converge, no way, no how. This is no good. 

Before we bury        as too restrictive for our needs, here‘s one more good 

thing about it. There‘s actuallya stronger consequence for    than just 

continuity. 

II.    ∫                                    
 

  
 

 

This is called the Riemann-Lebesgue lemma and it‘s more difficult to prove 

than showing simply that   is continuous. One might view the result as saying 

that       isat least tryingto be integrable. It‘s continuous and it tends to zero 

as       Unfortunately, the factthat          does not imply that it‘s 

integrable (think of     , again). If we knew something, or couldinsist on 

something about the rateat which a signal or its transform tends to zero at    

then perhapswe could push on further. 

In the following we illustrate the, path , the way.To repeat, we want our theory 

to encompass the following three points: 

1. The allowed signals include _‘s, unit steps, ramps,             , and all 

other standard signals that the world‘s economy depends on. 

2. The Fourier transform and its inverse are defined for all of these signals. 

3. Fourier inversion works. 

Fiddling around with       or substitutes, putting extra conditions on jumps — 

all have been used. Thepath to success lies elsewhere. It is well marked and 

firmly established, but it involves a break with theclassical point of view. The 

outline of how all this is settled goes like this: 
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1. We single out a collection of functions   for which convergence of the 

Fourier integrals is assured,for which a function andits Fourier transform are 

both in  ,and for which Fourier inversion works. 

Furthermore, Parseval‘s identity holds: 

∫             ∫             

 

  

 

  

 

This much isclassical; new ideas with new intentions, yes, but not new objects. 

Perhaps surprisinglyit‘s not so hard to find a suitable collection  , at least if one 

knows what one is looking for. Butwhat comes next is definitely not 

―classical‖. It had been first anticipated and used effectively in anearly form by 

O. Heaviside, developed, somewhat, and dismissed, mostly, soon after by less 

talentedpeople, then cultivated by and often associated with the work of P. 

Dirac, and finally defined by . Schwartz. 

2.   forms a class of test functionswhich, in turn, serve to define a larger class 

of generalized functions or distributions, called, for this class of test functions 

the tempereddistributions, T . Precisely because  was chosen to be the ideal 

Fourier friendly space of classical signals, the tempered distributionsare 

likewise well suited for Fourier methods. The collection of tempered 

distributions includes, for 

example,    and   -functions (which can be wildly discontinuous), the 

    function, and complexexponentials (hence periodic functions). But it 

includes much more, like the delta functions andrelated objects. 

3. The Fourier transform and its inverse will be defined so as to operate on 

these tempered distributions,and they operate to produce distributions of the 

same type. Thus the inverse Fourier transform canbe applied, and the Fourier 

inversion theorem holds in this setting. 

4. In the case when a tempered distributions ―comes from a function‖ — in a 

way we‘ll make precise— the Fourier transform reduces to the usual definition 

as an integral, when the integral makessense. However, tempered distributions 

are more general than functions, so we really will have donesomething new and 

we won‘t have lost anything in the process. 

Our goal is to hit the relatively few main ideas in the outline above, suppressing 

the considerable massof details. In practical terms this will enable us to 

introduce delta functions and the like as tools forcomputation, and to feel a 

greater measure of confidence in the range of applicability of the formulas. 

We‘re taking this path because it works, it‘s very interesting, and it‘s easy to 

compute with.  

We‘ll touch on some other approaches to defining distributions and generalized 

Fourier transforms, butas far as we concerned they are the equivalent of vacuum 

tube technology.  

Now we discuss The Right Functions for Fourier Transforms: Rapidly 

Decreasing 
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Functions. Mathematics progresses more by making intelligent definitions than 

by proving theorems. The hardestwork is often in formulating the fundamental 

concepts in the right way, a way that will then make thedeductions from those 

definitions (relatively) easy and natural. This can take awhile to sort out, and 

a subject might be reworked several times as it matures; when new discoveries 

are made and one seeswhere things end up, there‘s a tendency to go back and 

change the starting point so that the trip becomeseasier. Mathematicians may be 

more self-conscious about this process, but there are certainly examplesin 

engineering where close attention to the basic definitions has shaped a field — 

think of Shannon‘s workon Information Theory, for a particularly striking 

example. 

Nevertheless, engineers, in particular, often find this tiresome, wanting to do 

something and not ―just talkabout it‖: ―Devices don‘t have hypotheses‖, as one 

of my colleagues put it. One can also have too muchof a good thing — too 

many trips back to the starting point to rewrite the rules can make it hard 

tofollow the game, especially if one has already played by the earlier rules. we 

sympathetic to both of thesecriticisms, and for our present work on the Fourier 

transform we‘ll try to steer a course that makes thedefinitions reasonable and 

lets us make steady forward progress. 

In the following we study  Smoothness and decay. To ask ―how fast‖       

might tend to zero, depending on what additional assumptions we might 

makeabout the function      beyond integrability, will lead to our defining 

―rapidly decreasingfunctions‖,and this is the key. Integrability is too weak a 

condition on the signal f, but it does imply that       iscontinuous and tends 

to         What we‘re going to do is study the relationship between the 

smoothnessof a function — not just continuity, but how many times it can be 

differentiated — and the rate at whichits Fourier transform decays at infinity. 

We‘ll always assume that      is absolutely integrable, and so has a Fourier 

transform. Let‘s suppose,more stringently, that 

 

                         ∫               

 

  

 

Then       has a Fourier transform, and so does           and its Fourier 

transform is 

 (         ) ∫              

 

  

        

 ∫ (
 

  
       )        

 

  

 

  

∫(       )      

 

  

 

 

 (switching      and the integral is justified by the integrability of           
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This says that the Fourier transform       is differentiable and that its 

derivative is                 When    is merely integrable we know that 

     is merely continuous, but with the extra assumption on theintegrability of 

     we conclude that        is actually differentiable. (And its derivative is 

continuous.Why?) 

For one more go-round in this direction, what if        is integrable? Then, by 

the same argument,  

 (            )  ∫                    

 

  

   

 

 ∫ 
  

   
            

 

  

   
  

   
∫             

 

  

   
  

   
         

 

and we see that    is twice differentiable. (And its second derivative is 

continuous.) 

Clearly we can proceed like this, and as a somewhat imprecise headline we 

might then announce: 

 Faster decay of     at infinity leads to a greater smoothness of the Fourier 

transform. 

Now let‘s take this in another direction, with an assumption on the smoothness 

of the signal. Suppose     is differentiable, that its derivative is integrable, and 

that                    we‘ve thrown in all the assumptions we need to 

justify the following calculation: 

      ∫            
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We then have 

|          
 

   
|(   )   |   

 

   
    1. 
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The last inequality follows from the result: ―The Fourier transform is bounded 

by the   -norm of thefunction‖. This says that                      
           (Remember that     1 is some fixed number here, independent of 

 .) Earlier we commented that if   is integrable then    tends to 0 at   , but 

here with the stronger assumptions we get a stronger conclusion, that    tends 

to zero at acertain rate. 

Let‘s go one step further in this direction. Suppose     is twice differentiable, 

that its first and secondderivatives are integrable, and that     and       tend to 

0 as 

         The same argument gives 

 

      ∫            
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∫         
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  ∫
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(integration by parts with        ,              ) 

 

       
∫              
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Thus 

           
 

      
     1 

and we see that      tends to 0 like     . 

The headline: 

 Greater smoothness of       plus integrability, leads to faster decay of the 

Fourier transform at  . 

Remark (3.1.1):  (on the derivative formula for the Fourier 

transform) 
In this work we rederived the derivative formula 

      = 2          

which we‘ve used before, but here we needed the assumption that  

       , whichwe didn‘t mentionbefore. What‘s up? With the technology we 

have available to us now, the derivation we gave, above, isthe correct 

derivation. That is, it proceedsvia integration by parts, and requires some 

assumption like 

                      That only works if Fourier inversion is known to 

hold. This was OK when therigor police were off duty, but not now, on this day 

of reckoning. when we develop a generalization of the Fourier transform. 
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We could go on as we did above, comparing the consequences of higher 

differentiability, integrability,smoothness and decay, bouncing back and forth 

between the function and its Fourier transform. The greatinsight in making use 

of these observations is that the simplest and most useful way to coordinate all 

these 

phenomena is to allow for arbitrarily great smoothness and arbitrarily fast 

decay. We would like to haveboth phenomena in play. Here is the crucial 

definition. 

definition (3.1.2): (Rapidly decreasing functions) 
A function     is said to be rapidly decreasing at ± ∞ if 

1. It is infinitely differentiable. 

2. For all positive integers m and n, 

   
  

   
             

In words, any positive power of   times any order derivative of   tends to zero 

at infinity. 

Note that m and n are independent in this definition. That is, we insist that, say, 

the 5th power of   timesthe 17th derivative of      tends to zero, and that the 

100th power of   times the first derivative of      tends to zero; and whatever 

you want. 

Are there any such functions? Any infinitely differentiable function that is 

ientically zero outside somefinite interval is one example, and we‘ll even write 

down a formula for one of these . Another example is         
. You may 

already be familiar with the phrase ―the exponential grows faster than any 

power of  ‖, and likewise with the phrase ―    
 decays faster than any power 

of  .‖ In fact, any derivative of    
decays faster than any power of   as 

    , as you can check with L‘Hopital‘s rule, for example. 

We can express this exactly as in the definition: 

   
  

   
    

             

 

There are plenty of other rapidly decreasing functions. We also remark that if 

     is rapidly decreasingthen it is in       and in        

definition(3.1.3): (An alternative definition) 
An equivalent definition for a function to be rapidly decreasing is to assumethat 

for any positive integers m and n there is a constant     such that 

   
  

   
    

               

In words, the mth power of   times the nth derivative of  remains bounded for 

all        , though theconstant will depend on which   and   we take. This 

 Conditionimplies the ―tends to zero‖ condition, above. Convince that, the key 

being that m and n are arbitrary and independent. We‘ll usethis second, 
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equivalent condition often, and it‘s a matter of taste which one takes as a 

definition. 

Let us now praise famous men It was the French mathematician Laurent 

Schwartz who singled outthis relatively simple condition to use in the service of 

the Fourier transform. In his honor the set of rapidlydecreasing functions is 

usually denoted by   (a script  ) and called the Schwartz class of functions. 

Let‘s start to see why this was such a good idea. 

1. The Fourier transform of a rapidly decreasing function is rapidly decreasing. 

Let     bea function in  . We want to show that      is also in  . The 

condition involves derivatives of   , sowhat comes in is the derivative formula 

for theFourier transform and the version of that formula for higherderivatives. 

As we‘ve already seen 

           ( 
 

  
 )      

As we also noted, 
 

  
       (         )  

Because      is rapidly decreasing, the higher order versions of these formulas 

are valid; the derivationsrequire either integration by parts or differentiating 

under the integral sign, both of which are justified. 

That is, 

              ( 
  

   
 )     

  

   
        (            )  

(We follow the convention that the zeroth order derivative leaves the function 

alone.) 

Combining these formulas one can show, inductively, that for all nonnegative 

integers m and n, 

 (
  

   
(            ))   

  

   
       

Note how m and n enter in the two sides of the equation. 

We use this last identity together with the estimate for the Fourier transform in 

terms of the   -norm ofthe function. Namely, 

    |
  

   
     |          | (

  

   
(      ))|

        ‖
  

   
(      )‖

  
 

The   -norm on the right hand side is finite because   is rapidly decreasing. 

Since the right hand sidedepends on        , we have shown that there is a 

constant    with 
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|  
  

   
     |      

This implies that    is rapidly decreasing. Done. 

2. Fourier inversion works on  . We first establish the inversion theorem for a 

timelimited function in  . Suppose that      is smooth and for some   is 

identically zero for          , rather than just tendingto zero at   . In this 

case we can eriodize      to get a smooth, periodic function of period  . 

Expandthe periodic function as a converging Fourier series. Then for      
      
 

     ∑    
     

 

 

    

 

 

 ∑  
      

  
     

 

 
∫  
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= ∑  
      

  
     

 

 
∫  

      

       
 

  
) = ∑  

      

  
       (

 

 
)     

Our intention is to let T get larger and larger. What we see is a Riemann sum for 

the integral 

∫       

 

  

                  

and the Riemann sum converges to the integral because of the smoothness of  . 

(we have not slippedanything past you here, but we don‘t want to quote the 

precise results that make all this legitimate.) Thus 

 

               
 

and the Fourier inversion theorem is established for timelimited functions in S. 

When f is not timelimited we use ―windowing‖. The idea is to cut      off 

smoothly. The interestingthing in the present context— for theoretical rather 

than practical use — is to make the window so smooththat the ―windowed‖ 

function is still in S.  

We take a function     that is identically 1 for            , that goes 

smoothly (infinitely differentiable)down to zero as t goes from 1/2 to 1 and from 

−1/2 to −1, and is then identically 0 for t ≥ 1 and t    −1.This is a smoothed 

version of the rectangle function       instead of cutting off sharply at ±1/2 we 

bringthe function smoothly down to zero. You can certainly imagine drawing 

such a function: 
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Figure (3.1) 

 

Now scale                         That is,       is 1 for t between      and 

   , goes smoothly downto 0 between               and is then identically 

0 for        . Next, the function                      isa timelimited 

function in S. Hence the earlier reasoning shows that the Fourier inversion 

theorem holdsfor fn and    . The window eventually moves past every t, that is, 

             as 

        Some 

estimates based on the properties of the cut-off function . 

3. Parseval holds in S. We‘ll actually derive a more general result than 

Parseval‘s identity, namely: 

                 are complex valued functions in S then 

∫     

 

  

    ̅̅ ̅̅ ̅̅     ∫           ̅̅ ̅̅ ̅̅ ̅̅

 

  

     

 

As a special case, if we take     then         ̅̅ ̅̅ ̅̅             and the identity 

becomes 

∫           ∫            

 

  

 

  

 

To get the first result we‘ll use the fact that we can recover g from its Fourier 

transform via the inversiontheorem. That is, 
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     ∫            

 

  

    

The complex conjugate of the integral is the integral of the complex conjugate, 

hence 

    ̅̅ ̅̅ ̅̅  ∫      ̅̅ ̅̅ ̅̅ ̅̅           

 

  

 

The derivation is straightforward, using one of our favorite tricks of 

interchanging the order of integration: 

∫     

 

  

    ̅̅ ̅̅ ̅̅     ∫      

 

  

∫      ̅̅ ̅̅ ̅̅ ̅̅           

 

  

    

 

 ∫ ∫          ̅̅ ̅̅ ̅̅ ̅̅          

 

  

  

 

  

 

 ∫ ∫          ̅̅ ̅̅ ̅̅ ̅̅          

 

  

  

 

  

 

 

 ∫   

 

  

∫              

 

  

      ̅̅ ̅̅ ̅̅ ̅̅    

 ∫           ̅̅ ̅̅ ̅̅ ̅̅   

 

  

 

All of this works perfectly — the initial appeal to the Fourier inversion theorem, 

switching the order ofintegration — if f and g are rapidly decreasing. 

    Now we discuss a very little on integrals. This discuss on integrals is not a 

short course on integration. It‘s here to provide a little. The star of this study 

here you go. 

In the following we illustrate integrals are first defined for positive functions. In 

the general approach to integration (of realvaluedfunctions) you first set out to 

define the integral for nonnegative functions. Why? Because howevergeneral a 

theory you‘re constructing, an integral is going to be some kind of limit of sums 

and you‘ll want toknow when that kind of limit exists. If you work with positive 

(or at least nonnegative) functions then theissues for limits will be about how 

big the function gets, or about how big the sets are where the functionis or isn‘t 

big. You feel better able to analyze accumulations than to control conspiratorial 

cancellations. 

So you first define your integral for functions      with       . This works 

fine. However, you knowfull well that your definition won‘t be too useful if you 
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can‘t extend it to functions which are both positiveand negative. Here‘s how 

you dothis. For any function     you let      be its positive part: 

                  } 
Likewise, you let 

                  } 
be its negative part. (Tricky: the ―negative part‖ as you‘ve defined it is actually 

a positive function; taking      flips over the places where      is negative to 

be positive. You like that kind of thing.) Then 

 

        

while  

             . 

 

You now say that   is integrable if both    and   are integrable — a condition 

which makes sense since   and   are both nonnegative functions — and by 

definition you set 

∫  ∫   ∫    

(For complex-valued functions you apply this to the real and imaginary parts.) 

You follow this approachfor integrating functions on a finite interval or on the 

whole real line. Moreover, according to this definition     is integrable if   is 

because then 

∫    ∫        ∫   ∫   

 

and    and    are each integrable. It‘s also true, conversely, that if    is 

integrable then so is  .Youshow this by observing that 

                          
and this implies that both    and   are integrable. 

 You now know where the implication ∫           
 

  
    exists comes 

from. 

You get an easy inequality out of this development: 

 ∫    ∫     

In words, ―the absolute value of the integral is at most the integral of the 

absolute value‖. And sure that‘strue, because∫  may involve cancellations of 

the positive and negative values of   while ∫   won‘t have such cancellations. 

we don‘t shirk from a more formal argument: 

 ∫     ∫          ∫   ∫    

  ∫         ∫   ∫   (since    and   are both nonnegative) 

=∫        ∫    . 
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 You now know where the second inequality in 

|        (  )|  | ∫ (                
)       

 

  

|

 ∫ |                
|         

 

  

 

comes from; this came up in showing that    is continuous. 

Now we illustrate       stinks What about the sinc function and trying to make 

sense of the following equation? 

         ∫                

 

  

 

According to the definitions you just gave, the      function is not integrable. 

In fact, the argument we gaveto show that  

∫            

 

  

 

 (the second argument) can be easily modified to show that both 

∫                 ∫       

 

  

 

  

    

So if you wanted to write  

∫          ∫          ∫         

 

  

 

  

 

  

 

we‘d be faced with1   . Bad. The integral of sinc (and also the integral of  

     ) has to be understoodas a limit, 

   
        

∫        

 

  

         

Evaluating this is a classic of contour integration and the residue theorem. 

In the following we study subtlety vs. cleverness. For the full mathematical 

theory of Fourier series and Fourier integrals oneneeds the Lebesgue integral. 

Lebesgue‘s approach to defining the integral allowsa wider class of functions to 

be integrated and it allows one to establish very general, very helpful resultsof 

the type ―the limit of the integral is the integral of the limit‖, as in 

        
   

∫         ∫    
   

        ∫        
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You probably do things like this routinely, and so do mathematicians, but it 

takes them a year or so ofgraduate school before they feel good about it. More 

on this in just a moment. 

The definition of the Lebesgue integral is based on a study of the size, or 

measure, of the sets where afunction is big or small, and you don‘t wind up 

writing down the same kinds of ―Riemann sums‖ youused in calculus to define 

the integral.  

 Nowtake note of the following quote of the mathematician T. K¨orner from his 

book Fourier Analysis: 

Mathematicians find it easier to understand and enjoy ideas which are clever 

rather than subtle. 

Measure theory is subtle rather than clever and so requires hard work to 

master. 

 Here‘sone more thing: 

The general result allowing one to pull a limit inside the integral sign is 

theLebesgue dominated convergencetheorem. It says: If    is a sequence of 

integrable functions that converges pointwise to a function   exceptpossibly on 

a set of measure 0, and if there is an integrable function   with       for all   

(the―dominated‖ hypothesis) then   is integrable and 

   
   

∫         ∫        

 

  

 

  

 

There‘s a variant of this that applies when the integrand depends on a 

parameter. It goes: If                  
       for all  , and if there is an 

integrable function   such that                 for all   then 

   
    

∫          ∫           

 

  

 

  

 

The situation described in this result comes up in many applications, and it‘s 

good to know that it holdsin great generality. 

Integrals are not always just like sums. Here‘s one way they‘re different, and 

it‘s important to realizethis for our work on Fourier transforms. 

 For sums wehave the result that 

∑                       

 

 

We used this fact together with Parseval‘s identity for Fourier series to conclude 

that the Fourier coefficientstend to zero. You also all know the classic 

counterexample to the converse of the statement: 

      but ∑
 

 
 
   diverge  . 

For integrals, however, it is possible that  
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∫       

 

  

 

exists but     does not tend to zero at ± ∞. Make      nonzero (make it equal 

to 1, if you want) onthinner and thinner intervals going out toward infinity. 

Then      doesn‘t decay to zero, but you can makethe intervals thin enough so 

that the integral converges.  

How about this example? ∑             
    

How shall we test for convergence of integrals? The answer depends on 

thecontext, and differentchoices are possible. Since the convergence of Fourier 

integrals is at stake, the important thing to measureis the size of a function ―at 

infinity‖ — does it decay fast enough for the integrals to converge. Any kind 

of measuring requires a ―standard‖, and for judging the decay (or growth) of a 

function the easiest andmost common standard is to measure using powers of  . 

The ―ruler‖ based on powers of   reads: 

∫
  

  

 

 

      {
                                    
                                        

 

You can check this by direct integration. We take the lower limit a to be 

positive, but a particular value isirrelevant since the convergence or divergence 

of the integral depends on the decay near infinity. You canformulate the 

analogous statements for integrals −      . 

To measure the decay of a function            we look at 

   
    

           

If, for some      , this is bounded then      is integrable. If there is a  

          for which the limit isunbounded, i.e., equals  , then      is not 

integrable. 

Standards are good only if they‘re easy to use, and powers of  , together with 

the conditions on theirintegrals are easy to use. You can use these tests to show 

that every rapidly decreasing function is in both      and        

Section (3.2): Distributions and it’s a physical analogy 
We begin this section by studying distributions. Our program to extend the 

applicability of the Fourier transform has several steps. We took the first step 

last time: 

We defined , the collection of rapidly decreasing functions. In words, these are 

the infinitelydifferentiable functions whose derivatives decrease faster than any 

power of    at infinity. Thesefunctions have the properties that: 

1. If      is in S then      is in  . 

2. If      is in S then            
We‘ll sometimes refer to the functions in   simply as Schwartz functions. 

The next step is to use the functions in   to define a broad class of ―generalized 

functions‖, or as we‘ll say,tempered distributions T , which will include   as 
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well as some nonintegrable functions, sine and cosine, δ functions, and much 

more, and for which the two properties, above, continue to hold. 

We want to give a straightforward, no frills treatment of how to do this. There 

are two possible approaches. 

1. Tempered distributions defined as limits of functions in  . 

This is the ―classical‖ (vacuum tube) way of defining generalized functions, and 

it pretty much appliesonly to the delta function, and constructions based on the 

delta function. This is an important enoughexample, however, to make the 

approachworth our while. 

The other approach, the one we‘ll develop more fully, is: 

2. Tempered distributions defined via operating on functions in  . 

We also use a different terminology and say that tempered distributions are 

paired with functionsin  , returning a number for the pairing of a distribution 

with a Schwartz function. 

In both cases it‘s fair to say that ―distributions are what distributions do‖, in that 

fundamentally they aredefined by how they act on ―genuine‖ functions, those in 

 . In the case of ―distributions as limits‖, thenature of the action will be clear 

but the kind of objects that result from the limiting process is sort ofhazy. 

(That‘s the problem with this approach.) In the case of ―distributions as 

operators‖ the nature of the objects is clear, but just how they are supposed to 

act is sort of hazy. (And that‘s the problem withthis approach, but it‘s less of a 

problem.) You may find the second approach conceptually more difficult,but 

removing the ―take a limit‖aspect from center stage really does result in a 

clearer and computationally 

easier setup. The second approach is actually present in the first, but there it‘s 

cluttered up by framingthe discussion in terms of approximations and limits. 

Take your pick which point of view you prefer, butit‘s best if we comfortable 

with both. 

In the following we discuss distributions as limitsThe first approach is to view 

generalized functions as some kind of limit of ordinary functions. Here we‘ll 

work with functions in  , but other functions can be used. 

Let‘s consider the delta function as a typical and important example. we 

probably met δ as a mathematical,idealized impulse. we learned: ―It‘s 

concentrated at the point zero, actually infinite at the pointzero, and it vanishes 

elsewhere.‖ We learned to represent this graphically as a spike: 

 
Figure (3.2) 
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we don‘t want to disabuse these ideas, or of the picture. We just want to refine 

thingssomewhat. 

As an approximation to δ through functions in   one might consider the family 

of Gaussians 

       
 

√   
 

   

  
                

 

We remarked earlier that the Gaussians are rapidly decreasing functions. 

Here‘s a plot of some functions in the family for   = 2, 1, 0.5, 0.1, 0.05 and 

0.01. The smaller the valueof  , the more sharply peaked the function is at 0 (it‘s 

more and more ―concentrated‖ there), while awayfrom 0 the functions are 

hugging the axis more and more closely. These are the properties we‘re trying 

tocapture, approximately. 

 
Figure (3.3) 

As an idealization of a function concentrated at         should then be a limit 

         
   

        

This limit doesn‘t make sense as a pointwise statement — it doesn‘t define a 

function — but it begins tomake sense when one shows how the limit works 

operationally when ―paired‖ with other functions. Thepairing, by definition, is 

by integration, and to anticipate the second approach to distributions, we‘ll write 

This as 
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〈        〉  ∫       

 

  

        

 (Don‘t think of this as an inner product. The angle bracket notation is just a 

good notation for pairing.) 

The fundamental result — what it means for the        to be ―concentrated at 

0‖ as       — is 

   
   

∫       

 

  

             

Now, whereas we‘ll have a hard time making sense of 

             alone,there‘s no trouble making senseof the limit of the integral, 

and, in fact, no trouble proving the statement just above. Do observe, 

however,that the statement: ―The limit of the integral is the integral of the 

limit.‖ is thus not true in this case.The limit of the integral makes sense but not 

the integral of the limit. 

We can and will define the distribution δ by this result, and write 

〈   〉     
   

∫       

 

  

             

The Gaussians tend to                  , and that‘s why writing simply  

                    doesn‘tmake sense. One would have to say (and people 

do say, though I have a hard time with it) that the deltafunction has these 

properties: 

 

1.                    
2.          

3. ∫         
 

  
 

 

These reflect the corresponding  (genuine) properties of the         
I.                           

II.                   

III. ∫       
 

  
     

The third property is our old friend, the second is clear from the formula, and 

you can begin to believe thefirst from the shape of the graphs. The first property 

is the flip side of ―concentrated at a point‖, namelyto be zero away from the 

point where the function is concentrated. 

The limiting process also works with convolution: 

   
   

            
   

∫         

 

  

             

This is written 
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as shorthand for the limiting process that got us there, and the notation is then 

pushed so far as to writethe delta function itself under the integral, as in 

         ∫       

 

  

             

The equation 

              

completes the analogy: ―  is to 1 as convolution is to multiplication‖. 

Why concentrate? Why would one want a function concentrated at a point in the 

first place? We‘llcertainly have plenty of applications of delta functions very 

shortly. Heaviside used   (without the notation) in hisapplications and 

reworking of Maxwell‘s theory of electromagnetism. The symbolism, and the 

three defining properties of   listed above, were introduced later by P. Dirac in 

theservice of calculations in quantum mechanics. Because of Dirac‘s work,  is 

often referred to as the ―Dirac  function‖. 

For the present, let‘s take at the heat equation and how the delta function comes 

in there. 

We‘re perfectly set up for that. 

We have seen the family of Gaussians 

       
 

√   
  

  

       

Before. They arose in solving the heat equation for an ―infinite rod‖. Recall that 

the temperature        at a point x and time t satisfies the partial differential 

equation 

    
 

 
     

When an infinite rod (the real line, in other words) is given an initial 

temperature      then        is givenby the convolution with         

                   
 

√   
  

  

        ∫
 

√   
  

      

  

 

  

       

One thing we didn‘t say at the time, knowing that this day would come, is how 

one recovers the initialtemperature      from this formula. The initial 

temperature is at t = 0, so this evidently requires that wetake the limit: 

 

   
    

          
    

                           

 

Out pops the initial temperature. 

Now we illustrate distributions as linear functional. Farewell to vacuum tubes 

The approach to distributions we‘ve just followed, illustrated by defining  ,can 

be very helpful in particular cases and where there‘s a natural desire to have 
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everything look as―classical‖ as possible. Still and all, we maintain that 

adopting this approach wholesale to defining andworking with distributions is 

using technology from a bygone era. we haven‘t yet defined the collection 

oftempered distributions   which is supposed to be the answer to all our Fourier 

prayers, and we don‘t know 

how to do it from a purely ―distributions as limits‖ point of view. It‘s time to 

transistorize. 

In the preceding discussion we did wind up by considering a distribution, at 

least  , in terms of how it acts 

when paired with a Schwartz function. We wrote 

 

           

 

as shorthand for the result of taking the limit of the pairing 

 

〈           〉  ∫       
 

  
      . 

 

The second approach to defining distributions takes this idea — ―the outcome‖ 

of a distribution actingon a test function — as a starting point rather than as a 

conclusion. The question to ask is what aspectsof ―outcome‖, as present in the 

approach via limits, do we try to capture and incorporate in the basicdefinition? 

Mathematical functions defined on R, ―live at points‖, to use the hip phrase. 

That is, you plug in aparticular point from R, the domain of the function, and 

you get a particular value in the range, as forinstance in the simple case when 

the function is given by an algebraic expression and you plug values intothe 

expression. Generalized functions — distributions— do not live at points. The 

domain of a generalizedfunction is not a set of numbers. The value of a 

generalized function is not determined by plugging in anumber from R and 

determining a corresponding number. Rather, a particular value of a distribution 

isdetermined by how it ―operates‖ on a particular test function. The domain of a 

generalized function is a 

set of test functions. As they say in Computer Science, helpfully: 

• You pass a distribution a test function and it returns a number. 

That‘s not so outlandish. There are all sorts of operations you‘ve run across that 

take a signal as anargument and return a number. The terminology of 

―distributions‖ and ―test functions‖, from the dawn ofthe subject, is even 

supposed to be some kind of desperate appeal to physical reality to make this 

reworking 

of the earlier approaches more appealing and less ―abstract‖.  

Having come this far, but still looking backward a little, recall that we asked 

which properties of a pairing— integration, as we wrote it in a particular case in 
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the first approach — do we want to subsume in thegeneral definition. To get all 

we need, we need remarkably little. Here‘s the definition: 

 

Definition(3.2.3): (Tempered distributions) 
 A tempered distribution   is a complex-valued continuous linear functional 

on the collection S of Schwartz functions (called test functions). We denote the 

collection of all tempereddistributions by  . 

That‘s the complete definition, but we can unpack it a bit: 

1. If   is in S then    ) is a complex number. (You pass a distribution 

aSchwartz function, it returnsa complex number.) 

We often write this action of   on   as      and say that   is paired with  . 

(This terminologyand notation are conventions, not commandments.) 

2. A tempered distribution is linear operating on test functions: 

                             
or, in the other notation, 

〈           〉    〈    〉    〈    〉, 
for test functions      and complex numbers      . 

3. A tempered distribution is continuous: if     is a sequence of test functions in 

S with         in S then 

 

             , also written 〈    〉  〈   〉 . 
Also note that two tempered distributions           are equal if they agree on 

all test functions: 

      if                 (〈    〉  〈    〉) for all        . 

This isn‘t part of the definition, it‘s just useful to write down. 

There‘s a catch There is one hard part in the definition, namely, what it means 

for a sequence of testfunctions in S to converge in S. To say that       in S is 

to control the convergence of      togetherwith all its derivatives. We won‘t 

enter into this, and it won‘t be an issue for us. If you look in 

standardmathematics books on the theory of distributions you will find long, 

difficult discussions of the appropriatetopologies on spaces of functions that 

must be used to talk about convergence. And you will be discouragedfrom 

going any further.  

It‘s another question to ask why continuity is included in the definition. Let me 

just say that this isimportant when one considers limits of distributions and 

approximations to distributions. 

Other classes of distributions This settles the question of what a tempered 

distribution is: it‘s acontinuous linear functional on S. For those who know the 

terminology, T is the dual space of the spaceS. In general, the dual space to a 

vector space is the set of continuous linear functionals on the vector space,the 

catch being to define continuity appropriately. From this point of view one can 

imagine defining typesof distributions other than the tempered distributions. 
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They arise by taking the dual spaces of collectionsof test functions other than S. 

Though we‘ll state things for tempered distributions, most general facts(those 

not pertaining to the Fourier transform, yet to come) also hold for other types of 

distributions. 

In the following we discuss two important examples of distributions. Let us now 

understand: 

1. How T somehow includes the functions we‘d like it to include for the 

purposes of extending theFourier transform. 

2. How δ fits into this new scheme. 

The first item is a general construction and the second is an example of a 

specific distribution defined inthis new way. 

How functions determine tempered distributions, and why the tempered 

distributions includethe functions we want. Suppose      is a function for 

which 

∫           

 

  

 

exists for all Schwartz functions       This is not asking too much, considering 

that Schwartz functionsdecrease so rapidly that they‘re plenty likely to make a 

product         integrable.  

In this case the function      determines (―defines‖ or ―induces‖ or 

―corresponds to‖— pick your preferreddescriptive phrase) a tempered 

distribution   by means of the formula 

      ∫           

 

  

 

 

In words,    acts on a test function   by integration of   against  . 

Alternatively, we say that the function  determines a distribution    through the 

pairing 

〈    〉  ∫           
 

  
               a test function. 

This is just what we considered in the earlier approach that led to δ, pairing 

Gaussians with a Schwartzfunction. In the present terminology we would say 

that the Gaussian        determines a distribution   according to the formula 

〈    〉  ∫              

 

  

 

Let‘s check that the pairing 〈    〉 meets the standard of the definition of a 

distribution. The pairing islinear because integration is linear: 

〈            〉  ∫     (               )  
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=∫              
 

  
 ∫              

 

  
 

=  〈     〉    〈     〉 

 

What about continuity? We have to take a sequence of Schwartz functions   

converging to a Schwartz function   and consider the limit 

   
   

〈     〉     
   

∫     

 

  

         

Again, we haven‘t said anything precisely about the meaning of       , but 

the standard results on takingthe limit inside the integral will apply in this case 

and allow us to conclude that 

      ∫     
 

  
          ∫     

 

  
 (x)dx 

i.e., that 

   
   

〈     〉  〈    〉  

This is continuity. 

Using a function      to determine a distribution   this way is a very common 

way of constructingdistributions. We will use it frequently. Now, you might ask 

whether different functions can giverise to the same distribution. That is, if  

         as distributions, then must we have             (x)? 

Yes,fortunately, for if         then for all test functions     we have 

 

∫   

 

  

        ∫         

 

  

 

  hence 

∫   

 

  

                   

Since this holds for all test functions     we can conclude that              
Because a function      determines a unique distribution, it‘s natural to 

―identify‖ the function      withthe corresponding distribution    . Sometimes 

we then write just   for the corresponding distributionrather than writing    , 

and we write the pairing as 

〈   〉  ∫            

 

  

 

rather than as 〈    〉  

• It is in this sense — identifying a function  with the distribution    it 

determines— that a class ofdistributions ―contains‖ classical functions. 

Let‘s look at some examples. 
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Examples (3.2.4): 
The      function defines a tempered distribution, because, though      is not 

integrable,             is integrable for any Schwartz function 

     Remember that a Schwartz function     diesoff faster than any power of 

  and that‘s more than enough to pull sinc down rapidly enough at   tomake 

the integral exist. we not going to prove this but we have no qualms asserting it. 

For example, here‘sa plot of     
 times the sinc function on the interval 

                

 
Figure(3.4) 

For the same reason any complex exponential, and also sine and cosine, define 

tempered distributions. 

Here‘s a plot of      
 times        on the range                 

 

 
Figure(3.5) 

Take two more examples, the Heaviside unit step     and the unit ramp     : 

     ,
               
               

                                                               ,
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Neither function is integrable; indeed,     even tends to             but it 

does so only to the first power (exactly) of  . Multiplying by a Schwartz 

function brings     and     down, and they eachdetermine tempered 

distributions. Here are plots of      
 times     and      respectively: 

 
Figure(3.6) 

 
Figure(3.7) 

The upshot is that the       complex exponentials, the unit step, the unit ramp, 

and many others, canall be considered to be tempered distributions. This is a 

good thing, because we‘re aiming to define theFourier transform of a tempered 

distribution, and we want to be able to apply it to the signals societyneeds. 

(We‘ll also get back to our good old formula          , and all will be right 

with the world.) 

Do all tempered distributions ―come from functions‖ in this way?    does not 

come from a function in the way we‘vejust described (or in any way). This adds 

to the feeling that we really have defined something new, that―generalized 

functions‖ include many (classical) functions but go beyond the classical 

functions. 



109 
 

Two final points. As we‘ve just remarked, not every distribution comes from a 

function and so the natureof the pairing of a given tempered distribution T with 

a Schwartz function   is unspecified, so to speak. 

By that we mean, don‘t think that 〈   〉is an integral, as in 

〈   〉  ∫           

 

  

 

for any old tempered distribution T. The pairing is an integral when the 

distribution comes from afunction, but there‘s more to tempered distributions 

than that. 

Finally a note of caution. Not every function determines a tempered distribution. 

For example      
 doesn‘t. It doesn‘t because      

is a Schwartz function and 

∫    
    

   ∫        

 

  

 

  

 

  as a tempered distribution The limiting approach to the delta function 

culminated with our writing 

〈   〉       

as the result of      ∫       
 

  
             

Now with our second approach, tempered distributions as linear functionals on 

S, we can simply define the tempered distribution δ by how it should operate on 

a function   in S so as to achieve this outcome,and obviously what we want is 

             or in the bracket notation 〈   〉       ; 

you pass δ a test function and it returns the value of the test function at 0. 

Let‘s check the definition. For linearity, 

〈       〉              〈    〉  〈    〉 
〈    〉         〈   〉 

For continuity, if          then in particular            and so 

〈    〉             〈    〉 
So the mysterious  , clouded in controversy by statements like 

               

       

∫             

 

  

 

now emerges as the simplest possible nontrivial tempered distribution — it‘s 

just the functional describedin words by ―evaluate at 0‖. 

There was a second identity that we had from the ―  as limit‖ development, 

namely 

             
as a result of 
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∫         

 

  

            

we define a tempered distribution    (the   function based at  ) by the 

formula 
〈    〉      . 

 

In words, you pass    a test function and it returns the value of the test function 

at a. we won‘t check that   satisfies the definition — it‘s the same argument as 

for  . 

  and    are two different distributions               Classically, if that word 

makes sense here, one would write    as           just a shifted  . We‘ll get 

to that, and use that notation too, but a bit later. As tempered distributions,   and 

   are defined to have the property we want them to have. It‘s air tight — no 

muss, no fuss. That‘s  . That‘s   . 

Would we have come upon this simple, direct definition without having gone 

through the ―distributions aslimits‖ approach? Would we have the transistor 

without first having vacuum tubes? Perhaps so, perhapsnot. That first approach 

via limits provided the basic insights that allowed people, Schwartz in 

particular,to reinvent the theory of distributions based on linear functionals as 

we have done here (as he did). 

Now we illustrate other types of distributions. We have already seen that the 

functions in S work well for Fourier transforms.  However, S isn‘t the only 

possible collection of test functions and   isn‘t the only possiblecollection of 

distributions. 

Another useful set of test functions are the smooth functions that are 

timelimited,  

That is, we let   be the set of infinitely differentiable functions which 

areidentically zero beyond apoint: 

                     has derivatives of all orders and if          for 

       (where    can depend on  ). 

The mathematical terminology for such a function is that it has compact 

support. The support of a functionis the complement of the largest set where the 

function is identically zero. (The letter   is supposed toconnote ―compact‖.) 

The continuous linear functionals on  also form a collection of distributions, 

denoted by  . In fact, whenmost people use the term ―distribution‖ (without the 

adjective tempered) they are usually thinking of anelement of  . We use the 

same notation as before for the pairing: 〈   〉for T in   and  in  . 

  and    belong to  as well as to   , and the definition is the same: 

〈   〉       and 〈    〉      . 

It‘s the same δ. It‘s not a new distribution, it‘s only operating on a different 

class of test functions. 
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Ɗ is a bigger collection of distributions than   because   is a smaller collection 

of test functions thanS. The latter point should be clear to you: To say that      

is smooth and vanishes identically outsidesome interval is a stronger condition 

than requiring merely that it decays at infinity (albeit faster than anypower of 

 ). Thus if              then it‘s also in S. Why is Ɗ bigger than  ? Since   is 

contained in 

S, a continuous linear functional on S is automatically a continuous linear 

functional on  . That is,   iscontained in Ɗ. 

Just as we did for  , we say that a function      determines a distribution in Ɗ if 

∫           

 

  

 

exists for all test functions       . As before, we write   for the distribution 

induced by a function f,and the pairing as 

〈    〉  ∫           

 

  

  

 

As before, a function determines a unique distribution in this way, so we 

identify   with    and write thepairing as 

〈   〉  ∫           

 

  

  

 

It‘s easier to satisfy the integrability condition for   than for S because 

multiplying      by a functionin   kills it off completely outside some interval, 

rather than just bringing it smoothly down to zero atinfinity as would happen 

When 

 multiplying by a function in S. This is another reason why Ɗ is a bigger 

class of distributions than   — more functions determine distributions. For 

example, we observed thatthe function    
doesn‘t determine a tempered 

distribution, but it does determine an element of Ɗ. 

Now we study a Physical Analogy for distributions. Think of heat distributed 

over a region in space. A number associated with heat is temperature, and 

wewant to measure the temperature at a point using a thermometer. But does it 

really make sense to ask forthe temperature ―at a point‖? What kind of test 

instrument could possibly measure the temperature at apoint?What makes more 

sense is that a thermometer registers some overall value of the temperature near 

a point. 

That is, the temperature is whatever the thermometer says it is, and is 

determined by a pairing of the heat(the distribution) with the thermometer (a 

test function or test device). The more ―concentrated‖ thethermometer (the more 
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sharply peaked the test function) the more accurate the measurement, 

meaningthe closer the reading is to being the temperature ―at a point‖. 

A pairing of a test function with the heat is somehow supposed to model how 

the thermometer respondsto the distribution of heat. One particular way to 

model this is to say that if   is the heat and   is thetest function, then the 

reading on the thermometer is 

∫           

an integrated, average temperature. we‘ve left limits off the integral to suggest 

that it is taken over someregion of space where the heat is distributed. 

Such measurements (temperature or other sorts of physical measurements) are 

supposed to obey laws ofsuperposition (linearity) and the like, which, in this 

model case, translates to 

 

∫    (                     ∫    (            ∫            

 

for test functions    and   . That‘s why we incorporate linearity into the 

definition of distributions. Withenough wishful thinking you can pass from this 

motivation to the general definition. Sure you can. 

In the following we discuss limits of distributionsThere‘s a very useful general 

result that allows us to define distributions by means of limits. The statement 

goes: 

Suppose that    is a sequence of tempered distributions and that 〈    〉 
(asequence of numbers)converges for every Schwartz function  . Then    

converges to a tempered distribution  and 

〈   〉     
   

〈    〉 

Briefly, distributions can be defined by taking limits of sequences of 

distributions, and the result says thatif the parings converge then the 

distributions converge. This is by no means a trivial fact, the key issuebeing the 

proper notion of convergence of distributions, and that‘s hard. We‘ll have to be 

content with the 

statement and let it go at that. 

You might not spot it from the statement, but one practical consequence of this 

result is that if differentconverging sequences have the same effect on test 

functions then they must be converging to the samedistribution. More precisely, 

if        〈     〉and       〈    〉 both exist and are equal for every test 

function   then     and    both converge to the same distribution. That‘s 

certainly possible — differentsequences can have the same limit, after all. 

To illustrate just why this is helpful to know, let‘s consider different ways of 

approximating  . 

Now we illustrate other approximating Sequences for . Earlier we used a family 
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of Gaussians to approach  , but there are many other ways we could try to 

approximate this characteristic behavior of   in the limit. For example, take the 

family of scaled   functions 

      
 

 
      

 

 
 (

 

 
)  {

 

 
               

 

 

                          
 

 

 

where   is a positive constant. Here‘s a plot of       for  = 2, 1, 0.5, 0.1, some 

of the same values weused for the parameter in the family of Gaussians. 

 
Figure (3.8) 

What happens if we integrate      against a test function     ? The function 

     could be a Schwartzfunction, if we wanted to stay within the class of 

tempered distributions, or an element of  . In fact, allthat we require is that 

     is smooth near the origin so that we can use a Taylor approximation (and 

wecould get away with less than that). We write 

〈    〉  ∫             

 

  

 

 
∫      

 

 

 
 

 

 

 
 

 
∫                           ∫                  

 

 

 
 

 

 

 

 
 

 

 

If we let     we obtain 

   
   

〈    〉        
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In the limit, the result of pairing the  with a test function is the same as pairing 

a Gaussian with a testfunction: 

   
   

〈    〉          
   

〈           〉  

Thus the distributions defined by    and by        each converge and to the 

same distribution, namely  . 

A general way to get to   There‘s a general, flexible and simple approach to 

getting to   by a limit. 

It can be useful to know this if one model approximation might be preferred to 

another in a particularcomputation or application. Start with a function      

having 

∫         

 

  

 

and form 

                     
Then one has 

        

How does    compare with  ? As p increases, the scaled function       

concentrates near x = 0, thatis, the graph is squeezed in the horizontal direction. 

Multiplying by p to form p      then stretches thevalues in the vertical 

direction. Nevertheless 

∫          

 

  

 

as we see by making the change of variable         
To show that  converges to  , we pair      with a test function      via 

integration and show 

   
   

∫      

 

  

            〈   〉   

There is a nice argument to show this. Write 

∫             

 

  

∫                        

 

  

 

 

∫      (         )       

 

  

∫        

 

  

 

∫      (         )       
 

  
, 
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∫      (           )       

 

  

  

where we have used that the integral of    is 1 and have made a change of 

variable in the last integral. 

The object now is to show that the integral of     (           ) 

goes to zero as      . There aretwo parts to this. Since the integral of  

    (           )  is finite, the tails at    are arbitrarily small,meaning, 

more formally, that for any       there is an       such that 

|∫     ( (
 

 
)      )  

 

 

|  | ∫     ( (
 

 
)      )  

  

  

|     

This didn‘t involve letting p tend to ∞; that comes in now. Fix a as above. It 

remains to work with theintegral  

∫     ( (
 

 
)      )  

 

  

 

and show that this too can be made arbitrarily small. Now 

∫         

 

  

 

 

is a fixed number, say M, and we can take p so large that| (
 

 
)      |      

for          . With this, 

| ∫     ( (
 

 
)      )  

 

  

|  ∫       | (
 

 
)      |     

 

  

 

Combining the three estimates we have 

| ∫     ( (
 

 
)      )  

 

  

|     

and we‘re done. 

We‘ve already seen two applications of this construction, to 

          

and, originally, to 

     
 

√  
                     √ . 

Another possible choice, believe it or not, is 

              
This works because the integral  
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∫         

 

  

 

is the Fourier transform of      at 0, and you‘ll recall that we stated the true fact 

that 

∫                

 

  

 {
           

 

 

                       
 

 

 

 

Now we study The Fourier transform of a tempered distribution. It‘s time to 

show how to generalize the Fourier transform to tempered distributions. It will 

take us oneor two more steps to get to the starting line, but after that it‘s a 

downhill race passing effortlessly (almost)through all the important gates. 

How to extend an operation from functions to distributions: Try a function first. 

To definea distribution   is to say what it does to a test function. You give me a 

test function   and we have to tellyou〈   〉— how   operates on  . We have 

done this in two cases, one particular and one general. In particular, we defined 

  directly by 

〈   〉       

In general, we showed how a function   determines a distribution   by 

〈    〉  ∫           

 

  

 

provided that the integral exists for every test function. We also say that the 

distribution comes from afunction. When no confusion can arise we identify the 

distribution    with the function   it comes fromand write 

〈   〉  ∫           

 

  

  

When we want to extend an operation from functions to distributions — , when 

we want to definethe Fourier transform of a distribution, or the reverse of 

distribution, or the shift of a distribution, or thederivative of a distribution — we 

take our cue from the way functions determine distributions and askhow the 

operation works in the case when the pairing is given by integration. What we 

hope to see is anoutcome that suggests a direct definition (as happened with  , 

for example). This is a procedure to follow.It‘s something to try.  

In the following we illustrate the Fourier transform defined .Suppose   is a 

tempered distribution. Why should such an object have a Fourier transform, and 

how onearth shall we define it? It can‘t be an integral, because   isn‘t a function 

so there‘s nothing to integrate. 
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If     is to be itself a tempered distribution (just as     is again a Schwartz 

function if  is a Schwartzfunction) then we have to say how     pairs with a 

Schwartz function, because that‘s what tempereddistributions do. So how? 

We have a toe-hold here. If    is a Schwartz function then     is again a 

Schwartz function and we canask: How does the Schwartz function     pair 

with another Schwartz function  ? What is the outcomeof 〈    〉? We know 

how to pair a distribution that comes from a function (   in this case) with 

aSchwartz function;  

〈    〉  ∫             

 

  

 

But we can work with the right hand side: 

〈    〉  ∫             

 

  

 

∫ ( ∫        

 

  

      )

 

  

        

∫ ∫        

 

  

    

 

  

         

∫ ( ∫        

 

  

      )

 

  

       

 (the interchange of integrals is justified because            and   

              are integrable) 

 ∫      

 

  

       

 〈    〉 
The outcome of pairing     with   is: 

〈    〉  〈    〉. 
 

This tells us how we should make the definition in general: 

Let   be a tempered distribution. The Fourier transform of  , denoted by      

or  , is the tempereddistribution defined by 
〈    〉  〈    〉. 
for any Schwartz function  . 

This definition makes sense because when  is a Schwartz function so is    ; it 
is only then that the pairing〈    〉is even defined. 

We define the inverse Fourier transform by following the same recipe: 



118 
 

Let   be a tempered distribution. The inverse Fourier transform of  , denoted 

by         or  , isdefined by 

〈      〉  〈      〉   
for any Schwartz function  . 

Now all of a sudden we have 

Fourier inversion: 

                      

for any tempered distribution  . 

It‘s a cinch. Watch. For any Schwartz function  , 

〈          〉  〈        〉 
 〈          〉 

 〈   〉(because Fourier inversion works for Schwartz functions) 

This says that         and   have the same value when paired with any 

Schwartz function. Thereforethey are the same distribution:           The 

second identity is derived in the same way. 

Done. The most important result in the subject, done, in a few lines. 

 That is, the generalized Fourier transform―contains‖ the original, classical 

Fourier transform in the same sense that tempered distributions containclassical 

functions. 

Now we discuss a Fourier transform hit parade. With the definition in place it‘s 

time to reap the benefits and find some Fourier transforms explicitly. Wenote 

one general property 

  is linear on tempered distributions. 

This means that 

                and (   =     , 

   a number. These follow directly from the definition. To wit: 

〈          〉  〈          〉  〈     〉  〈     〉 
 〈     〉  〈     〉 =〈         〉 

〈        〉  〈      〉   〈    〉   〈    〉  〈     〉 
 

The Fourier transform of δ As a first illustration of computing with the 

generalized Fourier transform we‘ll find   . The result is: 

• The Fourier transform of   is 

     1. 

This must be understood as an equality between distributions, i.e., as saying that 

   and 1 produce thesame values when paired with any Schwartz function  . 

Realize that ―1‖ is the constant function, and thisdefines a tempered distribution 

via integration: 

〈   〉  ∫   

 

  

       

That integral converges because      is integrable (it‘s much more than 
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 integrable, but it‘s certainlyintegrable). 

We derive the formula by appealing to the definition of the Fourier transform 

and the definition of  . Onthe one hand, 

〈    〉  〈    〉       ∫       

 

  

  

On the other hand, as we‘ve just noted, 

〈   〉  ∫          ∫       

 

  

 

 

  

 

The results are the same, and we conclude that      as distributions. 

According to the inversiontheorem we can also say that       . 

We can also show that 

      
Here‘s how. By definition, 

〈    〉  〈    〉  ∫        
 

  
. 

But we recognize the integral as giving the inverse Fourier transform of    at 

0: 

         ∫              

 

  

                     

         ∫         

 

  

 

And now by Fourier inversion on S, 

               
Thus 

〈    〉       〈   〉 
and we conclude that      (We‘ll also get this by duality and the evenness of 

 once we introduce thereverse of a distribution.) 

The equations      and     are the extreme cases of the trade-off 

between timelimited and bandlimited signals.   is the idealization of the most 

concentrated function possible — it‘s the ultimatetimelimited signal. The 

function 1, on the other hand, is uniformly spread out over its domain. 

It‘s rather satisfying that the simplest tempered distribution,   , has the simplest 

Fourier transform, 1.(Simplest other than the function that is identically zero.) 

Before there were tempered distributions,however, there was  , and before there 

was the Fourier transform of tempered distributions there was    . In the 

vacuum tube days this had to be established by limiting arguments, 

accompanied by anuneasiness (among some) over the nature of the limit and 

whatexactly it 
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 produced. Our computationof      is simple and direct and leaves nothing 

in question about the meaning of all the quantitiesinvolved. Whether it is 

conceptually simpler than the older approach is something you will have to 

decide 

for yourself. 

The Fourier transform of    Recall the distribution     is defined by 

〈     〉        
What is the Fourier transform of    ? One way to obtain     is via a 

generalization of the shift theorem, evenwithout that we can find      directly 

from the definition, as follows. 

The calculation is along the same lines as the one for  . We have 

〈     〉  〈      〉        ∫               

 

  

 

This last integral, which is nothing but the definition of the Fourier transform of 

 , can also be interpretedas the pairing of the function         with the 

Schwartz function     . That is, 

〈     〉  〈         〉 
hence 

             
To emphasize once again what all is going on here,         is not integrable, 

but it defines a tempereddistribution through  

∫              

 

  

 

which exists because      is integrable. So, again, the equality of     and 

        means they have thesame effect when paired with a function in S. 

To complete the picture, we can also show that 

             
(There‘s the usual notational problem here with variables, writing the variable   

on the left hand side. The―variable problem‖ doesn‘t go away in this more 

general setting.) This argument should look familiar: if is in S then 

〈         〉  〈         〉 
 

 ∫              

 

  

 

(the pairing here is with respect to  ) 

But this last integral is the inverse Fourier transform of    at a, and so we get 

back     . Hence 

〈         〉       〈     〉 
whence 
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          . 

Remark(3.2.5): (Remark on notation) 
You might be happier using the more traditional notation      for  and    
   

for     (and       for     ). we don‘t have any objection to this — it is a 

useful notation for manyproblems — but try to remember that the   -function is 

not a function and, really, it is not to be evaluated―at points‖; the notation     

or        doesn‘t really make sense from the distributional point of view. 

In this notation the results so far appear as: 

                                

Careful how the + and − enter. 

You may also be happier writing 

∫                

 

  

          ∫                   

 

  

 

The Fourier transform of sine and cosine We can combine the results above to 

find the Fouriertransform pairs for the sine and cosine. 

 (
 

 
          )  

 

 
(              )           

we‘ll even write the results ―at points‖: 

 (
 

 
               )         . 

Going the other way, 

            (
 

 
(              ))  

 

 
            

Also written as 

           
 

 
                

The Fourier transform of the cosine is often represented graphically as: 

 
 

Figure (3.9) 

we tagged the spikes with 1/2 to indicate that they have been scaled. 

For the sine function we have, in a similar way, 

 (
 

  
               )  

 

  
(              )            
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and 

          (
 

  
(              ))  

 

  
                

The picture of          is 

 
 

Figure (3.10) 

Remember that         . we‘ve tagged the spike     with      and the spike 

    with    . 

We should reflect a little on what we‘ve done here and not be too quick to move 

on. The sine and cosinedo not have Fourier transforms in the original, classical 

sense. It is impossible to do anything with theintegrals  

∫        

 

  

                     ∫        

 

  

                

 
To find the Fourier transform of such basic, important functions we must 

abandon the familiar, classicalterrain and plant some spikes in new territory. It‘s 

worth the effort. 
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Chapter 4 

Distributions and their Fourier Transforms 

Section (4.1): Fluxions Finis and Property of the Distributions 

We begin this section by study Fluxions Finis: The End of Differential Calculus. 

For now let‘s show how introducing distributions ―completes‖ differential 

calculus; how we can define the derivative of a distribution, and consequently 

how we can differentiate functions you probably thought had no business being 

differentiated. We‘ll make use of this for Fourier transforms, too. 

If   is a test function and  is a function for which                     ∞ 

(not too much to ask), and if  is differentiable then we can use integration by 

parts to write 

∫                         
 

 

  

 ∫     

 

  

     (              ) 

  ∫     

 

  

         

The derivative has shifted from       . 

We can find similar formulas for higher derivatives.For example, supposing that 

the boundary terms inthe integration by parts tend to              we find 

that 

∫              [         ]
  

 

 

  

 ∫      

 

  

     (                  ) 

  ∫      
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   [         ]
  

 
 ∫     

 

  

      (                  ) 

 ∫     

 

  

          

Watch out — there‘s no minus sign out front when we‘ve shifted the second 

derivative from        

We‘ll concentrate just on the formula for the first derivative. Let‘s write it 

again: 

∫      

 

  

        ∫     

 

  

          

 

The right hand side may make sense even if the left hand side does not, that is, 

we can view the right hand side as a way of saying how the derivative 

of  wouldact if it had a derivative. Put in terms of our ―try a function first‖ 

procedure, if a distribution comes from a function     then this formula tells us 

how the ―derivative‖     as a distribution, should be paired with a test function 

    . It should be paired according to the equation above: 

〈    〉   〈    〉  

Turning this outcome into a definition, as our general procedure tells us we 

should do when passing from functions to distributions, we definethe derivative 

of a distribution as anotherdistribution according to: 

 If  is a distribution, then its derivative    is the distribution defined by 

〈     〉   〈    〉 

Naturally,        
    

    
                   However, there is 

noproduct rule in general because there‘s no way to multiply two distributions. 

You can go on to define derivatives of higher orders in a similar way, and we‘ll 

let you write down what the general formula for the pairing should be. The 
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striking thing is that you don‘t have to stop: 

distributionsareinfinitelydifferentiable. 

Derivative of the unit step function The unit step function, also called the 

Heaviside functionis defined by 

     ,
              
              

 

     determines a tempered distribution because for any Schwartz function 

 the paring 

〈   〉  ∫     

 

  

       ∫       

 

 

 

makes sense ( is integrable). 

From the definition of the derivative of a distribution, if      is any test 

function then 

〈    〉   〈    〉   ∫     

 

  

         ∫          

 

 

 

  (         )        

We see that pairing   with a test function produces the same result as if we had 

paired  with a test function:  

〈    〉       〈   〉. 

We conclude that 

      

Derivative of the unit ramp, The unit rampfunction is defined by 

     ,
              
              

 

If this were an introductory calculus class and you were asked 

―What is the derivative of        you might have said, 

―                                so it looks like the unit step 

     to me.‖ You‘d be right, but your jerk of a teacher would 
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probably say you were wrong because, according to the rigor 

police,      is not differentiable at      . But now that you 

know about distributions, here‘s why you were right. For a test 

function       

〈          〉   〈          〉   ∫              ∫         

 

 

 

  

 

          
  ∫          ∫        

 

 

 

 

 

(               because      decays faster than any power of  ) 

 〈   〉 

Since〈          〉  〈   〉we conclude that     as distributions.  

Then of course,        

Derivative of the signum (or sign) function The signum (or sign) function is 

defined by 

       ,
               
               

 

Note that sgn is not defined at        but that‘s not an issue in the derivation to 

follow. 

Let      be any test function. Then 

〈      〉   〈      〉   ∫              

 

  

 

  ( ∫           

 

  

 ∫           

 

 

) 
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 (          )                    

 

The result of pairing     with  is the same as if we had paired           

〈      〉        〈    〉 

Hence 

         

Observe that      has a unit jump up at 0 and its derivative is  , whereas sgn 

jumps up by 2 at 0 and its derivative is   . 

Derivative of  To find the derivative of the   -function we have, for any test 

function  , 

〈    〉   〈     〉          

That‘s really as much of a formula as we can write.   itself acts by pulling out 

the value of a test function at 0, and   acts by pulling out minusthe value of the 

derivative of the 

 test function at 0. we‘ll let you determine the higher derivatives of  . 

Derivative of     Remember that famous formula from calculus: 

 

  
       

 

 
   

Any chance of something like that being true for distributions? Yes, with the 

properinterpretation. This is an important example because it leads to the 

Hilbert transform, a tool that communications engineers use everyday. For your 

information, the Hilbert transform is given by convolution of a signal with 

      Once we learn how to take the Fourier transform of      which is coming 

up, we‘ll then see that the Hilbert transform is a filter with the interesting 

property that magnitudes of the spectral components are unchanged but their 

phases are shifted by        
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Because of their usefulness in applications it‘s worth going through the analysis 

of the distributions       and    .  

  Now we study  Approximations of Distributions and Justifying the ―Try a 

Function First‖ Principle.We started off by enunciating the principle that to see 

how to extend an operation from functions to distributions one should start by 

considering the case when the distribution comes from a function (and hence 

that the pairing is by integration). Let me offer a justification of why this works. 

It‘s true that not every distributioncomes froma function              but 

it‘salso true thatany distribution can be approximated by ones that comes from 

functions. The statement is: 

If  is any tempered distribution then there are Schwartz functions     such 

that      
converge to    

This says that for any Schwartz function   

〈     
  〉  ∫               〈   〉

 

  
, 

that is, the pairing of any tempered distribution with a Schwartz function can be 

expressed as a limit of the natural pairing with approximating functions via 

integration. We‘re not saying that      
   for some function    because it‘s 

not the Schwartz functions     that are converging to a function, it‘s the 

associated distributionsthat are converging to a distribution. You 

don‘tnecessarily have      for some function    (Also, this result doesn‘t 

say how you‘re supposed to find the approximating functions, just that they 

exist.) 

Consider how we might apply this to justify our approach to defining the 

Fourier transform of a tempered distribution. According to the approximation 

result, any tempered distribution  is a limit of distributions that come from 

Schwartz functions, and we would have, say, 

〈   〉     
   

〈    〉  

Then if   is to make sense we might understand it to be given by 

〈    〉     
   

〈     〉     
   

〈     〉  〈    〉  
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 In the following we discuss The Generalized Fourier Transform Includes the 

Classical Fourier Transform.Remember that we identify a function fwith the 

distribution   it defines and it is in this way we say that the tempered 

distributions contain many of the classical functions. Now suppose a function 

     defines a distribution and that      has a (classical) Fourier transform 

      which also defines a distribution, i.e., 

∫             

 

  

 

exists for every Schwartz function  (which isn‘t asking too much). Writing 

   for the tempered distribution determined by   , 

〈     〉  ∫            

 

  

 

 ∫ ∫              

 

  

 

 

  

       ∫ ∫                    

 

  

 

  

 

 ∫ ∫                     

 

  

 ∫             

 

  

 

  

〈     〉 

But now, by our definition of the generalized Fourier transform 

〈     〉  〈     〉. 

Putting this together with the start of the calculation we obtain 

〈     〉  〈     〉  

whence 

        

 

In words, if the classical Fourier transform of a function defines a distribution 

(   ) then that distribution is the Fourier transform of the distribution that the 

function defines (   ).This is a precise way of saying that the generalized 

Fourier transform ―includes‖ the classical Fourier transform. 
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Now  we discuss Operations on Distributions and Fourier Transforms. We want 

to relive our past glories — duality between   and    , evenness and oddness, 

shifts and stretches, convolution — in the more general setting we‘ve 

developed. The new versions of the old results will ultimately look the same as 

they did before; it‘s a question of setting things up properly to apply the new 

definitions. There will be some new results, however. Among them will be 

formulas for the Fourier transform of           and the unit step       to take 

a representative sample. 

 None of these would have been possible before. We‘ll also point out special 

properties of  along the way. Pay particular attention to these because we‘ll be 

using them a lot in applications. 

Furthermore, almost all the results are accompanied by some necessary extra 

notation; the truth is that it‘s somewhat more cumbersome to define operations 

on distributions than on functions, and there‘s no way of getting around it. We 

haveto have this material in some fashion but one should probably treat the 

sections to follow mostly as a reference. Feel free to use the formulas he need 

when he need them, and remember that our aim is to recover the formulas we 

know from earlier work in pretty much the same shape as you first learned 

them. 

In the following we illustrate Duality, Changing Signs, Evenness and Oddness. 

One of the first things we observed about the Fourier transform and its inverse 

is that they‘re pretty much the same thing except for a change in sign. The 

relationships are 

                

                 

We had similar results when we changed the sign of the variable first and then 

took the Fourier transform. The relationships are 
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We referred to these collectively as the ―duality‖ between Fourier transform 

pairs, and we‘d like to have similar duality formulas when we take the Fourier 

transforms of distributions. 

The problem is that for distributions we don‘t really have ―variables‖ to change 

the sign of. We don‘t really write                         or      , because 

distributions don‘t operate on points  — they operate on test functions. What 

we can do easily is to define a ―reversed distribution‖, and once this is done the 

rest is plain sailing. 

Reversed distributions Recall that we introduced the reversed signal of a signal 

     by means of 

            

and this helped us to write clean, ―variable free‖ versions of the duality results. 

Using this notation the above results become 

                                                     . 

A variant version is to apply   or    twice, resulting in 

                                 

My personal favorites among formulas of this type are: 

                                

What can ―sign change‖, or ―reversal‖ mean for a distribution T? Our standard 

approach is first to take the case when the distribution comes from a function 

      The pairing of   with a test function   is 

〈    〉  ∫           

 

  

 

We might well believe that reversing   (i.e., a possible definition of    
  

should derive from reversing  , that is, integrating    against a test function. 

The paring of     with   is 
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〈     〉  ∫            

 

  

 

 ∫               

 

  

                                       

 ∫              

 

  

 

This says that    is paired with      in the same way as is paired with  , 

more precisely: 

〈     〉  〈    
 〉 

Wouldn‘t it then make sense to say we have found a meaning for     
  (i.e., 

have defined     
 )via the formula 

〈    
   〉  〈    

 〉 (the right-hand-side is defined because   is defined). 

The ―outcome‖ — how this result should be turned into a general definition — 

is before our eyes: 

 If  is a distribution we define the reversed distribution   according to 

               . 

Note that with this definition we have, quite agreeably, 

    
       

It‘s now easy to state the duality relations between the Fourier transform and its 

inverse. Adopting the notation, above, we want to look at       and how it 

compares to        For a test function    

                   

=                                                             

=                                                               
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= (     ,  )                                                      

 

Pretty slick, really. We can now write simply 

              

We also then have 

             

Same formulas as in the classical setting. 

To take one more example, 

〈       〉  〈     〉  〈       〉  〈      〉  〈      〉  

and there‘s the identity 

           

popping out. Finally, we have 

            

Combining these, 

                            

Applying   or     twice leads to 

                      . 

That‘s all of them. 

Even and odd distributions:   is evenNow that we know how to reverse a 

distribution we can define what it means for a distribution to be even or odd. 

·A distribution   is even if     . A distribution is odd if      . 

Observe that if     determines a distribution   and if      is even or odd then 

  has the same property. 

 For, as we noted earlier, 
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Let‘s next establish the useful fact: 

· is even. 

This is quick: 

〈    〉  〈    〉                   〈   〉 

Let‘s now use this result plus duality to rederive       This is quick, too: 

   = (            

      is even.       is odd. Any distribution is the sum of an even and an 

odd distribution. 

You can now show that all of our old results on evenness and oddness of a 

signal and its Fourier transform extend in like form to the Fourier transform of 

distributions. For example, if  is even then so is   , for 

          T, 

and if  is odd then 

                     

thus   is odd. 

Notice how this works for the cosine (even) and the sine (odd) and their 

respective Fourier transforms: 

          
 

 
         

          
 

  
         

 

we‘ll let you define what it means for a distribution to be real, or purely 

imaginary. 

In the following we study Fourier transform of     . 
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At last. To be really careful here:      makes sense only as a tempered 

distribution. So the equality         has to be understood as an equation 

between distributions, meaning that        and   give the same result when 

paired with any Schwartz function. But you should lose no sleep over this. From 

now on, write       , think in terms of functions, and start your company. 

Now we illustrate a Function Times a Distribution Makes Sense. There‘s no 

way todefine the product of two distributions that works consistently with all 

the rest of the definitions and properties, it just won‘t work. However, it is 

possible (and easy) to define the product of a function anda distribution. 

Say  is a distribution and g is a function. What is   as a distribution? we have 

to tell you what〈    〉is for a test function  . We take our usual approach to 

looking for the outcome when  comes from a function,      .The pairing of 

   and  is given by 

〈     〉  ∫         

 

  

       ∫          

 

  

        

As long as   is still a test function (so, certainly,  has to be infinitely 

differentiable) this last integral is the pairing〈     〉. The outcome is〈     〉  

〈     〉. We thus make the following definition: 

Definition (4.1.1): 

 Let  be a distribution. If  is a smooth function such that   is a test function 

whenever  is a test function, then   is the distribution defined by 

〈    〉  〈    〉. 

This looks as simple as can be, and it is. You may wonder why we even singled 

out this operation for comment.  
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In the following we study a function times  . Watch what happens if we 

multiply   by      

〈    〉  〈    〉           

This is the same result as if we had paired      with  . Thus 

              

Inparticularif          then the result is 0! For example 

       

or for that matter 

        

for any positive power of x. 

Along with         we have 

                

To show this:  

〈     〉  〈     〉               〈    〉  〈        〉  

If you want to write this identity more classically, it is 

                           

We‘ll use this property in many applications, for example when we talk about 

sampling. 

More on a function times  There‘s a converse to one of the above properties 

that‘s interesting in itself . 

 If  is a distribution and                     for some constant  . 

we‘ll show you the proof of this, but you can skip it if you want. The argument 

is more involved than the simple statement might suggest, but it‘s a nice 

example, and a fairly typical example, of the kind of tricks that are used to 

prove things in this area. Each to their  own tastes. 
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Knowing where this is going, let me start with an innocent observation.If  is a 

smooth function then 

          ∫       

 

 

 

      ∫          
 

 
(using the substitution u = t/x) 

       ∫          

 

 

 

Let 

     ∫        

 

 

 

         

                    

We‘ll now use this innocent observation in the case when         , for then 

              

It‘s clear from the definition of          is as smooth as  is and that if, for 

example,  is rapidly decreasing then so is  . Put informally, we‘ve shown that 

if          we can ―factor out an x‖ and still have a function that‘s as good as 

 . 

Now suppose       meaning that 

〈    〉    

for everytest function  . Fix a smooth windowing function  that is identically 

1 on an interval about x = 0, goes down to zero smoothly and is identically zero 

far enough away from x = 0; we mentioned smooth windows earlier . 
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Figure(4.1) 

Since   is fixed in this argument,  operating on   gives some fixed number, 

say 

〈    〉     

Now write  

               (              )

                

where, by this clever way of writing   , the function           

         has the property that 

                                

because        . This means that we can factor out an x and write 

             

where   is again a test function, and then 

                      

But now 

〈      〉  〈           〉 

 〈        〉  〈    〉 

     〈    〉  〈    〉 (linearity) 

     〈    〉  〈    〉 

                                                         

     〈    〉     (because 〈    〉    



139 
 

       

 〈    〉 

We conclude that 

        

Now we discuss The Derivative Theorem. Another basic property of the Fourier 

transform is how it behaves in relation to differentiation — ―differentiation 

becomes multiplication‖ is the shorthand way of describing the situation. We 

know how to differentiate a distribution, and it‘s an easy step to bring the 

Fourier transform into the picture. We‘ll then use this to findthe Fourier 

transform for some common functions that heretofore we have not been able to 

treat. 

Let‘s recall the formulas for functions, best written: 

                                         

where            

We first want to find    for a distribution T. For any test function  , 

〈     〉  〈     〉   〈       〉 

                 〈           〉(from the second formula above) 

  〈           〉 (moving   back over to T) 

  〈        〉 

(cancelling minus signs and moving the smooth function     back onto   ) 

So the second formula for functions has helped us derive the version of the first 

formula for distributions: 

           

On the right hand side, that‘s the smooth function     times the distribution 

  . 

Now let‘s work with     ´
: 

〈       〉   〈     〉   〈   (  )〉 
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    〈        〉(from the first formula for functions) 

   〈         〉 

   〈           〉 

Therefore 

                 

In the following we discuss Fourier transforms of          and the unit 

step.We can put the derivative formula to use to find the Fourier transform of 

the     function, and from that the Fourier transform of the unit step. 

On the one hand,         , from an earlier calculation, so            . 

On the other hand, using the derivative theorem, 

                . 

Hence 

            . 

We‘d like to say that 

      
 

   
 

where    is the Cauchy principal value distribution. In fact this is the case, but 

it requires a little more of an argument. From             we can say that 

      
 

   
    

where c is a constant. Why the extra  term? We need it for generality. If  is 

such that                       and    , will have the same effect when 

paired with a test function. But earlier we showed that such a  must be   for 

some constant . Thus we write 

      
 

   
    

Now,     is odd and so is its Fourier transform, and so is 
 

    
      is even, 

and the only way 
 

   
   can be odd is to have    . 

To repeat, we have now found 
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 give a derivation of this result using limiting arguments. 

By duality we also now know the Fourier transform of 
 

 
  The distributions are 

odd, hence 

 (
 

 
)             

Having found       it‘s easy to find the Fourier transform of the unit step  . 

Indeed, 

     
 

 
          

and from this 

   
 

 
(  

 

   
)  

Now we study Shifts and the Shift Theorem. Let‘s start with shifts. What should 

we make of       for a distribution   when, once again, it doesn‘t make 

sense to evaluate  at a point      We use the same strategy as before, starting 

by assuming that  comes from a function f and asking how we should pair, say, 

         with a test function       For that, we want 

 ∫                
 

  
 ∫             

 

  
  

(making the substitution u = x − b.) 

As we did when we analyzed ―changing signs‖ our work on shifts is made 

easier (really) if we introduce a notation. 

The shift or delay operatorIt‘s pretty common to let   stand for ―translate by  ‖, 

or ―delay by  ‖. That is, for any function  the delayed signal,       is the new 

function defined by 

                 

Admittedly there‘s some awkwardness in the notation here; one has to 

remember that   corresponds to    . 
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In terms of   the integrals above can be written (using  as a variable of 

integration in both cases): 

〈     〉  ∫               ∫                〈      〉

 

  

 

  

  

Note that on the left hand side  is shifted by  while on the right hand side  is 

shifted by   . This result guides us in making the general definition: 

• If  is a distribution we define    ( delayed by  ) by 

〈     〉  〈      〉  

You can check that for a distribution     coming from a function  we have 

             

  is a shifted To close the loop on some things we said earlier, watch what 

happens when we delay         

〈     〉  〈      〉 

           

      (remember,                

                                     〈    〉 

We have shown that       . 

This is the variable-free way of writing           

Theorem (4.1.2): (The shift theorem) 

We‘re now ready for the general form of the shift theorem: 

If  is a distribution then 

                   

To verify this, first 

〈        〉  〈      〉  〈       〉  
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We can evaluate the test function in the last term: 

                   

 ∫                   

 

  

 

 ∫                     

 

  

  (        )    

Now plug this into what we 

had before: 

〈        〉  〈       〉 

 〈   (        )〉 

 〈           〉  〈           〉 

Thus, keeping track of what we‘re trying to show, 

〈        〉  〈           〉 

for all test functions  , and hence 

                  

As one quick application of this let‘s see what happens to the shifted  . By the 

shift theorem 

                       

in accord with what we found earlier for    directly from the definitions of 

  and  . 
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Section (4.2): Stretch Theorem and δ Hard at Work  

We begin this section by studying Scaling and the Stretch Theorem. To find the 

appropriate form of the Stretch Theorem, or Similarity Theorem, we first have 

to consider how to define        Following our now usual procedure, we check 

what happens when   comes from a function    We need to look at the pairing 

of      witha test function 

      and we find for      that 

∫             ∫      (
 

 
)
 

 
    

 

  

 

  

 

                                                 

∫             ∫      (
 

 
)
 

 
     ∫      (

 

 
)
 

 
     

 

  

  

 

 

  

 

We combine the cases and write 

∫             ∫      (
 

 
)

 

   
   

 

  

 

  

  

The scaling operator, As we did to write shifts in a variable-free way, we do the 

same for similarities.  

We let   stand for the operator ―scale by a‖. That is, 

                

The integrals above can then be written as 

〈    〉  ∫             ∫     
 

   

 

  

 

  

(  

 

 )       

 〈  
 

   
        〉   
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Thus for a general distribution: 

• If T is a distribution we define    via 

〈     〉  〈  
 

   
     〉  

Note also that then 

〈
 

   
       〉  〈     〉  

For a distribution    coming from a function  the relation is 

           . 

Scaling         is concentrated at a point, however you want to interpret that, 

you might not think that scaling               should have any effect. But it 

does: 

 〈     〉  〈  
 

   
  

 

 〉  
 

   
(  

 

 )     

 

  
 

   
 (

 

 
)  

 

   
     〈

 

   
   〉   

Hence 

    
 

   
   

This is most often written ―at points‖, as in 

      
 

   
     

The effect of ―scaling the variable‖ is to ―scale the strength‖ of  by the 

reciprocal amount. 

The stretch theoremWith the groundwork we‘ve done it‘s now not difficult to 

state and derive the general stretch theorem: 

If  is a distribution then 
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To check this, 

〈        〉  〈      〉  〈  
 

   
  

 

  〉. 

 

But now by the stretch theorem for functions 

 

   
(  

 

  )     
 

   
   

 

 
             

Plug this back into what we had: 

〈        〉  〈  
 

   
  

 

  〉 

〈        〉  〈      〉  〈
 

   
  

 

      〉. 

This proves that 

       
 

   
  

 

      

Now we study Convolutions and the Convolution Theorem. Convolution of 

distributions presents some special problems and we‘re not going to go into this 

too deeply. It‘s not so hard figuring out formally how to define    for 

distributions S and T, it‘s setting up conditions under which the convolution 

exists that‘s somewhat tricky. This is related to the fact of nature that it‘s 

impossible to define (in general) the product of two distributions, for we also 

want to have a convolution theorem that says  

      = (  S)(   T) and both sides of the formula should make sense. 

What works easily is the convolution of a distribution with a test function. This 

goes through as you might expect (with a little twist) but in case you want to 

skip the following discussion I am pleased to report right away that the 

convolution theorem on Fourier transforms continues to hold: If  is a test 

function and T is a distribution then 

                     



147 
 

The right hand side is the product of a test function and a distribution, which 

isdefined. 

Here‘s the discussion that supports the development of convolution in this 

setting. First we consider how to define convolution of       . As in every 

other case of extending operations from functions to distributions, we suppose 

first that a distribution T comes from a function       is a test function we 

want to look at the pairing of     with a test function    This is 

〈       〉  ∫                

 

  

 

 ∫ ( ∫           

 

  

  )

 

  

       

 ∫ ∫               

 

  

    

 

  

 

 ∫ ( ∫       

 

  

      )      

 

  

 

(The interchange of integration in the last line is justified because every 

function in sight is as nice as can be.) We almostsee a convolution      in the 

inner integral — but the sign is wrong. However, bringing back our notation 

            ), we canwrite the inner integral as the convolution     (or 

as      by a change of variable). That is 

〈       〉  ∫                 

 

  

∫               

 

  

 〈      〉  

This tells us what to do in general: 

• If T is a distribution and  is a test function then     is defined by 

〈       〉  〈      〉  

Convolution property of Let‘s see how this works to establish the basic 

convolution property of the  -function: 

         

where on the right hand side we regard  as a distribution. To check this: 
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〈       〉  〈      〉            

Look at this carefully, or rather, simply. It says that    has the same outcome 

as  does when paired with  . That is,         Works like a charm. Air 

tight. 

As pointed out earlier, it‘s common practice to write this property of  as an 

integral, 

     ∫              

 

  

 

This is sometimes called the sifting property of . Generations of distinguished 

engineers and scientists have written this identity in this way, and no harm 

seems to have befallen them. 

We can even think of Fourier inversion as a kind of convolution identity, in fact 

as exactly the sifting property of δ. The inversion theorem is sometimes 

presented in this way (proved, according to some people, though it‘s circular 

reasoning). We need to write (formally) 

∫       

 

  

        

viewing the left hand side as the inverse Fourier transform of 1, and then, 

shifting, 

∫              

 

  

          

And now, shamelessly, 

         ∫        ∫        

 

  

        

 

  

   

 ∫ ∫               

 

  

       

 

  

   

 ∫ ( ∫               

 

  

   )      
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 ∫             

 

  

       

Having come this far, we can now derive the convolution theorem for the 

Fourier transform: 

〈         〉  〈       〉  〈        〉 

 〈         〉                              

 〈          〉 

                                                                

                                  

 〈       〉                        

 〈          〉                                              

Comparing where we started and where we ended up: 

〈        〉  〈          〉  

that is, 

                 

Done. 

One can also show the dual identity: 

            

Pay attention to how everything makes sense here and has been previously 

defined. The product of the Schwartz function ψ and the distribution T is 

defined, and as a tempered distribution it has a Fourier transform. Since ψ is a 

Schwartz function so is its Fourier transform   , and hence       is 

defined. 

we‘ll leave it to you to check that the algebraic properties of the 

convolutioncontinue to hold for distributions, whenever all the quantities are 

defined. 

Note that the convolution identities are consistent with     , and with  
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           The first of these convolution identities says that 

                

since     , and that jibes with       . The other identity is a little more 

interesting. We have 

                 ∫                  

 

  

      

This is consistent with                             

Convolution in general:we said earlier that convolution can‘t be defined for 

every pair of distributions. We want to say a little more about this, but only a 

little, and give a few examples of cases when it works out. 

At the beginning of this we considered, as we always do, what convolutionlooks 

like for distributions in the case when the distribution comes from a function. 

With  playing the role of the distribution and a Schwartz function we wrote 

〈     〉  ∫              

 

  

 ∫ ( ∫             

 

  

)

 

  

       

 ∫ ∫                   

 

  

 

  

 

 ∫ ∫                     

 

  

 

  

  

At this point we stopped and wrote this as the pairing 

〈     〉  〈      〉 

so that we could see how to define    when T is a distribution. 

This time, and for a different reason, we want to take the inner integral one step 

further and write 

∫              ∫              
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This latter integral is the pairing 〈           〉,where we wrote the variable 

of the paring (the integration variable) as  and I included it in the notation for 

pairing to indicate that what results from the pairing is a function  . In fact, 

what we see from this is that 〈     〉can be written as a ―nested‖ pairing, 

namely 

〈     〉  〈     〈           〉〉 

where we  included the variable y in the outside pairing to keep things straight 

and to help recall that in the end everything gets integrated away and the result 

of the nested pairing is a number. 

Now, this nested pairing tells us how we might define the convolution     of 

two distributions          It is, with a strong proviso: 

Convolution of two distributions If S and T are two distributions then their 

convolution is the distribution      defined by 

〈       〉  〈     〈           〉〉 

provided the right-hand-side exists. 

We‘ve written               ―at points‖ to keep straight what gets paired 

with what;        makes sense, is a function of          and it‘s 

necessary to indicate which variable       is getting hooked up with T in 

the inner pairing and then with S in the outer pairing. 

Why the proviso? Because the inner paring〈           〉produces a function 

of y which might not be a test function. Sad, but true. One can state some 

general conditions under which   exists, but this requires a few more 

definitions and a little more discussion. Enough is enough. It can be dicey, but 

we‘ll play a little fast and loose with existence of convolution and applications 

of the convolution theorem. Tell the rigor police to take the day off. 

Convolving δ with itself. For various applications you may find yourself 

wanting to use the identity 

         

By all means, use it. In this case the convolution makes sense and the formula 

follows: 
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〈       〉  〈     〈           〉〉 

〈         〉       〈   〉  

A little more generally, we have 

                

a nice formula! We can derive this easily from the definition: 

〈         〉  〈      〈            〉〉 

 〈            〉         〈      〉  

It would be more common to write this identity as 

                         

In this notation, here‘s the down and dirty version of what we just did (so you 

know how it looks): 

              ∫       

 

  

           

 ∫         

 

  

                            

                                         

Convolution really is a ―smoothing operation‖ (most of the time).we want to say 

a little more about general properties of convolution (first for functions) and 

why convolution is a smoothing operation. In fact, it‘s often taken as a maxim 

when working with convolutions that: 

• The function      has the good properties of          

This maxim is put to use through a result called the 

derivativetheoremforconvolutions: 

             (    )    (    )     

On the left hand side is the derivative of the convolution, while on the right 

hand side we put the derivative on whichever factor hasa derivative. 
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We allow ourselves to differentiate under the integral sign — sometimes a 

delicate business, but set that aside — and the derivation is easy. If  is 

differentiable, then 

             
 

  
∫             

 

  

 

 ∫     
 

  
         ∫              

 

  

 (    )   

 

  

 

The second formula follows similarly if  is differentiable. 

The importance of this is that the convolution of two functions may have more 

smoothness than the individual factors. We‘ve seen one example of this already, 

where it‘s not smoothness but continuity that‘simproved. Remember     ; 

the convolution of the rectangle function with itself is the triangle function. The 

rectangle function is not continuous — it has jump discontinuities at    

      — but the convolved function is continuous.We also saw that repeated 

convolution of a function with itself will lead to a Gaussian. 

The derivative theorem is saying: If  is rough, but  is smooth then    will be 

smoother than   because we can differentiate the convolution by putting the 

derivative on   We can also compute higher order derivatives in the same way. 

If  is n-times differentiable then 

                        

Thus convolving a rough function f with an n-times differentiable function g 

produces an n-times differentiable function    . It is in this sense that 

convolution is a ―smoothing‖ operation. 

The technique of smoothing by convolution can also be applied to distributions. 

There one works with    where  is, for example, a Schwartz function. Using 

the family of Gaussians    (
 

√   
)   

  

  to form     produces the so-called 

regularizationof T. This is the basis of the theorem on approximating a general 

distribution by a sequence of distributions that come from Schwartz functions. 

The distribution δ is the breakeven point for smoothing by convolution — it 

doesn‘t do any smoothing, it leaves the function alone, as in 
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Going further, convolvinga differentiable function with derivatives of δ 

produces derivatives of the function, for example, 

         

we can derive this from scratch using the definition of the derivative of a 

distribution and the definition of convolution, or we can also think of 

               

 (Careful here: This is   convolvedwith    not   pairedwith  .) A similarresult 

holds for higher derivatives: 

             

Sometimes one thinks of taking a derivative as making a function less smooth, 

so counterbalancing the maxim that convolution is a smoothing operation, one 

should add that convolving with derivatives of δ may roughen a function up. 

in the following we discuss  Hard at work We‘ve put a lot of effort into general 

theory and now it‘s time to see a few applications. They range from finishing 

some work on filters, to optics and diffraction, to X-ray crystallography. The 

latter will even lead us toward the sampling theorem. The one thing all these 

examples have in common is their use of    . 

The main properties of δ we‘ll need, along with its Fourier transform, are what 

happens with convolution with a function   and with multiplication by a 

function  : 

                                   

 

We‘ll tend to ―write the variables‖ in this section, so these identities appear as 

∫                    

 

  

                            

There are useful variations of these formulas for a shifted δ: 
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We also need to recall the Fourier transform for a scaled rect: 

                            

Now we illustrate  Filters, redux. One of our first applications of convolution 

was to set up and study some simple filters. Let‘s recall the terminology and 

some work left undone; The input      and the output      are related via 

convolution with the impulse response     : 

                   

(We‘re not quite ready to explain why  is called the impulse response.) The 

action of the filter is easier to understand in the frequency domain, for there, by 

the convolution theorem, it acts by multiplication 

                

where 

                           

     is called the transferfunction. 

The simplest example, out of which the others can be built, is the low-pass filter 

with transfer function 

           
     (

 

   
)  {

        

        
 

The impulse response is 

                    

a scaled      function. 

High-pass filter, earlier we saw the graph of the transfer function for an ideal 

high pass filter: 
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Figure (4.2) 

and a formula for the transfer function 

                           
    

where   is the cut-off frequency. At the time we couldn‘t finish the analysis 

because we didn‘t have δ. Now we do. The impulse response is 

                             

For an input      the output is then 

                  

 (                  )       

         ∫     (        )       

 

  

 

The role of the convolution property of δ in this formula shows us that the high 

pass filter literally subtracts part of the signal away. 

Notch filter The transfer function for the notch filter is just 1− (transfer 

function for band pass filter) and it looks like this: 

 

Figure (4.3) 
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Frequencies in the ―notch‖ are filtered out and all others are passed through 

unchanged. Suppose that the notches are centered at     and that they 

are  wide. The formula for the transfer function, in terms of transfer function 

for the low-pass filter with cutoff frequency     is 

            (                     )  

For the impulse response we obtain 

                                                   

                                  

Thus 

                                              

           ∫                             

 

  

        

and again we see the notch filter subtracting away part of the signal. 

In the following we study Diffraction: The      function, live and in pure color. 

Some of the most interesting applications of the Fourier transform are in the 

field of optics, understood broadly to include most of the electromagnetic 

spectrum in its purview.  

The fundamental phenomenon associated with the wave theory of light is 

diffractionor interference. Sommerfeld says that diffraction is ―any deviation of 

light rays from rectilinear paths which cannot be interpreted as reflection or 

refraction.‖ Very helpful. Is there a difference between diffraction and 

interference?. It is just a question of usage, and there is no specific, important 

physical difference between them.‖ He does go on to say that ―interference‖ is 

usually associated with patterns caused by a few radiating sources, like two, 

while ―diffraction‖ is due to many sources. Whatever the definition, or 

nondefinition, you probably know what the picture is: 
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Figure (4.4) 

Such pictures, most notably the ―Two Slits‖ experiments of Thomas Young 

(1773–1829), which we‘ll analyze, below, were crucial in tipping the balance 

away from Newton‘s corpuscular theory to the wave theory propounded by 

Christiaan Huygens (1629–1695). The shock of the diffraction patterns when 

first seen was that light + light could be dark. Yet the experiments were easy to 

perform. Spoke Young in 1803 to the Royal Society: ―The experiments we 

about to relate ... may be repeated with great ease, whenever the sun shines, and 

without any other apparatus than is at hand to every one.‖ 

We are thus taking sides in the grand battle between the armies of ―light is a 

wave‖ and those of ―light is a particle‖. It may be that light is truly like nothing 

you‘ve ever seen before, but for this discussion it‘s a wave. Moreover, jumping 

ahead to Maxwell, we assume that light is an electromagnetic wave, and for our 

discussion we assume further that the light in our problems is: 

1. Monochromatic 

◦ Meaning that the periodicity in time is a single frequency, so described by a 

simple sinusoid. 

2. Linearly polarized 

◦ Meaning that the electric field vector stays in a plane as the wave moves. 

(Hence so too does the magnetic field vector.)With this, the diffraction problem 

can be stated as follows: 
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Light — an electromagnetic wave — is incident on an (opaque) screen 

with one or more apertures (transparent openings) of various shapes. What 

is the intensity of the light on a screen some distance from the diffracting 

screen? 

We‘re going to consider only a case where the analysis is fairly straightforward, 

the Fraunhoferapproximation, or Fraunhofer diffraction. This involves a number 

of simplifying assumptions, but the results are used widely. Before we embark 

on the analysis let me point out that reasoning very similar to what we‘ll do here 

is used to understand the radiation patterns of antennas.  

We discuss Light waves.We can describe the properties of lightthat satisfythe 

above assumptions by a scalar-valued function of time and position. We‘re 

going to discuss ―scalar‖ diffraction theory, while more sophisticated treatments 

handle the ―vector‖ theory. The function is the magnitudeof the electric field 

vector, say a function of the form  

                                       

Here,         is the amplitude as a function only of position in space,  is the 

(single) frequency, and          is the phase at    , also as a function only 

of position. 

The equation 

                                             

describes a surface in space. At a fixed time, all the points on such a surface 

have the same phase, by definition, or we might say equivalently that the 

traveling wave reaches all points of such a surface            constant at the 

same time. Thus any one of the surfaces                   is called a 

wavefront. In general, the wave propagates through space in a direction normal 

to the wavefronts.  

The function            satisfies the 3-dimensional wave equation 

   
 

  

     

    
 

where 
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is the Laplacian and c is the speed of light in vacuum. For many problems it‘s 

helpful to separate the spatial behavior of the wave from its temporal behavior 

and to introduce the complexamplitude, defined to be 

                             . 

Then we get the time-dependent function            as 

                        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅           

If we know          we can get            It turns out that          satisfies 

the differential equation 

                          

where        . This is called the Helmholtz equation, and the fact that it is 

time independent makes it simpler than the wave equation. 

Fraunhofer diffractionWe take a sideways view of the situation. Light is coming 

from a source at a point O and hits a plane  . We assume that the source is so 

far away from S that the magnitude of the electric field associated with the light 

is constant on S and has constant phase, i.e., S is a wavefront and we have what 

is called a planewavefield. Let‘s say the frequency is ν and the wavelength is  . 

Recall that       where c is the speed of light. (We‘re also supposing that the 

medium the light is passing through is isotropic, meaning that the light is 

traveling at velocity c in any direction, so there are no special effects from 

going through different flavors of jello or something like that.) 

Set up coordinates so that the        is perpendicular to S and the        

lies in S, perpendicular to the       . (In most diagrams it is traditional to 

have the        be horizontal and the        be vertical.) 

In S we have one or more rectangular apertures. We allow the length of the side 

of the aperture along the        to vary, but we assume that the other side 

(perpendicular to the plane of the diagram) has length 1. 

 A large distance from S is another parallel plane. Call this the image plane. 
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Figure (4.5) 

The diffraction problem is: 

• What is the electric field at a point P in the image plane?. The derivation we 

going to give to answer this question is not as detailed as is possible but we‘ll 

get the correct form of the answer and the point is to see how the Fourier 

transform enters. 

The basis for analyzing diffraction is Huygens‘principlewhich states, roughly, 

that the apertures on  (which is a wavefront of the original source) may be 

regarded as (secondary) sources, and the field at P is the sum (integral) of the 

fields coming from these sources on  . Putting in a little more symbolism, if 

  is the strength of the electric field on  then an aperture of area   is a source 

of strength          

At a distance  from this aperture the field strength is            , and we 

get the electric field at this distance by integrating over the apertures the 

elements     , ―each with its proper phase‖. Let‘s look more carefully at the 

phase. 
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The wave leaves a point on an aperture in  , a new source, and arrives at 

  sometime later. Waves from different points on S will arrive at  at different 

times, and hence there will be a phase difference between the arriving waves. 

They also drop off in amplitude like one over the distance to  , and so by 

different amounts, but if, as we‘ll later assume, the size of the apertures on  are 

small compared to the distance between S and the image plane then this is not as 

significant as the phase differences. Light is moving so fast that even a small 

differences between locations of secondary point sources on  may lead to 

significant differences in the phases when the waves reach  . 

The phase on S is constant and we might as well assume that it‘s zero. Then we 

write the electric field on S in complex form as 

       
      

where   is constant and  is the frequency of the light. Suppose  is at a distance 

 from a point  on  . Then the phase change from  to  depends on how big  is 

compared to the wavelength  — how many wavelengths (or fractions of a 

wavelength) the wave goes through in going a distance  from  to  .  

This is          To see this, the wave travels a distance r in a time    seconds, 

and in that time it goes through        cycles. Using       that‘s        

    . This is      radians, and that‘s the phase shift. 

Take a thin slice of width    at a height  above the origin of an aperture on  . 

Then the field at  due to this source is, on account of the phase change, 

        
                 

The total field at  is  

∫
         

   
                     

      ∫
         

           

There‘s a Fourier transform coming, but we‘re not there yet. 

The key assumption that is now made in this argument is to suppose that 

     

that is, the distance between the plane  and the image plane is much greater 

than any  in any aperture, in particular  is large compared to any aperture size. 

This assumption is what makes this Fraunhoferdiffraction; it‘s also referred to 

as farfielddiffraction. With this assumption we have, approximately, 
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where   is the distance between the origin of   to  and θ is the angle between 

the        and  . 

 
Figure (4.6) 

Plug this into the formula for  : 

        
             ∫

         
                  

Drop that constant out front — as you‘ll see, it won‘t be important for the rest 

of our considerations. 

We describe the apertures on S by a function       which is zero most of the 

time (the opaque parts ofS) and 1 some of the time (apertures). Thus we can 

write 

  ∫     

 

  

                 

It‘s common to introduce the variable 

   
    

 
 

and hence to write  
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  ∫     

 

  

             

There you have it. With these approximations (the Fraunhoferapproximations) 

the electric field (up to a multiplicative constant) is the Fourier transform of the 

aperture! Note that the variables in the formula are  , a spatial variable, and 

           in terms of an angle θ. It‘s the θ that‘s important, and one always 

speaks of diffraction ―through an angle.‖ 

Diffraction by a single slit,Take the case of a single rectangular slit of width , 

thus described by             Then the field at  is 

                     (
      

 
)  

Now, the intensityof the light, which is what we see and what photodetectors 

register, is proportional to the energy of               . (This is why we 

dropped the factors    
             multiplying the integral. They have 

magnitude 1.) So the diffraction pattern you see from a single slit, those 

alternating bright and dark bands, is 

                 (
      

 
). 

Pretty good. The      function, or at least its square, live and in color. Just as 

promised. 

We‘ve seen a plot of      before, and you may very well have seen it, without 

knowing it, as a plot of the intensity from a single slit diffraction experiment. 

Here‘s a plot for  
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Figure (4.7) 

Young‘s experiment, as mentioned earlier, Thomas Young observed diffraction 

caused by light passing through two slits. To analyze his experiment using what 

we‘ve derived we need an expression for the apertures that‘s convenient for 

taking the Fourier transform. 

Suppose we have two slits, each of width  , centers separated by a distance  . 

We can model the aperture function by the sum of two shifted rect functions, 

                                

(Like the transfer function of a bandpass filter.) That‘s fine, but we can also 

shift the   ‘s by convolving with shifted    , as in 

                                        

                          

         

and the advantage of writing      in this way is that the convolution theorem 

applies to help in computing the Fourier transform. Namely, 

                               (
       

 
)     (

      

 
) 

Young saw the intensity, and so would we, which is then 

                  (
       

 
)      (

      

 
) 

Here‘s a plot for                                       
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Figure (4.8) 

This is quite different from the diffraction pattern for one slit.Diffraction by two 

point-sources, Say we have two point-sources — the apertures — and that they 

are at a distance  apart. In this case we can model the apertures by a pair of δ-

functions: 

                              

Taking the Fourier transform then gives 

                 (
       

 
)   

and the intensity as the square magnitude: 

                (
       

 
)  

Here‘s a plot of this for                                 
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Figure (4.9) 

Incidentally, two radiating point sources covers the case of two antennas 

―transmitting in phase from a single oscillator‖. 

An optical interpretation of     What if we had light radiating from a single 

point source? What would the pattern be on the image plane in this 

circumstance? For a single point source there is no diffraction (a point source, 

not a circular aperture of some definite radius) and the image plane is 

illuminated uniformly. Thus the strength of the field is constant on the image 

plane. On the other hand, if we regard the aperture as δ and plug into the 

formula we have the Fourier transform of δ, 

    ∫              

 

  

 

This gives a physical reason why the Fourier transform of δ should be constant 

(if not 1). 

Also note what happens to the intensity as       of the diffraction due to two 

point sources at a distance  .  

Physically, we have a single point source (of strength 2) and the formula gives 

                (
       

 
)     
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