

 بسم الله الرحمن الرحيم

Sudan University of Science and Technology

College of Graduate Studies

College of Computer science and Information

Technology

Implementing Integrating Enterprise

Systems in Sudan - Using Enterprise

Service Bus (ESB)

ناقل باستخدام -في السودان تكامل انظمة المؤسسةتطبيق ل

 الخدمة

This thesis is submitted in partial fulfillment of the academic requirements

for the degree of

Master in Computer Science

By: Ahmed Hamza Abdelmonim.

Supervisor: Dr.Wisal M. Tingari.

February 2016

I

 الاهداء
 الشّي طَان الرّجِيم مِن أعَُوذ باِلَلَِّ

 (سورة الاسراء23الاية) (وَقضََىٰ رَبُّكَ ألَاا تعَْبدُوُا إِلاا إِيااهُ وَبِالْوَالِديَْنِ إِحْسَاناً (

 امي وابي ربنا يحفظكم ويجزيكم عنا خير الجزاء

نْ أنَفسُِكُمْ (سورة الروم21الاية) أزَْوَاجًا ل ِتسَْكُنوُا إلِيَْهَا()مِنْ آياَتِهِ أنَْ خَلقََ لكَُم م ِ

 زوجتي و شريكتي

 اخواني واصدقائي

II

Acknowledgements

I would first like to thank my Allah. Special thanks to Dr. Wisal M. Tingari, the door

to her office was always open whenever I ran into a trouble spot or had a question

about my research or writing. She consistently allowed this research to be my own

work, but steered me in the right direction whenever she thought I needed it.

Finally, I must express my very profound gratitude to my wife, my family and my

friends, for providing me with unfailing support and continuous encouragement

throughout my years of study and through the process of researching and writing this

thesis. This accomplishment would not have been possible without them. Thank you.

III

Abstract

The main objective of this research is to implement an enterprise system integration

using an enterprise service bus (ESB) in Sudan.

The research questions are; what framework to be used to complete the integration?

And what are the mechanisms that will be used to make sure that the integration

process is successful? Finally, how to choose the workflow engine and what are the

criteria for the choice. To achieve the research objectives, different approaches to

integrate enterprise systems were studied, and enterprise service bus (ESB) was

selected. Accordingly the integration environment was set up, and an appropriate

workflow engine was demonstrated. Finally, the required adaptors of each integrated

system were developed, and the proposed system was tested and implemented.

The research recommends for the use of cluster architecture and load balancing ESB.

Moreover, it recommends of use security token service and service locator to

maximize the benefits of ESB.

IV

 مستخلص

 .اقل الخدمةنمن خلال تنفيذ منهجية في السودان، وذلك تكامل بين انظمة المؤسسةالهدف من البحث تطبيق الية لل

ما هو الاطار الذي سيستخدم لاكمال عملية التكامل بين الانظمة وماهي الالية التي سوف يتم ،اسئلة البحث هي

تحقيق ل بها الاختبار والتأكد من نجاح عملية التكامل وكيف سوف يتم اختيار محرك سير عمل مناسب للتكامل.

 هدف البحث

 ,وعلى ضوء ذلك تم تجهيز بئية التكامل تمت دراسة مجموعة من طرق التكامل وتم اختيار منهجية ناقل الخدمة.

 مل،في كل نظام متكاالمطلوبة المحولات التقنية واخيرا تم تطوير .وتم توضيح محرك سير العمل المختار

 واخيرا تم اختبار وتشغيل بيئة التكامل.

رورة تمادية مع ضتوصيات البحث هي استخدام منهجية توزيع الاحمال في بيئة ناقل الخدمات لزيادة الاداء والاع

 استخدام خدمات التأمين ومحدد الخدمات لزيادة مرونة التكامل.

V

List of Contents

Topic Page

Dedication i

Acknowledgements ii

Abstract iii

 iv المستخلص

List of Contents v

List of Tables vii

List of Figures viii

List of Abbreviations x

CHAPTER ONE: INTRODUCTION

1.1 Preface 1

1.2 Problem Statement 1

1.3 Research Significance 1

1.4 Research Objectives 2

1.5 Research Questions 2

1.6 Research Methodology 2

1.7 Research Structure 2

CHAPTER TWO: THEORETICAL BACKGROUND

2.1 Introduction 3

 2.1.1 Key Concepts 3

 2.1.2 Integration Strategies 4

2.2 Service Oriented Architecture 7

2.3 Enterprise Service Bus 8

 2.3.1 Service Virtualization 9

 2.3.2 ESB Routing Rule 10

 2.3.3 ESB's Core Functionalities 10

 2.3.4 Enterprise Service Bus Model 11

2.4 Related Work 12

CHAPTER THREE: METHODOLOGY

3.1 Preface 14

3.2 The Proposed Enterprise Service Bus 14

 3.2.1 Criteria 14

 3.2.2 Motivation for Choosing Talend ESB 16

3.3 The Proposed Workflow System 17

3.4 Implementation 18

 3.4.1 Introduction to Talend ESB solutions 18

VI

 3.4.2 Talend ESB Features 18

 3.4.3 Talend ESB Products and Architecture 24

 3.4.4 Introduction to Bonita Business Process Management 25

 3.4.5 Introduction to OpenKM Document Management

System

25

 3.4.6 Case Study 25

 3.4.7 System Design and Implementation 28

 3.4.8 Bonita Workflow Management System 42

 3.4.9 OpenKM DMS 53

 3.4.10 System Testing 54

3.5 System Deployment 59

CHAPTER FOUR: CONCLUSION AND RECOMMENDATIONS

4.1 Conclusion 64

4.2 The Result 64

4.3 Recommendations 64

REFERENCE 65

APPENDICES

APPINDEX A: Bonita Code 68

APPINDEX B: ESB Code 70

VII

List of Tables

Topic Page

3.1 Workflow Criteria Matrix 18

3.2 Service Properties 29

3.3 tESBProviderRequest Properties 34

3.4 tXMLMap Properties 35

3.5 tWebService Properties 36

3.6 tESBProviderResponse Properties 38

3.7 tLogCatcher Properties 38

3.8 tLogRow Properties 39

3.9 tESBProviderFault Properties 39

3.10 tJavaRow Properties 40

VIII

List of Figures

Topic Page

2.1 Point-to-Point Approach 5

2.2 EAI Approach 6

2.3 ESB Approach 7

2.4 ESB Request-Response Flow Review 9

2.5 ESB Evaluation 10

2.6 Enterprise Service Bus Model 11

3.1 Overview of Karaf Components 19

3.2 The Integration Perspective with a Service Design 21

3.3 The Integration Perspective with a Job Design 22

3.4 Apache Camel Architecture 23

3.5 The Mediation Perspective 24

3.6 The Current Business Model 26

3.7 The New Business Model 27

3.8 The Consumer Activity 28

3.9 Service Creation Process 29

3.10 Service Schema 30

3.11 Service Virtualization 31

3.12 Service Port type 32

3.13 Job Design Repository 33

3.14 OkmAuth_login Job 34

3.15 OkmAuth_login_tXMLMap 35

3.16 tWebService WSDL Configuration 36

3.17 tWebService Input Mapping 37

3.18 tWebService Output Mapping 37

3.19 Upload Document Job 40

3.20 Talend ESB Runtime 41

3.21 Apache Karaf Service List 41

3.22 Authentication Connector 43

3.23 Connector General Information 44

3.24 Connector Parameters 45

3.25 Authentication Connector Request Parameters 46

3.26 Connector Response Configuration 47

3.27 Connector Output Operations 48

3.28 Connector Output Expression 48

3.29 Upload Document Definition 49

3.30 Upload Connector Request Parameter 50

IX

3.31 Edit Document Connector Definition 51

3.32 Download Document Connector request parameter 51

3.33 Check-out Document Connector request parameter 52

3.34 Check-in Document Connector Definition 53

3.35 Check-in Document Connector Request Parameter 53

3.36 OpenKM Main Page 54

3.37 Login Test Case 55

3.38 Upload Test Case 56

3.39 Download Test Case 56

3.40 Check-out Test Case 57

3.41 Document after Check-out 58

3.42 Update Document Test Case 59

3.43 Document after Check-in 59

3.44 Deployment Model 60

3.45 Bonita Upload Stage 61

3.46 OpenKM Taxonomy 61

3.47 Bonita Download Stage 62

3.48 OpenKM Check-out Status 62

3.49 Bonita Update Stage 63

3.50 OpenKM Version View 63

X

List of Abbreviations

ESB Enterprise Service Bus

OpenKM Open Knowledge Management

DMS Document Management System

EAI Enterprise Application integration

MIS Management information system

MOM Message Oriented Middleware

SOA Service Oriented Architecture

WSDL Web Services Description Language

SOAP Simple Object Access Protocol

HTTP Hypertext Transfer Protocol

XML Extensible Markup Language

SMB Small and Medium Businesses

GUI Graphical User Interface

B2B Business-to-Business

CPU Central Processing Unit

BPMS Business Process Management System

WFMS Workflow Management System

TCO Total Cost of Ownership

OEM Original Equipment Manufacturer

J2EE Java 2 Enterprise Edition

CIM Common Information Model

DICOM Digital Imaging and Communications in Medicine

WSN Wireless Sensor Networks

GG Google Gadgets

NI National Instruments

DAQ Data AcQuisition

EIP Enterprise Integration Patterns

ASF Apache Software Foundation

API Application Program Interface

JAX-WS Java API for XML Web Services

JAX-RS Java API for RESTful Web Services

OSGI Open Service Gateway Initiative

JMX Java Management Extensions

JAR Java ARchive

KAR Karaf ARchive

JMS Java Message Service

SVN Subversion

XI

JSON JavaScript Object Notation

STS Security Token Service

SAML Security Assertion Markup Language

XPDL XML Process Definition Language

jPBM java Business Process Management

LGPL Lesser General Public License

GPL General Public License

GWT Google Web Toolkit

JDK Java Development Kit

RDBMS Relational DataBase Management System

ERP Enterprise resource planning

TAC Talend Administration Center

SAM Service Activity Monitoring

IoT Internet of Things

1

Chapter One: INTRODUCTION

1.1. Preface

 One of the challenges facing the architect is the integration of applications.

Implementing enterprise integrations can be complex and daunting, especially for

organizations with a legacy information technology environment. The practical approach

to integrations should result in maximizing return on investment and achieve a forward-

looking, flexible architecture aligned with broader enterprise architecture goals and the

emergence of new technologies in the marketplace. An enterprise service bus (ESB) is a

standards-based connectivity layer used to integrate distributed systems across functional,

enterprise and/or geographic boundaries

 It provides a combination of service enablement, messaging, transformation, routing

and mediation to address a wide variety of enterprise integration challenges. The ESBs are

reliably and securely connected distributed systems and remote locations in a flexible way

while reducing the number, size and complexity of application interfaces. ESBs have

primarily been the province of only large companies. Gartner estimates that core ESB

features are adopted by more than 50% of large organizations (Gartner, 2013), but this

pattern is changing. The mid-market is now experiencing faster growth in application

integration than large enterprises who have been locked into proprietary, non-standard,

"black box" solutions, with little input into the evolution of the ESB products they have

come to rely on to integrate their business applications.

1.2. Problem Statement

 Any x company might have a set of information systems, such as enterprise resource

management system, document management system, email, project management system

and test management system. All of these systems are isolated from each other and there

is no exchange of any data because they are not integrated. Recently x company decided

to integrate workflow management system and document management system to

standardize the scattered enterprise processes between their systems. And the main

obstacle to implementation is the lack of proper integration between systems.

 Although there are several methods to integrate the system, still the question what

is an optimal method that could meet the needs of the organization to achieve its goals in

an integrated, safe and easy system maintenance and follow-up with the possibility of

adding any future systems.

1.3. Research Significance

Lack of interoperability, most of the institutes, companies and corporations in the Sudanese

market have many systems, but most of that systems are isolated and there is no exchange

of information.

High cost, there are some companies were integrated their systems using non-suitable

2

methodologies, that caused a rise in the cost of maintenance, follow-up and administration

operations.

1.4. Research Objectives

The main objective of this research is to implement enterprise system integration in Sudan.

Through:

a. Prepare ESB environment

b. Specify the workflow engine

c. Integrate the workflow engine with DMS

d. Test the new shipped system

1.5. Research Questions

To overcome the previously presented shortages in previous, this research may provide

convincible answers to the following research questions:

a. What framework to be used to complete an integration between the two enterprise

systems?

b. What are the mechanisms that will be used to make sure that the integration process

is successful and that the system is stable?

c. How to choose the workflow engine and what are the choice criteria?

1.6. Research Methodology

To achieve the above-mentioned objective the following methods will be followed:

a. Selecting the ESB integration approach, and define the suitable framework that can

be applied to the conducted problem.

b. Set up the integration environment which includes and not limited to the data model

format, the communication protocol, and message notation.

c. Selecting the appropriate workflow engine.

d. Develop the required adaptor in each the integrated system.

e. Validate and test the proposed system and its components from the view of

transparency and information exchange among the system.

1.7. Research Structure

This research will be structured as follows

Chapter one introduction, while in chapter two we will talk about the theoretical

background and related work with discussion to their advantages and disadvantages. In

chapter three: will discuss the methodology and the framework for proposed solution and

the implementation. Finally in chapter four: draw a conclusion and future work.

3

Chapter Two: THEORETICAL BACKGROUND

2.1. Introduction

In this chapter previous research has been reviewed to provide a clear thought about the

enterprise integration then ESB has been defined in more details, lastly, the proposed ESB

and the Workflow management system has been provided.

2.1.1. Key Concepts
a. Enterprise Application Integration (EAI)

 According to (Freivald, 2010) EAI (enterprise application integration) refers to

the plans, methods, and tools aimed at modernizing, consolidating, and coordinating the

computer applications in an enterprise. Typically, an enterprise has existing legacy

applications and databases and wants to continue to use them while adding or migrating

to a new set of applications that exploit the Internet, e-commerce, extranet, and other

new technologies. Enterprise also prefers the business processes and the data are shared

without being forced to change their structures. And that what EAI provide to them.

 Enterprise Application Integration, or EAI, has existed as a technical term since

the early 2000s, but the central problem that it attempts to solve is much older. In a

nutshell, EAI is an approach, or more accurately, a general category of approaches, to

providing interoperability between the multiple disparate systems that make up a typical

enterprise infrastructure.

 According to (ALSÈNE, 1994),"Since the early days of computing,

organizations have aspired to integrated, enterprise-wide information system

architectures. Throughout the years, these aspirations have been reflected in the quest

for integrated Management Information System (MIS), enterprise-wide data models,

and integrated databases".

 According to (Woolf, 2012) enterprise application integration is not an easy

task because integration is not just one style or method to be used. The approach

used to accomplish integration in a typical organization is related to their applications,

developed or bought from third party vendors, operating on different platforms

and using diverse technologies inside or even outside the company. Additionally,

some applications are not designed to be integrated with other applications but their

data is critical to other applications. All of this makes the process of integrating

applications complicated and critical to every enterprise.

b. Message Oriented Middleware (MOM)

 Message-oriented middleware (MOM) is software or hardware infrastructure

supporting sending and receiving messages between distributed systems. It allows

software components that have been developed independently and that run on different

networked platforms to interact with one another. (Wikipedia, 2013)

c. Service Oriented Architecture (SOA)

 Service-oriented architecture (SOA) is a design pattern based on distinct pieces

of software providing application functionality as services to other applications via a

protocol. This is known as service-orientation. It is independent of any vendor, product

or technology. (MSDN, 2004)

4

d. Web Services

 A Web service is a method of communication between two electronic devices

over a network. It is a software function provided at a network address over the Web

with the service always on as in the concept of utility computing (Anon., n.d.)

The W3C defines a Web service as A Web service is a software system designed to

support interoperable machine-to-machine interaction over a network. It has an

interface described in a machine-processable format (specifically WSDL). Other

systems interact with the Web service in a manner prescribed by its description using

SOAP-messages, typically conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards. (W3, 2004)

e. Message Broker

 A message broker is an architectural pattern for message validation, message

transformation and message routing. It mediates communication amongst applications,

minimizing the mutual awareness that applications should have of each other in order

to be able to exchange messages, effectively implementing decoupling. (Gregor Hohpe,

2003)

f. Enterprise Service Bus (ESB)

 ESB is an “Architectural Pattern”, “We describe the enterprise service bus first

and foremost as an architectural pattern. In fact, it is possible to construct service buses

from a variety of different underlying integration technologies. The architecture pattern

remains valid and is a guiding principle to enable the integration and federation of

multiple service bus instantiations.” (High, 2006)

2.1.2. Integration Strategies
 Integration can be complex and expensive. There are many integration software

vendors in the marketplace. The first step is to determine the integration strategy that

will best achieve the business needs. Integration technologies and concepts have

evolved over the last decade, leading to a multitude of architectures and products in the

IT market. However, according to (Sachin Chandra, 2009) there are really three broad

integration strategies:

i. Point-to-Point integration

In a point-to-point integration approach, each application is integrated directly with

the other application via an interface module. While interfaces of this type can be

built and implemented relatively quickly and cheaply, the approach has limited

consideration for enterprise-wide data integration. As more applications are

interconnected with each other, the number of integration modules multiply

exponentially. Additionally, those interface modules are directly impacted by

underlying application upgrades and data changes.

5

Figure 2.1: Point to Point Approach (Sachin Chandra, 2009)

ii. Spoke-and-hub integration

In a broker approach to EAI, a central integration engine called the broker, resides

in the middle of the network, and provides all message transformation, routing, and

any other inter-application functionality. All communication between applications

must flow through the hub, allowing the hub to maintain data concurrency for the

entire network. The broker model allows loose coupling between applications, but

like any other architecture model that uses a central engine is that the broker can

become a single point of failure for the network.

6

Figure 2.2: EAI Approach (Sachin Chandra, 2009)

iii. Enterprise Service Bus Integration

The ESB Integration strategy is also based on the spoke-and-hub integration

topology. With the advent of open, Web-based, and service-oriented business

applications, EAI middleware applications have evolved to support Web-based

communication standards such as SOAP, XML, HTTP, and other services. The bus

architecture sought to lessen the burden of functionality placed on a single

component by distributing some of the integration tasks to other parts.

7

Figure 2.3: ESB Approach (Sachin Chandra, 2009)

2.2.Service Oriented Architecture
In order to define the role of SOA in system integration the related literature in this area

was reviewed to illustrate the characteristics of SOA which are beneficial to EAI

as a new architectural approach for EAI. It is noticeable that the literature usually talks

about SOA and web services because web services are one of the suitable methods

to implement SOA architectural model in practice.

The first characteristic of SOA is the definition of service in different literature. (Woolf,

2012) Identified Service as Shared business functions which are well-defined and

universally available and responds to requests from “service consumers”. According

to (High, 2006) SOA is comprised of services that are modularized. These modularized

services can then provide coordination to support real-time business processes to function

correctly throughout the enterprise. The authors pointed out that SOA is the result of

evolution in programming languages and paradigms, distributed computing and business

technology.

According to (Woolf, 2012) in SOA integration of a new application is done by using

existing remote services provided by other applications, thus calling a service can be

regarded as integration between applications. SOA based integration tools usually

provide enough simplicity to call an external service the same as a local method.

8

According to (Papazoglou, et al., 2007), the benefit of using SOA approach is loose

coupling allows to break down the integration logic into distinct and easily manageable

pieces. Moreover, service orchestration and service choreography are two characteristics

that mainly define the interaction protocols coordinating and controlling how services are

collaborating.

(Amjad Umara, 2009) Claim that sometimes SOA will not be able to improve the

enterprise system regarding complicated issues like:

i. If the target applications are too inflexible and costly to maintain, the integration

in-place approach does not work.

ii. Outdated and old functionalities will remain in the system and also the

possibility of using a new product more flexible to SOA approach will be

ignored.

iii. SOA is producing a great deal of confusion due to its specific array of standards

and new products.

According to (Ravi Khadka, 2013) Migration is a multifaceted process that involves

technical, organizational and business issues. To manage such a multifaceted process,

a central governing body with the suitable governance of the entire migration process

is indispensable. Needless to say, a legacy to SOA migration is a complex and

challenging process and any failure can threaten the success and fortune of an

enterprise.

2.3. Enterprise Service Bus

An enterprise service bus (ESB) is a software architecture for middleware that provides

fundamental services for more complex architectures. For example, an ESB incorporates

the features required to implement a service-oriented architecture (SOA). In a general sense,

an ESB can be thought of as a mechanism that manages access to applications and services

(especially legacy versions) to present a single, simple, and consistent interface to end-users

via Web- or forms-based client-side front ends. (Rouse, 2012)

According to (IBM, 2009) an ESB enables standards-based integration between loosely-

coupled applications and services within and across
a. Services oriented architectures – distributed applications are composed of granular

reusable services with well-defined, published and standards-compliant interfaces
b. Message-driven architectures - applications send messages through the ESB to

apps
c. Event driven architectures - applications generate and consume messages

anonymously

9

2.3.1. Service Virtualization

SOA Federation solutions focus on taking existing services and ensuring that they

meet the requirements of enterprise SOA. To achieve this, the SOA Federation

solutions offer a set of core capabilities one of them is Service Virtualization.

According to (SOA, 2014) Service Virtualization provides location transparency,

service mobility, impedance tolerance and reliable service delivery without

requiring a re-platforming of existing platforms or introducing yet another service

platform to support the required solution architecture. It can be divided into three

sub-categories as follow

a. ESB inter-connects Requestor and Provider

i. Interactions are decoupled

ii. Supports key SOA principle – separation of concerns

b. ESB Provides Service Virtualization of

i. Location and identity

ii. Interaction pattern and protocol

iii. Interface

c. ESB also enables Aspect-oriented Connectivity or Mediation

i. Security

ii. Log
iii. Management

Figure 2.4: ESB Request-Response Flow Review (IBM, 2009)

10

2.3.2. ESB Routing Rule

In environments where integration is a subject of interest, there exists the necessity

to route the messages in an efficient way. This means that a service consumer only

receives that piece of information it is interested in, based on the content of the

message. In conventional systems, the service provider explicitly specifies the

intended message consumers using a unicast or multicast address. This loosely

coupling of services also requires some discovery agency, which is capable of

connecting the service requestors with the service consumers. Such a discovery of

services and binding them does not necessarily happen at design time. It can happen

at run-time, dependent on the needs of the service requestor. Content-based routing

now comes in play, enabling to read messages and route messages to the right

service consumer based on the content of the message. The rule how to interpret the

content of the message is called a routing rule. Content-based routing is at the core

of systems which integrate between services via the publish-and-subscribe pattern.

(yenlo.nl, 2010)

Figure 2.5: ESB Evaluation (IBM, 2009)

2.3.3. ESB's Core Functionalities

There are a number of different ESB products available on the market today, An

ESB product should provide a number of core functionalities to be utilized in

application integration, below is the summarized list of feature according to (Mason,

2014)

11

a. Location Transparency: A way of centrally configuring endpoints for messages,

so that a consumer application does not require information about a message

producer in order to receive messages

b. Transformation: The ability of the ESB to convert messages into a format that

is usable by the consumer application.

c. Protocol Conversion: Similar to the transformation requirement, the ESB must

be able to accept messages sent in all major protocols, and convert them to the

format required by the end consumer.

d. Routing: The ability to determine the appropriate end consumer or consumers

based on both pre-configured rules and dynamically created requests.

e. Enhancement: The ability to retrieve missing data in incoming messages, based

on the existing message data, and append it to the message before delivery to its

final destination.

f. Monitoring / Administration: The goal of ESB is to make integration a simple

task. As such, an ESB must provide an easy method of monitoring the

performance of the system, the flow of messages through the ESB architecture,

and a simple means of managing the system in order to deliver its proposed

value to an infrastructure.

g. Security: ESB security involves two main components - making sure the ESB

itself handles messages in a fully secure manner and negotiating between the

security assurance systems used by each of the systems that will be integrated.

2.3.4. Enterprise Service Bus Model
The previous literature, in general, provides the following conceptual model to

introduce ESBs.

Figure 2.6: Enterprise Service Bus Model (Talend, 2012)

12

According to the above conceptual model, ESBs play a mediator among different

applications based on different platforms and data types. The integration mechanisms

provided by an ESB assists the easier way of adding new applications to the integration

landscape. Applications communicate with each other through their connection to the

ESB, while the complications of implementation the logic behind the integration is

mainly dealt by the ESB (Chappell, 2004).

2.4. Related Work

In this section, the literature related to the related work were gathered and reviewed to be

able to know the best practices and lessons learned in implementing ESB in different

industries.

According to (Dai, 2011) dedicated ESB for power systems has been designed and

implemented, the proposed design meeting IEC 61970/61968 standards, and has been

developed by Java 2 Enterprise Edition (J2EE) and divided into adaptation layer, service

layer and data layer. Common information model (CIM) has been used as the standard of

data exchange model and XML has been used to describe the message. The author didn't

show a best practice that is followed but he claimed that Objectives of the institution has

achieved significantly by used the ESB, but the ESB framework needs more effort in

security and log functions.

According to (Chongwen Wang, 2010) DICOM is very complex technology, most of the

hospitals used the point-to-point methodology to integrate their DICOM communications.

Which eventually lead to high cost of maintenance and expanding process, so to reduce

the cost and share the DICOM devices more efficiency. ESB has been designed and

implemented to carry the DICOM communication, it has been divided into four modules

connector module, message management module, DICOM entity protocol module and

service unit module. The author claimed that they are succeeded in implementing

communication between DICOM sender and ESB, but according to author the framework

needed a lot of work to be more reliable and stable.

According to (Chunmiao, 2012) the purpose of use ESB in Metallurgical production is

improve the efficiency and reduce the maintenance cost by providing a model based on

ESB to manage the various processes in production. The author designed a new production

model that centralized service bus Metallurgical based on the automation and control

system. The new model has made great progress in Metallurgical production in china, but

compared with international Metallurgical industry there is a considerable gap.

It is not clear why both (Dai, 2011) , (Chunmiao, 2012) and (Chongwen Wang,

2010) designed and implemented their own ESB from scratch, they are not provided any

justifies or proof that existing ESB framework did not fit their requirements. But they said

there was a significant improvement in their case study after implemented ESB

architecture.

According to (Mulik, 2009) their case studies about an enterprise that has distributed

13

business division. Each one of this division having its own solution that handling its

operational functions. Nevertheless, these business units need to integrate with corporate

functions and shared services on real-time as well on loosely coupled basis. And the author

used the ESB to achieve the enterprise needs. The author chose the Appropriate ESB

framework based on clear and reasonable criteria, mainly the ESB vendor reputation and

pricing license (TCO). The lessons learned from this research could be as follows:

a. Be prepared to have some vendor lock-in unless there is an unusually high level of

commitment to standards within an organization.

b. Provision for proportionately higher coordination efforts in such projects.

According to (U. Raza, 2012) a novel approach has been presented for monitoring a typical

plastics industry environment based on three major technologies: Wireless Sensor

Networks (WSN), Service Oriented Architecture (SOA) and Google Gadgets (GG). This is

applied to a heterogeneous network of WSN nodes and National Instruments (NI) high-

speed data acquisition (DAQ) devices. Although SOA mostly used to make software

resource run as service, according to the author SOA architecture has been used to enable

hardware resources like WSN to be accessed as a service. So to achieve their goal, a

proposed system to monitor micro injection molding has been designed and implemented.

ESB has been implemented as one of three core modules -WSO2 used as ESB- and the ESB

responsible for thousands of WSN that integrated with ESB and GG and DAQ. According

to the author, the proposed system has proven to be flexible and easy to use. In future, the

author aims to monitor the complete Micro Injection Molding. The author describes

systems integration implementation beyond traditional forms of integration, where they

used the concepts of SOA, ESB, IoT to link between factory systems and wireless sensor

network systems of mechanical devices, which lead them to develop monitor and control

system with an acceptable cost.

14

Chapter Three: METHODOLOGY

3.1. Preface
To achieve the research objective; implementing an enterprise system integration in Sudan,

the ESB integration approach was selected, and a suitable framework was defined to be

applied to the conducted problem. The following were the phases adopted:

 Setting the criteria for selecting an appropriate mechanism to integrate an enterprise

system.

 Selecting the appropriate workflow engine.

 Preparing the integration environment which includes data model format,

communication protocol, and message notation.

 Developing the required adaptor in each integrated system.

 Validating and testing the proposed system and its components; based on the view

of transparency and information exchange among the system.

3.2. The Proposed Enterprise Service Bus

3.2.1 Criteria

A. According to (Wähner, 2013) it is hardly possible to create a good and useful matrix

because the products offer different functionalities and concepts. Besides, the feature

list also changes virtually every day in the IT world.

Therefore, and based on the literature review, the author suggests the following

criteria:

i. Usability: How complicated is the installation? How many tools are needed? Is

the development environment intuitive?

ii. Maintainability: How do you administer the product? Is there a GUI for

monitoring services?

iii. Community: Are there active public forums or mailing lists? Are numerous

articles, tutorials, articles, and videos available? Is the product supported by

several companies?

iv. Enterprise Support: What support options are offered ("business hours",

"24/7" hotline vs. Email vs. on-site support, etc.)? Can the required service level

agreements be guaranteed? Is support offered in your preferred language?

v. Functionality: Are all the required functionalities offered?

vi. Flexibility: Can you customize functionalities of the product to fit my needs?

vii. Expandability: Is it possible to expand the product? is the product and its

interfaces based on standards?

15

viii. Connectors: Are adapters for all required technologies available? Are there

adapters for B2B products such as SAP or Salesforce? How easily can I build

your own adapter?

ix. Cost: What is the full cost (total cost of ownership) of the product - including

maintenance, all required ancillary products, connectors, etc.)?

x. Licensing: What licensing or subscription model is used? What happens when

requirements change (more computers, more CPUs, switching to virtual

machines, etc.)? Are upgrades for free? Are downgrades possible, too? Are the

costs "foreseeable" at all, is the price list even understandable?

According to his claim there no winning ESB product and it is advisable to pre-define your
own needs, and then to evaluate which products are best suited.

B. While (Gartner, 2013) define key technical characteristics that slightly differ from

the previous criteria.
Technical characteristics

i. Communications: Vendor offerings must implement an interoperability layer
that supports interactions among application and system components via a
variety of. Vendor offerings must also enable a broad array of interaction styles
— such as request/reply, conversational, publish and subscribe, and
asynchronous messaging. Finally, vendor offerings should provide support for
the idempotent delivery of messages — that is, the ability to (1) guarantee the
delivery of each message, (2) to deliver each message only once and (3) to
deliver messages in the order sent by the source program(s).

ii. Data Transformation: Vendor offerings should support the translation of data

from the format, structure and semantics native to the source application to that
required by the target applications.

iii. Orchestration: Vendors should provide technology that hosts the execution of
process logic spanning interactions with multiple back-end services or
applications with the aim of implementing composite services or automated
system-to-system processes.

iv. Application Connectivity: Vendors should provide an array of adapters or
wrappers — that is, a technology that combines design tools and runtime
software to implement programs that act as "glue," bridging protocol differences
and connecting to databases, as well as most popular packaged applications and
SaaS offerings.

v. Development Environment: Each vendor must provide a software application
that provides comprehensive facilities to enable integration staff to efficiently
design, implement, test and deploy integration interfaces and service interfaces.

vi. B2B Interactions: Vendors should provide connection provisioning
capabilities for B2B protocols. Vendors should also support Web services-based
connections with external business partners.

vii. Governance: Governance is the assignment of decision rights to ensure
desirable behavior. Vendor support is expected for managing the lifecycle of
integration solutions during design time and to manage qualities of service at
runtime. Expected functionality includes a registry/repository, policy definition
and management, and API management.

viii. Security: Vendors should enable implementation of effective security support
to enable capabilities such as authentication of endpoints, authorization of
service or interface access, message/document encryption/decryption…etc.

16

ix. Administration and Monitoring: Vendors should provide technology that

enables visibility into and effective management of the solutions that are created
through the integration of programs and services.

According to (A., 2010) the support for open standards has to be one of the main

characteristics to be considered. Other important characteristics to take into account

are the followings: the implementation support, the ease of use and the GUI support.

Obviously, there are no standard criteria that can be used in ESB evaluation, so the

decision maker needs to do his homework and define what the criteria that suit their

needs.

“Democratizing” is introducing a democratic system or democratic principles to make

something accessible to everyone. Open source software democratizes the ESB by making

it accessible to a much broader group of developers and organizations. By addressing the

primary challenges developers face—access to low-cost, powerful development tools that

are stable, easy-to-use and fully supported. According to (Thompson, 2010), “With several

commercially supported alternatives available, open-source ESBs have moved from a

developer-initiated experiment to a viable choice for mainstream organizations.” Small

and medium businesses (SMBs), as well as departmental users, can now gain the

productivity, efficiency and cost advantages of application integration that until now were

only exploitable by larger enterprises. Enterprise-class integration is now accessible to a

greater number of organizations that can not only participate in the economic benefits of

ESBs but can ensure an ongoing voice in how their ESB software evolves to support the

needs of the ESB user community over time.

3.2.2 Motivation for Choosing Talend ESB

According to (Asankha C. Perera, 2013) the Talend ESB SE 5.3.1 performed slightly

better than the Mule CE 3.4.0 ESB and encountered only 3 HTTP level errors for

11,138,400 requests. While The WSO2 ESB 4.7.0 suffered a severe response corruption

defect for payloads larger than 16KB, and a failure of the XSLT test cases.

According to (Gartner, 2013) Talend ESB pursues an open-core, commercial open-

source model providing mission-critical features, support and maintenance via

subscriptions. The vendor offers BPMS functionality via a partnership with Bonitasoft.

And although a relative newcomer to the ESB suite market, Talend is the first vendor to

offer a platform that integrates a suite for application integration with data integration

and BPM technologies through a common repository/environment.

According to (Gartner, 2013) Talend has many strengths that listed as follows

a. Strengths

i. Talend Open Studio for ESB is a robust suite founded on the broadly adopted

Apache CXF, Camel, Karaf and ActiveMQ open-source offerings, to which its

engineers are active contributors.

17

ii. Talend uses a graphical approach to implementing Apache Camel Enterprise

Integration Patterns, which includes an all-in-one feature for testing the

implementation of these enterprise integration patterns.

iii. Talend's go-to-market approach of five platform offerings (Big Data, Data

Management, Data Services, Enterprise Integration and Master Data

Management), with all the platforms integrated via a single repository, is

unique.

b. Cautions

i. Talend is a relatively young company, founded in 2005 and dual-headquartered

in Los Altos, California, and Suresnes, France. It is methodically expanding into

its established markets (that is, the U.S. and EMEA) and is opening up its

Asia/Pacific efforts with offices in Tokyo and Beijing. However, its products do

not have a worldwide installed base comparable with the leading integration

vendors.

ii. B2B support is limited to the most common B2B file formats. However, these

can be configured into the product.

iii. Talend looks to Apache projects and its R&D staff to provide adapters, some of

which are also contributed by community members. While Talend provides

adapters to SAP, Microsoft CRM and salesforce.com, it only offers a limited set

of application integration adapters for widely deployed commercial packaged

applications, such as PeopleSoft and Siebel.

3.3 The Proposed Workflow System

All of the research that has been done related to choosing workflow management system

(WFMS), leading us to one question “What functionality and capabilities should a WFMS

provide for it to fit the enterprise requirement?”

They claim that there are no WFMS that can be suitable for all enterprises, instead, the

enterprise should define the criteria and evaluate the WFMS available in the market.

According to (Boucher, 2012), the criteria that have been chosen are

a. Ability to fully integrate with your company’s line-of-business application

b. Ability to create and configure simple or complex processes

c. Management dashboard for performance metrics

d. Allow for multiple users interface deployment options

e. Reasonable TCO

f. OEM agreement support

The WFMSs that has been evaluated are Bizagi, Bonita and Activiti. The following table

illustrates the evaluated result

18

Table 3.1: Workflow Criteria Matrix

Criteria / WFMS Bizagi Bonita Activiti

Ability to fully integrate with your company’s line-of-

business application
√ √ √

Ability to create and configure simple or complex

processes
√ √ √

Management dashboard for performance metrics √ √ ×
Allow for multiple users interface deployment options √ √ √

Reasonable TCO ×
√ ×

OEM agreement support ×
√ ×

So Bonita WFMS has been chosen to be the workflow engine to the company and to be

integrated with DMS system or any other system that will implement in the company.

3.4 Implementation

In the following section of implementation, Preparing the integration environment has been

set up which includes data model format, communication protocol, and message notation. Then the

required adaptor in each integrated system has been developed. Finally validating and testing the

proposed system and its components; based on the view of transparency and information exchange

among the system.

3.4.1 Introduction to Talend ESB solutions

The Enterprise Service Bus (ESB) has always been the cornerstone of every vendor's

Service Oriented Architecture (SOA) strategy. (Talend, 2014) Talend ESB is a considerable

improvement on previous ESBs in that it:

a. has relatively small footprint

b. uses proven open source technologies

c. enables easy integration of existing applications and infrastructures

This chapter gives a high-level overview of Talend ESB solutions, their components, and

features. It also describes the integration process between Bonita workflow management

system and OpenKM document management system using Talend ESB.

3.4.2 Talend ESB Features
According to (Gartner, 2013) Talend ESB is a versatile and flexible ESB that allows

organizations to address diverse integration challenges. It supports a broad set of standard

transports and protocols, as well as enterprise integration patterns (EIPs).

 Leveraging Apache CXF, Apache Camel and Apache ActiveMQ open source

integration projects, Talend ESB makes enterprise-class integration accessible by

delivering a cost-effective and easy-to-use way to integrate and expand systems and

applications.

19

 Apache CXF is an open source services framework, Apache CXF helps companies

build and develop services using frontend programming APIs like JAX-WS and JAX-RS.

(CXF, 2016)

 Apache Camel is an open source integration framework that lets developer leverage

EIPs to implement routing, transformation and mediation rules. (Camel, 2015)

a. Web Services Support

Talend ESB helps the developer to create new web services or to service-enable existing

applications and interfaces for use with the web. Talend ESB leverages the features of

Apache CXF for developing and deploying web Services and REST applications.

According to (CXF, 2016) Apache CXF supports all important web services standards

and fully complies to the Java API for XML web Services (JAX-WS) specification.

Talend ESB supports the creation of SOAP and REST web services and offers WS-*

functionality including support for WS- Addressing, WS-Reliable Messaging, and WS-

Security over both HTTP and JMS transports. (Talend, 2014)

In addition, the web services stack in Talend ESB distributions goes well beyond

Apache CXF, with support for:

i. OSGi containers

ii. Graphical Data Service Development using the Talend Studio

iii. Advanced Service Governance using Deployment Time Policies

iv. Central deployment and configuration options via Web User Interfaces and

JMX-based APIs

v. Management and monitoring of services

b. Standard OSGi Runtime

According to (Talend, 2015) the standard runtime in Talend ESB is an OSGi

container. The OSGi implementation shipped with Talend ESB is Apache Karaf

using Eclipse Equinox as OSGi Runtime, providing a lightweight container into

which various components and applications can be deployed.

Figure 3.1: Overview of Karaf Components (Talend, 2014)

20

Karaf supports the following features:

i. Hot deployment: Karaf monitors any file inside the [home]/deploy directory.

So if a file is copied to this directory, it is automatically installed inside the

runtime; subsequently, this can be updated or deleted, and Karaf will act

correspondingly.

ii. Dynamic configuration: Services are usually configured through a standard

OSGi service, using property files, which are monitored; changes are

propagated to the service.

iii. Logging: using a centralized logging back end supported by Log4J.

iv. Managing instances: Karaf provides simple console commands for managing

multiple instances.

c. Messaging

Talend ESB embeds Apache ActiveMQ message broker to support a number of

different messaging options. ActiveMQ is written in Java and implements the JMS

specification.

The job of the message broker is to transport events between distributed

applications, guaranteeing that they reach their intended recipients. The broker,

therefore, must be highly available, performant, and scalable for this goal, which

Apache ActiveMQ provides an easy to use way in Talend ESB, as it is embedded

in Talend Runtime. (Talend, 2014)

d. Talend Studio

The Talend studio provides a graphical development tool with:

i. an Integration perspective

ii. a Mediation perspective

iii. a Java perspective (Enterprise and Platform studios including m2eclipse

Plugin)

iv. a soapUI perspective (Enterprise and Platform studios only)

These are discussed in more detail in the rest of this section.

i. Integration Perspective

The Integration perspective is a graphical tool within the Talend Studio which

allows the developer to use the extensive list of data adapters and components

to build ESB data services and export them for standalone or for deployment in

a local Talend Runtime container.

21

Figure 3.2: The Integration Perspective with a Service Design

A Service in the 'Services' node is a Web-Service defined by a WSDL. The WSDL

can be just imported, created from scratch in the tooling using the embedded

graphical WSDL editor or an existing WSDL can be imported and then edited

within the studio. In this case, the service is based on this WSDL information and

each service operation can then be implemented in the job design node.

22

Figure 3.3: The Integration Perspective with a Job Design

A data service Job is a graphical design, of one or more components connected

together, that allows the developer to set up and run data service operations. Jobs

address all of the different sources and targets that you need for data integration

processes and combine it with Web services. Additionally, in enterprise and

platform studios, the developer can use the shared repository feature to work in

larger teams, and share resources. It has the facility of team collaboration - team

members can store and share their business models, integration and service jobs,

integration services and metadata in an industry-standard source manager (SVN).

ii. Mediation Perspective

This section first deals with Apache Camel, and then the Mediation

perspective which is a graphical interface to this functionality.

i. Apache Camel

The Mediation functionality of Talend ESB is based on the Apache Camel

project. The core of the Camel framework is a routing engine. It allows the

developer to define routing rules that accept and send messages through

components. There are no restrictions on the message format - for example,

23

Java objects, XML, JSON, plain text and so on, can be used. These routing

rules are based on the book (Woolf, 2012); et al. Thus, Apache Camel is a

framework allowing developers to assemble Endpoints / Processors into

workflows (Routes) to achieve higher level functionality (Wikipedia, 2014).

It facilitates application integration by leveraging Enterprise Integration

Patterns (EIPs) to essentially assemble scalable services, and make message-

based system integration simpler to design and implement.

Figure 3.4: Apache Camel Architecture (Camel, 2013)

ii. Mediation perspective

On top of Apache Camel, and integrated with the Talend Studio, the Route

Builder (Mediation perspective) is a GUI that allows a developer to build

these Routes in a visual way.

24

Figure 3.5: The Mediation Perspective

3.4.3. Talend ESB Products and Architecture

Talend provides ESB functionality in four different packages described in the following

sections (Talend, 2015)

a. Talend ESB Standard Edition (SE)

Talend ESB standard edition is a standards-based connectivity layer used to

integrate distributed systems across functional, enterprise, and geographic

boundaries. Capabilities include messaging, web services, intelligent routing, and

data transformation. It is available under the open source apache license.

b. Talend Open Studio for ESB

Talend open studio for ESB – an eclipse-based tooling environment for modeling,

configuring, deploying and managing data services – includes Talend ESB standard

edition.

c. Talend Enterprise ESB

Enterprise ESB is designed for application teams that need to manage development

projects across teams and operate their integrated production environments across

25

their enterprise in a coherent manner. As such, Talend ESB includes all of the

functionality of Talend open studio for ESB and extends it with team collaboration,

enterprise management and other capabilities.

d. Talend Platforms

Talend platforms extend Talend enterprise ESB with advanced clustering, business

process management, application integration, extended data mapping and data

management features allowing firms to increase business productivity, deliver

projects faster, and lower operating costs.

3.4.4 Introduction to Bonita Business Process Management

Bonita BPM is an open-source business process management and workflow suite created

in 2001. It was started in France national institute for research in computer science and

then had incubated several years inside of the French computer science company Groupe

Bull. Since 2009, the development of Bonita is supported by a company dedicated to this

activity: Bonitasoft. (Wikipedia, 2013)

Bonita BPM has three major components (BonitaSoft, 2014):

a. Bonita Studio: allows the user to graphically modify business processes following

the BPMN standard.

b. Bonita BPM Engine: The BPM engine is a JAVA API that allows the developer

to interact programmatically with his processes. It is available under LGPL. It relies

on Hibernate.

c. Bonita Portal: is a portal that allows each end-user to manage in a webmail-like

interface all the tasks in which he or she is involved.

Bonita BPM is open source and can be downloaded under GPL.

3.4.5 Introduction to OpenKM Document Management System

OpenKM is a free libre document management system that provides a web interface for

managing arbitrary files. OpenKM is developed using Java technology based on Java EE

standards and the tomcat server. (wikipedia, 2015)

3.4.6 Case Study

a. Analysis
i. System Problem

In most of the institutions that want to use the document management system, they

need to address the business process, in spite of all the features offered by OpenKM

system in the following document management, it still suffers from a defect and

26

failure in business process management. Some institutions have the BPM and some

do not have, in all cases, the Foundation would like to work integration between

document management system, BPM and the rest of the Enterprise Systems.

 So-hoc basis appeared to use the ESB to achieve the goals of integration

between the old and new systems, taking into account the approved criteria such as

expansion, maintenance, performance, and security.

ii. Business Model

The research subject company owns several information systems, constituting

document management system, enterprise resource management system, e-mail

system and project management system, and was able to link some of the

information systems. But the rate of change in business requirements led to that

there must be a workflow system in the company, the problem is that the current

enterprise architecture that was used in integrated the systems was peer-to-peer, and

the possibility of accepting the expansion, change and maintenance in this

architecture is low and costing the company a lot of money.

The needs of the institution are that there must be a mechanism for

integration with an ability that all the services separate from each other, low systems

dependency. With the possibility of change some service without affect by the rest

of the integrated systems. The possibility of expansion and the addition of new

services at the lowest possible costs.

So the institution's desire to not only to integrate systems but accompany

future changes likes the increasing in information use and direction of most of the

institutions to the cloud computing and internet services, which requires the

existence of the possibility of future integration with external services also.

Figure 3.6: The Current Business Model

27

Figure 3.7: The New Business Model

iii. Consumer Activity Diagram

The action sequence will begin when an employee uses the system to request

new service. The activities will be as follows:

a. Workflow system will connect to the enterprise data bus and ask for

permission to use the document management service.

b. Workflow management system will send attachments to the Enterprise

service bus.

c. The manager will ask the workflow system to retrieve the document

from the Enterprise service bus.

d. The manager will update the document and sent it back to the Enterprise

service bus.

28

Figure 3.8: The Consumer Activity

3.4.7 System Design and Implementation

There are a number of parts been involved in developing this service, which has been

implemented by reused existing functionalities and components, and it include created a

DMS service provider, created a WFMS consumer and export the service to a Talend

runtime container. Lastly service activity monitor has been used to be sure of service flow.

a. Talend Enterprise Service Bus

Powered by the leading Apache open source integration projects, Talend ESB is a

standards-based connectivity layer used to integrate distributed systems across functional,

enterprise, and geographic boundaries. Capabilities include messaging, web services,

intelligent routing, and data transformation. Its modular architecture allows it to be easily

expanded to suit most enterprise requirements.

i. Service Design

The Integration perspective of Talend studio combines data integration with Web services

and enables the graphical design of a Service which includes a WSDL file and one or more

data service Jobs that addresses all of the different sources and targets required to publish

the Web service. The WSDL editor makes it possible to create and edit WSDL files

graphically, automating most of the tasks involved with these processes.

29

A Service has been designed in the Integration perspective of Talend studio, using

following steps

a. Import existing WSDL files from OpenKM DMS for structured viewing.

b. Associate Services with data service Jobs.

c. Create and add items to the repository for reuse and sharing purposes (in other

projects or Services or with other users).

The Integration perspective of Talend studio enables the developer to create a

Service from an existing WSDL file or to create a new WSDL file from scratch using the

WSDL editor. When created a service for the first time the following dialog box displays

to help developer define the main properties of the new Service.

Figure 3.9: Service Creation Process

Table 3.2: Service Properties

Field Description

Name The name of the new Service.

Purpose Service purpose or any useful information regarding the Service use.

Description Service description.

30

Author A read-only field that shows by default the current user login.

Locker A read-only field that shows by default the login of the user who owns

the lock on the current Service.

Version Read-only field

Status List to select from the status of the Services you are creating.

Path List to select from the folder in which the Service will be created.

In the next step [Assign WSDL] has been selected, and then [Import existing WSDL] has

been selected, when finished a screen has appeared as shown in figure 3.10.

Figure 3.10: Service Schema

The figure 3.10 gives a basic WSDL skeleton which contains:

31

a. Service used to aggregate a set of related ports which specify addresses for bindings,

thus defining a single communication endpoint. In this research two services have been

created OkmAuthentication and OkmDocument, OkmAuthentication service provide to

the consumer the right authentication and make sure that every request from any

consumer is not a threat for the service provider. While OkmDocument service provide

to consumer service like upload, edit, retrieve documents.

b. A binding specifies the concrete protocol and data format specifications for the

operations and messages defined by a particular port type. ESB has many core

principles and the most important of the them are:

 ESB interconnects requester and provider which mean Interactions are

decoupled and separation of concerns.

 ESB provides Service virtualization of Location and identity, Interaction pattern

and protocol, and Interface Binding operation uses to be part of fulfilling the

previous principle see figure 3.11, the service has been published in the address

[http://localhost:8077/ESB/DMS/] so every consumer will request service from

that address. While the DMS is actually in a cloud environment and the ESB

runtime installed on a local machine, although that the WFMS consumer will

communicate with the ESB on a local machine. All ESB services have been

published as web services using SOAP protocol.

c. Port type, a set of abstract operations that each refers to an input message and output

messages.

Figure 3.11: Service Virtualization

32

Figure 3.12: Service Port type

The properties view that located on the lower part of the designing editor of Talend studio,

displays a list of attributes and editable attribute values of a selected WSDL object and

contains the following tabs to edit:

a. The general tab displays a list of object attributes.

b. Documentation tab, specifies the information developer want the user to read.

c. Extensions tab used to add extension components.

After the WSDL file has been created, some operations in the WSDL file has been chosen

to associate with a data service provider Job to implement the Web service.

b. Job Design

A job design or data service Jobs is the runnable layer of a business model. It is a graphical

33

design, of one or more components connected together, that allows the developer to set up and

run data flow management processes. A job design translates business needs into code, routines,

and programs, in other words, it technically implements company/organization data flow.

Figure 3.13: Job Design Repository

i. Authentication

Authentication job is associated with login operation in OkmAuth service, any login

process between the DMS provider and any consumer must be through this job, the job

accepts two parameters username and password, and return security token that the

consumer must use it in any request later.

34

Figure 3.14: OkmAuth_login Job

Authentication job is about receiving the username and password from consumer and then

pass to integrated document system in ESB, after that it must return back to the consumer

a security token or fault message. The authentication job contains the following components

and has been listed in Table 3.2, Table 3.3, Table 3.4, Table 3.5, Table 3.6, Table 3.7 and

Table 3.8.

Table 3.3: tESBProviderRequest Properties

Component

family

ESB/Web Services

Function Wraps Talend job as web service.

Purpose Waits for a request message from a consumer and passes it to the next

component.

Usage This component covers the possibility that a job can be wrapped as a

service, with the ability to input a request to a service into a Job and return

the Job result as a service response.

The tESBProviderResponse component can both deliver the payload of a

SOAP message and also access the HTTP and SOAP headers of a service.

The tESBProviderRequest component should be used with

the tESBProviderResponse component to provide a Job result as a

35

response, in case of a request-response communication style.

Table 3.4: tXMLMap Properties

Component

family

Processing/XML

Function tXMLMap is an advanced component fine-tuned for transforming and

routing XML data flow (data of the Document type), especially when

processing numerous XML data sources, with or without flat data to be

joined.

Purpose tXMLMap transforms and routes data from single or multiple sources to

single or multiple destinations.

Usage Possible uses are from a simple reorganization of fields to the most

complex jobs of data multiplexing or de-multiplexing transformation,

concatenation, inversion, filtering and so on. It is used as an intermediate

component.

Figure 3.15: OkmAuth_login_tXMLMap

36

tXMLMap component has been used to convert the data that comes from

tESBRequestProvider, in the login job it has been used to extract the username and

password from XML file request that sends by the consumer and then converts to text base

variable that can be passed to the next tWebService component.

Table 3.5: tWebService Properties

Component

family

Internet

Function tWebservice calls the defined method from the invoked Web service

and returns the class as defined, based on the given parameters.

Purpose This component calls a method via a Web service in order to retrieve

the values of the parameters defined in the component editor.

Usage This component can be used as an input or as an intermediate

component. It must be linked to an output component.

Figure 3.16: tWebService WSDL Configuration

In figure 3.16 the WSDL field web service address has been entered

37

[http://demo.openkm.com/OpenKM/services/OKMAuth?wsdl], after that from port name

list a portType has been selected. Finally from operation list the login (parameters): string

service has been chosen.

Figure 3.17: tWebService Input Mapping

In figure 3.17 a connection between the input schema – username and password -

and the input parameter - parm: username and parm: password - of the defined

Web service have been created

Figure 3.18: tWebService Output Mapping

38

In figure 3.18 a connection between the service call result - return - and the output

schema - parm: response - of the defined Web service has been created.

Table 3.6: tESBProviderResponse Properties

Component

family

ESB/Web Services

Function Serves a Talend Job cycle result as a response message.

Purpose Acts as a service provider response builder at the end of each Talend Job

cycle.

Usage The tESBProviderResponse component only is used with

the tESBProviderRequest component to provide a Job result as a response

for a web service provider, in the case of a request-response

communication style.

While tESBProviderRequest acting like the listener to consumer request, the

tESBProviderResponse handle the response to that request, using tXMLMap and

built-in schema, to send the response in a suitable XML data.

Table 3.7: tLogCatcher Properties

Component

family

Logs & Errors

Function Fetches set fields and messages from Java

Exception, tDie and/or tWarn and passes them on to the next

component.

Purpose Operates as a log function triggered by one of the three: Java

exception, tDie or tWarn, to collect and transfer log data.

Usage This component is the start component of a secondary Job which

automatically triggers at the end of the main Job

tLogCatcher and tLogRow are very useful in the development and debug mode

because Talend components are not that easy to implemented. While in the Talend

wiki and development reference the examples are made to look simple,

unfortunately, it is not. So it was important to use those components to solve the

39

problems that faced the research implementation in Talend open studio.

Table 3.8: tLogRow Properties

Component

family

Logs & Errors

Function Displays data or results in the Run console.

Purpose tLogRow is used to monitor data processed.

Usage This component can be used as an intermediate step in a data flow or

as an end object in the Job flowchart.

Table 3.9: tESBProviderFault Properties

Component

family

ESB/Web Services

Function Serves a Talend job cycle result as a fault message of the web service in

case of a request-response communication style.

Purpose Acts as Fault message of the Web Service response at the end of a Talend

Job cycle.

Usage This component only is used with the tESBProviderRequest component.

While tlogCatcher and tLogRow catch the exceptions inside the job, the

tESBProviderFault main job is to throw the fault message to other consumers.

40

ii. Upload Document

Figure 3.19: Upload Document Job

Upload document job is about receiving the content from consumer and then pass to

integrated document system in ESB, it has the most components that have been mentioned

early in previous authentication job, in addition to the tJavaRow component.

Table 3.10: tJavaRow Properties

Component

Family

Custom Code

Function tJavaRow allows the developer to enter customized code which can

integrate into a Talend program. With tJavaRow, the developer can enter

the Java code to be applied to each row of the flow.

Purpose tJavaRow allows the developer to broaden the functionality

of Talend Jobs, using the Java language.

Usage This component is used as an intermediary between two other

components. It must be linked to both an input and an output component.

Although the Talend ESB said that, there no need to write a code. Unfortunately, it

is not true. Will talk about it in next chapter.

iii. Edit document, Download document and Update document, all of them have the same

job design, the difference are:

41

a. Everyone has unique service that associated with it, which mean difference in

schema and data flow.

b. Everyone has unique java code inside the tJavaRow component.

c. Everyone has a slight difference in tXmlMap component configuration.

c. Publishing Wrapped Service

Talend studio provides the ability to deploy a job as a web service in order for the job to be

called by other applications via the internet. With Talend studio, any job can be exported and

exposed as a web service. But before export job the Talend runtime has been started and has

been checked using command terminal.

Figure 3.20: Talend ESB Runtime

Figure 3.21: Apache Karaf Service List

42

Talend runtime is based on apache Karaf project, so to check the exported service

has installed correctly the command [list] has been used in Karaf command line,

and as mentioned in figure 3.21 the two service Authentication and OkmDocument

has been installed, activated and ready to use by another system.

3.4.8 Bonita Workflow Management System

Bonita is a workflow management system tool that has been used in the research to

implement the idea of workflow, holiday request has been used as an example of

workflow case study.

a. Business Model

The company has many workflow cases and most of them have documents

included, the growth of using workflow led to increasing in a number of

documents which needed to be stored in the central repository. Eventually, the

need for another system to manage the attached documents was necessary, but

the company needs to be sure the new system will be able to manage all

documents that come from other sources, so the integrate between company

systems simply must be SOA based principles.

b. Connectors

A connector is implemented in Bonita BPM in two parts, the definition, and the

implementation. This enables developers to change the implementation without

changing the definition. Several implementations can be created for a single

definition.

A connector is used in Bonita to integrate with another system, it has a many

support type of connections but in this research, it has been used a web service

connector.

i. Authentication connector

A connector is used to get authentication from DMS service provider. It use

SOAP protocol as shown in figures from 3.22 to 3.28.

43

Figure 3.22: Authentication Connector

44

Figure 3.23: Connector General Information

In this stage general information has been entered, like connector name, description,

event state and what happen when connector fail as shown in figure 3.23.

45

’

Figure 3.24: Connector Parameters

In this stage connector parameters have been entered, like service namespace and

service name as shown in figure 3.24, there are other options which are username

and password and it may be used in case of service provider asking for this

information.

46

Figure 3.25: Authentication Connector Request Parameters

Well, this is most important and sensitive stage in a connector implementation, most

of the information entered here have been extracted from service provider WSDL,

and one wrong character can make a connector fail. The first parameter is the port

name and it comes directly from the WSDL file, secondly, the endpoint address in

which the connector will call the service and as mentioned in figure 3.25 the

endpoint is localhost although the OpenKM DMS is hosted in the cloud, but thanks

to ESB who make the services isolated from each other. Binding is different from

SOAP1.1 to SOAP1.2, here it has been used SOAP1.1 binding. Lastly, the

connector needs to have envelope body to be able to send the XML request.

47

Figure 3.26: Connector Response Configuration

In connector response configuration stage it is just [return body] has been checked

to make it return an only response body as shown in figure 3.26, in development

normally the envelope to debug the response but when has been a switch to

production mode it was better to disable this feature.

48

Figure 3.27: Connector Output Operations

In connector output stage, the connector output has been retrieved and stored in a

specific variable as shown in figure 3.27.

Figure 3.28: Connector Output Expression

In connector output expression stage, the expression code has been used to

manipulate the stored data because the retrieved data has been returned in XML

49

structure and then data has been extracted and converted to a type that Bonita tool

can understand. Figure 3.28 shows the expression.

ii. Upload Document connector

This connector is responsible for preparing the file, convert its content to a

byte stream and then send it to the service provider as shown in figures 3.29 and

3.30.

Figure 3.29: Upload Document Definition

50

Figure 3.30: Upload Connector Request Parameter

There is a few similarity between connectors implementation but they differ in

request parameter configuration because every connector has a unique envelope

structure. in this envelope, there are three variables that must be sent to endpoint

address which is the security token which uses to authenticate the request, document

path where the document must be stored in DMS system and document content

which using expression code later to convert from file to Unicode 64 byte stream.

iii. Edit Document connectors

This connector is responsible for download and check-out the file, as shown

in figures 3.31 to 3.33

51

Figure 3.31: Edit Document Connector Definition

Edit document activity has two connectors as shown in figure 3.31 because

it contains two of processes, first the download document process and the

second is change the state of the document in DMS to update status.

Figure 3.32: Download Document Connector Request Parameter

Figure 3.32 shows three variables that must be sent to endpoint address

which are security token, document path which used by DMS to get the

document, and Boolean flag which has been set a true value to tell the DMS

52

that the change of state will be after the download operation.

Figure 3.33: Check-out Document Connector Request Parameter

In this connector, there are two variables that have been sent to DMS through

ESB, security token and the document path as shown in figure 3.33.

iv. Update Document connector

This connector is responsible for update the document, and it has four

variables that must be sent to DMS through ESB which are security token,

the document path, document content, and comment. Groovy expression

code has been used to manipulate the file content and convert it to Unicode

64 to be understandable by DMS system. As shown in figures 3.34 and 3.35.

53

Figure 3.34: Check-in Document Connector Definition

Figure 3.35: Check-in Document Connector Request Parameter

3.4.9 OpenKM DMS

OpenKM is document management system that has been used in this research as

54

DMS service provider and has been integrated with ESB. The service was hosted

in cloud environment with the domain name http://demo.openkm.com/OpenKM/

Figure 3.36: OpenKM Main Page

3.4.10 System Testing
This tool has been used to make sure that all service provided by ESB are stable and

reliable

a. Introduction to Soap UI

SoapUI is a free and open source cross-platform Functional Testing solution. With an

easy-to-use graphical interface and enterprise-class features, SoapUI allows the

developer to easily and rapidly create and execute automated functional, regression,

compliance, and load tests. In a single test environment, SoapUI provides complete test

coverage and supports all the standard protocols and technologies. (SoapUI, 2015)

http://demo.openkm.com/OpenKM/

55

b. Service Test

SoapUI tool has been used to test four services

i. Login

Figure 3.37: Login Test Case

The left side of the screen is requested panel and the right side is the response panel

from ESB. Using SoapUI the login request has been sent to local ESB and the ESB

sent a response to contain valid security token. This token has been used in all other

test cases.

ii. Upload document

In upload test case, three variable has been sent using SoapUI, security token

from login test case, document path, and document content as shown in figure

3.38. It has been used the website http://www.motobit.com/util/base64-decoder-

encoder.asp to convert the file to base64.

56

Figure 3.38: Upload Test Case

iii. Download document

 Get file content

In download test case, two variables have been sent using SoapUI,

security token from login test case, document path. The response is long

string based on Unicode 64 as shown in figure 3.39.

Figure 3.39: Download Test Case

57

 Check-out operation

In a check-out test case, two variables have been sent using SoapUI,

security token from login test case, document path as shown in figure

3.40. The response is empty envelope but when reviewed the DMS itself

the check-out flag has been enabled as shown in figure 3.41, arrow shape

has been used to clarify the check-out operation.

Figure 3.40: Check-out Test Case

58

Figure 3.41: Document after Check-out

iv. Update document

In update test case, three variables have been sent using SoapUI, security token

from login test case, document path, and document content as shown in figure

3.42. The response is envelope contain the document properties like author,

created date and size. Figure 3.43 shows the document version has been

increased to 1.1, arrow shape has been used to clarify the update operation.

59

Figure 3.42: Update Document Test Case

Figure 3.43: Document after Check-in

All test cases have been run successfully

3.5 System Deployment

When Bonita server has been started and the flow began, the only endpoint address is localhost

60

and ESB take the responsibility of making services connected, based on SOA principles as

shown in figure 3.44.

Figure 3.44: Deployment Model

Figure 3.45 shows the Bonita process begun and then in figure 3.46 shows the Document that

has been uploaded in OpenKM DMS. After the document uploaded Bonita process downloaded

it again to implement check-out operation as shown in figure 3.47 and the check-out flag has

been enabled as shown in figure 3.48, finally, the document after been modified it has been

updated in OpenKM DMS and the check-in operation has been executed as shown in figure

3.49 and 3.50.

61

Figure 3.45: Bonita Upload Stage

Figure 3.46: OpenKM Taxonomy

62

Figure 3.47: Bonita Download Stage

Figure 3.48: OpenKM Check-out Status

63

Figure 3.49: Bonita Update Stage

Document has been ready to be updated.

Figure 3.50: OpenKM Version View

Document has been updated and version increased by 0.1

64

Chapter Four: CONCLUSION AND RECOMMENDATIONS

4.1. Conclusion
The research studied different methodologies to integrate enterprise systems. This is to

achieve successful and stable integration processes.

4.2. The Result
a. Three open sources were examined: OpenKM, Bonita and Talend ESB. OpenKM and

Bonita were found to be not free of charge, since they highly charge their costumers

for essential team training and for buying a startup package for the production phase.

Moreover, they only respond to queries of subscribed costumers previously paid for

their subscription.

b. Talend ESB was chosen among the others because of its advantage of providing ability

for writing codes during product customization.

c. Finally, the research ended by implementing and successfully testing ESB in a pioneer

company after setting up the integration environment and using an appropriate search

engine.

4.3. Recommendations
Based on the results the researcher recommends for the following studies and usages:

a. Use the service locator.

b. Use STS to increase security.

c. Upgrade to Talend platform or Talend enterprise to work with advanced

components that are not available in the standard edition like TAC component and

SAM server.

d. Use cluster container and load balancing in ESB runtime.

65

REFERENCES

A., G.-J. F. J. &. M.-C. M., 2010. Evaluating Open Source Enterprise Service Bus, s.l.: s.n.

ALSÈNE, E., 1994. Computerized integration and the organization of work in enterprises. International

Labour Review, pp. 657-677.

Amjad Umara, A. Z., 2009. Reengineering for service oriented architectures: A strategic decision model

for integration versus migration. Journal of Systems and Software, 82(3), pp. 448-462.

Anon., n.d. [Online].

Asankha C. Perera, R. L., 2013. ESB Performance. [Online]

Available at: http://esbperformance.org/display/comparison/ESB+Performance

[Accessed January 2015].

BonitaSoft, 2014. development. [Online]

Available at: http://documentation.bonitasoft.com/product-bos-sp/development

[Accessed January 2016].

Boucher, K., 2012. Selecting a Workflow Management System for Your Company. [Online]

Available at: http://blog.lansa.com/application-modernization/workflow/selecting-workflow-

management-system-company

[Accessed March 2015].

Camel, A., 2013. Architecture. [Online]

Available at: http://camel.apache.org/architecture.html

[Accessed March 2016].

Camel, A., 2015. Apahe camel. [Online]

Available at: http://camel.apache.org/documentation.html

[Accessed 2015].

Chappell, D., 2004. Enterprise Service Bus. 1st ed. s.l.:s.n.

Chongwen Wang, Y. H., 2010. DICOM Communication Mechanism and Engineering Project, s.l.: s.n.

Chunmiao, X., 2012. The Study of Metallurgical Automation Based on Integrated Model of the Enterprise

Bus , s.l.: s.n.

CXF, A., 2016. CXF Overview. [Online]

Available at: https://cxf.apache.org/

[Accessed 2016].

Dai, P., 2011. Design and Implementation of ESB Based on SOA in Power System, s.l.: s.n.

66

Freivald, J., 2010. EAI – Enterprise Application Integration.

Gartner, 2013. Magic Quadrant for On-Premises Application, Integration Suites, s.l.: s.n.

Gregor Hohpe, W., 2003. Hub and Spoke [or] Zen and the Art of Message Broker Maintenance. [Online]

Available at: http://www.enterpriseintegrationpatterns.com/ramblings/03_hubandspoke.html

[Accessed June 2015].

High, R., 2006. SOA. SOA Foundation Architecture Whitepaper.

IBM, 2009. The ESB Architectural Pattern, s.l.: s.n.

Mason, R., 2014. enterprise-application-integration. [Online]

Available at: http://www.mulesoft.com/resources/esb/enterprise-application-integration-eai-and-esb

[Accessed January 2016].

MSDN, 2004. Chapter 1: Service Oriented Architecture (SOA). [Online]

Available at: https://msdn.microsoft.com/en-us/library/bb833022.aspx

[Accessed November 2015].

Mulik, S., 2009. Using Enterprise Service Bus (ESB) for connecting Corporate Functions and Shared

Services with Business Divisions in a large Enterprise, s.l.: s.n.

Papazoglou, M. T. U. T. T. P., Dustdar, S. & Leymann, F., 2007. Service-Oriented Computing: State of the

Art and Research Challenges, s.l.: s.n.

Ravi Khadka, A. S. S. J. J. H., 2013. Migrating a Large Scale Legacy Application to SOA: Challenges and

Lessons Learned, s.l.: s.n.

Rouse, M., 2012. enterprise-service-bus. [Online]

Available at: http://searchsoa.techtarget.com/definition/enterprise-service-bus

[Accessed 2015].

Sachin Chandra, R. J., 2009. A Practical Approach to Enterprise Integration, s.l.: Defense AT&L.

SOA, 2014. enterprise_service_bus. [Online]

Available at: http://www.soa.com/solutions/enterprise_service_bus

[Accessed January 2016].

SoapUI, 2015. what-is-soapui. [Online]

Available at: http://www.soapui.org/about-soapui/what-is-soapui-.html

[Accessed 2015].

Talend, 2012. ESB Model. [Online]

Available at: www.talend.com/esb

[Accessed 2015].

Talend, 2014. Talend ESB Getting Started Guide 5.6.1. 2nd ed. s.l.:Talend Inc..

Talend, 2014. Talend ESB Infrastructure Services , s.l.: s.n.

Talend, 2015. Talend ESB Service. 1nd ed. s.l.:Talend Inc.

67

Talend, 2015. TalendOpenStudioComponentsReferenceGuide56EN. [Online]

Available at:

https://help.talend.com/display/TalendOpenStudioComponentsReferenceGuide56EN/Home

[Accessed january 2016].

Thompson, J. G., 2010. Predicts 2011: Application Integration, s.l.: s.n.

U. Raza, B. W. F. H., 2012. AN ENTERPRISE SERVICE BUS (ESB) AND GOOGLE GADGETS BASED MICRO-

INJECTION MOULDING PROCESS MONITORING SYSTEM , s.l.: s.n.

W3, 2004. Web Services Glossary. W3C.. [Online]

Available at: http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice

[Accessed 2015].

Wähner, K., 2013. ESB Integration. [Online]

Available at: http://www.infoq.com/articles/ESB-Integration

[Accessed 2016].

Wikipedia, 2013. Bonita_BPM. [Online]

Available at: https://en.wikipedia.org/wiki/Bonita_BPM

[Accessed January 2016].

Wikipedia, 2013. Message_oriented_middleware. [Online]

Available at: http://en.wikipedia.org/wiki/Message_oriented_middleware

[Accessed 2015].

Wikipedia, 2014. Apache Camel. [Online]

Available at: http://en.wikipedia.org/wiki/Apache_Camel

[Accessed 2015].

wikipedia, 2015. OpenKM. [Online]

Available at: https://en.wikipedia.org/wiki/OpenKM

[Accessed 2016].

Woolf, H. &., 2012. Enterprise Integration Patterns. s.l.:s.n.

yenlo.nl, 2010. what-are-routing-rules-in-an-enterprise-service-bus-environment. [Online]

Available at: http://www.yenlo.nl/nl/what-are-routing-rules-in-an-enterprise-service-bus-environment/

[Accessed 2015].

68

APPINDEX A: Bonita Code

Upload document code

Download document code

Set the destination folder

def byte[] filecontent =
apiAccessor.getProcessAPI().getDocumentContent(docu11.getContentStorageId());
//filecontent.encodeBase64();

byte[] decodedBytes = filecontent.encodeBase64().toString().decodeBase64();
return filecontent.encodeBase64().toString();

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import org.bonitasoft.engine.api.APIAccessor;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.xml.sax.InputSource;

// Clean response xml document
responseDocumentBody.normalizeDocument();
// Get result node
NodeList resultList = responseDocumentBody.getElementsByTagName("return");
Element resultElement = (Element) resultList.item(0);
String msg = "None";
//byte[] bFile = resultElement.getTextContent().bytes;
byte[] decodedBytes = resultElement.getTextContent().decodeBase64();
try {

//convert array of bytes into file
FileOutputStream fileOuputStream =
 new
FileOutputStream("K:/TOS_ESB/BonitaTest/OpenKM/"+docu11.getContentFileName());
fileOuputStream.write(decodedBytes);
fileOuputStream.close();
msg = "DownLoad Done, file will be in the "+
"K:/TOS_ESB/BonitaTest/OpenKM/"+docu11.getContentFileName();
}catch(Exception e){
msg = e.getMessage();
// e.printStackTrace();
}
return msg;

69

return "/okm:root/BonitaTest/"+docu11.getContentFileName();

70

APPINDEX B: ESB Code

tJavaRow code inside check-out job

tJavaRow code inside upload document

//Code generated according to input schema and output schema

globalMap.put("file_token", input_row.token);

globalMap.put("file_docId", input_row.docId);

String s = new String(input_row.content);

globalMap.put("file_token", input_row.token);

globalMap.put("file_docPath", input_row.docPath);

globalMap.put("file_content",s);

