بسم الله الرحمن الرحيم

﴿ فَتَعَ الْمَى اللَّهُ الْحَالِمُ الْحُولُ الْحُولُ الْحُولُ اللَّهُ الْحَالَ اللَّهُ الْحُولُ الْحُولُ الْحُ قَبْلِ أَن يُقْضَدَى ﴿ إِلَيْكَ وَحُيْهُ وَ قُلْ رَّ بِ زِرْدُنِي عِلْماً ﴾ سورة طه الآية 114

DEDICATION

This thesis is dedicate to my husband, Mohammed Abbo, for all of his love and support; to my mother for her great encouragement and love; to my son and daughters, and to my brother and sister for the understanding and encouragement.

ACKNOWLEDGEMENTS

First of all thanks to Allah, without his blessing, help and guidance, this work could not have be done.

I would like to express my deepest thanks, respect and gratitude to my major supervisor, Dr. Elfatih Ahmed Hassan, for all his help guidance, support, and encouragement. I have learned so much from him. I would like, also to thank Dr. Malik Abdulrahman and Dr. Yasir Hamouda for their technical support, my thanks also extended to Taif University for allowing to conduct part of the experiments in their laborotaries and I am really indebted to my husband for his advices and financial support

Abstract

Commercial samples of gum Acacia (GA) from Acacia Senegal Var sengal , Acacia seyal var seyal , Acacia tortilis var. radina, and Acacia Mellefera samples were used as emulsifiers using D-limonine oil model emulsions. Emulsion stability performance was evaluated by turbidity measurements, particle size distribution and visual observation are several days at room temperature and 60c Emulsion destabilization occurred, in the first day, with particle migration (creaming and sedimentation), particle size increase (coalescence) and particle aggregation (flocculation), and the destabilization rate increased as storage time increased. Creaming of all gums stabilized emulsions was observed in day 1 at room temperature. After subtraction from day 0, sedimentation rates showed that Acacia Senegal var. Senegal and Acacia Mellefera were more stable than other stabilized gum emulsions

The question intended to be answered in this study is to demonstrate weather the emulsifying property of acacia gums under investigation, is due solely to the protein content of the gum or to the whole molecular component present in the gum. In this study, different gum concentrations (1%, 2%, 3%, 4% and 5%) and different concentration of gum protein (0.05%, 0.1%, 0.15%, and 0.2%) were used to prepare D-lemonine oil flavor emulsions, by homogenizing method,

with Acacia senengal, var. sengal Acacia seyal var seyall, Acacia Tortilis var radiana, and Acacia Mellefera. Observed emulsion stabilities were graphically represented from turbidity measurements, and droplet size distribution of the emulsion systems were also investigated by laser diffraction method

The results indicated that using different types of gums resulted in significant differences in emulsion stability (ES), It has been found that differences in ES may be ascribed to difference in protein content, at 5% gum concentration and 0.2% gum protein concentration, *Acacia senegal* var *sengal* was found to be the best emulsifier for D-lemonine and showed the most stable emulsion than other gums.

V

المستخلص

استخدمت في هذا البحث عينات تجارية من صمغ الأكاشيا (الأكاشيا سنغال، صنف السنغال الأكاشيا سيال صنف السيال ، الأكاشيا تورتيليز صنف الراديانا ، والأكاشيا مليفرا) كعوامل استحلاب لمستحلب الزيت الطيار ذو النكهة (D-lemonine) كانموذج. تمت دراسة درجة ثبات المستحلب بواسطة قياسات العكورة، حجم القطيرة والملاحظة بالنظر وذلك خلال فترة تخزين امتدت لعدة ايام. بدأ اضمحلال الثبات منذ اليوم الأول في صورة ترسبات (coalescence) اذدياد حجم القطيرة (coalescence) وتجمع الجسيمات مع بعضها البعض (flocculation) مع ملاحظة تناسب زيادة معدل فقدان الثبات مع ازدياد فترة التخزين. أظهرت مقارنة معدل الترسب بين اليوم الأول والأيام التالية اعطاء اصماغ الأكاشيا سنغال والأكاشيا مافرا أعلى معدل ثبات مقارنة مع الأصماغ الأحرى.

اهتم هذا البحث بدراسة اثر مكونات لصمغ العربي علي فاعلية الصمغ كعامل استحلاب في تحضير مستحلب الصمغ العربي (اصناف مختلفة) مع الزيت الطيار ذو النكهة(-D). تم تحضير مستحلب الزيت مع محاليل اصماغ الأكاشيا سنغال صنف السنغال، الأكاشيا سيال صنف السيال، الأكاشيا تورتيليز صنف الراديانا، والأكاشيا مليفرا ودراستها الأكاشيا سيال صنف السيال، الأكاشيا تورتيليز صنف الراديانا، والأكاشيا مليفرا ودراستها بطريقة التجانس. لمعرفة أثر المكون الكلي واثر محتوي البروتين للصمغ استخدمت تراكيز مختلفة (50.05%, 4% and 5%) للصمغ وتراكيز مختلفة لمحتوي البروتين , 0.05% مختلفة (0.05%, 3%, 4% and 0.2%) التاء تحضير المستحلبات، وقد تمت حسابات درجة ثبات المستحلبات تجاه عامل الزمن من قياسات العكورة، كما تم ايضا مقارنة درجة الثبات من دراسة تباين وتوزيع حجم قطيرات المستحلبات باستخدام مطيافية حيود أشعة الليزر.

vi

أوضحت نتائج الدراسة أن هنالك تفاوت ملحوظ في درجة ثبات المستحلب باختلاف نوع الصمغ المستخدم، كما دلت النتائج على أن التفاوت في درجة الثبات يمكن ارجاعه الي التفاوت في محتوي البروتين.

اوضحت النتائج ان صمغ الأكاشيا سنغال صنف السنغال هو افضل عامل استحلاب يعطي درجة ثبات عالية لمستحلب الزيت الطيار (D-lemonine) عند تركيز المكون الكلي(5%) وتركيز محتوي البروتين(0.2%) تحت ظروف التجارب التي اجريت على المستحلبات.

Table of contents

No.	Contents	Page no
	الاية	I
	Dedication	II
	Acknowledgements	III
	Abstract (English)	IV
	Abstract (Arabic)	VI
	Table of Contents	VII
	List of Tables	IX
	List of figures	X
	Chapter One	
1	Introduction.	2
1. 1.	Natural gums or Hydrocolloids	2
1.2.	Types of gums	2
1.3.	Gum Arabic(GA)	3
1.4.	Physicochemical properteis of gum arabic	3
1.4.1.	Physical properties	4
1.4.1.1	Solubility and viscosity	4
1.4.1.2	Emulsifying properties	4
1.4.1.3.	Molecular association	5
1.4.2.	Chemical properties	5
1.5.	Application of Gum Arabic	7
1.5.1.	Confectionery	8

1.5.2.	Beverages	8
1.5.3.	Flavor encapsulation	10
1.6.	Emulsion and Emulsification	10
1.6.2.	Classification of Emulsion	10
1.6.3.	Emulsion Stability	12
1.7.	Functionalities of Gums	14
1.7.1.	Functions of Proteins	14
1.7.2.	Function of polysaccharides	16
1.7.3.	polysaccharides as thickeners of emulsions	17
1.8.	Emulsification and Emulsifying properties of Gum Arabic	17
	viii	
1.9.	Factors Affecting Emulsifying Power of Gum Arabic	18
1.9.1.	Molecular basis of emulsifying power of gum Arabic	18
1.9.2.	Effect of Chemical Additives on Emulsifying Power of Gum	19
	Arabic	
1.9.3.	Effect of D-Lemonine on Emulsifying Power of Gum Arabic	20
1.10.	Droplet size and Emulsion Stability Methods of	21
	Determination	
1.11.	Objectives of the research	23
	Literature Review	
	Literature Review	25
	Chapter Two	
2.1	Materials and Methods	20
2.1.	Material, equipment and instrumentation	30
2.1.1.	Gum solutions preparation	30
2.1.2.	Emulsions preparation	31
2.2.	Measurements of emulsion stability	33
2.2.1.	Stability measurements as % of separation	33
2.2.2.	Stability Index Calculations	34
2.2.3.	Turbidity measurements	35
2.2.4.	Emulsion droplet size / Average Droplet Size	36
2.2.5.	Emulsion long-term stability test / Accelerated temperature	37
	stress test	

2.3.	Statistical methods	37	
Chapter Three			
	Results and Discussion		
3.1	Stability measurements as % of separation	39	
3.2.	Stability Index	39	
4.3.	Emulsion Stability	41	
4.3.1.	Effect of Gum Concentration	41	
4.3.2.	Effect of Protein Concentration	47	
4.3.2.1.	Stability Indices	47	
4.4.	Mean droplet diameter	52	
ix			
4.5.	Emulsion long-term stability test / Accelerated temperature	53	
	stress test		
4.5.	Conclusion	58	
Chapter Five			
	References	60	

List of Tables

	Tables	Page
Table(1):	chemical composition of the main types of Gum Arabic	7
Table(2):	international specification of Gum Arabic	19
Table(3):	Properties of the emulsions produced with different gum	39
	concentrations and D- lemonine oil.	
Table(4):	Stability Indices of different Acacia gums at different gum	40
	concentrations	
Table(5):	Emulsion Stability of Acacia senegal- different	42
	concentration	
Table(6):	Emulsion Stability of Acacia seyal- different concentration	45
Table (7)	Emulsion Stability of Acacia tortelis- different	45
	concentration	
Table(8)	Emulsion Stability of Acacia mellefera- different	46
	concentration	
Table (9)	Stability Indices of different <i>Acacia</i> gums at different	47
	protein concentrations	
Table(10)	Emulsion Stability of Acacia senegal- different	49
	concentration	
Table(11)	Emulsion Stability of Acacia Seyal- different protein	50
	concentration	

Table(12)	Emulsion Stability of Acacia tortelis- different protein	51
	concentration	

xi

List of Figures

	Figures	Page
Figure (1)	Stability Indices of different Acacia gums at different	40
	concentrations	
Figure (2)	Emulsion Stability of Acacia senegal- different	42
	concentration	
Figure (3)	Emulsion Stability of Acacia seyal- different concentration	44
Figure (4)	Emulsion Stability of Acacia tortilis- different concentration	45
Figure(5)	Emulsion Stability of Acacia mellefera- different	46
	concentration	
Figure (6)	Stability Indices of different Acacia gums at different protein	48
	concentrations	
Figure(7)	Emulsion Stability of Acacia senegal- different protein	49
	concentration	
Figure(8)	Emulsion Stability of Acacia seyal- different protein	50
	concentration	
Figure(9)	Emulsion Stability of Acacia tortelis- different protein	51
	concentration	
Figure(10)	droplet size distribution of D-lemonine oil emulsions with	53
	different Acacia gums at zero time	

Figure(11)	droplet size distribution of D-lemonine oil emulsions with	54
	different <i>Acacia</i> gums after storage for 7 days at 60 °C.	
Figure(12)	droplet size distribution of D-lemonine oil emulsions with	55
	Acacia senegal after storage for 7 days at 60 °C.	
Figure(13)	droplet size distribution of D-lemonine oil emulsions with	56
	Acacia mellifera after storage for 7 days at 60 °C.	
Figure(14)	droplet size distribution of D-lemonine oil emulsions with	57
	Acacia Tortilis after storage for 7 days and 3 days at 60 °C.	