Dedications

To my mother, father, wife, children, brothers, sisters and friends.

Acknowledgments

Great thanks to my supervisor.prof. Dr. Shawgy Hussein Abd Alla, Department of Mathematics Sudan University of Science and Technology, for guidance, valuable advices and patience throughout this work .Special thanks are extended to Sudan University of Science and Technology for giving me this chance to attain Ph.D degree. Finally I would like to thank everyone who helped me .

Abstract

We give a cohomology of the complement of a free divisor and the computation of the logarithmic cohomology of the complement of a plane curve and for plane curves. The pattern-equivariant and comparing different versions of Tiling cohomology with integer coefficients are shown. The projective spectrum and cyclic cohomology are also shown. The W_n -action on the consective commutators, on the lower central series, an upper bound for the lower central series quotients of a free and graded associative algebra are considered .We also consider the lower central series of a free associative algebra over the integers and finite fields. We study the projective spectrum in Banach algebras and the spectrum of operator –valued entire functions .

الخلاصة

أعطينا الهومولوجيا المصاحبة لمتمم القاسم الحر ولحوسبت الكوهومولوجيا المصاحبة اللو غرثمية لمتمم منحنى المستوى ولاجل منحنيات المستوى .أوضحنا النسق متساوى التغير ومقارنة الاصدارات المختلفة للهومولوجيا المصاحبة تلنق مع المعاملات الصحيحة . أيضاً أوضحنا طيف الاصدارات المختلفة للهومولوجيا المصاحبة تلنق مع المعاملات الصحيحة . أيضاً وضحنا طيف الاسقاط والهومولوجيا المصاحبة الدوارة . اعتبرنا الفعل- W_n على المبدلات المتابعة وعلى المتسلسلة المركزية الدنيا والحد الأعلى ولاجل قواسم المتسلسلة المركزية الدنيا والحد الأعلى ولاجل قواسم المتسلسلة المركزية الدنيا للجبر المشارك الحر والمدرج . ايضاً اعتبرنا المتسلسلة المركزية الدنيا والحد الأعلى ولاجل قواسم المتسلسلة المركزية الدنيا للجبر المشارك الحر والمدرج . والمدرج . والمدرج . والمدرج . والما منتسلسلة المركزية الانتهية . درسنا طيف الاسقاط في جبريات باناخ وطيف مؤثر – الدوال الكاملة القيمة .

Intoroduction

The class of "strongly quasihomogeneous" free divisors, introduced here, includes free hyperplane arrangements and the discriminants of stable mappings in Mather's nice dimensions (and in particular the discriminants of Coxeter groups). We consider the lower central filtration of the free associative algebra A_n with n generators as a Lie algebra we consider the associated graded Lie algebra. It is shown that this Lie algebra has a huge center which belongs to the cyclic words, and on the quotient Lie algebra by the center there acts the Lie algebra W_n of polynomial vector fields on \mathbb{C}^n .

We study the structure of $B_i(A_n)$ for a free algebra A_n we construt a basis for $B_2(A_n)$ and determine the structure of $B_3(A_2)$ and $B_4(A_2)$ published by Elsevier Inc. feigin and Shoikhet conjectured that successive quotients $B_m(A_n)$ of the lower central series filtration of a free associative algebra A_n have polynomial growth. We give a proof of this conjecture, using the structure of a representation of W_n , the Lie algebra of polynomial vector fields on \mathbb{C}^n , on $B_m(A_n)$ which was defined.

We give an example of a free divisor in $D \in \mathbb{C}^3$ which is not locally weighted homogeneous, but for which this (second) assertion continues to hold. We will give algorithms of computing bases of logarithmic cohomology groups for square-free polynomials in two variables.

We relate Kellendonk and Putnam's pattern-equivariant (PE) cohomology to the inverse-limit structure of a tiling space. This gives an version of PE cohomology with integer coefficients, or with values in any Abelian group. We establish direct isomorphisms between different versions of tiling cohomology. The first version is the direct limit of the cohomologies of the approximants in the Anderson-Putnam-Gähler system, the second is the recently introduced PV-cohomology of Savinien and Bellissard and the third is pattern equivariant cohomology.

We describe $B_2(A)$ for A a quotient of the free algebra on two or three generators by the two-sided ideal generated by a generic homogeneous element. We show that it is isomorphic to a certain quotient of K⁻ahler differentials on the non-smooth variety associated to the lianization of A. we describe the torsion in the reduced quotient $\overline{B_1}$ and B_2 geometricly in terms of the De Rham cohomology of \mathbb{Z}^n As a corollary we obtain a complete dscription of $\overline{B_1}(A_n(\mathbb{Z}))$ and $\overline{B_1}(A_n(\mathbb{F}_p))$, as well as of $B_2(A_n(\mathbb{Z}\left[\frac{1}{2}\right]))$ and $B_2(A_n(\mathbb{F}_p))$, P > 2.we also give theoretical and experimental results for B_i with i > 2. Formulating a number of conjectures and questions on their basis. Finally, we discuss the supercase, when some of the generators are odd and some are even, and provide some theoretical results and experimental data in this case.

When A is commutative, P(A) is a union of hyperplanes. When B is reflexive or is a C^* -algebra, the projective resolvent set $P^c(A)$: = $\mathbb{C}^{n+1} \setminus P(A)$ is shown to be a disjoint union of domains of holomorphy. Later part studies Maurer-Cartan type B-valued $1 - \text{form } A^{-1}(z)dA(z)$ on $P^c(A)$. As a consequence, we show that if B is a C^* -algebra with a trace ϕ , then $\phi(A^{-1}(z)dA(z))$ is a nontrivial element in the de Rham cohomology space $H^1_d(P^c(A), \mathbb{C})$. We study the topology of the resolvent via consideration of the B-valued Maurer-Crtan type $1 - form f(z)^{-1}df(z)$. As an example, we explicitly compute the spectrum of a linear function associated with the tuple of standard unitary generators in a free group factor von Neumann algebra. We show that in non- commutative cases, the cyclic cohomology Of B does a similar job. Infact, a Chen–Weil type map κ from the cyclic cohomology of B to the de Rham cohomology $H^*_d(P^c(A), \mathbb{C})$ is established. As an example, we show a closed high-order form of the classical Jacobi's formula.

Subject	Page
Dedication	Ι
Acknowledgements	II
Abstract	III
Abstract(Arabic)	IV
Introduction	V
The contents	VII
Chapter 1: Cohomology and W_n -action	
Section(1.1): Complement of A free Divisor	1
Section(1.2): Consecutive Commutators of Free Associative Algebra	12
Chapter2: lower Central Series and Upper Bound	
Section(2.1): Associative Algebra	25
Section(2.2):Lower Central Series Quotients of A free Associative	44
Algebra	
Chapter3: Logarithmic Cohomology and Computation	
Section(3.1): The Complement of a Plane Curve	50
Section(3.2) : Logarithmic cohomology for plane curves	59
Chapter4:Pattern-Equivariant Cohomology and Comparing	
Different Versions	
Section(4.1): Cohomology with Integer Coefficients	70
Section(4.2): Tiling Cohomology	76
Chapter5: Lower Central Series	
Section(5.1) : Quotients of a Graded Associative Algebra	95
Section(5.2): Free Associative Algebra over the Integers and Finite	107
Fields	
Chapter6: Projective Spectrum	
Section(6.1): Banach Algebras and Projective Spectrum	131
Section (6.2): Operator-Valued Entire Functions	143
Section (6.3) : Cyclic Cohomology	150
List of Symbols	173
References	174

The Contents