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(2) Chapter  

The Nature of Calibration  

2.1Introduction 
    Statistical calibration analysis provide a way to predict a quantity from 
the observation of another one by using a dose-response type relationship. 
The problem occurs in biological sciences when the quantity to be 
calibratied is hard or expensive to measure or is not observable. 
      It is not important in any topic of calibration to distinguish between 
absolute and comparative calibration .These two activities are both called 
calibration, they are conceptually different and lead to different issues in 
statistical modeling. 
      In absolute calibration a quick or non –standard  measurement is 
either known or made with negligible error. With comparative calibration 
one instrument or measurement technique is calibrated against another 
with neither one being inherently a standard so that there is no standard 
measurement ܺ.we discuss here absolute calibration. 
2.2Mathematical Formulation of the Univariate Calibration problem 
       Let  the true values associate with the standard and test method  be 
designated by ξ and η respectively .We assume  ߟ = (ߦ)݂ and (ߦ)݂ =
଴ߚ +  ଵ are the intercept and slope parameterߚ ଴ andߚ ଵξ , whereߚ
respectively. 
       In the first stage of the calibration process, the calibration experiment 
, ݊ pairs of observations ( ௜ܺ , ௜ܻ) are obtained where ௜ܺ  and ௜ܻ  are 
observed values of ߦ௜and ߟ௜ respectivel 

௜ܻ = ௜ߟ + ݅                                           ௜ߝ = 1,2, … ,݊ 
                 ௜ܺ = ௜ߦ + ݅                                         ௜ ߜ = 1,2, … ,݊           (1) 

                                         
Where ݅ߝ and ݅ߜ are experimental errors. In absolute calibration 
problem ݅ߜ = 0 for all ݅. Produces the following model  

௜ܻ = ௜ߟ + ௜ߝ = ݂( ௜ܺ) + ݅        ௜ߝ = 1,2, … ,݊       (2)        
       In the case of the linear calibration problem this becomes: 

௜ܻ = ଴ߚ  + ଵ ௜ܺߚ + ݅                     ௜ߝ = 1,2, … , ݊     (3) 

   The next assumption which is model is that they  ݏ’݅ߝ are independent 
normal random variables with mean 0 and variance ߪଵଶ. 

       Having established  the calibration curve /line we proceed to the 
second stage of the calibration process. A sample  is presented with a 
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specific unknown value ߟ and one or more measurements are made 
using  the test method from which are obtained the 

ఫܻሗ = ௜ߟ + ఫ̀ߝ = ݂( ௜ܺ) + ݆        ఫ̀ߝ = 1,2, … ,݉ … (4) 

= ଴ߚ + ߦ ଵߚ + ݆                     ఫ̀ߝ = 1,2, … ,݉ . . (5) 

   In the linear calibration problem,where   ߝଵ̀, , ଶ̀ߝ … ,  ௠̀  are independentߝ
normal random variables with mean 0 and variance ߪଶଶ. Whrer ߪଵଶ =
ଶଶߪ =  .ଶߪ

      Given the data from first and second stages. Inferences are now made 
about the unknown ξ that corresponds to η for the sample being 
measured. For the linear model ξ is given by: 

ߦ =
ߟ) − (଴ߚ

ଵߚ
… (6) 

2.3The Classical and Inverse Approaches to Calibration  
2.3.1The Classical Estimator  
    Eisenhart (1939) set the stage for classical investigations of absolute 
calibration problems. His analysis and solution of the inverse estimation  
problem has come to be called classical. Eisenhart obtained his estimate  
of  ߦ by considering the regression of ܻon ܺ. 

ܻ)ܧ ܺ = ⁄(ݔ = ଴ߚ +  ݔଵߚ
    The estimated  regression line of ܻon ܺ is given by  

෠ܻ = መ଴ߚ +  ݔመଵߚ
=  ഥܻ =

ௌೣ೤
ௌೣೣ

(ܺ − (ݔ̅    … (7) 
Where  
ܵ௫௬ = ෍(ݔ௜

௜

− )(ݔ̅ ௜ܻ − തܻ) 

ܵ௫௫ = ෍(ݔ௜
௜

−  ଶ(ݔ̅

  Eisenhart  then inverted equation (2.6) to give an estimator of ߦ, the 
unknown ܺ, which has since become known as the classical estimator 
.Let  it be denoted by ߦ௖.Then 

௖ߦ = ݔ̅ +
ܵ௫௫
ܵ௫௬

 ( തܻሗ − തܻ) 

 Where തܻሗ  is the mean of the ݉ observations at the prediction stage.If one 
makes the assumption  of normal errors in models (2.2)and(2.3) ,then ߦ௖ 
is the maximum likelihood estimator of  ߦ. Eisenhart also produced and 
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interval estimate for ߦ based on the ݐ_distribuation with (݊ −
 .݉݋݀݁݁ݎ݂ ݂݋ ݏ݁݁ݎ݃݁݀(2
      Feiller (1954) produced interval estimates for ߦ  identical to those 
of Eisenhart using a fiducial  argument. Fieller showed that the 
calibration problem could be reduced  to considering the ratio of the 
means of two normally distributed random variables. 
    The classical approach to interval estimation has caused consternation 
over the years because if the slope parameter ߚଵ is not significantly 
different from zero the interval is either the whole real line or even two 
disjoint semi –infinite lines. As a result of this problem,Berkson (1969) 
and Shulka (1972) obtained asymptotic expressions for the bias and mean  
square error(ܯ. መଵหߚ௖ conditional on the event หߦ of (ܧ.ܵ > 0.  
2.3.2. Inverse Predictions 

is used to make a prediction of Xon  YAt times, a regression model of    
. This is known as Ywhich gave rise to a new observationXthe value of 

an inverse  prediction .We illustrate inverse predictions by two examples: 

a  1 .Abrade association analyst has regressed the selling price of    
for the 15 member firms of the association .The )(Xon its cost)(Yproduct  

another firm not belonging to the trade association for )(newhYselling price 
.for this firm )(newhXis known ,and it is desired to estimated the cost 

)(Y2. A regression analysis of the decrease in cholesterol level         
has been conducted, based on  )(Xagainst dosage of a new drug 

observation for 50 patients. A physician is treating a new patient for 
.It is desired to )(newhYwhom the cholesterol level should decrease by 

.)(newhYpriate dosage level decreaseestimate the appro 

      The inverse prediction problem is also known as a calibration 
problem since it is applicable when expensive , and time-consuming  

observations.nbased  on  )(Xmeasurements  

      The resulting  regression model is then used to estimate for a new 
 .)(newhYapproximate measurement  

     In inverse prediction model (3) is assumed as before:     

௜ܻ = ଴ߚ  + ଵ ௜ܺߚ + ݅                     ௜ߝ = 1,2, … , ݊      
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The estimated regression function based on n observations is obtained as 
usual:  

iŶ =  ܾ0 + ܾ1 ܺ݅   (8) 

becomes available, and it is desired to estimate  )(newhYA new observations 

which gave rise to this new observation .A natural point )(newhX  the level

: )(newhY,given X
or estimator is obtained by solving (2.7) f 

0b                       ˆ
1

1

0)(
 )( 




b
bY

X newh
newh 

  

.)(newhXdenotes the point estimator of the new level  )(
ˆ

newhXWhere  

for  )(newhXis, indeed the maximum likelihood estimator of)(
ˆ

newhX 
regression model(3). 

are: )(newhXmits for confidence li 1It can be shown that approximate  

(9)                )X̂2)s(-n ;2- t(1ˆ
h(new))( newhX 
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2.4Using Matlab program for linear regression calibration 

2.4.1Introduction 
     The name MATLAB stands for MATrix LABorato ry. MATLAB was 
written originally to provide easy access to matrix software developed by 
the LINPACK (linear system package)and EISPACK (Eigen system 
package) projects. 
     MATLAB [1] is a high-performance language for technical 
computing. It integrates computation, visualization, and programming 
environment. Furthermore, MATLAB is amodern programming language 
environment: it has sophisticated data structures, contains built-in editing 
and debugging tools, and supports object-oriented programming. These 
factors make MATLAB an excellent tool for teaching and research. 
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   MATLAB has many advantages compared to conventional computer 
languages (e.g. ,C, FORTRAN) for solving technical problems. 
MATLAB is an interactive system whose basic data element is an array 
that does not require dimensioning. The software package ehas been 
commercially available since 1984 and is now considered as a standard 
tool at most 
universities and industries worldwide. 
       It has powerful built-in routines that enable a very wide variety of 
computations. It also has easy to use graphics commands that make the 
visualization of results immediately available. Septic applications are 
collected in packages referred to as toolbox. There are toolboxes for 
signal processing, symbolic computation, control theory, simulation, 
optimization, and several other ¯fields of  applied science and statistic. 
2.4.2The linear regression 

Her regression problem belongs to the family of the most common 
practical questions. The goal is to get a model of the relationship between 
one variable Y and one or more variables X. The model gives the part of 
the variability of Y taken in account or explained by the variation of X. A 

function f represents the central part of the knowledge. The remaining 
part is dedicated to the residuals, which are similar to a noise. The model                

is eXfY   )(  

2.4.3 Regression Models:   

The simplest case is the linear regression Y = aX+b+e where the function 
f is affine. A case a little more complicated occurs when the function 
belongs to a family of parametrized functions as f(X) = cos (w X), the 
value of w being unknown. Statistics Toolbox™ software provides tools 
for the study of such models. When f is totally unknown, the problem of 
the nonlinear regression is said to be a nonparametric problem and can be 
solved either by using usual statistical window techniques or by wavelet 
based methods. 

2.4.4 Regression Applications:    

These regression questions occur in many domains. For example: 

 Metallurgy, where you can try to explain the tensile strength by the 
carbon content  

 Marketing, where the house price evolution is connected to an 
economical index  

 Air-pollution studies, where you can explain the daily maximum of 
the ozone concentration by the daily maximum of the temperature  
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Two designs are distinguished: the fixed design and the stochastic design. 
The difference concerns the status of X.  

2.4.5 Fixed-Design Regression:    

    When the X values are chosen by the designer using a predefined 
scheme, as the days of the week, the age of the product, or the degree of 
humidity, the design is a fixed design. Usually in this case, the resulting 
X values are equally spaced. When X represents time, the regression 
problem can be viewed as a de-noising problem. 

2.4.6 Stochastic Design Regression:   

    When the X values result from a measurement process or are randomly 
chosen, the design is stochastic. The values are often not regularly 
spaced. This framework is more general since it includes the analysis of 
the relationship between a variable Y and a general variable X, as well as 
the analysis of the evolution of Y as a function of time X when X is 
randomized. 

2.4.7Monte Carlo Simulation: 
    Monte Carlo simulation is a computerized mathematical technique that 
allows people to account for risk in quantitative analysis and decision 
making. The technique is used by professionals in such widely disparate 
fields as finance, project management, energy, manufacturing, 
engineering, research and development, insurance, oil & gas, 
transportation, and the environment. 

     Monte Carlo simulation furnishes the decision-maker with a range of 
possible outcomes and the probabilities they will occur for any choice of 
action.. It shows the extreme possibilities—the outcomes of going for 
broke and for the most conservative decision—along with all possible 
consequences for middle-of-the-road decisions. 

      The technique was first used by scientists working on the atom bomb; 
it was named for Monte Carlo, the Monaco resort town renowned for its 
casinos. Since its introduction in World War II, Monte Carlo simulation 
has been used to model a variety of physical and conceptual systems. 

2.4.8 How Monte Carlo simulation works 
      Monte Carlo simulation performs risk analysis by building models of 
possible results by substituting a range of values—a probability 
distribution—for any factor that has inherent uncertainty. It then 
calculates results over and over, each time using a different set of random 
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values from the probability functions. Depending upon the number of 
uncertainties and the ranges specified for them, a Monte Carlo simulation 
could involve thousands or tens of thousands of recalculations before it is 
complete. Monte Carlo simulation produces distributions of possible 
outcome values. 

     By using probability distributions, variables can have different 
probabilities of different outcomes occurring.  Probability distributions 
are a much more realistic way of describing uncertainty in variables of a 
risk analysis.  Common probability distributions include: 

     Normal – Or “bell curve.”  The user simply defines the mean or 
expected value and a standard deviation to describe the variation about 
the mean.  Values in the middle near the mean are most likely to occur.  It 
is symmetric and describes many natural phenomena such as people’s 
heights.  Examples of variables described by normal distributions include 
inflation rates and energy prices. 

     Lognormal – Values are positively skewed, not symmetric like a 
normal distribution.  It is used to represent values that don’t go below 
zero but have unlimited positive potential.  Examples of variables 
described by lognormal distributions include real estate property values, 
stock prices, and oil reserves.  

      Uniform – All values have an equal chance of occurring, and the user 
simply defines the minimum and maximum.  Examples of variables that 
could be uniformly distributed include manufacturing costs or future sales 
revenues for a new product. 

    Triangular – The user defines the minimum, most likely, and maximum 
values.  Values around the most likely are more likely to 
occur.  Variables that could be described by a triangular distribution 
include past sales history per unit of time and inventory levels. 

    PERT- The user defines the minimum, most likely, and maximum 
values, just like the triangular distribution.  Values around the most likely 
are more likely to occur.  However values between the most likely and 
extremes are more likely to occur than the triangular; that is, the extremes 
are not as emphasized.  An example of the use of a PERT distribution is 
to describe the duration of a task in a project management model. 

    Discrete – The user defines specific values that may occur and the 
likelihood of each.  An example might be the results of a lawsuit: 20% 
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chance of positive verdict, 30% change of negative verdict, 40% chance 
of settlement, and 10% chance of mistrial. 

    During a Monte Carlo simulation, values are sampled at random from 
the input probability distributions.  Each set of samples is called an 
iteration, and the resulting outcome from that sample is recorded.  Monte 
Carlo simulation does this hundreds or thousands of times, and the result 
is a probability distribution of possible outcomes.  In this way, Monte 
Carlo simulation provides a much more comprehensive view of what may 
happen.  It tells you not only what could happen, but how likely it is to 
happen. 

       Monte Carlo simulation provides a number of advantages over 
deterministic, or “single-point estimate” analysis: 

 Probabilistic Results. Results show not only what could happen, 
but how likely each outcome is. 

 Graphical Results. Because of the data a Monte Carlo simulation 
generates, it’s easy to create graphs of different outcomes and their 
chances of occurrence.  This is important for communicating 
findings to other stakeholders. 

 Sensitivity Analysis. With just a few cases, deterministic analysis 
makes it difficult to see which variables impact the outcome the 
most.  In Monte Carlo simulation, it’s easy to see which inputs had 
the biggest effect on bottom-line results. 

 Scenario Analysis: In deterministic models, it’s very difficult to 
model different combinations of values for different inputs to see 
the effects of truly different scenarios.  Using Monte Carlo 
simulation, analysts can see exactly which inputs had which values 
together when certain outcomes occurred.  This is invaluable for 
pursuing further analysis. 

 Correlation of Inputs. In Monte Carlo simulation, it’s possible to 
model interdependent relationships between input variables.  It’s 
important for accuracy to represent how, in reality, when some 
factors goes up, others go up or down accordingly.  

An enhancement to Monte Carlo simulation is the use of Latin Hypercube 
sampling, which samples more accurately from the entire range of 
distribution functions.  

 

 


