

SUDAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

COLLEGE OF GRADUATE S TUDIES

Searching Encrypted Data by Using

Symmetric Searchable Encryption

البحث في البياناث المشفرة بإستخدام الخوارزمياث المتناظرة

 القابلت للبحث

A Thesis Submitted in Partial Fulfillment of the Requirements of Master Degree in Computer Science

Submitted by:

Salma Eisa

Supervised by:

Dr. Faisal Mohammed Abdalla

February 2016

 I

DEDICATION

To my family

To my teachers

To my husband

To my best friends

 II

I. Acknowledgment

I would first like to express my sincere thanks to my supervisor, Dr. Faisa

Mohammed Abdulla for all his support throughout the course of the project.

I would also like to thank my parents and my husband, who have always

been prepared to go out of their way to give their utmost support during my

study.

Finally, I would like to thank my friends, in particular Afaf Yousif, for her

friendship, help and support during my time knowing her.

 III

II. Abstract

Cloud storage has become increasingly prevalent in recent years. It provides

a convenient platform for users to store data that can be accessed from

anywhere at anytime without the cost of maintaining a storage infrastructure.

However, cloud storage is inherently insecure, hindering general acceptance

of the paradigm shift. To make use of storage services provided by a cloud,

users would need to place their trust, at least implicitly, in the provider.

There have been a number of attempts to alleviate the need for this trust

through cryptographic methods. An immediate approach would be to encrypt

each file before uploading it to the cloud. This approach, calls for a new

searching mechanism over encrypted data stored in the cloud.

This dissertation considers a solution to this problem using Symmetric

Searchable Encryption (SSE) Scheme. The scheme allows users to offload

search queries to the cloud. The cloud is then responsible for returning the

encrypted files that match the search queries (also encrypted). Most previous

work was focused on keyword search in the Honest-but-Curious (HBC)

cloud model, while some more recent work has considered searching on

phrases. Recently, a new cloud model was introduced that supersedes the

HBC model. This new model, called Semi-Honest but Curious (SHBC), is

less restrictive over the actions a cloud can take. In this dissertation, we

present a system that are secure under this new SHBC model.

 IV

III. اٌّسخخٍص

لأٔٙا حٍٛفش . اوثش أخشاسا فً اٌفخشٖ الاخٍشٖ (data cloud)أصبحج اٌحٛسبت اٌسحابٍٗ

ِٕصت ِلائّت ٌٍّسخخذٍِٓ ٌخخضٌٓ اٌبٍأاث ِع اِىأٍت اٌٛصٛي إٌٍٙا ِٓ أي ِىاْ ٚفً أي ٚلج دْٚ

ِٚع رٌه، فإْ اٌحٛسبٗ اٌسحابٍت بطبٍعخٙا غٍش إِٓٗ، ِّا . حىٍفت اٌحفاظ عٍى اٌبٍٕت اٌخحخٍت ٌٍخخضٌٓ

ٌعٛق اٌمبٛي اٌعاَ ٌٙزا اٌخطٛسص ٌلاسخفادة ِٓ خذِاث اٌخخضٌٓ اٌخً حٛفش٘ا ، فإْ اٌّسخخذٍِٓ بحاجت

ٕ٘ان عذة ِحاٚلاث ٌخخفٍف اٌحاجت ٌٙزٖ اٌثمت . إٌى ٚضع ثمخُٙ، ضٍّٕا عٍى الألً، فً ِضٚد اٌخذِٗ

ببساطٗ ٌّىٓ حشفٍش اٌٍّفاث لبً اسساٌٙا ٌٍخادَ ٌٚىٓ ٘زٖ اٌطشٌمٗ . ِٓ خلاي ٚسائً اٌخشفٍش

 . اسخذعج ٚجٛد آٌٍٗ ٌٍبحث فً ٘زٖ اٌبٍأاث اٌّشفشة

. ٘زٖ الأطشٚحت حطبٍك ٌّمخشح حً ٌٙزٖ اٌّشىٍت باسخخذاَ ٍ٘ىٍٗ ٌٍبحث فً اٌبٍأاث اٌّشفشٖ

٘زا ٔظاَ ٌسّح ٌٍّسخخذٍِٓ لاجشاء اسخعلاِاث اٌبحث عٍى اٌخادَ دْٚ اٌحٛجٗ ٌفه اٌخشفٍش ٚلا

 .اعطاء اٌخادَ اي ِعٍِٛاث

 V

Table of Contents

Chapter 1. Introduction... 1

1.1 Introduction .. 1

1.2 Problem statement .. 3

1.3 Objectives ... 3

1.4 Scope .. 4

1.5 Research methodology ... 4

1.6 Thesis organization ... 4

Chapter 2. Background and Literature Review .. 6

2.1 Introduction .. 6

2.2 Cryptographic Definitions .. 6

2.2.1 Block Cipher vs. Stream Cipher ... 6

2.2.2 AES .. 6

2.2.2.1 AES Structure ... 7

2.2.3 Triple DES .. 7

2.2.4 Mode of operations ... 8

2.2.5 Block Cipher Modes of operations ... 8

2.2.6 Pseudo-Random Generator (PRG) ... 8

2.2.7 Pseudo-Random Functions (PRF) .. 9

2.2.8 Pseudo-Random Permutation (PRP) .. 9

2.2.9 Blum Blum Shub Pseudo-Random Generator .. 9

2.2.10 Blum Micali Pseudo-Random Generator ... 9

 VI

2.2.11 Identity-Based Encryption .. 10

2.2.12 Chosen-plaintext attacks ... 10

2.2.13 Semantic Security Against chosen Keyword Attacks .. 10

2.2.14 One way function ... 11

2.2.15 Trapdoor function ... 11

2.3 Searching techniques .. 11

2.3.1 Exact-match vs. sub-match ... 11

2.3.2 Linear Search vs. Pre-processed Index ... 11

2.4 Searchable Encryption .. 12

2.4.1 Symmetric Key Based Search .. 14

2.4.2 Public key Based Search .. 15

2.4.3 Adaptive vs. Non adaptive ... 15

2.4.4 Searchable Encryption Design Goals ... 16

2.4.5 Searchable Encryption Security Requirement .. 16

2.4.6 Secure Index ... 17

2.4.6.1 Notation and Preliminaries ... 17

2.4.6.2 Index-based SSE scheme .. 19

2.5 Related work ... 20

Chapter 3. Methodology ... 24

3.1 Introduction .. 24

3.2 Proposed method .. 24

3.2.1 The model ... 24

3.2.2 System Modules ... 31

3.3 Technical Information .. 34

3.3.1 Program Reliability .. 34

 VII

3.3.2 Reusability .. 34

3.3.3 Design Decisions .. 34

3.3.4 PHP 5 .. 35

3.3.5 MySQL ... 36

3.3.6 Apache .. 37

Chapter 4. Results & Analysis ... 38

4.1 Introduction .. 38

4.2 The results .. 38

4.2.1 Client side procedures ... 38

4.2.2 Server side procedures .. 39

4.2.3 Search procedures ... 40

4.3 Evaluation Decisions .. 42

4.3.1 Scheme evaluation .. 42

4.3.2 Search ... 42

4.3.3 Space ... 43

4.3.4 Security ... 43

Chapter 5. Conclusion and Recommendation .. 45

5.1 Conclusion .. 45

5.2 Recommendation .. 45

Reference .. 46

Appendix A .. 48

 VIII

List of Figures

FIGURE 2.1: SINGLE USER SETTING .. 13

FIGURE 2.2: MULTIUSER SETTING .. 13

FIGURE 2.3: VS. NON ADAPTIVE SEARCH [16] .. 15

FIGURE 3.1: THE CLIENT SIDE SETTING .. 24

FIGURE 3.2: THE SERVER SIDE SETTING ... 25

FIGURE 3.3: SEARCH SETTING ... 25

FIGURE 3.4: BUILDING ARRAY A ... 27

FIGURE 3.5: BUILDING LOOKUP TABLE T ... 28

FIGURE 3.6: CLIENT SIDE FLOW CHART .. 29

FIGURE 3.7 : SERVER SIDE FLOWCHART ... 30

FIGURE 3.8 : A NON-ADAPTIVELY SECURE SSE SCHEME [16] .. 31

FIGURE 3.9 : THE CLIENT DATABASE SCHEME ... 33

FIGURE 4.1 : SYSTEM SCREENS ... 38

FIGURE 4.2 : CLIENT SIDE PROCEDURES ... 39

FIGURE 4.3 : SERVER SIDE SCREEN .. 39

FIGURE 4.4 : SERVER SIDE PROCEDURES .. 40

FIGURE 4.5 : SEARCH CLIENT SIDE PROCEDURES .. 40

FIGURE 4.6 : SEARCH SERVER SIDE PROCEDURES ... 41

FIGURE 4.7 : SEARCH SCREEN .. 41

 IX

List of Tables

TABLE 4.1 : .. 43

 1

Chapter 1. Introduction

1.1 Introduction

As a result of information explosion now days, it becomes a

nightmare for most businesses to handle the expenses of managing these

information, trimming their IT expenditure become a constant need.

Outsourcing coming up as a good solution.

Outsourcing comes up as a solution of managing information systems

and increase capacity or adds capabilities on the fly without investing in

new infrastructure, training new personnel, or licensing new software. One

of the most efficient forms of outsourcing is data cloud. Cloud computing is

a general term for anything that involves delivering hosted services over

the Internet. These services are broadly divided into three categories:

Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and

Software-as-a-Service (SaaS). The name cloud computing was inspired by

the cloud symbol that's often used to represent the Internet in flowcharts

and diagrams [1,2].

With the development of the idea of outsourcing, more and more

private and confidential information is being centralized into servers that

not owned by the real owner of the information. Therefore, people are

increasingly concerned about the security of their data. In a trusted server,

 2

access control mechanism can be an effective way to protect your

information. But in real word, not all servers can be trusted. So as

alternative cryptographic techniques needed to protect this information.

Cryptography is the study of designing techniques for ensuring the

secrecy and/or authenticity of information; it is probably the most

important aspect to prevent against the increased risk of theft of

proprietary information. Although these threats may require a variety of

countermeasures, encryption is a primary method of protecting valuable

electronic Information [3].

Encryption is an automated tool to convert the data into a form that

con not be understood by unauthorized people. There are two forms of

encryption in common use: the first one is the conventional, or symmetric,

encryption where sender and recipient share a common key to encrypt and

decrypt the data. The second one is the public-key, or asymmetric,

encryption which uses two keys one for the sender to encrypt and the other

for the recipient to decrypt. Encryption can be by dividing the data set to

equal blocks or encrypt it each stream by its self. In order to apply the

encryption we need what we call a mode of operation. A mode of operation

is a technique for enhancing the effect of a cryptographic algorithm or

adapting the algorithm for an application, such as applying a block cipher to

a sequence of data blocks or a data stream [3].

 3

To make use of the stored information, we must be able to perform a

search easily, and with the sensitive situation of the encrypted data on the

cloud the search should be performed without revealing private

information. This concept called Privacy-Preserving Computation (PPC); it’s

a branch of cryptography that deals with the question of whether or not a

function with input and output reveals much.

1.2 Problem statement

Performing a search over encrypted data using any mode of

operation is not easy because the fact that mode of operations can use an

encrypted block to encrypt the previous or next one. So decryption is

needed before searching.

In case of outsourced encrypted data, searching need either the

server - which we do not trust - to know the encryption key and that is

obviously not recommended or other wise to download all the encrypted

data set, decrypt it and search it client-side, this is not practical too due to

the possibility of large amount of data in addition to consuming the

bandwidth and other resources.

1.3 Objectives

The goal is to implement a technique to retrieve a search answers on

encrypted data while not revealing any information beyond the presence

 4

(or absence) of the keywords (of the query) in each document and without

having to decrypt the data.

The implementation aimed to achieve searches in one

communication round , with high efficiency in respect to time and space.

Furthermore it should not leak any information beyond the access pattern.

1.4 Scope

Implementing a technique that allow the authorized users to search

for keywords over a data that is encrypted using the symmetric encryption

without revealing the private key to the server neither perform it in the

client side. The server in this search does not take into account the

trapdoors and search outcomes of previous searches.

1.5 Research methodology

 The symmetric encryption will be used to encrypt the

documents and upload it to a server. A technique that allows the server (if

authorized) or the authorized users to search for keywords over the

encrypted documents will be implemented. Then the efficiency and the

performance of this tool will be evaluated .

1.6 Thesis organization

 5

This thesis has five chapters, after the introductory chapter there is

chapter two: Background and Literature review. This chapter provides a

background about the cryptographic techniques used in the proposed

implementation and a background about the search techniques. It also

provides a review about the formal proposed searchable encryption

schemes. Then there is chapter three: Methodology and Implementation.

The chapter illustrates the structure of the system and the design

decisions made in order to achieve the goals. Chapter four: Results and

Snapshots. The results of the implementation will be shown and the

success of the project will be evaluated in terms of time, space

overheads and security.

Last chapter is Conclusion and Recommendation gives a summary

and discuss the future work.The Appendix contains the code for the project.

 6

Chapter 2. Background and Literature Review

2.1 Introduction

This chapter presents the key concepts of the searchable encryption

problem, as well as background information about the proposed technique.

Moreover a brief summary about the previous techniques of searchable

encryption in historically order and their advantages and disadvantages.

2.2 Cryptographic Definitions

2.2.1 Block Cipher vs. Stream Cipher

Block Cipher is a symmetric encryption algorithm in which the

plaintext is processed by dividing it into equal blocks (typically 64 or 128)

then converts each block to ciphertext. Stream Cipher is also symmetric

encryption algorithm in which ciphertext output is produced bit-by-bit or

byte-by-byte from a stream of plaintext input [3].

2.2.2 AES

Advanced Encryption Standard is National Institute of Standards and

Technology specification for encrypting sensitive (unclassified) American

federal information. A cipher called Rijndael chosen to be the AES. It’s an

iterative symmetric block cipher algorithm developed by Belgian

cryptographers Joan Daemen of Proton World International and Vincent

Rijmen of Kathlieke Universiteit Leuven. Rijndael was designed based on

 7

the following three criteria: Resistance against all known attacks; Speed and

code compactness on a wide range of platforms and Design simplicity.

2.2.2.1 AES Structure

In AES the plain text is divided into blocks that consist of 4 columns

each is column is 4 bytes and the key is expanded to array of 32-bit words

w[i] using the s-box and Rcon. Each 4 words of the key used as a key in each

round. Initially the first round key is added (XOR) to the block then the

iterative rounds started. The rounds are 9, 11 or 13 depends on the key

length. Each round has four different stages, one of permutation and three

of substitution such that,

Substitute bytes: Uses an S-box to perform a byte-by-byte substitution

of the block.

ShiftRows: permute the row bytes between the columns.

MixColumns: arithmetic substitution.

AddRoundKey: Bitwise XOR with the round key.

The last step is another round only without the mixing column stage [3].

2.2.3 Triple DES

After the original Data Encryption Standard (DES) defeated with

relative ease. Triple was designed to replace it. At one time, it was the

recommended standard and the most widely used symmetric algorithm in

the industry[3].

 8

Triple DES uses three individual keys with 56 bits each. The total key

length adds up to 168 bits, but experts would argue that 112-bits in key

strength is more like it. The encryption algorithm is:

2.2.4 Mode of operations

A mode of operation is a technique for enhancing the effect of a

cryptographic algorithm or adapting the algorithm for an application, such

as applying a block cipher to a sequence of data blocks or a data stream [3].

2.2.5 Block Cipher Modes of operations

There are five modes of operation for use with symmetric block

ciphers electronic codebook mode, cipher block chaining mode, cipher

feedback mode, output feedback mode and counter mode [3].

2.2.6 Pseudo-Random Generator (PRG)

Pseudorandom generator is a deterministic algorithm that makes use

of mathematical formulas to generate a sequence of numbers that is not

statistically random but can pass a number of randomness tests. Those

numbers are called pseudorandom numbers.

Any secure block cipher can be used as a secure pseudo-random

number generator by running it in counter mode and encrypting serial of

numbers using a random key [3].

 9

2.2.7 Pseudo-Random Functions (PRF)

Informally, a pseudorandom function is a function which is

indistinguishable from a random function. A collection of pseudorandom

functions is called a pseudorandom functions family [3].

2.2.8 Pseudo-Random Permutation (PRP)

A Pseudorandom permutation is a function which is indistinguishable

from a random permutation. A collection of pseudorandom permutations is

called a pseudorandom permutations family [3].

2.2.9 Blum Blum Shub Pseudo-Random Generator

Blum, Blum and Shub is a cryptographically secure pseudorandom

number generator proposed by Lenore Blum, Manuel Blum and Michael

Shub that is derived from Michael O. Rabin's oblivious transfer mapping.

Blum Blum Shub takes the form:

It gets its security from the difficulty of computing discrete logarithms[14].

2.2.10 Blum Micali Pseudo-Random Generator

Blum and Micali is a provably secure pseudo-random number

generator and was created by Manuel Blum [14], who was also involved in

the implementation of the Blum Blum Shub generator, and Silvio Micali.

Blum and Micali takes the form:

 10

It also gets its security from the difficulty of computing discrete

logarithms[15].

2.2.11 Identity-Based Encryption

Identity-based encryption (IBE) is a public-key cryptographic scheme

where the public key of the user is unique information about his identity

such as the email. A key authority uses this ID information to generate a

public key and its corresponding private key, the sender can use this public

key with the ID information (e.g. email) to encrypt the message. The

receiver can contact the key authority to get the private key. Compared

with typical public-key cryptography, this greatly reduces the complexity of

the encryption process since no need to a digital certification and no

advance preparation needed.

2.2.12 Chosen-plaintext attacks

A chosen-plaintext attack (CPA) where the attacker is allowed to ask

for encryptions of multiple messages. The goal of the attacker is to gain

more information and reveal the secret key.

2.2.13 Semantic Security Against chosen Keyword

Attacks

A security definition first introduced by Goh [5] also known as

indistinguishability against chosen keyword attacks IND-CKA. It makes sure

that the adversary cannot deduce the document’s content from its index.

 11

2.2.14 One way function

A one way function is a function that is easy to compute but

computationally infeasible to inverse. Meaning it is easy to compute

y=f(x) but impossible to compute x=f-1(y).

2.2.15 Trapdoor function

A trapdoor function is a one way function that can be

computationally feasible to compute the inverse if secret information is

given.

2.3 Searching techniques

2.3.1 Exact-match vs. sub-match

In the Exact-match searching the user search in a document set for a

string, the documents that contain at least one exact instance of the string

is retrieved. While in the sub-match searching the documents retrieved are

the ones that contain also a sub-string of the searching string.

There are subclasses of the sub-match, such as left-most match

which matches the query against the left part of words. Another subclass is

the complete sub-string match where the query could be found at any

index within another word.

2.3.2 Linear Search vs. Pre-processed Index

In linear search each document in the document set is traversed

linearly from the beginning to the end in order to match against a given

 12

search query. This process can be very slow when used on large documents,

as well as computationally expensive.

Pre-processed Index Search can greatly reduce search time in large

documents. An index is created at the storage stage which contains each

unique word exist in the document. When a search is performed, it will only

retrieve the documents that their indexes contain the query. Obviously, this

method increases the disk size required to store each document, as they

will need to be stored side-by-side with their index. Also, initial processing

time is added by the index creation algorithm. This technique is more suited

to applications where the frequency of queries exceeds that of updates.

2.4 Searchable Encryption

Outsourcing data in encrypted form is recommended but we do not

want to scarify the functionality for the security. The client wants to be able

to easily search the encrypted data or allow others to search it without

having access to plaintext or downloading everything then decrypt.

Searchable Encryption enables the user to search encrypted keywords

without compromising the security of the original data.

 13

Figure 2.1: Single user setting

The typical participants of a secure search system in outsourced data

involve the server, the data owner, and the data user.

The data owner outsources the encrypted dataset, where the data

can be encrypted using any secure encryption technique. In a single user

setting the owner may need to search over this data (Figure 2.1). In a

multiuser setting (Fig. 2.2) the

Figure 2.2: Multiuser setting

 14

owner outsourced the encrypted dataset and another authorized user or

users want to search over it. The user who wants to search first generates a

trapdoor with the keyword of interest or requests such trapdoor by sending

a set of intended keywords to the data owner. Then the data user submits

the trapdoor to the server. The server will execute the search program with

the trapdoor as the input and the results will send back to the user.

The data owner outsources the encrypted dataset, where data can be

encrypted using any secure encryption technique. In a single user setting

the owner its self may need to search over this data (Figure 2.1). In a

multiuser setting (Figure 2.2) the owner outsourced the encrypted dataset

and another authorized user or users want to search over it. The user who

wants to search first generates a trapdoor with the keyword of interest or

requests such trapdoor by sending a set of intended keywords to the data

owner. Then the data user submits the trapdoor to the server. The server

will execute the search program with the trapdoor as the input and the

results will send back to the user.

2.4.1 Symmetric Key Based Search

The data owner encrypts his data using a symmetric encryption

before storing it in the server. Searchable Symmetric encryption (SSE)

provides the owner or a user with a private key the ability to search for

keywords over the encrypted data.

 15

2.4.2 Public key Based Search

Public key Based Search relies on public key encryption such that the

user who encrypts the data and stores it in the server is not the owner of

the decryption key but only the owner of the private key can perform a

search for a keyword. Consider the scenario where Bob encrypt a message

to Alice using Alice public key and send it to her, Alice want the server to

redirect the messages which including specific words without giving the

server her private key. Public key searchable encryption define the

mechanism that enables Alice to provide a key to the server that enables

the server to search for the specific word the message without learning

anything else about the message.

2.4.3 Adaptive vs. Non adaptive

Figure 2.3: vs. non adaptive search [16]

The non-adaptive search (Figure 2.3), only considers adversaries that

make their search queries without taking into account the trapdoors and

 16

search outcomes of previous searches while the adaptive search considers

adversaries that choose their queries as a function of previously obtained

trapdoors and search outcomes.

2.4.4 Searchable Encryption Design Goals

When constructing a searchable encryption scheme, we should

consider that the scheme should be practical, the communication overhead

should be as less as possible and the computation on both server and client

should also be minimized. Multi-user setting is always an advance.

2.4.5 Searchable Encryption Security Requirement

Many security requirements are defined for searching over encrypted

data. Since the server is not trusted, it should not be able to distinguish

between documents from coded query, determine document contents, see

search keyword or learn anything more than result. It certainly should not

be able generate coded query. Even simple information such as the number

of documents containing the keyword or the occurrence count of a

keyword in a document can be used by the attacker to reverse-engineer the

keyword in a trapdoor. Also the trapdoor although it generated using

cryptographic technique to protect the keyword, the server can use other

side channel attacks such as frequency analysis attack to identify the

searched keyword.

The trapdoor should be generated in a random manner so that the

attacker cannot know whether they contain the same set of keywords. This

can further compromise the keyword privacy in that it allows the server to

 17

accumulate frequencies of different search requests with respect to

different keyword(s).

2.4.6 Secure Index

The secure index is a data structure that points the documents which

contain the keyword in a search operation only if the user possess the

trapdoor of the keyword which can only be generated using the secret key.

Otherwise the index leaks no information about its content.

2.4.6.1 Notation and Preliminaries

Document collections: Let be the set of all documents,

�be a dictionary of words with be the set of

all possible documents with words in . We denote by the

identifier of document , where the identifier can be any string that

uniquely identifies a document such as a memory location. D(w) denoted

for the lexicographically ordered list consisting of the identifiers of all

documents in D that contain the word .

The distinct keywords: is the set of distinct keywords in the

document collection D.

Symmetric encryption: A symmetric encryption scheme is a set of three

polynomial-time algorithms such that takes a

security parameter and returns a secret key . takes a key

 18

and a message and returns a ciphertext ; takes a key and

a ciphertext and returns if was the key used to cipher .

Broadcast encryption: such that is a

probabilistic algorithm that takes as input a security parameter and

outputs a master key . Let be the set of all possible user identifiers

for , is a probabilistic algorithm that takes as input a master key

, a set of users and a message , and outputs a ciphertext .

 is a probabilistic algorithm that takes as input a master key and

a user identifier and outputs a user key . is a deterministic

algorithm that takes as input a user key and a ciphertext and

outputs either a message or the failure symbol . The broadcast

encryption scheme is secure if its ciphertexts leak no useful information

about the message to any user not in .

Searchable Symmetric Encryption: An index-based SSE scheme over a

dictionary �is a collection of five polynomial-time algorithms

 such that,

 19

[16]

2.4.6.2 Index-based SSE scheme

Given the encrypted document collection, an index-based SSE

scheme to search over consists of five polynomial-time algorithm [16]

such that,

K←Gen(1k): is a probabilistic key generation algorithm run by the user generate the secret

key K from the security parameter k.

(I,c)←Enc(K,D): is a probabilistic algorithm run by the user that takes the secret key K and

the document as input, and output ciphertext and secure index I.
t←Trpdr(K,w): is a deterministic algorithm run by the user to generate a trapdoor for a

given keyword. It takes as input a secret key K and a keyword w, and outputs a trapdoor t.

X←Search(I,t): is a deterministic algorithm run by the server to search for the documents in

that contain a keyword w. It takes as input an encrypted index I for a data collection D and

a trapdoor t and outputs a set X of document identifiers.

Di←Dec(K; ci): is a deterministic algorithm run by the client to recover a document. It takes

as input a secret key K and a ciphertext ci, and outputs a document Di.

 20

2.5 Related work

There has been several works to solve the problem of searching over

encrypted data whether it’s public key or private encryption. Ostrovsky and

Goldreich work [7,8] on oblivious RAMs any type of queries can be

performed with the strongest levels of security, namely the server only

learns the size of the document collection. But it’s less efficient in practice

due to a big overhead in terms of bandwidth.

In an effort to reduce the overhead in the oblivious RAMs, Song et al.

publish a paper titled Practical Techniques for Searches on Encrypted Data

[4]. They developed a set of algorithms that allow searches over encrypted

data and proof their model’s security. Their model has complexity of O (n)

for each document and relatively little space overhead.

Since Song et al.’s seminal work *4+, searchable encryption has drawn

a lot of attention. In 2004, Eu–Jin Goh et al. [5] and Chang and

Mitzenmacher [6] address that the previous model not only can cause over

head in large set of data, but also the underlying plaintext distributions is

vulnerable to statistical attacks. Goh et al. [5] introduce a secure search

scheme where queries can be executed over secure indexes rather than

encrypted data themselves. Their scheme requires linear search time but

can results in false positives. Later several papers published with the same

concept. Goh et al. [5] introduce a security definition for SSE called

in-distinguishability against chosen-keyword attacks (IND2-CKA).

 21

Chang and Mitzenmacher [6] proposed a construction with linear

search time too and without false positives, their solution also is

independent of the encryption method chosen for the remote files and

achieves forward privacy. They also introduce a security definition for SSE.

Regarding searchable encryption in public key scheme Boneh et al.

proposed Public Key Encryption with Keyword Search (PEKS) scheme [9] in .

Their scheme built based on a variant of the Computational Diffie-Hellman

problem. It requires a secure channel between the receiver and the server

so that the trapdoor not been send expose. Since constructing a secure

channel is costly this solution may be not efficient in some cases.

Baek et al. proposed a secure channel free public key encryption with

keyword search scheme [10] (SCF-PEKS). Their construction is based on a

mathematical concept called bilinear pairing .In the opinion of Rhee, Park,

Susilo and Lee Baek et al. scheme might be attacked by using a

keyword-guessing attack if the attacker captures the trapdoor Therefore,

Rhee et al.[11] enhances the model of Baek et al. to prevent such attacks

and defines the "trapdoor in distinguishability".

In tern of security definitions, Goh [5] introduced IND1-CKA definition

where a secure scheme generates indexes that appear to contain the same

number of words for equal size documents. This means that given two

encrypted documents of equal size and an index, Adversary cannot decide

which document is encoded in the index. The trapdoors to be secure, since

it is not required by all applications of secure indexes

 22

Chang and Mitzenmacher [6] introduced a better IND-CKA in the

sense that an adversary cannot even distinguish indexes from two unequal

size documents In addition, Chang and Mitzenmacher tried to protect the

trapdoors with their security definition. Unfortunately, their formalization

of the security notion can be satisfied by an insecure SSE scheme.

Later, Goh introduced the IND2-CKA security definition, Given access

to an index, the adversary (i.e., the server) is not able to learn any partial

information about the underlying documents that he cannot learn from

using a trapdoor that was given to him by the client, and this holds even

against adversaries that can convince the client to generate indexes and

trapdoors for documents and keywords chosen by the adversary (i.e.,

chosen-keyword attacks).

IND2-CKA does not explicitly require that trapdoors to be secure

since this is not a requirement for all applications of secure indexes. One of

which is searchable encryption. Important to note that different keyword

requests may lead to the same search outcome.

As mentioned before several schemes were introduced in this topic.

Oblivious RAMs can solve the problem with its entire requirement but with

high complexity and Song et al. decreased the complexity but the security

model was weaker. Goh et al. proposed a better security in their scheme by

introducing the IND2-CKA as a security definition but this definition does

not require that the trapdoor be secure. Even so if the trapdoor is secure,

that does not imply that the adversary cannot recover the word being

queried. Chang and Mitzenmacher also introduced a security definition for

 23

SSE that require a secure trapdoor but can be trivially satisfied by a scheme

that in secure. So there is still a need for a practical and secure scheme

without false positives or communication overhead.

 24

Chapter 3. Methodology

3.1 Introduction

 In this chapter, searches in one communication round were trying

to be achieved, with high efficiency in respect to time and space.

Furthermore the security for the indexes and the trapdoor need to be

adequate. The chapter will also discuss the technical information about the

system, including the system and software design decisions taken. As well

as the structure of the system, showing the various modules and database

organization.

3.2 Proposed method

An implementation of an adversarial models for SSE will be

introduced which referred to as non-adaptive (SSE-1), only considers

adversaries that make their search queries without taking into account the

trapdoors and search outcomes of previous searches.

3.2.1 The model

Figure 3.1: The client side setting

 25

Figure 3.2: The server side setting

The model starts with the user (Figure 3.1), the user should first

encrypt the documents, the system then construct an index for these

documents and build a dictionary and a secure index. In the server

(Adversary) (Figure 3.2) the encrypted document will be uploaded and so

the secure index. To search (Figure 3.3) the user should create a trapdoor

which will be used to find the list of the documents that contain the word.

Figure 3.3: Search setting

 26

A number of data structures will be used, including arrays, linked lists

and lookup tables. Given an array A, if A[i] = x, then . In

addition, a linked list L of n nodes that is stored in an array A is a sequence

of nodes , where , and where is an

arbitrary string and is the memory address of the next node

in the list. We denote by #L the number of nodes in the list L.

The construction of the mode consists of a client side and a server

side. The client side in which the client should first encrypt the data using

AES structure . The database for the encrypted documents will be created

and each document given an id . Then a table will be created as a

dictionary for these documents as well as a table that consists of word

column and other columns for the corresponding documents that

contained the word. This table helps to create the secure index which

constructed next. It consists of two data structures:

A: an array in which, for all , we store an encryption of the set .

T: a look-up table in which, for all , we store information that enables one

to locate and decrypt the appropriate element from A.

For each I created a linked list . The nodes in is the

identifiers of the documents that contain the word , . These

nodes stored in the array A and permuted randomly by Blum Blum Shub

Pseudo Random Generator denoted by . Each node contains - beside the

identifier -a pointer to the next node in in respect to and the key

 27

used to encrypt it. This node will be encrypted (all these keys are randomly

generated). Array then padded. The set of remaining entries is set to

random values of the same size as the existing nodes in . (Figure 3.4).

Figure 3.4: Building array A

 28

The lookup table T (Figure 3.5), has entries such that for each

there is an entry consist of <address,value>. The value field contains the

address of the first node of in and the key to encrypt this node.

.

Figure 3.5: Building lookup table T

 29

This field is encrypted using the output of a pseudorandom function

Blum Micali denoted by . The address field is an index for the lookup

table. All the entries are also permuted randomly using AES in counter

mode. Then T also padded.

As I mentioned above the scheme has a client side and a server side,

A and T generated by the client and then stored in the server along with the

encrypted documents (Figure 3.6).

Figure 3.6: Client side flow chart

 30

To search for (Figure 3.7), the system computes the decryption

key and the address for the corresponding entry in T and sends them to the

server. The server locate the entry in T and decrypt it, got the address and

the key for the first node. And since each node contains a pointer for the

next node and the key to decrypt it, the server will be able to locate and

decrypt all the nodes in and get all the identifiers.

Figure 3.7 : Server side flowchart

 31

3.2.2 System Modules

The modules below used to implement the algorithm (figure 3.8) of

the proposed non- adaptive SSE.

Figure 3.8 : A non-adaptively secure SSE scheme [16]

 32

3.2.2.1 Common Modules

xor_this: To encrypt and decrypt the lookup table

TripleDES: Encryption module that uses the triple DES algorithm to encrypt

and decrypt the nodes of the lists in array A.

3.2.2.2 Client side Modules

Keygen Module: A key generator that takes a security parameter as a seed

and use it to generate a secret keys which used to encrypt the documents.

The module uses openssl_random_pseudo_bytes to generate a

cryptographically secure string of pseudo-random bytes.

random_int: A PHP function to generate cryptographic random integers

that are suitable for use to encrypt the nodes of the linked list and the

entries of the lookup table.

Permutation Modules: To randomly shuffle the linked lists array, Blum

Blum Shub pseudo-random generator has been used. For the lookup table

permutation, Blum Micali pseudo-random generator has been used.

Lookup Table Encryption Module: AES in counter mode AES-ctr function

was used as a pseudo-random generator to xor the entries of the table with

the output of this function.

AES Module: AES encryption algorithm was chosen to encrypt the client’s document.

The Client Side Database:

 33

Figure 3.9 : The client database scheme

Three tables was created (figure 3.9): Documents table which

contains the documents and their indexes, Words table contains all the

distinct words in the documents and finally the Dictionary1 table, each

record of this table contains a word identifier and the identifiers of all the

documents that contain the word.

3.2.2.3 Server side Modules

Search: The search module is simply parsing the input to access a

specific record in the lookup table, then xor the output of a

pseudo-random function AES-ctr to decrypt the entry. The key extracted

will be used to decrypt the node of the linked list in array A.

The Server Side Database: Only one table for the documents and their

identifiers.

 34

3.3 Technical Information

3.3.1 Program Reliability

The user may be inexperienced and have little or no access to

technical support so, system reliability is important. In general, program

reliability can be achieved by avoiding the introduction of faults and bugs

and by including fault tolerant facilities in the system. Defensive

programming [12] involves incorporating checks for faults and fault

recovery code in the program.

Defensive programming is approach to improving software quality by

making the software behave in a predictable manner despite unexpected

input or user actions. In this project, the validation technique used to

prevent the user from uploading wrong files type and to ensure that all

required values are provided. JQuery libraries used to implement this

technique.

3.3.2 Reusability

A modular approach was adapted to the development of the PHP files

(the main engine of the system). Care was taken with naming conventions.

Individually reusable components were extracted and imported into

individual modules.

3.3.3 Design Decisions

 35

Main reason for choosing a web interface is that it is a known

interface. With the continued growth of the Internet, people are becoming

more accustomed to the look and feel of web pages.

3.3.4 PHP 5

PHP has several features that lead me to choose it for this project.

First of all it has support for object-oriented programming, it has also a fast

load time results in faster site loading speeds. The code in PHP runs much

faster than ASP because it runs in its own memory space while ASP uses an

overhead server and a COM based architecture.

In addition, PHP is an open source, with all of the advantages of the

open source there will be no embargo, so there is no problem of accessing

sources to improve the design or for further researches to design an

adaptive model.

Most tools associated with the PHP are not just open source software,

it’s also free. And for the hosting its not expensive. ASP programs need to

run on Windows servers with IIS installed. Hosting companies need to

purchase both of these components in order for ASP to work, this often

results in a more expensive cost for monthly hosting services. On the other

hand, a PHP would only require running on a Linux server, which is available

through a hosting provider at no additional cost.

 36

Another essential reason is that most of the popular cloud storage

providers such as Dropbox are using PHP so, it won’t be complicated to

integrate this system to those providers.

With reference to the database, PHP has a lightweight and consistent

interface for accessing databases (PDO extension). It is also flexible for

database connectivity. It can connect to several databases, the most

commonly used is the MySQL.

3.3.5 MySQL

Mysql is also open source, with a community version available for free

download. A little technical know-how is enough to get MySQL set up and

configured on commodity hardware at very low cost. Furthermore MySQL's

AB provides support and maintenance services such as code updates and

bug fixes.

MySql is flexible and scalable, so you can start with small database

and increase the size and the performance any time you need it. MySQL can

be configured to run tiny embedded applications using a footprint no larger

than one megabyte, or scale it up to handle many terabytes of data. One

way MySQL achieves this scalability is through a popular feature called

stored procedures, mini, pre-compiled routines that reside outside of the

application. These procedures are stored and run on the database server to

reduce the processing footprint on the client and make the most of

processing power, since the database server is usually faster. Stored

 37

procedures aren't unique to MySQL, but the recent addition of this feature

set makes the database that much more attractive.

3.3.6 Apache

Because of several reasons, Apache became the most used web

server over the internet . First, it’s is a freely available Web server that is

distributed under an "open source" license and from Version 2.0 it runs on

most platforms such as UNIX-based operating systems, UNIX/POSIX-derived

systems, on AmigaOS, and on Windows .

 Second Apache server has a high performance. It can handle a large

files (namely, greater than 2GB) on 32-bit platforms and can also serve high

concurrent requests with a high efficiency. The reason is that Apache

support proxy load balancing and Multi-Processing allow the server to serve

more concurrent requests.

 38

Chapter 4. Results & Analysis

4.1 Introduction

In this chapter, the results will be shown and the success of the

project will be evaluated. This can be measured using the performance of

the implementation, in terms of time, space overheads and security.

4.2 The results

4.2.1 Client side procedures

Figure 4.1 : System screens

Figure 4.13 explain the procedures in the client side which start by

creating the key then use this key to encrypt the documents. The system

then will create both the secure index and the trapdoor keys. Figure 4.1 is

 39

shows the system screen for the first procedure after the key generations.

It shows also the tabs of the other procedures.

Figure 4.2 : Client side procedures

4.2.2 Server side procedures

Figure 4.3 : Server side screen

 40

Figure 4.4 : Server side procedures

 Figure 4.3 is a screen from the server side shows the procedures

tabs and the search tab. Figure 4.4: illustrates the procedures in the server

side.

4.2.3 Search procedures

Figure 4.5 : Search client side procedures

 41

Figure 4.6 : Search Server side procedures

The search process starts at the client where the key word entered

with the trapdoor keys to generate the trapdoor (Figure 4.5). Then the

trapdoor should be sent to the server with the secure index name to

retrieve the search results. Figure 4.6 shows the system screen for the

search.

Figure 4.7 : Search screen

 42

4.3 Evaluation Decisions

 To make it simple to calculate, the system will be evaluated without

taking into account the size of the retrieved documents.

4.3.1 Scheme evaluation

In this section, the complexity will be detailed. The search

computation, number of round and the communication cost will be

discussed in comparison with the precious SSE schemes. Then, the space

needed in the server will be declared.

4.3.2 Search

While the construction in [5] performs searches in one round, it can

induce false positives, which is not the case for this construction.

Additionally, all the constructions in [5, 7] require the server to perform an

amount of work that is linear in the total number of documents in the

collection. This construction needs one round per query to access the

lookup table directly the retrieve the documents.

In table 4.1, the server computation row shows the costs per returned

document for a query. All previous work requires an amount of server

computation at least linear with the number of documents in the collection,

even if only one document matches a query. In contrast, in this

construction the server computation is constant per each document that

matches a query, and the overall computation per query is proportional to

the number of documents that match the query.

 43

In regard to the communication overhead we need only to

communicate with the server one time per query.

4.3.3 Space

The scheme in [7][8] needs linear logarithmic storage, while the other

considered schemes need linear storage,. No need for more than the

encrypted documents size space.

4.3.4 Security

The SSE scheme in this project does not leak anything beyond the

outcome and the pattern of a search. Unlike the notion of IND2-CKA [5],

this scheme does not give the adversary access to the encryption algorithm

of the documents or the trapdoor oracle. .It provides security for the

indexes by encryption and for the trapdoors by hiding the keyword and

sends instead a reference. The scheme leaks the access pattern but nothing

else.

Table 4.1 : Properties and performance (per query) of various SSE schemes. n denotes the number of

documents in the collection. Consider only the overhead and omit the size of the retrieved documents,

which is the same for all schemes. For server computation, we show the costs per returned

document.[16]

Properties
oblivious

RAM

oblivious

RAM

light

Song, Goh
Chang and M.

Mitzenmacher
SSE-1

server

computation

 44

server storage

number of

rounds 2 1 1 1 1

communication

adaptive Yes yes no no no no

` [1]

 45

Chapter 5. Conclusion and Recommendation

5.1 Conclusion

This project focus on the development of a secure non-adaptive

searchable symmetric encryption scheme that allow the client to store

encrypted data on an un-trusted server and still be able to securely perform

server-side searches within the documents without needing to download

and decrypt these documents . In Chapter 5, the system was shown to be

efficient and practical enough to be used within industry and that the

performance overhead is optimal. Issues with previous attempts were

pointed out and a new security requirement is met so, the system

guarantees security even when users perform more realistic searches.

5.2 Recommendation

There are two areas in which this project could be extended. First

implementing the adaptive searchable symmetric encryption in which the

current search depends on the previous search. The implementation should

be secure under the same security definitions as this one. Second

implementing a multi-user SSE, which extends the searching ability to

parties other than the owner.

 46

Reference
1. P. Mell and T. Grance, “Draft nist working definition of cloud computing,”

http://csrc.nist.gov/groups/SNS/cloud-computing/index.html, June 2009.

2. M. Armbrust, “Above the clouds: A berkeley view of cloud computing,”

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html, February 2009.

3. Stallings, William. “Cryptography and network security: principles and practices. 4th ed.”

Upper Saddle River, N.J.: Pearson/Prentice Hall, 2006.

4. D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on encrypted data. In

IEEE Symposium on Research in Security and Privacy, pages 44{55. IEEE Computer Society,

2000.

5. E-J. Goh. Secure indexes. Technical Report 2003/216, IACR ePrint Cryptography Archive,

2003.See http://eprint.iacr.org/2003/216.

6. Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote encrypted

data. In Applied Cryptography and Network Security (ACNS '05), volume 3531 of Lecture

Notes in Computer Science, pages 442{455. Springer, 2005.

7. O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. Journal

of the ACM, 43(3):431{473, 1996.

8. R. Ostrovsky. E_cient computation on oblivious RAMs. In ACM Symposium on Theory of

Computing (STOC '90), pages 514{523. ACM, 1990.

9. D. Boneh, G. D. Crescenzom, R. Ostrovsky, and G. Rersiano, \Public key encryption with

keyword search," in Advances in Cryptology – EUROCRYPT 2004, Lecture Notes in Computer

Science, vol. 3027, pp. 506{522, Interlaken, Switzerland, 2004. Springer Berlin/Heidelberg.

10. J. Baek, R. Safavi-Naini, and W. Susilo, \Public key encryption with keyword search revisited,"

in ICCSA 2008, vol. 5072 of Lecture Notes in Computer Science, pp. 1249{1259, Perugia,

Italy, 2008. Springer Berlin/Heidelberg.

http://eprint.iacr.org/2003/216

 47

11. H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee,\Improved searchable public key encryption

with designated tester," in ASIACCS '09 Proceedings of the 4th International Symposium on

Information, Computer, and Communications Security, pp. 376{ 379, Sydney, NSW,

Australia, 2009. ACM New York, NY, USA.

12. J. Black and P. Rogaway. Ciphers with arbitrary nite domains. In B. Preneel, editor, The

Cryptographers' Track at the RSA Conference (CT-RSA '02), volume 2271 of Lecture Notes in

Computer Science, pages 114{130. Springer-Verlag, 2002.

13. M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers. Format-preserving encryption. In

Proc.of Selected Areas in Cryptography '09, volume 5867 of Lecture Notes in Computer

Science, pages 295{312. Springer-Verlag, 2009. full version available as ePrint report

2009/251.

14. Cryptographically Secure Pseudorandom Number Generators. S.l.: General Books, 2010.

15. Oppliger, Rolf. Contemporary Cryptography. 2nd ed. Norwood: Artech House, 2011.

225-226.

16. Reza Curtmola, Garay, Kamara and M. Ostrovsky.(2006,October) Improved Definitions and

Efficient Constructions. paper presented at 13th ACM Cnference on Computer and

Communications Security(ccs’06).

 48

Appendix A
Functions

<?php

function Gen($secpar)

{

$bytes = openssl_random_pseudo_bytes($secpar, $cstrong);

 $seckey = bin2hex($bytes);

return ($seckey);

}

function keygen($length=10)

{

 $key = '';

 list($usec, $sec) = explode(' ', microtime());

 mt_srand((float) $sec + ((float) $usec * 100000));

 $inputs =

array_merge(range('z','a'),range(0,9),range('A','Z'));

 for($i=0; $i<$length; $i++)

 {

 $key .= $inputs{mt_rand(0,61)};

 } return $key;

}

function xor_this($string,$key) {

 $i = 0;

 $encrypted = '';

 foreach (str_split($string) as $char) {

 $encrypted .= chr(ord($char) ^ ord($key{$i++ %

strlen($key)}));

 49

 }

 return $encrypted;

}

function xor_Decrypt($string, $key)

{

$stringarray = str_split($string);

$keyarray = str_split($key);

 for($i=0; $i<strlen($string); $i++)

 {

 for($j=0; $j<strlen($key); $j++)

 {

 $stringarray[$i] = $keyarray[$j]^$stringarray[$i];

 }

 }

 return $stringarray;

}

function bbs($seed)

{

$p=67;

$q=47;

$m=$p*$q;

return $seed=(($seed*$seed)%$m);

}

function modExp($g, $x, $p){

 $r = 1;

 while($x > 0){

 if($x % 2 == 1)

 50

 $r = $r*$g % $p;

 $x = floor($x/2);

 $g = $g*$g % $p;

 }

 return $r;

 }

function bm($seed)

{

$p=349;

$g=13;

return $seed=(modExp($g,$seed,$p));

}

function lcg($seed,$m)

{

$a=7;

$c=11;

return $seed=((($a*$seed)+$c)%$m);

 }

?>

 51

Dictionary

<?php

include "aes.php";

include "functions.php";

include "connection.php";

?>

 <?php

 /*

 ###

 # Gen(1k) #

 ###

 */

 ?>

 <form method="POST" enctype="multipart/form-data"

action="<?php $_SERVER['PHP_SELF'] ?>">

 <p><input type="submit" value="Generate Dictionary"

name="submit"></p>

 </form>

 <?php

if(isset($_POST["submit"])) {

 $k1=rand(20, 30);

 $k2=keygen();

 $k3=rand(1, 30);

 $a_ind[0]=$k1;

/*

 ###

 # Global counter #

 52

 ###

 */

$ctr=1;

$a_ind[$ctr]=bbs($a_ind[$ctr-1]);

/*

 ###

 # Building the array A #

 ###

 */

$result = mysql_query("SELECT * FROM words");

 $w = mysql_num_rows($result);

 $blockSize = 256;

$a_max=47*67;

for($j=0;$j<$a_max;$j++)

{

 $a[$j]=0;

}

for($i=1;$i<=$w;$i++)

{

 //echo $i."**";

 $k[$i][0]=keygen();

 $lim=$i-1;

 53

 $result1 = mysql_query("SELECT * FROM words ORDER BY w_id ASC LIMIT

$lim,1");

 $row1 = mysql_fetch_array($result1);

 $widi=$row1["w_id"];

 $result2 = mysql_query("SELECT * FROM dictionary1 where

w_id=$widi");

 $dw = mysql_num_rows($result2);

 $l=1;

 while ($row2 = mysql_fetch_array($result2))

 {

 $d[$i][$l]=$row2["d_id"];

 $l++;

 // print_r($row2["d_id"]);

 }

 $addr[$i]= $a_ind[$ctr];

 for($j=1;$j<$dw;$j++)

 {

 $k[$i][$j]=keygen();

 $a_ind[$ctr+1]=bbs($a_ind[$ctr]);

 $n[$i][$j]=array($d[$i][$j],$k[$i][$j],$a_ind[$ctr+1]);

 //Encryption

 $node=json_encode($n[$i][$j]);

 $aes = new AES($node, $k[$i][$j-1], $blockSize);

 $enc = $aes->encrypt();

 $aes->setData($enc);

 $a[$a_ind[$ctr]]= $enc;

 $ctr++;

 }

 54

 $n[$i][$dw]=array($d[$i][$j],0,NULL);

 //print_r($n[$i][$j]);

 //Encryption

 $nodel=json_encode($n[$i][$dw]);

 $aes = new AES($nodel, $k[$i][$dw-1], $blockSize);

 $enc = $aes->encrypt();

 $aes->setData($enc);

 $a_ind[$ctr+1]=bbs($a_ind[$ctr]);

 $a[$a_ind[$ctr]]= json_encode($enc);

 $ctr++;

}

 /*

 ###

 # Building the lookup table #

 ###

 */

 while(pow(2,$k3)<=$w)

$k3=rand(1, 30);

 for($i=0;$i<=pow(2,5);$i++)

{

 $t[$i]=0;

}

 $t_ind[0]=$k3;

for($i=1;$i<=$w;$i++)

{

 55

 $plain=$addr[$i].",".$k[$i][0];

 $x=xor_this($plain,$k2);

$x=json_encode($x);

$t_ind[$i]=lcg($t_ind[$i-1],pow(2,5));

$t[$t_ind[$i]]= $x;

 $x=json_decode($x, true);

 $td[$t_ind[$i]]=xor_this($x,$k2);

}

//print_r($t);

//print_r($td);

//$asenc=implode('' , array_map('strval', $x));

//$td[$i]=xor_this($x,$k2);

//$x1=xor_decrypt($asenc,$k2);

 ////$asdec=implode('' , array_map('strval', $x1));

 //$td[$i]=$asdec;

//eval($t);

 /*

 ###

 # Secure Index file #

 ###

 */

$txt="";

$target_dir_ind = "sec_ind/";

 $target_file_ind = $target_dir_ind ."sec_ind".

$filename=mt_rand().".php";

 // echo $target_file_enc="enc_".$target_file_enc;

 56

 $myfile = fopen($target_file_ind, "w")or die("Unable to open

file!");

$txt = "<?php ";

$txt = $txt." \$a=Array('". $asenc=implode("','" ,

array_map('strval', $a))."') ; Echo '
'; ";

 //echo"^^^^^^^^";

//print_r(array_map('strval', $a));

 $txt = $txt." \$t=Array('". $asenc=implode("','" ,

array_map('strval', $t))."') ; ?>";

$txt = mb_convert_encoding($txt, 'UTF-8', 'auto');

file_put_contents("file.txt", "\xEF\xBB\xBF" . $txt);

fwrite($myfile, $txt);

fclose($myfile);

//foreach ($a as $v){ echo $v .",";}

 /*

 ###

 # Output #

 ###

 */

$ak=mt_rand();

 $target_file_enc = "keys/trapdoorkey".$ak.".txt";

 // $target_file_enc = $target_dir_enc .

basename($_FILES["fileToUpload"]["name"]);

 $myfile = fopen($target_file_enc, "w")or die("Unable to open

file!");

 57

 $txt = " Trapdoor key 1 is :".$k3."\n Trapdoor key 2 is :".$k2."

Trapdoor w is :".$w."\n" ;

fwrite($myfile, $txt);

fclose($myfile);

 //echo "Now, your Documents has been encrypted you will find them

at this LINK
";

 echo "The secure index has been created DOWNLOAD
";

echo "Key generated successfully. To download please CLICK HERE
";

?>

 </div>

 <?php

include "footer.php";

?>

 58

Search:

<?php

include "aes.php";

include "functions.php";

include "connection.php";

include "header.php";

?>

</header>

<!--=====================

 Content

======================-->

<section id="content"><div class="ic"></div>

 <div class="container">

 <div class="row">

 <div class="grid_12">

 <h3>Search</h3>

 <div class="extra_wrapper">

 <form id="form" method="POST" enctype="multipart/form-data"

action="<?php $_SERVER['PHP_SELF'] ?>">

<p>T 1: <input type="text" id="t1" name="t1"></p>

<p>T 2: <input type="text" id="t2" name="t2"></p>

<p>Index name: <input type="text" id="index" name="index"></p>

 <p><input type="submit" value="Search" name="submit"></p>

 </form>

 <?php

if(isset($_POST["submit"])) {

 $t1=$_POST["t1"];

 59

 $t2=$_POST["t2"];

 $index=$_POST["index"];

 //echo"sec_ind/$index";

 include "sec_ind/$index";

 $t[$t1]=json_decode($t[$t1], true);

//echo $jdt;

 $td=xor_this($t[$t1],$t2);

$add=explode(",",$td);

 if (is_numeric($add[0])&& array_key_exists($add[0],$a))

 {

 $inputText = $a[$add[0]];

 $inputKey = $add[1];

$blockSize = 256;

//echo "*";

$i=0;

do {

$aes = new AES($inputText, $inputKey, $blockSize);

//$enc = $aes->encrypt();

//$aes->setData($enc);

$dec=$aes->decrypt();

//$inputText=json_decode($inputText, true);

$n=json_decode($dec, true);

//$n=explode(",",$n);

//$n[2]=json_decode($n[2], true);

//echo "*".$n2=intval($n[2]);

$d[$i]=$n[0];

 60

$inputKey=$n[1];

if($n[2]!=NULL)

 $inputText=$a[$n[2]];

$i++;

}while ($n[2]!=NULL);

?>

 <h3>Search Result</h3>

 <?php

$num=1;

foreach($d as $doc)

{

 $result2 = mysql_query("SELECT * FROM docs where d_id=$doc");

 $dw = mysql_fetch_array($result2);

 echo $num."- <a href='encrypted/".$dw["d_name"]."'

target='_blank'>".$dw["d_name"]."";

 $num++;

}

 }else

 {

 echo"oops!! something went wrong!!";

 }

 }

 ?>

 61

National Ministry of Health

Sudan

House-man Training period

The Final Assessment

Report

 62

Guidelines to Evaluators:

1. This report is strictly confidential.
2. It should be filled immediately after the end of the shift.
3. It should be filled after review of the house officer logbook&

must be consistent with it.
4. The rating scale for each criteria& domains must be adhered

to.
5. House officers who were performing unsatisfactory in the

first half of the shift must be counselled about their
shortcomings and helped to overcome them. This must be
documented in writing.

6. The report should be put in an envelope labeled strictly
confidential and dispatched to the hospital administration.

7. In case of an adverse report, the candidate should be
informed by the evaluator.

 63

Final Assessment Report

Grade: House- Officer

Specialty: __

Name : __

Period: From: __________________ To: __________________

Domains

Unsatisfactory

Good

Very Good

Knowledge:

 Basic

 Clinical Integration

Clinical:

 History taking

 Physical examination

 Identifying problems and

priorities

 Discrete use of lab tests

 Suggestion Appropriate

management plans

 Data interpretation

 Good records keeping

Clinical& Technical Skills:

Photograph

 64

 Clinical skills

 Technical skills

(Procedures)

Professional attitudes:

 Work habits& Ethics

 Attendance& punctuality

 Inter-professional

relationship

 Patients& parents

relationship

 Academic contribution&

continuous professional

development.

 65

Overall Assessment

Recommendation:

Completed the shift satisfactorily Grade

Unsatisfactory

 State reasons:

 Was He/She counselled and advised about his unsatisfactory
performance midway during the shift:

YES NO

 in case of an adverse report was the candidate informed by
the evaluator

YES NO

 66

Recommendation:

A- To repeat the shift

B- To spend extra (remedial) time months

Name of Evaluator: ______________________________

Professional Status: ______________________________

Signature : __________________________________

Date : ___________________________________

Hospital Director: ___________________________________

 signature:

Date : ___________________________________

Stamp

