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Chapter 1 

Composition as an integral operator 

Let S be the unit sphere and B the unit ball in 𝐶n, and denote by 𝐿1(S)the usual Lebesgue 

space of integrable functions onS. We define four “composition operators” acting on𝐿1(S)and 

associated with a Borel function 𝜙 :S →B, by first taking one of four natural extensions of f∈

𝐿1(S) to a function on B, then composing with 𝜙and taking radial limits. 

Section (1.1):Norm Estimates for the Reproducing Kernels and Carleson Measures with 

Boundednesss 

Composition operators acting on a space X of functions holomorphic on the unit disk D in C, 

or more generally the unit ball B = Bn in 𝐶𝑛, have been the subject of a great deal of 

research. In this setting, a holomorphic self-map 𝜑of B induces the composition operator 𝐶𝜙, 

defined for f holomorphic on B by 𝐶𝜙f=f o 𝜑. The basic problem is to relate function theoretic 

properties of 𝜑to operator theoretic properties of 𝐶𝜑. On many of the classical Banach 

spaces of holomorphic functions(where function F:C→C is said to be analytic in an open set 

𝐴𝐶 if it is different 𝑠𝑡  each point of the set A .the  function f:C→C is said to be hoiomorphic if it 

has power series representation)[5] on D, including the Hardy spaces 𝐻𝑝(D)and Bergman 

spaces 𝐿𝑎
𝑝

(D)(let D be n open sub set the complex plan C and𝐿𝑎
2 (D)denote the collection of 

all analytic function F: D→C complex  modulus is square integrable with respect to area 

measure .the 𝐿𝑎
2 (D)somtime also denoted 𝐴2 (D)( is colled the Bergman space can also 

generalized to𝐿𝑎
𝑝

(D) where 0<P<∞)[6], every composition operator is bounded and their 

study involves other properties, such as when a composition operator is compact. In higher 

dimensions, when n ≥2, boundedness of a composition operator is not auto-matic, even on 

Hp(B)or 𝐿𝑎
𝑝

(B).In 1990, D. Sarasonintroduced the viewpoint of composition operators as 

integral operators acting on spaces of functions defined on the unit circle ∂D. For 𝜑a 

holomorphic self-map of D and f.∈L1(∂D), 𝐶𝜙fwas defined on 𝜕Dby taking the harmonic 
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extension of f to D, composing with𝜑, and then taking radial limits. As in the classical setting 

of composition operators acting on 𝑯𝒑(D), every such operator is bounded, and problems 

such as characterizing when the operator is compact were studied by Sarason. In the 

present chapter, we generalize Sarason’s approach in two significant ways to define 

composition operators acting on L1(S) =L1(S, d𝜎), where S =𝜕Bis the unit sphere in 𝐶𝑛and 

d𝜎denotes the normalized surface area measure on S. First, we do not assume that the 

symbol 𝜙of the operator is holomorphic on B; we only assume that 𝝓 :S→𝑩is Borel 

measurable. Section, we compose 𝜑with four natural extensions of f∈𝑳𝟏(S)to a function on 

𝑩, resulting in four different “composition operators”. Not surprisingly, not all such operators 

are bounded, even in dimension one. Our main results provide characterizations of when 

these operators are bounded or compact. We begin with some background needed to define 

the operators .By a reproducing kernel K for the function space X on B we mean that K is a 

continuous function on B×S such that 

 

for all f∈X∩C(𝐁). On Bwe have several reproducing kernels: the Cauchy kernel 𝑲𝒄, Poisson 

kernel 𝑲𝒉, and PoissonSzego kernel 𝑲𝒎given by 

 

For z∈B and ζ∈S. Here, and throughout the chapter, ⟨0|0⟩denotes the Hermitian inner 

product on Cn, i.e.,⟨𝐳|𝐰⟩=∑ 𝐳𝐣𝐰𝐣
𝐧
𝐣 for z=(𝑧1, ..., 𝑧𝑛)and w=(𝑤1, ..., 𝑤𝑛). Also, we define the 

pluriharmonic(function U=U(z) of n complex spaces  𝐶𝑛    n≥ 1 that has continuous domain D 
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of the complex spaces of the coordinateness 𝑋 𝑢 , 𝑌 𝑢.𝑍𝑢=𝑋 𝑢 + 𝑖 𝑌 𝑢,U=1,……n.in D up to the 

second order the following system of 𝑛2 equations in D)[7]Poisson kernel 𝐊𝐩as 

 

Note that 𝑲𝒄,  is a reproducing kernel for the holomorphic functions, 𝑲𝒉for the harmonic 

functions,𝑲𝒎for the invariant harmonic functions  and 𝐾𝑝for the pluriharmonic functions. We 

note for later use an easy but useful fact that 

 

for each x ∈{c, h, m, p}. 

Let 𝛗:S→𝑩be a Borel function. We say that 𝜑is holomorphicif it is σ-almost everywhere given 

by the boundary function (i.e. the radial limit function) of a holomorphic selfmap of B. In case 

𝜑 is holomorphic, we will identify 𝜑with its holomorphic extension. For each x ∈{c, h, m, p}we 

wish to define a “composition operator”𝐶𝜙
𝑥on 𝐿1(S), i.e. a linear operator that takes f∈L1(S)to 

another function defined on S that comes from composition of f with 𝜑. Since functions 

in 𝐿1(S)are only defined on Smodulo sets of σ-measure 0, a problem with the definition of 

these operators arises if 𝜑takes a subset of S of positive σ-measure to a set in S of σ-

measure 0. This difficulty does not come up in the classical setting where n =1and 𝜑is 

holomorphic, but it is present in dimension 𝑛 ≥ 2even if it is assumed that 𝜑is holomorphic. 

The example below illustrates such difficulty. 

Example (1): (n ≥2). There exists f∈BMOA(B)and a holomorphic 𝜑such that 

limr→1−f(r𝜑(ζ))does not exist at any ζ∈S. 

Proof: Let I be an inner function on B. Namely, let I:B→Dbe a holomorphic function such that 

I(η) = lim
r→−1

𝐼(rη)  ∈ ∂Dfor almost every 𝜂 ∈ 𝑆; for the existence of such an inner function. 

Define 𝜙=(I, 0, ..., 0). It is known that there exists f ∈BMOA(B)such that  lim
r→−1

𝑓(reiθ, 0, . . . , 0) 

(1) 



4 

 

does not exist for any θ∈[0, 2π). The pair f and 𝜑is the desired example.An additional 

assumption about 𝜑is required to deal with the problem. The pullback measure 𝜎𝑜𝜑−1is the 

Borel measure defined for a Borel set E⊂𝐵by 𝜎o 𝜑−1(E) =σ{ζ∈S :𝜑(ζ) ∈E}. For the rest of the 

chapter we reserve the letter 𝜑to denote functions satisfying that𝜑 : S →𝐵 is aBorel function 

and 

 

where (σ◦𝜑−1)|𝑠is the restriction of the measure 𝜎o𝜑−1to S. We will see below that this 

assumption is required for the operators 𝐶𝜑
𝑥to be well-defined.Integration against one of the 

kernels 𝐾x, x ∈{c, h, m, p}, gives an extension of a function f∈𝐿1(S)to a function 𝑓𝑥on B that 

is respectively holomorphic, harmonic, invariant harmonic, or pluriharmonic. That is, 

 

We then use radial limits (which exist σ-a.e. on S; to extend the definition of 𝑓x from B to 𝐵; 

that is 

 

This 𝑓xis naturally referred to as the x-extension of f∈ L1(S).It is well known that in some, but 

not all, settings the function 𝑓𝑥|𝑠recovers fσ-a.e. as in the next proposition In what follows, 

𝑯𝒕(S),1≤t <∞, denotes the closed subspace of 𝑳𝒕(S) =𝑳𝒕(S, dσ), the usual Lebesgue space 

with norm  ‖0‖𝑡, consisting of all boundary functions of 𝐻𝑡(B) functions. As is well known, 

𝑯𝒕(S)is isometrically identified with 𝑯𝒕(B). 

Proposition (1.1.1)[1]:The following relations hold: 

(2) 

(3) 

(4) 

 

 r→ −1 
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For f∈L1(S)and x ∈{c, h, m, p}, we define the function 𝐶𝜑
𝑥f on S by 

 

Clearly, this is well defined, because 𝑓x remains the same even if f is altered on a set of σ-

measure 0. Also, it should be remarked that this defines  𝐶𝜑
𝑥f off a set of σ-measure 0 on S. 

To see this, we have 

 

and this limit exists precisely when 𝑓x has a radial limit at 𝜑(ζ). Thus 𝐶𝜑
𝑥f  has been defined 

at points ζ∈S \𝜑−1(E), where E⊂S is the set of σ-measure 0 where 𝑓xfails to have a radial 

limit. Since σ[𝜑−1(E)] =0 by the assumption (1.1.1), 𝐶𝜑
𝑥f  has been defined σ-a.e. on S .In 

general, 𝐶𝜑
x is a linear operator from L1(S) to the vector space of (equivalence classes of) 

measurable functions on S. From Proposition (1.1.1)(a)–(b), the restriction of 𝐶𝜑
𝑥f  for each x 

∈{c, h, m, p}to H1(S)is the usual composition operator: 

 

where the f in the right-hand side denotes the holomorphic extension of f∈ H1(S). Similarly, 

Proposition (1.1.1)(b) shows that the restriction of 𝐶𝜑
𝑥 to L1(S) is the usual composition 

operator when x ∈{h, m}.A basic problem in the study of composition operators is to 

characterize those symbols 𝜑 for which the restriction of the composition operator 𝐶𝜑to a 

Banach space X is bounded or compact. Before stating our main result, which provides 

such characterizations for the operators 𝐶𝜑
𝑥acting on Lt(S), we introduce some notation. We 

first introduce the extended kernels. Given x∈{c, h, m, p}and w∈B, we denote by 𝐾𝑥(・

, 𝑤)the x-extension of 𝐾𝑥(𝑤, ・), i.e., 

(5) 
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Note that each 𝐾𝑥(・, w)is continuous on the whole B by Proposition(1.1.1) (c). More 

explicitly, we have by (3), (4)and Proposition(1.1.1) (c) 

 

Except for the PoissonSzego kernel, the extended kernels have explicit formulae for 𝑧 ∈ 𝐵 

and w∈𝐵: 

 

where [z, w] =  The formulae for 𝜒𝑐and 𝜒𝑏are easily ver-ified. 

The formula for 𝜒ℎ is also well known;  Note that the right-hand sides of the formulae above 

continuously extend to 𝑩×𝑩\Δ where Δ denotes the diagonal of S ×S. Such extensions are 

still denoted by 𝜒𝑥for x ∈{c, h, p}. Note that 

 

For 𝑋 = 𝑀when 𝑛 ≥ 2, no explicit formula of closed form is available; the main difficulty is 

the fact that the invariant harmonicity is not dilation invariant. Nevertheless, we have natural 

growth estimate 

 

for z, w∈B for the lower estimate and the remark after for the upper estimate. Also, we can 

still naturally extend 𝜒𝑚to 𝑩×𝑩\Δ as follows. First, noting that 𝜒𝑚is symmetric on B ×B, we 

(6) 

(7) 
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extend 𝜒𝑚to 𝑩×B by symmetry. So, 𝜒𝑚(ζ, w) =𝜒𝑚(w, ζ)for ζ∈S and w∈B. Next, noting that 

𝜒𝑚(w, η)continuously extends to the zero function on S \{η}, we simply define 𝐾𝑚(ζ, η) =0for 

ζ, 𝜂 ∈ 𝑆with ζ≠η. Now, one can check that such an extension, still denoted by 𝐾𝑚, is also 

symmetric on 𝑩×𝑩\Δ and continuous in each variable separately. Although not needed in 

this chapter, we remark that 𝐾𝑚is actually continuous on 𝑩×𝑩\Δ. We remark that the dilation 

commuting true for 𝜒𝑚.Given 𝜑 as in (1.1.1)and x ∈{c, h, m, p}, using the extended kernels 

introduced above, we now define the functions 

 

and, for 1 < 𝑡 < ∞, 

 

Note that these functions are well defined, because each 𝜒𝑚(𝜑(・), z)withz∈Sis a Borel 

function defined on Soff the set 𝜑−1{z}of σ-measure 0. The definition of 𝐴𝜑,𝑡
𝑥 for 1 <t 

<∞requiring to be 0 on the boundary may seem peculiar. We define it in this way only for the 

purpose of stating the next theorem in a unified way. 

Theorem (1.1.2)[1]:. Let x ∈{c, h, m, p}, 1 ≤t <∞, and assume 𝜑 satisfies (1.1.1). Then the 

following statements hold: 

(a)𝐶𝜑
𝑥is bounded on 𝐿𝑡(S)if and only if 𝐴𝜑,𝑡

𝑥 is bounded on B; 

(b)𝐶𝜑
𝑥is compact on Lt(S)if and only if 𝐴𝜑,𝑡

𝑥 ∈C(𝑩). 

Note that the restriction of 𝐴𝜑,𝑡
𝑥 to Bis always continuous and hence, when 1 <t <∞, the 

statement that 𝐴𝜑,𝑡
𝑥 ∈C(B)is equivalent to 𝛬𝜙

𝑥 ,t(z) →0as |z| →-1. Thus Condition (b) in Theorem 

(1.1.2) can be viewed as a “littleoh” version of Condition (a). Our proof for the boundedness 

characterization in the theorem above actually yields norm estimates. Also, one can easily 

recover Sarason’s one-variable characterization for L1-compactness.When 1 <  𝑡 < ∞, 



8 

 

Carleson measure methods are available and provide alternate characterizations of when 

𝐶𝜑
𝑥is bounded or compact on Lt(S) Carleson measure methods do not provide a 

characterization of when 𝐶𝜑
𝑥to be bounded or compact on L1(S), but can be used to establish 

relationships with the operators on Lt(S). 

Theorem (1.1.3)[1]: Let x ∈{c, h, m, p}and 𝜑be as in (1.1.1). Then the following statements 

hold: 

(a)If 𝐶𝜑
𝑥is bounded (respectively compact) on 𝐿1(S), then 𝐶𝜑

𝑥is bounded (compact) on 𝐿𝑡(S)for 

all t ∈(1, ∞); 

(b)For each x ∈{c, h, m, p}there exists 𝜑 such that 𝐶𝜑
𝑥is compact on 𝐿𝑡(S), 1 <t <∞, but 𝐶𝜑

𝑥is 

not bounded on𝐿𝑡(S).Finally, we remark that the Poisson kernel 𝜒ℎfor the unit ball of the 

Euclidean space of real dimension dis given by 

 

For ξ and η in Rd with |ξ| <1and |η| =1. Our results for the operator 𝐶𝜑 
ℎ have natural 

formulations in this setting, and remain valid with the same proofs. This comment does not 

extend to the operators 𝐶𝜑
𝑥 for x ∈{c, m, p}, due to the appearance of the Hermitian inner 

product⟨・|・⟩in the corresponding kernels.Throughout the chapter we use the same letter C 

to denote various positive constants which may vary at each occurrence but do not depend 

on the essential parameters. Variables indicating the dependency of constants C will be 

sometimes specified in parentheses. For nonnegative quantities X and Y the notation 𝑋 ≲

𝑌or Y≳Xmeans 𝑋 ≲ 𝐶𝑌for some inessential constant C. Similarly, we write X≈Yif both X≤Y 

and Y≲Xhold.In this part we collect some basic notions and related facts to be used in our 

proofs .We first recall the well known integral estimates related to the reproducing kernels 

under consideration. Given α real, put 
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for 𝑧 ∈ 𝑩. The growth estimates for these integrals are well known: 

 

for 𝑧 ∈ 𝐵. Proofs can be found, for example, in for 𝐼αand 𝐽α, respectively.As an immediate 

consequence of (8), we have the following norm estimates for reproducing kernels for 1 <

 𝑡 < ∞: 

 

for𝑧 ∈ 𝐵. Also, we have 

 

butK𝑥(𝑧, ・)1 = 1  for 𝑥 = 𝑚, ℎ. For 𝑥 = 𝑝, since |K𝑝(z, ・)| ≤ |K𝑐(z, ・)|, we have, for each 1 

≤t <∞, 

 

When 1 <t <∞, by the K or anyiVagi Theorem asserting that the Cauchy transform followed 

by the K or anyi maximal function is 𝑳𝒕-bounded, there is a constant C=C(t, n) >0such that 

 

for functions f∈𝑯𝒕(S)with 𝐥𝐢𝐦 𝒇(𝟎)  = 𝟎. So, the estimate in (10)can be reversed for 1 <t <∞. 

We remark in passing that the reverse estimate of (10)is also valid when t =1and n ≥2, as 

can be seen by using (10)to convert integration over the sphere to a weighted integral over 

the unit disk, and then that harmonic conjugation is L1bounded on the standard weighted 

(8) 

(9) 

(10) 

(11) 
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Bergman spaces of the unit disk .The term normal family refers to a family of functions with 

the property that every sequence in the family contains a subsequence converging uniformly 

on compact subsets of the domain. As is well known, a family of holomorphic functions that 

is uniformly bounded on each compact subset of the domain is a normal family. An argument 

using that result is often called anormal family argument. Such a normal family argument 

textends to harmonic functions and hence to pluriharmonic functions, The cases x =c, p, 

hare also included in the statement for easier reference later. 

Lemma (1.1.4)[1]: Let x ∈{c, h, m, p}. Given a bounded set Fin L1(S), let 𝐹𝑋={𝑓𝑥:f∈F}. Then 

𝐹𝑋is a normal family on B. 

Proof: The cases x =c, p, hare easily seen from the remark above. To treat the case x=m, 

we first introduce some notation. Given 𝑧 ∈ 𝐵, let 𝜏zbe the in n volatileautomorphism of B that 

exchanges 0and z. It is known that 

 

Also, ρ(z, w) =|𝝉a(b)|is known to be a metric, called the pseudo hyperbolic metric, on B .Let 

E⊂B be a compact set. We claim there is a constant C=C(E) >0such that 

 

for all f∈𝐿1(S). With this granted, we see that 𝐹𝑚is equicontinuous on each compact subset, 

which is the key to the proof; the lemma follows then from the standard argument using the 

Arzela Ascoli Theorem and the diagonal process. Let f∈𝑳𝟏(S). Since 

 

for z∈B, we see that 

 

(12) 

(13) 
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for some constant C1=C1(E) >0. Now, given a, b ∈E, we have by (12) 

 

Meanwhile, we have again by (12) 

 

for some constant C2=C2(E) >0. Combining these observations, we conclude (13), as 

claimed. The proof is complete .We recall the notions of Carleson measures that are needed 

in our work. Let 1 <t <∞and x ∈{c, h, m, p}. Let μ be a positive finite Borel measure on 𝑩. We 

say that μ is an x-Carleson measure for 𝐿𝑡(S)if there exists some constant C>0such that 

 

That is, μ is an x-Carleson measure for 𝐿𝑡(S)if and only if the mapping 𝑓(𝑥)|𝑠 → 𝑓(𝑥)is 

continuous from Lt(S)to𝐿𝑡(μ). We write 𝑁x(μ)for the infimum of the constants C for which 

inequality (14)holds, so [𝑁𝑥(𝜇)]
1

𝑡 is the norm of this mapping. If, in addition, this mapping is 

compact, then μ is said to be a compact Carleson measure for Lt(S). Characterizations for 

(compact) x Carleson measures for Lt(S)are given in terms of Carleson sets that are balls 

defined using a metric appropriate for the kernel 𝐾𝑋.For ζ∈Sand0 <δ<1, let 

 

and 

 

Now, we put 

 

(14) 



12 

 

Note that c-Carleson measures for Lt(S)are precisely the well-known Carleson measures for 

Ht(B)and that the two notions of x-Carleson measures for x ∈{c, p}coincide by (11). We have 

the following characterizations for each 1 <t <∞: 

(i) Μ is an X Carleson measure for Lt(S) ⇐⇒supδ𝑚𝜑
𝑥 (μ) <∞; 

(ii) Μ is a compact X Carleson measure for Lt(S) ⇐⇒𝑀𝑥δ(μ) →0as δ→0+. 

A reference for the case x ∈{c, p}, i.e. for Carleson measures for Ht(B), While we have not 

been able to find a reference for the characterization of M Carleson measures, it should be 

well known that they also coincide with the Hardy space Carleson measures. Indeed, in all 

cases the necessity of the characterizing condition is established using natural test functions 

and simple estimates of the kernel. The proof of sufficiency in the Hardy space case given in 

goes through for 𝑥 = 𝑚with almost no change. A comment is needed regarding just one part 

of the proof the point wise estimate of the K or any imaximal function of f∈Ht(B)by the Hardy–

Little wood maximal function of f associated with non-isotropic balls. That this estimate 

remains valid when 𝑥 =  𝑚 is the content of The characterization when x =h for measures 

supported on B; the extension to measure supported on 𝑩  is standard. Alternatively, it can 

be observed that Euclidean (rather than non-isotropic) versions of the key ingredients of the 

proof in the Hardy space case are well known. Moreover, setting 𝑚𝑥(μ) =supδ𝑀𝑥δ(μ), we 

have 

𝑚𝑥( (μ) ≈𝑁𝑥( (μ). 

Of particular importance is that the characterization of (compact) X Carleson measures for 

Lt(S)is independent of t >1, and that the characterization is the same for x ∈{c, m, p}. But the 

characterization differs for x =ℎ𝑤hen n >1, since 
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When x =h this is elementary. When x ∈{c, m, p} Finally, we note that the restriction t >1for x 

∈{h, m, p}comes from the same restriction in the 𝐿𝑡boundedness of the HardyLittlewood 

maximal function as well as in the KoranyiVagi Theorem mentioned after (10), when proving 

the sufficiency of the characterizing conditions. On the other hand, one may remove the 

restriction t >1when x =c, considering f∈𝐻𝑡(B)in (14)instead of 𝑓𝑥, and the characterization 

remains the same for 0 <t ≤1.The relevance of Carleson measures to composition operators 

comes from the idea of pullback measure. Associated with 𝜑 as in (2)is the pullback 

measure σ◦𝜑−1, which is the Borel measure defined for a Borel set E⊂𝑩by σ◦𝜑−1(E) 

=σ{ζ∈S: 𝜑(ζ) ∈E}. Use of a change of variable formula from measure theory shows that 

 

for any f∈𝐿𝑡(S), 1 ≤t <∞and x ∈{c, h, m, p}. This gives the following proposition. In what 

follows, 𝐶𝜑
𝑥𝐿𝑡(S)denotes the operator norm of 𝐶𝜑

𝑥acting on 𝐿𝑡(S). 

Lemma (1.1.5)[1]: Let x ∈{c, h, m, p}, 1 <t <∞, and 𝜑be as in (2). Then 𝐶𝜑
𝑥is bounded 

(respectively compact) on 𝐿𝑡(S). if and only if σ◦𝜑−1is a (compact) X Carleson measure for 

𝐿𝑡(S). Moreover, the operator norm satisfies 

 

the constants suppressed above depend on x and t, but are independent of 𝜑. 

Proof :If σ◦𝜑−1is a Carleson measure, then use of (15), (12)and Proposition(1.1.1) (e) shows 

that 𝐶𝜑
𝑥is bounded on 𝐿𝑡(S). with‖𝐶𝜑

𝑥‖
𝐿𝑡(𝐒).

𝑡
≤ 𝑁𝑥(σ◦𝜙−1). Conversely, if 𝐶𝜑

𝑥is bounded on 

𝐿𝑡(S). and f∈𝐿𝑡(S). then 

 

(15) 
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and so σ◦𝜑−1is an X Carleson measure for Lt(S)and 𝑁𝑥(σ◦𝜙−1) ≤‖𝐶𝜑
𝑥‖

𝐿𝑡(𝐒).

𝑡
. This, together, 

completes the proof for 𝐶𝜑
𝑥bounded. We note that the dependence of the constants on xand 

tcomes from the application of Proposition (1.1.1) (e). The proof for 𝐶𝜑
𝑥compact is similar and 

so is omitted .We mention some immediate consequences. Let 𝜑be as in (1.1.1). 

 Then the following statements hold: 

(a)If x ∈{c, h, m, p}and1 <𝒕𝟏, 𝒕𝟐<∞, then 𝐶𝜑 
𝑥 is bounded (respectively compact) on 𝐿𝑡1(S)if and 

only if 𝐶𝜑
𝑥is bounded (compact) on 𝐿𝑡2(S). 

(b)If x, y∈{c, m, p}and1 <t <∞, then 𝐶𝜑
𝑥is bounded (respectively compact) on 𝐿𝑡(S). if and only 

if 𝐶𝜑
𝑦
is bounded (compact) on 𝐿𝑡(S). 

(c)If x ∈{c, m, p}and1 <t <∞, then 𝐶𝜑
𝑥:𝐻1(S) →𝐿1(S). is bounded (respectively compact) if and 

only if 𝐶𝜑
𝑥is bounded (compact) on Lt(S). 

(d)If x ∈{c, m, p}, 1 <t <∞, and 𝐶𝜑
ℎis bounded (respectively compact) on Lt(S), then 𝐶𝜑

𝑥is 

bounded (compact) on Lt(S). 

For (a) note that the characterizations of (compact) X Carleson measures are independent of 

1 < 𝑡 < ∞. For (b) note that (compact) X Carleson measures for x ∈{c, m, p}, precisely being 

the same as those for the Hardy spaces, coincide. For (c) note from (5)and (17)that 

𝐶𝜑
𝑥:𝐻1(𝑆)  → 𝐿1(𝑆)is bounded (respectively compact) if and only if σ◦𝜑−1is a (compact) 

Carleson measure for 𝐻1(S). In case of (c) note 

 

where‖𝐶𝜑
𝑥‖

𝐇𝟏(𝐒)→𝐋𝟏(𝐒)
denotes the operator norm of 𝐶𝜑

𝑥:𝐻1(S)→𝐿1(S). For (d) note that 𝐶𝜑
ℎis 

bounded (compact) on 𝐿𝑡((S)if and only if 𝜎o𝜑−1is a (compact) Carleson measure for the 

harmonic Hardy space ℎ𝑡(B), which is isometrically isomorphic to Lt(S)when t >1. Since 

Ht(B)is isometrically isomorphic to 𝐻𝑡(S) ⊂Lt(S), we see that σ◦𝜑−1is a (compact) Carleson 
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measure for Ht(S), and the result follows as in (b). An example will be presented in Part5that 

shows the converse to (d) fails badly for 𝑡 ≥ 1, there exists 𝜑such that 𝐶𝜑
𝑥is compact on 

Lt(S)for x ∈{c, m, p}, but 𝐶𝜑 
ℎ is not bounded.We first mention some remarks for holomorphic 

symbols. So, assume 𝜑 is holomorphic in the following three remarks. 

(i) In conjunction we note that if the standard composition operator 𝐶𝜑maps 𝐻1(B)into 

𝐻𝑡(B)for some 0 <t <∞, then each 𝐶𝜑
𝑥, when restricted to H1(S), is precisely the same as 𝐶𝜑if 

a Hardy function is identified with its boundary function. To see this, let f∈H1(S)(or H1(B)) and 

put 𝑓𝑟(z) =f(rz)for 0 <r<1. Then, as r→-1, we have 𝑓𝑟→fin H1(B)and thus 𝐶𝜑𝐽𝑟
→ 𝐶𝜑f in Ht(B). 

Also, note that the boundary function of 𝐶𝜑𝑓𝑟is 𝑓𝑥o 𝜑, which is obvious by the continuity of 

fron S. Thus, by Fatou’s Lemma and (5), we obtain𝐽𝑟 

 

which shows that 𝐶𝜑
𝑥fis the boundary function of 𝐶𝜑f, as asserted. 

(ii) The absolute continuity hypothesis is satisfied if 𝐶𝜑is bounded on Ht(B)for some/all 0 <t. 

Thus is satisfied for all holomorphic self-maps of D, which is not the case on 

multidimensional balls. 

(iii) that when x ∈{c, m, p}, 𝐶𝜑
𝑥is bounded (respectively compact) on 𝐿𝑡(S)for some/all 1 <t <∞if 

and only if 𝐶𝜑is bounded (compact) on Ht(B)for some/all 0 <t <∞.Finally, we mention an 

elementary result from real analysis that will be used repeatedly, following the approach of 

Sarason. 

Lemma (1.1.6)[1]: Let f∈𝐿1(S)and {fj}be a sequence of functions in 𝐿1(S)such that fj→ Fσ-a.e. 

on S. Then ‖𝑓𝑗‖
1

‖𝑓‖1→if and only if ‖‖𝑓𝑗‖
1

− ‖𝑓‖1‖ →0. 

In this part we prove the boundedness parts of our results stated in the Introduction. Proof 

for the boundedness part of Theorem(1.1.2) is split in the next two propositions, since they 

differ when t =1or 1 < 𝑡 < ∞. We first characterizeboundedness for the case t =1. 
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Proposition (1.1.7)[1]: Let x ∈{c, h, m, p}and 𝜑 .Then 𝐶𝜑
𝑥is bounded on L1(S)if and only 

if𝐴𝜑
𝑥 ,1is bounded on B. Moreover, the operator norm satisfies ‖𝐶𝜑

𝑥‖L1(S)=supz∈B𝐴𝜑
𝑥 ,1(𝑧). 

Proof: Let z∈B. For x ∈{c, h, p}we choose 𝐾𝑧=𝑘ℎ(z, ・)as a test function. Note that 𝜒xis 

harmonic on Bin each variable separately. So, from the reproducing property of𝐾𝑧, we see 

that 

 

and so 

 

Since‖𝑘𝑧‖=1, integration on Sshows that ‖𝐶𝜑
𝑥‖

𝐿1(s)
≥ ‖𝜒x(𝜑(・), 𝑧)‖1, 𝑧∈B. Thus we conclude 

 

This inequality also holds for x =m, with the same proof except for choosing 𝑘𝑧=𝑘𝑚(z, ・)as 

a test function in this case. We now prove the reverse inequality. Let f∈L1(S)and assume 

𝑓𝑥is defined at 𝜑(ζ), ζ∈S. For x ≠m 

 

This remains valid for x =m, even h tough is no longer true in that case. In fact, when 𝜑(ζ) 

∈S, the above is certainly true by (1). On the other hand, when 𝜑(ζ) ∈B, we have 

 

(16) 
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the second and the last equalities hold by the Dominated Convergence Theorem and the 

third equality holds by the continuity of 𝐾x(𝜑 (𝜁), ・)𝑜𝑛 𝑩.So, for any x ∈{c, h, m, p}, we have 

by, Fatou’s Lemma and Fubini’s Theorem. 

 

and thus conclude 

 

which completes the proof. 

For the proof below (and later use), we recall the following slice integration formula for n >1 

 

for any positive measurable function 𝜓on D and 𝜉∈S. Here, A denotes the area measure on 

D. 

Corollary (1.1.8)[1]: If n ≥1and 𝐶𝜑 
𝑐 is bounded on 𝐿1(s), then σ[𝜑−1(S)] =0. If n ≥2and 𝐶𝜑 

𝑝
is 

bounded on 𝐿1(s)then σ[𝜑−1(S)] =0.We remark that the statement for 𝐶𝜑 
𝑏 does not extend to n 

=1. For example, with iddenoting the identity map of S, note that 𝐶𝑖𝑑 
𝑝

=𝐶𝑖𝑑 
ℎ is the identity 

operator on 𝐿1(s)in the one-dimensional case. 

Proof: It is easily seen from Fatou’s Lemma that 𝐴𝑖𝑑 
𝑐 (η)≤supz∈B𝐶𝑖𝑑,1 

𝑝
(z)for all η∈S. Thus we 

have 

 

(17) 
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Note that the inner integral of the above diverges for each ζ∈𝜑−1(S). This is elementary when 

n =1; when n ≥2it is easily seen using. So, the result for x =c is a consequence of 

Proposition(1.1.7). 

The proof for 𝑥 = 𝑝is similar: 

 

Since n ≥2and 𝜑(ζ) ∈S, (17)is available to compute the inner integral to be 

 

This integral can be seen to diverge by using polar coordinates centered at λ =1and 

integrating over a small sector, and the result again holds by Proposition (1.1.7).Now, we 

turn to the case 1 <t <∞, where some auxiliary estimates are needed. First, we need the 

following estimate as to how the kernels grow on certain Carleson sets. 

Lemma (1.1.9)[1]: Let 𝜁0∈S, δ∈(0, 1)and put z=(1 −δ)ζ0. Then there are constants 𝐶1=𝐶1(n) 

>0and C2=C2(n) >0such that 

 

Before the proof, we remark that we can take c2=1when 𝑥 ∈ {𝑐, ℎ, 𝑚}. It is when 𝑥 = 𝑝 and 

𝑛 > 1  that 0 < 𝐶2 < 1 is necessary. 

Proof: For 𝑥 ≠ 𝑝 the proof is a straightforward estimate using the explicit formula for 𝜒𝑥(w, 

z), and will be omitted.For 𝑥 = 𝑝, assume first that δ∈(0, 1/16). Choose C2∈(0, 1), depending 

only on n, so small that Re(𝑎𝑛) ≥1/2   for all allying in the disk with center at 1and radius 𝐶2. 

Let w∈Sp(𝜁0 , 𝑐2δ)and put λ≠ζ0, w. Note 
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which means that 1−(1−δ)λ/δ lies in the disk with center at 1and radius 𝑐2. Now, since |1 −

(1 − 𝛿)𝜆|  ≤ 2δand 𝛿 <
1

16
, we obtain 

 

which completes the proof when δ∈(0, 1/16). The extension to δ∈(0, 1)can be accomplished 

by replacing C2by C2/16 . The proof is complete. We have the optimal norm estimate (9)for 

the reproducing kernels except for the pluriharmonic case. In the pluriharmonic case, we 

have an upper estimate (10)for𝑥 = 𝑝. What is needed here is the lower estimate for 1 <t <∞. 

We do not know a reference and thus a proof is provided below. Other cases are restated for 

easier reference. 

Lemma (1.1.10)[1]: Given 𝟏 < 𝑡 < ∞, the estimate 

 

holds for 𝑧 ∈ 𝐁. 

Proof: We only need to establish the lower estimate for x =p. Let 𝑧 ∈ 𝐵, z_=0, put ζ0=z/|z| 

and set Ez=Sp(z/|z|, c2(1 −|z|)) ∩S, where c2is the constant provided by Lemma(1.1.9) Note 

that z=(1 −δ)ζ0where δ=1 −|z|. Thus by Lemma (1.1.9) we have 

 

so that 

 

which completes the proof. We are now ready to characterize boundedness for the case 1 <t 

<∞. 



20 

 

Proposition (1.1.11)[𝟏]: 𝐿𝑒𝑡 𝑥 ∈ {𝑐, ℎ, 𝑚, 𝑝}, 1 <t <∞and 𝜑 be as in (2). Then 𝐶𝜑
𝑥is bounded on 

Lt(S)if and only if𝐴𝜑,𝑡
𝑥 ,is bounded on B. Moreover, the operator norm satisfies 

 

the constants suppressed above depend on x and t, but are independent of 𝜑. 

Proof: Fix 𝑎𝑛𝑦 𝑥 ∈ {𝑐, ℎ, 𝑚, 𝑝}, let 𝑧 ∈ 𝐵and choose kz=𝐾𝑥(𝑧, ・)as a test function. Then 

 

and so 

 

Hence 

 

and this is true for any 𝑧 ∈ 𝐵. Taking the supremum over 𝑧 ∈ 𝐵, we obtain 

 

For the reverse inequality, let ζ0∈S, δ∈(0, 1)and put w=(1 −δ)ζ0. First, consider the case 𝑥 ∈

{𝑐, 𝑚, 𝑝}. see that 

 

 

This estimate is independent of 𝜁0and δ, so taking the supremum yields. 
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Hence σ◦𝜑−1is an X  Carleson measure with the norm estimate 𝑁𝑥(σ◦𝜑−1) ≈𝑀𝑥(σ◦𝜑−1)≤

‖𝐴𝜑,𝑡
𝑥 ‖

𝐿𝑡

𝑡
(s) Since ‖𝐶𝜑,𝑡

𝑥 ‖
𝐿𝑡(𝑠)

𝑡
 ≈N(σ◦𝜑−1)from Lemma (1.1.4) , we conclude‖𝐶𝜑

𝑥‖
𝐿𝑡 (𝑆)

 

supz∈B𝐴𝜑
𝑥 ,t(z), which completes the proof for 𝑥 ∈ {𝑐, 𝑚, 𝑝}.The proof when x =his similar, 

using the norm estimate for ‖Kℎ(z, ・)‖
𝑡

𝑡
from (1.1.4)and the lower bound for ‖Kℎ(w, z)‖ w∈

𝑆ℎ(ζ0, c2δ). 

As an application we now show that 𝐿1boundedness implies 𝐿𝑡boundedness for each 1 <

𝑡 < ∞ which is the content of the boundedness part of Theorem(1.1.3) (a). In view of this 

result, one may wonder whether its converse would hold. 

Proposition (1.1.12)[1]: Let 𝑥 ∈ {𝑐, ℎ, 𝑚, 𝑝}, 1 < 𝑡 < ∞and 𝜑 be as in (2). If 𝐶𝜑
𝑥is boundedon 

L1(S), then 𝐶𝜑
𝑥is bounded on Lt(S). Moreover, the operator norms satisfy‖𝐶𝜑

𝑥‖
𝐿1(𝑠)

𝑡
≤

𝐶 ‖𝐶𝜑
𝑥‖

𝐿1(𝑠)
for some constant 𝐶 = 𝐶(𝑥, 𝑡)  > 0. 

Proof: Since L1-boundedness of 𝐶𝜑
𝑥implies the boundedness of 𝐶𝜙

𝑥:𝐻1(S) →𝐿1(S), the case x 

≠his contained in Theorem (1.1.5) (c). So, let x =h. Suppose 𝐶𝜑
ℎis bounded on 𝐿1(S). By 

Lemma (1.1.4), to show 𝐶𝜑
ℎis bounded on Lt(S), it suffices to show that σ◦𝜑−1is an h 

Carleson measure. Given ζ0∈Sand δ∈(0, 1), put w=(1 −δ)ζ0.  

 

and this estimate is independent of ζ0and 𝛿 ∈ (0, 1). Taking the supremum over all ζ0and 

𝛿yields Mh(σ◦𝜑−1) ≥ supz∈B𝐴𝜑,1
ℎ ,1(z). Now, since 𝐶𝜑

ℎ(σ◦𝜑−1)from Lemma(1.1.4), and 

𝑠𝑢𝑝𝑧∈𝐁𝐴𝜑
ℎ

,1(z) =‖𝐶𝜑
ℎ‖

𝐿1(𝑠)
from Proposition (1.1.7), the proof is complete. 

We now close the part with the following remarks: 

(i) When 𝑥 ∈ {ℎ, 𝑚}, the RieszThorin Interpolation Theorem could also be used to prove 

Proposition (1.1.11) with norm estimate 
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since in these cases 𝐶𝜑
𝑥is bounded on L∞(S)with operator norm 1. When x ∈{c, p}this method 

does not work, as 𝐶𝜑
𝑥is not bounded on 𝐿∞(S)in general. To see examples of 𝐶𝜑

𝑐 and 𝐶𝜑
𝑝
which 

are not bounded on 𝐿∞(S), simply consider 𝜑 =id. Note that Ccidis the Cauchy transform. As 

is well known, the Cauchy transform (and hence Cpidas well) is not bounded on 𝐿∞(S). In 

fact the Cauchy transform takes 𝐿∞(S)into the space of functions of bounded mean 

oscillation with respect to nonisotropic balls. 

(ii) One may also derive. In fact, when x ∈{h, m}, note that 𝜒𝑥(𝜑(ζ), rη) dσ(η)is a probability 

measure for each 0 <r<1. So, given f∈𝐿1(S), applications of (1.1.8), Fatou’s Lemma and 

Jensen’s Inequality yield 

 

Now, computing the ζ-integration first, we obtain 

 

which yields (1.1.11). 

section (1.2):  Compactness and Examples 

 Recall that a linear operator on a Banach space X is said to be compact if any bounded 

sequence {xj}in X contains a subsequence {𝑥jk}for which 𝑇𝑥𝑛𝑘converges in X. As in the case 

of boundedness, proof for the compactness part of Theorem (1.1.2) is split in the two 

Propositions (1.2.1) and (1.2.6) below. This time the case 1 < 𝑡 < ∞ is easier to handle and 

so we first characterize compactness for that case. 

Proposition (1.2.1)[𝟏]:   𝐿𝑒𝑡 𝑥 ∈ {𝑐, ℎ, 𝑚, 𝑝}, 1 < 𝑡 < ∞and 𝜑be as in (1.1.1). Then 𝐶𝜑
𝑋is 

compact on Lt(S)if and only if 𝐶𝜑,𝑡
𝑋 ,t∈C(𝐵). 

(18) 
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Proof: We first prove the necessity. Fix 𝑎𝑛𝑦 𝑥 ∈ {𝑐, ℎ, 𝑚, 𝑝}and suppose 𝐶𝜑
𝑥is compact on 

Lt(S). Note that 𝐴𝜑,𝑡
𝑥 is clearly continuous on Band was defined to be 0 on S. So, in order to 

see 𝐴𝜑,𝑡
𝑥 ∈C(𝐁), it suffices to show that 

   

Given z∈B, put  

 Now, suppose that (1.2.1)fails to hold. Then one can find an 𝜖>0and a sequence {𝑧𝑗} ⊂B 

such that 𝑧𝑗convergent to a boundary point, say 𝜂0 ∈ 𝑆, and 

 

for all j. Since 𝐶𝜑
𝑐 is compact, we may assume, by passing to a subsequence if necessary, 

that {𝐶𝜑
ℎfzj}is norm convergent in Lt(S). On the other hand, note from Lemma 

(1.1.10)that𝐶𝜑
𝑥fzj=𝜒𝑥(𝜑(・), zj)/‖𝑘𝑥(zj, ・)‖t→0pointwise as j→+∞on S \𝜑−1(𝜂0), and hence σ-

a.e. on S by (1.1.1). Hence 𝐶𝜑
𝑥fzj→0in norm, which contradicts (20). Hence (19)holds, and the 

proof of the necessity is complete. 

Now, to prove the sufficiency, let 𝑥 ∈ {𝑐, 𝑝, 𝑚}and assume 𝐴𝜑,𝑡
𝑥 ∈C(𝐁). Given ζ0∈Sand δ∈(0, 

1), put z=(1 −δ)ζ0so that 1 −|z| =δ. Then 

 

where the last inequality holds by Lemma (1.1.9) and (1.1.6). Since 

 

as |z| → -1by continuity of 𝐴𝜑,𝑡
𝑥  we conclude by Lemma (1.1.6) that 𝐶𝜑

𝑥is compact on Lt(S). 

The argument for 𝑥 = ℎ, using the alternate lower bounds provided by Lemmas (1.1.9) and 

(1.1.10), is similar. This completes the proof of the sufficiency and thus of the proposition. 

(20) 

-1(19) 



24 

 

We now turn to the compactness characterization for the case 𝑡 = 1. We need some 

preliminary lemmas. 

Lemma (1.2.2)[𝟏]: 𝐿𝑒𝑡 𝑥 ∈ {𝑐, ℎ, 𝑚, 𝑝}and 𝜑 be as in (1.1.1). Assume, in addition, 𝜑 takes 

Sinto a compact subset of B. Then 𝐶𝜑
𝑥is compact on Lt(S)for each 1 ≤ 𝑡 < ∞. 

Proof: 𝐹𝑖𝑥 𝑥 ∈ {𝑐, ℎ, 𝑚, 𝑝}and 1 ≤ 𝑡 < ∞Since 𝜑(S)is contained in a compact subset of B, it is 

easily that 𝐴𝜑,𝑡
𝑥 is bounded on B. So, 𝐶𝜑

𝑥is bounded on 𝐿𝑡(S)by Propositions (1.1.4) and 

(1.1.11). Now, using Lemma (1.1.2) , the rest of the proof is a standard normal family 

argument. 

Lemma (1.2.3)[𝟏]: 𝐿𝑒𝑡 𝑥 ∈ {𝑐, ℎ, 𝑚, 𝑝}and 𝜑 be as in (1.1.1), and define the function 𝐺𝑥on 

𝐁{0}𝑏𝑦 

   

for0 < 𝜈 ≤ 1 𝑎𝑛𝑑 𝜂 ∈ 𝑆. 𝑇ℎ𝑒𝑛, 𝑓𝑜𝑟 0 < 𝑠 < 1, 

 

Proof:𝐹𝑖𝑥 0 < 𝑠 < 1. Note that s𝜑satisfies (1.1.1), because 𝜎 ₀( 𝑠𝜑)−1|𝑠is the zero measure. 

Given f∈L1(S), using Fatou’s Lemma, we have 

 

as required. 

We remark that if 𝑥 ∈ {𝑐, ℎ, 𝑝}, then (1.1.6)is available to give 

 

 

(21) 

r→-1 

r→-1 

r→-1 

(22) 

r→-1 
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Now shows that if 𝐴𝜑,1
𝑥 ∈C(𝑩), then 𝐺𝜑

𝑥∈C(𝑩/{0} )and vanishes on S. Hence, for 𝑥 ∈ {𝑐, ℎ, 𝑝}, 

𝐴𝜑,1
𝑥 ∈ 𝐶 (𝐁)implies ‖𝐶𝑠𝜑

𝑐 − 𝐶𝜑
𝑐 ‖

𝐿1 (S)→0as s →-1,Since each 𝐶 𝑠𝜑
𝑥 is compact on L1(S), it follows 

that 𝐶ϕ
x is as well. 

These remarks do not extend to 𝑥 = 𝑚, since (1.1.5)is not available in that case. the 

extension to𝑥 = 𝑚   is valid, though the proof is much more involved. The next two lemmas 

will be used in that proof. 

Lemma (1.2.4)[1]: Let 𝜑 be as in (1.1.1). If 𝐴𝜑,1
𝑚 ∈C(𝐁), then 𝐶𝜑

𝑐 :H1(S) →L1(S)is compact. 

Proof: .As in the proof of Lemma (1.2.3), each s𝜑, 0 < 𝑠 < 1, satisfies (1.1.1)and 𝐶𝑠𝜑
𝑚 :H1(S) 

→L1(S)is compact by Lemma(1.2.4). So it suffices to show 

   

where‖𝐶𝑠𝜑
𝑚 −  𝐶𝑠𝜑

𝑚 ‖denote the operator norm acting from H1(S)into L1(S). 

Let Qmbe the function defined on 𝐁\{0}by 

 

for0 <ν≤1and 𝜂 ∈ 𝑆. From the hypothesis that 𝐴𝜑,1
𝑚 ∈C(𝑩)and Lemma (1.1.8) , we see that 

𝑄𝑚is a continuous function vanishing on S. So, given ≥ 0, we can fix a ν∈(0, 1)such that 

 

Let f∈H1(S)and identify it with f∈H1(B). Let 0 <s <1and put fs(z) =f(sz). 

Note 𝐶𝑠𝜑
𝑚 f=f(s𝜑) =𝑓𝑠(𝜑) =𝐶𝜑

𝑚𝑓𝑠for each 0 < 𝑠 < 1, because f is holomorphic. It follows from 

(1.1.7)that 

 

For σ-almost every ζ∈S. Thus, by Fatou’s Lemma, we have 

-1            

(2224) 

(23) 

r→-1 
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Meanwhile, note from Fubini’s Theorem 

 

 

Therefore, by the triangle inequality and Fubini’s Theorem, for the ν fixed above, we obtain 

from (1.2.6) 

 

where 

 

by (24), and 

 

To estimate II, we first note from the reproducing property 

 

because Km(z, νη) =𝐾𝑚(𝜈𝜂, 𝑧) =Km(νz, η)by (1). This also remains valid for z∈B. To see it, 

note from Fubini’s Theorem, (1.1.1), and the reproducing property of the kernel that 

 

(24) 

(25) 

r→-1 

r→-1 
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A similar argument yields 

 

Therefore, we have 

 

atσ-almost every 𝜁 ∈ 𝑆and thus by Fubini’s Theorem 

 

Now, since 0 <ν<1, the Dominated Convergence Theorem can be used to see the (uniform) 

continuity of the mapping (s, η) →𝐾𝑚(s𝜑(・), νη)from [0, 1] ×S to L1(S), yielding 

 

provided sis sufficiently close to 1. Along with (25), this shows that 𝐶𝑠𝜑
𝑚 −  𝐶𝜑

𝑚boundedly 

takes 𝐻1(S)into L1(S)and, moreover, that (4)holds. The proof is complete. 

Lemma (1.2.5)[1]: Let 𝜑 be as in (1.1.1)and put 

 

for𝟎 < 𝑟 ≤ 𝟏and η∈S. If 𝐴𝜑,1
𝑐 ∈C(𝑩), then 𝐺𝑚∈C(𝐵\{0}). 

Proof: Assume 𝐴𝜑
𝑚∈C(B). Since 𝐺𝑚is clearly continuous on B \{0}by the Dominated 

Convergence Theorem, it suffices to prove 𝐺𝑚is continuous at every point in S, 

where𝐺𝑚vanishes. Given s ∈(0, 1)and 𝜂 ∈ 𝑆, we use temporary notation 

 

For short. Given𝜂 ∈ 𝑆 𝑎𝑛𝑑 0 < 𝑟 < 1, note 
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and 

 

Therefore, given arbitrary 𝜂0∈Sand 0 <δ<1, we have 

 

Thus, setting 

 

we obtain 

 

Note that σ◦𝜑−1is a compact m-Carleson measure, since𝐶𝜑
𝑚:H1(S) →L1(S)is compact by 

Lemma (1.2.4). Thus the last term of the above tends to 0 uniformly in η as 𝑟 → −1. 

Meanwhile, since 

 

by the continuity of 𝐴𝜑,1
𝑚 on S, we have I(η) →0as η→𝜂0by Lemma (1.1.8). Also, note 

 

by the Dominated Convergence Theorem. It follows from these observations that 



29 

 

 

In the display above note that the right-hand tends to 0 as δ→0+, because ‖𝜒𝑚(𝜑(・

)η0‖=𝐴𝜑,1
𝑚 (𝜂0) <∞. Since the left-hand side is independent of δ, we conclude that 

 

Hence 𝐺𝑚is continuous at every point in S as required, and the proof is complete. We are 

now ready to characterize the compactness for the case t =1. 

Proposition (1.2.6)[𝟏]: 𝐿𝑒𝑡 𝑥 ∈ {𝑐, ℎ, 𝑚, 𝑝}and 𝜑 be as in (1.1.1). Then 𝑐𝜑
𝑥 is compact on L1(S)if 

and only if 𝐴𝜑,1
𝑚 ∈C(B). 

Proof: We first prove the necessity. So, suppose 𝑐𝜑
𝑥 is compact on L1(S)and let {wj}be a 

sequence of points in B with wj→w0. To show 𝐴𝜑,1
𝑚 ∈C(B), it suffices to show that there is a 

subsequence {𝑤𝑗𝑘
}such that 𝐴𝜑,1

𝑚 (𝑤𝑗𝑘
)→𝐴𝜑,1

𝑚 (w0). Let kw=𝐾ℎ(w, ・)for x ∈{c, p, h}and 

kw=𝐾𝑚(w, ・)for x =m. Then ‖𝑘𝑥
𝑤1‖=1for w∈Band ‖𝑘𝑤1‖=0for w∈S. Thus {𝑤𝑗𝑘

}is a bounded 

sequence in 𝐿1(S), and since 𝑐𝜑
𝑥 is compact it follows that {𝑐𝜑

𝑥𝑤𝑗𝑘
} ={𝜒𝑥(𝜑(・), wj)}has a 

subsequence {𝜒𝑥(𝜑(・), wjk)}that converges in norm. Since 𝑘𝑥(𝜑(・), wj) →𝜒𝑥(𝜑(・), 𝑤0)σ-

a.e., it follows that 𝜒𝑥(𝜑(・), 𝑤𝑗𝑘
) →𝜒𝑥(𝜑(・), 𝑤0)in norm. Hence, 

 

as required, and this completes the proof that 𝐴𝜑,1
𝑚 ∈C(𝑩).Sufficiency has already been 

proved for 𝑥 ∈ {𝑐, ℎ, 𝑝}in the remarks following the proof of Lemma(1.2.3). So for the rest of 

the proof we put x =m, and assume 𝐴𝜑,1
𝑚 ∈C(𝑩). As in those remarks, it suffices to show that 

 

From Lemma (1.2.3) , it suffices to show 

-1 
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where𝐺𝜑
𝑚was defined in (4). Let z∈B and η∈S. When s <1, 𝜒𝑚(𝑠𝑧, η) =𝐾𝑚(𝑠𝑧, η), so the 

explicit formula of the kernel can be used. For s ∈[0, 1)we have 

 

where O(1)is uniform in z and s. Thus 

 

Hence, setting 

 

we obtain 

 

The function 𝐺𝜑
𝑚was introduced in Lemma (1.2.5), where it was shown that 𝐺𝜑

𝑚(𝑠𝜂) → 0       as 

                 𝑠 → −1uniformly in η. So, to complete the proof, it suffices to show the sum in the 

right-hand side of the display above converges to 0uniformly in η as 𝑠 → −1.Note that 

{gsη,k}is a bounded set in H1(S), note that, given 𝑎𝑗 → 𝜂0 ∈ 𝑆, {𝐶𝜑
𝑚gaj,k} ={gaj,k◦𝜙}(with kfixed) 

converges pointwise to 0on S \𝜑−1{η0}and hence σ-a.e. by (1.1.1). Since 𝐶𝜑
𝑚:H1(S) →L1(S)is 

compact by Lemma (1.2.4), a sub sequence converges to 0 in norm. It follows that 

 

(26) 

𝑠 → −1 
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as desired. This completes the proof. Having proved the compactness characterizations, we 

now prove the following, which is the content of the compactness. 

Proposition (1.2.7)[𝟏]: 𝐿𝑒𝑡 𝑥 ∈ {𝑐, ℎ, 𝑚, 𝑝}, 1 < 𝑡 < ∞and 𝜑 be as in (1.1.1). If 𝐶𝜑
𝑥is compacton 

L1(S), then 𝐶𝜑
𝑥is compact on Lt(S). 

Proof: As in the proof of Proposition(1.1.9), the case 𝑥 ≠ ℎis contained in Theorem (1.1.10) 

(c). For 𝑥 = ℎ, from Proposition (1.2.6) and the hypothesis that 𝐶𝜑
ℎis compact on L1(S)we 

havethat 𝐴𝜑,1
ℎ ∈C(𝑩). So by Lemma (1.1.7) it follows that 𝐺𝜑

ℎ, defined in (1.2.3) , is continuous 

and vanishes on S. Thus Lemma (1.2.3) shows that given ∈>0, there exists 𝛿 > 0such that 

 

Also, the operator 𝐶𝑠𝜑
ℎ −  𝐶𝜑

ℎclearly acts boundedly on L∞(S)with 

 

It now follows from the RieszThorin Interpolation Theorem that 

 

the slightly different norm estimate implicit in the proof of the Marcinkiewicz Interpolation 

could also be used. (An alternate approach, available since 𝐶𝜑
ℎis an integral operator, is to 

use Schur’s test Hence 

 

Since each 𝐶𝑠𝜑
ℎ , 0 <s <1is compact on 𝐿𝑡(S), 𝐶𝜑

ℎis also. The proof is complete. 

Applying our compactness characterization, we can show by explicit examples that 

𝐿𝑡 compactness for each 1 < 𝑡 < ∞  may not imply 𝐿1boundedness. This, in particular, 

shows that the converse of Proposition (1.1.6) does not hold. 
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Proposition (1.2.8)[1]: For each 𝑥 ∈ {𝑐, ℎ, 𝑚, 𝑝}there exists 𝜙𝑥such that 𝐶𝜑𝑥
ℎ is compact on 

Lt(S), 1 < 𝑡 < ∞, but 𝐶𝜑𝑥
ℎ is not bounded on L1(S).We fix as a standard reference point 

 

Proof: Put 

 

and 

 

where∈>0is a sufficiently small number chosen so that 0 ≤ ℎ𝑥(𝒔)  ≤ 1. Given 𝑥 ∈ {𝑐, ℎ, 𝑚, 𝑝}, 

put Vx=Sx(e, ∈) ∩Sand define 

 

Where Vx denotes the characteristic function of Vx. Clearly, this function satisfies (1.1.1).We 

show that 𝐶𝜑𝑥
ℎ is not bounded on L1(S), only for the case x =c; the proofs for other cases are 

similar and thus omitted. By Fatou’s Lemma 𝐴𝜑𝑐,1
𝑐 (e) ≤𝑙𝑖𝑚r→−1inf𝐴𝜑𝑐,1

𝑐 (re), and so by 

Proposition(1.1.7).it suffices to prove that 𝐴𝜑𝑐,1
𝑐 (e) =∞. Note 

 

and so 

 

It is elementary to see that this integral diverges when n =1., So, 𝐶𝜑𝑐
𝑐 is not bounded on L1(S). 

Now, we 𝑙𝑒𝑡 1 < 𝑡 < ∞and show that each 𝐶𝜑𝑥
𝑥 is compact on Lt(S). By Lemma (1.1.6) it 

suffices to show that σ◦𝜑𝑥
−1is a compact X Carleson measure. It is easy to see 

(27) 
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for any ζ, η∈S. Thus we have 

 

and consequently it suffices to consider the Carleson sets 𝑆𝑥(e, δ).Continuing under the 

assumption that x =c, the other cases being similar, note that ℎ𝑐is invertible (when) is 

sufficiently small). Thus, for 𝜁 ∈ 𝑉𝑐, we see that φ𝑐(ζ) ∈Sc(e, δ)if and only if dc(ζ) <ℎ𝑐
−1(δ). 

Thus 𝜙𝑐
−1[Sc(e, δ)] =Sc(e, ℎ𝑐

−1(δ))for all δ sufficiently small. Hence 

 

and so σ◦𝜑−1is a compact C Carleson measure. This completes the proof. As another 

consequence of our compactness characterization, we can easily recover Sarason’s result. 

Recall that (1.1.1)is satisfied by all holomorphic self-maps of D. 

Corollary (1.2.10)[1]:Let 𝜑 be a holomorphic self-map of Dsuch that 𝜑(0) =0. Then 𝐶𝜑
ℎis 

compact on L1(∂D)if and only if 𝐴𝜑,1
ℎ (η) =1for all η∈∂D. 

Proof: Note that 𝜒h(𝜑(・), z)is a bounded harmonic function on D for each z∈D. We thus 

have 

 

for all z∈D. So, the corollary is immediate from Proposition (1.2.6).if x, y∈{c, p, m}, t >1, and 

𝐶𝜑
𝑥is bounded (respectively compact) on Lt(S), then 𝐶𝜑

𝑦
is bounded (compact) on Lt(S). Also, if 

𝐶𝜑
ℎis bounded (respectively compact) on 𝐿𝑡(S), 1 <t <∞, then 𝐶𝜑

𝑥is bounded (compact) on 

𝐿𝑡(S)for𝑥 ∈ {𝑐, 𝑝, 𝑚}. Example (2) below shows that the converse fails badly: 𝐶𝜑
𝑥, x ∈ {𝑐, 𝑝, 𝑚}, 

can be compact while 𝐶𝜑
ℎis not bounded.Carleson measure methods were used to get these 

results for t >1. When t =1, Carleson measure methods are not available and the situation is 
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quite different. In this part we consider the 12 implications of the type If 𝐶𝜑
ℎis boundedon 

L1(S), then 𝐶𝜑
𝑦
is boundedon L1(S),where𝑥 ≠  𝑦. We show that 2 of these implications hold, 

while 9 of the remaining 10 fail. In fact we show that 7 of these fail badly, in that 𝐶𝜑
𝑥can be 

compact while 𝐶𝜑
𝑦
is not bounded. The last cases that we were not able to resolve will be 

stated as questions at the end of this part. We begin with the two implications that do hold: 

Proposition (1.2.11)[1]: Let 𝜑be as in (1.1.1). If 𝐶𝜑
𝑐 is bounded (respectively compact) on 

L1(S), then 𝐶𝜑
𝑥is bounded (compact) on L1(S)for𝑥 = 𝑝, 𝑚. 

Proof: We first consider 𝑥 = 𝑝. We have 𝜒𝑝=2 Re𝜒𝑐−1and so the boundedness. For 

compactness, if 𝑧, 𝑤 ∈ 𝑩, then 

 

Proposition(1.2.7 )[1]now shows that 𝐴𝜑,1
𝑐 ∈C(𝑩)implies 𝐴𝜑,1

𝑝
∈C(𝑩), and so the statement for 

compactness follows from Proposition (1.2.6).We now consider the boundedness for x =m. 

Let z∈B. Since 𝜒𝑚(𝜑(ζ), η) ≤2n|Kc(𝜑(ζ), η)|, we have by Fubini’s Theorem and Fatou’s 

Lemma 

 

Since the last integral above is equal to 1, this shows that 𝐴𝜑,1
𝑚 is bounded by 2n𝐴𝜑,1

𝑐 . Hence 

the result for boundedness follows from Proposition (1.2.6)Finally, we consider the 

compactness for 𝑥 = 𝑚. Assume that 𝑐𝜑
𝑐 is compact on L1(S), or equivalently by Proposition 

(1.2.4) that 𝐴𝜑,1
𝑐 is continuous on B. Now by Proposition (1.2.6) again, to see that 𝐶𝜑

𝑚is 

compact, it suffices to show that 𝐴𝜑,1
𝑚 is continuous on B. Since 𝐴𝜑,1

𝑚 is continuous on B, it 

suffices to show that it is radially uniformly continuous. Let ≥0and η∈S. there is 𝛿 >

0independent of 𝜂 ∈ 𝑆such that for all 𝜉 ∈ 𝑆𝑚(𝜂, 𝛿) 
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since𝐴𝜑,1
𝑚 is (uniformly) continuous on 𝑩. 

Note 

 

For ζ∈S and z∈B. With 𝐾𝑚replaced by 𝜒𝑚this estimate extends to all z∈S, since 𝜒𝑚(z, η) 

=0when z∈S.  

 

For ξ∈Sm(η, δ). 𝐿𝑒𝑡 0 < 𝑟 < 1. Since 𝑓𝑠 𝜒𝑚(rη, ξ) dσ(ξ) =1 

 

Thus, setting M=supz∈B𝐴𝜑,1
𝑚  (z), we obtain by Fubini’s Theorem and(29) 

 

Therefore we have 

 

for all r sufficiently close to 1. The proof is complete. 

We now turn to the examples that demonstrate the failures of the implications dis-cussed at 

the beginning of this part. Recall 𝐶𝜑
𝑝
=𝐶𝜑

ℎin the one-dimensional case. So, the restriction 𝑛 ≥

(28) 

(29) 

(30) 
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2in the next example is required, by Theorem (  1.1.1) (b) for 1 < 𝑡 < ∞, and by Proposition (  

1.2.10)   for 𝑡 = 1. In what follows, 𝑒 ∈ 𝑆denotes the point specified in (1.1.7). 

Example (2): 𝐿𝑒𝑡 1 ≤ 𝑡 < ∞, 𝑥 ∈ {𝑐, 𝑝, 𝑚}, and 𝑛 ≥ 2. Then there exists 𝜑 such that 𝐶𝜑
𝑥is 

compact on 𝐿𝑡(S), but 𝐶𝜑
ℎis not bounded on 𝐿𝑡(S). 

Proof:First, consider the case 1 < 𝑡 < ∞. In this case we use the Carleson measure 

characterizations. 𝐹𝑖𝑥 
𝑛

𝑛−1
< 𝑎 < 1and let 

 

where La(λ) =1 −(1 −λ)a, λ∈D. We remark that Lais a conformal map of Donto a teardrop-

shaped region in D with vertex . Since |𝜑(ζ) −e| =|1 −ζ1|a=|1 〈𝜑(ζ),, 𝑒〉|, we have 

 

Accordingly, using (), we obtain 

 

which, together with Lemma ( 1.2.7), shows that 𝐶𝜑
ℎis not bounded on Lt(S). On the other 

hand, using ,we  

As in the proof of Proposition (1.2.8), this shows that 𝐶𝜑
𝑥is compact on Lt(S). This completes 

the proof for t >1. 

Now, we consider the case t =1. This time we let 

 

where h(s) =(1 −s)1/2for 0 ≤s ≤1and h(s) =1otherwise. Again, 𝜑clearly satisfies (1.1.2).  
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Thus we see from Proposition(1.2.1)and Fatou’s Lemma that 𝐶𝜑
ℎis not bounded on L1(S). 

To prove that 𝐶𝜑
𝑥is compact on L1(S), we only need to consider for x =c by Proposition 

(1.1.3). Since 𝜑(S)touches Sonly at e, it suffices to show that 𝐴𝜑,1
𝑐 is continuous at e by 

Proposition (1.2.6). Let 𝑤 ∈ 𝐵. Since 𝑅𝑒(1 − 𝑤1)  ≥ 0, we have 

 

So that  

 

Note 

 

this is where the restriction 𝑛 ≥ 2 comes into play. Thus we conclude via the Dom-inated 

Convergence Theorem that 𝐴𝜑,1
𝑐 is continuous at e, as required. The proof is complete. 

Next we give a simple example that shows and 𝐶𝜑
𝑚may be bounded on L1(S), while 𝐶𝜑

𝑝
is not. 

Recall that iddenotes the identity map of S. 

Example (3):For 𝑛 ≥ 2, Chidand Cmidare bounded on L1(S), but C cid and C pit are not 

bounded on L1(S). 

Proof:𝐶𝑖𝑑
ℎ and 𝐶𝑖𝑑

𝑚are simply the identity operator on L1(S)by Proposition (1.1.1) (b), and so 

bounded. That 𝐶𝑖𝑑
𝑝

is not bounded is a consequence , and it follows from Proposition 

(1.1.1)that 𝐶1disc not bounded. The restriction 𝑛 ≥ 2in the next two examples is required, 

since 𝐶𝜑
𝑝
=𝐶𝜑

𝑚when 𝑛 = 1. Also, when 𝑛 = 1, Cpidis bounded on L1(S)but 𝐶𝑖𝑑
𝑐 is not, as 
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discussed above. But a different example is required to differentiate between the behavior of 

𝐶𝜑
𝑝
and 𝐶𝜑

𝑐 on L1(S)when𝑛 ≥ 2, since in that case 𝐶𝑖𝑑
𝑝

is not bounded. 

Example (4): Let n ≥2. Then there is 𝜑 satisfying (1.1.1)such that 𝐶𝜑
𝑚is compact on L1(S), but 

𝐶𝜑
𝑐 and 𝐶𝜑

𝑝
are not bounded on L1(S).In the proof below we will use the non-isotropic triangle 

inequality. 

 

valid for all z1, z2, z3∈B. 

Proof: Define a sequence {𝑞𝑘} ⊂𝑩by 

 

so that 

 

Let {𝐸𝑘}𝑘=2
∞ be a partition of Sinto Borel sets 𝐸𝑘such that σ(𝐸𝑘) =

cn

𝑘2𝑛𝑘, where (cn)−1=∑
1

𝑘2𝑛𝑘
∞
𝑘=2 . 

Denote by 𝑥𝑘the characteristic function of 𝐸𝑘and define  :𝑆 → 𝑩by 𝜑 =∑ qkχx∞
𝑘=2 . Then 𝜑 is a 

Borel function and 

 

where𝛿kis the point mass at 𝑞𝑘. Clearly 𝜑 satisfies (1.1.1)since𝜑−1(S) =∅. Also, note 

 

for any x. 

 

(31) 

(32) 

(33) 

(34) 
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Thus, from Fatou’s Lemma and Proposition ( 1.2.6), 𝐶𝜑
𝑝
is not bounded on L1(S)which in turn 

implies𝐶𝜑
𝑐 is not bounded on L1(S)by Proposition ( 1.2.7).We now turn to the proof that𝐶𝜑

𝑚is 

compact on L1(S). Since 𝑞k→e, it follows from (1.1.7)that the sequence {𝜒𝑚(𝑞𝑘, ・)}𝑘 is 

uniformly bounded on each compact subset of 𝐁\{e}. Accordingly, for 𝑥 = 𝑚 converges 

uniformly on each compact subset of 𝐁\{\{e}. So,𝐴𝜑,1
𝑚 is continuous on 𝐵\{e}, because each 

𝜒𝑚(qk, ・)is continuous on B. For this it is enough to show that there is a constant 𝐶 =

𝐶(𝑛) > 0     such that 

 

for any integers M, N with 𝑁 − 2 ≥ 𝑀 ≥ 3and 𝑤 ∈ 𝑆𝑚(e, 2−N).Let 𝑀 ≥ 3be a given positive 

integer. As a preliminary step towards (34), we need certain estimate for the 

series∑
  𝜒𝑚(𝑞𝑘.𝑤)

𝑘2𝑛𝑘
∞
𝑘=𝑀 . First, we show that there is a constant 𝐶 = 𝐶(𝑛)  > 0such that 

 

for ℓ ≥ 𝑀 + 2. To see this, for 𝑀 ≤ 𝑘≤ℓ−2and 𝑤 ∈ 𝑆𝑚(e, 2−ℓ), note by 

 

So we get that 

 

there is a constant 𝐶 = 𝐶(𝑛)  > 0such that 

 

for all integers ℓ≥2. Finally, we show that there is a constant 𝐶 = 𝐶(𝑛)  > 0such that 

(35) 

(36) 
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for positive integers. To see this, for 𝑘 ≥ 𝜆 + 3𝑎𝑛𝑑 𝑤/∈ 𝑆𝑚(𝑒, 2ℓ−1), note by (37) 

 

so that, again using (17), 

 

Since ∑ 2𝑛𝑘  /(𝑘2𝑛𝑘)∞
𝑘=ℓ3 ≤ 1/ ℓ this yields (1). 

. Since 

 

we have 

 

for 𝑤 ∈ 𝐵. Let Nbe a given positive integer with N≥M+2and fix w∈𝑆𝑚(e, 2−N). Choose ℓ≥N 

such that w∈𝑆𝑚(e, - ℓ) \Sm(e, 2 ℓ1). Then we see from (35), (36)and (37)that the section and 

term of the above is dominated by some constant (depending only on n) times 

 

the constants suppressed in these estimates are independent of M and N. From this and 

(37)we conclude (36), as asserted. The proof is complete. 

(37) 

(38) 
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Example (6):Let n ≥2. Then there is 𝜑such that 𝐶𝜑 
𝑝

is compact on L1(S)but𝐶𝜑
𝑐 and 𝐶𝜑

𝑚are not 

bounded on L1(S). 

Proof: Define a sequence {ak}of complex numbers by 

 

Also, since 

 

we have 

 

We have 

 

it is this step where the restriction 𝑛 ≥ 2comes into play. This in particular shows {ak} ⊂D. 

Now, as in the proof of Example(4), take a Borel function 𝜑 :S →B such that 

 

for any x; this time we take 𝑐𝑛=∑
1

𝑘2𝑛𝑘
∞
𝑘=1

−1
. It is easily checked that 𝐴𝜑,1

𝑚 (𝑒) =∞. So, as in the 

proof of Example(6)𝐶𝜑
𝑚is not bounded on L1(S), which in turn implies 𝐶𝜑

𝑐 is not bounded on 

L1(S). 

Turning to the proof that𝐶𝜑
𝑝
is compact on L1(S), first note that an argument similar to the one 

used in the previous example will show that 𝐴𝜑,1
𝑚 is continuous on 𝑩\{e}. Thus.6it suffices to 

show that 𝐴𝜑,1
𝑝

is continuous at e. To this end we will prove 

(39) 

(40) 
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For w∈Sc(e, 2−N) \Sc(e, 2−N−1)and for some constant C>0independent of N and w. Here, and 

in the rest of the proof, N denotes an arbitrary positive integer. 

To begin with, let 𝑤 ∈ 𝑩. Note 

 

and, in particular, 

 

for each k. Hence we have by 

 

We now restrict w∈𝑆𝑐(e, 2−N) \Sc(e, 2−N−1)and estimate each sum of the above separately. 

For the second term, since 

 

for each k, we have 

 

To estimate the first sum, note 

 

(41) 

(42) 



43 

 

Hence, using that Re(1 −ak)𝑛=0, we have 

 

This, together with (42), yields 

 

This, together with (41), yields 

 

Now, we conclude (41)by (42)and (43). The proof is complete. 

(43) 
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Chapter2 

Highly MultistableComposite Surfaces 

The concept is then extended to surfaces composed of three and by extension more 

identical bistable shells connected in series in order to achieve additional stable states. The 

multistable behaviour of these surfaces is investigated by finite element analysis and verified 

by experimental work. 

Section (2.1):Tripled Bistable Structures and Connected Bistable Composite Shells 

Due to their multiple discrete stable configurations, compliant multistable surfaces have been 

considered for use in many adaptiveapplications. They offer several advantages when used 

as structures requiring shape variation, including the reduction in required components and 

an increase in their potential operational environments The increasingly high demand for 

adaptive structures across many fields of engineering, but in particular aerospace, including 

flow control and adaptive optics, makes research into extending the degree of multistability, 

and hence the adaptively ,timely. It has long been known composite laminates with un 

symmetric layups may present multiple stable configurations at room temperature Due to the 

mismatch of coefficients of thermal expansion in the directions axial and transverse to the 

fiber, residual thermal stresses build up during the curing process. These residual stresses 

cause the plates to curve into one of two possible stable cylindrical shapes after curing. In 

addition, each cylindrical shape can transition to the other by means of an applied external 

actuation.However, an individual bistable composite laminate normally cannot fulfill the 

requirements of real world applications. On the one hand, bistable composite shells are 

required to be connected with other components, on the other hand, adaptive applications 

may need more than two stable configurations. Therefore, the extension of previous studies 

of bistable plates to achieve multistable structures composed of multiple bitable composite 

shells is a subject of interest. For example, Mattioni et al. connected one edge of a bistable 
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composite shell to a symmetric, i.e. monostable, laminate to demonstrate the use of bistable 

composites is feasible in morphing structures. Although the movement of one edge of the 

bistable laminate is restrained, the compound surface demonstrates two discrete stable 

configurations. However, when two edges of a bistable composite laminate are clamped by 

monostable laminates, the plate only demonstrates one stable configuration. To regain 

multistability, a designed surface consisting of symmetric and unsymmetric laminate parts 

may be introduced, for example, the shell demonstrated by Arietta et al. The embedded 

composite shell with variable stiffness can demonstrate bistability and avoid the conventional 

connections which may increase the risk of laminate failure. However, these embedding 

designs cannot increase the number of stable configurations. To achieve high degrees of 

multistability, Dai et al. fabricated tristable composite lattices by connecting four bistable 

rectangular laminates with discrete joints which were then assembled n lattice cells by bolts. 

The lattice structure can present 2n stable shapes. A similar design is demonstrated in. 

These attempts to achieve highly multistable structures have two main disadvantages: first, 

large numbers of components are used – this negates one of the principle advantages 

of the use of compliant mechanism in adaptive system; second bolted connections may 

reduce the performance and lifetime of composites. In this chapter, novel multistable 

composite surfaces are constructed by connecting several identical bistable composite 

shells in series. As previously stated, if n bistable components are connected, the resulting 

system may exhibit up to 2n discrete stable configurations. This has  

 

Fig. 1. Three connected biased von Mises truss structures. 
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Fig. 2. Two stable configurations of a biased von Mises truss. 

 

Fig. 4. Relative strain energy vs. relative displacement plots for a single asymmetrically 

bistable (𝐾𝑏 ≠ 0) von Mises truss with variable 𝐾𝑠 . 

previously been demonstrated for systems where the individual bistable components are 

decoupled and may be independently actuated via the design of statically and kinetically 

determinate systems. When components are connected in a continuous sense, however, it 

is essential to consider their interaction by means of the coupling along common boundaries. 

In this chapter we begin this investigation by considering the interaction between two 

bistable plates and then extend this to the study of three connected bistableplates. 
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Furthermore, in order to interpret the multistable behaviour of these newly designed 

surfaces, a two-dimensional multistable an alogmodel will be introduced first and a 

parametric study will be carried out to characterise the controlling parameters which 

determine multistability of the analog model. Inspired by the understanding gained from this 

simplified study, a design method is developed to assist the compound surface achieving 

higher multistability. Since each of these shells possesses two stable states, the compound 

structure can theoretically present up to a maximum of eight stable configurations. However, 

due to the interaction between the connected shells, it will be shown that a maximum of 

seven discrete stable states can be achieved in a surface consisting of three connected 

square bistable composite shells. 

Before analysing the behaviour of connected bistable composite shells, it is instructive to 

consider an analog model consisting of three biased von Mises truss systems to understand 

the general behaviour of bistable elements connected in series. The three von Mises trusses 

are connected in series by rigid bars and coupling springs. By varying key parameters, the 

multistable behaviour of the truss structure is controlled and a maximum eight discrete stable 

states, as expected, are found to exist. As illustrated in Fig. 1, the three identical von Mises 

trusses consist of elastic rods of initial length 𝐿0. The span width of each truss. 
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Fig. 3. Relative strain energy vs. relative displacement plots for a single von Mises truss with 

variable bias stiffness 𝐾𝑏 showing the transition from symmetric to asymmetric bistability 

 

Fig. 5. Plots of Relative displacement of trusses vs. relative strain energy in different 

actuation steps for the octo-stable truss structure. system is 21 The axial stiffness of the rods 

is Ks. Biasing springs Kb are attached to the centrally-located hinges A, B and C. Any two 

adjacent truss systems are connected as shown by a rigid bar. 
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Fig. 6. Plots of Relative displacement of trusses in different actuation steps for the tripled 

trusses. 

and coupling spring 𝐾𝑐 All of the trusses are shown in their initial strain free stable 

configurations. The initial height of the truss members is defined by the vertical distance h 

and the maximum displacement of a truss is 2h.We first investigate the bistability of a single 

truss. When a vertical is placement d is applied, the rods will be compressed and the truss 

system will move downward. Meanwhile the strain energy  stored by the truss will rise. When 

the displacement reaches a critical value, the strain energy will reach a maximum value and 

will drop as the displacement is increased. As the truss is displacement controlled there is no 

dynamic jump to the second stable state. This truss system then continues to a new stable 

configuration corresponding to a second energy minimum (see Fig. 2). The relationship 

between the displacement relative to double height 2h and the stored strain energy relative 

to the largest local strain energy minimum of a bistable truss achieved Fig. 3 demonstrates 

the relationship of the relative displacement and relative strain energy of a von Mises truss 

with increasing Kb, in which 100% relative displacement indicates the vertical displacement 

of the truss is the maximum displacement, 2h. The two local strain energy minima 
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correspond to two stable states. When Kb ¼ 0, the two local minimum values are identical, 

and the system is symmetrically bistable. With Kb increasing, the actuation energy of one 

stable state rises and the energy gap between two stable states increases. The stable state 

possessing lower potential energy becomes the preferred stable state. When Kb reaches a 

critical value, the second energy minimum disappears and the system becomes monostable. 

In other words, to ensure that each individual truss is bistable, the stiffness of the bias spring 

Kb must be lower than a critical value. Besides the stiffness of biasing spring Kb, the 

bistability of thevon Mises truss is also determined by 𝐾𝑠. Fig. 4 illustrates the influenceof Ks 

on the stored strain energy of the bistable truss. With Ks increasing, higher energy is 

required for actuation. This means 𝑠𝑡Ifferrors cause the stable configurations of the truss to 

be more. 

 

 

Fig. 7. Plots of Relative displacement of trusses 𝑣𝑠 relative strain energy for the hepta-stable 

truss structure. 

Table 1 
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Properties of IM7/8552 carbon fiber composites. 

E11 

(GPa) 

E22 

(GPa) 

G12 

(GP)a) 

V12 
𝜶𝟏 

(10-6/oC) 

𝜶𝟐 

(10-6/oC) 

Thickness 

(mm) 

Side 

length 

(mm) 

164 12 5.3 0.33 0.02 31.2 0.131 100 

stable in the sense that greater energy input is required to transition between the states. 

After understanding the bistability of an individual von Misestruss, the next step is to study 

the influences of these key parameters on the multistable  behaviour of connected truss 

systems. When one truss of this connected structure is actuated by displacement control, 

the motion will be transmitted to other driven trusses by the rigid bars and connecting 

springs. If the vertical displacement of point A; B; C is denoted by 𝛿1; 𝛿2; 𝛿3, the loads 

appliedby the connecting spring on point A; B; C are expressed as 

 

The equilibrium path 𝑃𝑖 , 𝑑𝑖 of these three systems must also be 

equal to 

 

in which Xi are the compressive deformations of the diagonal members and 𝜃𝑖 are the angles 

between a hinge and the horizontal direction. 

They can be obtained by 

 

Combining Eqs (1), (2) and (3), it may be seen that the force-controlled displacement of the 

two driven trusses may be expressed as a function of the imposed displacement 𝛿 on the 

driving truss. 

(1) 

(2) 

(3) 
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Fig. 8. Actuation procedure for coupled bistable composite shells away from a primary stable 

state. 

 

 

Fig. 9. Two different approaches of attaching a biasing strip on a single shell. 
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In order to identify each state clearly, we use a binary notation. The original stable state of 

the truss is denoted as 0 and the actuated stable state is denoted as 1. Stable state 000 and 

111 are two primary stable states since there is no interaction between the connected 

trusses. When not all connected trusses are in the same state, the tripled truss structure is in 

an intermediate configuration. In an intermediate state, the interaction between two adjacent 

trusses within different states may be large enough to trigger one of the trusses to its other 

state; in other words, this intermediate state is not stable. To determine the stability of 

intermediate states, four actuation steps are applied. Specifically: 

(i)  step A: actuate from state 000 to state 100; 

(ii) step B: actuate from state 100 to state 110; 

(iii) step C: actuate from state 110 to state 010; 

(iv) step D: actuate from state 100 to state 101. 

States 001 and 011 are not investigated as their behaviour maybe inferred due to the 

symmetry of the system. In all cases the actuated truss is subjected to displacement control, 

and the other two trusses are in a force-controlled regime. The tripled von Mises truss structure 

possesses eight stable states if and only if the actuation of the driving truss does not actuate 

the other two trusses in every actuation step. Fig. 5 demonstrates the relative displacements of 

the trusses of an𝑜𝑐to-stable truss structure by the four actuation steps. It is clear that, in each 

actuation step, the relative displacements of the driven trusses are small then the structure 

reaches a new stable state. It indicates that no automatic snapthrough occurs and the 

expected stable state can be achieved. The energy graphs of the tripled truss structure (see 

Fig. 6) verify the stability of these new states. It is clear that the structure reaches a local 

energy minimum at the newstate.The analytical results show the multistability of the tripled von 

Mises trusses is determined by the connection between the trusses. If the value of𝐾𝑐rises, the 

interaction between connected trusses will also increase. If 𝐾𝑐 exceeds a critical value, the 

tripled truss systems will not demonstrate eight stable states. Fig. 7 illustrates the relative 
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displacements of the trusses of a hepta-stable truss structure by the four actuation steps. In the 

actuation step C, the movement of truss 1 results in increasing external strain energy 

introduced to truss 2. Before truss 1 is fully actuated, the introduced energy to truss 2 already 

exceeds the actuation energy and the truss snaps back to state 0. In other words, the 

intermediate state 010 of this structure is no longer a stable state. By actuating truss 1, the 

structure will jump through from state 110 to state 000 directly. Thus, this structure only 

possesses seven stable states. As 𝐾𝑐 increases, more intermediate states become switched off 

via a similar mechanism.𝑇0avoid the unwanted automatic actuation, the actuationenergy of the 

truss needs to be raised. According to the investigation of the multistability of the single truss, 

the actuation energy is determined by the relative stiffness of the bar, Ks. By increasing the 

value of Ks, the stable state 010 is achievable again and the tripled truss structure regains 𝑜𝑐to 

stability successfully. In other words, higher Ks can help the tripled trusses with strong 

connection to achieve higher multistability. Although the bias stiffness Kb can affect the degree 

of asymmetric bistability of a single truss system, the influence of the value of Kb on achieving 

the 𝑜𝑐tostability of this tripled structure is limited. This is because, despite resulting in a more 

stable state 0, the increasing Kb will lead the actuated state 1 to be less stable. Therefore, in 

order to ensure the tripled von Mises trusses possesses more stable states, these bistable 

trusses should not be highly asymmetrically bistable. In summary, the response of the tripled 

bistable trusses shows that its multistability is determined by the relative stiffness of the bias 

and coupling springs and the bars. Specifically: 

(i) as the value of bias stiffness Kb increases from 0, the single truss changes from being 

symmetrically bistable to being asymmetrically bistable. If  Kb is over a critical value, the 

truss will be monostable; 
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Fig. 10. Strain energy vs. relative actuation percentage plots for a symmetric bistable shell 

and two identical shells with biasing strips attached. 

 

Fig. 11. Strain energy vs. relative actuation displacement percentage plots for three different 

coupled bistable shells. 



57 

 

 

 

Fig. 12. Configurations of two symmetrically bistable shells in an intermediate displacement-

controlled state and their corresponding strain energy: this coupled system is bistable. 

(ii) higher coupling stiffness 𝐾𝑐will lead to higher actuation energy of the individual truss; 

(iii)  to avoid the actuation of the driven truss caused by the driving truss, in other words, 

to ensure the system achieves 𝑜𝑐tostability, the relative stiffness of the connecting spring Kc 

must be lower than a critical value; 

(iv) the critical value of 𝐾𝑐is dependent on the value of Ks i.e. the symmetry of bistability 

of each individual truss. The critical value of 𝐾𝑐can be raised by increasing the relative 

stiffness of the rods, Ks 

(v) a structure composed of three symmetrically bistable trusses is more likely to 

achieve octostability than those composed of asymmetrically bistable trusses. 

The understanding gained from the previous part can assist in interpreting the response of 

the novel designed surfaces. We restrict the number of bistable units of the multistable 

structure to be up to three in this chapter, however, this concept can be easily extended to a 

multistable surface consisting of many more bistable shells connected by the same 

approach. The mechanical properties are taken from the manufacture’s data sheet and listed 
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in Table 1.Whilst restricting the design space, this enables the behavior to be validated by 

experimental models. The stacking sequence is [0=90] to ensure that the laminates have a 

moderate out-of-plane displacement which would help the connected shells to demonstrate 

more stable states and avoiding the generation of 

 

Fig. 13. Configurations of two asymmetrically bistable shells in an intermediate 

displacement-controlled state and their corresponding strain energy: this coupled system is 

quadstable. 
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Fig. 14. Three connected square shells shown here with biasing strips attached in their 

parallel orientation .twisting curvature after curing. For the sake of easy identification, we 

continue to use binary notation to represent the states. If a shell curves along the linking 

edge direction, the shell is defined as being in state 0; otherwise, it is in state 1.It is noted 

that a Ritz energy analysis is often considered a fast and reliable approach when 

investigating the multistable behavior of unsymmetric composite laminates. However, this 

approach is not adopted in this chapter due to the large number of terms in the 

approximating polynomials required to adequately represent the coupled shells. The 

significantly increased calculation time and the presence of many local minima make a Ritz 

approach no longer a feasible way of investigating connected bistable composite shells. 

Therefore, Finite Element Analysis (FEA) is exclusively used as the simulation method in this 

research.Before considering the behaviour of the tripled connected bistable shells, we first 

investigate the multistable behaviour of coupled bistable shells. This is because, although 

the multistable behavior of the tripled bistable truss structure has been understood, the 

nature of the interaction between fully connected shells is significantly more complex than 

the one dimension connection which is used in the analog model. For a coupled bistable 

shell structure, a maximum of four stable states may be present. Among these four stable 

states, the two primary states exist in which both of the shells have the same stable 

configuration. Besides two primary stable states, the connected plates may achieve stability 

during intermediate states in which the two shells individually present different 

configurations. Due to the continuous connection, the two plates will be subject to 

considerable deformations which may trigger the surface jump to the primary stable state 

during an attempted transition to an intermediate state. Thus, the key to achieving highly 

multistable surfaces is the stability of intermediate states.FEA is performed with the 

commercial software SAMCEF V13.1. 
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Following a mesh refinement study, a single plate is simulated by 400 8-node square shell 

elements. This level of discretisation 

 

 

Fig. 15. Finite element predictions of the stable configurations of three connected bistable 

plates and the transitions between these states resulting from actuation. has been shown to 

provide mesh independent solutions. Inertial phenomena are neglected in this study; a 

geometrically nonlinear static analysis strategy is therefore adopted. The two shells are 

connected continuously along a common boundary. The manufacturing process is simulated 

first by imposing a ramped temperature increase of 160oC. After manufacturing, the 

actuation process is implemented by applying a controlled displacement to the driving shell 

until the shell snaps through to another stable state. Meanwhile, the central point and two 

free vertices of the driven shell have to be fixed for avoiding rotation (see Fig. 8(a)). The 
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deformation will transmit to the driven shell through the common edge. After the actuation, 

the fixed vertices are released and if the driven shell does not snap to a new stable 

configuration and the driving shell maintains its new shape (see Fig. 8(b)), the intermediate 

state is deemed stable and the connected shells determined to have four stable states. 

Otherwise, the intermediate state is not stable and the structure will jump to a new primary 

stable state (see Fig. 8(c)). In this case the compound surface remains bistable. According 

to the analog model, the degree of bistable asymmetry influences the multistable behaviour 

of the connected trusses. Considering the corresponding effect for coupled composite shells, 

biasing strips made by symmetric {0≠0} laminates are attached on the center of bistable 

composite shells to vary the asymmetric bistability of the composite shell. To investigate the 

influence of attaching biasing strips on the bistability of composite shells, the strips may be 

attached parallel or perpendicularly to the linking edges respectively (see Fig. 9). The 

influence of biasing strips on the bistable behaviour of a single shell is shown in Fig. 10. As 

expected, by attaching the biasing strip, the two stable states no longer exist at the same 

potential energy level. The degree of asymmetric bistability of the single shell increases and 

the stable state possessing lower potential energy becomes the preferred stable state. It is 

also noted that the selection of one of the two possibleor ientations of biasing strip enables 

either of the stable states to be made preferential. We consider three cases when the 

unbiased shell and the two differently biased shells are connected to an identical partner. To 

demonstrate the stability of intermediate states, the surfaces begin from the primary stable 

state 00 and are subjected to controlled displacements as the actuation is applied to the two 

free vertices of one shell. During the actuation procedure, deformations will transmit to the 

driven shell through the linking edges. With the controlled displacement increasing, the 

driving shell will snap through to the new stable state at a critical point, and the strain energy 

of the driven shell will rise during this actuation procedure. If a compound surface has stable 

intermediate states, the driven shell will not snap through with the driving shell and the strain 
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energy of the whole structure will reach a local minimum. It should be noted, due to 

symmetry, that only one intermediate state is investigated in this study.Fig. 11 presents the 

potential energy graph of three different coupled bistable shells during the actuation from the 

primary stable state 00 to the primary stable state 11. Since some nodes on the surface 

need to be temporarily fixed during the actuation to avoid unwanted rotations and buckling, 

the potential energy curves show some asymmetries, but the local minima in each case are 

clearly visible. The coupled symmetrically bistable shells and the coupled bistable shells with 

perpendicular biasing strips only demonstrate two potential energy minima which represent 

two primary stable states, whereas the coupled bistable shells with parallel biasing strips 

demonstrate three local energy minima. Besides the two primary stable states, this surface 

can achieve two stable intermediate states and possesses quadstability. By tailoring the 

asymmetric bistability, coupled bistable composite shells can successfully achieve a higher 

degree of multistability. This behaviour may be explained by consideration of the strain 

energy of the individual bistable units in the coupled system. Fig. 12 corresponds to the case 

when the two connected bistable plates are symmetrically bistable. The right hand shell has 

been transitioned via displacement control into state 1 and the left hand shell has deformed 

to accommodate this transition. It can be seen that the deformation imparted to the driven 

shell introduces sufficient strain energy to cause it to exit the energy well corresponding to 

state 0 and upon release will dynamically jump to state 1. Therefore the only stable 

equilibrium configuration are states 00 and 11 and it can be seen that there are no stable 

intermediate configurations. This coupled system is therefore bistable. We now consider the 

effect of causing state 1 to become energetically preferential by means of the addition of 

parallel biasing strips. As the degree of bistable asymmetry increases a critical point is 

reached at which the displacement controlled transition of one shell from state 0 to state 1 

causes the other shell to reach the limit point corresponding to the peak of the energy hill. As 

the bistable asymmetry is further increased, as shown in Fig. 13, the driven shell no longer 
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exits the energy well of state 0 and consequently when displacement control is released the 

coupled system 

 

ig. 16. Configurations of three asymmetrically bistable shells in the intermediate 

displacement-controlled state 010 and their corresponding strain energy: indicates state 010 

is stable. 
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Fig. 17. Configurations of three asymmetrically bistable shells in the intermediate 

displacement-controlled state 101 and their corresponding strain energy: indicates state 101 

is unstable. may adopt a stable intermediate state in which both shells adopt a configuration 

corresponding to the average strain energy of the two displacement-controlled 

configurations. This coupled system is therefore quadstable. Having understood the 

multistable behaviour of two connected bistable shells, we now generalise to a multistable 

surface composed of a series of coupled bistable composite shells. We focus on three 

connected square bistable shells (see Fig. 14) but the evaluated behaviour is readily 

extended to surfaces consisting of many more shells connected in series. Theoretically, a 

surface composed of three bistable shells may present a maximum of eight stable states. 

Based on the study of the coupled bistable shells in the previous part, all these shells are 

made asymmetrically bistable via a biasing strip parallel attached to the linking edges in 

order to obtain more stable states. In addition to the two primary stable states 000 and 111, 

this surface has up to a six intermediate stable states. Four actuation steps are applied to 

verify the stability of these intermediate states, specifically: 

(vi) step A: actuate from state 000 to state 100. 

(vii) step B: actuate from state 100 to state 110. 

(viii) step C: actuate from state 110 to state 010. 

(ix) step D: actuate from state 100 to state 101. 

In each actuation step, a controlled displacement is only applied to the driving shell as the 

actuation load and the other two driven shells are unconstrained. If and only if no driven shell 

is actuated automatically, the intermediate state obtained is deemed to be stable. Fig. 15 

illustrates the configuration transitions in these steps. Due to symmetry, the shapes of state 

001 and state 011 are not illustrated. The existence of intermediate stable states in two 

connected asymmetric bistable shells with parallel biasing strips has clearly been 

demonstrated. The existence of stable intermediate state 100 and 110 of tripled bistable 
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shells may be directly inferred as it involves connecting an identical shell to one of the free 

edges of coupled bistable shells. Since the newly connected shell is in the same stable state 

as its adjacent shell, no additional strain energy is introduced. The FE results prove this 

assumption: the two intermediate states are stable. The two remaining possible states that 

must be considered are states 010 and 101. In both these cases the central shell is 

connected to two other shells which are in a different state. Fig. 16 shows the case when the 

compound surface is in state 010. In this case the energy imparted to the two end shells is 

insufficient to  cause them to exit the energy well corresponding to state 0. Consequently 

when displacement control is removed the system will adopt the stable equilibrium 

configuration 010.The case where the surface is in state 101 is shown in Fig. 17. As a result 

sufficient energy is imparted to the central shell to exit the energy well corresponding to state 

0. When the displacement control is removed the system will dynamically jump to state 111 

and consequently state 101 does not correspond to a stable equilibrium configuration. We 

now consider the reason behind the instability of state 101 ingreater detail. It can be 

observed, with reference to Figs. 12 and 13 that when a shell in state 0 is connected to a 

shell in state 1, on release from displacement control a much greater proportion of the strain 

energy is transferred to the shell with the initially-curved common edge (state 0). This means 

that in state 101 a large proportion of the strain energy is transferred to the middle shell 

which is always sufficient to trigger snapthrough. The resistance of the middle shell to 

snapthrough may be increased through the imposition of asymmetric bistability, however, the 

second stable state is always annihilated before the dynamic snapthrough is overcome. 

Section (2.2):Experimental Investigation and Conclusions 

An experimental investigation is carried out to verify the above conclusions. Both composite 

shells with and without biasing strips are fabricated. To ensure the shells have continuous, 

robust and smooth connections, the compound shells are fabricated directly as a whole 
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rectangular shell. Because this research investigates only the number of stable 

configurations of composite shells, the comparison between the numerical results and the 

experimental results focuses on the qualitative bistability behaviour. Differences in geometry 

are the result of manufacturing imperfections and thickness variations. 

Fig. 18 illustrates the experimental results of the stable configurations of compound 

composite surface. The physical composite surface shows the same number of stable states 

as expected. The tripled composite shells with parallel strips shows seven stable 

configurations in total. A highly multistable surface fabricated 
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Fig. 18. The maximum seven stable configurations of tripled bistable shells and the 

corresponding FEA results. 

without conventional fixation and presenting smooth curvature changes has been 

successfully demonstrated.Composite surfaces possessing highly stability show high 

potential for use in adaptive applications. In this chapter, inspired by an analog model 

composed by three bistable von Mises truss systems, surfaces consisting of series 

connected bistable composite shells are presented. Since the asymmetric bistability of 

bistable elements is proved to determine the multistability of the whole analog model, the 

asymmetric bistability of individual shell is tailored by attaching a biasing strip. For coupled 

bistable composite shells, a quadstable surface is achieved as expected. The multistable 

surface design is also extended to tripled bistable composite shells which is the basic case 

of series connected bistable composite shells. By attaching biasing strips parallel to the 

linking edges, the composite surface demonstrates a higher degree of multistability, 

specifically seven discrete stable configurations. The investigation into the multistable 

behaviour of tripled bistable composite shells can be developed to design longer composite 

surfaces composed of more bistable units. The primary conclusions of this chapter are: 

(x) the tripled biased von Mises truss systems can demonstrate a maximum of eight 

stable states by varying the degree of asymmetric bistability of the individual units; 

(xi) coupled bistable composite shells are demonstrated to possess bistable or 

quadstable behaviour by tailoring the bistable asymmetry of the individual shell; 

(xii) three series-connected bistable composite shells with parallel biasing strips may 

achieve a composite surface possessing seven discrete stable configurations. The 

theoretically-possible eighth stable state is shown not to exist for square shells.Continuing 

work will build on the understanding gained in this research to design and construct surfaces 

where the individual bistable units are connected to form fully three-dimensional adaptive 

multistable surfaces. 
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When a vertical displacement d is applied to a single biased von Mises truss of the type 

shown in Fig. 1, the corresponding vertical load P applied at the apex in conditions of static 

equilibrium is given by. 

 

in which θ is the angle between a hinge and the horizontal direction; 

Kb is the biasing spring stiffness; Ks is the axial stiffness of the rod; L0 is the initial length of 

the rod; l is the half of span width of the truss; and h is the initial height of the truss. The 

rotation angle θ is evaluated according to 

 

The stored strain energy U in the von Mises truss resulting from 

the imparted displacement is given by 

 

The strain energy is a uniquely determined function of the vertical displacement 𝛿 as the 

system is energetically conservative. The valuesof Kb and Ks determine the relationship 

between the strain energy U and the vertical displacement 𝛿.When three identical von Mises 

trusses are connected by couplingsprings Kc, the loads applied to each truss system from 

the connecting spring are given by 

 

Application of Eq. (4) shows that the equilibrium paths followed 

by each truss are also equal to 

 

where the angles between a hinge and the horizontal direction h are 

(5) 

(7) 

(8) 

(9) 

(6) 
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Combining these equations, it may be seen that the force-controlled displacement of the two 

driven trusses may be expressed as a function of the imposed displacement d on the driving 

truss. Thus the stored strain energy of the complete system is given by 

 

  

(10) 

(11) 
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Chapter (3) 

A Spectral Theory of Linear Operators on Rigged Hilbert Spaces under Analyticity 

Conditions 

It is shown that there exists a dense subspace X of H such that the resolvent(λ − T)−1φ of 

the operator T has an analytic continuation from the lower half plane to the upper half plane 

as an X′ valued holomorphic function for any φ ∈X, even when T has a continuous spectrum 

on R, where X′ is a dual space of X. The rigged Hilbert space consists of three spaces 

X⊂H⊂ X′ .Ageneralized Eigen values  and a generalized eigenfunction in 𝑋′ are defined by 

using the analytic continuation of the resolvent as an operator from X into X′ . Other basic 

tools of the usual spectral theory, such as a spectrum, resolvent, Riesz projection and semi 

group are also studied in terms of a rigged Hilbert space. They prove to have the same 

properties as those of the usual spectral theory. The results are applied to estimate 

asymptotic behavior of solutions of evolution equations. 

Section (3.1):Spectral Theory on a Hilbert Space and Gelfand Triplet 

A spectral theory of linear operators on topological vector spaces is one of the central issues 

in functional analysis. Spectra of linear operators provide us with much information about the 

operators. However, there are phenomena that are not explained by spectra. Consider a 

linear evolution equation 
𝑑𝑥

𝑑𝑡
= 𝑇𝑥defined by some linear operator T. It is known that if the 

spectrum of Tis included in the left half plane, any solutions x(t)decay to zero as 𝑡 → ∞ with 

an exponential rate, while if there is a point of the spectrum on the right half plane, there are 

solutions that diverge as 𝑡 → ∞ On the other hand, if the spectrum set is included in the 

imaginary axis, the asymptotic behavior of solutions is far from trivial; for a finite dimensional 

problem, a solution x(t)is a polynomial in t, however, for an infinite dimensional case, a 

solution can decay exponentially even if the spectrum does not lie on the left half plane. In 

this sense, the spectrum set does not determine the asymptotic behavior of solutions. Such 
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an exponential decay of a solution is known as Landau damping in plasma physics , and is 

often observed for Schrodinger operators. Now it is known that such an exponential decay 

can be induced by resonance poles or generalized Eigen values s.Eigen values s of a linear 

operator Tare singularities of the resolvent(𝜆 − 𝑇)−1. Resonance poles are obtained as 

singularities of a continuation of the resolvent in some sense. In the literature, resonance 

poles are defined in several ways: Let Tbe a selfadjoint operator (for simplicity) on a Hilbert 

space H with the inner product (·,·). Suppose that Thas the continuous spectrum 𝜎𝑐(T) on 

the real axis. For Schrodinger operators, spectral deformation (complex distortion) technique 

is often employed to define resonance poles. Agiven operator Tis deformed by some 

transformation so that the continuous spectrum𝜎𝑐(T)moves to the upper (or lower) half plane. 

Then, resonance poles are defined as Eigen values s of the deformed operator. One of the 

advantages of the method is that studies of resonance poles are reduced to the usual 

spectral theory of the deformed operator on a Hilbert space. Another way to define 

resonance poles is to use analytic continuations of matrix elements of the resolvent. By the 

definition of the spectrum, the resolvent (λ −T)−1diverges in norm when λ ∈ 𝜎𝑐(T). However, 

the matrix element ((λ −T)−1φ, φ)for some “good” function 𝜑 ∈ 𝐻may exist for λ ∈𝜎𝑐(T), and 

the function 𝑓(𝜆) = ((𝜆 − 𝑇)−1𝜑, 𝜑)may have an analytic continuation from the lower half 

plane to the upper half plane through an interval on 𝜎𝑐(T). Then, the analytic continuation 

may have poles on the upper half plane, which is called a resonance pole or a generalized 

Eigen values . In the study of reaction diffusion equations, the Evans function is often used, 

whose zeros give Eigen values s of a given differential operator. Resonance poles can be 

defined as zeros of an analytic continuation of the Evans function for other definitions of 

resonance poles. 

Although these methods work well for some special classes of Schrodinger operators, an 

abstract spectral theory of resonance poles has not been developed well. In particular, a 

precise definition of an Eigen function associated with a resonance pole is not obviousin 
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general. Clearly a pole of a matrix element or the Evans function does not provide an Eigen 

function. In Chiba , a definition of the eigenfunction associated with a resonance pole is 

suggested for a certain operator obtained from the Kuramotomodel. It is shown that the 

Eigen function is a distribution, not a usual function. This suggests that an abstract theory of 

topological vector spaces should be employed for the study of a resonance pole and its 

Eigen function of an abstract linear operator. Our approach based on rigged Hilbert spaces 

allows one to develop a spectral theory of resonance poles in a parallel way to “standard 

course of functional analysis”. To explain our idea based on rigged Hilbert spaces, let us 

consider the multiplication operator M :φ(ω) →𝜔𝜑(ω)on the Lebesgue space L2(R). The 

resolvent is given as 

 

Where ψ∗=𝜓(𝜔), which is employed to avoid the complex conjugate of ψ(ω)in the right hand 

side. This function of λ is holomorphic on the lower half plane, and it does not exist for λ ∈R; 

the continuous spectrum of M is the whole real axis. However, if φ and ψ have analytic 

continuations near the real axis, the right hand side has an analytic continuation from the 

lower half plane to the upper half plane, which is given by 

 

where 𝑖 = √−1. Let X be a dense subspace of L2(R)consisting of functions having analytic 

continuations near the real axis. A mapping, which maps φ ∈ X to the above value, defines a 

continuous linear functional on X, that is, an element of the dual space X’, if X is equipped 

with a suitable topology. Motivated by this idea, we define the linear operator 𝐴(𝜆) ∶ 𝑋 → 𝑋′to 

be 

 

(1) 
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for 𝜓, 𝜑 ∈ 𝑋, where 〈·  | ·〉is a paring for (𝑋’, 𝑋). When 𝐼𝑚(λ) <0, A(λ) =(λ −M)−1, while when 

Im(λ) ≥0, A(λ)ψ is not included in L2(R)but an element of 𝑋′. In this sense, 𝐴(𝜆) is called the 

analytic continuation of the resolvent of Min the generalized sense. In this manner, the triplet 

X⊂L2(R) ⊂X’, which is called the rigged Hilbert space or the Gelfandtriplet ,in introduced.In 

this chapter, a spectral theory on a rigged Hilbert space is proposed for an operator of the 

form 𝑇 = 𝐻 + 𝐾, where H is a selfadjoint operator on a Hilbert space H, whose spectral 

measure has an analytic continuation near the real axis, when the domain is restricted to 

some dense subspace Xof H, as above. K is an operator densely defined on Xsatisfying 

certain boundedness conditions. Our purpose is to investigate spectral properties of the 

operator 𝑇 = 𝐻 + 𝐾. At first, the analytic continuation A(λ)of the resolvent(𝜆 − 𝐻)−1is defined 

as an operator from X into𝑋′in the same way as Eq.(1). In general, A(λ) :X→𝑋′is defined on a 

nontrivial Riemann surface of 𝜆so that when 𝜆lies on the original complex plane, it coincides 

with the usual resolvent (λ −H)−1. The usual eigeequation (λ −T)v=0 is rewritten as 

 

By neglecting the first factor and replacing (λ −H)−1 by its analytic continuation A(λ), we 

arrive at the following definition: If the equation 

 

has a nonzero solution μ in 𝑋′, such a λ is called a generalized Eigen values  (resonance 

pole) and μ is called a generalized Eigen function, where 𝐾×: 𝑋′→𝑋′is a dual operator of K. 

When 𝜆lies on the original complex plane, the above equation is reduced to the usual 

eigenequation. In this manner, resonance poles and corresponding Eigen functions are 

naturally obtained without using spectral deformation technique or poles of matrix 

elements.Similarly, the resolvent in the usual sense is given by 

 

an analytic continuation of the resolvent of Tin the generalized sense is defined to be 

(2) 
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 When 𝜆 lies on the original complex plane, this is reduced to the usual resolvent (λ −T)−1. 

With the aid of the generalized resolvent𝑅𝜆, basic concepts in the usual spectral theory, such 

as eigenspaces, algebraic multiplicities, point, continuous, residual spectra, Riesz 

projections are extended to those defined on a rigged Hilbert space. It is shown that they 

have the same properties as the usual theory. For example, the generalized Riesz projection 

Π0 for an isolated resonance pole λ0 is defined by the contour integral of the generalized 

resolvent. 

 

Properties of the generalized Riesz projection Π0 areinvestigated in detail. Note that in the 

most literature, the eigenspace associated with a resonance pole is defined to be the range 

of the Riesz projection. In this chapter, the eigenspace of a resonance pole is defined as the 

set of solutions of the Eigen equation, and it is proved that it coincides with the range of the 

Riesz projection as the standard functional analysis. Any function 𝜑 ∈ 𝑋proves to be 

uniquely decomposed as φ =μ1+μ2, where μ1∈Π0Xand μ2=(id−Π0)X, both of which are 

elements of 𝑋′. These results play an important role when applying the theory to dynamical 

systems. The generalized Riesz projection around a resonance pole 𝜆0 on the left half plane 

defines a stable subspace in the generalized sense, both of which are subspaces of 𝑋′. 

Then, the standard idea of the dynamical systems theory may be applied to investigate the 

asymptotic behavior and bifurcations of an infinite dimensional dynamical system. Such a 

dynamics induced by a resonance pole is not captured by the usual eigenvalues s. Many 

properties of the generalized spectrum will be shown. In general, the generalized spectrum 

consists of the generalized point spectrum , the generalized continuous spectrum and the 

generalized residual spectrum If the operator K satisfies a certain compactness condition, 

the RieszSchauder theory on a rigged Hilbert space applies to conclude that the generalized 

(3) 

(4) 

(5) 



75 

 

spectrum consists only of a countable number of resonance poles having finite multiplicities. 

It is remarkable that even if the operator T has the continuous spectrum , the generalized 

spectrum consists only of a countable number of resonance poles when K satisfies the 

compactness condition. Since the topology on the dual space 𝑋′is weaker than that on the 

Hilbert space H, the continuous spectrum of T disappears, while eigenvalues s remain to 

exist as the generalized spectrum. This fact is useful to estimate embedded eigenvalues s. 

eigenvalues s embedded in the continuous spectrum is no longer embedded in our spectral 

theory. Thus, the Riesz projection is applicable to obtain eigenspaces of them .Although 

resonance poles have been well studied for Schrodinger operators, a spectral theory in this 

chapter is motivated by establishing bifurcation theory of infinite dimensional dynamical 

systems, for which spectral deformation technique is not applied. In Chiba, a bifurcation 

structure of an infinite dimensional coupled oscillators (Kuramotomodel) is investigated by 

means of rigged Hilbert spaces. It is shown that when a resonance pole of a certain linear 

operator, which is obtained by the linearization of the system around a steady state, gets 

across the imaginary axis as a parameter of the system varies, then a bifurcation 

occurs.This part is devoted to a review of the spectral theory of a perturbed selfadjoint 

operator on a Hilbert space to compare the spectral theory. Let H be a Hilbert space over C. 

The inner product is defined so that 

(𝑎𝜑, 𝜓)  =  (𝜑, 𝑎𝜓)  =  𝑎(𝜑, 𝜓), 

where𝑎is the complex conjugate of 𝑎 ∈ 𝑪. Let us consider an operator 𝑇 = 𝐻 + 𝐾defined on 

a dense subspace of H, where H is a selfadjoint operator, and K is a compact operator on H 

which need not be selfadjoint. Let λ and v=vλ be an Eigen values  and an Eigen function, 

respectively, of the operator T defined by the equation 𝜆𝑣 = 𝐻𝑣 + 𝐾𝑣. This is rearranged as 

(𝜆 −  𝐻)(𝑖𝑑 −  (𝜆 −  𝐻)−1𝐾𝑣 =  0, 

 

(6) 
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Where id denotes the identity on H. In particular, when λ is not an Eigen values  of H, it is an 

Eigen values  of T if and only if id−(λ −H)−1K is not injective in H. Since the essential 

spectrum is stable under compact perturbations, the essential spectrum 𝜎𝑐(T) of T is the 

same as that of H, which lies on the real axis. Since K is a compact perturbation, the Riesz–

Schauder theory shows that the spectrum outside the real axis consists of the discrete 

spectrum; for any 𝛿 > 0, the number of Eigen values s satisfying |𝐼𝑚(𝜆)| ≥ 𝛿 is finite, and 

their algebraic multiplicities are finite. Eigen values s may accumulate only on the real axis. 

To find Eigen values s embedded in the essential spectrum σe(T)is a difficult and important 

problem. In this chapter, a new spectral theory on rigged Hilbert spaces will be developed to 

obtain such embedded Eigen values s and corresponding eigenspaces. Let 𝑅𝜆=(λ −T)−1 be 

the resolvent. Let 𝜆𝑗be an Eigen values  of T outside the real axis, and 𝛾𝑗be a simple closed 

curve enclosing separated from the rest of the spectrum. The projection to the generalized 

eigenspace 𝑉𝑗=𝑈𝑛≥1Ker(𝜆𝑗−T)n is given by 

 

Let us consider the semigroup𝑒iTt generated by 𝑖𝑇. Since iHgenerates the 𝐶0 semigroup eiHt 

and 𝐾is compact, 𝑖𝑇. also generates the 𝐶0 semigroup It is known that eiTtis obtained by the 

Laplace inversion formula (Hille and Phillips). 

 

𝑓𝑜𝑟 𝑡 > 0𝑎𝑛𝑑 𝜑 ∈ 𝐷(𝑇), where 𝑦 > 0is chosen so that all Eigen values s 𝜆of T satisfy 

Im(𝜆)  > −𝑦, and the limit 𝑥 → ∞ exists with respect to the topology of H. Thus the contour is 

the horizontal line on the lower half plane. 𝐿𝑒𝑡 𝜀 > 0 be a small number and 𝜆0, ..., 𝜆𝑁Eigen 

values s of T satisfying Im(𝜆𝑗)  ≤ −𝜀, 𝑗 = 0, . . . , 𝑁. The residue theorem provides 

 

(7) 

(8) 
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where𝛾𝑗 is a sufficiently small closed curve enclosing 𝜆𝑗. Let 𝑀𝑗 be the smallest integer such 

that (𝜆𝑗 − 𝑇)𝑀𝑗∏𝑗 = 0. This is less thanor equal to the algebraic multiplicity of 𝜆𝑗. Then, 𝑒𝑖𝑇𝑡 is 

calculated as 

 

The sectionond term above diverges as 𝑡 → ∞because 𝑅𝑒(𝑖𝜆𝑗)  ≥ 𝜀. On the other hand, if 

there are no Eigen values s on the lower half plane, we obtain 

 

for any small 𝜀 > 0. In such a case, the asymptotic behavior of eiTt is quite nontrivial. One of 

the purposes in this chapter is to give a further decomposition of the first term above under 

certain analyticity conditions to determine the dynamics of eiTt. In the previous part, we give 

the review of the spectral theory of the operator 𝑇 = 𝐻 + 𝐾on H. In this part, the notion of 

spectra, Eigen functions, resolvents and projections are extended by means of a rigged 

Hilbert space. It will be shown that they have similar properties to those on H. They are used 

to estimate the asymptotic behavior of the semigroup eiTt and to find embedded Eigen values 

s.Let 𝑋′be a locally convex Hausdorff topological vector space over C and 𝑋′its dual space. 

X’ is a set of continuous anti linear functional on X. For 𝜇 ∈ 𝑋′𝑎𝑛𝑑 𝜑 ∈ 𝑋, 𝜇(𝜑)is denoted by 

〈𝜇 |𝜑〉.For any 𝑎, 𝑏 ∈ 𝑪, 𝜑, 𝜓 ∈ 𝑋𝑎𝑛𝑑 𝜇, 𝜉 ∈ 𝑋′the equalities 

〈𝜇 | 𝑎𝜑 +  𝑏𝜓〉 =  𝑎〈𝜇 | 𝜑〉 + 𝑏〈𝜇 | 𝜓〉,                                                            (9) 

〈𝑎𝜇 +  𝑏𝜉 | 𝜑〉 =  𝑎〈𝜇 | 𝜑〉 +  𝑏〈𝜉 | 𝜑〉,                                                  (10) 

hold. In this chapter, an element of 𝑋′is called a generalized function . Several topologies 

can be defined on the dual space 𝑋′. Two of the most usual topologies are the weak dual 

topology (weak ∗topology) and the strong dual topology (strong ∗ topology). A sequence 

{𝜇𝑗}  ⊂ 𝑋′is said to be weakly convergent to 𝜇 ∈ 𝑋𝑖𝑓 〈𝜇𝑗|𝜑〉  → 〈𝜇 |𝜑〉for each φ ∈ 𝑋; a 

sequence {𝜇𝑗}  ⊂ 𝑋′is said to be strongly convergent to μ ∈𝑋′if 〈𝜇𝑗|𝜑〉  → 〈𝜇 |𝜑〉uniformly on 

any bounded subset of 𝑋.Let H be a Hilbert space with the inner product (·,·) such that X is a 
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dense subspace of H. Since a Hilbert space is isomorphic to its dual space, we obtain 𝐻 ⊂

𝑋′through 𝐻 ≠ 𝐻′. 

Definition (3.1.1)[3]: If a locally convex Hausdorff topological vector space X is a dense sub-

space of a Hilbert space Hand a topology of X is stronger than that of H, the triplet 

𝑋 ⊂  𝐻 ⊂ 𝑋′(11) 

is called the rigged Hilbert spaceor the Gelfand triplet. The canonical inclusion  i: X→𝑋′is 

defined as follows:for 𝜓 ∈ 𝑋, we denote i(𝜓)𝑏𝑦 | 𝜑|, which is defined to be 

𝑖(𝜓)(𝜑) =  〈𝜓 | 𝜑〉 =  (𝜓, 𝜑),                                                                 (12) 

for any 𝜑 ∈ 𝑋 (note that we also use 𝑖 = √−1). The inclusion from H into 𝑋′is also defined 

as above. It is easy to show that the canonical inclusion is injective if and only if X is a dense 

subspace of H, and the canonical inclusion is continuous if and only if a topology of X is 

stronger than that of H.A topological vector space X is called Mantel if it is barreled and 

every bounded set of Xis relatively compact. A Mantel space has a convenient property that 

on a bounded set A of a dual space of a Mantel space, the weak dual topology coincides 

with the strong dual topology. In particular, a weakly convergent series in a dual of a Mantel 

space also converges with respect to the strong dual topology. Furthermore, a linear map 

from a topological vector space to a Mantel space is a compact operator if and only if it is a 

bounded operator. It is known that the theory of rigged Hilbert spaces works best when the 

space Xis a Mantel or a nuclear space . 

 

Fig.1.Adomainonwhich 𝐸[𝜓, 𝜑](𝜔)is holomorphic 
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and Komatsu for sufficient conditions for a topological vector space to be a Mantel space or 

a nuclear space. Let H be a Hilbert space over C and H a selfadjoint operator densely 

defined on H with the spectral measure {𝐸(𝐵)}𝐵 ∈ 𝐵; that is, H is expressed as 𝐻 =

∫ 𝜔𝑑𝐸(𝜔)
𝑅

. Let K be some linear operator densely defined on H. Our purpose is to 

investigate spectral properties of the operator 𝑇 = 𝐻 + 𝐾. 𝐿𝑒𝑡 𝛺 ⊂ 𝑪 be a simply connected 

open domain in the upper half plane such that the interpart of the real axis and the closure of 

Ωis a connected interval 𝐼. 𝐿𝑒𝑡 𝐼 = 𝐼\𝜕𝐼 be an open interval (see Fig.1). For a given 𝑇 = 𝐻 +

𝐾, we suppose that there exists a locally convex Hausdorff vector space X(Ω) over C 

satisfying the following conditions. 

(𝑋1) X(Ω) is a dense subspace of H. 

(𝑋2) A topology on X(Ω) is stronger than that on H. 

(𝑋3) X(Ω)is a quasi-complete barreled space. 

(𝑋4) For any 𝜑 ∈ 𝑋(𝛺), the spectral measure (𝐸(𝐵)𝜑, 𝜑)is absolutely continuous on the 

interval I. Its density function, denoted by E[φ, φ](ω), has an analytic continuation to 𝛺 ∪ 𝐼. 

(𝑋5X5) For each 𝜆 ∈ 𝐼 ∪ 𝛺, the bilinear form 𝐸[·,·](𝜆) ∶ 𝑋(𝛺)  × 𝑋(𝛺)  → 𝑪is separately 

continuous (𝑖. 𝑒. 𝐸[·, 𝜑](𝜆) ∶ 𝑋(𝛺)  →C and 𝐸[𝜑,·](𝜆): 𝑋(𝛺) → 𝑪are continuous for fixed 𝜑 ∈

𝑋(𝛺)). 

Because of (X1) and (X2), the rigged Hilbert space 𝑋(𝛺)  ⊂ 𝐻 ⊂ 𝑋(𝛺)′is well defined, 

where𝑋(𝛺)′is a space of continuous anti-linear functional and the canonical inclusion I is 

defined by Eq.(12). Sometimes we denote i(ψ) by ψ for simplicity by identifying if 𝑋(𝛺) with 

X(Ω). The assumption (𝑋3) is used to define Pettis integrals and Taylor expansions of 

𝑋(𝛺)′valued holomorphic functions in Part3.5(refer to Treves for basic terminology of 

topological vector spaces such as quasi-complete and barreled space. In this chapter, to 

understand precise definitions of them is not so important; it is sufficient to know that an 

integral and holomorphy of 𝑋(𝛺)′valued functions are well defined if X(Ω)is quasi-complete 

barreled. For example, Mantel spaces, Fréchet spaces, Banach spaces and Hilbert spaces 
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are barreled. Due to the assumption (X4) with the aid of the polarization identity, we can 

show that (E(B)φ,ψ)is absolutelycontinuous on I for any 𝜑, 𝜓 ∈ 𝑋(𝛺). 𝐿𝑒𝑡 𝐸[𝜑, 𝜓](𝜔)be the 

density function; 

 

Then, E[φ, ψ](ω)is holomorphic in 𝜔 ∈ 𝐼 ∪ 𝛺. We will use the above notation for any 𝜔 ∈

𝑹 for simplicity, although the absolute continuity is assumed only on I. Since 𝐸[𝜑, 𝜓](𝜔)is 

absolutely continuous on I, His assumed not to have eigenvalues s onI. (𝑋5) is used to prove 

the continuity of a certain operator . 

Let A be a linear operator densely defined on 𝑋(𝛺). Then, the dual operator 𝐴′is defined as 

follows: the domain 𝐷(𝐴)′ is the set of elements 𝜇 ∈ 𝑋(𝛺)′such that the mapping 𝜑 →

〈𝜇 |𝐴𝜑〉from 𝐷(𝐴) ⊂ 𝑋(𝛺)into Cis continuous. Then, 𝐴′: 𝐷(𝐴′)  → 𝑋(𝛺)′is defined by 

 

If  𝐴is continuous on 𝑋(𝛺), then 𝐴′is continuous on 𝑋(𝛺)′for both of the weak dual topology 

and the strong dual topology. The (Hilbert) adjoint 𝐴∗of A is defined through (𝐴𝜑, 𝜓)  =

(𝜑, 𝐴∗𝜓)as usual when A is densely defined on H. 

Lemma (3.1.2)[3]:Let Abe a linear operator densely defined on H. Suppose that there exists 

a dense subspace 𝑌 𝑜𝑓 𝑋(𝛺)such th𝐴∗at 𝑌 ⊂ 𝑋(𝛺)so that the dual (𝐴∗)′is defined. Then, 

((𝐴∗)′is an extension of A and 𝑖 𝑜 𝐴 = (𝐴 ∗)′𝑜 𝑖  |D(A). In particular, 𝐷((𝐴 ∗)′)⊃iD(A). 

Proof: By the definition of the canonical inclusion i, we have 

 

for any 𝜓 ∈ 𝐷(A) and φ ∈Y. 

In what follows, we denote (𝐴∗)′by A×. Thus Eq.(15)means 𝑖 𝑜 𝐴 = 𝐴 × 𝑜𝑖𝐷(𝐴). Note that 

A×=𝐴’ when A is self-adjoint. For the operators H and K, we suppose that 

(𝑋6) there exists a dense subspace 𝑌 𝑜𝑓 𝑋(𝛺) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐻𝑌 ⊂ 𝑋(𝛺). 

(𝑋7) K is H bounded and 𝐾∗𝑌 ⊂ 𝑋(𝛺). 

(13) 

(14) 

(15) 
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(𝑋8) 𝐾×𝐴(𝜆)𝑖𝑋(𝛺)  ⊂ 𝑖𝑋(𝛺)𝑓𝑜𝑟 𝑎𝑛𝑦 𝜆 ∈ {𝐼𝑚(𝜆)  < 0}  ∪ 𝐼 ∪ 𝛺. 

The operator 𝐴(𝜆): 𝑖𝑋(𝛺) → 𝑋(𝛺)′will be defined later. Recall that when K is H-bounded 

,D(T) =D(H)and 𝐾(𝜆 − 𝐻)−1is bounded on H for 𝜆 ∉ 𝑹. In some sense, (𝑋8) is a “dual 

version” of this condition because A(λ)proves to be an extension of (𝜆 − 𝐻)−1. In particular, 

we will show that K×A(λ)i=I (K(𝜆 − 𝐻)−1when 𝐼𝑚(𝜆)  < 0. Our purpose is to investigate the 

operator𝑇 = 𝐻 + 𝐾with these conditions. Due to (𝑋6) and (𝑋7), the dual operator 𝑇×of 

𝑇∗=H+𝐾∗ is well defined. It follows that D(𝑇×)=D(𝐻×) ∩D(𝐾×)and  

 

In particular, the domain of T× is dense in 𝑋(𝛺)′.To define the operator A(λ), we need the 

next lemma. 

Lemma (3.1.3)[3]:Suppose that a function q(ω)is integral on R and holomorphic on Ω∪I. 

Then, the function 

 

is holomorphic on {𝜆 | 𝐼𝑚(𝜆)  < 0}  ∪ 𝛺 ∪ 𝐼. 

Proof: Putting 𝜆 = 𝑥 + 𝑖𝑦 with 𝑥, 𝑦 ∈ 𝑹yields 

 

Due to the formula of the Poisson kernel, the equalities 

 

hold when q is continuous at 𝑥 ∈ 𝐼 Thus we obtain 

 

where 

 

(16) 
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is the Hilbert transform of q. It is known that V(x) is Lipschitz continuous on I if q(x) is 

Therefore, two holomorphic functions in Eq.(16)coincide with one another on I and they are 

continuous on I. This proves that Q(λ) is holomorphic on {𝜆 | 𝐼𝑚(𝜆)  < 0}  ∪ 𝛺 ∪ 𝐼.Put 𝑢𝜆 =

(𝜆 − 𝐻)−1𝜓for 𝜓 ∈ 𝐻. In general, 𝑢𝜆is not included in H when 𝜆 ∈ 𝐼because of the 

continuous spectrum of H. Thus 𝑢𝜆does not have an analytic continuationfrom the lower half 

plane to Ω with respect to 𝜆as an H-valued function. To define an analytic continuation of 𝑢𝜆, 

we regard it as a generalized function in 𝑋(𝛺)′ by the canonical inclusion. Then, the action of 

𝑖((𝜆 − 𝐻)−1𝜓)is given by 

 

Because of the assumption (X4), this quantity has an analytic continuation to 𝛺 ∪ 𝐼as 

 

Motivated by this observation, define the operator 𝐴(𝜆) ∶ 𝑖𝑋(𝛺)  → 𝑋(𝛺)′to be 

 

for any 𝜓 ∈ 𝑖𝑋(𝛺), 𝜑 ∈ 𝑋(𝛺). Indeed, we can prove by using (𝑋5) that 𝐴(𝜆)𝜓is a continuous 

functional, 〈𝐴(𝜆)𝜓|𝜑〉is holomorphic on {𝐼𝑚(𝜆)  < 0}  ∪ 𝛺 ∪ 𝐼. When 𝐼𝑚(𝜆)  < 0, we have 

〈𝐴(𝜆)𝜓|𝜑〉 = ((𝜆 − 𝐻)−1𝜓, 𝜑). In this sense, the oper-ator A(λ) is called the analytic 

continuation of the resolvent(𝜆 − 𝐻)−1as a generalized function. By using it, we extend the 

notion of eigenvalues  andeigenfunctions. Recall that the equation for eigenfunctions of Tis 

given by (𝑖𝑑 − (𝜆 − 𝐻)−1𝐾)𝑣 = 0. Since the analytic continuation of   (𝜆 − 𝐻)−1𝑖𝑛 𝑋(𝛺)′is 

A(λ), we make the following definition. 

Definition (3.1.4)[3]: Let 𝑅(𝐴(𝜆))be the range of 𝐴(𝜆). If the equation 

 

(17) 

(18) 
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has a nonzero solution 𝜇 𝑖𝑛 𝑅(𝐴(𝜆))for some 𝜆 ∈ 𝛺 ∪ 𝐼 ∪ {𝜆 | 𝐼𝑚(𝜆)  < 0}, 𝜆 is called a 

generalized  eigen value of T and μ is called a generalized eigenfunction associated with λ. 

A generalized eigenvalue on Ω is called a resonance pole. Note that the assumption (X8) is 

used to define A(λ)𝐾×μfor 𝜇 ∈ 𝑅(𝐴(𝜆)) because the domain of A(λ)is iX(Ω). Applied by 𝐾×, 

is rewritten as 

 

If K×μ=0, Eq.(18)shows μ =0. This means that if 𝜇 ≠ 0 is a generalized eigenfunc-tion, 

K×μ≠0 and id−K×A(λ) is not injective on 𝑖𝑋(𝛺). Conversely, if id−𝐾×A(λ) is not injective on 

𝑖𝑋(𝛺), there is a function 𝜑 ∈ 𝑖𝑋(Ω)such that (id−K×A(λ))φ =0. Applying A(λ)from the left, we 

see that A(λ)φ is a generalized Eigen function. Hence, λ is a generalized Eigen value if and 

only if id−K×A(λ)is not injective on 𝑖𝑋(Ω). 

Theorem (3.1.5)[3]:Let λ be a generalized Eigen value of T and 𝜇𝑎 generalized eigenfunction 

associated with λ. Then the equality 

 

holds. 

Proof: At first, let us show 𝐷(𝜆 − 𝐻𝑥)  ⊃ 𝑅(𝐴(𝜆)). By the operational calculus, we have 

𝐸[𝜓, (′𝜆 − 𝐻)𝜑](𝜔)  = (𝜆 − 𝜔)𝐸[𝜓, 𝜑](𝜔). When𝜆 ∈ 𝛺, this gives 

For 

 

 

(19) 

(20) 
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For 𝜓 ∈ 𝑋(Ω) and φ ∈Y. It is obvious that 〈𝜓|𝜑〉is continuous in 𝜑with respect to the topology of 

𝑋(𝛺). This proves that 𝐷(𝜆 − 𝐻𝑥)  ⊃ 𝑅(𝐴(𝜆))and (𝜆 − 𝐻𝑥)𝐴(𝜆)  = 𝑖𝑑: 𝑖𝑋(𝛺)  → 𝑖𝑋(𝛺). When μ 

is a generalized Eigen function, 𝜇 ∈ 𝐷(𝜆 − 𝐻𝑥)because 𝜇 = 𝐴(𝜆)𝐾𝑥𝜇. Then, Eq.(18)provides 

 

The proofs for the cases 𝜆 ∈ 𝐼and 𝐼𝑚(𝜆) < 0 are done in the same way.This theorem means 

that λ is indeed an Eigen value of the dual operator T×. In general, the set of generalized 

Eigen values is a proper subset of the set of Eigen values of T×. Since the dual space 𝑋(𝛺)′ 

is “too large”, typically every point on Ωis an Eigen value of T. In this sense, generalized 

eigenvalues are wider concept than Eigen values of T, while narrower concept than 

eigenvalues of T×. In the literature, resonance poles are defined as poles of an analytic 

continuation of a matrix element of the resolvent. Our definition is based on a straightforward 

extension of the usual Eigen equation and it is suitable for systematic studies of resonance 

poles. Before defining a multiplicity of a generalized Eigen value, it is convenient to 

investigate properties of the operator 𝐴(𝜆). 𝐹𝑜𝑟 𝑛 = 1, 2, . .. let us define the linear operator 

𝐴(𝑛)(𝜆) ∶ 𝑖𝑋(𝛺)  → 𝑋(𝛺)′to be 

 

It is easy to show by integration by parts that 〈𝐴(𝑛)(𝜆)𝜓|𝜑〉is an analytic continuation of 

((𝜆 − 𝐻)−1𝑛𝜓, 𝜑)from the lower half plane to 𝛺. 𝐴(1)(𝜆)is also denoted by 𝐴(𝜆) as before. 

The next proposition will be often used to calculate the generalized resolvent and 

projections. 

Proposition(3.1.6)[3]:For any integers𝑗 ≥ 𝑛 ≥ 0,the operator 𝐴(𝑗)(𝜆)satisfies 

 

 

(21) 
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where the right hand side converges with respect to the strong dual topology. 

Proof: (i) Let us show (𝜆 − 𝐻×)𝐴(𝑗)(𝜆)  = 𝐴(𝑗−1)(𝜆). We have to prove that D(λ − H𝑥)  ⊃

R(A(𝑗)(λ)). For this purpose, put 𝜇𝜆(𝑦)  = 𝐴(𝑗)(𝜆)𝜓|(𝜆 − 𝐻)yfor 𝜓 ∈ 𝑋(𝛺)and 𝑦 ∈ 𝑌. It is 

sufficient to show that the mapping 𝑦 → 𝜇𝜆(𝑦)from Y into C is continuous with respect to the 

topology on 𝑋(𝛺). Suppose that 𝐼𝑚(𝜆)  > 0. By the operational calculus, we obtain 

 

 

Since 𝐸[𝜓, 𝑦](𝑧)is continuous in 𝑦 ∈ 𝑋(𝛺)(the assumption (𝑋5) and 𝐸[𝜓, 𝑦](𝑧)is holomorphic 

in z, for any 𝜀 > 0, there exists a neighborhood 𝑈1of zero in X(Ω) such that 

|(
𝑑𝑗−2

𝑑𝑧𝑗−2) 𝐸[𝜓, 𝑦](𝑧)| < 𝜀  𝑎𝑡 𝑧 = 𝜆 for 𝑦 ∈ 𝑈1 ∩ 𝑌. Let 𝑈2 be a neighborhood of zero in H such 

that ‖𝑦‖𝐻 < 𝜀 𝑓𝑜𝑟 𝑦 ∈ 𝑈2. Since the topology on X(Ω)is stronger than that on H, 𝑈2∩X(Ω)is a 

neighborhood of zero in X(Ω). If 𝑦 ∈ 𝑈1 ∩ 𝑈2 ∩ 𝑌, we obtain 

 

Note that (𝜆 − 𝐻)1−𝑗 is bounded when 𝜆 ∉Rand 1 − 𝑗 ≤ 0 because 𝐻 is selfadjoint. This 

proves that 𝜇𝜆is continuous, so that 𝜇𝜆 = (𝜆 − 𝐻×)𝐴(𝑗)(𝜆)𝜓 ∈ 𝑋(𝛺)′. The proof of the 

continuity for the case Im(λ) <0is done in the same way. When 𝜆 ∈  𝐼, there exists a 

sequence {𝜆𝑗}
𝑗=1

∞
in the lower half plane such that 𝜇𝜆(y) = lim

𝑗→∞
𝜇𝜆𝑗 (𝑦)

 Since X(Ω) is barreled, 

Banach -Steinhaus theorem is applicable to conclude that the limit 𝜇𝜆of continuous linear 

mappings is also continuous. This proves D(λ −H×) ⊃R(A(j)(λ))and (λ −H×)A(j)(λ)is well defined 

(22) 

(23) 
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for any λ ∈{Im(λ) <0} ∪I∪Ω. Then, the above calculation immediately shows that (λ −H×)A(j)(λ) 

=A(j−1)(λ). By the induction, we obtain (i).(ii) is also proved by the operational calculus as 

above, and (iii) is easily obtained by induction. 

For (iv), since 〈𝐴(𝜆)𝜓|𝜑〉is holomorphic, it is expanded in a Taylor series as 

 

for each 𝜑, 𝜓 ∈ 𝑋(𝛺). This means that the functional 𝐴(𝜆)𝜓is weakly holomorphic in 𝜆. Then, 

A(λ)ψ turns out to be strongly holomorphic and expanded as Eq.(22) in which basic facts on 

𝑋(𝛺)′valued holomorphic functions are given.Unfortunately, the operator 𝐴(𝜆) ∶ 𝑖𝑋(𝛺)  →

𝑋(𝛺)′is not continuous if 𝑖𝑋(𝛺)is equipped with the relative topology from 𝑋(𝛺)′Even if 

〈𝜓|  → 0 𝑖𝑛  𝑖𝑋(𝛺)  ⊂ 𝑋(𝛺)′〉, the value 𝐸[𝜓, 𝜑](𝜆)does not tend to zero in general because 

the topology on 𝑋(𝛺)′is weaker than that on X(Ω). However, A(λ)proves to be continuous if 

𝑖𝑋(𝛺)is equipped with the topology induced from 𝑋(𝛺) by the canonical inclusion. 

Proposition (3.1.7)[3]:A(λ) ◦i:X(Ω) →𝑋(𝛺)′ is continuous if 𝑋(𝛺)′is equipped with the weak 

dual topology. 

Proof: Suppose 𝜆 ∈ 𝛺and fix 𝜑 ∈ 𝑋(𝛺). Because of the assumption (𝑋5), for any 𝜀 > 0, 

there exists a neighborhood 𝑈1 of zero in 𝑋(𝛺)such that |𝐸[𝜓, 𝜑](𝜆)|  < 𝜀for 𝜓 ∈ 𝑈1. Let 𝑈2 

be a neighborhood of zero in H such that ‖𝜓‖𝐻 < 𝜀 for ψ∈𝑈2. Since the topology on 𝑋(𝛺) is 

stronger than that on H, 𝑈2 ∩  𝑋(𝛺) is a neighborhood of zero in 𝑋(𝛺). If 𝜓 ∈ 𝑈 = 𝑈1 ∩ 𝑈2, 

 

This proves that 𝐴(𝜆) 𝑜𝐼is continuous in the weak dual topology. The proof for the case 

𝐼𝑚(𝜆) < 0is done in a similar manner. When 𝜆 ∈ 𝐼, there exists a sequence {𝜆𝑗}𝑗=1
∞ in the 

lower half plane such that 𝐴(𝜆) 𝑜𝑖 = lim
𝑗→∞

𝐴(𝜆𝑗)𝑜𝑖. Since 𝑋(𝛺)is barreled, Banach–Steinhaus 

(24) 
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theorem is applicable to conclude that the limit 𝐴(𝜆)𝑜𝑖   of continuous linear mappings is also 

continuous.Now we are in a position to define an algebraic multiplicity and a generalized 

Eigen space of generalized Eigen values. Usually, an Eigen space is defined as a set of 

solutions of the equation(𝜆 − 𝑇)𝑛𝑣 = 0. For example, when n =2, we rewrite it as 

(𝜆 −  𝐻 −  𝐾)(𝜆 −  𝐻 −  𝐾)𝑣 

 

Dividing by (𝜆 − 𝐻)2 yields 

 

Since the analytic continuation of (𝜆 − 𝐻)−𝑛in 𝑋(𝛺)′is 𝐴(𝑛)(𝜆), we consider the equation 

 

Motivated by this observation, we define the operator 𝐵(𝑛)(𝜆) ∶ 𝐷(𝐵(𝑛)(𝜆))  ⊂ 𝑋(𝛺)′ →

𝑋(𝛺)′to be 

 

Then, the above equation is rewritten as 𝐵(2)(𝜆)𝐵(1)(𝜆)𝜇 = 0. The domain of 𝐵(𝑛)(𝜆)is the 

domain of 𝐴(𝑛)(𝜆)𝐾×(𝜆 − 𝐻 ×)𝑛−1. The following equality is easily proved. 

 

 

Definition (3.1.8)[3]: Let λ be a generalized Eigen value of the operator T. The generalized 

eigen space of λ is defined by 

 

We call dim 𝑉𝜆the algebraic multiplicity of the generalized Eigen values 𝜆. 

Theorem (3.1.9)[3]:For any ∈ 𝑉𝜆, there exists an integer 𝑀such that (𝜆 − 𝑇 ×)𝜇
𝑀 = 0. 

Proof: Suppose that 𝐵(𝑀)(𝜆)𝑜 ··· 𝑜𝐵(1)(𝜆)𝜇 = 0. 𝑃𝑢𝑡 𝜉 = 𝐵(𝑀−1)(𝜆) 𝑜 ··· 𝑜𝐵(1)(𝜆)𝜇.  

 

(25) 

(26) 
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Since 𝐷(𝜆 − 𝐻×)  ⊃ 𝑅(𝐴(𝜆)), it turns out that (𝜆 − 𝐻×)𝑀−1𝜉 ∈ 𝐷(𝜆 − 𝐻×). Then, we obtain 

 

By induction, we obtain (𝜆 − 𝑇×)𝜇
𝑀 = 0In general, the space 𝑉𝜆is a proper subspace of the 

usual Eigen space𝑈𝑚≥1𝐾𝑒𝑟( 𝜆 − 𝑇 ×)𝑚of 𝑇𝑥. Typically 𝑈𝑚≥1𝐾𝑒𝑟( 𝜆 − 𝑇×)𝑚 becomes of 

infinite dimensional because the dual space 𝑋(𝛺)′is “too large”, however, 𝑉𝜆is a finite 

dimensional space in many cases.In this subpart, we define a generalized resolvent. As the 

usual theory, it will be used to construct projections and semi groups. Let 𝑅𝜆 =(𝜆 − 𝑇)−1be 

the resolvent of 𝑇as an operator on 𝐻. 𝐴 simple calculation shows 

   

Since the analytic continuation of (𝜆 − 𝑇)−1in the dual space is 𝐴(𝜆), we make the following 

definition. In what follows, put �̃� = 𝛺 ∪ 𝐼 ∪ {𝜆 | 𝐼𝑚(𝜆)  < 0}. 

Definition (3.1.10)[3]: If the inverse (𝑖𝑑 − 𝐾×𝐴(𝜆))−1exists, define the generalized resolvent 

𝑅𝜆: 𝑖𝑋(𝛺)  → 𝑋(𝛺)′to be 

 

The second equality follows from (𝑖𝑑 − 𝐴(𝜆)𝐾×)𝐴(𝜆)  = 𝐴(𝜆)(𝑖𝑑 − 𝐾×𝐴(𝜆)). Recall that 𝑖𝑑 −

𝐾×𝐴(𝜆)is injective on iX(Ω)if and only if 𝑖𝑑 − 𝐴(𝜆)𝐾×is injective on 𝑅(𝐴(𝜆)).Since 𝐴(𝜆) is not 

continuous, 𝑅𝜆is not a continuous operator in general. However, it is natural to ask whether 

𝑅𝜆 𝑜 𝑖 ∶ 𝑋(𝛺)  → 𝑋(𝛺)′is continuous or not because 𝐴(𝜆)𝑜𝐼 is continuous. 

Definition (3.1.11)[3]: The generalized resolvent set �̂�(T)is defined to be the set of points λ 

Ω̂.satisfying the following: there is a neighborhood 𝑉𝜆 ⊂ Ω̂. ofλ such that for any 𝜆′∈𝑉𝜆, 𝑅𝜆◦iis 

a densely defined continuous operator from X(Ω) into 𝑋(𝛺)′, where 𝑋(𝛺)′, is equipped with 

the weak dual topology, and the set {𝑅𝜆𝑜𝑖(𝜓)}
𝜆∈𝑉𝜆

is bounded in 𝑋(𝛺)′for each 𝜓 ∈ 𝑋(𝛺). The 

set �̂�(T) =�̃�\�̂�(𝑇) is called the generalized spectrum of 𝑇. The generalized point spectrum 

 �̂�𝑝(T)  is the set of points 𝜆 ∈ �̂�(𝑇)at which 𝑖𝑑 − 𝐾×𝐴(𝜆)is not injective. The generalized 

(28) 

(29) 
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residual spectrum�̂�𝑟(T)is the set of points 𝜆 ∈ �̂�(𝑇)such that the domain of𝑅𝜆𝑜 𝑖 is not dense 

in X(Ω). The generalized continuous spectrum is defined to be �̂�𝑐(𝑇)  = �̂�(𝑇)\(�̂�𝑝(𝑇)  ∪

�̂�𝑟(𝑇)).By the definition,�̂� (T) is an open set. To require the existence of the neighborhood 

𝑉𝜆in the above definition is introduced by Waelbroeck for the spectral theory on locally 

convex spaces. If  �̂�(𝑇) were simply defined to be the set of points such that 𝑅𝜆𝑜 𝑖is a 

densely defined continuous operator as in the Banach space theory,  �̂�(𝑇)is not an open set 

in general. If X(Ω)is a Banach space and the operator id-𝑖−1𝐾×𝐴(𝜆)𝑖 is continuous on 𝑋(𝛺) 

for each 𝜆 ∈ Ω̂, we can show that λ ∈ �̂�(𝑇)if and only if id-𝑖−1𝐾×𝐴(𝜆)𝑖 has a continuous 

inverse on X(Ω). 

Theorem( 3.1.12)[3]: 

(i) For each 𝜓 ∈ 𝑋(𝛺), 𝑅𝜆𝑖𝜓 is an 𝑋(𝛺)′-valued holomorphic function in 𝜆 ∈  �̂�(𝑇). 

(ii) Suppose 𝐼𝑚(𝜆)  < 0𝑎𝑛𝑑 𝜆 ∈  �̂�(𝑇)  ∩  �̂�(𝑇), where  �̂�(T) is the resolventset of T in H-sense.  

Then, 〈𝑅𝜆𝜓 |𝜑〉 = ((𝜆 − 𝑇)−1𝜓, 𝜑)𝑓𝑜𝑟 𝑎𝑛𝑦 𝜓, 𝜑 ∈ 𝑋(𝛺). 

This theorem means that 〈𝑅𝜆𝜓|𝜑〉is an analytic continuation of(𝜆 − 𝑇)−1𝜓, 𝜑) from the lower 

half plane to �̂�(T)through the interval I. We always suppose that the domain of 𝑅𝜆𝑜 𝑖 is 

continuously extended to the whole X(Ω) when λ /∈�̂�(T). The significant point to be 

emphasized is that to prove the strongholomorphy of  𝑅𝜆𝑜 𝑖(ψ), it is sufficient to assume that 

𝑅𝜆𝑜 𝑖:X(Ω) →𝑋(𝛺)′is continuous in the weakdual topology on 𝑋(𝛺)′ 

Proof:Since  �̂�(T)is open, when λ ∈ �̂�(T), 𝑅𝜆+ℎ exists for sufficiently small ℎ ∈  𝑪. Put 𝜓𝜆 =

𝑖−1(𝑖𝑑 − 𝐾×𝐴(𝜆))−1𝑖(𝜓)𝑓𝑜𝑟 𝜓 ∈ 𝑋(𝛺). It is easy to verify the equality 

 

Let us show that i−1K×A(λ)i(ψ) ∈X(Ω) is holomorphic in λ. For any ψ, φ ∈X(Ω), we obtain 
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From the definition of A(λ), it follows that 〈𝜑 |𝑖−1𝐾×𝐴(𝜆)𝑖𝜓〉is holomorphic in 𝜆. Since 𝑋(𝛺)is 

dense in 𝑋(𝛺)′, 〈𝜇 |𝑖−1𝐾×𝐴(𝜆)𝑖𝜓〉is holomorphic in λ for any 𝜇 ∈ 𝑋(𝛺)′ by Montel’s theorem. 

This means that 𝑖−1𝐾×𝐴(𝜆)𝑖𝜓  is weakly holomorphic. Since 𝑋(𝛺) is a quasi-complete locally 

convex space, any weakly holomorphic function is holomorphic with respect to the original 

topology. This proves that 𝑖−1𝐾×𝐴(𝜆)𝑖𝜓 is holomorphic in λ(note that the weak holomorphy in 

λ implies the strong holomorphy in 𝜆because functional in 𝑋(𝛺)′are anti-linear. Next, the 

definition of  �̂�(T) implies that the family {𝑅𝜇◦i}μ∈Vλ of continuous operators is bounded in the 

point wise convergence topology. Due to Banach–Steinhaus theorem. the family is 

equicontinuous. This fact and the holomorphy of A(λ) and 𝑖−1𝐾×𝐴(𝜆)𝑖𝜓 prove that 

𝑅𝜆+ℎi(ψ)converges to 𝑅𝜆i(ψ) as h →0with respect to the weak dual topology. In particular, we 

obtain 

 

 

which proves that 𝑅𝜆i(ψ) is holomorphic in 𝜆with respect to the weak dual topology on 𝑋(𝛺)′. 

Since 𝑋(𝛺)is barreled, the weak dual holomorphy implies the strong dual holomorphy.Let us 

prove (ii). Suppose 𝐼𝑚(𝜆)  < 0. Note that 𝑅𝜆𝑜 𝑖is written as 𝑅𝜆 𝑜 𝑖 =𝐴(𝜆) 𝑜(𝑖𝑑 −

𝑖−1𝐾×𝐴(𝜆)𝑖)−1. We can show the equality 

 

Indeed, for any𝑓, 𝜓 ∈ 𝑋(𝛺), we obtain 

 

Thus, 𝑅𝜆 satisfies for φ =(𝑖𝑑 − 𝑖−1𝐾×𝐴(𝜆)𝑖)f that 

 

(30) 

(31) 
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Since 𝜆 ∈ ˆ𝜌(𝑇), (𝑖𝑑 − 𝑖−1𝐾×𝐴(𝜆)𝑖)𝑋(𝛺)is dense in X(Ω) and 𝑅𝜆𝑖 ∶ 𝑋(𝛺)  → 𝑋(𝛺)′is 

continuous. Since 𝜆 ∈ 𝜌(𝑇), 𝑖(𝜆 − 𝑇)−1: 𝐻 → 𝑋(𝛺)′is continuous. Therefore, taking the limit 

proves that𝑅𝜆𝑖𝜑=𝑖(𝜆 − 𝑇)−1φ holds for any 𝜑 ∈ 𝑋(𝛺). 

Proposition (3.1.13)[3]:The generalized resolvent satisfies 

(i) (λ −T×) ◦Rλ=𝑖𝑑|𝑖𝑋(𝛺) 

(ii) If 𝜇 ∈ 𝑋(𝛺)′satisfies (𝜆 − 𝑇×)𝜇 ∈ 𝑖𝑋(𝛺), then 𝑅𝜆◦(λ −𝑇×)μ =μ. 

(iii) 𝑇× 𝑜 Rλ|iY = Rλ𝑜 𝑇×|iY 

Proof:  gives 𝑖𝑑 = (𝜆 − 𝐻×)𝐴(𝜆)  = (𝜆 − 𝑇× + 𝐾×)𝐴(𝜆). This proves 

 

Next, when (𝜆 − 𝑇×)𝜇 ∈ 𝑖𝑋(𝛺), 𝐴(𝜆)(𝜆 − 𝑇×)𝜇 is well defined and gives. 

 

This proves𝜇 = (𝑖𝑑 − 𝐴(𝜆)𝐾×)−1𝐴(𝜆)(𝜆 − 𝐾×)𝜇 = 𝑅𝜆(𝜆 − 𝑇×)𝜇. Finally, note that (𝜆 −

𝑇×)𝑖𝑌 = 𝑖(𝜆 − 𝑇)𝑌 ⊂ 𝑖𝑋(𝛺)because of the assumptions (𝑋6), (𝑋7). Thus part(iii) of the 

proposition immediately follows from (i), (ii).Let 𝛴 ⊂ σ̂ (𝑇) be a bounded subset of the 

generalized spectrum, which is separated from the rest of the spectrum by a simple closed 

curve 𝛾 ⊂ 𝛺 ∪ 𝐼 ∪ {𝜆 | 𝐼𝑚(𝜆)  < 0}. Define the operator 𝛱𝛴: 𝑖𝑋(𝛺)  → 𝑋(𝛺)′to be 

 

where the integral is defined as the Pettis integral. Since 𝑋(𝛺) is assumed to be barreled by 

(𝑋3), 𝑋(𝛺)′is quasi-complete and satisfies the convex envelope property. Since 𝑅𝜆φ is 

strongly holomorphic in λ, the Pettis integral of 𝑅𝜆φ exists for the definition and the existence 

.theorem of Pettis integrals. Since 𝑅𝜆𝑜 𝑖 ∶ 𝑋(𝛺) → 𝑋(𝛺)′is continuous, proves that 𝛱𝛴𝑜 𝑖 is a 

continuous operator from 𝑋(𝛺) into 𝑋(𝛺)′equipped with the weak dual topology. Note that 

the equality 

(32) 



92 

 

 

holds. To see this, it is sufficient to show that the set {〈𝑇×𝑅𝜆𝜑 |𝜓〉}𝜆 ∈ 𝛾 is bounded for each 

𝜓 ∈ 𝑋(𝛺)due to yields 𝑇 × 𝑅𝜆𝜑 = 𝜆𝑅𝜆𝜑 − 𝜑. Since 𝑅𝜆𝜆is holomorphic and 𝛾is compact, 

{〈𝑇×𝑅𝜆𝜑 |𝜓〉}λ∈γis bounded 

.Although 𝛱𝛴  𝑜 𝛱𝛴 is not defined, we call 𝛱𝛴the generalized Riesz projectionfor 𝛴because of 

the next proposition. 

Proposition (3.1.14)[𝟑]: 𝚷𝚺(𝑖𝑋(𝛺)) ∩ (𝑖𝑑 − 𝛱𝛴)(𝑖𝑋(𝛺)) = {0}and the direct sum satisfies 

 

In particular, for any 𝜑 ∈ 𝑋(𝛺), there exist𝜇1, 𝜇2such that φ is uniquely decomposed as 

 

Proof: We simply denote ⟨𝜑|𝑎𝑠 𝜑. It is sufficient to show that 𝛱𝛴 (iX(Ω)) ∩(id−𝛱𝛴)(iX(Ω)) ={0}. 

Suppose that there exist 𝜑, 𝜓 ∈ 𝑖𝑋(𝛺)such that 𝛱𝛴𝜑 = 𝜓 − 𝛱𝛴𝜓. Since 𝛱𝛴(𝜑 + 𝜓)  = 𝜓 ∈

𝑖𝑋(𝛺), we can again apply the projection to the both sides as 𝛱𝛴𝑜 𝛱𝛴(𝜑 + 𝜓) = 𝛱𝛴𝜓. Let 

𝛾′be a closed curve which is slightly larger than 𝛾. Then, 

 

Eq(33)shows 

 

 

Proposition(3.1.13) show 

(34) 

(35) 

(33) 
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This proves that 𝛱𝛴𝜑 = 0The above proof also shows that as long as𝛱𝛴𝜑 ∈ 𝑖𝑋(𝛺), 𝛱𝛴  𝑜 𝛱𝛴 is 

defined and 𝛱𝛴  𝑜 𝛱𝛴𝜑 = 𝛱𝛴𝜑. 

Proposition (3.1.15)[𝟑]: 𝚷𝚺|𝑖𝑌 𝑖𝑠 𝑇×invariant: 𝛱𝛴  𝑜 𝑇×|𝑖𝑦 = 𝑇×𝑜 𝛱𝛴|𝑖𝑦. 

Proof: Let 𝜆0 be an isolated generalized Eigen values , which is separated from the rest of 

the generalized spectrum by a simple closed curve 𝛾 ⊂ 𝛺 ∪ 𝐼 ∪ {𝜆 | 𝐼𝑚(𝜆)  < 0}. Let 

 

be a projection for 𝜆0 and 𝑉0=𝑈𝑚≥1KerB(m)(λ0) ◦···◦B(1)(λ0) a generalized eigenspace of 𝜆0. 

The main theorem in this chapter is stated as follows. 

Theorem (3.1.16)[3]:If 𝛱0iX(Ω) is finite dimensional, then Π0iX(Ω) =V0.In the usual spectral 

theory, this theorem is easily proved by using the resolvent equation. In our theory, the 

composition Rλ_◦Rλis not defined because 𝑅𝜆is an operator from iX(Ω)into 𝑋(𝛺)′. As a 

result, the resolvent equation does not hold and the proof of the above theorem is rather 

technical. 

Proof: Let 𝑅𝜆 = ∑ (𝜆0 − 𝜆)𝑗𝐸𝑗
∞
𝑗=−∞ be a Laurent series of 𝑅𝜆, which converges in the strong 

dual topology Since 

 

we obtain E−n−1=(λ0−T×)E−nforn =1, 2, .... Thus the equality 

 

holds. Similarly, 𝑖𝑑|𝑖𝑌=𝑅𝜆 𝑜 (𝜆 − 𝑇)|𝑖𝑦 provides 𝐸−𝑛−1|𝑖𝑌 = 𝐸−𝑛𝑜 (𝜆0 − 𝑇×)|𝑖𝑌. Thus we obtain 

𝑅(𝐸−𝑛−1|𝑖𝑌) ⊆  𝑅(𝐸−𝑛)for any 𝑛 ≥ 1. Since Y is dense in 𝑋(𝛺) and the range of 𝐸−1 = −𝛱0 is 

(36) 

(37) 
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finite dimensional, it turns out that 𝑅(𝐸−𝑛|𝑖𝑌) ⊆  𝑅(𝐸−𝑛)  and  𝑅(𝐸−𝑛−1|𝑖𝑌) ⊆  𝑅(𝐸−𝑛) for any 

𝑛 ≥ 1. This implies that the prin-ciple part ∑ (𝜆0 − 𝜆)𝑗𝐸𝑗
−1
−∞ of the Laurent series is a finite 

dimensional operator. Hence, there exists an integer 𝑀 ≥ 1such that 𝐸−𝑀−1 = 0. This means 

that 𝜆0 is a pole of  𝑅𝜆: 

 

Next, from the equality (𝑖𝑑 − 𝐴(𝜆)𝐾×)𝑜 𝑅𝜆 = 𝐴(𝜆), we have 

 

Comparing the coefficients of (𝜆0 − 𝜆)−1 on both sides, we obtain 

 

Substituting Eq.(35)and E−1=−Π0 provides 

 

In particular, this implies R(Π0) ⊂D(B(1)(λ0)). Hence, (𝜆0−T×)𝛱0 can be rewritten as 

 

Then, by using the definition of B(2)(𝜆0),Eq(39) is rear anyged as 

 

Repeating similar calculations, we obtain 

 

This proves 𝛱0𝑖𝑋(𝛺)  ⊂ 𝑉0.Let us show 𝛱0𝑖𝑋(𝛺)  ⊃ 𝑉0𝛱0𝑖𝑋(𝛺). From the equality 𝑅𝜆 𝑜 (𝑖𝑑 −

𝐾×𝐴(𝜆))  = 𝐴(𝜆), we have 

 

(39) 

(40) 

(41) 

(42) 

(38) 
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Comparing the coefficients of (𝜆0 − 𝜆)𝑘on both sides for 𝑘 = 1, 2, . . ., we obtain 

 

for any 𝜑 ∈ 𝑖𝑋(𝛺), where the left hand side is a finite sum. Note that 𝐾×𝐴(𝑗)(𝜆0)𝑖𝑋(𝛺) ⊂

𝑖𝑋(𝛺)𝑓𝑜𝑟 𝑎𝑛𝑦 𝑗 = 1, 2, ...because 𝐾×𝐴(𝜆)𝑖𝑋(𝛺)  ⊂ 𝑖𝑋(𝛺)for any λ(the assumption(X8)).Now 

suppose that 𝜇 ∈ 𝑉0is a generalized Eigen function satisfying 𝐵(𝑀)(𝜆0) 𝑜 ·· 𝑜𝐵(1)(𝜆0)𝜇 = 0. 

For this μ, we need the following lemma. 

Lemma(3.1.17)[3]:For any k=0, 1, ..., 𝑀−1 

(i) (𝜆0 − 𝑇×)𝑘𝜇 = (𝜆0 − 𝐻×)𝑘𝐵(𝑘)(𝜆0) 𝑜 ··· 𝑜𝐵(1)(𝜆0)𝜇. 

(ii) 𝐾×(𝜆0 − 𝑇×)𝑘𝜇 ∈ 𝑖𝑋(𝛺). 

Proof: μ is included in the domain of (𝜆0 − 𝑇×)𝑘. Thus the left hand side of (i) indeed exists. 

Then, we have 

 

Repeating this procedure yields (i). To prove (ii), let us calculate 

 

the part (i) of this lemma give 

 

For example, when 𝑘 = 𝑀−1, this is reduced to 

 

This proves 𝐾×(𝜆0 − 𝑇×)𝑀−1, 𝜇 = 𝐾×𝐴(𝜆0)𝐾×(𝜆0 − 𝑇×)𝑀−1𝜇 ∈ 𝑖𝑋(𝛺). This is true for any 

𝑘 = 0, 1, . . . , 𝑀−1; it follows from the definition of 𝐵𝑗(𝜆0)’s that 𝐾×(𝜆0 − 𝑇×)𝑘𝜇is expressed as 

a linear combination of elements of the form K×A(j)(λ0)ξ𝑗 , ξ𝑗 ∈ iX(Ω). Since 

K×A(j)(λ0)iX(Ω)  ⊂ iX(Ω), we obtain K×(λ0 − T ×)kμ ∈ iX(Ω).Since K×(λ0 − T×)kμ ∈ iX(Ω), 

we can substituteφ = K×(λ0 − T×)kμ The resultant equation is rearranged as 

(43) 
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Further, (λ0 − T×)k = ((λ0 − 𝐻×)kB(k)(λ0) 𝑜 ··· 𝑜 B(1)(λ0)provides 

 

 

On the other hand, comparing the coefficients of (𝜆0 − 𝜆)0of provides 

 

for any 𝜑 ∈ 𝑖𝑋(𝛺). Substituting 𝜑 = 𝐾×𝜇 ∈ 𝑖𝑋(𝛺)provides 

 

By adding Eq(43)toEq(44) for 𝑘 = 1, . . . , 𝑀−1, we obtain 

 

The left hand side above is rewritten as 

   

The left hand side above is rewritten as 

(44) 

(45) 

(46) 
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Repeating similar calculations, we can verify that is rewritten as 

 

Since 𝐵(𝑀)(𝜆0)0 ··· 0𝐵(1)(𝜆0)𝜇 = 0, we obtain 

 

Since 𝑅(𝐸−𝑗)  ⊂ 𝑅(𝐸−1)  = 𝑅(𝛱0), this proves 𝛱0𝑖𝑋(𝛺)  ⊃ 𝑉0. Thus the proof of 𝛱0𝑖𝑋(𝛺) =

𝑉0is completed. 

We show a few criteria to estimate the generalized spectrum. Recall that�̂�𝑝(𝑇)  ⊂

𝜎𝑝(𝑇×)because of. The relation between �̂�(𝑇)and 𝜎(𝑇) is given as follows. 

Proposition (3.1.18)[𝟑]: 𝐿𝑒𝑡 𝑪−= {𝐼𝑚(𝜆) < 0}be an open lower half plane. 

𝐿𝑒𝑡 𝜎𝑝(𝑇)𝑎𝑛𝑑 𝜎(𝑇)be the point spectrum and the spectrum in the usual sense, respectively. 

Then, the following relations hold. 

(i)�̂�(T) ∩C−⊂σ(T) ∩C−. In particular, �̂�𝑝(𝑇)  ∩ 𝑪 ⊂ 𝜎𝑝(𝑇)  ∩ 𝑪 

(ii)Let 𝛴 ⊂ 𝑪 −be a bounded subset of 𝜎(𝑇)which is separated from the rest of the spectrum 

by a simple closed curve γ. Then, there exists as point of ˆ𝜎(𝑇)inside γ. In particular, if𝜆 ∈

𝑪is an isolated point of 𝜎(𝑇), 𝑡ℎ𝑒𝑛 𝜆 ∈  �̂�(𝑇). 

Proof: Note that when 𝜆 ∈ 𝑪, the generalized resolvent satisfies 𝑅𝜆 𝑜 𝑖 = 𝑖  𝑜 (𝜆 − 𝑇)−1. 

(47) 
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(i) Suppose that 𝜆 ∈ _(𝑇)  ∩ 𝑪, where 𝜚(T)is the resolvent set of T in the usual sense. Since 

H is a Hilbert space, there is a neighborhood 𝑉𝜆 ⊂ 𝜚(𝑇) ∩ 𝑪of 𝜆such that (𝜆′ − 𝑇)−1is 

continuous on H for any 𝜆′ ∈ 𝑉𝜆and the set {(𝜆′ − 𝑇) − 1𝜓}𝜆′∈𝑉𝜆is bounded in H for each 𝜓 ∈

𝑋(𝛺). Since 𝑖 ∶ 𝐻 → 𝑋(𝛺)′is continuous and since the topology of 𝑋(𝛺)is stronger than that of 

𝐻, 𝑅𝜆  𝑜 𝑖  = 𝑖 𝑜 (𝜆′ − 𝑇)−1is a continuous operator from 𝑋(𝛺)into𝑋(𝛺)′for any 𝜆′ ∈ 𝑉𝜆, and the 

set {𝑅𝜆′𝑜 𝑖𝜓}𝜆′ ∈ 𝑉𝜆is bounded in 𝑋(𝛺)’. This proves that 𝜆 ∈ ˆ𝜚(𝑇)  ∩ 𝑪.Next, suppose that 

𝜆 ∈ 𝑪 is a generalized Eigen values  satisfying (𝑖𝑑 − 𝐾×𝐴(𝜆))𝑖(𝜓)  = 0𝑓𝑜𝑟 𝜓 ∈ 𝑋(𝛺). Since 

𝜆 – 𝐻is invertible on H when 𝜆 ∈ 𝑪, putting 𝜑 = (𝜆 − 𝐻)−1ψ provides 

 

and thus 𝜆 ∈ 𝜎𝑝(𝑇). 

(ii)  Let P be the Riesz projection for 𝛴 ⊂ 𝜎(𝑇)  ∩ 𝑪, which is defined as 𝑃 =

(2𝜋𝑖)−1 ∫(𝜆 − 𝑇)−1𝑑𝜆. Since γ encloses a point of 𝜎(𝑇), 𝑃𝐻 ≠ ∅. Since 𝑋(𝛺)is dense in 

𝐻, 𝑃𝑋(𝛺)  ≠ ∅. This fact and 𝑅𝜆 𝑜 𝑖 = 𝑖 𝑜 (𝜆 − 𝑇)−1prove that the range of the generalized 

Riesz projection defined by is not zero. Hence, the closed curve γ encloses a point of 

ˆ𝜎(𝑇).A few remarks are in order. If the spectrum of Ton the lower half plane consists of 

discrete Eigen values, (i) and (ii) show that 𝜎𝑝(𝑇)  ∩ 𝑪 = 𝜎(𝑇)  ∩ 𝑪 = ˆ𝜎(𝑇)  ∩ 𝑪. However, it 

is possible that a generalized Eigen value on Iis not an Eigen value in the usual sense. For 

such an example. In most cases, the continuous spectrum on the lower half plane is not 

included in the generalized spectrum because the topology on 𝑋(𝛺)′is weaker than that on 

H, although the point spectrum and the residual spectrum may remain to exist as the 

generalized spectrum. Note that the continuous spectrum on the interval I also disappears; 

for the resolvent(𝜆 − 𝑇)−1 = (𝜆 − 𝐻)−1(𝑖𝑑 − 𝐾(𝜆 − 𝐻) − 1)−1 in the usual sense, the factor 

(𝜆 − 𝐻)−1induces the continuous spectrum on the real axis because His selfadjoint. For the 

generalized resolvent, (𝜆 − 𝐻)−1is replaced by 𝐴(𝜆), which has no singularities. This 

suggests that obstructions when calculating the Laplace inversion formula by using the 

residue theorem may disappear .Recall that a linear operator L from a topological vector 
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space 𝑋1 to another topolog-ical vector space 𝑋2 is said to be bounded if there exists a 

neighborhood 𝑈 ⊂ 𝑋1 such that 𝐿𝑈 ⊂ 𝑋1is a bounded set. When 𝐿 = 𝐿(𝜆)is parameterized 

by λ, it is said to be bounded uniformly in λ if such a neighborhood Uis independent of 𝜆. 

When the domain 𝑋1 is a Banach space, 𝐿(𝜆)is bounded uniformly in 𝜆if and only if 𝐿(𝜆)is 

continuous for each 𝜆. Similarly, L is called compact if there exists a neighborhood 𝑈 ⊂

𝑋1such that 𝐿𝑈 ⊂ 𝑋2 is relatively compact. When 𝐿 = 𝐿(𝜆)is parameterized by λ, it is said to 

be compact uniformly in 𝜆𝑖 f such a neighborhood 𝑈is independent of 𝜆. When the domain 𝑋1 

is a Banach space, 𝐿(𝜆)is compact uniformly in 𝜆if and only if 𝐿(𝜆)is compact for each 𝜆. 

When the range 𝑋2 is a Montel space, a (uniformly) bounded operator is (uniformly) compact 

because every bounded set in a Montel space is relatively compact. Put ˆ𝛺 = {𝐼𝑚(𝜆) < 0} ∪

𝐼 ∪ 𝛺as before. In many applications, 𝑖−1𝐾×𝐴(𝜆)𝑖 is a bounded operator. In such a case, the 

following proposition is useful to estimate the generalized spectrum. 

Proposition (3.1.18)[3]:Suppose that for 𝜆 ∈ �̂�, there exists a neighborhood 𝑈𝜆 ⊂ �̂� of λ such 

that 𝑖−1𝐾×𝐴(𝜆′)𝑖 ∶ 𝑋(𝛺) → 𝑋(𝛺)is a bounded operator uniformly in𝜆′ ∈ 𝑈𝜆.If 𝑖𝑑 −

𝑖−1𝐾×𝐴(𝜆)𝑖 has a continuous inverse on 𝑋(𝛺), then 𝜆 ∉ �̂�(𝑇). 

Proof: Note that 𝑅𝜆 ◦I is rewritten as 𝑅𝜆𝑜 𝑖 = 𝐴(𝜆)𝑜𝑖 𝑜 (𝑖𝑑 − 𝑖−1𝐾×𝐴(𝜆)𝑖)−1. Since 𝐴(𝜆)𝑜𝑖 is 

continuous, it is sufficient to prove that there exists a neighborhood 𝑉𝜆of 𝜆such that the set 

(𝑖𝑑 − 𝑖−1𝐾×𝐴(𝜆′)𝑖)−1𝜓𝜆′ ∈ 𝑉𝜆is bounded in 𝑋(𝛺) for each 𝜓 ∈ 𝑋(𝛺). For this purpose, it is 

sufficient to prove that the mapping 𝜆′ → (𝑖𝑑 − 𝑖−1𝐾×𝐴(𝜆′)𝑖)−1𝜓is continuous in 𝜆′ ∈ 𝑉𝜆. Since 

𝑖−1𝐾×𝐴(𝜆)𝑖 is holomorphic, there is an operator 𝐷(𝜆, ℎ) on 𝑋(𝛺)such that 

 

 

Since𝑖−1𝐾 × 𝐴(𝜆)𝑖is a bounded operator uniformly in𝜆 ∈ 𝑈𝜆, 𝐷(𝜆, ℎ)is a bounded operator 

when h is sufficiently small. Since (id−𝑖−1𝐾×A(λ)𝑖)−1is continuous by the assumption, 

𝐷(𝜆, ℎ)(𝑖𝑑 − 𝑖−1𝐾×𝐴(𝜆)𝑖)−1is a bounded operator. Then, Bruyn’s theorem shows that 𝑖𝑑 −
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ℎ𝐷(𝜆, ℎ)(𝑖𝑑 − 𝑖−1𝐾×𝐴(𝜆)𝑖)−1 has a continuous inverse for sufficiently small hand the inverse 

is continuous in h(when 𝑋(𝛺) is a Banach space, Bruyn’s theorem is reduced to the 

existence of the Neumann series). This proves that (𝑖𝑑 − 𝑖−1𝐾×𝐴(𝜆 + ℎ)𝑖)−1ψ exists and 

continuous in h for each ψ.As a corollary, if X(Ω)is a Banach space and 𝑖−1𝐾×𝐴(𝜆)𝑖 is a 

continuous operator on 𝑋(𝛺)for each λ, then λ ∈�̂�(T)if and only if 𝑖𝑑 − 𝑖−1𝐾×𝐴(𝜆)𝑖has a 

continuous inverse on 𝑋(𝛺). Because of this proposition, we can apply the spectral theory on 

locally convex spaces  to the operator 𝑖𝑑 − 𝑖−1𝐾×𝐴(𝜆)𝑖to estimate the generalized spectrum. 

In particular, like as Riesz–Schauder theory in Banach spaces, we can prove the next 

theorem. 

Theorem (3.1.19)[3]:In addition to(𝑋1)– (𝑋8), suppose that 

𝑖−1𝐾×𝐴(𝜆)𝑖 ∶ 𝑋(𝛺)  → 𝑋(𝛺)𝑖𝑠 𝑎 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝜆 ∈ �̂� = {𝐼𝑚(𝜆)  < 0}  ∪ 𝐼 ∪

𝛺. Then, the following statements are true. 

(i) For any compact set 𝐷 ⊂ �̂�, the number of generalized eigenvalues in Dis finite 

(thus�̂�𝑝(𝑇)consists of a countable number of generalized Eigen values s and they may 

accumulate only on the boundary of �̂�or infinity). 

(ii) For each 𝜆0 ∈ �̂�𝑝(𝑇), the generalized eigenspace 𝑉0is of finite dimensional and 

𝛱0 𝑖𝑋(𝛺)  = 𝑉0. 

(iii) �̂�𝑐(𝑇)  = �̂�𝑟(𝑇)  = ∅. 

If 𝑋(𝛺) is a Banach space, the above theorem follows from well known Riesz–Schauder 

theory. Even if 𝑋(𝛺) is not a Banach space, we can prove the same result is useful to find 

embedded Eigen values s of T: 

Corollary (3.1.20)[3]:Suppose that Tis selfadjoint. Under the assumptions in, the number of 

Eigen values of 𝑇 = 𝐻 + 𝐾(𝑖𝑛 𝐻 − 𝑠𝑒𝑛𝑠𝑒) in any compact set 𝐷 ⊂ 𝐼is finite. Their algebraic 

multiplicities dimKer(𝜆 − 𝑇)are finite. 

Proof: Let 𝜆0 ∈ 𝐼be an Eigen values  of T. It is known that the projection P0 to the 

corresponding Eigen space is given by 
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where the limit is taken with respect to the topology on H. When 𝐼𝑚(𝜆)  < 0, we have 

𝑅𝜆𝑖(𝜑)  = 𝑖(𝜆 −𝑇)−1φ for 𝜑 ∈ 𝑋(𝛺). This shows 

 

Let 𝑅𝜆 = ∑ (𝜆0 − 𝜆)𝑗∞
𝑗−∞ 𝐸𝑗 be the Laurent expansion of 𝑅𝜆, which converges around 𝜆0. This 

provides 

 

Since the right hand side converges with respect to the topology on 𝑋(𝛺)′, we obtain 

 

where 𝛱0 is the generalized Riesz projection for 𝜆0. Since 𝜆0is an eigenvalues , 𝑃0𝐻 ≠ ∅. 

Since 𝑋(𝛺) is a dense subspace of 𝐻, 𝑃0𝑋(𝛺)′ = ∅. Hence, we obtain 𝛱0𝑖𝑋(𝛺) ′ = ∅, which 

implies that 𝜆0 is a generalized Eigen values ; �̂�𝑐(𝑇)  = ˆ𝜎𝑝(𝑇) Since�̂�(𝑇) is countable, so is 

�̂�𝑝(𝑇). Since 𝛱0𝑖𝑋(𝛺)is a finite dimensional space, so is 𝑃0𝑋(𝛺). Then, 𝑃0𝐻 = 𝑃0𝑋(𝛺) proves 

to be finite dimensional because 𝑃0𝐻is the closure of 𝑃0𝑋(𝛺).Our results are also useful to 

calculate eigenvectors for embedded Eigen values. In the usual Hilbert space theory, if an 

Eigen value 𝜆 is embedded in the continuous spectrum of 𝑇, we cannot apply the Riesz 

projection for λ because there are no closed curves in Cwhich separate λ from the rest of the 

spectrum. In our theory, �̂�𝑐(𝑇)  = �̂�𝑟(𝑇)  = ∅. Hence, the generalized Eigen values s are 

indeed isolated and the Riesz projection 𝛱0 is applied to yield 𝛱0𝑖𝑋(𝛺)  = 𝑉0. Then, the 

Eigen space in Hsense is obtained as 𝑉0 ∩ 𝐷(𝑇). 

Proof of Theorem (3.1.19)The theorem follows from Riesz–Schauder theory on locally 

convex spaces developed in Ringrose .Here, we give a simple review of the argument in. 

We denote 𝑋(𝛺)  = 𝑋𝑎𝑛𝑑 𝑖− 1𝐾×𝐴(𝜆)𝑖 = 𝐶(𝜆)for simplicity. A pairing for (𝑋′, 𝑋)is denoted by 

〈·  | ·〉𝑋. 

(48) 

(49) 
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Since 𝐶(𝜆): 𝑋 → 𝑋is compact uniformly in λ, there exists a neighborhood 𝑉0 of zero in X, 

which is independent of λ, such that 𝐶(𝜆)𝑉 ⊂ 𝑋 is relatively compact. Put 𝑝(𝑥)  =

𝑖𝑛𝑓{|𝜆|;  𝑥 ∈ 𝜆𝑉}. Then, p is a continuous semi-norm on X and 𝑉 = {𝑥 | 𝑝(𝑥)  < 1}. Define a 

closed subspace M in X to be 

 

Let us consider the quotient space 𝑋/𝑀, whose elements are denoted by [x]. The semi-norm 

p induces a norm 𝑃 on 𝑋/𝑀 by 𝑃([𝑥])  = 𝑝(𝑥). If 𝑋/𝑀 is equipped with the norm topology 

induced by 𝑃, we denote the space as B. The completion of B, which is a Banach space, is 

denoted by 𝐵0. The dual space 𝐵0
′ of 𝐵0 is a Banach space with the norm 

 

where 〈·  | ·〉B0is a pairing for (𝐵0
′ , 𝐵0). Define a subspace 𝑆 ⊂ 𝑋to be 

 

The linear mapping ˆ: 𝑆 → 𝐵0
′ (𝜇 ↦ �̂�) defined through 〈ˆ𝜇|[𝑥]〉𝐵0 = 〈𝜇 |𝑥〉𝑋 is bijective. Define 

the operator 𝑄(𝜆) ∶ 𝐵 → 𝐵 to be 𝑄(𝜆)[𝑥]  = [𝐶(𝜆)𝑥]. Then, the equality 

 

holds for 𝜇 ∈ 𝑆and 𝑥 ∈ 𝑋. Let 𝑄0(𝜆) ∶ 𝐵0 → 𝐵0 be a continuous extension of 𝑄(𝜆). Then, 

𝑄0(𝜆)is a compact operator on a Banach space, and thus the usual Riesz–Schauder theory 

is applied. By using , it is proved that 𝑧 ∈ 𝑪is an Eigen values  of 𝐶(𝜆)if and only if it is an 

Eigen values  of 𝑄0(𝜆). In this manner, we can prove that The number of Eigen values of the 

operator 𝐶(𝜆) ∶ 𝑋 → 𝑋is at most countable, which can accumulate only at the origin. The 

Eigen spaces𝑈𝑚≥1𝐾𝑒𝑟(𝑧 − 𝐶(𝜆))𝑚of nonzero eigenvalues zare finite dimensional. If 𝑍 ≠ 0 is 

not an Eigen values , 𝑧 − 𝐶(𝜆)has a continuous inverse on X. for the complete proof.Now we 

are in a position to prove. Suppose that 𝜆is not a generalized Eigen values . Then, 1is not an 

(50) 

(51) 

(52) 

(53) 
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Eigen values  of 𝐶(𝜆)  = 𝑖−1𝐾×𝐴(𝜆)𝑖. The above theorem con-cludes that 𝑖𝑑 − 𝐶(𝜆) has a 

continuous inverse on 𝑋(𝛺). Since 𝐶(𝜆)is compact uniformly in 𝜆, implies 𝜆 ∉ �̂�(𝑇). This 

proves the part (iii) of.Let us show the part (i) of the theorem. 𝐿𝑒𝑡 𝑧 = 𝑧(𝜆)be an Eigen values  

of 𝐶(𝜆). We suppose that 𝑧(𝜆0) =1so that 𝜆0 is a generalized Eigen values . As was proved 

in the proof of, 〈𝜇 |𝐶(𝜆)𝑥〉Xis holomorphic in 𝜆. Eq.(53)shows that 〈ˆ𝜇|𝑄(𝜆)[𝑥]〉 B0is 

holomorphic for any ˆ〈𝜇 ∈ 𝐵0
′ 〉and [𝑥]  ∈ 𝐵. Since B0is a Banach space and B is dense in 

𝐵0, 𝑄0(𝜆)is a holomorphic family of operators. Recall that the Eigen values 𝑧(𝜆)of 𝐶(𝜆)is also 

an Eigen values  of 𝑄0(𝜆)satisfying 𝑧(𝜆0)  = 1. Then, the analytic perturbation theory of 

operators shows that there exists a natural number p such that z(λ)is holomorphic as a 

function of (𝜆 − 𝜆0)1/𝑝. Let us show that z(λ)is not a constant function. If z(λ) ≡1, every point 

in ˆ�̂� is a generalized Eigen value. Due to, the open lower half plane is included in the point 

spectrum of T. Hence, there exists 𝑓 = 𝑓𝜆in H such that 𝑓 = 𝐾(𝜆 − 𝐻)−1𝑓 for any 𝜆 ∈ 𝑪. 

However, since K is H bounded, there exist nonnegative numbers a and b such that 

 

which tends to zero as |𝜆| → ∞ outside the real axis. Therefore,‖𝑓‖  ≤ ‖𝐾(𝜆 − 𝐻)−1‖ ·

‖𝑓‖  → 0, which contradicts with the assumption. Since z(λ)is not a constant, there exists a 

neighborhood 𝑈 ⊂ 𝑪of 𝜆0 such that 𝑧(𝜆)′ = 1when 𝜆 ∈ 𝑈 and 𝜆 ′ = 𝜆0. This implies that 𝜆 ∈

𝑈\{𝜆0}is not a generalized eigenvalues  and proved. finally, let us prove the part (ii) of. Put 

˜𝐶(𝑧)  = (𝑧 − 1)  · 𝑖𝑑 + 𝐶(𝑧)and ˜𝑄(𝑧)  = (𝑧 − 1)· id+Q(z). They satisfy 〈𝜇|˜𝑄(𝜆)[𝑥]〉 

 

Since an Eigen space of 𝑄(𝑧) is finite dimensional, an eigenspace of ˜𝑄(𝑧) is also finite 

dimensional. Thus the resolvent (𝜆 − �̃�(𝑧))−1is meromorphic in 𝜆 ∈ �̂�. Since �̃�(𝑧)is 

holomorphic, (𝜆 − �̃�(𝜆))−1is also meromorphic. The above equality shows that 〈𝜇 |(𝜆 −

�̃�(𝜆))−1𝑥〉X is meromorphic for any 𝜇 ∈ 𝑆. Since Sis dense in 𝑋′, it turns out that (𝜆 −
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�̃�(𝜆))−1x is meromorphic with respect to the topology on X. Therefore, the generalized 

resolvent 

 

is meromorphic on �̂�. Now we have shown that the Laurent expansion of 𝑅𝜆is for some 𝑀 ≥

0. Then, we can prove by the same way as the proof of. To prove that 𝛱0𝑖𝑋(𝛺)is of finite 

dimensional, we need the next lemma. 

Lemma (3.1.22)[3]: dimKer 𝐵(𝑛) (λ) ≤ dimKer (𝑖𝑑 − 𝐾×𝐴(𝜆)) 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑛 ≥ 1. 

Proof: Suppose that 𝐵(𝑛)(𝜆)𝜇 = 0with 𝜇 ≠ 0. Then, we have 

 

If 𝐾×(𝜆 − 𝐻×)𝑛−1𝜇 = 0, 𝐵(𝑛)(𝜆)𝜇 = 0yields μ= 𝐴(𝑛)(𝜆)𝐾×(𝜆 − 𝐻×)𝑛−1𝜇 = 0, which 

contradicts with the assumption 𝜇 ≠ 0. Thus we obtain 𝐾×(𝜆 − 𝐻×)𝑛−1𝜇 ∈ 𝐾𝑒𝑟(𝑖𝑑 −

𝐾×𝐴(𝜆))and the mapping 𝜇 → 𝐾×(𝜆 − 𝐻×)𝑛−1𝜇 is one-to-one.Due to, Ker(id−K×A(λ)) is finite 

dimensional. Hence, 𝐾𝑒𝑟𝐵(𝑛)(𝜆)is also finite dimensional for any 𝑛 ≥ 1. This and prove that 

𝛱0𝑖𝑋(𝛺)is a finite dimensional space., 𝛱0𝑖𝑋(𝛺)  = 𝑉0, which completes. 

In this subpart, we suppose that  

(S1)The operator 𝑖𝑇 = 𝑖(𝐻 + 𝐾)generates a C0-semigroup 𝑒i𝑇𝑡on H(recall 𝑖 = √−1). 

For example, this is true when K is bounded on H or T is selfadjoint. By the Laplace 

inversion, the semi group is given as 

 

where the contour is a horizontal line in the lower half plane below the spectrum of T. we 

have shown that if there is an Eigen value of Ton the lower half plane, 𝑒i𝑇𝑡diverges as t →∞, 

while if there are no Eigen values, to investigate the asymptotic behavior of 𝑒i𝑇𝑡is difficult in 

general. Let us show that resonance poles induce an exponential decay of the 

semigroup.We use the residue theorem to calculate  Let 𝜆0 ∈ 𝛺be an isolated resonance 

(54) 

(55) 
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pole of finite multiplicity. Suppose that the contour γ is deformed to the contour𝛾′, which lies 

above 𝜆0, without passing the generalized spectrum �̂�(𝑇) except for 𝜆0,  

 

Fig.2.Deformationofthecontour 

.Fig.2. For example, it is possible under the assumptions of. Recall that if 𝜓, 𝜑 ∈

𝑋(𝛺), ((𝜆 − 𝑇)−1𝜓, 𝜑)defined on the lower half plane has an analytic continuation 

〈𝑅𝜆𝜓|𝜑〉defined on 𝛺 ∪ 𝐼 ∪ {𝜆 | 𝐼𝑚(𝜆)  < 0Thus we obtain 

 

where 𝛾0 is a sufficiently small simple closed curve enclosing 𝛾0. Let 𝑅𝜆 = ∑ (𝜆0 −∞
𝑗=−𝑀

𝜆)𝑗𝐸𝑗 = 0 be a Laurent series of 𝑅𝜆as inthe proof of and 𝐸−1 = −𝛱0, we obtain 

 

where 𝛱0 is the generalized projection to the generalized eigenspace of 𝜆0. Since 𝐼𝑚(𝜆0)  >

0, this proves that the second term in the right hand side of decays to zero as 𝑡 → ∞. Such 

an exponential decay of (a part of)the semigroup induced by res-onance poles is known as 

Landau damping in plasma physics , and is often observed for Schrodinger operators . A 

similar calculation is possible without defining the generalizedresolvent and the generalized 

spectrum as long as the quantity ((𝜆 − 𝑇)−1𝜓, 𝜑)has an analytic continuation for some 𝜓and 

𝜑. Indeed, this has been done in the literature.Let us reformulate it by using the dual space 

to find a decaying state corresponding to 𝜆0. For this purpose, we suppose that (S2)the semi 

group{(𝑒𝑖𝑇𝑡)∗}𝑡 ≥ 0 is an equicontinuous 𝐶0semigroup on X(Ω). 

(56) 



106 

 

Then, by the theorem in IX-13 of Yosida , the dual semi group (𝑒𝑖𝑇𝑡)×=((𝑒𝑖𝑇𝑡)∗)′is also an 

equicontinuous 𝐶0semi group generated by 𝑖𝑇×. A convenient sufficient condition for (S2) is 

that:(S2)’K∗|X(Ω)is bounded and {𝑒𝑖𝐻𝑡}𝑡 ≥ 0is an equicontinuous 𝐶0 semi group on 

X(Ω).bIndeed, the perturbation theory of equicontinuousC0semi groups shows that 

(S2)′implies (𝑆2). By using the dual semigroup, is rewritten as 

 

for any 𝜓 ∈ 𝑖𝑋(𝛺). Similarly, yields 

 

when 𝜆0 is a generalized eigenvalues of finite multiplicity. For the dual semigroup, the 

following statements hold. 

Proposition (3.1.24)[3]:Suppose(S1) and(S2). 

(i)A solution of the initial value problem 

 

in 𝑋(𝛺)′is uniquely given by 𝜉(𝑡)  = (𝑒𝑖𝑇𝑡)×𝜇. 

(ii)Let 𝜆0be a generalized Eigen values  and 𝜇0𝑎 corresponding generalized Eigen function. 

Then, 

(𝑒i𝑇𝑡)×𝜇0 = 𝑒i𝑇0𝑡𝜇0. 

(iii)Let 𝛱0be a generalized projection for 𝜆0. The space 𝛱0𝑖𝑋(𝛺)is (𝑒i𝑇𝑡)×invariant: 

(𝑒i𝑇𝑡)×𝛱0 = 𝛱0(𝑒i𝑇𝑡)×|𝑖𝑋(𝛺). 

Proof: Since {(𝑒i𝑇𝑡)×}t≥0 is an equicontinuous 𝐶0 semigroup generated by i𝑇×, (i) follows 

from the usual semi group theory Because of we have 𝑖𝑇×𝜇0 = 𝑖𝜆0𝜇0. Then, 

 

(57) 

(58) 

(59) 
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Thus 𝜉(𝑡) = 𝑒𝑖𝜆0𝑡𝜇0is a solution By the uniqueness of a solution, we obtain(ii). Because of, 

we have 

 

Hence, both of (𝑒i𝑇𝑡)×𝑅𝜆𝑎𝑛𝑑 𝑅𝜆(𝑒i𝑇𝑡)×are solutions of. By the uniqueness, we obtain 

(𝑒i𝑇𝑡)×𝑅𝜆|iY = (𝑒i𝑇𝑡)×𝑅𝜆|iY. Then, the definition of the projection 𝛱0proves(𝑒i𝑇𝑡)×Π0|iY =

Π0(𝑒i𝑇𝑡)×|iY  with the aid of Since Y is dense in X(Ω)and both operators 

(𝑒i𝑇𝑡)×Π0 𝑜 i and  Π0(𝑒i𝑇𝑡)×𝑜 i = 𝛱0𝑜 i 𝑜 𝑒i𝑇𝑡are continuous on 𝑋(𝛺).the equality is true 

on𝑖𝑋(𝛺), any usual function 𝜑 ∈ 𝑋(𝛺)is decomposed 𝑎 𝑠 |𝜑 = 𝜇1 + 𝜇2with 𝜇1 ∈ 𝛱0𝑖𝑋(𝛺)and 

𝜇2 ∈ (𝑖𝑑 − 𝛱0)𝑖𝑋(𝛺)in the dual space., this decomposition is (𝑒i𝑇𝑡)×invariant. When 𝜆0 ∈ 𝛺, 

(𝑒i𝑇𝑡)×𝜇1 ∈ Π0𝑖𝑋(𝛺)decays to zero exponentially as 𝑡 → ∞.gives the decomposition 

explicitly. Such an exponential decay can be well observed if we choose a function, which is 

sufficiently close to the generalized Eigen function𝜇0, as an initial state. Since 𝑋(𝛺)is dense 

in 𝑋(𝛺)′and since (𝑒i𝑇𝑡)×is continuous, for any 𝑇 > 0and 𝜀 > 0, there exists a function 

𝜑0𝑖𝑛 𝑋(𝛺)such that 

 

for 0 ≤ 𝑡 ≤ 𝑇and 𝜓 ∈ 𝑋(𝛺). This implies that 

 

for the interval 0 ≤ 𝑡 ≤ 𝑇. Thus generalized Eigen values describe the transient behavior of 

solutions. 

section (3.2): An Application and Pettis Integrals and Vector Valued Holomorphic Functions 

on the Dual Space 

Let us apply the present theory to the dynamics of an infinite dimensional coupled 

oscillators. The results in this part are partially obtained. Coupled oscillators are often used 

(60) 
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as models of collective synchronization phenomena. One of the important models for 

synchronization is the Kuramoto model defined by 

 

where 𝜃𝑖 = 𝜃𝑖(𝑡)  ∈ [0, 2𝜋)denotes the phase of an 𝑖 − 𝑡ℎ oscillator rotating on a circle, 𝜔𝑖 ∈

𝑹is a constant called a natural frequency, 𝑘 ≥ 0 is a coupling strength, and where Nis the 

number of oscillators When 𝑘 > 0, there are interactions between oscillators and collective 

behavior may appear. For this system, the order parameter 𝜂(𝑡), which gives the centroid of 

oscillators, is defined to be 

 

 

Fig.3.The order parameter of the Kuramoto model. 

If |𝜂(𝑡)|takes a positive number, synchronous state is formed, while if |η(t)|is zero on time 

average, de-synchronization is stable.For many applications, N is too large so that 

statistical–mechanical description is applied. In such a case, the continuous limit of the 

Kuramoto model is often employed: At first, note that Eq (61) can be written as 

 

Keeping it in mind, the continuous model is defined as the equation of continuity of the form 

(61) 

(62) 
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This is an evolution equation of a probability measure 𝜌𝑡 = 𝜌𝑡(𝜃, 𝜔)on 𝑆1=[0, 2π) 

parameterized by 𝑡 ∈ 𝑹 and 𝜔 ∈ 𝑹. Roughly speaking, 𝜌𝑡(𝜃, 𝜔)denotes a probability that an 

oscillator having a natural frequency ωis placed at a position 𝜃. The 𝜂above is the 

continuous version of (62) , which is also called the order parameter, and 𝑔(𝜔)is a given 

probability density function for natural frequencies. This system is regarded as a Fokker 

Planck equation of (61) . Indeed, it is known that the order parameter for the finite Eq(61)  of 

dimensional system converges to that of the continuous model as 𝑁 → ∞in some 

probabilistic sense. To investigate the stability and bifurcations of solutions of the system is a 

famous difficult problem in this field . It is numerically observed that when 𝑘 > 0is sufficiently 

small, then the de-synchronous state |η| =0is asymptotically stable, while if 𝑘exceeds a 

certain value 𝑘𝑐, a nontrivial solution corresponding to the synchronous state |𝜂|  > 0 

bifurcates from the desynchronous state. Indeed, Kuramoto conjectured thatKuramoto 

conjecture. Suppose that natural frequencies 𝜔𝑖 are distributed according to a probability 

density function 𝑔(𝜔). If 𝑔(𝜔)is an even and unimodal function 

 

Fig.4.A bifurcation diagram of the order parameter. Solid lines denote stable solutions and 

dotted lines denote unstable solutions. 

(63) 
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such that 𝑔′′(0)  ≠ 0, then the bifurcation diagram of 𝑟 = |𝜂|is given as that is, if the coupling 

strength 𝑘 is smaller than 𝑘𝑐 =
2

𝜋𝑔(0)
, then 𝑟 ≡ 0is asymptotically stable. On the other hand, if 

𝑘is larger than 𝑘𝑐, the synchronous state emerges; there exists a positive constant rcsuch 

that 𝑟 = 𝑟𝑐is asymptotically stable. Near the transition point𝐾𝑐 , 𝑅𝑐is of order 𝑂((𝑘 − 𝑘𝑐)
1

2).A 

function 𝑔(𝜔)is called unimodal (𝑎𝑡 𝜔 = 0) if 𝑔(𝜔1)  > 𝑔(𝜔2)for 0 ≤ 𝜔1 < 𝜔2and 𝑔(𝜔1)  <

𝑔(𝜔2)𝑓𝑜𝑟 𝜔1 < 𝜔2 ≤ 0.for Kuramoto’s discussion. The purpose here is to prove the linear 

stability of the de-synchronous state |𝜂| = 𝑟 = 0𝑓𝑜𝑟 0 < 𝑘 < 𝑘𝑐 by applying our spectral 

theory when 𝑔(𝜔)  = 𝑒−𝜔2/2/√2π is assumed to be the Gaussian distribution as in the most 

literature. for nonlinear analysis and the proof of the bifurcation at 𝑘 = 𝑘𝑐At first, let us 

observe that the difficulty of the conjecture is caused by the continuous spectrum. Let 

 

be the Fourier coefficient of 𝜌𝑡(𝜃, 𝜔). Then, 𝑍0(𝑡, 𝜔)  = 1𝑎𝑛𝑑 𝑍𝑗satisfy the differential 

equations 

 

and 

 

for𝑗 = 2, 3, . . . . 𝐿𝑒𝑡 𝐿2(𝑹, 𝑔(𝜔)𝑑𝜔)be the weighted Lebesgue space and put 𝑃0(𝜔)  = 1 ∈

𝐿2(𝑹, 𝑔(𝜔)𝑑𝜔). Then, the order parameter is written as η(t) =(𝑍1, 𝑃0)by using the inner 

product on 𝐿2(𝑹, 𝑔(𝜔)𝑑𝜔). Since our purpose is to investigate the dynamics of the order 

parameter, let us consider the linearized system of Z1 given by 

 

(64) 

(65) 

(66) 

(67) 
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Where𝑀 ∶ 𝜑(𝜔)  → 𝜔𝜑(𝜔)is the multiplicationoperator on 𝐿2(𝑹, 𝑔(𝜔)𝑑𝜔)𝑎𝑛𝑑 𝑃 is the 

projection on 𝐿2(𝑹, 𝑔(𝜔)𝑑𝜔)defined to be 

 

 

To determine the linear stability of the de-synchronous state 𝜂 = 0, we have to investigate 

the spectrum and the semigroup of the operator 𝑇1 = 𝑖𝑀 +
𝑘

2
𝑃.The domain of𝑇1 = 𝑖𝑀 +

𝑘

2
𝑃 is given by 𝐷(𝑀)  ∩ 𝐷(𝑃)  = 𝐷(𝑀), which is dense in 𝐿2(R, g(ω)dω). Since M is selfadjoint 

and since P is bounded, T1is a closed operator . Let 𝑄(𝑇1)be the resolvent set of 𝑇1and σ(𝑇1) 

=C\Q()𝑇1𝑡ℎe spectrum. Let 𝜎𝑝(𝑇1)and 𝜎𝑐(𝑇1)be the point spectrum (the set of Eigen values s) 

and the continuous spectrum of 𝑇1, respectively. 

Lemma (3.2.1)[3]: 

(i) Eigenvalues 𝜆 of 𝑇1are given as roots of 

 

(ii) The continuous spectrum of 𝑇1is given by 

𝜎𝑐(𝑇1)  =  𝜎(𝑖𝑀)  =  𝑖𝑹. 

Proof: Part (i) follows from a straightforward calculation of the equation 𝜆𝑣 = 𝑇1𝑣. Indeed, 

this equation yields 

 

This is rewritten as 𝑣 = 𝑘/2 · (𝑣, 𝑃0)(𝜆 − 𝑖𝜔)−1𝑃0. Taking the inner product with 𝑃0, we 

obtain 

 

which gives the desired result. Part (ii) follows from the fact that the essential spectrum is 

stable under the bounded perturbation. The essential spectrum of 𝑇1is the same as 𝜎(𝑖𝑀). 

(68) 

(69) 

(70) 
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Since M is defined on the weighted Lebesgue space and the weight g(ω)is the Gaussian, 

𝜎(𝑖𝑀)  = 𝑖·supp(𝑔) =iR. Our next task is to calculate roots to obtain Eigen values of 𝑇1. Put 

𝑘𝑐 =
2

𝜋𝑔(0)
, which is called Kuramoto’s transition point. 

Lemma (3.2.2)[3]:When 𝑘is larger than 𝑘𝑐, there exists a unique Eigen values  λ(k)of 𝑇1on 

the positive real axis. As kdecreases, the Eigen values 𝜆(𝑘)approaches to the imaginary 

axis, and at 𝑘 = 𝑘𝑐, it is absorbed into the continuous spectrum and disappears. When 0 <

𝑘 < 𝑘𝑐, there are no Eigen values s. 

Proof: Put 𝜆 = 𝑥 + 𝑖𝑦 with x, 𝑦 ∈ 𝑹,is rewritten as 

 

The first equation implies that if there is an eigenvalues 𝑥 + 𝑖𝑦 for 𝑘 > 0, then 𝑥 > 0. Next, 

the second equation is calculated as 

 

Since gis an even function, y=0is a root of this equation. Since g is unmoral, 𝑔(𝑦 + 𝜔)  −

𝑔(𝑦 − 𝜔)  > 0when 𝑦 < 0, 𝜔 > 0 and 𝑔(𝑦 + 𝜔) − 𝑔(𝑦 − 𝜔) < 0 when 𝑦 > 0, 𝜔 > 0. Hence, 

𝑦 = 0 is a unique root. This proves that an eigenvalues  should be on the positive real axis, if 

it exists. Let us show the existence. If |𝜆|is large, (79) is expanded as 

 

Thus Rouche’s theorem proves that (79) has a root𝜆 ∼
𝑘

2
𝑖𝑓 𝑘 > 0is sufficiently large. Its 

position 𝜆(𝑘)is continuous (actually analytic) in  𝑘 as long as it exists. The eigenvalues  

disappears only when 𝜆 → +0as 𝑘 → 𝑘𝑐for some value 𝑘𝑐. Substituting y=0and taking the 

limit 𝑥 → +0, 𝑘 → 𝑘𝑐, we have 

(71) 
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The well-known formula 

 

provides 𝑘𝑐 =
2

𝜋𝑔(0)
. Since 𝑘𝑐 is uniquely determined, the Eigen values 𝜆(𝑘)exists for 𝑘 > 𝑘𝑐, 

disappears at 𝑘 = 𝑘𝑐and there are no Eigen values s for 0 < 𝑘 < 𝑘𝑐.This lemma shows that 

when  k is larger than 𝑘𝑐, 𝑍1 = 0 of is unstable because of the Eigen values  with a positive 

real part. However, when 0 < 𝑘 < 𝑘𝑐, there are no Eigen values s and the spectrum of 

𝑇1consists of the continuous spectrum on the imaginary axis. Hence, the usual spectral 

theory does not provide the stability of solutions. To handle this difficulty, let us introduce a 

rigged Hilbert space. 

To apply our theory, let us define a test function space 𝑋(𝛺). Let 𝐸𝑥𝑝+(𝛽, 𝑛) be the set of 

holomorphic functions on the region 𝑪𝑛 = {𝑧 ∈ 𝑪 | 𝐼𝑚(𝑧)  ≥ −1/𝑛}such that the norm 

 

is finite. With this norm, 𝐸𝑥𝑝+(𝛽, 𝑛)is a Banach space. Let 𝐸𝑥𝑝+(𝛽)be their inductive limit 

with respect ton =1, 2, ... 

 

Next, define 𝐸𝑥𝑝+ to be their inductive limit with respect to 𝛽 = 0, 1, 2, . .. 

 

Thus 𝐸𝑥𝑝+is the set of holomorphic functions near the upper half plane that can grow at 

most exponentially. Then, we can prove the next proposition. 

Proposition (3.2.3)[3]: 𝐸𝑥𝑝+ is a topological vector space satisfying 

(72) 

(73) 

(74) 
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(i) 𝐸𝑥𝑝+is a complete Montel space 𝐸𝑥𝑝+is a dense subspace of 𝐿2 (𝑹, 𝑔(𝜔)𝑑𝜔). 

(ii) Thetopology of 𝐸𝑥𝑝+is stronger than that of 𝐿2(𝑹, 𝑔(𝜔)𝑑𝜔) 

(iii) Theoperators 𝑀and Pare continuous on 𝐸𝑥𝑝+. In particular, 𝑇1: 𝐸𝑥𝑝+ → 𝐸𝑥𝑝+is 

continuous (note that it is not continuous on 𝐿2(𝑹, 𝑔(𝜔)𝑑𝜔)). 

for the proof. Thus, 𝑋(𝛺)  = 𝐸𝑥𝑝+satisfies (X1) to (X3) and the rigged Hilbert space 

 

is well-defined. Furthermore, the operator 

 

satisfies the assumptions (X4) to (X8) with 𝐻 = 𝑀and 𝐾 =
𝑘

2𝑖
𝑃. Indeed, the analytic 

continuation 𝐴(𝜆)of the resolvent (𝜆 − 𝑀)−1is given by 

 

for 𝜓, 𝜑 ∈ 𝐸𝑥𝑝+. Since functions in 𝐸𝑥𝑝+are holomorphic near the upper half plane, (X4) and 

(X5) are satisfied with 𝐼 = 𝑹and Ω=(the upper half plane). Since M and Pare continuous on 

𝐸𝑥𝑝+, (X6) and (X7) are satisfied with Y=𝐸𝑥𝑝+. For (X8), note that the dual operator 𝐾×of K 

is given as 

 

Since the range of 𝐾×is included in 𝑖𝑋(𝛺), (X8) is satisfied. Therefore, all assumptions in 

Part are verified and we can apply our spectral theory to the operator 𝑇1/𝑖. 

Remark(4.2.4)[3]:𝑇1is not continuous on 𝐸𝑥𝑝+(𝛽, 𝑛)for fixed 𝛽 > 0 because of the multi 

plication 𝑀 ∶ 𝜑 → 𝜔𝜑. The inductive limit in βis introduced so that it becomes continuous. 

The proof of Lemma (3.2.1)[3]shows that the Eigen function of 𝑇1 associated with λ is given 

by 

(75) 

(76) 

(77) 

(78) 
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If 𝜆 > 0 is small, 𝑣𝜆is not included in 𝐸𝑥𝑝+(𝛽, 𝑛)for fixed 𝑛. The inductive limit in 𝑛 is 

introduced so that any Eigen functions are elements of 𝐸𝑥𝑝+. Furthermore, the topology of 

𝐸𝑥𝑝+is carefully defined so that the strong dual 𝐸𝑥𝑝+becomes a Fréchet Montel space. It is 

known that the strong dual of a Montel space is also Montel. Since 𝐸𝑥𝑝+is defined as the 

inductive limit of Banach spaces, its dual is realized as a projective limit of Banach spaces 

𝐸𝑥𝑝+(𝛽, 𝑛)′, which is Fréchet by the definition. Hence, the contraction principle is applicable 

on 𝐸𝑥𝑝+which allows one to prove the existence of center manifolds of the system though 

nonlinear problems are not treated in this chapter. 

Proposition (3.2.5)[3]: 

(i) The generalized continuous and the generalized residual spectra are empty. 

 

Fig.5.As 𝑘 decreases, the Eigen values  of 
𝑇1

𝑖
disappears from the original complex plane by 

absorbed into the continuous spectrum on the real axis. However, it still exists as a 

resonance pole on the sectionond Riemann sheet of the generalized resolvent. 

 

(iii) For any k>0, there exist infinitely many generalized Eigen values s on the upper half 

plane. 

(iv) For 𝑘 > 𝑘𝑐, there exists a unique generalized Eigen values  λ(k)on the lower half 

plane, which is an Eigen values  of 𝑇1/𝑖 in 𝐿2(𝑹, 𝑔(𝜔)𝑑𝜔)′sense. As 𝑘 decreases, 𝜆(𝑘)goes 

upward and at 𝑘 = 𝑘𝑐 , 𝜆(𝑘)gets across the real axis and it becomes a resonance pole. When 
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0 < 𝑘 < 𝑘𝑐 , 𝜆(𝑘)lies on the upper half plane and there are no generalized Eigen values s on 

the lower half plane. 

Proof.(i) Since 𝐾×is a onedimensional operator, it is easy to verify the assumption Hence, 

the generalized continuous and the generalized residual spectra are empty. 

(iii)  Let 𝜆and 𝜇 be a generalized Eigen values  and a generalized Eigen function, 𝜆and 

𝜇satisfy (𝑖𝑑 − 𝐾×𝐴(𝜆))𝐾×𝜇 = 0. In our case, 

 

And 

 

for any 𝜑 ∈  𝐸𝑥𝑝+. Hence, generalized Eigen values s are given as roots of the equation 

 

Since 𝑔is the Gaussian, it is easy to verify that for 𝐼𝑚(𝜆) > 0has infinitely many roots 

{𝜆𝑛}𝑛=0
∞  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐼𝑚(𝜆𝑛) → ∞ and they approach to the rays arg(𝑧) =

𝜋

4
,

3𝜋

4
𝑎𝑠 𝑛 → ∞. 

(iv)  When 𝐼𝑚(𝜆)  < 0, in which λ is replaced by 𝑖𝜆. Thus Lemma(shows that when k>𝑘𝑐, 

there exists a root λ(k)on the lower half plane.  k decreases, λ(k) goes upward and for 0 <

𝑘𝑐 < 𝑘, it becomes a root of the first equation of because the right hand side of is 

holomorphic in λ. 

shows that a generalized Eigen function associated with 𝜆is given by 𝜇 = 𝐴(𝜆)𝐾×𝜇 =

𝑘

2𝑖
〈𝜇 |𝑃0〉  · 𝐴(𝜆)_𝑃0|. We can choose a constant 𝜇〈|𝑃0〉𝑎𝑠 〈𝜇 |𝑃0〉 =

2𝑖

𝑘
. Then, 𝜇 = 𝐴(𝜆)′𝑃0|  =

𝐴(𝜆)𝑖(𝑃0). When Im(λ) <0, μ is a usual function written as 𝜇 = (𝜆 − 𝜔)−1 ∈ 𝐸𝑥𝑝+, although 

when 𝐼𝑚(𝜆)  ≥ 0, 𝜇is not included in 𝐿2(𝑹, 𝑔(𝜔)𝑑𝜔)but an element of the dual space 𝐸𝑥𝑝+. In 

what follows, we denote generalizedEigen values s by {𝜆𝑛}𝑛=0
∞ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐼𝑚 |𝜆𝑛| ≤ |𝜆𝑛 +

1|𝑓𝑜𝑟 𝑛 = 0, 1, . . ., and a corresponding generalized Eigen function by 𝜇𝑛 = 𝐴(𝜆𝑛)⟨𝑃0|. proves 

(79) 
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that they satisfy 𝑇1
×𝜇𝑛 = 𝑖𝜆𝑛𝜇𝑛. Note that when 0 < 𝑘 < 𝑘𝑐, all generalized Eigen values s 

satisfy 𝐼𝑚(𝜆𝑛)  > 0.Next, let us calculate the generalized resolvent of 𝑇1/𝑖. yields 

 

for any 𝜑 ∈ 𝐸𝑥𝑝+. Taking the inner product with 𝑃0, we obtain 

 

Substituting this into (62) we obtain 

 

Then, the generalized Riesz projection for the generalized eigenvalues 𝜆𝑛is given by 

 

Or 

 

where 𝐷𝑛is a constant defined by 

 

the range of 𝛱𝑛is spanned by the generalized eigen-function 𝜇𝑛.Now we are in a position to 

give a spectral decomposition theorem of the semi group generated by 𝑇1 = 𝑖𝑀 +
𝑘

2
𝑃. Since 

𝑖𝑀generates the𝐶0semigroup on𝐾2(𝑹, 𝑔(𝜔)𝑑𝜔) 

 

Fig.6.The contour for the Laplacein version formula. 

and 𝑃is bounded, 𝑇1 also generates the 𝐶0semigroup given by 

(80) 

(81) 

(82) 

(83) 
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for t >0, where xis a sufficiently large number. In L2(R, g(ω)dω)theory, we cannot deform the 

contour from the right half plane to the left half plane because 𝑇1has the continuous 

spectrum on the imaginary axis. Let us use the generalized resolvent 𝑅𝜆𝑜𝑓 𝑇1/𝑖. For this 

purpose, we rewrite the above as 

 

whose contour is the horizontal line on the lower half plane (Fig.6(a)). Recall that when 

𝐼𝑚(𝜆)  < 0, ((𝜆 − 𝑇1/𝑖)−1𝜑, 𝜓)  = 〈𝑅𝜆𝜑 |𝜓〉for𝜑, 𝜓 ∈ 𝐸𝑥𝑝+because of Thus we have. 

 

Since 〈𝑅𝜆𝜑 |𝜓〉is a meromorphic function whose poles are generalized eigenvalues s 

{𝜆𝑛}𝑛=0
∞ , we can deform the contour from the lower half plane to the upper half plane. With 

the aid of the residue theorem, we can prove the next theorems. 

Theorem (3.2.5)[3]:(Spectral decomposition). For any 𝜑, 𝜓 ∈ 𝐸𝑥𝑝+, there exists 𝑡0 > 0such 

that the equality 

 

holds for 𝑡 > 𝑡0. Similarly, the dual semigroup (𝑒𝑇1𝑡)×satisfies 

 

for 𝜑 ∈ 𝐸𝑥𝑝+ 𝑎𝑛𝑑 𝑡 > 𝑡0, where the right hand side converges with respect to the strong dual 

topology on𝐸𝑥𝑝+
′ 

Theorem (3.2.6)[3]:(Completeness). 

(84) 

(85) 

(86) 

(87) 

(88) 
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(i) A system of generalized Eigen functions {𝜇𝑛}𝑛=0
∞ is complete in the sense that If 〈𝜇𝑛|𝜓〉 =

0 for 𝑛 = 0, 1, . . ., then ψ=0. 

(ii) 𝜇0, 𝜇1, . ..are linearly independent of each other: if ∑ 𝑎𝑛𝜇𝑛
∞
𝑛≠0 = 0.with 𝑎𝑛 ∈ 𝑪, then 𝑎𝑛 = 0 

for every n. 

(iii) The decomposition of (𝑒𝑇1𝑡)× using {𝜇𝑛}𝑛=0
∞ is uniquely expressed as. 

Corollary (3.2.7)[3]:(Linear stability). When 0 < 𝑘 < 𝑘𝑐, the order parameter 𝜂(𝑡)  =

(𝑍1, 𝑃0)for the linearized system decays exponentially to zero 𝑎𝑠 𝑡 → ∞ if the initial con-dition 

is an element of 𝐸𝑥𝑝+ 

Proof: When an initial condition of the system  is given by 𝜑 ∈ 𝐸𝑥𝑝+, the order parameter is 

given by 𝜂(𝑡)  = (𝑍1, 𝑃0)  = (𝑒𝑇1𝑡𝜑, 𝑃0). 𝐼𝑓 0 < 𝑘 < 𝑘𝑐, all generalized Eigen values s lie on 

the upper half plane, so that 𝑅𝑒[𝑖𝜆𝑛]  < 0𝑓𝑜𝑟 𝑛 = 0, 1, . . .. Then the corollary follows from  

(i)  If 〈𝜇𝑛|𝜓〉=0 for all n, provides for any 𝐸𝑥𝑝+. Since 𝐸𝑥𝑝+is dense in 𝐿2 (𝑹, 𝑔(𝜔)𝑑𝜔), 

we obtain (𝑒𝑇1𝑡)∗𝜓 = 0 for any 𝑡 > 𝑡0, which proves 𝜓 = 0. 

(ii) Suppose that ∑ 𝑎𝑛𝜇𝑛
∞
𝑛=0  = 0  

 

Changing the label if necessary, we can assume that 

𝑅𝑒[𝑖𝜆0]  ≥  𝑅𝑒[𝑖𝜆1]  ≥  𝑅𝑒[𝑖𝜆2]  ≥ ··· , 

without loss of generality. Suppose that 𝑅𝑒[𝑖𝜆0] =···= 𝑅𝑒[𝑖𝜆𝑘]and 𝑅𝑒[𝑖𝜆𝑘]> 𝑅𝑒[𝑖𝜆𝑘+1]. Then, 

the above equality provides 

 

Taking the limit 𝑡 → ∞yields 

 

Taking the limit 𝑡 → ∞ yields 



120 

 

 

Since the finite set 𝜇0, . . . , 𝜇𝑘of eigenvectors are linearly independent as in a finite 

dimensional case, we obtain 𝑎𝑛 = 0for 𝑛 = 0, . . . , 𝑘. The same procedure is repeated to 

prove 𝑎𝑛 = 0 for every n. 

(iii) This immediately follows from part(ii) of the theorem. 

Finally, let us prove. Recall that generalized Eigen values s are roots of Hence, there exist 

positive numbers Band {𝑟𝑗}𝑗=1
∞ such that 

 

holds for 𝜆 = 𝑟𝑗𝑒𝑖𝜃(0 < 𝜃 < 𝜋). Take a positive number d so that 𝐼𝑚(𝜆𝑛𝑛) > −𝑑  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 =

0, 1, .... Fix a small positive number δ and define a closed curve 𝐶(𝑗) = 𝐶1 +··· +𝐶6by 

 

and 𝐶5and 𝐶6are defined in a similar manner to 𝐶3and 𝐶2, respectively,  

Let 𝜆0, 𝜆1, . . . , 𝜆𝑁(𝑗)be generalized Eigen values s inside the closed curve C(j)., we have 

 

Taking the limit 𝑗 → ∞(𝑟𝑗 → ∞) provides 

 

We can prove by the standard way that the integrals along 𝐶2, 𝐶3, 𝐶5and 𝐶6tend to zero as 

𝑗 → ∞. The integral along 𝐶4is estimated as 

(89) 



121 

 

 

It follows from that 

 

 

Since 𝜑, 𝜓 ∈ 𝐸𝑥𝑝+, there exist positive constants 𝐶1,𝐶2, 𝛽1, 𝛽2such that 

 

Using the definition of A(λ), we can show that there exist positive constants 𝐷0, . . . , 𝐷4such 

that 

 

When |𝑔(𝜆)|  → ∞𝑎𝑠 |𝜆|  → ∞, this yields 

 

When |𝑔(𝜆)|is bounded as |𝜆|  → ∞, is used to estimate . For both cases, we can show that 

there exists 𝐷5 > 0such that 

 

Therefore, we obtain 
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Thus if 𝑡 > 𝑡0 =
𝜋(,𝛽1+𝛽2)

2𝛿
, this integral tends to zero as 𝑗 → ∞, which proves . holds for each 

𝜓 ∈ 𝐸𝑥𝑝 +, the right hand side of Eq.(88)converges with respect to the weak dual topology 

on 𝐸𝑥𝑝+. Since 𝐸𝑥𝑝+is a Montel space, a weakly convergent series also converges with 

respect to the strong dual topolog is to give the definition and the existence theorem of Pettis 

integrals. After that, a few results on vector-valued holomorphic functions are given. For the 

existence of Pettis integrals, the following property.(CE)for any compact set K, the closed 

convex hull of K is compact, which is sometimes called the convex envelope property, is 

essentially used. For the convenience of the reader, sufficient conditions for the property are 

listed below. We also give conditions for X to be barreled because it is assumed in (X3). Let 

X be a locally convex Hausdorff vector space, and 𝑋′its dual space. 

• The closed convex hull co(K)of a compact set Kin X is compact if and only if 𝑐𝑜(𝐾)is 

complete in the Mackey topology on X(Krein’s theorem). 

• X has the convex envelope property if X is quasi-complete. 

• If X is born logical, the strong dual 𝑋′is complete. In particular, the strong dual of a 

metrizable space is complete. 

• If X is barreled, the strong dual 𝑋′is quasi-complete. In particular, 𝑋′has the convex 

envelope property. 

• Montel spaces, Fréchet spaces, Banach spaces and Hilbert spaces are barreled. 

• The product, quotient, direct sum, (strict) inductive limit, completion of barreled spaces are 

barreled. 

Let X be a topological vector space over C and (S, μ)a measure space. Let 𝑓: 𝑆 → 𝑋be a 

measurable X-valued function. If there exists a unique 𝐼𝑓 ∈ 𝑋 such that 〈𝜉|𝐼𝑓〉 =

〈𝑆𝜉|𝑓〉𝑑𝜇𝑓𝑜𝑟 𝑎𝑛𝑦 𝜉 ∈ 𝑋′, 𝐼𝑓is called the Pettis integral of𝑓. It is known that if X is a locally 

convex Hausdorff vector space with the convex envelope property, Sis a compact Hausdorff 

space with a finite Borel measure μ, and if 𝑓: 𝑆 → 𝑋is continuous, then the Pettis integral of f 
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exists , we have defined the integral of the form ∫ 𝑅𝜆𝜑𝑑𝜆
𝛾

, where 𝑅𝜆𝜑is an element of the 

dual 𝑋(𝛺)′. Thus our purpose here is to define a “dual version” of Pettis integrals. 

In what follows, let X be a locally convex Hausdorff vector space over 𝑪, 𝑋′𝑎 strong dual with 

the convex envelope property, and let S be a compact Hausdorff space with a finite Borel 

measure μ, S is always a closed path on the complex plane. Let 𝑓: 𝑆 → 𝑋′be a continuous 

function with respect to the strong dual topology on 𝑋’ 

Theorem  (.3.2.8)[3]: 

(i) Under the assumptions above, there exists a unique 𝐼(𝑓)  ∈ 𝑋′such that 

 

for any x ∈X. I(f)is denoted by I(f) =∫ 𝑓𝑑𝜇
𝑆

and called the Pettis integral off. 

(ii) The mapping 𝑓 → 𝐼(𝑓)is continuous in the following sense; for any neighborhoodUof zero 

in 𝑋′equipped with the weak dual topology, there exists a neighborhood V of zero in 𝑋′such 

that if f(s) ∈V for any s ∈S, then 𝐼(𝑓)  ∈ 𝑈. 

(iii) Furthermore, suppose that X is a barreled space. Let T be a linear operator densely 

defined on X and 𝑇′its dual operator with the domain 𝐷(𝑇′)  ⊂ 𝑋′. 𝐼𝑓 𝑓(𝑆)  ⊂ 𝐷(𝑇′)and the set 

{𝑇′𝑓(𝑠)|𝑥⟩}𝑠∈𝑆is bounded for each x ∈X, then, 𝐼(𝑓)  ∈ 𝐷(𝑇′)𝑎𝑛𝑑 𝑇′ 𝐼(𝑓)  = 𝐼(𝑇′𝑓)holds; that is, 

 

holds. 

The proof of (i) is done in a similar manner to that of the existence of Pettis integrals on X. 

Note that Tis not assumed to be continuous for the part (iii). When Tis continuous, the set 

{〈𝑇′𝑓(𝑠) |𝑥〉}𝑠∈𝑆is bounded because 𝑇′and fare continuous. 

Proof: At first, note that the mapping 〈·  |𝑥〉: 𝑋′ → 𝑪 is continuous because Xcan be 

canonically embedded into the dual of the strong dual 𝑋′. Thus 〈𝑓(·) |𝑥〉: 𝑆 → 𝑪 is continuous 

and it is integrable on the compact set S with respect to the Borel measure. Let us show the 

(90) 

(91) 
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uniqueness. If there are two elements 𝐼1(𝑓), 𝐼2(𝑓)  ∈ 𝑋′satisfying , we have 〈𝐼1(𝑓) |𝑥〉 =

〈𝐼2(𝑓) |𝑥〉for any 𝑥 ∈ 𝑋. By the definition of 𝑋′, it follows 𝐼1(𝑓)  = 𝐼2(𝑓).Let us show the 

existence. We can assume without loss of generality that X is a vector space over Rand μ is 

a probability measure. Let 𝐿 ⊂ 𝑋 be a finite set and put 

 

Since 〈·  |𝑥〉is a continuous mapping, 𝑉𝑙 is closed. Since f is continuous, f(S) is compact in 𝑋′. 

Due to the convex envelope property, the closed convex hull 𝑐𝑜(𝑓(𝑆))is compact. Hence, 

𝑊𝐿 = 𝑉𝐿 ∩ 𝑐𝑜(𝑓(𝑆))is also compact. By the definition, it is obvious that 𝑊𝐿1
∩ 𝑊𝐿2

= 𝑊𝐿1𝐿2
. 

Thus if we can prove that 𝑊𝐿is not empty for any finite set L, afamily {𝑊𝐿}𝐿∈{𝑓𝑖𝑛𝑖𝑡𝑒𝑠𝑒𝑡}has the 

finite interpart property. Then, ∩𝐿 𝑊𝐿is not empty because 𝑐𝑜(f(S))is compact. This implies 

that there exists 𝐼(𝑓)  ∈∩𝐿 𝑊𝐿such that 〈𝐼(𝑓) |𝑥〉 = 𝑓𝑠〈𝑓|𝑥〉𝑑𝜇for any x ∈X. Let us prove that 

𝑊𝐿is not empty for any finite set 𝐿 = {𝑥1, . . . , 𝑥𝑛}  ⊂ 𝑋. Define the mapping 𝐿 ∶ 𝑋′ → 𝑹𝑛 𝑡𝑜 be 

 

This is continuous and L(f(S))is compact in 𝑹𝒏. Let us show that the element 

 

is included in the convex hull 𝑐𝑜(𝐿(𝑓(𝑆)))𝑜𝑓 𝐿(𝑓(𝑆)). If otherwise, there exist real numbers 

𝑐1, . .., 𝑐𝑛such that for any (𝑧1, . . . , 𝑧𝑛)  ∈ 𝑐𝑜(𝐿(𝑓(𝑆))), the inequality 

 

holds . In particular, since 𝐿(𝑓(𝑆))  ⊂ 𝑐𝑜(𝐿(𝑓(𝑆))), 

 

(92) 

(93) 
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Integrating both sides (in the usual sense) yields ∑ 𝑐𝑖𝑦𝑖
𝑛
𝑖=1 < ∑ 𝑐𝑖𝑦𝑖

𝑛
𝑖=1 . This is a con-

tradiction, and therefore 𝑦 ∈ 𝑐𝑜(𝐿(𝑓(𝑆))). Since 𝐿is linear, there exists 𝑣 ∈ 𝑐𝑜(𝑓(𝑆))such that 

𝑦 = 𝐿(𝑣). This implies that 𝑣 ∈ 𝑉𝐿 ∩ 𝑐𝑜(𝑓(𝑆)), and thus𝑊𝐿is not empty. By the uniqueness, 

∩𝐿 𝑊𝐿 = {𝐼(𝑓)}. Part (ii) of the theorem immediately follows form (90) and properties of the 

usual integral.Next, let us show Eq (91). When X is a barreled space, I(f)is included in 

𝐷(𝑇′)so that 𝑇′𝐼(𝑓)is well defined. To prove this, it is sufficient to show that the mapping 

 

from 𝐷(𝑇)  ⊂ 𝑋into C is continuous. By the assumption, the set {𝑇′𝑓(𝑠) |𝑥′⟩}𝑠∈𝑆 is bounded for 

each 𝑥 ∈ 𝑋. Then, BanachSteinhaus theorem implies that the family {𝑇′𝑓(𝑠)}𝑠∈𝑆of 

continuous linear functionals are equicontinuous. Hence, for any 𝜀 > 0, there exists a 

neighborhood U of zero in Xsuch that |𝑇′𝑓(𝑠) |𝑥′|<εfor any 𝑠 ∈ 𝑆and 𝑥 ∈ 𝑈. This proves that 

the above mapping is continuous, so that 𝐼(𝑓)  ∈ 𝐷(𝑇′)𝑎𝑛𝑑 𝑇′𝐼(𝑓)  = 𝑇′ ∩𝐿 𝑊𝐿. 

For a finite set 𝐿 ⊂ 𝑋, put 

 

Put 𝑊𝐿(𝑓)  = 𝑉𝐿(𝑓) ∩ 𝑐𝑜(𝑓(𝑆)) as before. It is obvious that ∩𝐿 𝑊𝐿(𝑓)  ⊂∩𝐿 𝑊𝐿(𝑓). Therefore, 

 

On the other hand, if 𝑦′ ∈ 𝑇′𝑉𝑇𝐿(𝑓), there exists 𝑥′ ∈ 𝑋’such that 𝑦′ = 𝑇′𝑥′𝑎𝑛𝑑 〈𝑥′|𝑥〉 =

∫ 𝑆 〈𝑓|𝑥〉𝑑𝜇for any x ∈TL. Then, for any x ∈L ∩D(T), 

 

This implies that 𝑦′ ∈ 𝑉𝐿∩𝐷(𝑇)(𝑇_𝑓), and thus 𝑇′𝑉𝑇𝐿(𝑓)  ⊂ 𝑉𝐿 ∩ 𝐷(𝑇)(𝑇′𝑓). Hence, we obtain 
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If 〈𝑥′|𝑥〉 = 〈𝑓𝑆〈𝑓|𝑥〉〉𝑑𝜇 for dense subset of X, then it holds for any 𝑥 ∈ 𝑋. Hence, we have 

 

which proves 𝑇′𝐼(𝑓)  = 𝐼(𝑇′𝑓).Now that we can define the Pettis integral on the dual space, 

we can develop the “dual version” of the theory of holomorphic functions. Let 𝑋and 𝑋′. Let 

𝑓: 𝐷 → 𝑋′be an 𝑋,-valued function on an open set 𝐷 ⊂ 𝑪. 

Definition (3.2.9)[3]: 

(i) f is called weakly holomorphic if 〈𝑓|𝑥〉is holomorphic on Din the classical sense for any 

𝑥 ∈ 𝑋(more exactly, it should be called weak-dual-holomorphic). 

(ii) f is called strongly holomorphic if 

 

exists in 𝑋′for any 𝑧 ∈ 𝐷(more exactly, it should be called strong-dual-holomorphic). 

Theorem (3.2.10)[3]:Suppose that the strong dual 𝑋′satisfies the convex envelope property 

and 𝑓: 𝐷 → 𝑋′is weakly holomorphic. 

(i) If f is strongly continuous, Cauchy integral formula and Cauchy integral theorem hold: 

 

where 𝛾 ⊂ 𝐷is a closed curve enclosing 𝑧 ∈ 𝐷. 

(iii) If f is strongly continuous and if 𝑋′is quasi-complete, fis strongly holomorphic and is 

of 𝐶∞class. 

(iii)If X is barreled, the weak holomorphy implies the strong continuity. Thus(i) and(ii) above 

hold; f is strongly holomorphic and is expanded in a Taylor series as 

 

(94) 

(95) 

(96) 
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near 𝑎 ∈ 𝐷. Similarly, a Laurent expansion and the residue theorem hold if fhas an isolated 

singularity. 

Proof: (i) Since f is continuous with respect to the strong dual topology, the Pettis integral 

 

 

exists. By the definition of the integral, 

 

for any 𝑥 ∈ 𝑋. Since 〈𝑓(𝑧) |𝑥〉is holomorphic in the usual sense, the right hand side above is 

equal to 〈𝑓(𝑧) |𝑥〉. Thus we obtain 𝐼(𝑧)  = 𝑓(𝑧), which gives the Cauchy formula. The Cauchy 

theorem also follows from the classical one. 

(ii) Let us prove that f is strongly holomorphic at 𝑧0. Suppose that 𝑧0=0and  f(𝑧0)=0for 

simplicity. By the same way as above, we can verify that 

 

Since 𝑋′is quasi complete, the above converges as 𝑧 → 0 to yield 

 

In a similar manner, we can verify that 

 

exists for any 𝑛 = 0, 1, 2, . . .. 

(97) 
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(iii) If X is barreled, weakly bounded sets in 𝑋′are strongly bounded By using it, let us prove 

that a weakly holomorphicf is strongly continuous. Suppose that 𝑓(0) = 0 for simplicity. Since 

〈𝑓(𝑧) |𝑥〉is holomorphic in the usual sense, Cauchy formula provides 

 

Suppose that |𝑧|  < 𝛿and 𝛾is a circle of radius 2𝛿 centered at the origin. Since 〈𝑓(·) |𝑥〉is 

holomorphic, there exists a positive number M such that |𝑓(𝑧0) |𝑥′|  < 𝑀forany 𝑧0 ∈ 𝛾. Then, 

 

This shows that the set 𝐵 = {
𝑓(𝑧)

𝑧
||𝑧| < 𝛿}is weakly bounded in 𝑋′Since X is barreled, B is 

strongly bounded. By the definition of bounded sets, for any convex balanced neighborhood 

U of zero in 𝑋′equipped with the strong dual, there is a number 𝑡 > 0 such that t 𝐵 ⊂ 𝑈. This 

proves that 

 

for |𝑧 − 0|  < 𝛿, which implies the continuity of f with respect to the strong dual topology. 

If X is barreled, 𝑋′is quasi-complete and has the convex envelope property. Thus the results 

in (i) and (ii) hold. Finally, let us show that f(z)is expanded in a Taylor series around 𝑎 ∈ 𝐷. 

Suppose 𝑎 = 0 for simplicity. Let us prove that 

 

forms a Cauchy sequence with respect to the strong dual topology. 
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for any 𝑥 ∈ 𝑋. Suppose that 𝛾is a circle of radius 2𝛿centered at the origin. There exists a 

constant 𝑀𝑥 > 0 such that |〈𝑓(𝑧0) |𝑥〉|  < 𝑀x for any 𝑧0 ∈ 𝛾, which implies that the set 

{𝑓(𝑧0) | 𝑧0 ∈ 𝛾}is weakly bounded. Because X is barreled, it is strongly bounded. Therefore, 

for any bounded set 𝐵 ⊂ 𝑋, there is a positive number 𝑀𝐵such that |〈𝑓(𝑧0) |𝑥〉|  <

𝑀𝐵𝑓𝑜𝑟 𝑥 ∈ 𝐵𝑎𝑛𝑑 𝑧0 ∈ 𝛾. Then, we obtain 

 

By using this, it is easy to verify that {〈Sm|x〉}m=0
∞ is a Cauchy sequence uniformly in x ∈B 

when |𝑧|  < 𝛿. Since 𝑋′is quasi-complete, 𝑆𝑚converges as 𝑚 → ∞in the strong dual 

topology. By the Taylor expansion in the classical sense, we obtain 

 

 

Since  lim
𝑚→∞

𝑆𝑚exists and〈·  |𝑥〉: 𝑋′ → 𝑪is continuous, we have 

 

For any 𝑥 ∈ 𝑋. This proves for 𝑎 = 0. The proof of a Laurent expansion, when f has an 

isolated singularity, is done in the same way. Then, the proof of the residue theorem 

immediately follows from the classical one. 

In a well known theory of Pettis integrals on a space X, not a dual 𝑋′, we need not assume 

that X is barreled because every locally convex space X has the property that any weakly 

bounded set is bounded with respect to the original topology. Since the dual 𝑋′does not 

have this property, we have to assume that X is barreled so that any weakly bounded set in 

𝑋′is strongly bounded. 
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Chapter 4 

Global Integral Criteria for Composition Operators 

Let 𝐷α denote the Dirichlet type space of functions analytic on the unit disk U and 𝑄α the 

conformal invariant version of this space. Any analytic self-map φ of U induces a 

composition operator 𝐶φ acting on 𝐷α, respectively, 𝑄α  by 𝐶φf = f ◦ φ, where f ∈𝐷α, 

respectively, f ∈𝑄α. 

Section (4.1):Dyadic Carleson Ceasures 

Let U, ∂U and 𝑑𝑚 denote the unit disk, the unit circle and the two-dimensional Lebesgue 

measure on the complex plane C, respectively. In this chapter, we consider the class 𝐷𝛼, α ∈ 

(−1,∞), of functions f analytic on U for which 

 

Since D0 is the classical Dirichlet space, these spaces are called Dirichlet type spaces or 

weighted Dirichlet spaces. Whereas there exists a lot of chapters on 𝐷𝛼, a relatively new 

concept was introduced in  by the conformal invariant version of the space 𝐷𝛼, the spaces 

𝑄𝛼,α ∈ (−1,∞). A function f ∈𝐷𝛼 belongs to  if and only if 

 

Let Φ denote the set of non-constant analytic functions φ :U →U. Any such function defines a 

composition operator 𝐶φ acting on a space of functions f analytic in U by the simple rule 𝐶φf 

=f∘ φ. There has been done much research on the relations between the function theoretic 

properties of φ and the topological properties of the operator 𝐶φ in different circumstances, 

We want to characterize here by means of area integrals related to the function φ the 

boundedness and compactness of 𝐶φ acting on Dα and 𝑄𝛼. A central role in the proofs is 

played by a dyadic decomposition of U into Carleson windows or boxes and certain 
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properties of positive measures on U defined with the help of such a decomposition, 

whereas the remaining parts are dedicated to the different types of integral criteria. 

In this part, we consider sub arcs I ⊂∂U with arc lengthℓ(I ) and Carleson windows 

 

based on I and their top halves 

 

Now we consider the set of dyadic sub arcs 

 

of ∂U and the decomposition of U by the windows R(In,k). Obviously, they are pair wise 

disjoint and their union covers U. Further, the set 

 

of the centers of R(In,k) is separated. This means that the hyperbolic distance between 

different points is bounded away from zero. For further use we fix a numeration 𝑅𝑗= R(𝐼𝑗), j ∈ 

N, and denote 𝑎𝑗the center of Rj defined above. It is easily seen that the windows 𝑅𝑗 have 

bounded hyperbolic diameter and that their linear dimensions are of the same order as 1 −

 |𝑎𝑗  |. Thus, ℓ(𝐼𝑗 ) ≈ 1 − |𝑎𝑗 |.Here and throughout this chapter the notation U ≈ V means that 

there exist positive constants 𝐶1 and 𝐶2independent of U and V such that 𝐶1V ≤ U ≤ 𝐶2V . In 

addition, we will use the abbreviation U ≤ V for the fact that there exists a constant c 

independent of U and V such that U ≤ 𝐶V . 

Lemma (4.1.1)[𝟒]: 𝐿𝑒𝑡 𝑡, 𝑠 +  1 ∈  (1, ∞). Then for any 𝑤 ∈  𝑈 the approximative identities 

|1 −  𝑤𝑧|  ≈  |1 −  𝑤𝑎𝑗  |, 𝑧 ∈ 𝑅𝑗  ,                                                                              (𝟏) 
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and 

 

 

are valid. 

As a preparation of our characterization theorems we now prove 

Theorem (4.1.2)[4]:𝐿𝑒𝑡 𝛽 ∈  (1, ∞), 𝑝 ∈  (0, ∞) and let μ be a finite positive measure on U. 

Then for a dyadic decomposition Rj = R(Ij ), 𝑗 ∈  𝑁, as above, the following equivalences are 

valid, wherein we use the abbreviations 

 

 

for some (any) ∈>0. 

 

for some (any) ∈>0. 

 

for some (any) ∈> 𝑚𝑎𝑥{
1

𝛽
 ,

1

𝑝𝛽
}. 

Proof: (i)⇒Taking w = aj in any Rj we see that this direction is an immediate consequence of 

Lemma (4.1.1) 

(2) 

(3) 
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(i)⇐Applying (1) and (3) to our dyadic composition of U we get 

 

This proves the second direction of (i) due to β >1 and νj,β ≤ ‖𝜇‖
C𝐵

𝑑 (ii) This is similar to (i). 

(iii)⇒Using (1) once again we find 

 

which implies the sufficiency of the left side of the equivalence (iii).(iii) ⇐ To prove the 

sufficiency of the right side we first recognize that‖𝜇‖
C𝐵,𝑝

𝑑 < ∞ implies ‖𝜇‖
C𝐵

𝑑 < ∞. Therefore, if 

𝑝 ∈  (0, 1], then (3) and the preceding estimate immediately yield the desired conclusion. If 

𝑝 > 1 we define a linear operator T acting on a space of sequences by 

 

Observe that T is bounded on 𝑙1and 𝑙∞owing to (3) and the case 𝑝 ∈  (0, 1]. An application 

of the Marcinkiewicz interpolation theorem yields that T is bounded on 𝑙𝑝, 𝑝 ∈  (1, ∞). This 

fact together with the above estimate for the double integral proves the rest of the assertion 

(iii).  

Section (4.2):Integral Criterias 

 we repeat now some definitions and basic facts used in the sequel. A linear transformation 

T :X→Y between two Banach spaces X and Y is said to be bounded or compact if T maps 

bounded sets of X onto bounded or relatively compact sets of Y . If X = Y is a Hilbert space 

with inner product ‖·,·‖𝑥, then for a bounded operator T on X we define its singular numbers 

as 
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The compact operators are those bounded operators T for which 𝑠𝑛(𝑇 ) → 0 as𝑛 →

∞. 𝐹𝑜𝑟 𝑝 ∈  (0, ∞) let 

 

denote the class of all p-Schatten ideal operators on X. It is known that Tis bounded or 

compact on X if and only if 𝑻∗T has this property and that T ∈ 𝑆𝑝(X) is equivalent to 𝑇∗T ∈

𝑆𝑝/2(𝑋). Usually, the members of the classes S1(X) and S2(X) are called nuclear and Hilbert–

Schmidt operators, respectively. 

If p ≥1, the class Sp(X) is a Banach space relative to the norm | · |p. In the case p ∈ (0, 1) the 

class 𝑆𝑝(X) is a complete topological vector space relative to the metric |  ·  |𝑝
𝑝
 Furthermore, 

we use that for bounded operators T1, T2 and T ∈𝑆𝑝(X) the inequality |𝑇1𝑇 𝑇2|  ≤

 ‖𝑇1‖ |𝑇 |𝑝 ‖𝑇2‖ is valid. 

To prove the desired characterizations for 𝐶φ we use some known facts on Toeplitz 

operators on Bergman spaces. Recall that for α ∈ (−1,∞) the weightedBergman space 𝐴α
2  

consists of those functions f analytic in U which fulfill 

 

and that for a finite positive measure μ on U the Toeplitz operator 𝑇μ
α on this space is defined 

by 
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Lemma (4.2.1)[𝟒]: 𝐿𝑒𝑡 𝛼 ∈  (−1, ∞), 𝑝 ∈  (0, ∞) and let μ be a finite positive measure on U. 

Then 𝑇μ
α is a bounded or vanishing or p-Schatten ideal operator on 𝐴α

2 if and only if μ is a 

bounded or vanishing or p-summing (α + 2)dyadic Carleson measure, respectively. 

Proof: The definition of the inner product on 𝐴α
2  

 

together with the reproducing kernel formula of 𝐴α
2  

 

Thus 𝑇μ
αis bounded or compact on𝐴α

2  if and only if the embedding mapE :𝐴α
2 →L2(μ) has the 

same property, respectively. This is the case if and only if μ is a bounded or vanishing (α + 

2)Carleson measure Therefore the first two statements follow from Theorem (4.1.2) and the 

above remark. The third statement is just a by-product of Luecking’s main. 

Theorem (4.2.2)[𝟒]: 𝐿𝑒𝑡 𝛼 ∈  (−1, ∞), 𝑝 ∈  (0, ∞) and 𝜑 ∈ 𝛷. Then the following 

equivalences, wherein we use 𝑑𝑚α(𝑧)  =  (1 − |𝑧|2)α dm(z) as an abbreviation, are valid: 

(i) 𝐶φ  is bounded on 𝐷α⇔ 

 

for some (any) ∈>0. 

(ii) 𝐶φ  is compact on 𝐷α⇔ 

 

for some (any) ∈<0. 
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(iii) 𝐶φ  is a pSchatten ideal operator on 𝐷α⇔ 

 

for some (any) ∈>max{
1

2+ 𝛼
,

2

2𝑝 +𝑝𝛼
}. 

Proof: Inserting the usual change-of-variable formula into the inner product 〈·,·〉𝐷α
 of the 

Hilbert space 𝐷α, we get 

 

where 

 

Using standard arguments it is easily shown that we may assume, without loss of generality, 

that φ(0) = 0 for the map φ ∈Φ under consideration. For this map, we define 𝐵𝜑  =  𝐷𝐶𝜑𝐷−1, 

where the differentiation operator D is defined by(Df )(z) =f(z) and its inverse by (D−1f )(z) 

=∫ 𝑓(𝑤)𝑑𝑤
𝑧

0
 0 f (w)dw. Both D and D−1 establish an isomorphism between 𝐷α

0={𝑓 ∈

 𝐷𝛼 | 𝑓 (0)  =  0} and 𝐴α
2  . Hence, we get for f, g ∈𝐴α

2  using again the changeofvariable 

formula, 

 

where dμα(w) = (π/(α + 1))Mα(φ,w) dm(w) induces the Toeplitz operator𝑇uα
α T on 𝐴α

2 . This 

implies Bφ*Bφ = 𝑇uα
α . From the previous analysis we see that 𝐶φ :𝐷α

0→ 𝐷α
0is bounded, compact 

or in 𝑆p if and only if 𝑇uα
α  is bounded, compact or in 𝑆𝑝/2(𝐴α

2 ). Since Cφ|𝐷𝛼 and Cφ|𝐷0differ 

only by a one dimensional operator, a combination of Lemma (4.2.1) with Theorem (4.2.2) 

implies the desired assertions. From this theorem one may deduce simpler characterizations 

in special cases. We give two examples for this fact. The first one immediately follows from 
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the third assertion of Theorem (4.2.2) in the case 𝑝 =  2 using ∈ = 1 herein and combining 

the result with (2) and Fubini’s theorem. 

Corollary (4.2.3)[4]: 𝐿𝑒𝑡 𝛼 ∈  (−1, ∞) 𝑎𝑛𝑑 𝜑 ∈ 𝛷. Then 

 

This generalizes some results. Similar characterizations for Cφ∈ Sp(Dα). 

Corollary (4.2.4)[4]: 𝐿𝑒𝑡 𝛼 ∈  [0, ∞) 𝑎𝑛𝑑 𝑙𝑒𝑡 𝜑 ∈ 𝛷 be boundedly valent. Then Cφ is compact 

on Dα⇔ 

 

In the sequel we shall use the following abbreviations. The closed unit ball of a Banach 

space X will be denoted BX and the characteristic function of a set E by 1E. For 𝑎 ∈  𝑈 we 

consider the automorphism 𝜎𝑎(𝑧)  =  (𝑎 −  𝑧)/(1 −  𝑎𝑧) 𝑜𝑓 𝑈and we put dma,𝛼(𝑧)  =

 (1 −  |𝜎𝑎(𝑧)|2)𝛼  𝑑𝑚(𝑧). Now, we formulate a conformalinvariant version of the first two 

assertions of Theorem ( 4.2.2 ). 

Theorem (4.2.5)[4]: 𝐿𝑒𝑡 𝛼 ∈  (0, ∞) 𝑎𝑛𝑑 𝜑 ∈ 𝛷. Then the following equivalences are valid: 

(i) 𝐶φ :Dα →Qα is bounded ⇔ 

 

for some (any) ∈>0. 

(ii) Cφ :𝐷α →𝑄α is compact ⇔ 
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for some (any) ∈>0. 

Proof: (i)⇒For α>0 and φ∈Φ let  

 

If we put dμα,φ,a(·) = Nα(φ, ·, a)dm(·) we get by a change of variable 

 

For w ∈ U \ {0}, we consider the function 𝑓w defined by 𝑤fw(z) = (1 − 𝑤𝑧)−(2+α)(1+∈)/2 and we 

see that (2) implies ‖𝑓𝑤‖𝐷α
2 ≈  (1 −  |𝑤|)−(2+α)(1+∈).Further, the assumption together with the 

Closed Graph Theorem(4.21.2) indicates that 

 

 

This estimate for the measures μα,φ,a implies, due to Theorem (i), the desired assertion. 

(i)⇐Again we use our dyadic decomposition {𝑅𝑗  | 𝑗 ∈  𝑁} of U. For 𝑓 ∈  𝐷𝛼let 𝑎𝑗
∗∈𝑅j be such 

that |𝑓′ (𝑎𝑗
∗)| = sup{|f(z)| | z ∈ Rj }. Some elementary geometric considerations together with 

Lemma (4.1.1)and the submean value property of |f|2 imply 

 

Hence, the second part of (i) has been proved.(ii)⇒is similar to (i)⇒(ii)⇐It is easily seen that 

the global integral condition of (i) follows from the global integral condition of (ii). So, to prove 

the compactness of 𝐶φ in our case it is sufficient to show that ‖𝐶𝜑𝑓𝑛‖Qα→0 for any sequence 

(4) 

(5) 
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{𝑓n} ⊂ 𝐵𝐷α
 with fn→0 uniformly on compact subsets of U. To this end, let 𝑈t= {𝑍| |Z |≤t} for any 

t ∈ (0, 1) and consider the inequality 

 

where 

 

and 

 

It is clear that lim
n→∞

𝐼1(n, t)  =  0for any t ∈ (0, 1). Now,we repeat the estimates in (5) for the 

measures 1U\Utdμα,φ,a and see that lim
t→1 

𝑠𝑢𝑝n𝐼2(n, t)  =  0. In the following theorem we consider 

the composition operators 𝐶φ :𝑄α →𝐷α and for φ ∈Φ,t ∈ (0, 1) we define 𝑈φ,t = {z | |φ(z)| n, t}. 

Theorem (4.2.6)[4]: 𝐿𝑒𝑡 𝛼 ∈  (0, ∞) 𝑎𝑛𝑑 𝜑 ∈ 𝛷. Then 

(i) 𝐶φ :𝑄𝛼 →𝐷𝛼 is bounded⇔ 

 

(ii) 𝐶φ :𝑄𝛼 →𝐷𝛼 is compact⇔φ satisfies (6) and 

 

Proof: (i) is just a reformulation of the definition of boundedness. 

 (ii)⇐ By the usual arguments we see that it is sufficient for our purpose to consider a 

sequence {fn} ⊂ BQα converging to 0 on compact subsets of U and to show that {Cφfn} 

(6) 

(7) 



140 

 

converges to 0 in the topology of the norm  ‖·‖Dα. Since (6) implies φ ∈ 𝐷𝛼 and {fn} tends to 0 

uniformly on compact subsets of U, we get for given ∈>0 and n big enough the estimate 

 

This estimate together with (7) immediately yields the assertion. 

(ii) ⇒ Since (6) is implied by the boundedness of 𝐶φ, we have to prove 

only (7) and we know that, according to (6), φ ∈ 𝐷𝛼. Since {𝑛−
1

2𝑧𝑛} is a norm bounded 

sequence in 𝑄α and converges to 0 uniformly on compact subsets of U, we see that 

{𝑛−
1

2‖𝜑𝑛‖𝐷αα} tends to 0. With some additional arguing, we may conclude that for given ( >0 

and t ∈ (0, 1) big enough the estimate 

 

is valid. This implies that for f∈𝐵𝑄𝛼
, fanalytic in U, we get 

 

Now, we proceed as follows: we approximate f∈ 𝐵𝑄α
 by fs(z) = f (sz), s ∈(0, 1), s → 1, we use 

‖𝑓𝑠‖𝑄α ≤ ‖𝑓‖Qα and the compactness of 𝐶𝜑 to show that there exists a number t ∈ (0, 1) 

depending on f and ( such that) 

 

The rest of the proof may easily be accomplished using the finite covering propertyof the set 

𝐶𝜑(𝐵𝑄𝛼
) which is relatively compact in𝐷𝛼.  

Corollary (4.2.7)[4]: Let α ∈ (0,∞) and φ∈Φ. 

(i) If 𝐶φ :𝑄α →𝐷𝛼 is bounded, then 
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(ii) If 

 

then 𝐶φφ :𝑄α → is compact. 

 (iii) 𝐼𝑓 𝜑(𝑈) lies in a polygon inscribed in 𝜕𝑈, then (8) and (9) are equivalent. 

Proof. (i) Since 𝑓𝜁 (z) = log(1−ζz) ∈ 𝑄α for any ζ∈∂U, ‖𝑓𝜁‖Qα≤1  

we conclude that ‖𝑓𝜁‖ /‖𝑓𝜁‖Qα∈ 𝐵𝑄𝛼
 and we see that Theorem (4.2.6)(i) implies (8). 

(ii) Formula (9) together with the estimate 

 

Thus, the assertion is a consequence of Theorem (4.2.6)(ii). 

(iii) Obviously, we only have to prove the implication (8)⇒(9). To do so, we denote the 

vertices of the polygon in question by 𝜁𝑘, k = 1, . . .,n, say. Now we break the unit disk into 

pairwise disjoint pieces. One of them is a compact subset wherein the relation between the 

two integrals causes no troubles. The other ones are sets wherein the images of the points 

under the map φ come close to the points 𝜁𝐾 . In these pieces we use |𝜁𝑘 −φ(z)| ≤ 1−|φ(z)|2 

to prove the rest of the equivalence. the following conformal invariant version of Theorem 

(4.2.6) may be proved in a similar way to verifying that theorem. Therefore, we leave the 

details for the interested reader. 

Theorem(4.2.8)[4]:𝐿𝑒𝑡 𝛼 ∈  (0, ∞) 𝑎𝑛𝑑 𝜑 ∈ 𝛷. Then 

(i) 𝐶φ is bounded on 𝑄αif and only if 

(8) 

(9) 
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(ii) 𝐶φ is compact on 𝑄α if and only if φ satisfies (10) and 

 

In the following corollary, we give some simpler, but only necessary or sufficient conditions 

for the compactness or boundedness of 𝐶φ on 𝑄α. In the proof, we use only Theorem (4.2.8) 

for the special functions 𝑓ζ (z) = log(1 − ζz), ζ ∈∂U, as we have done above to prove 

Corollary (4.2.4). So, there is no need torepeat the arguments. To make a long story short 

we use the abbreviations 

 

𝑓𝑜𝑟 𝜁 ∈ 𝜕𝑈 𝑎𝑛𝑑 𝜑 ∈ 𝛷. 

Corollary (4.2.9)[4]: Let α ∈ (0,∞) and φ∈Φ. 

(i) If 𝐶φ is bounded on 𝑄α, then 

 

(ii) If 𝜑 satisfies 

 

then 𝐶φ is bounded on 𝑄α. 

(iii) If 𝐶φ is compact on 𝑄α then φ satisfies (12) and 

 

(iv) If 𝜑 satisfies (13) and 

(10) 

(11) 

(12) 

(13) 

(14) 
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then 𝐶φ is compact on 𝑄α.The following corollaries of this type possibly need some hints for 

the proofs. 

Corollary (4.2.10)[4]: Let α ∈ (0,∞) and φ∈Φ. 

(i) If φ is boundedvalet, then 𝐶φ is bounded on𝑄𝛼. 

(ii) 𝐼𝑓 𝑓𝑈𝐺𝜑(𝑧) 𝑑𝑚(𝑧) < ∞, 𝑡ℎ𝑒𝑛 𝐺𝜑 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑜𝑛 𝑄𝛼. 

Proof: (i) We use that, according for f ∈𝑄α 

 

Therefore, for f ∈ BQα and φ boundedly valent the integral in (10) is less than a multiple of the 

integral in the above formula and (i) follows from Theorem (4.2.8)(i). 

(ii) The integral condition in (ii) implies (13). Hence, 

 

This implies that (15) holds and therefore (ii) is a consequence  

Corollary(4.2.11)[4]:𝐿𝑒𝑡 𝛼 ∈  (0, ∞) and let 𝜑 ∈ 𝛷 be such that 𝜑(𝑈) lies in a polygon 

inscribed in ∂U. Then 

(i) Cφ is bounded on 𝑄α⇔(13) holds. 

(ii) 𝐶φ is compact on 𝑄α⇔ (13) and (15) hold. 

Proof: It suffices to verify (ii). Of course, we only need to show that in our case (14) implies 

(15). This may be done using the proof ideas of Corollary. At the end, we want to mention 

without proof that it is possible to use the fact that all boundedly  valent functions on U do not 

(15) 
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distinguish between the little Bloch spaces and the vanishing 𝑄α-spaces (α >0), as well as 

our present results to prove a conformal invariant version of Corollary (4.2.4). 
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𝐿𝑎
𝑝
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