Chapter 1

Composition as an integral operator

Let S be the unit sphere and B the unit ball in C*, and denote by L!(S)the usual Lebesgue
space of integrable functions onS. We define four “composition operators” acting onL!(S)and
associated with a Borel function ¢ :S —-B, by first taking one of four natural extensions of fe

L(S) to a function on B, then composing with ¢and taking radial limits.

Section (1.1):Norm Estimates for the Reproducing Kernels and Carleson Measures with

Boundednesss

Composition operators acting on a space X of functions holomorphic on the unit disk D in C,
or more generally the unit ball B = Bnin C", have been the subject of a great deal of
research. In this setting, a holomorphic self-map @of B induces the composition operator Cy,
defined for Ffholomorphic on B by C4/~f0 ¢. The basic problem is to relate function theoretic
properties of @to operator theoretic properties of C,. On many of the classical Banach
spaces of holomorphic functions(where function F:C—C is said to be analytic in an open set
Acif it is different s, each point of the set A .the function f:C—C is said to be hoiomorphic if it
has power series representation)[5] on D, including the Hardy spaces H?P(D)and Bergman
spaces L? (D)(let D be n open sub set the complex plan C andL?(D)denote the collection of
all analytic function F: D—-C complex modulus is square integrable with respect to area
measure .the L2(D)somtime also denoted A? (D)( is colled the Bergman space can also
generalized tolL? (D) where 0<P<x)[6], every composition operator is bounded and their
study involves other properties, such as when a composition operator is compact. In higher
dimensions, when n 22, boundedness of a composition operator is not auto-matic, even on
Hp(B)or LP(B).In 1990, D. Sarasonintroduced the viewpoint of composition operators as
integral operators acting on spaces of functions defined on the unit circle oD. For ¢a
holomorphic self-map of D and 7eL'(éD), CyAvas defined on dDby taking the harmonic
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extension of 7to D, composing withg, and then taking radial limits. As in the classical setting
of composition operators acting on HP(D), every such operator is bounded, and problems
such as characterizing when the operator is compact were studied by Sarason. In the
present chapter, we generalize Sarason’s approach in two significant ways to define
composition operators acting on L(S) =L'(S, do), where S =dBis the unit sphere in C"and
dodenotes the normalized surface area measure on S. First, we do not assume that the
symbol ¢of the operator is holomorphic on B; we only assume that ¢ :S—Bis Borel
measurable. Section, we compose @with four natural extensions of feLl($)}o a function on
B, resulting in four different “composition operators”. Not surprisingly, not all such operators
are bounded, even in dimension one. Our main results provide characterizations of when
these operators are bounded or compact. We begin with some background needed to define
the operators .By a reproducing kernel Kfor the function space Xon B we mean that K is a

continuous function on BxS such that

f(=) =/f{§}ﬁ’(z?§)dﬂ{§)s zeB
8

for all feXnC(B). On Bwe have several reproducing kernels: the Cauchy kernel K¢, Poisson

kernel K, and PoissonSzego kernel K™given by

.[!'1'-!"[ L) = |:]_ — il-- Sk
. 1 —|z]2
K"z,() == ||}
_|;1|_|£

g oL (1= [2[)"

K0 = =g

For zeB and (eS. Here, and throughout the chapter, (0|0)denotes the Hermitian inner
product on Cn, i.e.(z|w)=}; z;wjfor z=(z,, ..., zp)and w=(w,, ..., wy). Also, we define the

pluriharmonic(function U=U(z) of n complex spaces C™ n= 1 that has continuous domain D



of the complex spaces of the coordinateness X ,,,Y ,.Z,-X , +iY ,U=1,...... n.in D up to the

second order the following system of n? equations in D)[7]Poisson kernel KPas

K?(z,¢) = K°(z,¢) + K°(z,¢) — 1.

Note that K¢, is a reproducing kernel for the holomorphic functions, K"for the harmonic
functions,K™for the invariant harmonic functions and KPfor the pluriharmonic functions. We

note for later use an easy but useful fact that

Km(rnaC):Kx(TCan)a T]aCES: 0<r<1 (1)

for each x €{c, h, m, p}.

Let ¢:S—Bbe a Borel function. We say that ¢is holomorphicif it is g-almost everywhere given
by the boundary function (i.e. the radial limit function) of a holomorphic selfmap of B. In case
@ is holomorphic, we will identify ¢with its holomorphic extension. For each x €{c, h, m, p}we
wish to define a “composition operator’Czon L1(S), i.e. a linear operator that takes felL(S)to
another function defined on S that comes from composition of 7 with ¢. Since functions
in L1(S)are only defined on Smodulo sets of g-measure 0, a problem with the definition of
these operators arises if ptakes a subset of S of positive o-measure to a set in S of o-
measure 0. This difficulty does not come up in the classical setting where n =1and gis
holomorphic, but it is present in dimension n > 2even if it is assumed that @is holomorphic.

The example below illustrates such difficulty.

Example (1): (n =2). There exists FEBMOA(B)and a holomorphic ¢such that

lim—1—Are(C))does not exist at any (<S.

Proof: Let /be an inner function on B. Namely, let /B—~Dbe a holomorphic function such that

n) =r1_i)r5111(rr]) € dDfor almost every n € S; for the existence of such an inner function.

Define ¢=(l, 0, ..., 0). It is known that there exists f eBMOA(B)such that lim1 f(reiB, 0,...,0)
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does not exist for any 0¢€[0, 21r). The pair f and ¢is the desired example.An additional
assumption about @is required to deal with the problem. The pullback measure goglis the
Borel measure defined for a Borel set ECBby g0 ¢~(E) =0{{cS :¢(C) <E}. For the rest of the
chapter we reserve the letter pto denote functions satisfying thaty : S -B is aBorel function

and

(anp_l)ls <L 0o (2)

where (0°@~1)|sis the restriction of the measure cop-to S. We will see below that this
assumption is required for the operators Cjto be well-defined.Integration against one of the
kernels KX, x €{c, h, m, p}, gives an extension of a function £L(S)to a function f*on B that

is respectively holomorphic, harmonic, invariant harmonic, or pluriharmonic. That is,

f(2) :ff(C)I{m(z?C)da(C), z € B. (3)

We then use radial limits (which exist g-a.e. on S; to extend the definition of f* from B to B:

that is

S (w) = lim F(rw) weB, xe{e h,m,p}. 4)

This f*is naturally referred to as the x-extension of £ L1(S).It is well known that in some, but
not all, settings the function f*|;recovers fg-a.e. as in the next proposition In what follows,
HY(S),1st <=, denotes the closed subspace of LY(S) =L!(S, dg), the usual Lebesgue space
with norm ||0]|;, consisting of all boundary functions of H¢(B) functions. As is well known,

H!(S)is isometrically identified with Ht(B).

Proposition (1.1.1)[1]: The following relations hold:



(a) Ifz € {c,p} and f € HY(S), then f|g = f 0-a.e.;

(b) Ifz € {h,m} and f € LY(S), then f*|g = f o-a.e.;

(c) If f € C(S) in addition to the hypothesis of (a) or (b), then f* € C(B),
(d) Ifz € {c,p} and f € LY(S), then in general f%|g # f;

(e) If z € {c,h,m,p}, the transform f — f*|s is L*-bounded for each 1 <t

For £L'(S)and x €{c, h, m, p}, we define the function C;7on S by
Cof =fTop.

Clearly, this is well defined, because f* remains the same even if fis altered on a set of o-
measure 0. Also, it should be remarked that this defines (g 7off a set of o-measure 0 on S.

To see this, we have

CEf(¢) = lim [*(re(Q), CeS,

and this limit exists precisely when f* has a radial limit at ¢(¢). Thus C;/ has been defined
at points (S \¢p~'(E), where EcS is the set of g-measure 0 where f*fails to have a radial
limit. Since a[¢~'(E)] =0 by the assumption (1.1.1), C7f has been defined g-a.e. on S .In
general, Cjis a linear operator from L(S) to the vector space of (equivalence classes of)
measurable functions on S. From Proposition (1.1.1)(a)—(b), the restriction of C;7 for each x

€{c, h, m, p}to H'(S)is the usual composition operator:

Cif=foyp, feH\(S) 5)

where the fin the right-hand side denotes the holomorphic extension of £ H(S). Similarly,
Proposition (1.1.1)(b) shows that the restriction of C; to L'(S) is the usual composition
operator when x €{h, m}.A basic problem in the study of composition operators is to
characterize those symbols ¢ for which the restriction of the composition operator C,to a
Banach space X is bounded or compact. Before stating our main result, which provides
such characterizations for the operators Czacting on L(S), we introduce some notation. We
first introduce the extended kernels. Given x<{c, h, m, p}and weB, we denote by K*( -

, w)the x-extension of K*(w, - ), i.e.,



A w) = [I{m(wﬂ )}I

Note that each K*(- , w)is continuous on the whole B by Proposition(1.1.1) (c). More

explicitly, we have by (3), (4)and Proposition(1.1.1) (c)

2w = L s KT EH QK w O do(¢) if 2B
| W if 2z € S.

Except for the PoissonSzego kernel, the extended kernels have explicit formulae for z € B

and weB:

1

i (AT
1 — |z|?|w]?
‘%/h(z:w) - [z‘u‘)]inl ’
1
HP(z,w) = ! + -1

(1 o (za w))n (1 o (w:2>)n

— 2]00]2
where [z, w] = V1=2R(z - @) + [2[*|w]?. The formulae for y¢and yPare easily ver-ified.
The formula for y"is also well known; Note that the right-hand sides of the formulae above
continuously extend to BxB\A where A denotes the diagonal of S xS. Such extensions are

still denoted by y*for x €{c, h, p}. Note that
HE(rz,w) = % (2,rw), x¢€{c, h,p} (6)

For X = Mwhen n = 2, no explicit formula of closed form is available; the main difficulty is
the fact that the invariant harmonicity is not dilation invariant. Nevertheless, we have natural

growth estimate

(1= |2[*|w]*)" (7)
11— (z,w)|>"

H (2, w) ~

for z, weB for the lower estimate and the remark after for the upper estimate. Also, we can
still naturally extend y™to BxB\A as follows. First, noting that y™is symmetric on B xB, we
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extend y™to BxB by symmetry. So, y™(Z, w) =x™(w, {)for (€S and weB. Next, noting that
x™(w, n)continuously extends to the zero function on S \{n}, we simply define K™ (¢, n) =0for
¢, n € Swith {++n. Now, one can check that such an extension, still denoted by K™, is also
symmetric on BxB\A and continuous in each variable separately. Although not needed in
this chapter, we remark that K™is actually continuous on BxB\A. We remark that the dilation
commuting true for y™.Given ¢ as in (1.1.1)and x €{c, h, m, p}, using the extended kernels

introduced above, we now define the functions
AL (2) = |27 (e(),2)|,, z€B,

and, forl <t < o

o= (().2)le .
(2) i= { —”—"—Kg’fi,)_) 1 iftze B
0 it zeS.

Note that these functions are well defined, because each y™(¢(: ), z)withzeSis a Borel
function defined on Soff the set ¢~'{z}of o-measure 0. The definition of A7 .for 1 <t
<wrequiring to be 0 on the boundary may seem peculiar. We define it in this way only for the

purpose of stating the next theorem in a unified way.

Theorem (1.1.2)[1]:. Let x €{c, h, m, p}, 1 <t <%, and assume ¢ satisfies (1.1.1). Then the

following statements hold:
(a)Cgis bounded on LE(S)if and only if A% ¢is bounded on B;
(b)Cis compact on L(S)if and only if A% ,€C(B).

Note that the restriction of A7 ,to Bis always continuous and hence, when 1 <t <«, the
statement that A7, ,eC(B)is equivalent to Ag,t(z) »0as |z| »-1. Thus Condition (b) in Theorem
(1.1.2) can be viewed as a ‘littleoh” version of Condition (a). Our proof for the boundedness
characterization in the theorem above actually yields norm estimates. Also, one can easily

recover Sarason’s one-variable characterization for LT-compactness.When 1 < t < o«
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Carleson measure methods are available and provide alternate characterizations of when
Cyis bounded or compact on LYS) Carleson measure methods do not provide a
characterization of when Czto be bounded or compact on L'(S), but can be used to establish

relationships with the operators on L{(S).

Theorem (1.1.3)[1]: Let x €{c, h, m, p}and gbe as in (1.1.1). Then the following statements

hold:

(a)lf Czis bounded (respectively compact) on L(S), then Cyis bounded (compact) on LE(S)for

all t e(1, «);

(b)For each x €{c, h, m, p}there exists ¢ such that Cjis compact on LY(S), 1 <t <w, but Cjis
not bounded onLf(S).Finally, we remark that the Poisson kernel y"for the unit ball of the
Euclidean space of real dimension dis given by

1 —[¢]°

K"(€,1) =
(&) € — 7|

For ¢ and n in R4 with || <1and |n| =1. Our results for the operator C(’pl have natural
formulations in this setting, and remain valid with the same proofs. This comment does not
extend to the operators Cg for x €{c, m, p}, due to the appearance of the Hermitian inner
product(: |- )in the corresponding kernels.Throughout the chapter we use the same letter C
to denote various positive constants which may vary at each occurrence but do not depend
on the essential parameters. Variables indicating the dependency of constants C will be
sometimes specified in parentheses. For nonnegative quantities X and Y the notation X <
Yor Y=Xmeans X < CYfor some inessential constant C. Similarly, we write X=Yif both X<Y
and Y<Xhold.In this part we collect some basic notions and related facts to be used in our
proofs .We first recall the well known integral estimates related to the reproducing kernels

under consideration. Given a real, put



B do(¢) . Ao do(¢)
I“(Z)‘S/u—(z,mm 1 Jalz) S/Iz—(:lz“**“

for z € B. The growth estimates for these integrals are well known:

(1—|2]2)~* if o> 0
Ia(z) m Ja(2) ~ {1+10g(1—|z|2)1 ifa=0 (8)
1 it w < 0

for z € B. Proofs can be found, for example, in for I,and J,, respectively.As an immediate
consequence of (8), we have the following norm estimates for reproducing kernels for 1 <

t < o«

1 — |z[2)n(1-1) ifx=cm
ESODIER KN, o
t (1 _ ‘Z|2}(2n DA-t) ifx=h

forz € B. Also, we have
||I{c(z, )”1 ~ 1+ ]Dg(l _ |Z|2)—1,

butK*(z, - ); =1 forx =m, 4 For x = p, since |[KP(z,* )| < |K°(z * )|, we have, for each 1

<t <o,
152, S 1 o

When 1 <t <«, by the K or anyiVagi Theorem asserting that the Cauchy transform followed

by the K or anyi maximal function is Lt*-bounded, there is a constant C=C(t, n) >0such that

I7lle < Cl Re £l (12)

for functions feH!(S)with lim f(0) = 0. So, the estimate in (10)can be reversed for 1 <t <w,

We remark in passing that the reverse estimate of (10)is also valid when t =1and n 22, as
can be seen by using (10)to convert integration over the sphere to a weighted integral over

the unit disk, and then that harmonic conjugation is L'bounded on the standard weighted

9



Bergman spaces of the unit disk .The term normal family refers to a family of functions with
the property that every sequence in the family contains a subsequence converging uniformly
on compact subsets of the domain. As is well known, a family of holomorphic functions that
is uniformly bounded on each compact subset of the domain is a normal family. An argument
using that result is often called anormal family argument. Such a normal family argument
textends to harmonic functions and hence to pluriharmonic functions, The cases x =c, p,

hare also included in the statement for easier reference later.

Lemma (1.1.4)[1]: Let x €{c, h, m, p}. Given a bounded set Fin L1(S), let FX={f*:£F}. Then

F¥Xis a normal family on B.

Proof: The cases x =c, p, hare easily seen from the remark above. To treat the case x=m,
we first introduce some notation. Given z € B, let t-be the in n volatileautomorphism of B that

exchanges Oand z. It is known that
fror, =(for)™ feLl(S) 12)

Also, p(z, w) =|ta(b)]is known to be a metric, called the pseudo hyperbolic metric, on B .Let

EcB be a compact set. We claim there is a constant C=C(E) >0such that

/™ (a) — f™ )| < Cp(a,b)l|f1, abeE (13)

for all feL}(S). With this granted, we see that F™is equicontinuous on each compact subset,
which is the key to the proof; the lemma follows then from the standard argument using the

Arzela Ascoli Theorem and the diagonal process. Let £L(S). Since

m _ fm(, su - 1—|Z|2 )ﬂ < |Z|
[f (U) f ( )‘ < ”f”l neg 1 (ll_ (z’n”z ~ (1_ |Z|)7,1 ||f||1

for zeB, we see that

F™(0) — f™(2)| < Culzl|flli, z€E
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for some constant C1=C+(E) >0. Now, given a, b €E, we have by (12)

[F™(@) = f™(®)| = (f 0 7a)™(0) — (f 0 7a)™ (7a())| < C1p(a,B)||f 0 Talx

Meanwhile, we have again by (12)

1+ |a
1 —|al

1f o 7alls = If 0 7al™(0) = |fI™ (@) < ( ) 1l < Call £l

for some constant C2=C2(E) >0. Combining these observations, we conclude (13), as
claimed. The proof is complete .We recall the notions of Carleson measures that are needed
in our work. Let 1 <t <wand x €{c, h, m, p}. Let p be a positive finite Borel measure on B. We

say that p is an x-Carleson measure for L'(S)if there exists some constant C>0such that

][fﬂ:lt du < C/[fmltda, f e L¥(8S). (14)
B s

That is, p is an x-Carleson measure for LY(S)if and only if the mapping f(x)|s = f(x)is
continuous from LY{S)toLf(u). We write N*(u)for the infimum of the constants C for which
inequality (14)holds, so [Nx(y)]%is the norm of this mapping. If, in addition, this mapping is
compact, then p is said to be a compact Carleson measure for L{(S). Characterizations for
(compact) x Carleson measures for L{(S)are given in terms of Carleson sets that are balls

defined using a metric appropriate for the kernel K*.For {eSand0 <d<1, let
S%(¢,0)={z€B : |1—{(z,¢)| <6}, =ze{cm,p},
and
S"(¢,6) ={ze€B : |z—¢| < 5}.

Now, we put

FEOy . #[S*(¢, )]
Ms () =5 ea® oyn S|
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Note that c-Carleson measures for L{(S)are precisely the well-known Carleson measures for
H{(B)and that the two notions of x-Carleson measures for x €{c, p}coincide by (11). We have

the following characterizations for each 1 <t <w;

() M is an X Carleson measure for LY(S) «=>supdmg, (M) <w;

(i)M is a compact X Carleson measure for LY(S) <=M,.d(y) -0as d6—-0+.

A reference for the case x €{c, p}, i.e. for Carleson measures for H{(B), While we have not
been able to find a reference for the characterization of M Carleson measures, it should be
well known that they also coincide with the Hardy space Carleson measures. Indeed, in all
cases the necessity of the characterizing condition is established using natural test functions
and simple estimates of the kernel. The proof of sufficiency in the Hardy space case given in
goes through for x = mwith almost no change. A comment is needed regarding just one part
of the proof the point wise estimate of the K or any imaximal function of £Ht{(B)by the Hardy-
Little wood maximal function of f associated with non-isotropic balls. That this estimate
remains valid when x = mis the content of The characterization when x =h for measures
supported on B; the extension to measure supported on B is standard. Alternatively, it can
be observed that Euclidean (rather than non-isotropic) versions of the key ingredients of the
proof in the Hardy space case are well known. Moreover, setting m*(u) =supdM,.06(u), we

have

m*((u) =N*( (W).

Of particular importance is that the characterization of (compact) X Carleson measures for
LY(S)is independent of t >1, and that the characterization is the same for x €{c, m, p}. But the

characterization differs for x =h"hen n >1, since

5" if z € {c,m,p}
5271—1

o[5%((,8)NS| ~ {

if # =h.
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When x =h this is elementary. When x €{c, m, p} Finally, we note that the restriction t >1for x
e{h, m, p}comes from the same restriction in the L‘boundedness of the HardyLittlewood
maximal function as well as in the KoranyiVagi Theorem mentioned after (10), when proving
the sufficiency of the characterizing conditions. On the other hand, one may remove the
restriction t >1when x =c, considering feH!(B)in (14)instead of f*, and the characterization
remains the same for 0 <t <1.The relevance of Carleson measures to composition operators
comes from the idea of pullback measure. Associated with ¢ as in (2)is the pullback
measure g°¢~!, which is the Borel measure defined for a Borel set ECBby o°¢~'(E)
=0{CeS: ¢(C) €E}. Use of a change of variable formula from measure theory shows that

arli= [l oel dr= [Ir] d(roe™) as)

S B

for any feLf(S), 1 st <wand x €{c, h, m, p}. This gives the following proposition. In what

follows, C;L'(S)denotes the operator norm of Cjacting on L*(S).

Lemma (1.1.5)[1]: Let x €{c, h, m, p}, 1 <t <w, and ¢be as in (2). Then Cgis bounded
(respectively compact) on L{(S). if and only if g°¢~lis a (compact) X Carleson measure for

LE(S). Moreover, the operator norm satisfies
IC5 ey N (eo90™) m M (o op™);

the constants suppressed above depend on x and t, but are independent of ¢.

Proof :If - ¢p~'is a Carleson measure, then use of (15), (12)and Proposition(1.1.1) (e) shows
that C}3is bounded on LY(S). with||C$||Zt(S) < N*(g°¢~'). Conversely, if C}is bounded on

LE(S). and feLt(S). then

flf"”ltd(ﬂ 0w ) =lICe sl <l 1771l:

t:‘
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t

and so g°¢-'is an X Carleson measure for L{S)and N*(g°¢~1) S||C$||Lt(s)

. This, together,

completes the proof for C;bounded. We note that the dependence of the constants on xand
tcomes from the application of Proposition (1.1.1) (e). The proof for C;compact is similar and

so is omitted .We mention some immediate consequences. Lefpbe as in (1.1.17).
Then the following statements hold:

(a)lf x €{c, h, m, pyand1 <t,, t,<w», then Cjis bounded (respectively compact) on Lt (S)if and

only if Cjis bounded (compact) on L"(S).

(b)If x, ye{c, m, p}and1 <t <, then CZis bounded (respectively compact) on LE(S). if and only

if Cjis bounded (compact) on L (S).

(o)If x €{c, m, pland1 <t <, then C:H'(S) —~L'(S). is bounded (respectively compact) if and

only if Czis bounded (compact) on LY(S).

(d)If x €{lc, m, p}, 1 <t <w, and Cjis bounded (respectively compact) on L¥S), then C}is

bounded (compact) on LY{(S).

For (a) note that the characterizations of (compact) X Carleson measures are independent of
1 <t < « For (b) note that (compact) X Carleson measures for x €{c, m, p}, precisely being
the same as those for the Hardy spaces, coincide. For (c) note from (5)and (17)that
C(j,f:Hl(S) — LY(S)is bounded (respectively compact) if and only if g°¢-'is a (compact)

Carleson measure for H(S). In case of (c) note

lcg

‘PHH1(S)—>L1(S) ~ N*(oop™!) = ||CF

H:t[,f’(S)

where||CZ|| denotes the operator norm of CX:H(S)-~L'(S). For (d) note that Cjis

H1(S)-L1(S)
bounded (compact) on LY((S)if and only if cogp-tlis a (compact) Carleson measure for the

harmonic Hardy space h!(B), which is isometrically isomorphic to L{(S)when t >1. Since

Ht(B)is isometrically isomorphic to Ht(S) cLY{S), we see that o°¢-'is a (compact) Carleson
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measure for H{(S), and the result follows as in (b). An example will be presented in Part5that
shows the converse to (d) fails badly for t = 1, there exists @such that C7is compact on
Li(S)for x €{c, m, p}, but C£ is not bounded.We first mention some remarks for holomorphic

symbols. So, assume ¢ is holomorphic in the following three remarks.

(i) In conjunction we note that if the standard composition operator C,maps H(B)into
H*(B)for some 0 <t <=, then each Cj, when restricted to H'(S), is precisely the same as C,,if
a Hardy function is identified with its boundary function. To see this, let £H'(S)(or H'(B)) and
put f.(z) =frz)for 0 <r<1. Then, as r--1, we have f.—/n H(B)and thus C,; — C,7fin H{(B).
Also, note that the boundary function of C,f.is f,0 ¢, which is obvious by the continuity of

fron S. Thus, by Fatou’s Lemma and (5), we obtain/,

0= ]ir{l_ ICofr — Coflfdo > /[C;;f - walt do,
S S

which shows that (7 fis the boundary function of C, 7 as asserted.

(i) The absolute continuity hypothesis is satisfied if C,is bounded on HY{(B)for some/all 0 <t.
Thus is satisfied for all holomorphic self-maps of D, which is not the case on

multidimensional balls.

(iii) that when x €{c, m, p}, Cjis bounded (respectively compact) on L*(S)for some/all 1 <t <wif
and only if C,is bounded (compact) on HY{(B)for some/all 0 <t <«.Finally, we mention an
elementary result from real analysis that will be used repeatedly, following the approach of

Sarason.

Lemma (1.1.6)[1]: Let feL}(S)and {f}be a sequence of functions in L!(S)such that f~ Fo-a.e.

on S. Then ||f;]|, I ll,~if and only if || AL, = 11£11x || 0.

In this part we prove the boundedness parts of our results stated in the Introduction. Proof
for the boundedness part of Theorem(1.1.2) is split in the next two propositions, since they

differ whent=1or 1 <t < « We first characterizeboundedness for the case t =1.
15



Proposition (1.1.7)[1]: Let x €{c, h, m, p}and ¢ .Then CZis bounded on L'(S)if and only

ifA%X,1is bounded on B. Moreover, the operator norm satisfies ||C||L1s)=supzcsA},1(z).

Proof: Let zeB. For x €{c, h, p}we choose K,=k"*(z, - )as a test function. Note that y*is

harmonic on Bin each variable separately. So, from the reproducing property ofK,, we see

that
(") = [ KM emK=(wn)don), weB
=
— [ KM et win) o)
= K (w, z),
and so

CZk, = (k)" 0 p = X7 (i0(-), 2).

3

Since||k,||=1, integration on Sshows that ||C(’p‘||L > |lxx(e(* ), 2)|l1, zeB. Thus we conclude

1)

ICE s (s) = i A% 1(2)-

This inequality also holds for x =m, with the same proof except for choosing k?=k™(z, - )as
a test function in this case. We now prove the reverse inequality. Let feL'(S)and assume

f*is defined at ¢(C), (eS. For x #m

(£ 09)(©) = lim [ £} (p(C),rn) dot). (16)
S

This remains valid for x =m, even h tough is no longer true in that case. In fact, when ¢(()

€S, the above is certainly true by (1). On the other hand, when ¢({) B, we have

(F709)(©) = lim [ F)#=(re()m) dor()
— [ £ @)= (2(©)m) do(n)
:ff(?]) lim 27 (), 7n) do ()
s

— tim [ F)#* ((0),rm) dor(m);

16



the second and the last equalities hold by the Dominated Convergence Theorem and the
third equality holds by the continuity of K*(¢ (¢), - )on B.So, for any x €{c, h, m, p}, we have

by, Fatou’s Lemma and Fubini’'s Theorem.

lezrl, = [102 0 9)©) do)

r—+1—

<timinf [ [ ||| ((©), )| doto) dorc)

< || £llxsup A3 1 (2)
zeEB

and thus conclude

[|C$||L1(S) < oy A5,1(2),

which completes the proof.

For the proof below (and later use), we recall the following slice integration formula for n >1

[o@e)dotn =" [yt - pP)"*da (17)

for any positive measurable function yon D and £<S. Here, A denotes the area measure on

D.

Corollary (1.1.8)[1]: If n =1and C; is bounded on L'(s), then o[¢~1(S)] =0. If n 22and C}j,’ is
bounded on L(s)then a[¢p~1(S)] =0.We remark that the statement for C},} does not extend to n
=1. For example, with iddenoting the identity map of S, note that Cl?zl =C/yis the identity

operator on L!(s)in the one-dimensional case.

Proof: It is easily seen from Fatou’s Lemma that A5, (I’])SSUpzeBCipd’l (z)for all neS. Thus we

have

AG 1 (n)do(n

d(r{r} N
| TGS ©
S

do( r}) -

> ffor(g).

/ / 1 — {e(Q), ’
P—1(S) S

sup A7 4(z) =
zeB

[
/

17



Note that the inner integral of the above diverges for each {e¢p~1(S). This is elementary when
n =1; when n 22it is easily seen using. So, the result for x =c is a consequence of

Proposition(1.1.7).
The proof for x = pis similar:

sgg AL () +12> /(Ai,l(?}) + 1) do(n)

> / 2Re(1 — {0(C),m)"|

T (e, mpn o o)

p~1(S) 8

Since n =2and ¢({) €S, (17)is available to compute the inner integral to be

[2Re(t —(o(Q) )] ) 2n—1) [ |Re(1— A"
[T el0), m) P AT

(1= A2)" " da(N).

This integral can be seen to diverge by using polar coordinates centered at A =1and
integrating over a small sector, and the result again holds by Proposition (1.1.7).Now, we
turn to the case 1 <t <o, where some auxiliary estimates are needed. First, we need the

following estimate as to how the kernels grow on certain Carleson sets.

Lemma (1.1.9)[1]: Let {,€S, 6<(0, 1)and put z=(1 —-8)lo. Then there are constants C;=C;(n)

>0and C2=C2(n) >0such that

—T

d if ©=c,m,p
HE(z,2w)| > C %
[ ( )‘ 1 {5—(211—1} ifz=h

Before the proof, we remark that we can take cc=1when x € {c, h,m}. It is when x = p and

n >1 that 0 < G, < 1is necessary.

Proof: For x # p the proof is a straightforward estimate using the explicit formula for y*(w,
z), and will be omitted.For x = p, assume first that 6¢(0, 1/16). Choose C2<(0, 1), depending
only on n, so small that Re(a,,) 21/2 for all allying in the disk with center at 1and radius C,.

Let weSP({, , c,0)and put A+(o, w. Note

Ca,

1-(1-46)A (1-48)]1 — A
'1— 5 = 5 <

18



which means that 1-(1-0)A/d lies in the disk with center at 1and radius c,. Now, since |1 —

(1 —8)A] <£20and 6 < %, we obtain

2Re[l—(L—)N" . L 20" __ &

HP(z,w) = (200 S0
(=) = = —qa e = (@ 2 = gl

which completes the proof when d<(0, 1/16). The extension to d<(0, 1)can be accomplished
by replacing C2oby C216 . The proof is complete. We have the optimal norm estimate (9)for
the reproducing kernels except for the pluriharmonic case. In the pluriharmonic case, we
have an upper estimate (10)forx = p. What is needed here is the lower estimate for 1 <t <w.
We do not know a reference and thus a proof is provided below. Other cases are restated for

easier reference.
Lemma (1.1.10)[1]: Given 1 <t < « the estimate

K=z, L D™ e =epm
! t (1 _ ‘Z|2}(2n—1)(1—t} z:f.?: — h

holds for z € B.

Proof: We only need to establish the lower estimate for x =p. Let z € B, z_=0, put {o=2/|z|
and set Ez=Sr(z/|z|, c2(1 —|z|)) nS, where czis the constant provided by Lemma(1.1.9) Note

that z=(1 —-8){0where =1 —|z|. Thus by Lemma (1.1.9) we have
|KP(2,0)| 2 (1-121*) ", (€E:

so that

7l > 1RO do(©) 2 2 (L= )

E.

which completes the proof. We are now ready to characterize boundedness for the case 1 <t

<00,
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Proposition (1.1.11)[1]: Let x € {c, h,m,p}, 1 <t <coand ¢ be as in (2). Then Cjis bounded on
LY(S)if and only ifA7 .,is bounded on B. Moreover, the operator norm satisfies

HCsmo“Lt(s) ~ ngpi A%,(2);

the constants suppressed above depend on x and t, but are independent of ¢.
Proof: Fix any x € {c, h,m,p}, let z € Band choose k.=K*(z, - )as a test function. Then

(k)" (w) = /K-’“(z,n)KI(w,n) do(n)=2"(w,z), weB

and so

Cok, = (k)% 0 0 = X7 (p(-), 2).

Hence

N ERCODI!

HC;“Lt(s)— 15=(z, ls = Ag4(2)

and this is true for any z € B. Taking the supremum over z € B, we obtain
CIl, ey = AZ (2).
“ w||L (S) fgg ot (%)

For the reverse inequality, let (oS, d<(0, 1)and put w=(1 —-8){o. First, consider the case x €

{c,m,p}. see that

[z, @))* = (1= )™ [ (000, )] do @

Z; 5?1(5—1) f 5—nt dU(C)
¢~ 1[5=(Co,e28)]

_ (0097 )[S" (G0, 29)]
571,

This estimate is independent of {,and §, so taking the supremum yields.

sup AT, (z)]t 2 M*(oo rp_l).
zeB
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Hence o°¢~lis an X Carleson measure with the norm estimate N*(g°¢~1) =M*(0°¢~1)<
t . t

1450 v Since [|Cacll .y *N(O=@T)from Lemma (1.1.4) , we conclude||Cj0‘||Lt(S)

supzeAy,t(z), which completes the proof for x € {c,m,p}.The proof when x =his similar,

using the norm estimate for ||K"(z, - )||Zfrom (1.1.4)and the lower bound for ||K"(w,z)|| we

S"(Qo, c20).

As an application we now show that L*boundedness implies L‘boundedness for each 1 <
t < oo which is the content of the boundedness part of Theorem(1.1.3) (a). In view of this

result, one may wonder whether its converse would hold.

Proposition (1.1.12)[1]: Let x € {c,h,m,p}, 1 <t < «and ¢ be as in (2). If CFis boundedon

L'(S), then Cjis bounded on LYS). Moreover, the operator norms satisfy||C$||;(s) <

c ||zl ., for some constant € = C(x,t) > 0.

(s
Proof. Since L'-boundedness of Cjimplies the boundedness of Cé,c:Hl(S) ~LY(S), the case x
+his contained in Theorem (1.1.5) (c). So, let x =h. Suppose C!p’is bounded on L(S). By
Lemma (1.1.4), to show Clis bounded on L¥S), it suffices to show that o-¢-'is an h

Carleson measure. Given {oeSand 6<(0, 1), put w=(1 -3)Co.

gop 1 h 0,C2
O O R R

@~ 15" (Co,e26)]

and this estimate is independent of {pand 6§ € (0,1). Taking the supremum over all (0and

h

dyields MP(g°p—1) =supzsdy

1@. Now, since Cj(o°¢-1)from Lemma(1.1.4), and

sup,epAlh 1(2) =||C£||L1(S)from Proposition (1.1.7), the proof is complete.
We now close the part with the following remarks:

(i) When x € {h,m}, the RieszThorin Interpolation Theorem could also be used to prove

Proposition (1.1.11) with norm estimate
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Czlls, < 2 s

s los)

since in these cases (Cgis bounded on L~(S)with operator norm 1. When x €{c, p}this method
does not work, as Cgis not bounded on L*(S)in general. To see examples of C;and Cf;which
are not bounded on L*(S), simply consider ¢ =id. Note that Ccidis the Cauchy transform. As
is well known, the Cauchy transform (and hence Cpidas well) is not bounded on L*(S). In
fact the Cauchy transform takes L*(S)into the space of functions of bounded mean

oscillation with respect to nonisotropic balls.

(i) One may also derive. In fact, when x €{h, m}, note that y*(¢((), rn) do(n)is a probability
measure for each 0 <r<1. So, given feLl(S), applications of (1.1.8), Fatou’s Lemma and

Jensen’s Inequality yield

r—1-

logslly < timint [ [ 1)|*%((0),rm) dotn) o).

Now, computing the -integration first, we obtain
ez 1l < 1711 sup 451(2) = [ FIEICE] Lo sy
zeEB

which yields (1.1.11).
section (1.2): Compactness and Examples

Recall that a linear operator on a Banach space X is said to be compact if any bounded
sequence {xj}in X contains a subsequence {x;}for which T, n,converges in X. As in the case
of boundedness, proof for the compactness part of Theorem (1.1.2) is split in the two
Propositions (1.2.1) and (1.2.6) below. This time the case 1 <t < «is easier to handle and

so we first characterize compactness for that case.

Proposition (1.2.1)[1]: Letx € {c,h,m,p},1 <t <oand ¢gbe as in (1.1.1). Then Cjis

compact on LY(S)if and only if C¥,,teC(B).
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Proof. We first prove the necessity. Fix any x € {c,h,m,p}and suppose Cgis compact on
LY(S). Note that A7, ,is clearly continuous on Band was defined to be 0 on S. S, in order to

see A% ,eC(B), it suffices to show that

A7 (z) =0 as |z| = -1(19)

Given 2c8, put J+ = X7 i sothat - = Land 47, = G2

Now, suppose that (1.2.1)fails to hold. Then one can find an e>0and a sequence {z/} cB

such that z/ convergent to a boundary point, say n, € S, and

(20)
||C;fzjl|t >e>0

for all j. Since Cgis compact, we may assume, by passing to a subsequence if necessary,
that {C(f,léj}is norm convergent in LYS). On the other hand, note from Lemma
(1.1.10)thatC} £=x*(o(: ), Z)/|lk*(zj, - )|l-~Opointwise as j>+xon S \¢~(n,), and hence o-
a.e.on S by (1.1.1). Hence (g %~0in norm, which contradicts (20). Hence (19)holds, and the

proof of the necessity is complete.

Now, to prove the sufficiency, let x € {c,p, m}and assume Ag,teC(ﬁ). Given (0eSand 6<(0,

1), put z=(1 —d)Coso that 1 —|z| =d. Then

1= (o), )] 1 . t
K=l = K==l f 7 (2(0): =) | da (<)

(5% (¢o,028))

6~ "olp™ 1 (5%(Co, c26))]
6—1115—[—71

2
where the last inequality holds by Lemma (1.1.9) and (1.1.6). Since

[ _ e .
Ko, eel?) 70

as |z| - -1by continuity of A7, we conclude by Lemma (1.1.6) that Cjis compact on LYS).
The argument for x = h, using the alternate lower bounds provided by Lemmas (1.1.9) and

(1.1.10), is similar. This completes the proof of the sufficiency and thus of the proposition.
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We now turn to the compactness characterization for the case t = 1. We need some

preliminary lemmas.

Lemma (1.2.2)[1]: Let x € {c,h,m,p}and ¢ be as in (1.1.1). Assume, in addition, ¢ takes

Sinto a compact subset of B. Then CZis compact on L{(S)foreach 1 <t <

Proof: Fix x € {c,h,m,p}land 1 <t < «Since ¢(S)is contained in a compact subset of B, it is
easily that Ag .is bounded on B. So, (gjis bounded on LE(S)by Propositions (1.1.4) and
(1.1.11). Now, using Lemma (1.1.2) , the rest of the proof is a standard normal family

argument.

Lemma (1.2.3)[1]:Let x € {c,h,m,p}and ¢ be as in (1.1.1), and define the function G*on

B{0}by

G;‘;(yn) = /‘XI (wp(g),’-’]) — A" (‘P(Oa?}')ld‘g(o (21)

for0O <v<1landn € S.Then,for0 <s <1,

HC;D — CsIa“LI(S} < lim SUp(SLEIE [Gfg(rsn) + G;(?‘?})D.
nEs

r—-1

Proof:Fix 0 <s < 1.Note that s¢satisfies (1.1.1), because o o(s,) ™" |sis the zero measure.

Given feL1(S), using Fatou’s Lemma, we have

€z, ~ 2l <imiat [| [ 5[5 (rsec).n) — ol

r--1

< {7l tim o (2 F5(rem) + ()] ).
e

r—-1

as required.

We remark that if x € {c, h, p}, then (1.1.6)is available to give

G (vm) = / |27 (0(C),vm) — H=(2(C),m)| do(©). (22)

s
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Now shows that if A’(;,leC(E), then Gé,‘eC(El{O} )and vanishes on S. Hence, for x € {c, h, p},
Ay € C (B)implies ||CS, — Cgl| sy~0as s —-1,Since each C% is compact on L'(S), it follows

that Cgis as well.

These remarks do not extend to x =m, since (1.1.5)is not available in that case. the
extension tox = m is valid, though the proof is much more involved. The next two lemmas

will be used in that proof.
Lemma (1.2.4)[1]: Let ¢ be as in (1.1.1). If AgfleC(ﬁ), then C5:H'(S) »L'(S)is compact.

Proof: .As in the proof of Lemma (1.2.3), each s@, 0 <s < 1, satisfies (1.1.1)and Cg:H'(S)

—L1(S)is compact by Lemma(1.2.4). So it suffices to show

|Co —C|| =0 ass—-1

where||C — CI||denote the operator norm acting from H'(S)into L*(S).
Let Qmbe the function defined on B\{0}by

Q™ () = ] ™ ((0) vm) — #™((C)om) | dor(©),

for0 <vs1and n € S. From the hypothesis that A'q’},leC(E)and Lemma (1.1.8) , we see that

Q™is a continuous function vanishing on S. So, given > 0, we can fix a ve(0, 1)such that

sup Q@™ (vn) < e.
a5 @) @)

Let feH'(S)and identify it with £H1(B). Lef 0 <s <7and put £(z) =f(sz).

Note Ci~=Asp) =f;(¢p) =Cg'fsfor each 0 <s < 1, because fis holomorphic. It follows from
(1.1.7)that

(Cn — ) IO = CR(fa~ D)
— tim [ ™ (0(0) ) [£e() - )] dor ()
S

r--1

For g-almost every (eS. Thus, by Fatou’s Lemma, we have
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l(em— Al < limint ' J| [ 2 @@ - s doto| aotc) (24)

r—-1 —}1
Meanwhile, note from Fubini’s Theorem

[ 17 (c1.m) = 2™ @)1 olo) = 1o ) do(©

<1 = Sl [sup @™ (o)

< 2| £l [sup Q" (rm)] = 0 as 7 1
b=

ne

Therefore, by the triangle inequality and Fubini’s Theorem, for the v fixed above, we obtain

from (1.2.6)
ez - ezl < [| [ e - fn] do] 4o 25)
crim
where
Ii= [ Q| s - fo]do() <217l
4
by (24), and

II::/

s

] H™((0),vm) [Falm) — F(m)] do(m)| do(©).
S

To estimate Il, we first note from the reproducing property

fsz) = ] Az un)folm) do(n), = €S,

S

because Km(z, vn) =K™(vn, z) =Km(vz, n)by (1). This also remains valid for zeB. To see it,

note from Fubini’s Theorem, (1.1.1), and the reproducing property of the kernel that

/fmzvnfgn)dff ffsn){/f(m R, €)dotc) | do(o)
- Sf { S/ K™ (06, m) o) doo) P (2,€) do(®

N f Frs(©)K™(2,€) do (&)
s

= f(vsz).
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A similar argument yields

fwss) = [ ™z o fn) dot), = € B.
5

Therefore, we have

]%’m(ff?(tf),vn)fs(n) do(n) ZJXm(SW(C)avﬁ)f(W] do ()

= S

ato-almost every ¢ € Sand thus by Fubini’s Theorem

I < f ] | (s0(C),vm) — H™((Q),vm) | - | £(m)] do(m) do(C)

< 1l sup [ |27 (s(0)0m) = 27 (0(0),v) de ().
s
Now, since 0 <v<1, the Dominated Convergence Theorem can be used to see the (uniform)
continuity of the mapping (s, n) = K™(s@(* ), vn)from [0, 1] xS to L1(S), yielding
II < €| f]1,

provided sis sufficiently close to 1. Along with (25), this shows that Cg, — Cj'boundedly

takes H1(S)into L'(S)and, moreover, that (4)holds. The proof is complete.

Lemma (1.2.5)[1]: Let ¢ be as in (1.1.1)and put

(o (1 _ |99[:C |2)ﬂ . ber’ F
Gmern) flll @@, rpn " (#leh)| 7€)

for0 <r < 1and neS. If A5 ,eC(B), then G™eC(B\{0}).

Proof: Assume A7eC(B). Since G™is clearly continuous on B \{O}by the Dominated
Convergence Theorem, it suffices to prove G™is continuous at every point in S,

whereG™vanishes. Given s €(0, 1)and n € S, we use temporary notation
Eo(n) == ¢ '[S™(m,9)| NS
For short. Givenn € Sand 0 <r < 1, note
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d— =" 2"
1= {z,rm>* = (L—r)™

for z € B,

and

1
>_'.|
- 2

|1— @wn)‘ o |(A=m)zm

1—{z,m) |~ 1—{z,7) for 2 ¢ 5™ (n,2(1—r)).

Therefore, given arbitrary ny,eSand 0 <6<1, we have

(1— | _
= (e, ) = [+

Ez(m0) Es(mo\Ezii—ryem Es(mo)NEzg—rym

m a[Ea1—r)(0)]
s (f - (¢(¢),m) do(¢) + T

Thus, setting

I() = ] ™ (0(C), 1) — ™ (9(C),0) | do(€)
]

we obtain

le (O™ i
f |I1— {0(C), rm)[*" — ™ (9(¢),m) | do({)

s [ (et + D)

(1—r)m
Es(mo)

S [ ™00 m) do€) + ) + My (o007,
Es(no)

Note that g°¢~'is a compact m-Carleson measure, sinceC;":H'(S) —-L'(S)is compact by
Lemma (1.2.4). Thus the last term of the above tends to O uniformly in n as r - —1.

Meanwhile, since

lim [ 2™ (¢(¢),n) / K™ (9(C),m0) do(€)

=70
S

by the continuity of Ai};0n S, we have I(n) »0as n-n,by Lemma (1.1.8). Also, note

(1— QI
1 — {(p(¢),rm|?”

— ™ (p(0),m) | do(¢) = 0

lim
T—+0 ‘
84 E& (m0)

by the Dominated Convergence Theorem. It follows from these observations that
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limsup_G™(r) S [ ™ (¢(0), ) do0)

r—p,0<r<1
E5(no)

In the display above note that the right-hand tends to 0 as &-0* because |xy™(¢(-

)N0[[=A% 1(no) <=. Since the left-hand side is independent of 5, we conclude that

lim sup ém(rﬂ] =0= ém(ﬂ'g].
ri—no.0<lr<1

Hence G™is continuous at every point in S as required, and the proof is complete. We are

now ready to characterize the compactness for the case t =1.

Proposition (1.2.6)[1]: Let x € {c, h,m,p}and ¢ be as in (1.1.1). Then cZis compact on L'(S)if

and only if A™,eC(B).

Proof: We first prove the necessity. So, suppose cgis compact on L'(S)and let {wjlbe a
sequence of points in B with wi»wo. To show Aj7,eC(B), it suffices to show that there is a
subsequence {w; }such that Ag,(w; )-Ay.(wo). Let kw=K"(w, - )for x €{c, p, h}and
kw=K™(w, - )for x =m. Then ||k*,,|[=1for weBand ||k, |[=0for weS. Thus {w;, }is a bounded
sequence in LY(S), and since cpis compact it follows that {czw; } ={x*(¢(: ), wilhas a

subsequence {y*(¢(: ), wik)}that converges in norm. Since k*(p(* ), wWj) =x*(@(* ), wy)O-

a.e., it follows that y*(¢(- ), w;,) »x*(@(- ), wo)in norm. Hence,
Ag 1 (@) = |7 (e (), w) ||, = |7 (0 (), wo) ||, = 45,1 (wo)

as required, and this completes the proof that A’gleC(E).Sufﬁciency has already been
proved for x € {c, h, p}in the remarks following the proof of Lemma(1.2.3). So for the rest of

the proof we put x =m, and assume Ag’},leC(E). As in those remarks, it suffices to show that
T TrL
IC% — C& ”LI(E} —0 ass—-1

From Lemma (1.2.3) , it suffices to show
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im { gup @™ —0 (26)
[fm foup 2 (sm) =0,

whereGg'was defined in (4). Let zeB and neS. When s <1, y™(s;, n) =Kn(s;, n), so the

explicit formula of the kernel can be used. For s €[0, 1)we have

™ (1 — |Sz|2)n
B s2m) = 4T ppm

[z PO -
1 (z,sm)"

_ A=) (-
- |1—{z:,8’:'}}|2"Jrcl(l]I ; |1

k(1 |22y
— G

where O(1)is uniform in z and s. Thus

m (- Jz)" ~ (-9t =
K e | S & = e P
Hence, setting
(1~ |ap)*
ok = : B, k=12...,
ok =@ (e *F "

we obtain

GT(sm) S GT(sm) + > _|ICT gan,kel,-
k=1

The function G}'was introduced in Lemma (1.2.5), where it was shown that GJ'(s,) >0  as

s — —1luniformly in n. So, to complete the proof, it suffices to show the sum in the
right-hand side of the display above converges to Ouniformly in n as s — —1.Note that
{gsn,k}is a bounded set in H'(S), note that, given a’ - n, € S, {C5'Qai,K} ={gai,k > p}(with kfixed)
converges pointwise to Oon S \¢~'{n0}and hence g-a.e. by (1.1.1). Since C;:H(S) -L'(S)is

compact by Lemma (1.2.4), a sub sequence converges to 0 in norm. It follows that

mn
lim sup E | C:onﬁi’S??-kHl — 0,
S k=1 |

s—1— ?}E
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as desired. This completes the proof. Having proved the compactness characterizations, we

now prove the following, which is the content of the compactness.

Proposition (1.2.7)[1]: Let x € {c,h,m,p},1 <t < «and ¢ be as in (1.1.1). If C7is compacton

L'(S), then Cjis compact on LY(S).

Proof: As in the proof of Proposition(1.1.9), the case x # his contained in Theorem (1.1.10)
(c). For x = h, from Proposition (1.2.6) and the hypothesis that C(f,‘is compact on L1(S)we
havethat Ag)'leC(E). So by Lemma (1.1.7) it follows that G£, defined in (1.2.3) , is continuous

and vanishes on S. Thus Lemma (1.2.3) shows that given >0, there exists § > Osuch that

7]

HC’;E; —Ch < e forallse (1—-4,1).

L1(S)

Also, the operator CJ}, — Cjclearly acts boundedly on L=(S)with

It now follows from the RieszThorin Interpolation Theorem that

'C.i]s,-r — Ci}: |1t < 21_1’”'51’”'-. for all s € (1 — 9, 1};

Lt(S)

the slightly different norm estimate implicit in the proof of the Marcinkiewicz Interpolation
could also be used. (An alternate approach, available since Cf,}is an integral operator, is to

use Schur’s test Hence

lim H(_?ﬂ — C”EH
S '

s—1-

):[].

Lt(S

Since each C{,, 0 <s <1is compact on Lf(S), Cgis also. The proof is complete.

Applying our compactness characterization, we can show by explicit examples that
Lt compactness for each 1 <t < oo may not imply L'boundedness. This, in particular,

shows that the converse of Proposition (1.1.6) does not hold.
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Proposition (1.2.8)[1]: For each x € {c, h,m,p}there exists ¢*such that Cj,is compact on

LY(S),1 <t < « but C(’plxis not bounded on L1(S).We fix as a standard reference point

e:=(1,0,...,0) € S. (27)
Proof: Put
= {17 0O e e
and
O e A R

wheree>0is a sufficiently small number chosen so that 0 < h,(s) < 1. Given x € {c, h,m, p},

put Vx=Sx(e, €) nSand define
ez (C) = (1 — (hy0d;)((), 0,... ~U)3ﬂ»’f{§]

Where Vx denotes the characteristic function of Vx. Clearly, this function satisfies (1.1.1).We
show that C(’p‘xis not bounded on L1(S), only for the case x =c; the proofs for other cases are
similar and thus omitted. By Fatou's Lemma Aj,,(e) s<lim,,_,infAy,(re), and so by

Proposition(1.1.7).it suffices to prove that A, ;(e) =. Note

1 1 -1
Hpe(C),e)| = - log ——— , CeVe

and so

¢ (a) — 1 1 -t
fotte) = / TeaF ()

It is elementary to see that this integral diverges when n =1., So, (gis not bounded on L(S).

Now, we let 1 <t < oand show that each Cj.is compact on LY(S). By Lemma (1.1.6) it

suffices to show that o ¢y lis a compact X Carleson measure. It is easy to see
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for any ¢, neS. Thus we have
0. (5% (n,6)) C ¢ '(S%(e,d)), neS, 0<s<1

and consequently it suffices to consider the Carleson sets S*(e, 0).Continuing under the
assumption that x =c, the other cases being similar, note that h.is invertible (when) is
sufficiently small). Thus, for ¢ € V., we see that ¢.(0) €S¢(e, d)if and only if dc(C) <hz1(d).

Thus ¢ 1[S¢(e, 8)] =S¢(e, h;1(d))for all & sufficiently small. Hence

(0007Y)[S%(e.8)] _ (hz'(9)\" as 5 = OF
2157(c. ) A~ 5 —0 asd—= 0",

and so g°¢~lis a compact C Carleson measure. This completes the proof. As another
consequence of our compactness characterization, we can easily recover Sarason’s result.

Recall that (1.1.1)is satisfied by all holomorphic self-maps of D.

Corollary (1.2.10)[1]:Let ¢ be a holomorphic self-map of Dsuch that ¢(0) =0. Then Cj}is

compact on L'(6D)if and only if A7 , (n) =1for all neaD.

Proof: Note that y"(¢(* ), z)is a bounded harmonic function on D for each zeD. We thus

have

for all zeD. So, the corollary is immediate from Proposition (1.2.6).if x, ye{c, p, m}, t >1, and
Cyis bounded (respectively compact) on LY(S), then C;,’is bounded (compact) on LY(S). Also, if
Cgis bounded (respectively compact) on LY(S), 1 <t <oo, then Cyis bounded (compact) on
LE(S)forx € {c,p, m}. Example (2) below shows that the converse fails badly: C%, x € {c,p, m},
can be compact while C£is not bounded.Carleson measure methods were used to get these

results for t >1. When t =1, Carleson measure methods are not available and the situation is
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quite different. In this part we consider the 12 implications of the type If Cfplis boundedon
L1(S), then Cq’o’is boundedon L'(S),wherex # y. We show that 2 of these implications hold,
while 9 of the remaining 10 fail. In fact we show that 7 of these fail badly, in that C;can be
compact while Cgis not bounded. The last cases that we were not able to resolve will be

stated as questions at the end of this part. We begin with the two implications that do hold:

Proposition (1.2.11)[1]: Let pbe as in (1.1.1). If Cjis bounded (respectively compact) on

L1(S), then Cgis bounded (compact) on L(S)forx = p,m

Proof: We first consider x = p. We have y?=2 Rey‘ 'and so the boundedness. For

compactness, if z,w € B, then
[P (0(), 2) = AP (0().w) ||, < 20| #°(2(), 2) — A (). w) ;-

Proposition(1.2.7 )[1Jnow shows that A5, ;eC(B)implies A7, ;eC(B), and so the statement for
compactness follows from Proposition (1.2.6).We now consider the boundedness for x =m.
Let zeB. Since y™(¢(C), n) <2"|K<(¢(C), n)|, we have by Fubini’s Theorem and Fatou’s

Lemma

Hgmﬁgﬂul_/{f ™ (o J}Km@nmdm
S S
<2 1111 111f /{/| K '.r*?,r ffor Q)}ﬁ”“(z._n) do(n

<2" sul};HJ{/C(p[-},-wJ|-l /Km(z.,n) do(n).
Wi
&

Since the last integral above is equal to 1, this shows that Aj7,is bounded by 2"47, ;. Hence
the result for boundedness follows from Proposition (1.2.6)Finally, we consider the
compactness for x = m. Assume that c,is compact on L(S), or equivalently by Proposition
(1.2.4) that A, ,is continuous on B. Now by Proposition (1.2.6) again, to see that (g'is
compact, it suffices to show that A7 ;is continuous on B. Since Ag,is continuous on B, it
suffices to show that it is radially uniformly continuous. Let >0and neS. there is § >

Oindependent of n € Ssuch that for all £ € S™(n, §)
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/I-K"(tﬁ[ﬁ}-ﬂ}- — |K<(#(¢),€) || do(¢) <, (28)

S

sinceAg ,is (uniformly) continuous on B.
Note

K™ () = K™, 6)| = (1= 12)" K<) - K0

< 2" KO (2,m)| — |[K°(2,€)]

For (eS and zeB. With K™replaced by y™this estimate extends to all zeS, since y™(z, n)

=0when zeS.

["KM” (0(¢)sm) — X ™ (9(C),€) | do(C) < 2"He (29)

S
For &eSm(n, 8). Let 0 < r < 1. Since f; x™(m, €) do(€) =1

[ | ™ (@(C)sm) — ™ (2(C),€) | do(¢) < 2" e (30)

S
Thus, setting M=supz<eAy;; (z), we obtain by Fubini’'s Theorem and(29)

D1 (rm) = AZ ()]

= ‘/{‘S/L’{/m(@((:)(f) - xm (‘r’)(C)‘r?)‘da(ﬁr)}f{m(ri?f) CECT(E)

s

< antle / K™(rn,&)do(€) +2M / K™(rn,§) do(§)
5™ (n ) S\S™ (1,8)

0 -2

52?1

<ontle L oM

Therefore we have

A7 (rn) — ;12}_‘1(7;)‘ < (2”“ + l)f, neSs
for all r sufficiently close to 1. The proof is complete.

We now turn to the examples that demonstrate the failures of the implications dis-cussed at

the beginning of this part. Recall C£=C£in the one-dimensional case. So, the restriction n >
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2in the next example is required, by Theorem ( 1.1.1) (b) for 1 <t < « and by Proposition (

1.2.10) fort = 1. In what follows, e € Sdenotes the point specified in (1.1.7).

Example (2):Let1 <t < xx € {c,p,m}, and n = 2. Then there exists ¢ such that CJis

compact on L(S), but Cjis not bounded on L(S).

Proof:First, consider the case 1 <t < « In this case we use the Carleson measure

characterizations. Fix % < a < land let

2(¢) == (La(¢1).0,....,0)

where La(A) =1 —(1 —-A)2, AeD. We remark that Lais a conformal map of Donto a teardrop-

shaped region in D with vertex . Since |p(C) —e| =|1 —C1|2=|1 (¢ (0),, e)|, we have

(00 o~ 1) {Sl‘(e. (5): = (0o ;_1) {Sh‘(e. (5):
=c{CeS:|l- (<]

~ Sn/a

Accordingly, using (), we obtain

O‘n/a
00 asd— 0T,

MM oop™) > s

which, together with Lemma ( 1.2.7), shows that C(f,}is not bounded on L{S). On the other

(0 0p™1)[S™(e,8)] _ &m/e

- A 0 asd— 0.
o[S%(e, 3), gn o 0T

hand, using ,we

As in the proof of Proposition (1.2.8), this shows that Cjis compact on LYS). This completes

the proof for t >1.
Now, we consider the case t =1. This time we let

(1 - nh(Rey),0,...,0)

©(C)

where h(s) =(1 —s)"2for 0 <s <1and h(s) =1otherwise. Again, ¢clearly satisfies (1.1.2).
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1

1 .
o - (1 . 82)11—3;‘2 L ds B
_fl%’_:,_l(e‘) ~ / hQ?I—l{S) ds=~1+ 1_ s = 00.
—1

0

Thus we see from Proposition(1.2.1)and Fatou’s Lemma that Cfp’is not bounded on L(S).

To prove that Cjis compact on L'(S), we only need to consider for x =c by Proposition
(1.1.3). Since ¢(S)touches Sonly at e, it suffices to show that Ag, ;is continuous at e by

Proposition (1.2.6). Let w € B. Since Re(1 —w;) = 0, we have

11— (#(¢);w)| = [M(Re 1) + (1 — 1) (1 = h(Re(1))| = h(Re ()

So that

e
M
_f‘
S
M
ws]

Note

1 o
/ do(¢) / (1— )32
_— =1+ ———ds < oq;
1 — Be,|n/2 1 — g2
4 1 - Re( J (1=s)

0

this is where the restriction n > 2 comes into play. Thus we conclude via the Dom-inated

Convergence Theorem that A, ;is continuous at e, as required. The proof is complete.

Next we give a simple example that shows and Cg'may be bounded on L(S), while C];,’is not.

Recall that iddenotes the identity map of S.

Example (3):For n = 2, Chidand Cmidare bounded on L*(S), but C cid and C pit are not

bounded on L(S).

Proof:C/yand Ctare simply the identity operator on L'(S)by Proposition (1.1.1) (b), and so
bounded. That C[jis not bounded is a consequence , and it follows from Proposition
(1.1.1)that C;disc not bounded. The restriction n > 2in the next two examples is required,

since C£=C;,”when n =1. Also, when n =1, Cpidis bounded on L'(S)but Cfis not, as
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discussed above. But a different example is required to differentiate between the behavior of

Cpand C5on L'(S)whenn = 2, since in that case C;,is not bounded.

Example (4): Let n 22. Then there is ¢ satisfying (1.1.1)such that C7'is compact on L'(S), but
Cpand C}Zare not bounded on L(S).In the proof below we will use the non-isotropic triangle
inequality.

3y (1/2 r 3 _2v1/9
] 1 ':_'l_z;, . = .-" (31)

valid for all z1, z2, z3eB.

Proof: Define a sequence {q;} CBby

1 |2 1 1
= 1l= =,/ == — — , 00, 0], k=223, ...
% ( 2k’ \,n' 2k 22k 2k(log k)? ) '

so that

1

. , 1

(32)

1
kznk

Let {E, };-,be a partition of Sinto Borel sets E,such that a(Ey) = ok where (cn)=1=)7_,
Denote by x,the characteristic function of E,and define :S — Bby ¢ =);,_, gkxx. Then ¢ is a

Borel function and

MF
td f&q

wheredyis the point mass at g;. Clearly ¢ satisfies (1.1.1)sincep~1(S) =@. Also, note

1
f2nk

MH

AT [(w) = e,

e

A (qr,w)|, weB (33)
L.

[l
b

for any x.

.9
_r'-lji 11 = - i
:F-l“} = G Z L‘}”;‘ |1 — (q, E}|” AZ_: | x (34)



Thus, from Fatou’s Lemma and Proposition ( 1.2.6), Cgis not bounded on L1(S)which in turn
impliesCgis not bounded on L'(S)by Proposition ( 1.2.7).We now turn to the proof thatC;'is
compact on L1(S). Since qyx_., it follows from (1.1.7)that the sequence {¥y™(qx, * )}kis
uniformly bounded on each compact subset of B\{e}. Accordingly, for x = m converges
uniformly on each compact subset of B\{\{e}. So,44,is continuous on B\{e}, because each
x™(gk, * )is continuous on B. For this it is enough to show that there is a constant C =

C(n) >0 such that

M—1 p
1| gm g m g - - J’-‘:””'iii'l.-z -w) — A (G E} 35
ClAZ1(w) = AT s () < =57 + D ko (%)

for any integers M, N with N -2 > M > 3and w € S,,,(e, 2-n).Let M > 3be a given positive

integer. As a preliminary step towards (34), we need certain estimate for the

series) -y %. First, we show that there is a constant C = C(n) > Osuch that
o
- J!:’-mlzi_?,i\-"lb‘:l . () e .y
Z Jifgn..ic = loo M’ we S (E, 2 {) (36)

k=M

for £ > M + 2. To see this, for M < k<f-2and w € S,,(e, 27¢), note by

1 , 1 1 1
11— (gr, w)| > 5‘1 — (qr, )| — [1 = (w, e)| > ST~ 57 2 orpe
So we get that
(=g + (1 = |w]H)™ _ o 1 1
(g, w) 5 |1 — (qp., U_'_:I|2“ ~ 2};“(103 k)En + 2in

there is a constant C = C(n) > Osuch that

1

: — ,sz.' 103;3):’”?
TR

H N, w) =

for all integers £22. Finally, we show that there is a constant C = C(n) > Osuch that
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LS S . . 3
H (g, w) . (log£)™"

kU — weB (37)

(]

im

E=¢—1

for positive integers. To see this, for k > A + 3and w/€ S,,(e, 2™ 1), note by (37)

= )

A @, w) O R :
1 A - A .;:|,—|'—1
ZE: f-ank = [ wE o LE'“ J
k=£+3 T '
so that, again using (17),
3 iy
g, w) - < gintin

Since Y3 2™ /(k2™) < 1/ ¢ this yields (1).

. Since

> Loy g :
= k2nk = lﬂgfﬂ 2n lﬁg M’

we have

A (w) = A7)
E i __}Sfm{qk,ﬂ,’) — (q,IL-._.E)|
k=2

ank

M-1 | .. m AL TTL o0 LTI
_ ™ (g, w) = K (nge)|+zdf/ (qr, w) 1

J2nk 2k log M
k=2 k=M ]

(38)

for w € B. Let Nbe a given positive integer with N=M+2and fix weS,,(e, 2N). Choose #=N
such that weS™(e, - ) \SM(e, 2¢1). Then we see from (35), (36)and (37)that the section and

term of the above is dominated by some constant (depending only on n) times

1 (log¢)®™ 1 1 (log M )*™ 1 1
log M - ¢ { - T

the constants suppressed in these estimates are independent of M and N. From this and

(37)we conclude (36), as asserted. The proof is complete.
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Example (6):Let n 22. Then there is @such that Cg is compact on L'(S)butCsand Cgtare not

bounded on L(S).

Proof: Define a sequence {ax}of complex numbers by

Fi"‘f'Zn
ap =1 — - k=12
Ik
Also, since
1 T
l—ar|=— and Re(l—ax)" =0.
2.&
we have
1 — |ag|? 1 o 1
2 TR\ T2k )
We have

1
ok

1 — |ag| = k=1,2,...; (39)

it is this step where the restriction n > 2comes into play. This in particular shows {ak} €D.

Now, as in the proof of Example(4), take a Borel function ¢ :S —-B such that

1
k2nF
=1

M
ws]

AT [(w) = ¢, ‘._Jf"”“{a;fe.-w}‘, w (40)

e

Nl agF:

-1
for any x; this time we take Cn=2§=1ﬁlnk . It is easily checked that A ; (e) ==. So, as in the
proof of Example(6)Cg'is not bounded on L'(S), which in turn implies Cgis not bounded on

L1(S).

Turning to the proof thatcgis compact on L(S), first note that an argument similar to the one
used in the previous example will show that A7 ;is continuous on B\{e}. Thus.6it suffices to

show that Az,lis continuous at e. To this end we will prove
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’/1 (w) Afo,1(e)|

A

¢ 41
N (41)

For weS¢c(e, 27N) \S¢(e, 2-N-T)and for some constant C>0independent of N and w. Here, and

in the rest of the proof, N denotes an arbitrary positive integer.

To begin with, let w € B. Note

Re(l — arwy)"

A FPlape,w) =2 — 1
) 11 — apwy|?"
and, in particular,
‘ Re(l — ag)n’
AP (ay = 2 1=-1
(are,e) 1 a2

for each k. Hence we have by

| = 1 |
|f’1:l('lt-‘) — fli_ltﬁ"j.l < Cn Z IJQ”'I" ||°’£fp[a{.'er 'w} — 1|

1 Re 1 — ariy)™

ot
o Z nl — ak ?_Lllﬁn
<N+

We now restrict weS¢(e, 2-N) \Sc(e, 2-N-T)and estimate each sum of the above separately.

For the second term, since

_ _ 1 1
1 —apwoy| > |1 —wy| — |1 —ax| > SNTT T o

for each k, we have

N (42)

To estimate the first sum, note

~2N<2M—ar], k<N+1.

1—'E.U1
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Hence, using that Re(1 —ak)"=0, we have

|R.e(1 — a._;fuTl)”| = |Re[(1 —ap)+ap(l— 11_1)]ﬂ|
E |1 — (1;;|n_1 1— w1|

1 r
~ SE—1)N " E<N+1.

This, together with (42), yields

|R.e(1 — a.kuTl)”| = |Re[(1 —ap) + ap(l— u_l)]
f:u |1 — ak|n_l 1— 'LU1|

1 ;
~ Sk—1)pN E<N+1

! ‘

This, together with (41), yields

N+1 9211.&

N1
ok
Z Z ;/,Qn;c ok(n—1)ON ; T SN (43)

E<N+1 k=1

Now, we conclude (41)by (42)and (43). The proof is complete.
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Chapter2

Highly MultistableComposite Surfaces

The concept is then extended to surfaces composed of three and by extension more
identical bistable shells connected in series in order to achieve additional stable states. The
multistable behaviour of these surfaces is investigated by finite element analysis and verified
by experimental work.

Section (2.1):Tripled Bistable Structures and Connected Bistable Composite Shells

Due to their multiple discrete stable configurations, compliant multistable surfaces have been
considered for use in many adaptiveapplications. They offer several advantages when used
as structures requiring shape variation, including the reduction in required components and
an increase in their potential operational environments The increasingly high demand for
adaptive structures across many fields of engineering, but in particular aerospace, including
flow control and adaptive optics, makes research into extending the degree of multistability,
and hence the adaptively ,timely. It has long been known composite laminates with un
symmetric layups may present multiple stable configurations at room temperature Due to the
mismatch of coefficients of thermal expansion in the directions axial and transverse to the
fiber, residual thermal stresses build up during the curing process. These residual stresses
cause the plates to curve into one of two possible stable cylindrical shapes after curing. In
addition, each cylindrical shape can transition to the other by means of an applied external
actuation.However, an individual bistable composite laminate normally cannot fulfill the
requirements of real world applications. On the one hand, bistable composite shells are
required to be connected with other components, on the other hand, adaptive applications
may need more than two stable configurations. Therefore, the extension of previous studies
of bistable plates to achieve multistable structures composed of multiple bitable composite

shells is a subject of interest. For example, Mattioni et al. connected one edge of a bistable
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composite shell to a symmetric, i.e. monostable, laminate to demonstrate the use of bistable
composites is feasible in morphing structures. Although the movement of one edge of the
bistable laminate is restrained, the compound surface demonstrates two discrete stable
configurations. However, when two edges of a bistable composite laminate are clamped by
monostable laminates, the plate only demonstrates one stable configuration. To regain
multistability, a designed surface consisting of symmetric and unsymmetric laminate parts
may be introduced, for example, the shell demonstrated by Arietta et al. The embedded
composite shell with variable stiffness can demonstrate bistability and avoid the conventional
connections which may increase the risk of laminate failure. However, these embedding
designs cannot increase the number of stable configurations. To achieve high degrees of
multistability, Dai et al. fabricated tristable composite lattices by connecting four bistable
rectangular laminates with discrete joints which were then assembled n lattice cells by bolts.
The lattice structure can present 2n stable shapes. A similar design is demonstrated in.
These attempts to achieve highly multistable structures have two main disadvantages: first,
large numbers of components are used — this negates one of the principle advantages

of the use of compliant mechanism in adaptive system; second bolted connections may
reduce the performance and lifetime of composites. In this chapter, novel multistable
composite surfaces are constructed by connecting several identical bistable composite
shells in series. As previously stated, if n bistable components are connected, the resulting

system may exhibit up to 2n discrete stable configurations. This has

@1' rigid link @ ’ rigid link ‘

Fig. 1. Three connected biased von Mises truss structures.
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Fig. 2. Two stable configurations of a biased von Mises truss.
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Fig. 4. Relative strain energy vs. relative displacement plots for a single asymmetrically
bistable (K? # 0) von Mises truss with variable K .
previously been demonstrated for systems where the individual bistable components are
decoupled and may be independently actuated via the design of statically and kinetically
determinate systems. When components are connected in a continuous sense, however, it
is essential to consider their interaction by means of the coupling along common boundaries.
In this chapter we begin this investigation by considering the interaction between two

bistable plates and then extend this to the study of three connected bistableplates.
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Furthermore, in order to interpret the multistable behaviour of these newly designed
surfaces, a two-dimensional multistable an alogmodel will be introduced first and a
parametric study will be carried out to characterise the controlling parameters which
determine multistability of the analog model. Inspired by the understanding gained from this
simplified study, a design method is developed to assist the compound surface achieving
higher multistability. Since each of these shells possesses two stable states, the compound
structure can theoretically present up to a maximum of eight stable configurations. However,
due to the interaction between the connected shells, it will be shown that a maximum of
seven discrete stable states can be achieved in a surface consisting of three connected
square bistable composite shells.

Before analysing the behaviour of connected bistable composite shells, it is instructive to
consider an analog model consisting of three biased von Mises truss systems to understand
the general behaviour of bistable elements connected in series. The three von Mises trusses
are connected in series by rigid bars and coupling springs. By varying key parameters, the
multistable behaviour of the truss structure is controlled and a maximum eight discrete stable
states, as expected, are found to exist. As illustrated in Fig. 1, the three identical von Mises

trusses consist of elastic rods of initial length L,. The span width of each truss.
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Fig. 3. Relative strain energy vs. relative displacement plots for a single von Mises truss with

variable bias stiffness K;, showing the transition from symmetric to asymmetric bistability

Stable State 111

---'-'-

L 100= e State 110
2 80-

= 60-

=] pD

2

= 404

2= Stable State 011 ;

= 20

i—:

Re; ()= Stable State (01 Stable State 0 - Bl
'Har'h_,r}r,lﬂ[l 100 yes =
J.],J'I:' £ ﬂ..'f‘._"-. ':‘1 -

g™

. 0 @

% Stable State 000 ®
Fig. 5. Plots of Relative displacement of trusses vs. relative strain energy in different
actuation steps for the octo-stable truss structure. system is 21 The axial stiffness of the rods
is Ks. Biasing springs Ky are attached to the centrally-located hinges A, B and C. Any two

adjacent truss systems are connected as shown by a rigid bar.

100

oo
o]
i

(=

o

P
i

o
i

Relative strain energy, %o

t

i :
44 il 80 100
Relative displacement of driving truss system, %

(a) Step A

48



Relative strain energy, %o

100

&l

Gl

4()

Relative displacement of driving truss system, %o
(b) Step B

100

Relative strain energy, %

(] 20 41) i L1l 1 (b0
Relative displacement of driving truss system, %

(c) Step C

49



| L)

(s
o

Relative strain energy, %

4:[] ﬁ.i] Eé-.L'I 1000
Relative displacement of dniving truss system, %o
(d) Step D
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and coupling spring K. All of the trusses are shown in their initial strain free stable
configurations. The initial height of the truss members is defined by the vertical distance h
and the maximum displacement of a truss is 2h.We first investigate the bistability of a single
truss. When a vertical is placement d is applied, the rods will be compressed and the truss
system will move downward. Meanwhile the strain energy stored by the truss will rise. When
the displacement reaches a critical value, the strain energy will reach a maximum value and
will drop as the displacement is increased. As the truss is displacement controlled there is no
dynamic jump to the second stable state. This truss system then continues to a new stable
configuration corresponding to a second energy minimum (see Fig. 2). The relationship
between the displacement relative to double height 2h and the stored strain energy relative
to the largest local strain energy minimum of a bistable truss achieved Fig. 3 demonstrates
the relationship of the relative displacement and relative strain energy of a von Mises truss

with increasing Kby, in which 100% relative displacement indicates the vertical displacement

of the truss is the maximum displacement, 2h. The two local strain energy minima
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correspond to two stable states. When Ky, % 0, the two local minimum values are identical,
and the system is symmetrically bistable. With Kb increasing, the actuation energy of one
stable state rises and the energy gap between two stable states increases. The stable state
possessing lower potential energy becomes the preferred stable state. When Ky reaches a
critical value, the second energy minimum disappears and the system becomes monostable.
In other words, to ensure that each individual truss is bistable, the stiffness of the bias spring
Kb must be lower than a critical value. Besides the stiffness of biasing spring Kb, the
bistability of thevon Mises truss is also determined by K. Fig. 4 illustrates the influenceof Ks
on the stored strain energy of the bistable truss. With Ks increasing, higher energy is

required for actuation. This means s;lfferrors cause the stable configurations of the truss to

be more.
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Properties of IM7/8552 carbon fiber composites.

Ei1  E2 Gu2z Vi 1 @2  Thickness  Side
(10-6/oC  (10-8/o(

(GF (GF (GP (mm) leng

(mmr

164 12 53 0.2 0.02 31.2 0.131 100

stable in the sense that greater energy input is required to transition between the states.
After understanding the bistability of an individual von Misestruss, the next step is to study
the influences of these key parameters on the multistable behaviour of connected truss
systems. When one truss of this connected structure is actuated by displacement control,
the motion will be transmitted to other driven trusses by the rigid bars and connecting
springs. If the vertical displacement of point A; B; C is denoted by 6;; §,; 83, the loads

appliedby the connecting spring on point A; B; C are expressed as
Py = Kc (05 — &1):

Py = Kc(01 — 62) + K¢ (63 — 02);
Py — K (35 — 53).

1)

The equilibrium path P; , d; of these three systems must also be
equal to
(2)
Pi:I<béi—2I<5Xi Slnf)i, 1 = 1,2,3,
in which Xjare the compressive deformations of the diagonal members and 6; are the angles

between a hinge and the horizontal direction.

They can be obtained by

Xi:LO—\/lz+(h—(5i)2, i—1,2.3, 3

0; = arctan (h_lol) i=1,2.3.

Combining Eqgs (1), (2) and (3), it may be seen that the force-controlled displacement of the
two driven trusses may be expressed as a function of the imposed displacement § on the

driving truss.

52



Qg}b
Yspy,
ey CG
P st Q]e
et O Ve '3
e
LEEES25RSRIRIREITIIERS
: ,.;;:::;:g::::.:‘:‘.:*:’::\&:o‘
Fixed nodes g S SRS
P et el oo et e e e et et e
o seeswas se0e Setae ettt tentes
i osas e sssereten et oe i sttt
.#,iﬁﬂﬂhﬁﬁﬁﬁﬂﬁkdﬁiﬁHPHd’iﬂkbqﬂh‘
e sseaasedetenietietentetieties
et e 22000 e e S 0 % s N e e
3ROSR SRS IS IS S S
e et e et e S S e e e S et
£
: Setetestentetes

X
L
X
i
5
e
5

>
L)
X
X
g
5
0
LA
QO
KR
RREG

¥
o
S0
o
5
2
5
X

W

)

h}
3
4

4+

%
L)
()
)
)
)
)
"
)
)
)
X
SRR

&
N

.¥
SO0
D0

00
A

S0
A
e
h
A
KK
e
o

e
5

&

5

X
0

5

N
A0
4
¥
3
&
»
)
#
o
)
()
()
()
&
)
%
)

B
5
X
o
4
)
&
"
&
0
2
¥
"
&

)
)
)

’

]
N
|

R
o
2
h
(55
e
&
&
o
o
&
&
&
&
X

s
X
%
5

N
)
)
i, »
h
0
0
o
0
%
o
0
o
o
&KX
()

50
5
55
B
B
o
!
e
&5
R
&

(KD
L
552
0505

%

0.: *

%
()

4

X

5

%
KB
SR

&
&3
%
!
&

’0 ()
S
&8
%
&

(b) Intermediate state (01)  (c¢) Final primary stable state
(11).

Fig. 8. Actuation procedure for coupled bistable composite shells away from a primary stable

state.
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Fig. 9. Two different approaches of attaching a biasing strip on a single shell.
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In order to identify each state clearly, we use a binary notation. The original stable state of

the truss is denoted as 0 and the actuated stable state is denoted as 1. Stable state 000 and

111 are two primary stable states since there is no interaction between the connected

trusses. When not all connected trusses are in the same state, the tripled truss structure is in

an intermediate configuration. In an intermediate state, the interaction between two adjacent

trusses within different states may be large enough to trigger one of the trusses to its other

state; in other words, this intermediate state is not stable. To determine the stability of

intermediate states, four actuation steps are applied. Specifically:

(i) step A: actuate from state 000 to state 100;

(ii)step B: actuate from state 100 to state 110;

(iii) step C: actuate from state 110 to state 010;

(iv) step D: actuate from state 100 to state 101.
States 001 and 011 are not investigated as their behaviour maybe inferred due to the
symmetry of the system. In all cases the actuated truss is subjected to displacement control,
and the other two trusses are in a force-controlled regime. The tripled von Mises truss structure
possesses eight stable states if and only if the actuation of the driving truss does not actuate
the other two trusses in every actuation step. Fig. 5 demonstrates the relative displacements of
the trusses of ano‘to-stable truss structure by the four actuation steps. It is clear that, in each
actuation step, the relative displacements of the driven trusses are small then the structure
reaches a new stable state. It indicates that no automatic snapthrough occurs and the
expected stable state can be achieved. The energy graphs of the tripled truss structure (see
Fig. 6) verify the stability of these new states. It is clear that the structure reaches a local
energy minimum at the newstate.The analytical results show the multistability of the tripled von
Mises trusses is determined by the connection between the trusses. If the value ofK_rises, the
interaction between connected trusses will also increase. If K. exceeds a critical value, the

tripled truss systems will not demonstrate eight stable states. Fig. 7 illustrates the relative
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displacements of the trusses of a hepta-stable truss structure by the four actuation steps. In the
actuation step C, the movement of truss 1 results in increasing external strain energy
introduced to truss 2. Before truss 1 is fully actuated, the introduced energy to truss 2 already
exceeds the actuation energy and the truss snaps back to state 0. In other words, the
intermediate state 010 of this structure is no longer a stable state. By actuating truss 1, the
structure will jump through from state 110 to state 000 directly. Thus, this structure only
possesses seven stable states. As K, increases, more intermediate states become switched off
via a similar mechanism.T,avoid the unwanted automatic actuation, the actuationenergy of the
truss needs to be raised. According to the investigation of the multistability of the single truss,
the actuation energy is determined by the relative stiffness of the bar, Ks. By increasing the
value of Ks, the stable state 010 is achievable again and the tripled truss structure regains o‘to
stability successfully. In other words, higher Ks can help the tripled trusses with strong
connection to achieve higher multistability. Although the bias stiffness K, can affect the degree
of asymmetric bistability of a single truss system, the influence of the value of K, on achieving
the o‘tostability of this tripled structure is limited. This is because, despite resulting in a more
stable state 0, the increasing Ky will lead the actuated state 1 to be less stable. Therefore, in
order to ensure the tripled von Mises trusses possesses more stable states, these bistable
trusses should not be highly asymmetrically bistable. In summary, the response of the tripled
bistable trusses shows that its multistability is determined by the relative stiffness of the bias
and coupling springs and the bars. Specifically:
(i) as the value of bias stiffness Ko increases from 0, the single truss changes from being
symmetrically bistable to being asymmetrically bistable. If Ky is over a critical value, the

truss will be monostable;
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Fig. 12. Configurations of two symmetrically bistable shells in an intermediate displacement-
controlled state and their corresponding strain energy: this coupled system is bistable.

(i)  higher coupling stiffness K. will lead to higher actuation energy of the individual truss;
(iii) to avoid the actuation of the driven truss caused by the driving truss, in other words,
to ensure the system achieves o‘tostability, the relative stiffness of the connecting spring Kc
must be lower than a critical value;

(iv) the critical value of K_.is dependent on the value of Ks i.e. the symmetry of bistability
of each individual truss. The critical value of K.can be raised by increasing the relative
stiffness of the rods, Ks

(V) a structure composed of three symmetrically bistable trusses is more likely to
achieve octostability than those composed of asymmetrically bistable trusses.

The understanding gained from the previous part can assist in interpreting the response of
the novel designed surfaces. We restrict the number of bistable units of the multistable
structure to be up to three in this chapter, however, this concept can be easily extended to a
multistable surface consisting of many more bistable shells connected by the same

approach. The mechanical properties are taken from the manufacture’s data sheet and listed
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in Table 1.Whilst restricting the design space, this enables the behavior to be validated by
experimental models. The stacking sequence is [0=90] to ensure that the laminates have a
moderate out-of-plane displacement which would help the connected shells to demonstrate

more stable states and avoiding the generation of
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Fig. 13. Configurations of two asymmetrically bistable shells in an intermediate

displacement-controlled state and their corresponding strain energy: this coupled system is

quadstable.
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Fig. 14. Three connected square shells shown here with biasing strips attached in their
parallel orientation .twisting curvature after curing. For the sake of easy identification, we
continue to use binary notation to represent the states. If a shell curves along the linking
edge direction, the shell is defined as being in state 0; otherwise, it is in state 1.1t is noted
that a Ritz energy analysis is often considered a fast and reliable approach when
investigating the multistable behavior of unsymmetric composite laminates. However, this
approach is not adopted in this chapter due to the large number of terms in the
approximating polynomials required to adequately represent the coupled shells. The
significantly increased calculation time and the presence of many local minima make a Ritz
approach no longer a feasible way of investigating connected bistable composite shells.
Therefore, Finite Element Analysis (FEA) is exclusively used as the simulation method in this
research.Before considering the behaviour of the tripled connected bistable shells, we first
investigate the multistable behaviour of coupled bistable shells. This is because, although
the multistable behavior of the tripled bistable truss structure has been understood, the
nature of the interaction between fully connected shells is significantly more complex than
the one dimension connection which is used in the analog model. For a coupled bistable
shell structure, a maximum of four stable states may be present. Among these four stable
states, the two primary states exist in which both of the shells have the same stable
configuration. Besides two primary stable states, the connected plates may achieve stability
during intermediate states in which the two shells individually present different
configurations. Due to the continuous connection, the two plates will be subject to
considerable deformations which may trigger the surface jump to the primary stable state
during an attempted transition to an intermediate state. Thus, the key to achieving highly
multistable surfaces is the stability of intermediate states.FEA is performed with the

commercial software SAMCEF V13.1.

59



Following a mesh refinement study, a single plate is simulated by 400 8-node square shell

elements. This level of discretisation

(a) Step A

(b) Step B

(¢} Step C

(d} Step D

Fig. 15. Finite element predictions of the stable configurations of three connected bistable
plates and the transitions between these states resulting from actuation. has been shown to
provide mesh independent solutions. Inertial phenomena are neglected in this study; a
geometrically nonlinear static analysis strategy is therefore adopted. The two shells are
connected continuously along a common boundary. The manufacturing process is simulated
first by imposing a ramped temperature increase of 160°C. After manufacturing, the
actuation process is implemented by applying a controlled displacement to the driving shell
until the shell snaps through to another stable state. Meanwhile, the central point and two

free vertices of the driven shell have to be fixed for avoiding rotation (see Fig. 8(a)). The
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deformation will transmit to the driven shell through the common edge. After the actuation,
the fixed vertices are released and if the driven shell does not snap to a new stable
configuration and the driving shell maintains its new shape (see Fig. 8(b)), the intermediate
state is deemed stable and the connected shells determined to have four stable states.
Otherwise, the intermediate state is not stable and the structure will jump to a new primary
stable state (see Fig. 8(c)). In this case the compound surface remains bistable. According
to the analog model, the degree of bistable asymmetry influences the multistable behaviour
of the connected trusses. Considering the corresponding effect for coupled composite shells,
biasing strips made by symmetric {0+0} laminates are attached on the center of bistable
composite shells to vary the asymmetric bistability of the composite shell. To investigate the
influence of attaching biasing strips on the bistability of composite shells, the strips may be
attached parallel or perpendicularly to the linking edges respectively (see Fig. 9). The
influence of biasing strips on the bistable behaviour of a single shell is shown in Fig. 10. As
expected, by attaching the biasing strip, the two stable states no longer exist at the same
potential energy level. The degree of asymmetric bistability of the single shell increases and
the stable state possessing lower potential energy becomes the preferred stable state. It is
also noted that the selection of one of the two possibleor ientations of biasing strip enables
either of the stable states to be made preferential. We consider three cases when the
unbiased shell and the two differently biased shells are connected to an identical partner. To
demonstrate the stability of intermediate states, the surfaces begin from the primary stable
state 00 and are subjected to controlled displacements as the actuation is applied to the two
free vertices of one shell. During the actuation procedure, deformations will transmit to the
driven shell through the linking edges. With the controlled displacement increasing, the
driving shell will snap through to the new stable state at a critical point, and the strain energy
of the driven shell will rise during this actuation procedure. If a compound surface has stable

intermediate states, the driven shell will not snap through with the driving shell and the strain
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energy of the whole structure will reach a local minimum. It should be noted, due to
symmetry, that only one intermediate state is investigated in this study.Fig. 11 presents the
potential energy graph of three different coupled bistable shells during the actuation from the
primary stable state 00 to the primary stable state 11. Since some nodes on the surface
need to be temporarily fixed during the actuation to avoid unwanted rotations and buckling,
the potential energy curves show some asymmetries, but the local minima in each case are
clearly visible. The coupled symmetrically bistable shells and the coupled bistable shells with
perpendicular biasing strips only demonstrate two potential energy minima which represent
two primary stable states, whereas the coupled bistable shells with parallel biasing strips
demonstrate three local energy minima. Besides the two primary stable states, this surface
can achieve two stable intermediate states and possesses quadstability. By tailoring the
asymmetric bistability, coupled bistable composite shells can successfully achieve a higher
degree of multistability. This behaviour may be explained by consideration of the strain
energy of the individual bistable units in the coupled system. Fig. 12 corresponds to the case
when the two connected bistable plates are symmetrically bistable. The right hand shell has
been transitioned via displacement control into state 1 and the left hand shell has deformed
to accommodate this transition. It can be seen that the deformation imparted to the driven
shell introduces sufficient strain energy to cause it to exit the energy well corresponding to
state 0 and upon release will dynamically jump to state 1. Therefore the only stable
equilibrium configuration are states 00 and 11 and it can be seen that there are no stable
intermediate configurations. This coupled system is therefore bistable. We now consider the
effect of causing state 1 to become energetically preferential by means of the addition of
parallel biasing strips. As the degree of bistable asymmetry increases a critical point is
reached at which the displacement controlled transition of one shell from state 0 to state 1
causes the other shell to reach the limit point corresponding to the peak of the energy hill. As

the bistable asymmetry is further increased, as shown in Fig. 13, the driven shell no longer
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exits the energy well of state 0 and consequently when displacement control is released the

coupled system
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ig. 16. Configurations of three asymmetrically bistable shells in the intermediate
displacement-controlled state 010 and their corresponding strain energy: indicates state 010

is stable.

60 : | | |

5U_mmmmmm“mmémmwmm_wmmm?mmmmm“mm.mij{mm_wmm_ﬁmmmmmwmmm_

-
5

Strain energy, 10 7]

£
=
|

tad
=
|

-2
=
|

ﬂ{] 20 40 60 30 100

Relative actuation, %

63



Fig. 17. Configurations of three asymmetrically bistable shells in the intermediate
displacement-controlled state 101 and their corresponding strain energy: indicates state 101
is unstable. may adopt a stable intermediate state in which both shells adopt a configuration
corresponding to the average strain energy of the two displacement-controlled
configurations. This coupled system is therefore quadstable. Having understood the
multistable behaviour of two connected bistable shells, we now generalise to a multistable
surface composed of a series of coupled bistable composite shells. We focus on three
connected square bistable shells (see Fig. 14) but the evaluated behaviour is readily
extended to surfaces consisting of many more shells connected in series. Theoretically, a
surface composed of three bistable shells may present a maximum of eight stable states.
Based on the study of the coupled bistable shells in the previous part, all these shells are
made asymmetrically bistable via a biasing strip parallel attached to the linking edges in
order to obtain more stable states. In addition to the two primary stable states 000 and 111,
this surface has up to a six intermediate stable states. Four actuation steps are applied to
verify the stability of these intermediate states, specifically:

(vi) step A: actuate from state 000 to state 100.

(vii)  step B: actuate from state 100 to state 110.

(viii)  step C: actuate from state 110 to state 010.

(ix) step D: actuate from state 100 to state 101.

In each actuation step, a controlled displacement is only applied to the driving shell as the
actuation load and the other two driven shells are unconstrained. If and only if no driven shell
is actuated automatically, the intermediate state obtained is deemed to be stable. Fig. 15
illustrates the configuration transitions in these steps. Due to symmetry, the shapes of state
001 and state 011 are not illustrated. The existence of intermediate stable states in two
connected asymmetric bistable shells with parallel biasing strips has clearly been

demonstrated. The existence of stable intermediate state 100 and 110 of tripled bistable
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shells may be directly inferred as it involves connecting an identical shell to one of the free
edges of coupled bistable shells. Since the newly connected shell is in the same stable state
as its adjacent shell, no additional strain energy is introduced. The FE results prove this
assumption: the two intermediate states are stable. The two remaining possible states that
must be considered are states 010 and 101. In both these cases the central shell is
connected to two other shells which are in a different state. Fig. 16 shows the case when the
compound surface is in state 010. In this case the energy imparted to the two end shells is
insufficient to cause them to exit the energy well corresponding to state 0. Consequently
when displacement control is removed the system will adopt the stable equilibrium
configuration 010.The case where the surface is in state 101 is shown in Fig. 17. As a result
sufficient energy is imparted to the central shell to exit the energy well corresponding to state
0. When the displacement control is removed the system will dynamically jump to state 111
and consequently state 101 does not correspond to a stable equilibrium configuration. We
now consider the reason behind the instability of state 101 ingreater detail. It can be
observed, with reference to Figs. 12 and 13 that when a shell in state 0 is connected to a
shell in state 1, on release from displacement control a much greater proportion of the strain
energy is transferred to the shell with the initially-curved common edge (state 0). This means
that in state 101 a large proportion of the strain energy is transferred to the middle shell
which is always sufficient to trigger snapthrough. The resistance of the middle shell to
snapthrough may be increased through the imposition of asymmetric bistability, however, the
second stable state is always annihilated before the dynamic snapthrough is overcome.

Section (2.2):Experimental Investigation and Conclusions

An experimental investigation is carried out to verify the above conclusions. Both composite
shells with and without biasing strips are fabricated. To ensure the shells have continuous,

robust and smooth connections, the compound shells are fabricated directly as a whole
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rectangular shell. Because this research investigates only the number of stable
configurations of composite shells, the comparison between the numerical results and the
experimental results focuses on the qualitative bistability behaviour. Differences in geometry
are the result of manufacturing imperfections and thickness variations.

Fig. 18 Iillustrates the experimental results of the stable configurations of compound
composite surface. The physical composite surface shows the same number of stable states
as expected. The tripled composite shells with parallel strips shows seven stable

configurations in total. A highly multistable surface fabricated

(a) State 000

(b) State 111

(c) State 001 (also 100)

« .

(d) State 011 (also 110)

| ot e
fe 4
(e) State 010
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Fig. 18. The maximum seven stable configurations of tripled bistable shells and the
corresponding FEA results.

without conventional fixation and presenting smooth curvature changes has been
successfully demonstrated.Composite surfaces possessing highly stability show high
potential for use in adaptive applications. In this chapter, inspired by an analog model
composed by three bistable von Mises truss systems, surfaces consisting of series
connected bistable composite shells are presented. Since the asymmetric bistability of
bistable elements is proved to determine the multistability of the whole analog model, the
asymmetric bistability of individual shell is tailored by attaching a biasing strip. For coupled
bistable composite shells, a quadstable surface is achieved as expected. The multistable
surface design is also extended to tripled bistable composite shells which is the basic case
of series connected bistable composite shells. By attaching biasing strips parallel to the
linking edges, the composite surface demonstrates a higher degree of multistability,
specifically seven discrete stable configurations. The investigation into the multistable
behaviour of tripled bistable composite shells can be developed to design longer composite
surfaces composed of more bistable units. The primary conclusions of this chapter are:
(x) the tripled biased von Mises truss systems can demonstrate a maximum of eight
stable states by varying the degree of asymmetric bistability of the individual units;
(xi) coupled bistable composite shells are demonstrated to possess bistable or
quadstable behaviour by tailoring the bistable asymmetry of the individual shell;
(xii)  three series-connected bistable composite shells with parallel biasing strips may
achieve a composite surface possessing seven discrete stable configurations. The
theoretically-possible eighth stable state is shown not to exist for square shells.Continuing
work will build on the understanding gained in this research to design and construct surfaces
where the individual bistable units are connected to form fully three-dimensional adaptive

multistable surfaces.
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When a vertical displacement d is applied to a single biased von Mises truss of the type
shown in Fig. 1, the corresponding vertical load P applied at the apex in conditions of static

equilibrium is given by.

P — Kpo — 2K (L.;. — B+ (h - af) sin 0, (5)

in which 6 is the angle between a hinge and the horizontal direction;
Kb is the biasing spring stiffness; Ks is the axial stiffness of the rod; Lo is the initial length of
the rod; | is the half of span width of the truss; and h is the initial height of the truss. The

rotation angle 0 is evaluated according to

0 — arctan (h ; (j) (6)

The stored strain energy U in the von Mises truss resulting from

the imparted displacement is given by

U %Pf:s %(fq,a — 2K, (LD - \;’F +(h— af) sin u) 5 (7)

The strain energy is a uniquely determined function of the vertical displacement § as the
system is energetically conservative. The valuesof K, and Ks determine the relationship
between the strain energy U and the vertical displacement §.When three identical von Mises
trusses are connected by couplingsprings K¢, the loads applied to each truss system from

the connecting spring are given by

P1 Kf[{jg — {51 )
Py = Kc(01 — 02) + Kc(03 — 02): 8)
Ps = Kc(02 — 03).

Application of Eq. (4) shows that the equilibrium paths followed

by each truss are also equal to

P; = Kpo; — 2 (LU — V'fllz + (h — (‘5;"]2) SIn 0;, 1—1.2.3, 9)
where the angles between a hinge and the horizontal direction h are
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0; — arctan (h_[{}f). i—1.2.3 (10)

Combining these equations, it may be seen that the force-controlled displacement of the two
driven trusses may be expressed as a function of the imposed displacement d on the driving

truss. Thus the stored strain energy of the complete system is given by

3
|
U Ejpff}f_ (11)
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Chapter (3)

A Spectral Theory of Linear Operators on Rigged Hilbert Spaces under Analyticity

Conditions

It is shown that there exists a dense subspace X of H such that the resolvent(A — T) 1¢ of
the operator T has an analytic continuation from the lower half plane to the upper half plane
as an X' valued holomorphic function for any ¢ €X, even when T has a continuous spectrum
on R, where X'is a dual space of X. The rigged Hilbert space consists of three spaces
XcHc X' .Ageneralized Eigen values and a generalized eigenfunction in X’ are defined by
using the analytic continuation of the resolvent as an operator from X into X'. Other basic
tools of the usual spectral theory, such as a spectrum, resolvent, Riesz projection and semi
group are also studied in terms of a rigged Hilbert space. They prove to have the same
properties as those of the usual spectral theory. The results are applied to estimate
asymptotic behavior of solutions of evolution equations.

Section (3.1):Spectral Theory on a Hilbert Space and Gelfand Triplet

A spectral theory of linear operators on topological vector spaces is one of the central issues
in functional analysis. Spectra of linear operators provide us with much information about the
operators. However, there are phenomena that are not explained by spectra. Consider a
linear evolution equation % = Txdefined by some linear operator 7. It is known that if the
spectrum of 7is included in the left half plane, any solutions x(decay to zero as t — oo with
an exponential rate, while if there is a point of the spectrum on the right half plane, there are
solutions that diverge as t — o« On the other hand, if the spectrum set is included in the
imaginary axis, the asymptotic behavior of solutions is far from trivial; for a finite dimensional
problem, a solution x()is a polynomial in f however, for an infinite dimensional case, a
solution can decay exponentially even if the spectrum does not lie on the left half plane. In

this sense, the spectrum set does not determine the asymptotic behavior of solutions. Such
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an exponential decay of a solution is known as Landau damping in plasma physics , and is
often observed for Schrodinger operators. Now it is known that such an exponential decay
can be induced by resonance poles or generalized Eigen values s.Eigen values s of a linear
operator 7are singularities of the resolvent(A — T)-1. Resonance poles are obtained as
singularities of a continuation of the resolvent in some sense. In the literature, resonance
poles are defined in several ways: Let 7be a selfadjoint operator (for simplicity) on a Hilbert
space H with the inner product (:,-). Suppose that 7has the continuous spectrum o.(7) on
the real axis. For Schrodinger operators, spectral deformation (complex distortion) technique
is often employed to define resonance poles. Agiven operator 7is deformed by some
transformation so that the continuous spectrumao,( 7)moves to the upper (or lower) half plane.
Then, resonance poles are defined as Eigen values s of the deformed operator. One of the
advantages of the method is that studies of resonance poles are reduced to the usual
spectral theory of the deformed operator on a Hilbert space. Another way to define
resonance poles is to use analytic continuations of matrix elements of the resolvent. By the
definition of the spectrum, the resolvent (A —7)-'diverges in norm when A € a.(7). However,
the matrix element (A -7) 1@, @)for some “good” function ¢ € Hmay exist for A o.(7), and
the function f(1) = (A —T) 1g,¢)may have an analytic continuation from the lower half
plane to the upper half plane through an interval on o.(7). Then, the analytic continuation
may have poles on the upper half plane, which is called a resonance pole or a generalized
Eigen values . In the study of reaction diffusion equations, the Evans function is often used,
whose zeros give Eigen values s of a given differential operator. Resonance poles can be
defined as zeros of an analytic continuation of the Evans function for other definitions of
resonance poles.

Although these methods work well for some special classes of Schrodinger operators, an
abstract spectral theory of resonance poles has not been developed well. In particular, a

precise definition of an Eigen function associated with a resonance pole is not obviousin
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general. Clearly a pole of a matrix element or the Evans function does not provide an Eigen
function. In Chiba , a definition of the eigenfunction associated with a resonance pole is
suggested for a certain operator obtained from the Kuramotomodel. It is shown that the
Eigen function is a distribution, not a usual function. This suggests that an abstract theory of
topological vector spaces should be employed for the study of a resonance pole and its
Eigen function of an abstract linear operator. Our approach based on rigged Hilbert spaces
allows one to develop a spectral theory of resonance poles in a parallel way to “standard
course of functional analysis”. To explain our idea based on rigged Hilbert spaces, let us
consider the multiplication operator M :p(w) -w,(w)on the Lebesgue space L2(R). The

resolvent is given as

(A= M)7007) = [ oo,

A—w
R

Where QU":W, which is employed to avoid the complex conjugate of ¢[w)in the right hand
side. This function of A is holomorphic on the lower half plane, and it does not exist for A €R;
the continuous spectrum of M is the whole real axis. However, if ¢ and  have analytic
continuations near the real axis, the right hand side has an analytic continuation from the

lower half plane to the upper half plane, which is given by

/ L p(w)w(w)dw + 2mid(N) (),

A—w
R

where i =+/—1. Let X' be a dense subspace of L2(R)consisting of functions having analytic
continuations near the real axis. A mapping, which maps ¢  X'to the above value, defines a
continuous linear functional on X, that is, an element of the dual space X, if Xis equipped
with a suitable topology. Motivated by this idea, we define the linear operator A(1) : X - X'to
be

Ja 7 (Ww)pw)dw + 2mith(A)p(A)  (Im(A) > 0),
(AN ‘ ¢y =< limy o [ ﬁw(w)(b(w)dw (z=X€eR), (1)
IS ﬁw(w]qﬁ(a}]dw (Im(A) < 0),
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for Y, € X, where (- | -)is a paring for (X’, X). When Im(A) <0, A(A) =(A -M)~1, while when
Im(A) 20, A(A)wis not included in L2(R)but an element of X'. In this sense, A(1) is called the
analytic continuation of the resolvent of Min the generalized sense. In this manner, the triplet
Xcl[2(R) cX’, which is called the rigged Hilbert space or the Gelfandtriplet ,in introduced.In
this chapter, a spectral theory on a rigged Hilbert space is proposed for an operator of the
form T = H+ K, where H is a selfadjoint operator on a Hilbert space H, whose spectral
measure has an analytic continuation near the real axis, when the domain is restricted to
some dense subspace Xof H, as above. K is an operator densely defined on Xsatisfying
certain boundedness conditions. Our purpose is to investigate spectral properties of the
operator T = H + K. At first, the analytic continuation A(A)of the resolvent(1 — H)lis defined
as an operator from XintoX'in the same way as Eq.(1). In general, A(A) : X-X'is defined on a
nontrivial Riemann surface of Aso that when Alies on the original complex plane, it coincides

with the usual resolvent (A —H)-1. The usual eigeequation (A —7)v=0 is rewritten as
(A—H)o (id—(A—H) 'K)v=0.

By neglecting the first factor and replacing (A —-A)~1 by its analytic continuation A(A), we

arrive at the following definition: If the equation
(id — ANK*)u=0 (2)

has a nonzero solution i in X', such a A is called a generalized Eigen values (resonance
pole) and w is called a generalized Eigen function, where K*: X' -X'is a dual operator of K.
When Alies on the original complex plane, the above equation is reduced to the usual
eigenequation. In this manner, resonance poles and corresponding Eigen functions are
naturally obtained without using spectral deformation technique or poles of matrix

elements.Similarly, the resolvent in the usual sense is given by

A=T) L =0\—H) o (id— K\—H) )",

an analytic continuation of the resolvent of 7in the generalized sense is defined to be
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Ra= AN o (id — K*AN)) X = X' (3)
When 1 lies on the original complex plane, this is reduced to the usual resolvent (A -7).
With the aid of the generalized resolventR;, basic concepts in the usual spectral theory, such
as eigenspaces, algebraic multiplicities, point, continuous, residual spectra, Riesz
projections are extended to those defined on a rigged Hilbert space. It is shown that they
have the same properties as the usual theory. For example, the generalized Riesz projection
[h for an isolated resonance pole Ao is defined by the contour integral of the generalized

resolvent.

1
ﬂgz—_/RAdA:X%X!. @
2mi
')‘

Properties of the generalized Riesz projection /b areinvestigated in detail. Note that in the
most literature, the eigenspace associated with a resonance pole is defined to be the range
of the Riesz projection. In this chapter, the eigenspace of a resonance pole is defined as the
set of solutions of the Eigen equation, and it is proved that it coincides with the range of the
Riesz projection as the standard functional analysis. Any function ¢ € Xproves to be
uniquely decomposed as @ =i+ip, where tnelbXand e=(id-Ihb)X, both of which are
elements of X'. These results play an important role when applying the theory to dynamical
systems. The generalized Riesz projection around a resonance pole 1, on the left half plane
defines a stable subspace in the generalized sense, both of which are subspaces of X'.
Then, the standard idea of the dynamical systems theory may be applied to investigate the
asymptotic behavior and bifurcations of an infinite dimensional dynamical system. Such a
dynamics induced by a resonance pole is not captured by the usual eigenvalues s. Many
properties of the generalized spectrum will be shown. In general, the generalized spectrum
consists of the generalized point spectrum , the generalized continuous spectrum and the
generalized residual spectrum If the operator K satisfies a certain compactness condition,

the RieszSchauder theory on a rigged Hilbert space applies to conclude that the generalized
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spectrum consists only of a countable number of resonance poles having finite multiplicities.
It is remarkable that even if the operator 7 has the continuous spectrum , the generalized
spectrum consists only of a countable number of resonance poles when K satisfies the
compactness condition. Since the topology on the dual space X'is weaker than that on the
Hilbert space H, the continuous spectrum of 7 disappears, while eigenvalues s remain to
exist as the generalized spectrum. This fact is useful to estimate embedded eigenvalues s.
eigenvalues s embedded in the continuous spectrum is no longer embedded in our spectral
theory. Thus, the Riesz projection is applicable to obtain eigenspaces of them .Although
resonance poles have been well studied for Schrodinger operators, a spectral theory in this
chapter is motivated by establishing bifurcation theory of infinite dimensional dynamical
systems, for which spectral deformation technique is not applied. In Chiba, a bifurcation
structure of an infinite dimensional coupled oscillators (Kuramotomodel) is investigated by
means of rigged Hilbert spaces. It is shown that when a resonance pole of a certain linear
operator, which is obtained by the linearization of the system around a steady state, gets
across the imaginary axis as a parameter of the system varies, then a bifurcation
occurs.This part is devoted to a review of the spectral theory of a perturbed selfadjoint
operator on a Hilbert space to compare the spectral theory. Let H be a Hilbert space over C.

The inner product is defined so that

(ap, ) = (p,a) = a(p,P), (6)

whereais the complex conjugate of a € C. Let us consider an operator T = H 4+ Kdefined on
a dense subspace of H, where His a selfadjoint operator, and K'is a compact operator on H
which need not be selfadjoint. Let A and v=v4 be an Eigen values and an Eigen function,

respectively, of the operator 7 defined by the equation A, = H,, + K,,. This is rearranged as

(A — H)(id — (A — H)K, = 0,
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Where /d denotes the identity on H. In particular, when A is not an Eigen values of H, itis an
Eigen values of 7 if and only if /d«A -AH~'K is not injective in H. Since the essential
spectrum is stable under compact perturbations, the essential spectrum o.(7) of 7 is the
same as that of A, which lies on the real axis. Since K'is a compact perturbation, the Riesz—
Schauder theory shows that the spectrum outside the real axis consists of the discrete
spectrum; for any § > 0, the number of Eigen values s satisfying |Im(4)| = § is finite, and
their algebraic multiplicities are finite. Eigen values s may accumulate only on the real axis.
To find Eigen values s embedded in the essential spectrum oe( 7)is a difficult and important
problem. In this chapter, a new spectral theory on rigged Hilbert spaces will be developed to
obtain such embedded Eigen values s and corresponding eigenspaces. Let R;=(A -7)~1 be
the resolvent. Let A;be an Eigen values of 7 outside the real axis, and y;be a simple closed
curve enclosing separated from the rest of the spectrum. The projection to the generalized
eigenspace V;=U, 21Ker(4; —7)" is given by

1
i

Let us consider the semigroupei’ generated by iT. Since iHgenerates the C° semigroup &
and Kis compact, i;. also generates the C°semigroup It is known that &74s obtained by the

Laplace inversion formula (Hille and Phillips).

T—iy
. 1 .
el = — lim NN =T)Lpd, (8)

211l x—00
—zr—iy

fort > 0and ¢ € D(T), where y > 0is chosen so that all Eigen values s Aof 7 satisfy
Im(1) > —y, and the limit x — oo exists with respect to the topology of H. Thus the contour is
the horizontal line on the lower half plane. Let € > 0 be a small number and A,, ..., AyEigen

values s of 7satisfying Im(4;) < —¢,j =0,...,N. The residue theorem provides

2w

N

. 1 . 1 .

irt , izttety,, . -1 . it . -1

et = P /e (x—ie—=T) "¢pdz + P E /e (A=T)
R 7=04
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wherey;is a sufficiently small closed curve enclosing 4;. Let M; be the smallest integer such
that (4; — T)Mfl'[j = 0. This is less thanor equal to the algebraic multiplicity of 4;. Then, e'Tt is

calculated as

M;—1

. 1 1ti”

81Tt¢:27ri/ JIt-{—Et( T) 1¢d$—|—§ : iAst E : ) ()\ —T)kﬂj¢
R

The sectionond term above diverges as t — cobecause Re(i4;) = ¢. On the other hand, if

there are no Eigen values s on the lower half plane, we obtain

1 :
— /6mt+€t(£€ —ie — T) 1odz,

27
R

1th5

for any small € > 0. In such a case, the asymptotic behavior of €7¢is quite nontrivial. One of
the purposes in this chapter is to give a further decomposition of the first term above under
certain analyticity conditions to determine the dynamics of €7 In the previous part, we give
the review of the spectral theory of the operator T = H + Kon H. In this part, the notion of
spectra, Eigen functions, resolvents and projections are extended by means of a rigged
Hilbert space. It will be shown that they have similar properties to those on H. They are used
to estimate the asymptotic behavior of the semigroup €7 and to find embedded Eigen values
s.Let X'be a locally convex Hausdorff topological vector space over C and X'its dual space.
X’is a set of continuous anti linear functional on X. For u € X'and ¢ € X, u(¢p)is denoted by

(u|p).Forany a,b € C,p, ¥ € Xand u, & € X'the equalities

(ulap + by = au| @)+ b{u|p), 9)
(au + b | @) = alu| @)+ b(&| @), (10)

hold. In this chapter, an element of X'is called a generalized function . Several topologies
can be defined on the dual space X'. Two of the most usual topologies are the weak dual
topology (weak #opology) and the strong dual topology (strong = topology). A sequence
{u;} cX'is said to be weakly convergent to u € Xif (u;|lp) — (u|p)or each ¢ €X; a
sequence {u;} c X'is said to be strongly convergent to y eX'if (u;|@) — (u [@)uniformly on

any bounded subset of X.Let H be a Hilbert space with the inner product (-, -) such that Xis a
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dense subspace of H. Since a Hilbert space is isomorphic to its dual space, we obtain H c
X'through H # H'.
Definition (3.1.1)[3]: If a locally convex Hausdorff topological vector space Xis a dense sub-
space of a Hilbert space Hand a topology of X'is stronger than that of ~, the triplet

X c HcX'(11)
is called the rigged Hilbert spaceor the Gelfand triplet. The canonical inclusion i X-X'is

defined as follows:for ¥ € X, we denote {y¥)by | ¢|, which is defined to be

(W)= Wle)= W), (12)

for any ¢ € X (note that we also use i =+/—1). The inclusion from Hinto X'is also defined
as above. It is easy to show that the canonical inclusion is injective if and only if X'is a dense
subspace of H, and the canonical inclusion is continuous if and only if a topology of X'is
stronger than that of H.A topological vector space X'is called Mantel if it is barreled and
every bounded set of Xis relatively compact. A Mantel space has a convenient property that
on a bounded set A of a dual space of a Mantel space, the weak dual topology coincides
with the strong dual topology. In particular, a weakly convergent series in a dual of a Mantel
space also converges with respect to the strong dual topology. Furthermore, a linear map
from a topological vector space to a Mantel space is a compact operator if and only if it is a
bounded operator. It is known that the theory of rigged Hilbert spaces works best when the

space Xis a Mantel or a nuclear space .

(gz

Fig.1.Adomainonwhich E[y, ¢](w)is holomorphic
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and Komatsu for sufficient conditions for a topological vector space to be a Mantel space or
a nuclear space. Let H be a Hilbert space over C and H a selfadjoint operator densely
defined on H with the spectral measure {E(B)}B € B; that is, H is expressed as H =
fR wdE (w). Let K be some linear operator densely defined on AH. Our purpose is to
investigate spectral properties of the operator T = H + K. Let 2 c C be a simply connected
open domain in the upper half plane such that the interpart of the real axis and the closure of
(Js a connected interval I.Let I = I\0I be an open interval (see Fig.1). Fora given T = H +
K, we suppose that there exists a locally convex Hausdorff vector space X(2) over C
satisfying the following conditions.

(X)) X(Q) is a dense subspace of H.

(X,) A topology on X(() is stronger than that on H.

(X3) X(Q)is a quasi-complete barreled space.

(X4) For any @ € X(2), the spectral measure (E(B)@, @)is absolutely continuous on the
interval /. Its density function, denoted by A ¢, ¢|(w), has an analytic continuation to 2 U I.
(XsX5) For each A €lu, the bilinear form E[-,-](4) : X(2) X X(2) — Cis separately
continuous (i.e.E[-, @](1) : X(2) -»C and E[p, ](1): X(2) — Care continuous for fixed ¢ €
X(2)).

Because of (Xi) and (X2), the rigged Hilbert space X(2) c H c X(R)'is well defined,
whereX(2)'is a space of continuous anttlinear functional and the canonical inclusion / is
defined by Eq.(12). Sometimes we denote () by  for simplicity by identifying if X (£2) with
X(Q). The assumption (X3) is used to define Pettis integrals and Taylor expansions of
X(2)'valued holomorphic functions in Part3.5(refer to Treves for basic terminology of
topological vector spaces such as quasi-complete and barreled space. In this chapter, to
understand precise definitions of them is not so important; it is sufficient to know that an
integral and holomorphy of X(2)'valued functions are well defined if X(Q)is quasi-complete

barreled. For example, Mantel spaces, Fréchet spaces, Banach spaces and Hilbert spaces
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are barreled. Due to the assumption (X4) with the aid of the polarization identity, we can
show that (E(B)@,y)is absolutelycontinuous on / for any ¢,y € X(2).Let E[p,Y](w)be the

density function;

d(E(w)gb, 7,[;) = F|¢,¥](w)dw, w € l. (13)

Then, e, y](w)is holomorphic in w € I U 2. We will use the above notation for any w €
R for simplicity, although the absolute continuity is assumed only on / Since E[¢,y](w)is
absolutely continuous on /, Ais assumed not to have eigenvalues s on/ (Xs) is used to prove
the continuity of a certain operator .

Let A be a linear operator densely defined on X(2). Then, the dual operator A’is defined as
follows: the domain D(A)" is the set of elements u € X(2)'such that the mapping ¢ -
(u |Ag@)from D(A) c X(2)into Cis continuous. Then, A: D(A") - X(2)'is defined by

(A'p| o)y ={(u|Ag), ¢eD(A), peD(A). (14)

If Ais continuous on X(2), then A’is continuous on X (2)for both of the weak dual topology
and the strong dual topology. The (Hilbert) adjoint A*of A is defined through (Ap,y) =
(p, A*P)as usual when A is densely defined on H.
Lemma (3.1.2)[3]:Let Abe a linear operator densely defined on H. Suppose that there exists
a dense subspace Y of X(Q)such thA*at' Y c X(2)so that the dual (A*)'is defined. Then,
((A")'is an extension of Aandio A= (A=) oi D(A). In particular, D((A *)")2D(A).
Proof: By the definition of the canonical inclusion /, we have

i(A))($) = (A, ) = (¥, A%¢) = (v | A*p) = ((A") "¢ | 4), (15)
for any ¥ € D(A) and ¢ €Y.
In what follows, we denote (4*)'by A*. Thus Eq.(15)means io A = A X oip(,y. Note that
A*=A’when A is self-adjoint. For the operators A and K, we suppose that
(Xg) there exists a dense subspace Y of X(2) such that HY c X(02).
(X-) Kis Hbounded and K*Y c X(12).
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(Xg) K*XAD)iX(2) ciX(Q)forany A € {Im(1) <0} UTUN.
The operator A(1):iX(2) - X(2)'will be defined later. Recall that when K is AH-bounded
,D(7) =D(H)and K(12 — H) lis bounded on H for 1 & R. In some sense, (Xg) is a “dual
version” of this condition because A(A)proves to be an extension of (1 — H)™1. In particular,
we will show that K*A(A)=/ (K(A — H)"when Im(1) < 0. Our purpose is to investigate the
operatorT = H + Kwith these conditions. Due to (X;) and (X,), the dual operator T*of
T*=H+K"is well defined. It follows that D(T*)=D(H*) nD(K*)and

D(T™) > iD(T) =iD(H) D iY.
In particular, the domain of 7> is dense in X(2)".To define the operator A(A), we need the
next lemma.
Lemma (3.1.3)[3]: Suppose that a function g(w)is integral on R and holomorphic on QUI.

Then, the function

Ja oq(w)dw (Im(\) < 0),
q”{g;%w¢m+%mn (A e ), (16)

/s holomorphic on{A | Im(41) <0} UR UI.

Proof: Putting A = x + iy with x, y € Ryields

/ / w)ngJ )dwif[(mw%’g+y2q(w)dw,

Due to the formula of the Poisson kernel, the equalities

y]—irn-h} mq(w)dw = mq(z), llm /mq( Jdw = —mq(x),

R

hold when g is continuous at x € I Thus we obtain

lim / ﬁq(w)dw — lim ( / ﬁq(w}d&u%—?wiq(h)) — 7V (z) + mig(a),

y——0 y—+0
R R

where

V(z) := lim — /(m gq(w)dq)

y—0 T
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is the Hilbert transform of ¢. It is known that /x) is Lipschitz continuous on /if g(x) is
Therefore, two holomorphic functions in Eq.(16)coincide with one another on /and they are
continuous on / This proves that CXA) is holomorphic on {1 |Im(1) <0} UQ UI.Put u, =
(A —H) 1yfor Y € H. In general, uyis not included in A when 1 € Ibecause of the
continuous spectrum of H. Thus u;does not have an analytic continuationfrom the lower half
plane to Q with respect to Aas an AH-valued function. To define an analytic continuation of u;,
we regard it as a generalized function in X(2)’ by the canonical inclusion. Then, the action of

i((A — H)~y)is given by

(0= )90 = (O~ B 0) = [ 55 BW e, Im(3) <0,

R

Because of the assumption (X4), this quantity has an analytic continuation to 2 U Ias

/—E b, B (w)dw + 2mE[, ¢|(N), A€ £Q.

Motivated by this observation, define the operator A(1) : iX(2) - X(2)'to be

Jr G B, dl(w)dw + 2miE[Y, 6)(A) (A € 02),
(AN | @) =< limy, o [§ ﬁE[d)j ¢](w)dw A=z el), (17)
Jo o Bl 8l (w)dw (Im(A) <0),

forany Y € iX(2),9 € X(2). Indeed, we can prove by using (Xs) that A(1)yis a continuous
functional, (A(1)Y|p)is holomorphic on {Im(1) <0} uRUI. When Im(1) <0, we have
(AMDY|e) = (A —H) 1y, 9). In this sense, the oper-ator A(A) is called the analytic
continuation of the resolvent(2 — H) 'as a generalized function. By using it, we extend the
notion of eigenvalues andeigenfunctions. Recall that the equation for eigenfunctions of 7is
given by (id — (A — H)™'K), = 0. Since the analytic continuation of (1 — H) lin X(2)'is
A(A), we make the following definition.

Definition (3.1.4)[3]: Let R(A(1))be the range of A(4). If the equation

(id — AN)K )i =0 )

82



has a nonzero solution pin R(A(A))for some A € QUIU{A|Im(1) <0},1is called a
generalized eigen value of T and y is called a generalized eigenfunction associated with A.
A generalized eigenvalue on Qs called a resonance pole. Note that the assumption (X8) is
used to define A(A)K*ufor u € R(A(1)) because the domain of A(A)is iX(Q2). Applied by K*,

is rewritten as
(id — K*AN)) K> = 0. (19

If K*~0, Eq.(18)shows r =0. This means that if u + 0 is a generalized eigenfunc-tion,
Ku#0 and id-K*A(A) is not injective on iX(R). Conversely, if id—-K>*A(A) is not injective on
iX(N), there is a function ¢ € iX(Q)such that (/d-K*A(A))p =0. Applying A(A)from the left, we
see that A(A)@ is a generalized Eigen function. Hence, A is a generalized Eigen value if and
only if /d-K*A(A)is not injective on iX ().

Theorem (3.1.5)[3]:Lef A be a generalized Eigen value of T and ua generalized eigenfunction

associated with A. Then the equality
X
T = A (20)

holds.
Proof. At first, let us show D(4 — H*) > R(A(4)). By the operational calculus, we have
E[Y,(1—Hel(w) = (1 —w)E[Y,p](w). Whend € Q, this gives

For

1
A—w

E[, (A — H)p| (w)dw + 2miE [, (X — H)$|(N)
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Fory € X(Q) and @ €Y. It is obvious that (y|@)is continuous in gwith respect to the topology of
X(2). This proves that D(A — H*) D R(A(A))and (A — H¥)A(A) =id:iX(2) - iX(2). When u
is a generalized Eigen function, u € D(1 — H*)because u = A(A)K*u. Then, Eq.(18)provides

(A= HX)(id — ANK)p=A—H* =KX p=A=T")u=0.

The proofs for the cases 1 € Iand Im(A1) < 0 are done in the same way.This theorem means
that A is indeed an Eigen value of the dual operator 7*. In general, the set of generalized
Eigen values is a proper subset of the set of Eigen values of 7*. Since the dual space X(2)’
is “too large”, typically every point on (s an Eigen value of 7. In this sense, generalized
eigenvalues are wider concept than Eigen values of 7, while narrower concept than
eigenvalues of 7* In the literature, resonance poles are defined as poles of an analytic
continuation of a matrix element of the resolvent. Our definition is based on a straightforward
extension of the usual Eigen equation and it is suitable for systematic studies of resonance
poles. Before defining a multiplicity of a generalized Eigen value, it is convenient to
investigate properties of the operator A(1). Forn =1,2,...let us define the linear operator

A : iX(Q) - X(2)'to be

(Jr e Bl $lw)dw + 2mi C T £ |\ B [, ¢](2)
(A e n),
limy_, o [g me, dlw)dw, (A==ze€l), (21)
LR WE[@D, dl(w)dw, (Im(X) < 0).

(A (N | ¢) =<

It is easy to show by integration by parts that (A0 (1)y|e)is an analytic continuation of
(A — H) 'y, p)from the lower half plane to 2.4 (1)is also denoted by A(1) as before.
The next proposition will be often used to calculate the generalized resolvent and
projections.

Proposition(3.1.6)[3]: For any integersj > n = 0,the operator A(j)(A) satisfies

i) (A= H)mAD(A) = AU=)(X), where AQ()) := id.

(i) ADNA - HPlix@rpao mya-mxym) = A5 Wix@ndat aypeixm)-
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In particular, A(A)(A— H*)p = p when (A — H*)u € i X({2).

(ii)) Z5 (AN | ¢) = (—1)37ACHD N | ¢), §=0,1,....
(iv) For each v € X(§2), A(A) is expanded as

AN = i(/‘lo =) ATED o)y, (22)
=0

where the right hand side converges with respect to the strong dual topology.

Proof: (i) Let us show (1 — H*)AU) (1) = AU~D(1). We have to prove that D(A — H¥) o
R(ADO (D). For this purpose, put u(y) = AD)Y|(A—H)yfor Y € X(Q)and yeY. It is
sufficient to show that the mapping y — u;(y)from Yinto C is continuous with respect to the

topology on X(2). Suppose that Im(A) > 0. By the operational calculus, we obtain

pa(y) = f o _1w)j Ely, (A~ H)y(w)dw + 2mi ((; 1_)31_)! ;;—_1

R

AEH), (A — H)yl(2)

r=

A—w (=1)it @i
= f ()\ _ w)j E[¢>y](w)dw+ 2mi (,? _ 1)[ dzi—1
R

|- 2B ()

» (—1)i-2 @i-?
= (A= H)'"7¢,y) + 2ni ((;,-' _}2)[ dzi—2

_ Bll(e) (23)

Since E[y, y](z)is continuous in y € X(2)(the assumption (Xs) and E[y, y](z)is holomorphic

in z for any & >0, there exists a neighborhood U,;of zero in X(£) such that

|(d1_2)5[¢’ y](z)| <eatz=Afor y e UynY. Let U, be a neighborhood of zero in H such

dzJj—2

that ||ylly < € for y € U,. Since the topology on X(Q)is stronger than that on H, U,nX(Q)is a
neighborhood of zero in X(Q). If y € U; N U, nY, we obtain

(—1)7~*
(7 —2)!

Note that (A — H)'™/ is bounded when 12 ¢Rand 1 —j < 0because H is selfadjoint. This

ua@)| < [|(X = H) e + 2 e.

proves that u,is continuous, so that ui = (1 — H)AD )y € X(2)'. The proof of the
continuity for the case Im(A) <Ois done in the same way. When A1 € I, there exists a

sequence iA; ” in the lower half plane such that u,()) =lim pu,.
] j=1 ]

Since X(Q) is barreled,
jooo T (y)

Banach -Steinhaus theorem is applicable to conclude that the limit u;of continuous linear

mappings is also continuous. This proves D(A —-H*) SR(AV(A))and (A —H*)AU(A)is well defined
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for any A lm(A) <0} v/uQ. Then, the above calculation immediately shows that (A —AH*)AV(A)
=A(/)(A). By the induction, we obtain (i).(ii) is also proved by the operational calculus as
above, and (iii) is easily obtained by induction.

For (iv), since (A(1)Y|@)is holomorphic, it is expanded in a Taylor series as

R E-r

MY | ) (A= o)

j=0

_D"ﬂg

L
I
o

(Ao = A (AU )y | 6), @

for each ¢,y € X(). This means that the functional A(1)yis weakly holomorphic in A. Then,
A(A)  turns out to be strongly holomorphic and expanded as Eq.(22) in which basic facts on
X(2)'valued holomorphic functions are given.Unfortunately, the operator A(4) : iX(2) -
X(2)'is not continuous if iX(2)is equipped with the relative topology from X(2)'Even if
(Y| »0in iX(2) c X(2)'), the value E[y, p](A)does not tend to zero in general because
the topology on X(2)'is weaker than that on X(Q). However, A(A)proves to be continuous if
iX()is equipped with the topology induced from X (2) by the canonical inclusion.
Proposition (3.1.7)[3]:A(A) i X(Q) -X(Q)' is continuous if X(2)'is equipped with the weak
dual fopology.

Proof: Suppose 1 € Nand fix ¢ € X(2). Because of the assumption (X5), forany ¢ > 0,
there exists a neighborhood U, of zero in X(2)such that |E[y, ¢](1)| < efory € U,. Let U,

be a neighborhood of zero in A such that |||, < € for weU,. Since the topology on X(2) is
stronger than that on H, U, n X () is a neighborhood of zero in X(2). If Yy €e U = U; N U,,

(AN | $)] < [[A= H) 7|5, - 1l - 1 llae + 27 B, 41 (A)]
= (= H)7H, - bl + 2m)e.

This proves that A(A) olis continuous in the weak dual topology. The proof for the case
Im(A) < Ois done in a similar manner. When A1 € I, there exists a sequence {Aj}f;lin the

lower half plane such that A(2) oi = lim A(;)oi. Since X(Q2)is barreled, Banach-Steinhaus

]—)OO

86



theorem is applicable to conclude that the limit A(1)oi of continuous linear mappings is also
continuous.Now we are in a position to define an algebraic multiplicity and a generalized
Eigen space of generalized Eigen values. Usually, an Eigen space is defined as a set of

solutions of the equation(1 — T)"v = 0. For example, when n =2, we rewrite it as
A—H—-K@-H- Ky

— (A— H;Q (id— (A—H) 2K\ —H))o (id— (A~ H) 'K)v=0.
Dividing by (1 — H)? yields
(id — (A= H) 2K(A— H)) o (id — (A\— H) 'K)v = 0.
Since the analytic continuation of (1 — H)™"in X(2)'is A (1), we consider the equation

(id — ABNK* (A — H*)) o (id — AN)K*) p = 0.

Motivated by this observation, we define the operator B (1) : D(B™ (1)) c X(2) -

X(2)'to be
B™(\) = id — AMNK*(A—H*)". (25)

Then, the above equation is rewritten as B (1)BM (A)u = 0. The domain of B™ (Q)is the

domain of AW (D)K*(A — H x)™ 1. The following equality is easily proved.

()\_Hx)kB(j)(/\) - B(:f—k}()\)()\—Hx)k|D(Bm(A)), j >k (26)

Definition (3.1.8)[3]: Let A be a generalized Eigen value of the operator 7. The generalized

eigen space of Ais defined by

Vi = |J Ker B™(3) 0 Bm=D(N) o0 BO(N). @)

m>1

We call dim V,the algebraic multiplicity of the generalized Eigen values A.

Theorem (3.1.9)[3]:For any € V,, there exists an infeger M such that (A —T x)}/ = 0.
Proof: Suppose that B™ (1)o -- oBW (W) = 0.Put & = BM™D (1) o0 - 0BM)p.

0= (A—HX)" I BOD ()¢

)M—l

=BONA-H)" ¢ = (id— ANK*) (A - H*
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Since D(A — H*) D R(A(1)), itturns out that (A — H*)M~1¢& € D(A — H*). Then, we obtain

0=(A—H*)(id— ANEKX) (A — )"

£
= (A\—H*—EK*)0—H*)" ¢ = '

A=T)A—H)" ¢,
By induction, we obtain (1 —T*);/ = 0In general, the space V,is a proper subspace of the
usual Eigen spaceU,,>;Ker(A —T x)™of T*. Typically U,>;Ker(1 —T*)™ becomes of
infinite dimensional because the dual space X(2)'is “too large”, however, V,is a finite
dimensional space in many cases.In this subpart, we define a generalized resolvent. As the
usual theory, it will be used to construct projections and semi groups. Let Ry =(1 — T) be
the resolvent of Tas an operator on H. A simple calculation shows
Rap = (A— H) '(id — K(A— H) ™)) . (28)

Since the analytic continuation of (1 — T)tin the dual space is A(1), we make the following
definition. In what follows, put 2 = QU I U {1 |Im(1) < 0}.
Definition (3.1.10)[3]: If the inverse (id — K*A(1)) lexists, define the generalized resolvent
R;:iX(2) — X()'to be

Ra= AN o (id— KXAN) " = (id— ANK*) "0 A(N), A€ (29)
The second equality follows from (id — A()K*)A(A) = A(A)(id — K*A(4)). Recall that id —
K*A(A)is injective on iX(Q)if and only if id — A(1)K*is injective on R(A(4)).Since A(1) is not
continuous, R;is not a continuous operator in general. However, it is natural to ask whether
Ryo0i:X(2) - X(N)'is continuous or not because A(A)ol is continuous.
Definition (3.1.11)[3]: The generalized resolvent set g(7)is defined to be the set of points A
O.satisfying the following: there is a neighborhood V; c Q. ofA such that for any A’ €/;, R, °is
a densely defined continuous operator from X() into X(R)’, where X(2)', is equipped with

the weak dual topology, and the set {R,lol-(l/,)})l Ais bounded in X(2)'for each y € X(2). The
eV

set o(7) =N\o(T) is called the generalized spectrum of T. The generalized point spectrum

0,(7) is the set of points 1 € g(T)at which id — K*A(4)is not injective. The generalized
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residual spectrump, (T)is the set of points 4 € 9(T)such that the domain ofR;0 i is not dense
in X(Q). The generalized confinuous spectrum is defined to be 6c(T) = 6(T)\(6p(T) U
6,(T)).By the definition,g (7) is an open set. To require the existence of the neighborhood
I3in the above definition is introduced by Waelbroeck for the spectral theory on locally
convex spaces. If 9(T) were simply defined to be the set of points such that R;o iis a
densely defined continuous operator as in the Banach space theory, 9(T)is not an open set
in general. If X(Q)is a Banach space and the operator id-i"*K*A(A)i is continuous on X (1)
for each 2 € §, we can show that A €p(T)if and only if id-i"1K*A(1)i has a continuous
inverse on X(0).

Theorem( 3.1.12)[3]:

(i) For eachy € X(2), Ry, is an X(2)'-valued holomorphic function in A € (T).

(i) Suppose Im(A1) < 0and A € o(T) n o(T), where o(T7) Is the resolventset of T in H-sense.
Then, (Ryy lo) = (A = T)™'Y, @) for any ¥, € X().

This theorem means that (R;y|¢)is an analytic continuation of(1 — T) "1, ) from the lower
half plane to(7)through the interval /. We always suppose that the domain of Ryoi is
continuously extended to the whole X(2) when A /=6(7). The significant point to be
emphasized is that to prove the sfrongholomorphy of R0 i(y), it is sufficient to assume that
R0 i:X(0) -X(N)'is continuous in the weakdual topology on X(2)’

Proof:Since o(7)is open, when A €9(7), Ry, exists for sufficiently small h € C. Put y, =
i~1(id — K*A) i) for Y € X(2). It is easy to verify the equality

Ra+ni(®) — Rai()
— (A(A 1 h) — AN))i(th2) + Ragni 08 K (AN + h) — AN))i(n).

Let us show that A1 A*A(A) ) eX(Q) is holomorphic in A. For any g, ¢ eX(Q), we obtain

(¢ | i KXAN)iY) = (¢, "K*AN)iyp) = (i LK* A(N)ia, §)
= (KX AN [ 6) = (AN [ K*6).
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From the definition of A(J), it follows that (¢ |i"1K*A(X)i)is holomorphic in 1. Since X(Q)is
dense in X(12)', (u |i"1K*A(A)iy)is holomorphic in A for any u € X(2)" by Montel’s theorem.
This means that i1 K*A(1)iy is weakly holomorphic. Since X(2) is a quasi-complete locally
convex space, any weakly holomorphic function is holomorphic with respect to the original
topology. This proves that i"1K*A(4)iy is holomorphic in A(note that the weak holomorphy in
A implies the strong holomorphy in Abecause functional in X(2)'are antlinear. Next, the
definition of ©(7) implies that the family {R, °//.ev4 of continuous operators is bounded in the
point wise convergence topology. Due to Banach-Steinhaus theorem. the family is
equicontinuous. This fact and the holomorphy of A(A) and i"K*A(A)iy prove that
Ry.n{@)converges to R, {w) as h -0with respect to the weak dual topology. In particular, we

obtain

. Raint—Rat
lim A

Hm . (W) = %(A)i(w,\) + Raio i(rlffm()\)@) (1), (30)

dA

which proves that R; {) is holomorphic in Awith respect to the weak dual topology on X(2)'.
Since X(2)is barreled, the weak dual holomorphy implies the strong dual holomorphy.Let us
prove (ii). Suppose Im(4) < 0. Note that R;oiis written as RAoi =A(A)o(id —
i"1K*A(1)i)~1. We can show the equality

(id — i TK*AN)i) f = (id— K(A—H) ') f € X(Q2). (31)
Indeed, for anyf,y € X(2), we obtain

((i = KXAN))f | ) = Gf | ) — (ANif | K*9)
= (if |[¥) = (o (A= H)7'f | K*9)
- (f,'t/'))— (K(A_H)_lf=¢) — ((?’d_K(}‘_ H)_l)f:'z/))

Thus, R, satisfies for ¢ =(id — i"1K*A(A)i) fthat

Raip = A(N)io (id — i *K* A(N)i) ¢

—iA—H) o (id—K\—H)™) ¢ =i(A-T)""¢.
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Since A € p(T),(id —i 'K*AQQ)i)X(R)is dense in X)) and Ryi:X(2) - X()'is
continuous. Since A € p(T), i(A — T)"1:H - X(2)'is continuous. Therefore, taking the limit
proves thatR,ip=i(1 — T) 1¢holds for any ¢ € X ().

Proposition (3.1.13)[3]: 7The generalized resolvent satisfies

(i) (A =7 *Rrid|ixq)

(ifu € X(2)'satisfies (A —T*)u € iX(Q), thenRy (A -T*)u=u.

(1if) T* 0 Ry|iY = Ryo T*|iy
Proof: givesid = (1 —H*)A1) = (A —T* + K*)A(A). This proves

(A=T%) 0 A(\) = id — KX A(N)
= (A=TX)o Ao (id— KXAN)) " = (A=T*) o Ry = id.

Next, when (1 —T*)u € iX(2),AA)(A — T*)uis well defined and gives.

A()\)()\ — Tx),u, = A(A)(A — H* — K"),u, = (z’d — A(A)Kx),u,.
This provesy = (id — AMK*) AN (A — Ku = Ry(A —T*)u. Finally, note that (1 —
T*)iY =i(1 —T)Y c iX(2)because of the assumptions (X;), (X;). Thus part(iii) of the
proposition immediately follows from (i), (ii).Let ¥ c 6 (T) be a bounded subset of the

generalized spectrum, which is separated from the rest of the spectrum by a simple closed

curvey c QUIU{1|Im(1) < 0}. Define the operator I1X:iX(2) — X(2)'to be

1
Moo= 5 [ Rasdh ¢ eix(@) @)
i

where the integral is defined as the Pettis integral. Since X (2) is assumed to be barreled by
(X3), X(2)'is quasi-complete and satisfies the convex envelope property. Since R, is
strongly holomorphic in A, the Pettis integral of R; ¢ exists for the definition and the existence
theorem of Pettis integrals. Since R oi: X(2) -» X(2)'is continuous, proves that II;oiis a
continuous operator from X(2) into X(2)'equipped with the weak dual topology. Note that

the equality
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< Ragar= [ T*Ragan, )

~

holds. To see this, it is sufficient to show that the set {{T*R,¢ |y)}A € y is bounded for each

Y € X(2)due to yields T X Ry = AR, — ¢. Since Rj;Ais holomorphic and yis compact,

AT*R ¢ |Y)heps bounded

Although II;; o II;is not defined, we call II;the generalized Riesz projectionfor Xbecause of

the next proposition.

Proposition (3.1.14)[3]: Iz (iX(2)) n (id — M) (iX (2)) = {0}and the direct sum satisfies
iX(2) C s (iX(2) @ (id — IIx) (iX(2)) C X(£2)'. (34)

In particular, for any ¢ € X(2), there existuy, u, such that ¢ is uniquely decomposed as

i(0) = (] = p1 +pa, € Mp(iX(R)), po € (id - IIg)(iX(02)) (35)

Proof: We simply denote (@|as ¢. It is sufficient to show that Iy (IX(Q)) Aid-T15)(iX(Q)) ={0}.

Suppose that there exist ¢,y € iX(2)such that Iy =y — II;y. Since II;(@ +Y) =Y €

iX(2), we can again apply the projection to the both sides as II;o0 I1X(¢ + ) = II;. Let

y'be a closed curve which is slightly larger than y. Then,

Ogolls(¢+9) = ( )/RA’(fRA¢+¢)d)\>d)\’
(Qm) /R(f (- ,\);(;:—Tx)mww)\)dx

(2“’1) /R" (] P Rh(¢+§b)dz\)d}\’.

Eq(33)shows

Hgolls(¢+4) = ( ) /RA (/ ):\__i,n\TRA(GﬁJr%b)W‘)dX

(m) fm»o(,\' Tx)(/ ,\R X(cﬂd’)dﬁ)d}"

¥

Proposition(3.1.13) show
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) [l 2o (&) ([ e om)o

¥

(%) f’R,;\((,ber ],\ AN - dA

— ori [ Ral@+)iA = In(9+ ).

¥

This proves that II;¢ = 0The above proof also shows that as long asily;¢ € iX(2),II; o II;is
definedand Il o I[1Xp = Il5¢.

Proposition (3.1.15)[3]: Iz |iY is T *invariant: Ily o T*|iy = T o Il |iy.

Proof. Let 1, be an isolated generalized Eigen values , which is separated from the rest of

the generalized spectrum by a simple closed curve y c QU I U {1 | Im(1) < 0}. Let

~ 27i / Rd, (36)

be a projection for 4, and Vy=U,,>1KerBm(Ay) °---°B(1)(A0) a generalized eigenspace of A,.
The main theorem in this chapter is stated as follows.

Theorem (3.1.16)[3]:/f I1,/iX(Q) is finite dimensional, then iX() =W.In the usual spectral
theory, this theorem is easily proved by using the resolvent equation. In our theory, the
composition Ry °Rjis not defined because R,is an operator from iX(Q)into X(2)'. As a
result, the resolvent equation does not hold and the proof of the above theorem is rather
technical.

Proof: Let Ry = Y52 _o(Ao —A)ijbe a Laurent series of R;, which converges in the strong

dual topology Since

id=A=T*)oRx=(A—-T"—(Ao—A))o i (Mo — N Ej,

j=—o00

we obtain E-,-1=(Ao—T*)E-sforn=1, 2, .... Thus the equality
E p1=MN-T%)"E; (37)

holds. Similarly, id|iY=R, o (A —T)|;, provides E_,,_|;y = E_,0 (19 — T™)|;y. Thus we obtain

R(E_,-1liy) € R(E_,)forany n > 1. Since Yis dense in X(2) and the range of E_; = —Ilo is
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finite dimensional, it turns out that R(E_,|;y) € R(E_,) and R(E_,_iliy) € R(E_,) for any
n > 1. This implies that the prin-ciple part -1 (4, —A)ijof the Laurent series is a finite
dimensional operator. Hence, there exists an integer M > 1such that E_,;,_; = 0. This means

that A, is a pole of R;:
Ra= Y (ho—AVE; (38)
Next, from the equality (id — A(A)K*)o R; = A(1), we have

(z’d - i(}m - A)‘“A(H”(AD)KX) 0 i (Mo — N E; = i(}m — NFAETD (),
k=0 k=0

j=—M

Comparing the coefficients of (1, — 1)~ on both sides, we obtain
M
(id — A(X)K*)E_1 — Y AW (A)K*E_; = 0. (39)
j=2
Substituting Eq.(35)and E-«1=-/h provides
M _ .
BO ()Mo — Y AD o) K* (Ao — T*)' "'y = 0. (40)
j=2
In particular, this implies R(/b) <D(B"Y(A0)). Hence, (1, —7*)II, can be rewritten as
(Ao —T*)Ho = (Ao — H*) o (id — A(M)K*) g = (Ao — H*)BW (Ao) .
Then, by using the definition of B2)(4,),Eq(39) is rear anyged as

M
B® (2)BM (M) T — Y AW (Ag) K™ (Ao — %) " Ty = 0.
j=3

Repeating similar calculations, we obtain

BM)(Xg)o---0 BM (X)) = 0. (41)
This proves I1,iX(£2) < V0.Let us show I1,iX(2) D V,I1,iX(2). From the equality R; o (id —

K*A(1)) = A(4), we have
i (Ao — N E; o (z’d — K* i(}m - ,\}kA(k“}()«D))
j=—M k=0

= i(}'\n — A)FAEFD (7). (42)
k=0
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Comparing the coefficients of (1, — 1)*on both sides for k = 1, 2,..., we obtain

Ey(id — K*A(X0))¢ — Y E_j1x KX AUTD(Xg)p = AFTD(Ag)0, (43)
j=1

for any ¢ € iX(), where the left hand side is a finite sum. Note that K*A(j)(4,)iX () c
iX()foranyj=1,2,..because K*AL1)iX(2) c iX(2)for any A(the assumption(X8)).Now
suppose that u € V,is a generalized Eigen function satisfying B(M)(4,) 0 - 0BM (1x)u = 0.
For this 1, we need the following lemma.

Lemma(3.1.17)[3]: For any k=0, 1, ..., M1

Do = T)Veu = (Ao — H)*BE(Ap) 0 - 0BM (2.
(ii) K*(Ag — T*u €iX(Q).

Proof: 1 is included in the domain of (1, — T*)*. Thus the left hand side of (i) indeed exists.

Then, we have

Ao — H*)EB® (M) = (Ag — H*)*(3d — AB (A)K * (Ao — H*)* ™
( ) ( ) ( ( ) )
= (o= H* —K*) (o= H*)"" = (Ao = T*) (Ao — H*)" .

Repeating this procedure yields (i). To prove (ii), let us calculate

0=K*(Xo—H*)"B™(Ag)o---0 BO(N)p.

the part (i) of this lemma give

0=K*B™B(x)0---0 BED(Xg) 0 (A — Hx)k o B®(X\g)o---0 B (Ag)p

— I{XB@{_R“) ()‘0) Q.0 B(k-{_l) (Ag) 0 (/‘\0 — Tx)kp',.

For example, when k = M1, this is reduced to

0= K*(id— AN)K*) o (Ag—T*)" ' pu.
This proves K*(Ag — T )M L,y = K*A(A))K*(Ag — T)M 1y € iX(2). This is true for any
k=0,1,...,M~1; it follows from the definition of B/(1,)’s that K*(10 — T*)*uis expressed as
a linear combination of elements of the form K*A(j)(A,)%;,§; €iX(Q). Since

KXA(G)(A)iX(Q) c iX(Q), we obtain KX(4, — T x)Xu € iX(Q).Since K*(A, — T*)Xu € iX(Q),

we can substituteqp = K* (A, — TX)Xu The resultant equation is rearranged as
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EuK* (id — A(A0)K*) (ho — T*)"p

k .
_ (z’d + 3 B (o — HX)“‘J) AFDOGNK" (Ao — T7)
G=1

= 3 B KXAUD K> (Mo — T%) .
j=k+1

Further, (g — T)X = (A — H)*BX(A0) 0 --- 0 BW (A,)provides

k
B K™ (Mg — H<)*BED () 0+ 0 B (Ag)p - (id + 3 E K (M- H ")H)
j=1

x AFDANK* (Mg — HX)*B®(Ag) 0 -+ 0 B (Ag)ps

= > B K * AT 00) KX (o — T%) 1 (44)
j=k+1

On the other hand, comparing the coefficients of (1, — 2)°of provides

Eo(id — K*A(Xo))¢ — i E_K*AUTD(0g)p = A(Xo) b,
=1

forany ¢ € iX(2). Substituting ¢ = K*u € iX(2)provides

(id + EoK*)BW (M) = p+ Y B ;KX AUV (Xo) K™ pu. (45)
j=1

By adding Eq(43)toEq(44) for k = 1,...,M~1, we obtain

M-—-1 k ‘
id + Eo K *) BY (Ag)p — id+ S E_j i K% (Ao — H)
(o) ;

k=1 j=1

x A(k—l—l] (AD)I{X (/\{] . Hx)kB(k) (/\D) O-=-0 B(l) ()\D)”

The left hand side above is rewritten as

M-—1

+ Y ExK* (Ao — H¥)"B®D(Ag) 0 -+ 0 BO(Ao)u
k=1
M-1 oo "
=p+ Y Y EKXAUHHD OG0 KX (A — T%) 1 (46)
k=0 j=1

The left hand side above is rewritten as
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(id + BEoK* + E1K* (Mo — H*))B® (Xo) B

M-1

k
_ Z (z’d + ZE—;'HK" (Ao — Hx)k—.l')
k=2 j=1
x AFHD (N)EK X (Ao — H*) ' B®(Ag) 0+
AM—1

+ ) EiKX (Mo — HX) BFD(Ng) 00

k=2

Repeating similar calculations, we can verify that is rewritten as

M-—-1

(z’d + Y E;K* (Ao — HX)J)BW}(,\D} o0 BO(X)

j=0
M-1 oo

—p— 5 S EKXAUHDOGK (Ao - T7) 0. (47)
k=0 j=1

Since B(M)(1,)0 --- 0B (1,)u = 0, we obtain

= lili‘g_jf{xﬂ(j+k+l)()m)f{x (}\n _ Tx)k‘u.

k=0 j=1
Since R(E_;) € R(E_;) = R(ll,), this proves IIiX(£2) o V,. Thus the proof of I1,iX(2) =
Vpis completed.
We show a few criteria to estimate the generalized spectrum. Recall thatép(T) c
aop(T*)because of. The relation between &(T)and o(T) is given as follows.
Proposition  (3.1.18)[3]: Let C—= {Im(1) < 0}be an open lower half plane.
Let op(T)and o(T) be the point spectrum and the spectrum in the usual sense, respectively.
Then, the following relations hold.
(Ya(T) N"C—co(T) NC~. In particular, 6p(T) N C c op(T) NC
(ilLet X c C —be a bounded subset of a(T)which is separated from the rest of the spectrum
by a simple closed curve y. Then, there exists as point of "o (T)inside y. In particular, ifA €

C/s an isolated point of 6 (T),then A € &(T).

Proof: Note that when 1 € C, the generalized resolvent satisfies RAoi =i o (A —T)71.
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(i) Suppose that 1 € _(T) n C, where go(7)is the resolvent set of 7 in the usual sense. Since
H is a Hilbert space, there is a neighborhood V), c o(T) n Cof Asuch that (' —T)™lis
continuous on Hfor any A’ € VAand the set {(1' — T) — 1y},,ey2is bounded in H for each ¢ €
X(). Since i : H —» X(2)'is continuous and since the topology of X(2)is stronger than that of
H,Ry oi =io (A —T) lis a continuous operator from X (2)intoX (2)'for any A’ € V4, and the
set {Ry,0 iY}A" € VAis bounded in X(2)’. This proves that 2 € "o(T) n C.Next, suppose that
A € C is a generalized Eigen values satisfying (id — K*A(1))i(y)) = 0for ¢ € X(2). Since
A - His invertible on Hwhen 1 € C, putting ¢ = (1 — H) 1y provides

(id — K*AN)i(A— H)p = (i(A— H) — K*i)¢p = i(A— T)¢p = 0,

and thus 4 € op(T).

(ii) Let P be the Riesz projection for XY c o(T) NnC, which is defined as P =
(2mi)~! f(A —T)"1dA. Since y encloses a point of o(T),PH # @. Since X(2)is dense in
H,PX(Q) # @. This fact and Ry0i =io (1 —T) prove that the range of the generalized
Riesz projection defined by is not zero. Hence, the closed curve y encloses a point of
"a(T).A few remarks are in order. If the spectrum of 7on the lower half plane consists of
discrete Eigen values, (i) and (ii) show that op(T) N C =a(T) N C ="a(T) N C. However, it
is possible that a generalized Eigen value on /s not an Eigen value in the usual sense. For
such an example. In most cases, the continuous spectrum on the lower half plane is not
included in the generalized spectrum because the topology on X(2)'is weaker than that on
H, although the point spectrum and the residual spectrum may remain to exist as the
generalized spectrum. Note that the continuous spectrum on the interval / also disappears;
for the resolvent(2 —T)"! = (1 — H) 1(id — K(2# — H) — 1)1 in the usual sense, the factor
(2 — H) linduces the continuous spectrum on the real axis because His selfadjoint. For the
generalized resolvent, (A — H) lis replaced by A(1), which has no singularities. This
suggests that obstructions when calculating the Laplace inversion formula by using the

residue theorem may disappear .Recall that a linear operator L from a topological vector
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space X; to another topolog-ical vector space X, is said to be bounded if there exists a
neighborhood U c X; such that LU c X;is a bounded set. When L = L(A1)is parameterized
by A, it is said to be bounded uniformly in A if such a neighborhood Us independent of A.
When the domain X; is a Banach space, L(1)is bounded uniformly in Aif and only if L(1)is
continuous for each A. Similarly, L is called compact if there exists a neighborhood U c
Xysuch that LU c X, is relatively compact. When L = L(A)is parameterized by A, it is said to
be compact uniformly in A; f such a neighborhood Uis independent of 1. When the domain X;
is a Banach space, L(1)is compact uniformly in Aif and only if L(1)is compact for each A.
When the range X, is a Montel space, a (uniformly) bounded operator is (uniformly) compact
because every bounded set in a Montel space is relatively compact. Put "2 = {Im(1) < 0} U
I U Nas before. In many applications, i"1K*A(1)i is a bounded operator. In such a case, the
following proposition is useful to estimate the generalized spectrum.
Proposition (3.1.18)[3]: Suppose that for A € 0, there exists a nejghborhood U, c ) of A such
that i71K*A(A)i:X(2) » X()is a bounded operator uniformly ind' € U,./fid —
i"1K*A(A)i has a continuous inverse on X (), then 2 & &(T).
Proof: Note that R, °/is rewritten as Ryoi = A(AQ)oio (id — i " *K*A(A)i)~L. Since A(A)oi is
continuous, it is sufficient to prove that there exists a neighborhood V;of Asuch that the set
(id — i 1K*A(A)i)~ 1A’ € VAis bounded in X(2) for each y € X(2). For this purpose, it is
sufficient to prove that the mapping A’ - (id — i"*K*A(1")i)"1yis continuous in A’ € V. Since
i~1K*A(A)i is holomorphic, there is an operator D (4, h) on X(2)such that
id —i KX AN+ h)i =id —i PKXA(N)i — hD()\, h)

- (id — hD(A, h) (id — i VKX A(A)i) ") o (id — i7" A(N)i)

Sincei~1K x A(A)iis a bounded operator uniformly inA € UA, D(A,h)is a bounded operator

when A is sufficiently small. Since (id-i"1K*A(A)i)~lis continuous by the assumption,

D(A,h)(id —i"*K*A(A1)i)"lis a bounded operator. Then, Bruyn’s theorem shows that id —
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hp(A,h)(id —i"1K*A(2)i)~! has a continuous inverse for sufficiently small fand the inverse
is continuous in A(when X(2) is a Banach space, Bruyn’'s theorem is reduced to the
existence of the Neumann series). This proves that (id — i "*K*A(A1 + h)i)" 1y exists and
continuous in A for each w.As a corollary, if X{(£)is a Banach space and i"1K*A(1)iis a
continuous operator on X(2)for each A, then A &(7)if and only if id — i K*A(1)ihas a
continuous inverse on X (2). Because of this proposition, we can apply the spectral theory on
locally convex spaces to the operator id — i"1K*A(1)ito estimate the generalized spectrum.
In particular, like as Riesz—Schauder theory in Banach spaces, we can prove the next
theorem.

Theorem (3.1.19)[3]:/n addition fo(X1)- (X8), suppose that
iTTKXAN)i: X(Q) - X()is a compact operator uniformly inA € 1 = {Im(1) <0} UIU

0. Then, the following statements are frue.

(i) For any compact set D c 1, the number of generalized eigenvalues in Dis finite
(thusép(T) consists of a countable number of generalized Eigen values s and they may
accumulate only on the boundary of  or infinity).

(fi)For each A0 € 6p(T), the generalized eigenspace V,is of finite dimensional and
MyiX(Q) =V,.

(i)  6.(T) =6.(T) = 0.

If X(2) is a Banach space, the above theorem follows from well known Riesz-Schauder
theory. Even if X(£2) is not a Banach space, we can prove the same result is useful to find
embedded Eigen values s of T:

Corollary (3.1.20)[3]: Suppose that Tis selfadjoint. Under the assumptions in, the number of
Eigen values of T = H + K(in H — sense) in any compact set D c lis finite. Their algebraic
multiplicities dimKer(A — T)are finite.

Proof: Let 1, € Ibe an Eigen values of 7. It is known that the projection A) to the

corresponding Eigen space is given by
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Pog = lim ic- (Ao +ic —T) "9, $eH, (48)

where the limit is taken with respect to the topology on H. When Im(41) <0, we have
Ryi(p) =i(A-T) tefor ¢ € X(12). This shows

ioPop= lim ie-Riyypic 0i(p), ¢ € X(£2)

e——0
Let Ry = X772 (20 — 1)) Ej be the Laurent expansion of R, which converges around 1,. This

provides

o8}

ioPp= lim ic > (~ie)Ejoil
Jj=—00

Since the right hand side converges with respect to the topology on X (2)’, we obtain

’iOPOZ—E_lo’i:HOO’Z:, E_QZE_gz"':U, (49)

where I1, is the generalized Riesz projection for A,. Since A,is an eigenvalues , PyH + 0.
Since X() is a dense subspace of H,PyX(2)' = @. Hence, we obtain I1,iX(2) ' = @, which
implies that A, is a generalized Eigen values ; 6.(T) = "o,(T) Sinces(T) is countable, so is
6,(T). Since I1,iX (12)is a finite dimensional space, so is Py X({2). Then, PyH = PyX({2) proves
to be finite dimensional because PyHis the closure of PyX(2).Our results are also useful to
calculate eigenvectors for embedded Eigen values. In the usual Hilbert space theory, if an
Eigen value 1is embedded in the continuous spectrum of T, we cannot apply the Riesz
projection for A because there are no closed curves in Cwhich separate A from the rest of the
spectrum. In our theory, 6¢c(T) = 6r(T) = @. Hence, the generalized Eigen values s are
indeed isolated and the Riesz projection I, is applied to yield I1,iX(2) =V,. Then, the
Eigen space in Hsense is obtained as V, N D(T).

Proof of Theorem (3.1.19)The theorem follows from Riesz-Schauder theory on locally
convex spaces developed in Ringrose .Here, we give a simple review of the argument in.
We denote X(2) = Xand i~ 1K*A(A)i = C(A)for simplicity. A pairing for (X', X)is denoted by

(- |)X.
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Since C(1): X — Xis compact uniformly in A, there exists a neighborhood V, of zero in X,
which is independent of A, such that C(1)V c Xis relatively compact. Put p(x) =
inf{|A|; x € AV}. Then, pis a continuous semi-norm on Xand V = {x | p(x) < 1}. Define a

closed subspace Min Xto be
M={zeX|pz)=0}CV (50)

Let us consider the quotient space X/M, whose elements are denoted by [x]. The semi-norm
p induces a norm P on X/M by P([x]) =p(x). If X/M is equipped with the norm topology
induced by P, we denote the space as B. The completion of B, which is a Banach space, is

denoted by B,. The dual space B}of B, is a Banach space with the norm

KBy -=— sSup & ’ (51)
” ” 0 P([$])<1|< | [ }>Bo
where (- | -)BOis a pairing for (By, B,). Define a subspace S c Xto be
Sz{}uEX’ sup|(p | z) x| <oo}. (52)
xeV

The linear mapping ™: S - B,(u = fi) defined through ("u|[x])B, = (u |x)X is bijective. Define

the operator Q(1) : B —» Bto be Q(1)[x] = [C(1)x]. Then, the equality

(i

Q)2 = (1| CN)z) (52

holds for u € Sand x € X. Let Q,(1) : B, » By be a continuous extension of Q(4). Then,
Qo (A1)is a compact operator on a Banach space, and thus the usual Riesz—Schauder theory
is applied. By using , it is proved that z € Cis an Eigen values of C(4)if and only if it is an
Eigen values of Q,(4). In this manner, we can prove that 7he number of Eigen values of the
operator C(A) : X = X/s at most countable, which can accumulate only at the origin. The
Eigen spacesU,,-1Ker(z — C(1))™of nonzero eigenvalues zare finite dimensional. IfZ + 0 /s
not an Ejgen values , z — C(A) has a continuous inverse on X. for the complete proofNow we

are in a position to prove. Suppose that lis not a generalized Eigen values . Then, 1is not an
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Eigen values of C(1) =i "1K*A(1)i. The above theorem con-cludes that id — C(1) has a
continuous inverse on X(2). Since C(A)is compact uniformly in A, implies A & &(T). This
proves the part (iii) of.Let us show the part (i) of the theorem. Let z = z(4)be an Eigen values
of C(1). We suppose that z(1,) =1so that 4, is a generalized Eigen values . As was proved
in the proof of, (u|C(A)x)Xis holomorphic in A. Eq.(53)shows that (Cu|Q(1)[x]) BOis
holomorphic for any “(u € By)and [x] € B. Since Blis a Banach space and B is dense in
By, Qo (A1)is a holomorphic family of operators. Recall that the Eigen values z(A)of C(1)is also
an Eigen values of Q,(A)satisfying z(1,) = 1. Then, the analytic perturbation theory of
operators shows that there exists a natural number p such that z(A)is holomorphic as a
function of (1 — 1,)/?. Let us show that z(A)is not a constant function. If Z(A) =1, every point
in " is a generalized Eigen value. Due to, the open lower half plane is included in the point
spectrum of 7. Hence, there exists f = fjin H such that f = K(1 — H) 1f for any 1 € C.

However, since Kis A bounded, there exist nonnegative numbers a and b such that

[EO—H)!
<al|(A—H)7H +b|[HON - H)7H| =al|(A - H)7H| +b||AX - H) — id|

which tends to zero as |1| - o outside the real axis. Therefore,||f|| < I|IK(A — H)™ Y| -
If]l = 0, which contradicts with the assumption. Since Z(A)is not a constant, there exists a
neighborhood U c Cof 1, such that z(1)' = 1lwhen A € Uand 2’ = 4,. This implies that 1 €
U\{A,}is not a generalized eigenvalues and proved. finally, let us prove the part (ii) of. Put

C(z) =(z—-1) -id+C(z)and"Q(z) = (z— 1) id*+CN2). They satisfy {(u|"Q(1)[x])

—1

(| (A= Q2) 2, = (1| (A= C(2))

:1':>X.

Since an Eigen space of Q(z) is finite dimensional, an eigenspace of "Q(z) is also finite
dimensional. Thus the resolvent (1 — Q(z))~tis meromorphic in 1 € 2. Since 0(z)is
holomorphic, (1 — Q(1)) tis also meromorphic. The above equality shows that {(u|[(1 —

C(A))~1x)X is meromorphic for any u € S. Since Sis dense in X', it turns out that (1 —
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C(A))"1x is meromorphic with respect to the topology on X. Therefore, the generalized

resolvent
Raoi=A(N) oio (id—i "K*AND) " =AM oio (A—C(N) ™ (54)

is meromorphic on 2. Now we have shown that the Laurent expansion of R,is for some M >
0. Then, we can prove by the same way as the proof of. To prove that I1,iX(2)is of finite
dimensional, we need the next lemma.

Lemma (3.1.22)[3]: dimKer B™ (A) sdimKer (id — K*A(1)) for anyn > 1.

Proof: Suppose that B™ (1)u = Owith u # 0. Then, we have

KX(A—= HX)" ' B\ = KX (A= H¥)"  (id — AMNK* (A= H)" N
— (id— K*A(\) o KX (A— HX)" ' =0.

If K*(A —H)" 1y =0,B(n)(D)u = Oyields p=AM)DK*(A —H)" Iy =0, which
contradicts with the assumption u # 0. Thus we obtain K*(1 —H*)" 1u € Ker(id —
K*A(2))and the mapping g —» K*(2 — H*)" 1uis one-to-one.Due to, Ker(id-KxA(A)) is finite
dimensional. Hence, KerB™ (1)is also finite dimensional for any n > 1. This and prove that
I1,iX (N)is a finite dimensional space., I1,iX(2) = V,, which completes.

In this subpart, we suppose that

(S1)The operator iT = i(H + K)generates a C0-semigroup e'Tfon Hrecall i =+/—1).

For example, this is true when K is bounded on H or 7 is selfadjoint. By the Laplace

inversion, the semi group is given as

r—iy
(e, ¢) = 1 lim / eM((A=T)" ", p)d\, =z,y €R, (55)

27 z—o0
—x—iy

where the contour is a horizontal line in the lower half plane below the spectrum of 7. we
have shown that if there is an Eigen value of 7on the lower half plane, e'Ttdiverges as f -,
while if there are no Eigen values, to investigate the asymptotic behavior of e'tis difficult in
general. Let us show that resonance poles induce an exponential decay of the

semigroup.We use the residue theorem to calculate Let A, € 2be an isolated resonance
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pole of finite multiplicity. Suppose that the contour yis deformed to the contoury’, which lies

above 1,, without passing the generalized spectrum 6(T) except for A,,

A

< W

Fig.2.Deformationofthecontour
Fig.2. For example, it is possible under the assumptions of. Recall that if ¥,p €
X)), (A —T) 1y, p)defined on the lower half plane has an analytic continuation

(Ryy|p)definedon QU U{1]|Im(A) < 0Thus we obtain

2mi
,-Y.I'

i 1 i 1 i
(G Ttiba fb) = /6 At ('Rmb | (f))d)\ sy /6 M<RJ\¢ | (ﬁ)d/\a (56)
Yo
where y, is a sufficiently small simple closed curve enclosing y,. Let Ry = X;2_y (4o —

A)JEj = 0 be a Laurent series of R;as inthe proof of and E~! = —II,, we obtain

M-1 i Lk
o [ R ar = 3 Pt S (00 - ) T | ),

271 P
Yo =0

where [, is the generalized projection to the generalized eigenspace of 1,. Since Im(4,) >
0, this proves that the second term in the right hand side of decays to zero as t — oo. Such
an exponential decay of (a part of)the semigroup induced by res-onance poles is known as
Landau damping in plasma physics , and is often observed for Schrodinger operators . A
similar calculation is possible without defining the generalizedresolvent and the generalized
spectrum as long as the quantity (1 — T) ™14, ¢)has an analytic continuation for some yand
@. Indeed, this has been done in the literature.Let us reformulate it by using the dual space
to find a decaying state corresponding to 4,. For this purpose, we suppose that (S2)the semi

group{(e‘T")*}t > 0 is an equicontinuous C,semigroup on X(Q).

105



Then, by the theorem in IX-13 of Yosida , the dual semi group (eTt)*=((e!"*)*)'is also an
equicontinuous C,semi group generated by iT*. A convenient sufficient condition for (S2) is
that:(S,)’K*|X(Q)is bounded and {e''*}, > 0is an equicontinuous C, semi group on
X(Q).bindeed, the perturbation theory of equicontinuousCysemi groups shows that

(S2)'implies (52). By using the dual semigroup, is rewritten as

(™) = o lim / e MRAPAA (57)

27 z—
—x—liy

for any y € iX(2). Similarly, yields

M—-1

1/ IAtR ’LbdA— Zel)\gt(lt) (A _Tx)know (58)

2mi

(eiTt) Xw _

!

5
when A, is a generalized eigenvalues of finite multiplicity. For the dual semigroup, the
following statements hold.

Proposition (3.1.24)[3]: Suppose(S1) anda(S2).

(YA solution of the initial value problem

SE=1T7¢, £(0) = p e D(T™), (59

in X()'is uniguely given by £(t) = (e'Tt)*p.
(i)Let Agbe a generalized Eigen values and u,, corresponding generalized Eigen function.
Then,

(eiTt)x iTot

to = e 0" .
(ii\Let Iybe a generalized projection for A,. The space I,iX(N)is (e'T)*invariant:
(') My = My (') *|iX (12).

Proof: Since {{e!T")*}#20 is an equicontinuous C, semigroup generated by iT*, (i) follows

from the usual semi group theory Because of we have iT*u, = idyu,. Then,

d o o
%8]>\Dtﬂ0 _ 1)\081}\01‘,'“0 _ (8 )\Ot;UJO)-
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Thus &(t) = e%y,is a solution By the uniqueness of a solution, we obtain(ii). Because of,

we have

%(eiﬂ)xR,\ — iTX ((eiTt)XR,\),
d iTt iTt . X .1 X iTt
ZRA(T) [y = R (1) Ty = 1T (Ra (™)) |y

Hence, both of (e'T®)*R,and R;(e'"*)*are solutions of. By the uniqueness, we obtain
(e™)*Ryliy = (e'T))*R,|;y. Then, the definition of the projection II,proves(e'Tt)*I,|iY =
M, (e'Tt)*|iY with the aid of Since Y is dense in X)and both operators
(el™)*Myoiand Iy(el"")*0i = yoio e'Ttare continuous on X(N).the equality is true
oniX (), any usual function ¢ € X(2)is decomposed a s |¢ = u; + u,with y; € I11,iX(2)and
1, € (id — I10)iX(2)in the dual space., this decomposition is (e'T®)*invariant. When 1, € 2,
(el™)*u, € MyiX(N)decays to zero exponentially as t — oco.gives the decomposition
explicitly. Such an exponential decay can be well observed if we choose a function, which is
sufficiently close to the generalized Eigen functionu,, as an initial state. Since X(2)is dense
in X(2)'and since (e'T")*is continuous, for any T > 0and ¢ > 0, there exists a function

@oin X(N2)such that
(T b0 | 0) = (7)o | )] < =

for0 <t <Tandy € X(2). This implies that

(ﬁ?iﬂﬁ"ﬁth L) ~ <(€iTt) XH-(:J } L> = ! (po | ). (60)
for the interval 0 <t < T. Thus generalized Eigen values describe the transient behavior of
solutions.
section (3.2): An Application and Pettis Integrals and Vector Valued Holomorphic Functions
on the Dual Space
Let us apply the present theory to the dynamics of an infinite dimensional coupled

oscillators. The results in this part are partially obtained. Coupled oscillators are often used
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as models of collective synchronization phenomena. One of the important models for

synchronization is the Kuramoto model defined by

J;I\;r

d@? ]1? . . AT
— =w; + ~ Zl sin(; —0;), i=1,...,N, (61)
j=

where 0; = 6;(t) € [0,2m)denotes the phase of an i — th oscillator rotating on a circle, wi €
Ris a constant called a natural frequency, k = 0is a coupling strength, and where Ms the
number of oscillators When k > 0, there are interactions between oscillators and collective
behavior may appear. For this system, the order parameter n(t), which gives the centroid of

oscillators, is defined to be

| 1 10, (t)
n(t) := N Z e'i\t), (62)
J=1
synchronization de-synchronization

Fig.3.The order parameter of the Kuramoto model.
If |n(t)|takes a positive number, synchronous state is formed, while if /n({)/fs zero on time
average, de-synchronization is stable.For many applications, N is too large so that
statistical-mechanical description is applied. In such a case, the continuous limit of the

Kuramoto model is often employed: At first, note that Eq (61) can be written as

lf[ 93 L !l? —

T ,—i6; i6;
Wiy (n(t)e™% —n(t)e”).

Keeping it in mind, the continuous model is defined as the equation of continuity of the form
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( Opy 0
— 4 ——(vp) =0,
vi=wt o (n(t)e™ " —n(t)e”).

(63)

27
n(t) := //eiepf(ﬂ.w)g(w)dﬂdw.
\ R 0

This is an evolution equation of a probability measure p; = p;(6,w)on S;=[0, 2m)
parameterized by t € Rand w € R. Roughly speaking, pt(6, w)denotes a probability that an
oscillator having a natural frequency wis placed at a position 8. The nabove is the
continuous version of (62) , which is also called the order parameter, and g(w)is a given
probability density function for natural frequencies. This system is regarded as a Fokker
Planck equation of (61) . Indeed, it is known that the order parameter for the finite Eq(61) of
dimensional system converges to that of the continuous model as N — win some
probabilistic sense. To investigate the stability and bifurcations of solutions of the system is a
famous difficult problem in this field . It is numerically observed that when k > 0is sufficiently
small, then the de-synchronous state // =0is asymptotically stable, while if kexceeds a
certain value k., a nontrivial solution corresponding to the synchronous state |n| >0
bifurcates from the desynchronous state. Indeed, Kuramoto conjectured thatKuramoto
conjecture. Suppose that natural frequencies w; are distributed according fo a probability

density function g(w). If g(w)is an even and unimodal function

Ke K

Fig.4.A bifurcation diagram of the order parameter. Solid lines denote stable solutions and

dotted lines denote unstable solutions.
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such that g'' (0) =+ 0, then the bifurcation diagram of r = |n|is given as that is, if the coupling
strength k is smaller than k. = %, then r = 0/s asympflotically stable. On the other hand, if
kis larger than k., the synchronous state emerges, there exists a positive constant rcsuch
that r = r.is asympfotically stable. Near the transition pointK., R.is of order O((k — kc)%).A
function g(w)is called unimodal (at w = 0) if g(w;) > g(w,)for 0 < w; < w,and g(w,) <
g(wy)for w; < w, < 0.for Kuramoto’s discussion. The purpose here is to prove the linear
stability of the de-synchronous state |n| =r =0for 0 <k < k,.by applying our spectral
theory when g(w) = e~®2/2/\/21ris assumed to be the Gaussian distribution as in the most
literature. for nonlinear analysis and the proof of the bifurcation at k = kAt first, let us

observe that the difficulty of the conjecture is caused by the continuous spectrum. Let

Zj(t,w) == /ejjgpf(b’,w)db’ (64)

be the Fourier coefficient of p.(6,w). Then, Z,(t,w) = land Z;satisfy the differential

equations
WA ke L )
T iwsy + E?)(I‘.) — E})(z‘)Zz
and
dZ; .. ik -
T; =JjlwZ; + ‘{—)(-;-;(t)Zj_l —n(t)Zj+1) (66)

forj = 2,3,....Let L*(R, g(w)dw)be the weighted Lebesgue space and put Py(w) =1 €
L*(R, g(w)dw). Then, the order parameter is written as () =(Z,, P,)by using the inner
product on L*(R, g(w)dw). Since our purpose is to investigate the dynamics of the order

parameter, let us consider the linearized system of 2 given by

dZ—l

_ k
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WhereM : ¢(w) - we(w)is the multiplicationoperator on L*(R,g(w)dw)and Pis the

projection on L?(R, g(w)dw)defined to be

Po(w) = / | H(w)g(w)dw = (¢, Po) Py, (68)

R

To determine the linear stability of the de-synchronous state n = 0, we have to investigate
the spectrum and the semigroup of the operator T, = iM +§P.The domain ofT; = iM +
SP is given by D(M) n D(P) = D(M), which is dense in L?(R, g(w)dw). Since M is selfadjoint
and since Pis bounded, 71is a closed operator . Let Q(T;)be the resolvent set of T;and o(T;)
=CICX)T, the spectrum. Let 0, (T;)and o.(T;)be the point spectrum (the set of Eigen values s)
and the continuous spectrum of T;, respectively.

Lemma (3.2.1)[3]:

(i) Eigenvalues A of T, are given as roots of

o1 2
/ g(w)dw = T (69)

(i) The continuous spectrum ofT,is given by
(70)

o.(Ty) = a(iM) = iR.

Proof. Part (i) follows from a straightforward calculation of the equation Av = T;v. Indeed,

this equation yields

k
§ : (“Uj P(})P(}.

, k
(N —iw)v = =Pv =
2
This is rewritten as v =k/2 - (v,Py)(A —iw) 1P,. Taking the inner product with P,, we

obtain

k |
1 — 5(()\ — iu))_llj(}j]j[})j

which gives the desired result. Part (ii) follows from the fact that the essential spectrum is

stable under the bounded perturbation. The essential spectrum of T;is the same as o(iM).
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Since M is defined on the weighted Lebesgue space and the weight g(w)is the Gaussian,

o(iM) = i-supp(g) =iR. Our next task is to calculate roots to obtain Eigen values of T;. Put

k. = ngz(O), which is called Kuramoto’s transition point.

Lemma (3.2.2)[3]: When kis larger than k., there exists a unique Eigen values A(k)of T,on
the positive real axis. As kdecreases, the Elgen values A(k)approaches to the imaginary
axis, and at k = k., it is absorbed into the continuous spectrum and disappears. When 0 <
k < k., there are no Eigen values s.

Proof: Put A = x + iy with x, y € R,is rewritten as

( / x (0)d 2
: ~g(w)dw = —,
:rz—l—(w—y)zg k-
< (71)

JETE——

T2+ ( w—g)
(R

The first equation implies that if there is an eigenvalues x + iy for k > 0, then x > 0. Next,

the second equation is calculated as

. oo
0= : w)dw =
/ gy R * /
0

R

(9(y+w) =gy —w))dw.

Since gis an even function, y=0is a root of this equation. Since g is unmoral, g(y + w) —
gly—w) >0when y<0, w>0and gy +w) —g(y—w) <0when y>0,w > 0. Hence,
y = 0 is a unique root. This proves that an eigenvalues should be on the positive real axis, if

it exists. Let us show the existence. If |1|is large, (79) is expanded as

i 1\ 2
S 40 _Z
e ()\2) i

Thus Rouche’s theorem proves that (79) has a rooti ~§ifk > Ois sufficiently large. Its
position A(k)is continuous (actually analytic) in kas long as it exists. The eigenvalues
disappears only when 1 — +0as k — k. for some value k.. Substituting y=0and taking the

limit x - 40, k = k., we have

112



r——+0

B 2
lim /’1’2 ’ 59(w)dw = i
) .

The well-known formula

, ' T
R

provides k, = Since k.is uniquely determined, the Eigen values A(k)exists for k > k.,

(0)
disappears at k = k.and there are no Eigen values s for 0 < k < k_..This lemma shows that
when ks larger than k., Z; = 0 of is unstable because of the Eigen values with a positive
real part. However, when 0 < k < k., there are no Eigen values s and the spectrum of
T,consists of the continuous spectrum on the imaginary axis. Hence, the usual spectral
theory does not provide the stability of solutions. To handle this difficulty, let us introduce a
rigged Hilbert space.

To apply our theory, let us define a test function space X(2). Let Exp,(5,n) be the set of

holomorphic functions on the region C,, = {z € C | Im(z) = —1/n}such that the norm

|ollgn = sup e Al |o(,z)| (72)
Im(z)>—1/n

is finite. With this norm, Exp.,(B,n)is a Banach space. Let Exp,(f)be their inductive limit

with respect ton =1, 2, ...

Expy (5) = lim Exp, (5,n) = U Exp, (5,n) (73)
n>1 n>1

Next, define Exp, to be their inductive limit with respectto f = 0,1, 2,...

Exp, = lim Exp_ (8) = U Exp_ (). (74)
,,52( B3>0

Thus Exp.is the set of holomorphic functions near the upper half plane that can grow at
most exponentially. Then, we can prove the next proposition.

Proposition (3.2.3)[3]: Exp,. /s a topological vector space satisfying
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(i) Exp, is a complete Montel space Exp..is a dense subspace of L> (R, g(w)dw).

(i) Thetopology of Exp.. is stronger than that of L*>(R, g(w)dw)

(iii) Theoperators Mand Pare continuous on Exp,. In particular, T,:Exp, — Exp,is
continuous (note that it is not continuous on L*(R, g(w)dw)).

for the proof. Thus, X(2) = Exp,satisfies (X1) to (X3) and the rigged Hilbert space
Exp, C L? (Rj g(w)dw) C E-Xp"+ (75)

is well-defined. Furthermore, the operator

k
1T = 111/1:M+2—P (76)
1

satisfies the assumptions (X4) to (X8) with H = Mand K=2£iP. Indeed, the analytic

continuation A(1)of the resolvent (1 — M)~ lis given by

Ja 5 U(w)d(w)g(w)dw + 2mib(A)d(A)g(A)  (Im()) > 0),
(AN [ 6) = § im0 fp =V (@)0lw)g(w)de (r=)\€R),

THy—w |

J T (@)3w)g(w)de (tm()) < 0),

(77)

for ¢, @ € Exp.,. Since functions in Exp,are holomorphic near the upper half plane, (X4) and
(X5) are satisfied with I = Rand Q=(the upper half plane). Since M and Pare continuous on
Exp,, (X6) and (X7) are satisfied with Y=Exp,. For (X8), note that the dual operator K*of K

is given as

k
K*p= E{,u Po)(Po| € i Exp, = iX(£2). (78)

Since the range of K*is included in iX(2), (X8) is satisfied. Therefore, all assumptions in
Part are verified and we can apply our spectral theory to the operator T; /i.
Remark(4.2.4)[3]:T,is not continuous on Exp.(B,n)for fixed B > 0 because of the multi
plication M : ¢ — we. The inductive limit in Gis introduced so that it becomes continuous.
The proof of Lemma (3.2.1)[3]shows that the Eigen function of T; associated with A is given
by
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1

A0,
A—iw ~

Ux =

If 4 > 0is small, vyis not included in Exp,(f,n)for fixed n. The inductive limit in nis
introduced so that any Eigen functions are elements of Exp.. Furthermore, the topology of
Exp.is carefully defined so that the strong dual Exp,becomes a Fréchet Montel space. It is
known that the strong dual of a Montel space is also Montel. Since Exp.is defined as the
inductive limit of Banach spaces, its dual is realized as a projective limit of Banach spaces
Exp,(B,n)’, which is Fréchet by the definition. Hence, the contraction principle is applicable
on Exp,which allows one to prove the existence of center manifolds of the system though
nonlinear problems are not treated in this chapter.

Proposition (3.2.5)[3]:

(i) 7The generalized continuous and the generalized residual spectra are emply.

K.<K 0 <K<K

Fig.5.As k decreases, the Eigen values of %disappears from the original complex plane by
absorbed into the continuous spectrum on the real axis. However, it still exists as a

resonance pole on the sectionond Riemann sheet of the generalized resolvent.

(iii) For any k>0, there exist infinitely many generalized Eijgen values s on the upper half
plane.

(iv) For k > k., there exists a unique generalized Eigen values A(k)on the lower half
plane, which is an Eijgen values ofT,/i in L,(R, g(w)dw)'sense. As k decreases, A(k)goes

upward and at k = k., A(k)gets across the real axis and it becomes a resonance pole. When
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0 <k < k. A(k)lies on the upper half plane and there are no generalized Eigen values s on
the lower half plane.

Proof.(i) Since K*is a onedimensional operator, it is easy to verify the assumption Hence,
the generalized continuous and the generalized residual spectra are empty.

(iii) Let Aand u be a generalized Eigen values and a generalized Eigen function, Aand

usatisfy (id — K*A(A)K>*u = 0. In our case,
- J. k J.
(K7 p | ¢) = 5-(uw| Po)(Po | )

And

2

\ \ . k"
(KX AWK | 8) = (ANK*u | K°6) = (5 ) | R)(Ro | 9)(APs | Po)

forany ¢ € Exp.,.Hence, generalized Eigen values s are given as roots of the equation

21 B fR ﬁg(w)dw — Q.r‘ri‘_(,r‘()\) (Im(A) > 0),
ko (ANPo | Po) = {‘R = g(w)dw (Im(\) < 0). (79)

Since gis the Gaussian, it is easy to verify that for Im(1) > Ohas infinitely many roots
{3 n=o such that Im(A1,)) — oo and they approach to the rays arg(z) = %,%”as n — oo,

(iv) When Im(1) < 0, in which A is replaced by iA. Thus Lemma(shows that when A>k_,
there exists a root A(A)on the lower half plane. & decreases, A(k) goes upward and for 0 <
k. <k, it becomes a root of the first equation of because the right hand side of is
holomorphic in A.

shows that a generalized Eigen function associated with Ais given by u = A()K*u =
%(# |Py) - A(A)_Py|. We can choose a constant u(|Py)as (u |Py) = % Then, u = A(A)'Py| =
A(D)i(Py). When Im(A) <0, i is a usual function written as u = (1 — w)~! € Exp,, although
when Im(A) = 0, uis not included in L, (R, g(w)dw)but an element of the dual space Exp,. In
what follows, we denote generalizedEigen values s by {A,}n-,such that Im |A,| < |4, +

1|forn =0,1,..., and a corresponding generalized Eigen function by un = A(1,,)){P,|. proves
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that they satisfy T;*u,, = il,u,,. Note that when 0 < k < k., all generalized Eigen values s
satisfy Im(A,,) > 0.Next, let us calculate the generalized resolvent of T; /i. yields

Rap — ANK Rrxp=AN)p = Rap=AN)op+ ;)ﬁ(’fa;\@ | Po)A(N) (P, (80)

.
1

for any ¢ € Exp,. Taking the inner product with P,, we obtain

(A(N)o | Po) _ (AN Fo | @)
1— S(ANPy | Po)  1—5(ANP | Po)

(Rad | Po) =

Substituting this into (62) we obtain
Rad = AN + (2i/k — (AP | Bo)) ™ (ANPy | ¢) - AN)(P]. (81)
Then, the generalized Riesz projection for the generalized eigenvalues 4,,is given by

I, ¢ = )—’ﬂ'] RagpdA = Dn<A()\n)PD ‘ ()> AN, }<PO‘ =Dy, <,u'n ‘ U> " Hn, (82)

Or
(ITnd | ) = Dnpin | &) - {pin | ¥), (83)

where D, is a constant defined by

. A _ —1
Dy = lim (A= X) - (21/k — (AP | Po))

the range of I1,is spanned by the generalized eigen-function p,,.Now we are in a position to
give a spectral decomposition theorem of the semi group generated by T; = iM + SP. Since

iMgenerates theC°semigroup onk, (R, g(w)dw)

A

(a) (b)
Fig.6.The contour for the Laplacein version formula.

and Pis bounded, T; also generates the C°semigroup given by
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r+iy
el = lim 1 eM(N = Ty) LodA, (84)

y—oo 27
r—iy

for £ >0, where xis a sufficiently large number. In L2(R, g(w)dw)theory, we cannot deform the
contour from the right half plane to the left half plane because T;has the continuous
spectrum on the imaginary axis. Let us use the generalized resolvent R of T,/i. For this

purpose, we rewrite the above as

y—ix

1 .

Tt Aty =1

R / e (A=T1/1) " od) (85)
—y—ir

whose contour is the horizontal line on the lower half plane (Fig.6(a)). Recall that when

Im(A) <0,((A =T,/ Lo, ¢v) = (RAp |Y)fore,p € Exp,because of Thus we have.

y—ix
1 o o
_Tlt ."' , — > T _.J.l/\t :: , ‘ _
(e | ) ylﬁléo 5 / e (RAD | V)dA. (86)
—y—iz

Since (RA@ |Y)is a meromorphic function whose poles are generalized eigenvalues s
{An}; -y, We can deform the contour from the lower half plane to the upper half plane. With
the aid of the residue theorem, we can prove the next theorems.

Theorem (3.2.5)[3]:(Spectral decomposition). For any @,y € Exp.., there exists t, > 0such

that the equality

(Tt | ) Z D (g | 6) - (pn | ) (87)

n=>0

holds fort > t,. Similarly, the dual semigroup (e™)* satisfies

(_GTlt) 8 (J = Z Dn tAnt <;u'?1 ‘ “) " Hn (88)

n=0

forp € Exp, and t > ty, where the right hand side converges with respect fo the strong dual
topology onExp..'

Theorem (3.2.6)[3]: (Completeness).
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(i) A system of generalized Eigen functions {u, },-o,/S complete in the sense that If (u,|Y) =
0forn =0,1,..., then y=0.

(i, uq, - -@re linearly independent of each other: if Y.p.o antty, = 0.with an € C, then a, =0
for every n.

(iii) The decomposition of (eT1Y)* using {u,}:- /s uniquely expressed as.

Corollary (3.2.7)[3]):(Linear stability). When 0 <k <k,, the order parameter n(t) =
(Z,, Py) for the linearized system decays exponentially to zero ast — o If the initial con-dition
/s an element of Exp.,.

Proof: When an initial condition of the system is given by ¢ € Exp™, the order parameter is
given by n(t) = (Z,Py) = (etp,Py).If 0 < k < k., all generalized Eigen values s lie on
the upper half plane, so that Re[il,,] < 0forn =0,1,.... Then the corollary follows from

(i) If (u,|1p)=0 for all n, provides for any Exp*. Since Exp*is dense in L? (R, g(w)dw),
we obtain (e"19)*y = 0 for any t > t,, which proves i = 0.

(i) Suppose that .7, anu, =0

00 00 00

- Tt X‘E: _2: Tyt~ _‘j: ARt

() — (( L ) ({-?1}_«{-?1 — (I--n_ ('(J L ) /_-{--n_ — (ln( n }-{-?1.
n=0 n=>0 n=0

Changing the label if necessary, we can assume that
Relily] = Re[id{] = Relil,] =,

without loss of generality. Suppose that Re[il,] =--= Re[iA;]and Re[il,]>Re[idx,+1]. Then,

the above equality provides
R.G[i)\o] 2 RE‘[I)\l 2 RE‘[I)\Q 2 .

Taking the limit t — coyields

k

o0
0= g 'a-n(;'fﬂm[m”]ty_n_+ E | (fﬂﬁ?‘:i)‘”_R'O[i)‘“”ty.n.
n=0 n=k+1

Taking the limit t — ~yields
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k
0 = lim E a..nelhn[l)\”}tu.n.

t—00
n=0

Since the finite set u,,...,u,0f eigenvectors are linearly independent as in a finite
dimensional case, we obtain an = 0for n =0,...,k. The same procedure is repeated to
prove a,, = 0 for every n.

(iii) This immediately follows from part(ii) of the theorem.

Finally, let us prove. Recall that generalized Eigen values s are roots of Hence, there exist

positive numbers Band {r;};2,such that

k
1—5@MMRﬂfm > B (89

holds for 2 = rje'? (0 < 6 < m). Take a positive number dso that Im(A,n) > —d foralln =
0,1, ... Fix a small positive number 6 and define a closed curve C;y = C; +-- +Cgby
Ci={r—id| —r; <z <r;}
Co={r; —iy|0 <y <d}
. if N
{rie” |0<60<46}

{'rjew ’ 0<0<7m— 5}§

o 0
I I

and Csand Cgzare defined in a similar manner to C;and C,, respectively,

Let 4, 44,..., Ay (j)be generalized Eigen values s inside the closed curve ()., we have

N(j)

1 C . : . .
9 / e <RA(@"§ ‘ L)d)\ = Zl D-n.el)\n%,uﬂ ‘ 'C"-:)> <:u'n ‘ L‘)
C(5) "
Taking the limit j —» co(r; —» o) provides
1 ' - |
it | N T Y A
<c ) ‘ ) ?IEE.C 5 / e (Rao | )dA
Co+--+Cg

We can prove by the standard way that the integrals along C,, C5, Czand Cistend to zero as
j — o. The integral along C,is estimated as
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T
f MRS | '@".’>d/\‘ < max|[(Rao | V)] - / e Titsing g
AeCy

Cy

< max‘ (Raod | )] - 2-rje 2r;t8/7 g

AeCy

c-+|.-1 C‘n\:i

< iléax‘ (Rad | )] - = (e72r9%/™ —e=mit),

It follows from that

(Ra¢ | ¥)

21/11 — ( P[) ‘ P[))
(A6 | 9) = (AR | B)(AWS | ) + (NP | )(ANEs | 4) )

Since ¢,y € Exp,, there exist positive constants C,,C,, B, B,such that

o] < Cre® R [p(A)] < CoeP2A.

Using the definition of A(A), we can show that there exist positive constants Dy, ..., D,such

that

[(Rao | ¥)
Do + (D1 + DaC1ePtM 1 D3CyeP2 N o DOy CoePrHp)N) L g(N)]
- 2i/k — (A(XN) Py | Po)l '

When |g(1)| — ooas [A| — oo, this yields

. D D+ - DoCrePtIM L DaCseP2IX L DOy e(BrtB2) A
(Rag | )| < Dot D1+ DaCreT 4 ”T’);e TPt L

When |g(4)|is bounded as |1] — oo, is used to estimate . For both cases, we can show that
there exists Ds; > Osuch that

(Raop | ¥)| < DselPrP2)75 (X = pjel?).

Therefore, we obtain

/ eiAt (R;\(} ‘ L))dA g ﬁfD‘S (e(ﬂl—f—.ﬁﬁ_gét/(ﬁ)rj _ E{(ﬁl —|—ﬁg—t)?"j)

Cy
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Thusift > ¢, = w, this integral tends to zero as j — oo, which proves . holds for each
Y € Exp +, the right hand side of Eq.(88)converges with respect to the weak dual topology
on Exp,.Since Exp,is a Montel space, a weakly convergent series also converges with
respect to the strong dual topolog is to give the definition and the existence theorem of Pettis
integrals. After that, a few results on vector-valued holomorphic functions are given. For the
existence of Pettis integrals, the following property.(CE)for any compact set K, the closed
convex hull of K is compact, which is sometimes called the convex envelope property, is
essentially used. For the convenience of the reader, sufficient conditions for the property are
listed below. We also give conditions for X'to be barreled because it is assumed in (X3). Let
Xbe a locally convex Hausdorff vector space, and X'its dual space.

« The closed convex hull co(K)of a compact set AKin X is compact if and only if co(K)is
complete in the Mackey topology on X(Krein’s theorem).

« Xhas the convex envelope property if Xis quasi-complete.

« If X is born logical, the strong dual X'is complete. In particular, the strong dual of a
metrizable space is complete.

« If X is barreled, the strong dual X'is quasi-complete. In particular, X'has the convex
envelope property.

« Montel spaces, Fréchet spaces, Banach spaces and Hilbert spaces are barreled.

« The product, quotient, direct sum, (strict) inductive limit, completion of barreled spaces are
barreled.

Let X be a topological vector space over C and (S, x)a measure space. Let f:S — Xbe a
measurable X-valued function. If there exists a unique I € Xsuch that ({|I;) =
(S¢|fYdufor any & € X', Icis called the Pettis integral off. It is known that if Xis a locally

convex Hausdorff vector space with the convex envelope property, Sis a compact Hausdorff

space with a finite Borel measure p, and if f: S — Xis continuous, then the Pettis integral of 7
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exists , we have defined the integral of the form fy RypdA , where R,pis an element of the

dual X(£2)'. Thus our purpose here is to define a “dual version” of Pettis integrals.
In what follows, let X be a locally convex Hausdorff vector space over C, X'a strong dual with
the convex envelope property, and let S be a compact Hausdorff space with a finite Borel
measure y, Sis always a closed path on the complex plane. Let f:S — X'be a continuous
function with respect to the strong dual topology on X’
Theorem (.3.2.8)[3]:
(i) Under the assumptions above, there exists a unique I(f) € X'such that

(I(f) | =)= / (f | x)dp (90)
for any x eX. fis denoted by (1 = ¢ fdupand called the Pettis integral off.
(i) The mapping f — 1(f)is continuous in the following sense; for any neighborhoodUof zero
in X' equipped with the weak dual fopology, there exists a neighborhood V of zero in X' such
that if (s) eV forany s €S, thenI(f) € U.
(iii) Furthermore, suppose that X is a barreled space. Let T be a linear operator densely
defined on X and T' its dual operator with the domain D(T") < X'.If f(S) < D(T")and the set

{T'f(s)|x)}ses/S bounded for each x €X, then, I(f) € D(TYand T' I(f) = I(T'f)holds, that is,

T | / fdp = | / T’ fdpu (1)
& :

5
holds.

The proof of (i) is done in a similar manner to that of the existence of Pettis integrals on X.
Note that 7is not assumed to be continuous for the part (iii). When 7is continuous, the set
{{T'f(s) |x)}sesis bounded because T'and fare continuous.

Proof: At first, note that the mapping (- |x):X' — Cis continuous because Xcan be
canonically embedded into the dual of the strong dual X'. Thus (f(:) |x): S — C is continuous

and it is integrable on the compact set S with respect to the Borel measure. Let us show the
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uniqueness. If there are two elements I,(f),L(f) € X'satisfying , we have (I,(f) |x) =
(I,(f) |x)for any x € X. By the definition of X', it follows I, (f) = I,(f).Let us show the
existence. We can assume without loss of generality that X'is a vector space over Rand yis

a probability measure. Let L < X be a finite set and put

Vi(f) = Vi = {;r’ c X’

(2 | z) = /(f | 2)ydp, Va e L}. (92)
&

Since (- |x)is a continuous mapping, V;is closed. Since fis continuous, AS) is compact in X'.
Due to the convex envelope property, the closed convex hull co(f(S))is compact. Hence,
W, =V, nco(f(S))is also compact. By the definition, it is obvious that W, nW,, =W, ..
Thus if we can prove that W, is not empty for any finite set L, afamily {W,},c(riniteseyh@s the
finite interpart property. Then, n; W;is not empty because co(AS))is compact. This implies
that there exists I(f) €n; W,such that (I(f) |x) = f;(f|x)dufor any x €X Let us prove that

W, is not empty for any finite set L = {x,,...,x,} < X. Define the mapping L : X' - R,, to be
L(z') = ((a ‘ :1‘1>: (A ‘ :l‘n,>).

This is continuous and L(A S))is compact in R™. Let us show that the element

y = (/(f | z1)dp, . . . /(f | :rn)d,u) (93)

S S
is included in the convex hull co(L(f(S)))of L(f(S)). If otherwise, there exist real numbers

c1,. -, cpsuch that for any (z,,...,z,) € co(L(f(S))), the inequality
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Integrating both sides (in the usual sense) yields I, c;y; < Y“,c;y;- This is a con-
tradiction, and therefore y € co(L(f(S))). Since Lis linear, there exists v € co(f(S))such that
y = L(v). This implies that v € VL n co(f(S)), and thusW;is not empty. By the uniqueness,
N, W, = {I(f)}. Part (ii) of the theorem immediately follows form (90) and properties of the
usual integral.Next, let us show Eq (91). When X is a barreled space, AAis included in

D(T"so that T'I(f)is well defined. To prove this, it is sufficient to show that the mapping

x> (I(f) | Tx) = /(f | T )dp = /<T’f Cx)dp

-
from D(T) c Xinto C is continuous. By the assumption, the set {T'f(s) |x')}ses is bounded for
each x € X. Then, BanachSteinhaus theorem implies that the family {T'f(s)}ses0f
continuous linear functionals are equicontinuous. Hence, for any & > 0, there exists a
neighborhood U of zero in Xsuch that |T'f(s) |x'| <¢for any s € Sand x € U. This proves that
the above mapping is continuous, so that I(f) € D(T)and T'I(f) =T n, W,.

For a finite set L c X, put

Vi (T'f) = {f €X'

(@ |2)= [(@F | 2)du, v e L}

—

T'Vrp(f) = {T"a‘:‘r eX' |2 eD(T), (' |z)= /(f | z)dp, YV € TL}.

Put W, (f) = V.(f) nco(f(S)) as before. It is obvious that N, W, (f) <n, W, (f). Therefore,
{T'I(f)} =T (YWL(f) € T'(\Wre(£) N D(T')
L L
CT'(\(VrL(f) neo(£(S)) N D(T"))
L

c ((T'VrL(f) NT'@(£(S)) NR(T")).
L

On the other hand, if y' € T'V;.(f), there exists x' € Xsuch that y' = T'x'and (x'|x) =

[ S(f|x)dufor any x eTL. Then, for any x L nD(7),

(Y |z)=(T'2" |z) = (' | Tx) = /{f | Tx)dp = /<T’f | x)dp.

S

This implies that y' € Vynp(ry(T_f), and thus T'Vy, (f) < VL n D(T)(T'f). Hence, we obtain
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{T'I(f) ﬂ Viooer) (T'f) neo(T' f(S ﬂ Wieanm) (T'f).
If (x'|x) = (fs(f|x))du for dense subset of X then it holds for any x € X. Hence, we have

ﬂ” T'f) ﬂ”mm(Tf) {T'1()}. (94)

which proves T'I(f) = I(T'f).Now that we can define the Pettis integral on the dual space,
we can develop the “dual version” of the theory of holomorphic functions. Let Xand X'. Let
f:D - X'be an X,-valued function on an open set D c C.

Definition (3.2.9)[3]:

(i) fis called weakly holomorphic if (f|x)is holomorphic on [in the classical sense for any
x € X(more exactly, it should be called weak-dual-holomorphic).

(ii) fis called strongly holomorphic if

1
lim
20—2 29 — &

( flzo) — f(2) ) (the strong dual limit) (95)
exists in X'for any z € D(more exactly, it should be called strong-dual-holomorphic).
Theorem (3.2.10)[3]: Suppose that the strong dual X'satisfies the convex envelope property

and f:D — X'is weakly holomorphic.

(i) /f fis strongly continuous, Cauchy integral formula and Cauchy integral theorem hold:

1 |
flz) = — O)Mdzg, /f(zg}dzg =0,

wherey c Dis a closed curve enclosing z € D.

(1if) If f is strongly continuous and if X'is quasi-complete, fis strongly holomorphic and is
of C” class.

(i) /f X is barreled, the weak holomorphy implies the strong continuity. Thus(i) and(ii) above

hold; f is strongly holomorphic and is expanded in a Taylor series as

(") (q
f(z) = Zﬂ ! - (,a —a)" (strong dual convergence), (96)
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neara € D. Similarly, a Laurent expansion and the residue theorem hold if fhas an isolated
singularity.
Proof: (i) Since fis continuous with respect to the strong dual topology, the Pettis integral

1 [ f(20)
I(z) = dz
(2) 2mi ) 29— 2 ’
qn'

exists. By the definition of the integral,

(I(z) | @) = o dz

-~ -~
20 2

1 / (f(20) | x)

for any x € X. Since (f(z) |x)is holomorphic in the usual sense, the right hand side above is
equal to (f(z) |x). Thus we obtain I(z) = f(z), which gives the Cauchy formula. The Cauchy
theorem also follows from the classical one.

(i) Let us prove that 7is strongly holomorphic at z,. Suppose that z,=0and £z,)=0for

simplicity. By the same way as above, we can verify that

fz) 1 / o)
= azo

2w ) zo(zo0 — 2)

2
1 " flz z ‘
. ./f(QO)d:‘:o+‘ / 2f( 0) d=.
27 25 211 ) z25(20 — 2)
v v

Since X'is quasi complete, the above converges as z — 0 to yield

_ 2 1 [ f(z
f(0) := lim /%) =5 / figo)d:::o.
S

z—0 2z

In a similar manner, we can verify that

 dzn

n d™ nl [ f(z
f( )(:) — f(:) = — / (’ ( F?))n+1{].r-,’30 (97)
.

exists foranyn =0,1,2,....
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(iii) If X'is barreled, weakly bounded sets in X'are strongly bounded By using it, let us prove
that a weakly holomorphicfis strongly continuous. Suppose that £(0) = 0 for simplicity. Since

(f (z) |x)is holomorphic in the usual sense, Cauchy formula provides

(f(2) | x) 1 U/“ 1 (f(:0)|:r){m
= dzg.
20

, N N
2 20

Suppose that |z] < dand yis a circle of radius 2§ centered at the origin. Since (f(:) |x)is

holomorphic, there exists a positive number M such that |f(z,) |x'| < Mforany z, € y. Then,

This shows that the set B = {%Z)

|z| < 6}is weakly bounded in X'Since X'is barreled, B is
strongly bounded. By the definition of bounded sets, for any convex balanced neighborhood
U of zero in X'equipped with the strong dual, there is a number t > 0 such that B c U. This

proves that

J

-U
t

f(2) = f0) = f(2) € ?r C

for |z — 0] < &, which implies the continuity of 7fwith respect to the strong dual topology.
If Xis barreled, X'is quasi-complete and has the convex envelope property. Thus the results
in (i) and (ii) hold. Finally, let us show that fz)is expanded in a Taylor series around a € D.

Suppose a = 0 for simplicity. Let us prove that

m
) S 1rdrf,
n—

forms a Cauchy sequence with respect to the strong dual topology.

i<f(?1)(0) I .,1_,> — 1 / <f(:0) I "F> d:O

n! 27 zg+1
!
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for any x € X. Suppose that yis a circle of radius 2dcentered at the origin. There exists a
constant M, > 0such that |(f(zy) |x)] < Mx for any z, € y, which implies that the set
{f(z0) | zo € y}is weakly bounded. Because X'is barreled, it is strongly bounded. Therefore,
for any bounded set B c X, there is a positive number MBsuch that |(f(zp) [x)| <

MBfor x € Band z, € y. Then, we obtain

L)ooy
—(f™(0) | z)

7.

1 ;'I‘IB - Jir
- — AT = ———.
o (20)7+1 (20)"

<

By using this, it is easy to verify that {(Sm|x)}n-ois @ Cauchy sequence uniformly in x B
when |z| < §. Since X'is quasi-complete, S,,converges as m — «in the strong dual

topology. By the Taylor expansion in the classical sense, we obtain

(f(z0) | 2)2" = Z —<f(”)(0) | x)2".

n!
zp=0 n=0 1

1 dr

<f() ‘ :1?) - T;} n! dzy

Since lim S, exists and(- |x): X" - Cis continuous, we have

m-—-0o

Uu>l»—<§:%ﬂMWk”a>-

n=0

For any x € X. This proves for a = 0. The proof of a Laurent expansion, when fhas an
isolated singularity, is done in the same way. Then, the proof of the residue theorem
immediately follows from the classical one.

In a well known theory of Pettis integrals on a space X, not a dual X', we need not assume
that X'is barreled because every locally convex space X has the property that any weakly
bounded set is bounded with respect to the original topology. Since the dual X'does not
have this property, we have to assume that X'is barreled so that any weakly bounded set in

X'is strongly bounded.
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Chapter 4
Global Integral Criteria for Composition Operators
Let D, denote the Dirichlet type space of functions analytic on the unit disk U and Q, the
conformal invariant version of this space. Any analytic self-map ¢ of U induces a
composition operator C, acting on D, respectively, @, by C,f=7- ¢, where f €D,
respectively, f €Q,,.

Section (4.1):Dyadic Carleson Ceasures

Let U, U and dm denote the unit disk, the unit circle and the two-dimensional Lebesgue
measure on the complex plane C, respectively. In this chapter, we consider the class D, a €

(—1,=), of functions f analytic on U for which

111D, = 1O+ f 1@ (1= 1z%) dm(z) < oco.
U

Since Do is the classical Dirichlet space, these spaces are called Dirichlet type spaces or
weighted Dirichlet spaces. Whereas there exists a lot of chapters on D, a relatively new
concept was introduced in by the conformal invariant version of the space D,, the spaces

Qg0 € (—1,00). A function f €D, belongs to if and only if

— = 2\ ¢
||f||i)a = | £(0)]* + sup f | (2)]? (1 _ ' w _ ) dm(z) < 00
U .

wel l—w

Let @ denote the set of non-constant analytic functions ¢ :U —U. Any such function defines a
composition operator C,, acting on a space of functions f analytic in U by the simple rule C,f
=f ¢. There has been done much research on the relations between the function theoretic
properties of ¢ and the topological properties of the operator C,, in different circumstances,
We want to characterize here by means of area integrals related to the function ¢ the
boundedness and compactness of C, acting on Da and Q,. A central role in the proofs is

played by a dyadic decomposition of U into Carleson windows or boxes and certain
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properties of positive measures on U defined with the help of such a decomposition,

whereas the remaining parts are dedicated to the different types of integral criteria.
In this part, we consider sub arcs | <oU with arc length#(l ) and Carleson windows
S(h:=={r¢|Qr—t)/2n<r <1, el
based on | and their top halves
R(I):={r¢ | Qr — ()27 <r < (47 — (])) /47, ¢ €1).
Now we consider the set of dyadic sub arcs

Ly :=1{¢ | 2kn /2" <argl < 2(k+1)m/2"},
neNg, k=0,1,....2" —1,

of oU and the decomposition of U by the windows R(lnk). Obviously, they are pair wise

disjoint and their union covers U. Further, the set

! ( E([n.k)) ( (2k + 1)3'7)
ank=11- expli—————
3T 2n

of the centers of R(lhk) is separated. This means that the hyperbolic distance between

neNg, k=0,1,...,2"

different points is bounded away from zero. For further use we fix a numeration R;= R(/;), j €
N, and denote a;the center of R; defined above. It is easily seen that the windows R; have
bounded hyperbolic diameter and that their linear dimensions are of the same order as 1 —
la; |. Thus, £(I; ) = 1 - |a; |.Here and throughout this chapter the notation U = V means that
there exist positive constants C; and C,independent of U and V such that C;V < U < (C,V . In
addition, we will use the abbreviation U < V for the fact that there exists a constant c

independent of U and V such that U < CV .

Lemma (4.1.1)[4]: Lett,s + 1 € (1,). Then forany w € U the approximative identities

11— wz| ~ |1— wa; |,z €R;, (1D
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I+s d'r”(‘:) ~ (l _ |w|)5 (2)

|1 —wgz

and

3 (I —la;D" 1 3)
; 11 —wa;[*s (1 —|w)s
are valid.

As a preparation of our characterization theorems we now prove

Theorem (4.1.2)[4]:Let B € (1,),p € (0,) and let py be a finite positive measure on U.
Then for a dyadic decomposition Rj = R(l; ), j € N, as above, the following equivalences are

valid, wherein we use the abbreviations

(1 —|wl|?)¢ (R;)
T(w, z,€):= and Vg .= :
( : |1 — wz|l+e ANTIBY:
(1) sup fr(u.-', Z, é)ﬁ diu(z) <o & |p|led :=supvjg <00
wel A J
U
for some (any) €>0.
(11) lim fr(u.-'. Z, é)’8 diu(z)=0 <& lmvjg=0

w—al j—oo T

U

for some (any) €>0.

P
(ii) f(fr(u.'.:-é)ﬁ r:'/u(:)) Lulq <X <«
(1 —|wl|?)-

u U

||ﬂ||Cd leﬁ<oo

for some (any) e> max{ﬁ /3’

Proof: (i)=>Taking w = aj in any R; we see that this direction is an immediate consequence of

Lemma (4.1.1)
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()<Applying (1) and (3) to our dyadic composition of U we get

[‘l’(u-’. Z, e‘)ﬁ du(z)~ Z v p(l— |(;J-|)ﬁr(u.'.aj. G)ﬁ.
U J

This proves the second direction of (i) due to B >1 and vjpg < ||H||Cg(ii) This is similar to (i).

(ii)=Using (1) once again we find

p ] 1
o B g dm(w)
f(fr(umg) d'u('")) (1= w]?)?

u U

p
%Z(Zt(cfﬁﬂkf}ﬁ(l - \ffk\)ﬁlf’k,ﬁ)
J

k

which implies the sufficiency of the left side of the equivalence (iii).(iii) « To prove the

sufficiency of the right side we first recognize that||u||cg < « implies ”“”c;f », Therefore, if
P

p € (0,1], then (3) and the preceding estimate immediately yield the desired conclusion. If

p > 1 we define a linear operator T acting on a space of sequences by

T({(‘.‘J,' | J EN}) = {Zr((fj.a;{,e)ﬁ(l — |c'{k|)ﬁc‘;{ J EN}.
k

Observe that T is bounded on [*and [*owing to (3) and the case p € (0, 1]. An application
of the Marcinkiewicz interpolation theorem vyields that T is bounded on [P,p € (1, ). This
fact together with the above estimate for the double integral proves the rest of the assertion
(iii).

Section (4.2):Integral Criterias

we repeat now some definitions and basic facts used in the sequel. A linear transformation
T :X-Y between two Banach spaces X and Y is said to be bounded or compact if T maps
bounded sets of X onto bounded or relatively compact sets of Y . If X =Y is a Hilbert space
with inner product ||-,||,, then for a bounded operator T on X we define its singular numbers

as
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sp(T) =inf{||T — K|| | K : X — X has rank nf}.

The compact operators are those bounded operators T for which s,(T)— 0 asn -
. Forp € (0,) let

0 1/p
Sp(X) ::|T:X—>X||T|p ::(Z(S”(T))p) <oo]

n=0

denote the class of all p-Schatten ideal operators on X. It is known that Tis bounded or
compact on X if and only if T*T has this property and that T € 5,(X) is equivalent to T*T €
Sp/2(X). Usually, the members of the classes S1(X) and S2(X) are called nuclear and Hilbert-

Schmidt operators, respectively.

If p =1, the class Sp(X) is a Banach space relative to the norm | - |p. In the case p € (0, 1) the
class S,(X) is a complete topological vector space relative to the metric | - |§ Furthermore,
we use that for bounded operators Ti, T2 and T &S5,(X) the inequality |T\TT,| <

ITL [T [p IT2 1l is valid.

To prove the desired characterizations for C, we use some known facts on Toeplitz
operators on Bergman spaces. Recall that for a € (—1,%) the weightedBergman space A2

consists of those functions f analytic in U which fulfill

||f||i& = f |f(:)|2(1 — \:lz)adm(:) < 00,
U

and that for a finite positive measure p on U the Toeplitz operator T on this space is defined

by

. (w)
(T f)(2) :=f T —fi.i)%a d(w).
U
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Lemma (4.2.1)[4]: Let « € (—1,),p € (0,00) and let p be a finite positive measure on U.
Then T is a bounded or vanishing or p-Schatten ideal operator on AZif and only if p is a

bounded or vanishing or p-summing (a + 2)dyadic Carleson measure, respectively.

Proof: The definition of the inner product on 4%

2

(el = [ F@E@(1 = P dm(a). foge a2,
U

together with the reproducing kernel formula of A%

(04

o T

o . +1 L — , )
(T f.8) e = ff(:)g(:)du(:)- /g €Ay
U

Thus T'is bounded or compact onAZ if and only if the embedding mapE :4%-L2(y) has the
same property, respectively. This is the case if and only if py is a bounded or vanishing (a +
2)Carleson measure Therefore the first two statements follow from Theorem (4.1.2) and the

above remark. The third statement is just a by-product of Luecking’s main.

Theorem (4.2.2)[4]:Leta € (—1,0),p € (0,0) and ¢ € ®. Then the following

equivalences, wherein we use dm,(z) = (1 — |z|*)* dm(z) as an abbreviation, are valid:

(i) C, is bounded on Dy

Supfr(w.qb(:t).€)2+a|gbf(:)|2dma(:) < 00

wel/
U

for some (any) €>0.

(i) C, is compact on D&

? dmg(z) =0

w—olU
U

lim ft(w.qﬁ(:),e)zjwlfb’(:)

for some (any) €<0.
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(i) Cy, is a pSchatten ideal operator on D,

p/2 2 (1)
f(fT(u“(p(:)‘€)2+o:|¢f(;)|2 dma(:)) (l(hnl(jli)z =0

u U

1 2
2+ a’ 2p +pa

for some (any) e>max{

1.

Proof. Inserting the usual change-of-variable formula into the inner product (,-)p_ of the

Hilbert space D,, we get

(Co f. Cpg)D, =f(qb(U))g(qb(O))+[f"(u--')g"(u-')Ma(¢.u--‘)c/m(u-'),
U

where

wepl),

My(Pp, w) = l Zﬁf)(zj)zw(l - ‘:-jlb) ;
) weU\gU).

Using standard arguments it is easily shown that we may assume, without loss of generality,
that @(0) = 0 for the map ¢ €® under consideration. For this map, we define B, = DC¢D‘1,
where the differentiation operator D is defined by(D7)(z) ={z) and its inverse by (D-17)(z)
=fOZf(W)dW 0 f (w)dw. Both D and D-' establish an isomorphism between D2={f €
Da | f (0) = 0} and A% . Hence, we get for f, g €4% using again the changeofvariable

formula,

(8380 f.) 5 = (CoD™ 1. CoD Ve, = (T2 Fr]

where dua(w) = (/(a + 1))Ma(,w) dm(w) induces the Toeplitz operatorTE, T on A%. This
implies By*By = Ti{,. From the previous analysis we see that C,, :Dq— Dgis bounded, compact
or in S, if and only if Ty, is bounded, compact or in Sp/z(Aé). Since Co|D, and Cq|D,differ
only by a one dimensional operator, a combination of Lemma (4.2.1) with Theorem (4.2.2)
implies the desired assertions. From this theorem one may deduce simpler characterizations

in special cases. We give two examples for this fact. The first one immediately follows from
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the third assertion of Theorem (4.2.2) in the case p = 2 using € = 1 herein and combining

the result with (2) and Fubini's theorem.

Corollary (4.2.3)[4]: Let « € (—1,) and ¢ € @. Then

9 (2))?
| (2)]|%)> T

Cyp€$(Dy) < /(1 dmgy(z) < Q.
U

This generalizes some results. Similar characterizations for Cee Sp(Da).

Corollary (4.2.4)[4]: Let « € [0,2) and let ¢ € @ be boundedly valent. Then Cy is compact

on Do

. 1 — |z
Cy is compacton D, < lim —— =0
¢ P =1 1 — ¢ (2)]?

In the sequel we shall use the following abbreviations. The closed unit ball of a Banach
space X will be denoted Bx and the characteristic function of a set E by 1e. For a € U we
consider the automorphism ca(z) = (a — z)/(1 — az)of Uand we put dma,a(z) =
(1 — |o,(2)|*)* dm(z). Now, we formulate a conformalinvariant version of the first two

assertions of Theorem (4.2.2).
Theorem (4.2.5)[4]: Let « € (0, ) and ¢ € ®. Then the following equivalences are valid:

(i) Cp :Da »Qq is bounded <

sup /T(w,d)(z),e)”“ld)’(z)lzdma,a(z)<oo

a,wel

for some (any) €>0.

(i) Cy :D, »Q, is compact <

lim sup[r(w,qb(z),e)|q5’(z)|2dma_a,(z):O
lw|—1 anU '
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for some (any) €>0.

Proof: (i)>For a>0 and @e® let

Ny(p,u,a)= Zq")(:)::.r(l — |U(-l(z')|2)a’, ueopU),
B 0, weU\¢(U)

If we put duap.a() = Na(®, -, @a)dm(-) we get by a change of variable

/|(fO¢I)!(ZI)|2dma.a(Z):f|f,(zﬁidﬂa,rf).a(z)-
U U

For w € U \ {0}, we consider the function f,, defined by wfw(z) = (1 —wz)~@+001+8)/2gnd we
see that (2) implies ||[fw||3, = (1 — |w|)~@tO0+E).Fyrther, the assumption together with the

Closed Graph Theorem(4.21.2) indicates that

1Cs fullow = I fuwllp,- For I ={e |16 — 6o <271e(1)} and w = (1 — £(1)/
(27))e'%  we get using (4)

“ditg.p.a(2)

( inf }f;i,.(:}|3)m,¢,a(5(m@ f | f (2)

zeS)
S(I)

f (E(]))(z—i—oi){l—l—(—')

This estimate for the measures pq,9,a implies, due to Theorem (i), the desired assertion.

()<=Again we use our dyadic decomposition {R; | j € N} of U. For f € Dalet Cl;EEj be such
that |f” (a;)| = sup{|A2)| | z € Rj }. Some elementary geometric considerations together with

Lemma (4.1.1)and the submean value property of |f|2 imply
AN Y < VP (1 = 1a:12)2 T2 < 11 £112 (5)
| [ (2)] (-U'a.gb.a((-)_Z‘f (f*'j)‘ (L =la;17)" " = flp,
U J

Hence, the second part of (i) has been proved.(ii)=is similar to (i)=(ii)<It is easily seen that
the global integral condition of (i) follows from the global integral condition of (ii). So, to prove

the compactness of C,, in our case it is sufficient to show that ||C,, f,||a=—0 for any sequence
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{fu} € Bp, with f,~0 uniformly on compact subsets of U. To this end, let U,= {Z| |Z |<t} for any

t € (0, 1) and consider the inequality
: : 2 | |
ICy il G, — | Fu(@ON]” < Ii(n, 1) + Ly(n. 1),

where

2 . _
1y, (2) dﬂ-oz.qb.a(z)

hmiw=ﬂmj ﬁ@)
aclU ’

and

2 | |
Lo, (D) dite,¢,qa(2)

L(n,t):= Sup/‘ﬁf(z)
aelU
U

It is clear that lim I;(n,t) = Ofor any t € (0, 1). Now,we repeat the estimates in (5) for the

n—->oo

measures 1uwtdya,ea and see that lirr11 supyl,(n,t) = 0. In the following theorem we consider

the composition operators C,, :Q, »~Dy and for ¢ e®,t € (0, 1) we define U, = {z | |9(z)| n, t}.
Theorem (4.2.6)[4]: Let « € (0,) and ¢ € ®. Then

(i) Cp :Qq »Dg is boundede

’ dm(2) < o0. (6)

sup f (P2 (2)
f€Boo )

(ii) Cy :Qq —D, is compact@ satisfies (6) and

21U\U¢,r (2)dmy(z) (7)

lim  sup / NRCIENAES
f—1 feBo, J

Proof: (i) is just a reformulation of the definition of boundedness.

(i)« By the usual arguments we see that it is sufficient for our purpose to consider a

sequence {fa} © Baa converging to 0 on compact subsets of U and to show that {Cefn}
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converges to 0 in the topology of the norm ||-||pa. Since (6) implies ¢ € D, and {#} tends to 0

uniformly on compact subsets of U, we get for given €>0 and n big enough the estimate

] b @)y, () dma () < el bl
U

This estimate together with (7) immediately yields the assertion.

(i) > Since (6) is implied by the boundedness of C,,, we have to prove

1
only (7) and we know that, according to (6), ¢ € D,. Since {n 2z,} is a norm bounded

sequence in Q, and converges to 0 uniformly on compact subsets of U, we see that

1
{nz||p"||D,0} tends to 0. With some additional arguing, we may conclude that for given ( >0

and t € (0, 1) big enough the estimate

/ 4" ()" 1w, (2) dma(2) <€
U

is valid. This implies that for £B,_, fanalytic in U, we get

f @@ O 1nv,, @) dma @) < el £11%

U

Now, we proceed as follows: we approximate & B,_ by fs(z) = f (sz), s €(0, 1), s > 1, we use
IfslQ« < lIfllaa @nd the compactness of C, to show that there exists a number t € (0, 1)

depending on f and ( such that)

2 | |
Linw,, (2) dme(z) <€

f |/ (#(2)¢(2)

U
The rest of the proof may easily be accomplished using the finite covering propertyof the set
Cy,(Bg,) Which is relatively compact inD,.

Corollary (4.2.7)[4]: Let a € (0,00) and @pe®.

(i) If Cy :Qq ~ D, is bounded, then
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1(-Y|2
sup f LaC) dmy(z) < 00, (8)
teil

11— C¢(2)]?
U
(i) If
¢’ (2)|? )
) A=1p@PY Aal2) <o ©)

then C,® :Q, — is compact.

(i) If @(U) lies in a polygon inscribed in dU, then (8) and (9) are equivalent.
Proof. (i) Since f; (z) = log(1-(z) € Q, for any {edU, ||fz|laa<1

we conclude that ||f7|| /|| f;||aee By, and we see that Theorem (4.2.6)(i) implies (8).

(i) Formula (9) together with the estimate

(1 =1z @ = fllg, forfe Qq

Thus, the assertion is a consequence of Theorem (4.2.6)(ii).

(iii) Obviously, we only have to prove the implication (8)=(9). To do so, we denote the
vertices of the polygon in question by ¢, k =1, .. .,n, say. Now we break the unit disk into
pairwise disjoint pieces. One of them is a compact subset wherein the relation between the
two integrals causes no troubles. The other ones are sets wherein the images of the points
under the map ¢ come close to the points (i . In these pieces we use |{;, —0(2)] < 1-|¢(2)|?
to prove the rest of the equivalence. the following conformal invariant version of Theorem
(4.2.6) may be proved in a similar way to verifying that theorem. Therefore, we leave the

details for the interested reader.
Theorem(4.2.8)[4]:Let « € (0,0) and ¢ € @. Then

(i) C, is bounded on Q,if and only if
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sup f!f’(qﬁ ()¢ )| dimg.a(z) < 0o, (10)
acl, feBg, 7

(ii) Cy, is compact on @ if and only if ¢ satisfies (10) and

lim  sup f | (9@ () 1wy, (2) dmga(2) =0. (11)
'~laeu, feBy, i

In the following corollary, we give some simpler, but only necessary or sufficient conditions
for the compactness or boundedness of C, on Q. In the proof, we use only Theorem (4.2.8)
for the special functions f; (z) = log(1 - (z), { €U, as we have done above to prove
Corollary (4.2.4). So, there is no need torepeat the arguments. To make a long story short

we use the abbreviations

¢ (2)]? 9/ (2))?
— Gy(2):=— ——
1—2¢()) ¢ 01— p()]?)2

Fy ()=

for ¢ € oU and ¢ € &.

Corollary (4.2.9)[4]: Let a € (0,) and @<®.

(i) If Cy, is bounded on @, then

sup / Fo.c(2)dmg,a(z) < 00. (12)
aclU, tedU
U
(ii) If @ satisfies
Suprgb(:)dma,a(Z) < 00, (13)
aEUU

then C,, is bounded on Q.

(iii) If C, is compact on @, then ¢ satisfies (12) and

lim  sup fF¢,£(3)1U\U¢_,(:)c'/”?a,a(f-)=0— (14)
Hlaeu,geaUU '

(iv) If ¢ satisfies (13) and
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lim sup f Gy(D)1p\u,,(2) dmgy o(2) =0, (15)

t—=1,cU

then C, is compact on Q,.The following corollaries of this type possibly need some hints for

the proofs.

Corollary (4.2.10)[4]: Let a € (0,) and @<®.

(i) If @ is boundedvalet, then C,, is bounded ong,.
(ii) If fuGy(2) dm(z) < = then G, is compact on Q.

Proof: (i) We use that, according for f €Q,

1

IIfH%ga — £ (0)]* < a2” sup [( / |f"(:)|2dm(:))(1 — ) tdr.
u,EUO U,

Therefore, for f € Baq and ¢ boundedly valent the integral in (10) is less than a multiple of the

integral in the above formula and (i) follows from Theorem (4.2.8)(i).

(i) The integral condition in (ii) implies (13). Hence,

lim f G(p(:)ly\%.r(;) dm(z) =0.

t—1

U
This implies that (15) holds and therefore (ii) is a consequence

Corollary(4.2.11)[4]:Let « € (0,00) and let ¢ € @ be such that ¢(U) lies in a polygon

inscribed in 0U. Then
(i) Cy is bounded on Q,<(13) holds.
(i) Cy is compact on Q< (13) and (15) hold.

Proof: It suffices to verify (ii). Of course, we only need to show that in our case (14) implies
(15). This may be done using the proof ideas of Corollary. At the end, we want to mention

without proof that it is possible to use the fact that all boundedly valent functions on U do not
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distinguish between the little Bloch spaces and the vanishing Q,-spaces (a >0), as well as

our present results to prove a conformal invariant version of Corollary (4.2.4).
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Symbol

HP:Hardy space

[P : Bergman space

o~
QN

:Hilbert space

L':Lebesgue on real line

Re:real

Sup:Supremum

a.e:almost every where

L*:essential Lebesgue space

inf :Infimum

FEA:Finite Element Analysis

Im:Imaginary

Ker:Kernel

dim:dimension

Supp:support

max:maximum

co:convex

arg:.argument

LP:Hilbert space

L/st of symbol
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77
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