الآيــة

ك ك

بسم الله الرحمن الرحيم

چ...ئې ئې ئى ئى ئد ى ى چ

صدق الله العظيم

الإسراء: الآية 85

Abstract

Oxalohydroxamic and Benzohydroxamic acids were prepared, from oxalic and benzoic acids by the action of their corresponding methyl esters on free hydroxylamine.

The synthesized acids were used as chelating agents towards two different metal ions Fe(III) and Cu(II).

The free ligands were characterized by their melting points, molecular weight, the results were found to be in agreement with their theoretical values.

The free ligands and complexes of Fe(III),Cu(II), were studied spectroscopically, using IR techniques. The result obtained showed that most characteristic bands associated with hydroxamic acid functional group that is due to O-H, C=O, N-O and C-N.

ملخص البحث

تم تحضير اثنان من الأحماض الهيدروكسيميه بنزو هيدروكساميك و أوكسالو- هيدروكساميك من حمضى البنزويك و الاوكساليك وذلك بتحضير بنزوات الميثيل أولا ثم تفاعل هذه الإسترات مع هيدروكسيل أمين الحر.

باستخدام هذه الأحماض تم تحضير معقدات مخلبية لكل مع ايونات معدنى الحديد (+3) و النحاس (+2) .

كما تم التعرف على هذه الأحماض عن طريق تحديد الوزن الجزيئى للمركبات (باستخدام طريقة المعايرة مع هيدروكسيد الصوديوم) , و درجة الأنصهار , وقد وجدت جميعها مقاربة من القيم النظرية.

تمت دراسة أطياف كل المركبات التى تم تحضيرها باستخدام أطياف الأشعة تحت الحمراء.وكانت النتيجة المتحصل عليها متضمنة لمعظم الزمر

الوظيفية التي توجد في احماض الهايدروكساميك
$$O-H$$
 , $C=O$, $N-O$ and $C-N$.

Acknowledgements

Firstly thanks to allah, I would like to express my sincere and grateful thanks to my supervisor Dr- Elmugdad Ahmed Ali who has supervised this study and offered his direction, encouragement and guidance throughout this work.

I am grateful to all the staff of chemistry departments, in college of science in Sudan University of science and Technology, for their help and useful advice.

DEDICATION

To my father,

Mother,

Brothers and Sisters

LISTS OF CONTENTS,

NO	Title	Page
	Approval page	I
	الآيــــة	II
	Abstract	III
	ملخص البحث	IV
	Acknowledgements	V
	Dedication	VI
	List of contents	VII
	List of figures	IX

	List of tables	X
	Abbreviations	XI
Chapter one		
1.1	Hyroxamic acids	1
1.1.1	Structure of hydroxaic acids	2
1.1.2	Properties of hydroxamic acids	4
1.1.3	Nomenclature	6
1.1.4	characterization	6
1.1.5	Preparation of hydroxamic acids	7
1.1.6	Hydroxamic acids metal complexes	8
1.1.7	Photo- chemical behavior of hydroxamic acids	11
1.1.8	Mutagenic activity of some hydroxamic acids	11
1.1.9	Applications	12
1.1.9.1	Biological application	12
1.1.9.2	Nuclear technology	12
1.1.9.3	Microscopic analysis	12
1.1.9.4	Detergents	13
1.1.9.5	Volumetric analysis	13
1.1.9.6	Quantitative organic analysis	13
1.2	The chemistry of coordination compound	15
1.2.1	Complexes formation	16
1.2.2	Complexing agents	16
1.2.3	The ability of ligands to form complexes	17
1.2.4	The ability of metal to form complexes	18
1.2.5	Chelating agents	20
1.2.6	Stability of complexes	21

1.2.7	Nomenclature of complex compound	23	
1.3	Transition metal	23	
1.3.1	Iron	23	
1.3.1.1	Occurrence	23	
1.3.1.2	Properties	24	
1.3.1.3	Iron compound	24	
1.3.2	Copper	24	
1.3.2.1	Occurrence	24	
1.3.2.2	Properties	25	
1.3.2.3	Copper compound	25	
1.4	Objectives of the study	26	
Chapter two			
2.1	Preparation of hydroxamic acids	27	
2.1.1	Preparation of oxalohydroxamic acid	27	
2.1.2	Preparation of benohydroxamic acid	28	
2.2	Determination of molecular weight by titration method	30	
2.3	Preparation of hydroxamic acids metal complexes	31	
2.3.1	Fe(III) complexes	31	
2.3.2	Cu(II) complexes	31	
Chapter three			
3.1	Result		
3.1.1	IR Data	32	
3.1.2	Molecular weight	33	
3.2	Discussion		
3.2.1	General approach	34	
3.2.2	Preparation of hydroxamic acids	34	

3.2.3	Metal complexes	35
3.3	Conclusion	36
	Appendix	
	(1A) IR spectrum of oxalohydroxamic acid	37
	(2A) IR spectrum of benzohydroxamic acid	38
	(3A) IR spectrum of Fe(III) oxalohydroxamic acid	39
	(4A) IR spectrum of Fe(III) benzohydroxamic acid	40
	(5A) IR spectrum of Cu(II) oxalohydroxamic acid	41
	(6A) IR spectrum of Cu(II) benzohydroxamic acid	42
	References	43

List of figures:

Fig (1.1)	Structure of hydroxamic acid	1
Fig (1.2)	Thio hydroxamic acid	2
Fig (1.3)	Keto form z and E-isomer	3
Fig (1.4)	Mono –alkyl derivatives	3
Fig (1.5)	Hydrogen bonding	4
Fig (1.6)	Inter- and intra- molecular hydrogen bonding	5
Fig (1.7)	Compound forming complexes	10
Fig (1.8)	Cationic, anionic or neutral metal complex	15
Fig (1.9)	Five membered chelate rings	18

List of tables:

Table(3.1)	The infrared absorption frequencies of hydroxamic 32	
	acids	
Table(3.2)	The infrared absorption frequencies of Fe(III) complexes	32
Table(3.3)	The infrared absorption frequencies of Cu(II) complexes	32
Table(3.4)	Molecular weight of hydroxamic acids by titration method 33	

Abbreviations

cm	Centimeter (10 ⁻² of ameter)
EDTA	Ethylene diamine tetra acetic acid
G	Gram
U.V	Ultra violet
IR	Infrared
N.M.R	Nuclear Magnetic Resonance
m.p	Melting point
Conc	Concentration
Fig	Figure

No	Number
Lit	Literature
A	Appendix
°c	Degrees centigrade
ОНА	Oxalo Hydroxamic Acid
ВНА	Benzo Hydroxamic Acid