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Abstract

We provide information about the structure of a sequence in a separable Banach space. We
prove that non-reflexive spaces which are M-ideals in their biduals are almost square. We show
that every space containing a copy of ¢, can be renormed to be almost square. A local and a weak
version of almost square spaces are also studied. We study superprojective Banach spaces. We
show that they cannot contain copies of £; which restricts the search for non-reflexive examples
of these spaces. We examine the stability of subprojectivity of Banach spaces under various
operations, such as direct or twisted sums, tensor products, and forming spaces of operators.
Along the way, we obtain new classes of subprojective spaces.
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Chapter 1

Banach Spaces with Almost Overcomplete and
Overtotal Sequences

A sequence in a separable Banach space X(resp.in the dual space X*) is

said to be overcomplete (OC in short) (resp. overtotal (OTin short)on X)

whenever the linear span of each subsequence is dense in X <resp. each

subsequence is total on X>. A sequence in a separable Banach space

X(resp.in the dual space X*) is said to be almost overcompletes (AOC in
short) (resp.almost overtotal (AOT in short)on X) whenever the closed
linear span of each subsequence has finite codimension
in{resp. the annihilator (in X)of each subsequence has finite dimension).
We provide information about the structure of such sequences. In particular
it can happen that, an AOC (resp. AOT) given sequence admits countably
many not nested subsequences such that the only subspace contained in the
closed linear span of every of such subsequences is the trivial one (resp. the
closure of the linear span of the union of the annihilators in X of such
subsequences is the whole X). Moreover, any AOC sequence {x,}nen

contains some subsequence {xnj}jeN that is OC in [{xnj}jeN]; any AOT
sequence {f,}nen CONtains some subsequence {fnj}jeN that is OT on any
subspace of X complemented to {fnj}]TeN.

We use standard Geometry of Banach spaces. In particular:

(i) [S]stands for the closure of the linear span of the set S;



(if) The annihilator in X* of a subset I' of the Banach space X is the
subspace I't ¢ X* whose members are the bounded linear functionals
on X that vanish on I;

(iii) The annihilator in X of a subset I of the dual space X* is the

subspace I'" ¢ X,I'" =Ny¢r kerf;

(iv) AsetI’ c X* is called total over X whenever I'™ = {0}.

A sequence in a Banach space X is called overcomplete (OC in short) in
X whenever the linear span of each of its subsequences is dense in X. It is a
well-known fact that overcomplete sequences exist in any separable Banach

space. On the basis of this notion, we introduced the following new notions.

(i) A sequence in a Banach space X is called almost overcomplete (AOC
in short) whenever the closed linear span of each of its subsequences
has finite codimension in X.

(if) A sequence in the dual space X* of the Banach space X is called
overtotal on X (OT in short) whenever each of its subsequences is
total over X.

(iii) A sequence in the dual space X* of the Banach space X is called
almost overtotal (AOT in short) on X whenever the annihilator

(in X) of each of it’s subsequences has finite dimension.

For instance, the fact that bounded AOC as well as AOT sequences must
be strongly relatively compact makes it possible to answer quickly in the

positive the following questions.

(i) Must any infinite-dimensional closed subspace of [, contain infinitely
many linearly independent elements with infinitely many zero-

coordinates?



(if) Let X < C(K) be an infinite-dimensional subspace of C(K) where K
IS metric compact. Must an (infinite) sequence {t; }xen €Xist in K such

that x(t,) = O for infinitely many linearly independent x € X ?

Our first aim is to provide information about the structure of AOC and
AOT sequences. In particular, for any separable Banach space X the

following questions seem to be of interest.

(i) Does an AOC sequence exist in X that admits countably many
subsequences such that the intersection of their closed linear spans is
the origin?

(i) Does an AOT sequence exist on X that admits countably many
subsequences such that the closure of the linear span of the union of

their annihilators in X is the whole X?

Our second aim is to give a possible explanation for the following fact.
As a consequence of a theorem, by using strong relative compactness of
bounded AOT sequences we get e.g., as a special case, that any infinite-
dimensional closed subspace of L, contains infinitely many elements with
infinitely many zero-coordinates not only when p = o, as we mentioned at
the beginning, but for any p > 1. However, the case p < oo looks much
more complicated to be handled than the case p = «. we provide an example

to show one possible reason for that.

Here we point out only the evident fact that, if {(x,,x,)} is a countable
biorthogonal system, then neither {x,} can be almost overcomplete in

[{x,,}], nor {x;}can be almost overtotal on [{x,,}].

We start by recalling a simple method, due to Ju. Lyubich, to get an

overcomplete sequence in any separable Banach space X.



Fact (1.1)[1]: Let {e,}ren be any bounded sequence such that [{e,}ren] =

X. Then the sequence

bz =1 em™ ¥,
k=1

isOC in X.

Proof. Let {y,, };=, be any subsequence of {y,}m=2 = { Xi=1 exm k>,

let
fEX 0 Dy} (1)

and let D be the open unit disk in the complex field. Since the complex
function @:D — C defined by @ (t) = X%, f(ex)t® is holomorphic, from
fOm;) =0(@/m) =0 forj=12,.., it follows @ = O that forces f(e;) =0
for every k € N. Since f in (1.1) was arbitrarily chosen, it follows [{ymj}] =

X.

Proposition (1.2)[1]: Any (infinite-dimensional) separable Banach space
X contains an AOC sequence {x,, }»eny With the following property: for each
i €N, {x,,},ey admits a subsequence, that we denote by {Xf}jeN to lighten

notation, such that both the following conditions are satisfied
a) codim X[{x/}jen] = i;
b) Nienl{x}jen] = {0}

Proof. Let the biorthogonal system {e;,e;}xeny © X x X* provide anormalized
M-basis for X. We recall that, by definition, the sequence {ej}reny Must be

total on X. Moreover, it is a well-known fact that, at least when A is a finite



subset of N, a (topological) complement in X to the subspace [{e; }reca] is the

subspace [{ex}enmul] FOri =1,2,.. put

Y; = [{exdretiivtive.. 2i-1}) 12)

so codimyY; = i. For each integer i € N,Y; is a Banach space itself so, by

Fact (1.1), the sequence {y..},,>, < Y; defined by

yi = z m*ke, i=1,2..m=23,.. (13)
k=1k /€{iit1,i+2,.2i—1}

provides an OC sequence in Y;.

Order in any way the countable set Ujey 2 {yi,,} @S a sequence {x, }nen-
For each i, select a subsequence {x;',}peN of {x,, },,en Whose terms belong to
{yi},.5,: this last sequence being OC in Y;, we have codimX[{x;',}peN] =
codimyY; = i. Moreover, since the sequence {e; }xen IS total on X it is clear
that g2, ¥; = {0}, so N{2; [{x}},en] = {0} too.

It remains to show that the sequence {x,},en IS AOC in X. Let {xnj}jEN

be any of its subsequences. Two cases are possible.

A) For some ;,{xnj} contains infinitely many terms from {y;n}mzz:
jEN

being {y;n}mzz OC in Y;, we have codimX[{xnj}jeN < codimyY. =i
and we are done.
B) For each i,{xnj}jEN contains at most finitely many terms from

{Vin}ms2- Take any

f € {n; Hen (14)



We prove that f(e,) = O for every k € N: it implies f = 0, that means that

{xnj}jEN Is complete in X.

Suppose by contradiction that f(ez) # O for some index k: without loss of
generality we may assume that k is the first of such indexes. For j € N, let
Ymy = Fny
put
A=1{i:i=i@)j € Ni() > k}
Under our assumption i(j) goes to infinity with j, so A is infinite and we
have e; € Y; forevery i € A. Fori € A, put
m; = min{m@) : i(j) = LYty € Viadmaa}

From (1.4) it follows that, for each i € A, we have

(e0)

fler) = —miF D mi* fle (15)

k>kkef{ii+1,i+2,...2i—-1}
hence
I ()] < mFIF I Ereiinnivna-nmi < I g mi

< 2||f||mi_i - 0asi— o (1.6)

that forces f(ez) = 0, so contradicting our assumption. We are done.
Our construction above can be modified by replacing (1.2) with

Y, = [extreil (1.7)
and modifying (1.3), (1.5) and (1.6) according to that. In this case it is still

true that n[{xnj}jeN]:{O} as {xnj}jeN ranges among all possible



subsequences of the AOC sequence {x,, },,en, but actually the codimension of
the closure of the linear span of any subsequence is at mostl. We need, the

following alternative version.

Proposition (1.3)[1]: Any (infinite-dimensional) separable Banach space
X contains an AOC sequence {x, },en With the following property: {x,, }nen
admits countably many subsequences {x}}jeN, i=1,2,.., such that both

the following conditions are satisfied
a) codimy[{x}jen] = 1 for each i;
b) Nien[{x}jen] = {0}
By the previous proposition, it is matter of evidence that actually the

conclusion nieN[{x}}jeN] = {0} is due to the fact that infinitely many

pairwise “skew” subsequences can be found of {x,,},en. This consideration

Is stressed by the following proposition.

Proposition (1.4)[1]: Let {x, },.cn be any AOC sequence in any (infinite-
dimensional) separable Banach space X and let {x/};en 2 {x7}jen 2 {x7}jen . -
be any countable family of nested subsequences of {x,}.en. Then the
increasing sequence of integers {codimy[{x/};en]}ien IS finite (so eventually

constant).

Proof. Let {x,},ey be an AOC not OC sequence in X and let {le}jeN be

any of its subsequences whose linear span is not dense in X. Put
X1 = [{le}jeN], p1 = codimyX; = 1.

If {le}jeN Is OC in X; we are done; otherwise, let {lek}keN be any of its

subsequences whose linear span is not dense in X;. Put



{xjiten = {x'Yjen X2 = [{x}jen] P2 = codimyX, > py.
Now we can continue in this way. Let us prove that this process must stop
after finitely many steps. Assume the contrary, i.e. that a nested infinite
family

{x'}jen 2 {x}jen 2. 2 {xji}jEN =
of subsequences of {x,,},en Can be found such that p; T oo asi T oo, where
p; = codimyX; with X; = [{x}}jeN].
Under this assumption, we can construct a linearly independent sequence
{fi}2, € X* such that, for each i, f; € X;%,\X;". For each i, let y; be an
element of the sequence {x}}jeN not belonging to the sequence {x}*l}jeN

such that f;(y;) # O (of course such an element must exist): because of our
construction we have f,(y;) = 0 for each k < i. Without loss of generality

we may assume f;(y;) = 1.
Now, following a standard procedure due to Markushevich, put

g1 = fi 92 = f» — (1) g1, 93 = fz3 — g1 — 2Dz ...

k—1
Ik = Ju — ka(yi)gi -----

Clearly we have g, (y;) = 6 foreach k,i € N, so actually {yx, gx}ren IS @
biorthogonal system with {y;}ren € {X,}nen- This is a contradiction since

{x, }en Was an AOC sequence.

As an immediate consequence we get the following



Corollary (1.5)[1]: Any AOC sequence {x, },cy in a separable Banach

space X contains some subsequence {x, j} jen thatis OC in [{x, j} jen] (with,

of course, [{xnj}jeN] of finite codimension in X).

The results shown about AOC sequences have a dual restatement for AOT

sequences.

Proposition (1.6)[1]: Let X be any (infinite-dimensional) separable
Banach space. Then there is a sequence {f,,}neny € X that is AOT on X and,
for each i € N, admits a subsequence {fji}jEN such that both the following

conditions are satisfied
a) dim{f]}ey = i;
b) [UieN{fji}}_eN] = X.

Proof. The idea for the proof is the same as for the proof of Proposition

(1.2), so we confine ourselves to sketch the fundamental steps.

Let the biorthogonal system {ey, e;}xey © X % X™ provide an M-basis for

X with {ey }xen @ NOrm-one sequence in X*. Fori =1,2,... put

Zi = [{ek}il:il]’ Y, = [{ek}k;t{i,i+1,i+2 ..... 2i—1}], Y, = [{elz}ki{i,i+1,i+2 2i—1}]-
Clearly X =Z; @ Y; and *Y;" = Z;, sodim Y, =i fori=1, 2, .... For each

integer i € N, the sequence {y;:'},,-,  *Y; defined by

[0/0)
yul = Z m-er i =12..., m = 23,...
k=1ke{iit1i+2,...2i—1}

being overcomplete in the Banach space *Y;, is overtotal on Y;.
Order in any way the countable set U;ey m>2 {y:1} as a sequence {f, }nen-

For each i, select a subsequence {fpi}peN of {f,,}.en Whose terms belong to

9



{y;:1},.5,: since this last sequence is overtotal on Y;, we have {fpi};,fEN =7;
too, so dim{fpi};,fEN = i. Moreover, since the sequence {ey}ren IS COMplete
in X, we have [U2, Z;] = X.

It remains to show that the sequence {f;; },en IS AOT on X. Let {fnj}jEN

be any of its subsequences. Two cases are possible.

a) For some j {fu }ien contains infinitely many terms from {y;i}mzz:
Un;

being {Y,tm=2 OT on Y, we have {f, Yew € Z dim{f, }en < i
and we are done.

b) For each i,{fnj}jEN contains at most finitely many terms from
(Vi usa. Take any x € {f, j}]TeN: by proceeding exactly as in B) of

the proof of Proposition (1.2), just interchanging the roles of points
and functionals, we get e,(x) = 0 for every k € N. {e,}ren being

total on X, it follows x = 0. It means that {fnj}jEN too is total on X and
again we are done.
The proof is complete.

As we did for AOC sequences, with obvious modifications in the previous
proof we can obtain for AOT sequences the following alternative version to

Proposition (1.6): it is the dual version to Proposition (1.3).

Proposition (1.7)[1]: Let X be any (infinite-dimensional) separable
Banach space. Then there is a sequence {f,,},en € X ™ that is AOT on X and
admits countably many subsequences {fji}jeN, i=1,2,...,such that both the

following conditions are satisfied
a) dim{f]}jey = 1 for each i;

10



b) [ UieN{fji}}—eN =X.

We point out that, though the existence of an AOT sequence on a Banach
space X does not imply X to be separable (one of the significant applications
of this concept we have shown was to the space [,), the results we have
shown in Propositions(1.6) and (1.7), as they have been stated, must concern
only separable spaces. In fact, the annihilator of any subsequence of any
AOT sequence being finite-dimensional, the closed linear span of the union

of countably many of such annihilators must be separable too.

Finally we notice that also Proposition (1.4) has its dual version that
shows that the countably many subsequences in the statement of Proposition
(1.7) cannot be assumed to be nested. The proof can be carried on exactly
like the proof of Proposition (1.5), just interchanging the roles of points and

functionals, so we omit it.
Proposition (1.8)[1]: Let {f,},en be any sequence AOT on any (infinite-
dimensional) Banach space X and let {f/'};eny 2 {f*}jen 2 {f;’}jen 2. .. be
anycountable family of nested subsequences of {f,,},en- Then the increasing
sequence of integers {dim{fji}]Tel\]}iEN is finite (so eventually constant).
As an immediate consequence of Proposition (1.8) we get the following
Corollary (1.9)[1]: Any AOT sequence {f;,}n,eny ON a Banach space X
contains some subsequence {f, j} jen that is OT on any subspace of X
complemented to {f"}jcy (With, of course, {f;}jcy of finite dimension).

We are devoted to provide an example that may be of interest in Operator

theory. It was proved e.g. that any infinite-dimensional closed subspace of [,

contains infinitely many elements with infinitely many zero-coordinates not

11



only when p = oo, as we mentioned at the beginning, but for any p >1. In

fact the following much more general results have been proved there.

Theorem (1.10)[1]: Let X be a separable infinite-dimensional Banach
space and T: X — [, be a one-to-one bounded non-compactlinear operator.
Then there exist an infinite-dimensional subspace Y ¢ X and a strictly
increasing sequence {n;} of integers such that e, (Ty) =0 forany y €Y

and for any k (e,, the ““n-coordinate functional” on [,).

Theorem (1.11)[1]: Let X,Y be infinite-dimensional Banach spaces. Let Y
have an unconditional basis {u;};=,; with {e;};=; as the sequence of the
associated coordinate functionals. Let T: X — Y be a one-to-one bounded
non-compact linear operator. Then there exist an infinite-dimensional
subspace Z c X and a strictly increasing sequence {k;} of integers such that

ex,(Tz) =0foranyz € Zandanyl € N.

To prove both the theorems, the fundamental tool was the fact that
bounded AOT sequences are strongly relatively compact was then obtained
as a quite easy consequence of the Ascoli-Arzela Theorem: (if a sequence
{f.}° in C(X) is bounded and equicontinuous then it has a uniformly

convergent subsequence.
In this statement,

(@)*“ F ¥ C(X) is bounded” means that there exists a positive constant
M < oo such that |f(x)|. M for each x € X and each f € F and
(b)“ F Y2 C(X) is equicontinuous” means that: for every € > 0 there

exist & > 0 (which depends only on ¢ ) such that for x,y € X:
dix,y) <é=1f(x)—- fMl<e ¥vfeF

12



Where d is the metric on X)[5], the proof of Theorem (1.11) has
required some additional delicate tools. One could expect that
Theorem (1.11) should be proved in a simple way by the following

argument.

“Under notation as in the statement of Theorem (1.11), assume by
contradiction that for each sequence of integers {i;} we have dim ({T*eij}T) <
. Then the sequence {T*e;} c X* is almost overtotal on X, so {T"e;} is
relatively norm-compact in X*. {e;} being the sequence of the coordinate

functionals associated to the (unconditional) basis {u;} of Y, that forces T to

be a compact operator, contradicting our assumption.”

Example (1.12)[1]: There exist a Banach space Y with an unconditional
basis {u;}ien, {€;}ieny being the sequence of the associated coordinate
functionals, and a non-compact operator T:c, = Y such that T*e; —» O as

i — oo (so the sequence {T *e;} is relatively norm compact).

Proof. Let {uf}*_, be the natural (algebraic) basis of R¥. For k € N, define

T.: R¥ = R¥ in the following way

k k
a;ul
Tk(Zaiu{‘>:Z lk , a; ER fori = 1,..., k.

i=1

Let IX (resp. I¥) be the k-dimensional space R¥ endowed with the max-
norm (resp.the 1 —norm). If we consider T,:l% — I¥ we easily get

| T || = 1 for every k € N.

For a sequence {X, |I'llx }x=, of Banach spaces, consider the Banach

space (Dy-; Xi )., (the linear space, under the usual algebraic operations,

13



whose elements are the sequences {x;}r=1, xx € X; for each k, such that

lxkllx, = Oas k — oo, endowed with the norm [|{x, }i=; || = max; || xkllx, )
Clearly we have
co = (D=1 15)e, - (1.8)
Put
Y = (D=1 lf)co :
Order the set U, {u¥}¥_, in the natural way and rename it as
{ui, vz uz, ..., VL uk, ..} = {u uyus,... 1 (1.9)

Of course {u;};2,is an unconditional basis both for ¢, and for Y. Call P,
the natural norm-one projection of ¢, onto 1% suggested by (1.8) and define

T:cy — Yin the following way
Tx :ZTkka, X € .

T is a (linear) non-compact operator, since ||T(Z, uf)|| =1 and X, uf
is weakly null as k — co. However, if we denote by {e;};2, the sequence of
the coordinate functionals associated to the basis {u;};=,0f Y, it is true that
T*e; » 0 in X* as i —»oo. In fact, for x =¥ ¥ xfuf € B, the
following holds

|xF|<1 1<j<k k=12..

so, if we denote by ki the element u; as identified by (9), we have

© k
(T ed ()] = ledT)| = lei(). > xfufsk) | = 1x [/ke < 1k
k=1j=1

Since k; — oo with i, we are done.

14



Chapter 2

Almost Square Banach Spaces

We single out and study a natural class of Banach spaces — almost square
Banach spaces. In an almost square space we can find, given a finite set
X1,%5,..., Xy in the unit sphere, a unit vector y such that ||x; — y|| is almost
one. These spaces have duals that are octahedral and finite convex
combinations of slices of the unit ball of an almost square space have

diameter
Section (2.1): Examples and Characterizations.

Let X be a Banach space with unit ball By, unit sphere Sy, and dual space
X",

Definition (2.1.1)[2]: We will say that a Banach space X is

(i) locally almost square (lasq) if for every x € Sy there exists

a sequence
(ym) © By such that ||[x =+ y,|| = 1and [|y,|| = 1.

(i) weakly almost square (wasq) if for every x € Sy there exists
a sequence (y,) < Bysuch that [[x +y,|l - 1, [ly,]| > 1andy, - 0
weakly.

(iii) almost square (asq) if for every finite subset (x;)Y., c Sy there
exists a sequence (y,) € By such that ||x; £y,|| » 1 for every
i = 1,2,...,Nand ||y,ll = 1.

Obviously (wasq) implies (lasq), but it is not completely obvious that

(asq) implies (wasq). This will be shown in Theorem (2.1.24).

15



In the language of Schéefer a Banach space X is (lasq) if and only if no x €
Sy Is uniformly non-square. Gao and Lau considered the following

parameter
G(X) = sup{inf{max{llx + yll.[lx — yl}.y € Sx},x € Sy}
We see that X is (lasq) if and only if G(X) = 1. Gao and Lau showed that L,
is (lasq) while L,,1 <p < o0, and £),,1 < p < oo, are not.
A separable Banach space X has Kalton and Werner’s property (my,) if

limsupllx + y, |l = max(llx][,lim supl| y, )
n n

for every x € X whenever y,, — 0 weakly. From Rosenthal’s #; theorem:
(Let (x,,) be a bounded sequence in a Banach space X. Either there is a
subsequence which is equivalent to the #1-basis or there is a subsequence
(xn,) Which is weakly Cauchy (i.e. (x'(x,)) converges for every x’ € x"))[6]
it is clear that such spaces must be (asq) if they do not contain a copy of #;.

However, if X does not contain a copy of ¢,, then X has propery (m) if
and only if, for any ¢ > 0, X is e-isometric to a subspace of c,. We will see

that this is much stronger than (asq), see for example in Corollary (2.2.7).

Our main interest in the (*asq) properties come from their relation to

diameter two properties. Recall that a slice of By is a set of the form
S(x*,a) = {x€By: x*(x)>1—a},
where x* € Sy- and a > 0. we find the following definition.

Definition (2.1.2)[2]: A Banach space X has the

(i) local diameter 2 property (LD2P) if every slice of By has diameter 2.

16



(if) diameter 2 property (D2P) if every nonempty relatively weakly open
subset of By has diameter 2.

(iii) strong diameter 2 property (SD2P) if every finite convex combination
of slices of By has diameter 2. (i.e. i=; 1;S; has diameter 2 whenever
Ai=0Y",4,=1,and S;,...,S, are slices of By.)

The starting point was the observation by Kubiak that if X is (lasq) then X
has the LD2P and similarly if X is (wasq) then X has the D2P. The basic idea

from Kubiak’s proof works also for (asq):
Proposition (2.1.3)[2]: If a Banach space X is (asq) then X has the
SD2P.
Proof. Let S; = S(x;,¢;), i =1,...,N, be slices of By with x; € SX* and
O<g <1

Let € = min{e;}/4. Find x; € Sy with x; (x;) > 1 — . Find sequence
(¥n) With [lx; = y,Il > 1 and [y, - 1. Choose n, such that ||x; +y, || <1+«
fori=1,2,... ,Nand |[y,,|| > 1 — & Then

43} (V) = X% Eyn,) — X (1) < 1l+e+e—1=2¢

and

xi i Yno

1 1
x; ( 1+ 8)_1+£(xi(xi)ixi(yn0))2m(1—£—2£)>1—8i.

This means that (x; iyno)/(l + ¢) € §; and ||yn0|| > 1 — ¢ and hence,
by Lemma (2.2.1), X has the SD2P.

It is known that the three diameter 2 properties are different. That the
LD2P and the D2P are different was shown. That the D2P and the SD2P are

different was shown . A natural question is whether (lasq), (wasq), and (asq)
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are different properties. We will show that L; is a (wasq) space which is not
(asq) in Corollary (2.1.25).

Haller, Langemets, and POldvere considered the following versions of

octahedral norms.
Definition (2.1.4)[2]: A Banach space X is said to be

(i) locally ctahedral if for every x € Sy and every ¢ > O thereisa y € Sy
suchthat |lx xy|| =2 —«.
(i) weakly octahedral if for every finite subset (x;)¥., c Sy, every x* €
By~ , and every ¢ > 0 there is a y € Sy such that
lx; +tyll = (@ —&)(Jx*(x;)| +t) foralli=1,2,... Nandt>0.
(iii) octahedral if for every finite subset (x;))., © Sy and every & > 0 there

isay € Sy suchthat ||x; £y[| > 2 — eforalli=1,2,... N.
We have the following theorem .
Theorem (2.1.5)[2]: Let X be a Banach space. Then

(i) X hasthe LD2P if and only if X* is locally octahedral.
(i) X has the D2P if and only if X* is weakly octahedral.
(iii) X has the SD2P if and only if X™ is octahedral.

This theorem shows that the ¢, structure of the norm of X* is connected
to diameter two properties of the space. The connection between the SD2P
and octahedrality has also been studied. We give characterizations of (lasq)
and (asq) as the corresponding ¢, structure. (See Corollary (2.1.20) and
Theorem (2.1.21))

We will give examples of spaces which are (lasq), (wasq), and (asq). We

start with a few characterizations of (lasq) and (asq). In particular, we show
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in Theorem (2.1.21) that if X is (asq) then for every finite-dimensional

subspace E of X and every ¢ > 0 there is a y € Sy such that
(1 — &) max(llx|l, [2]) < llx + Ax|l < (1 + &) max(llx]l, |A])

for all x € E and all scalars A. Using this we show, in Lemma (2.1.23), that
(asq) spaces have to contain almost isometric copies of cy. This in turn gives
the second main result, Theorem (2.1.24), which shows that (asq) implies
(wasq). The final main result is Theorem (2.1.28), where we show that every
Banach space that contains a copy of c, can be equivalently renormed to be
(asq).

We return to more examples. The result is that spaces which are M-ideals
in their biduals are (asq) (see Theorem (2.2.6)). However, the class of (asq)

spaces is much bigger than the class of spaces that are M-ideals in their
biduals (see Examples (2.1.6) and (2.2.17)).

We study the stability of both (local/weak) octahedrality and (*asq) when
forming absolute sums of Banach spaces. We show that local and weak
octahedral, (lasq), and (wasq) spaces have nice stability properties but the
situation is different for (asq). For 1 < p < « the £{p-sum of two Banach
spaces is never (asq). Note that an £,,-sum of two Banach spaces can only be

octahedral if p=1or p = .

We connect (asq) with the intersection property of Behrends and
Harmand. We show that (asq) spaces fail the intersection property and give a
quantitative version of this fact in Theorem (2.2.16).We also give an

example of a space that fails the intersection property and is not (lasq).

We follow standard Banach space notation. We consider real Banach

spaces only.
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We will provide examples of Banach spaces which are (lasq), (wasq),
and (asq) and spaces which are not. Let us start with the prototype of an

(asq) space - the space, c,, of null-sequences.

Example (2.1.6)[2]: Let (x;)), © Sco and e, the n’th standard basis
vector in cy. Then it is clear that ||x; £ e,|| = 1 as n — oo for every i =
1,2,...,N, s0cg is (asq). Also, as e,, = 0 weakly in ¢y, it follows that ¢ is
(wasq). Given a sequence of Banach spaces (X;) it is clear that actually the
co-SuUm, ¢y (X;) is (asq) (and (wasq)). In contrast to c, being (asq), the space,

c, of convergent sequences is not even (lasq).

Example (2.1.7)[2]: Letx = (1,1,...,1,...) € S.. Now, if ||x = y,|l -
1, then ||y,|| - 1. Because, if the value of one coordinate of y, was close

to £1, then the maximum of that coordinate of x = y,, would be close to 2.

And so c is not (lasq).

Recall that a point x in the unit-ball By of a Banach space X is an extreme
point in By if for every y € By with ||x = y|| = 1 we have [|y|| = 0. If for
every sequence (y,) € By with ||x = y,,|| = 1 we have ||y,|| = O, x is said

to be a strong extreme point.

Note that arguing similarly as in Example (2.1.7) we get that the sequence
(yy) in this example must converge in norm to 0. Thus, by definition, x =

(1,1,...,1,...) is a strong extreme point in B,.

Straight from the definition of a strong extreme point, we actually have

the following general fact.

Fact (2.1.8)[2]: The unit ball of (lasq) spaces cannot have strong extreme
points. The constant 1 function in ¢, C[0,1], and L,[O,1] is a strong
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extreme point in the unit ball of these spaces, so neither ¢, C[0, 1] nor
L»[0,1] are (lasq). We noted in the introduction that Gao and Lau have
shown that L,[0, 1] is (lasq).

Example (2.1.9)[2]: L,[0,1] is (wasq). Let f € 5L, and define f, = fr, where

(1) are the Rademacher functions. Shows that (f,,) c SL, is weakly null
and that

IF = 4l = [ 1FOIA £r@)de = [ 17Ol = [ FO@d - 1

Next we will present a whole class of spaces which are (wasq). This is

the class of Cesaro function spaces.

For an interval I ¢ R by Ly(I) we denote the set of all (equivalence
classes of) real valued Lebesgue measurable functions on I. Any Banach
space E = E(I) < Ly(I) with a norm ||-]| satisfying the condition that f €
E and ||f]| < |lgll whenever 0 < f < g a.e., f € Ly(I), and g € E is called

a Banach function lattice.

The Kothe dual of a Banach function lattice E on | is the space E’ of all

f € Ly(I) such that the associate norm ||f]|| := supr [f(x)g(x)|dx is
9EBEg

finite. The K&the dual is again a Banach function lattice.
Letl=(0,l)where0<i<owisfixedand let 0 < w € Ly(I) be a weight.

The weighted Cesaro function space on | is defined for 1 <p <o as

x P 1/p
Cpw() = {f € Lo(I): ”f”cw = <J1 <a)(x)JO |f(t)|dt> dx) < oo}.
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It is known that ¢,, = C,,(I) in the natural pointwise order is a separable
order continuous Banach function lattice and hence order isometric to a

Kothe function space.

Kubiak proved the following result.
Theorem (2.1.10)[2]: The space ¢, is (wasq).
Later we will show that ¢, , is not (asq).

Note that the space C; 1,,[0,1] is isometrically isomorphic to L,[0,1]. Also,
it is worth noting that for 1< p < o« and every weight o every point on the
unit sphere of ¢, is extreme, i.e. C,, is strictly convex. Thus contrary to
strong extreme points, extreme points do not seem to have anything to do
with being (lasq), (wasq), or (asq).

We provide examples of (asq), (lasq), and non-(lasq) from the class of
Lindenstrauss spaces (i.e. the Banach spaces with duals isometric to L, (u)

for some positive measure u).

Definition (2.1.11)[2]: X is a G-space if there are a compact Hausdorff
space K and (s;, t;,4;) € K x K xR,i in some index set I, such that X is
iIsometric to
{f € C(K): f(s) = Af(t) forallt € K}
X is a C,-space if there are a compact Hausdorff space K and an involutory
homeomorphismo : K — K (i.e.0? = idy) such that X is isometric to
{f € C(K): f(t) = —f(o(t)) forallt € K}.
X is a Cy-space if it is a C,-space for some fixed point free involution ¢ on

some K.
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Note that every G-space is Lindenstrauss. It is also nown that an extreme
point in a Lindenstrauss space is actually strongly extreme. So only the

Lindenstrauss spaces without extreme points have the chance to be (lasq).
Example (2.1.12)[2]: Lazar and Lindenstrauss considered the following
example:

x ={recoazr@=-r(3). 2r@=-r(3)}
Then ext By = @ and X is a G-space of codimension 2 in C[0,1].

The space X is (lasq). Indeed, let f € Sy and ¢ > 0. If f£(0) # O, then
since f(0)f G) < 0 there exists x, € (Oé) such that f(x,) = 0. Let (a,b)
be neighborhood of x, such that |f(x)| < € on (a,b) (and Oé & (a, b)).
Define g(x,) = 1 and g(0) = 0 outside (a,b). Then 2g(0) = 0 = —g () and
2g(1)=0=—g (E) sog € Sy.Clearly ||f £ gl <1+e.

If £(0) =0, then f G) = 0 and we can find neighborhoods A and B of 0
and gwhere |f (x)| < &. Define (1) = —1,9(0) = 3, and g(x) = 0 outside A
andB. Then ||f £ g|l <1+ eand g € Sy.

The space X is not (asq). To this end, consider the two functions f; and

f> In Sy that look like this:

14 14

]
2

. |

t

= b
wles
R

g e

—

—
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If g € C[O,1] with ||f; £ gll| <1+ e then|g| <e&on Eg] from the second
function and |g| < % + & on [O,%] and E, 1] from the first. Thus no such g
can exist in By with ||g]| > 1 —¢.
Example (2.1.13)[2]: Let K =[0,1] and o(t) =1—t. Then ¢ is a
homeomorphism of K with a2 = Id. % Is a fixed point. Let
X = {f €eC[01]:f(t) = —f(a(t)) forall t € [0,1]}

The space X is (asq). To see this, let fi,f,,....fx € Sx. Since
fi G) =—fi (a (%)) =—fi G) we must have f; G) = 0. Now, find an
interval (a,b) around % where |f;(x)|<efori=1,2,...,N. Let g € Sy

have its support on (a,b). Then ||f; £ gl <1+¢ and ||g|| =1. Fex. g

could look something like this:

L+ |

Fig (2.3)
Proposition (2.1.14)[2]: C, spaces are (asq) when ¢ has a non-isolated
fixed point.

Proof. Let X be a C, space. If x, is a fixed point for o, then

f(x0) = —f(a(x9)) = —f(xo) forall f € X. Hence f(x,) = Oforall f €
X. With a common non-isolated zero we can use the same idea as in the

example above.
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Proposition (2.1.15)[2]: If K is a locally compact Hausdorff space, then
Co(K) is (asq).

Proof. Let f, f2,..., fy € S¢,(K) Find compact L < K such that |f;(x)]| < ¢
outside L. Let g be a norm one function with support on K \ L. Then
Ifixgll<1l+e.

We get the following characterization of Banach spaces that are (lasq).

Proposition (2.1.16)[2]: Let X be a Banach space. The following are

equivalent.

(i) Xis (lasq).

(ii) For every x € Sy there exists a sequence (y,,) < X such that ||y,|| = 1
and |[|x £y,|| > 1asn— oo

(ili) For every x € Sy there exists a sequence (y,) € Sy such that
|lx £ y,l| = 1asn— oo,

(iv) For every x € Sy there exists a sequence (y,) € By such that

lynll » 1 and ||4,; £y,|| > Lasn - oo forall 2 € [0,1].

It is clear that we also have the following characterization of Banach

spaces that are (asq).

Proposition (2.1.17)[2]: Let X be a Banach space. The following are

equivalent.

(i) Xis (asq).
(i) For every finite subset (x;)N., c Sy there exists a sequence (y,) c X

such that ||y,||—= 1 and ||x; £y,|]| 1 as n—w for every i =
1,2,...,N.
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(iii) For every finite subset (x;)¥., c Sy there exists a sequence (y,)) < Sy
suchthat ||x; £y,l| > 1asn—owforeveryi =1,2,...,N.

(iv) For every finite subset (x;)X., c Sy there exists a sequence (y,,) < By
such that |ly,ll » 1 and ||, £y,]| > 1 as n — oo for every i =

1,2,...,Nandall 2 €[0,1].

Note that since we have finitely many vectors to play within the

definition of (asq) we may drop the plusminus sign.
Proposition (2.1.18)[2]: Let X be a Banach space.

X is (lasq) if and only if for every x € Sy and ¢ > 0 there exists y € Sy

suchthat ||lx £y|| < 1+e¢.

X is (asq) if and only if for every finite subset (x;)Y., c Sy and & > 0

there exists y € Sy such that ||x; + y|| < 1 +«.

We have the following lemma reference.

Lemma (2.1.19)[2]: Assume x,y € Sy suchthat 1 —e < [lxx y|| < 1 +¢,
then

(1 = &max(lal.18]) <llax + Byll < (1 + e)max(|al,|B])

for all scalars o and p.
Proof. Let M = max (||, |B]). We need to show that
< * B <
1-¢ < ”Mx +My” < 1+ ¢

It is enough to show
L-9¢ <|x+yls@+e

forall0 <A <1. We have
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Ay +x[=1Q+A )y -@-l=@+2 ) —llx—yll 227" -«
since|lx—y||< 1+ e Hence|ldx + y||=1—-e1>1—c¢.
Also

Ay +x[|= AT =-Dy+@+x)I<@1-1)+1+e=211+¢

and hence [|[Ax + y||<1+eA<1+e.
Corollary (2.1.20)[2]: If X is (lasq), then X contains almost isometric
copies of £2,.
For (asq) Banach spaces we can say even more.

Theorem (2.1.21)[2]: Let X be a Banach space. If X is (asq) then for

every finite dimensional subspace E c X and ¢ > 0 there exists y € Sy such
that

A= emax(llxll, [A]) < llx + Ayll < (A + &max(l|x]l, [2])
for all scalars A and all x [ E.

Moreover, given a finite dimensional subspace F ¢ X* we may choose

the above y so that |f (y)| < ¢|lf|| forevery f € F.

It is clear from Proposition (2.1.18) that the above theorem is actually

a characterization of (asq).

Proof. Let E be a finite dimensional subspace of X and let ¢ > 0. Find ¢ /2-
net (x;)Y., for Sg. Choose y € Sy such that ||x; +y|| <1+ &/2. Assume

that [|x; £yl <1 — /2, then

1 1 1
1=l <5l + vl +5 0= Yl < 5@+ e/2+1 - e/2) = 1

Contradiction. So ||x; £ y|| > 1 — /2.
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Let x € Sg. Find i such that ||x; — x|| < &/2. Then
Ix £yl < llx; £yll+1llx— xll <1+ ¢
and
Ix £yll=llx —x; + xyxyll =l £yl = llx;— x[[>1 — .
Hence by using Lemma (2.1.19) we get
(1 —emax(llxIl, 12]) < llx + Ayl < (1 + e)ymax(lixl|, |1])
for all scalars 2 and all x € E.

For the moreover part let F c X* be a finite dimensional subspace and let

()M, c Sg be an &/2-net. For each i choose z; € Sy with f;(z;) > 1 — /4.
Let E' = span{E, (z;)™.,} and use the first part of the proof to find y € Sy
such that
(1= e/Bmax(llx|l, 14]) < llx + Ayl < (1 + e/A)max(llx|l, |])
for all scalars A and all x € E'.
Since |fi(z; £y)| < llz; £yl < 1 + /4 we get

—ef2 =1—e/A— (1 +e/d) < fi(z)— fi(zi —y) = fi(¥) < fi(zi +y) — fi(z)
<1l+e/d-1+¢c/4 = /2.

so that |f;(y)| < &/2. Thus for every f € S we have |f(¥)| < |(f —
AW+ 1] < e

Let us note the following corollary.
Corollary (2.1.22)[2]: If a Banach space X is (asq), then 0 € ext¥ By-.

Repeated use of the theorem gives the following lemma.
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Lemma (2.1.23)[2] If X is (asq), then for every finite dimensional
subspace E of X and every € > 0 there exists a subspace Y of X which is

g-isometric to ¢, such that E @ Y is e-isometric to E @, ¢y.

Proof. Find sequence (&,) € R* such that [[;~;(1+¢&,) <1l+¢ and
[[h=1(1 —¢,) >1—¢. Using Theorem (2.1.21) we inductively choose

a sequence (y,,) € Sy such that
(1 - enymax{llell, 141} < [le + 4y, [| < (1 + & )max{llell, |21}
for every e € span{E, (v;)’={" } and every 1 € R. Then Y = span{(y,)} is

e-isometric to ¢, and defining S:E @ co > E®DY by S(e,a) =e+Ta

where T : ¢, — Y is the e-isometry. We have

N N
S(ev Z anen) =lle+ Z anYn

n=1 n=1

N-1
e+ a,
n=1

<@+ sN)max{

, |aN|} < ...

(e i aney)

and similarly ||S(e, XN_; ane)ll > (1 — ¢)||(e,XN_; aqe, )||- Thus S must

be an e-isometry onto E @ Y since T is onto Y.

A consequence of Lemma (2.1.23) is that the sequence (y,) in the
definition of (asq) may be chosen to be weakly null. This enables us to
connect the (asq) and (wasq) properties.

Theorem (2.1.24)[2]: If a Banach space X is (asq) then for every
X1,%5,...,Xy € Sy there exists (y,,) € By such that ||x; = y,|| = 1 for all
I,v, = 0weakly, and ||y, || = 1.

In particular, (asq) implies (wasq).

Proof. Let x;,x,,...,xy €Sy and E =span{(x;)X,}, and choose
a sequence (y,) € Sy as in Lemma (2.1.23) Let Z=FE P cy and z; =

(x;,0) € Z. Since the standard basis (e,)y=1 € S, is weakly null so is
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w, = (0,e,) in Z. By Lemma (2.1.23) there exists an ¢-isometry S from Z
onto E @ Y where Y = span{(y,)}. The weak-weak continuity of S shows
that y,, » O weakly in F @ Y and hence also in X.

By definition S(e, xe,) = e =y, forevery e € E. Since
(1 — ep)max{llell, 1} < lle £y, |l < (1 + g)max{lle]l, 1}
for every e € E, we in particular have (1 —¢,) < llx; £y, [l < (1 +¢,), SO x; %=
v, = 1.
Corollary (2.1.25)[2]: (asq) is strictly stronger than (wasq).

Proof. From the theorem we have that all (asq) spaces are (wasq). By
Example (2.1.9) L,[0,1] is (wasq), but L,[0,1] does not contain ¢, So it is
not (asq).

Question (2.1.26)[2]: Is (wasq) strictly stronger than (lasq)?

In Lemma (2.1.23) we proved that if X is (asq) then X contains almost
iIsometric copies of c,. Accordingly a Banach space X contains an
asymptotically isometric copy of ¢, if for every null-sequence (s,)s-; c (0,1)

there exists a sequence (x;,)y=1 in X such that

ner

- < < +
max(1l —ep) lan| < = max(1l+é,) |az|

for all choices of scalars (a,,) and all finite subsets F of N. Pfitzner showed
that M-embedded spaces contain an asymptotically isometric copy of ¢,
using the local characterization of M-ideals. If we instead use Theorem

(2.1.21) in Pfitzner’s proof we get the following.

Proposition (2.1.27)[2]: If X is (asqg), then X contains an asymptotically

isometric copy of c,. Moreover, X* contains an asymptotically isometric
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copy of ;.
We know that every (asq) space contains c,. Next we will show that any

Banach space containing ¢, can be equivalently renormed to be (asq). This
improves the Proposition which says that any Banach space containing
co can be equivalently renormed to have the SD2P. The proof of the

following result is based on a renorming technique.

Theorem (2.1.28)[2]: A Banach space can be equivalently renormed to

be (asq) if and only if it contains a copy of c,.
Proof. As an (as()-space contains c,, the “only if part” is clear.

For the “if” part, first renorm X to contain ¢, isometrically. Denote by

||. || the new norm on X. Let
A={Yc X:¢c, c Y, Yseparable},

and order A by inclusion, i.e. Y, <Y, if Y, cY;. For every Y € A there
exists by Sobczyk’s theorem: (Let X be a separable Banach space and Y a
closed subspace of X. If T,:Y — C, is a linear operator of norm A, there
exists an extension T: X — C, of norm at most 21)[7] a projection P, onto

co With norm 2 or less.
Let Py be such a projection and foreachY € Aandx € Y let

llxlly == max{lIPy ()l lx — Py (x)I[}.
Further let Ly : X — [0, 3]|x||]] be defined by Ly (x) = ||x|ly ifx € Y and O
if €Y . We can consider Ly as an element in the product space
IT = [1,exI[O, 3l|x]]]. As IT is compact by Tychonoff’s theorem: ((Tychonoff)
For each i € I, let X; be a nonempty topological space, and let X =[];¢; X; ,

endowed with the product topology.
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a) The following are equivalent:

(i) Each X; is quasi-compact.

(if) X is quasi-compact.
b) The following are equivalent:

(i) Each X; is compact.

(if) X is compact.
Every implication except (i) = (ii) in part a) is straightforward: let i € 1.
Then X; = m;(X), so if X is quasi-compact, so is X;. Moreover, by the Slice
Lemma, X; is homeomorphic to a subspace of X, so if X is Hausdorff, so is
X;. Finally the product of Hausdorff spaces is Hausdorff. Henceforth by
“Tychonoff’s Theorem”)[8] , the net (Ly) < II has a convergent subnet also
denoted by (Ly). Finally define

Il = tmllxly
It is straightforward to show that ||| - ||| is @ norm on X which satisfies
%llxll < Ix]ll < 3llxll. Also ||] - ||| extends the max norm ||-|| on c,.
Finally we show that (X,||| || is (asq). Let (&,)n=, be a strictly

decreasing null sequence of positive reals, (x;)N., c S (en)n=1 the
sequence of standard basis vectors in ¢y, and e, the zero vector. The goal is

to show that foralli=1,...,N we have |||x; + ex||]| = 1 ask — .

Let Y, = span{(x;)".,,co} and choose ¥; € A with ¥; D Y, such that

foralli=1,...,Nwehave
Ilx; +eolll = llx; + eolly,| < &1
Then for n > 1 inductively choose Y,,,; € A withY, ., 2 Y, such that for

alli=1,... Nwehave
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x; + exlll = llx; + exlly,| < &n foreveryk < n.

(Note that the inequality above holds also foreveryY € AwithY o Y,,.)

PutY =u,_, Y, Notethat Y € A ascycY and Y is separable. Observe

that foralli = 1,...,N and n > k we have

Hllx: + eelll = llx; +exlly, | < Hllx: + eIl = llx; + exelly, | < &n
so ||lxi + ekrlll = llx; + elly as €,  O. In particular, we have
lx; — Py (x)Il < llxilly = llx; + eolly = [llx: + eolll = 1.

Wenow getforalli = 1,...,N
lIx; + exlly = max{llPy (x;) + egll, llx; = Py(x)ll} < max{llPy(x;) +ell, 1} - 1
as k — oo since Py (x;) € ¢ and ¢, is (asq).
Section (2.2): Stability and Connection with the I,
Let us start this section by proving that the Cesaro function space C, ,,
for 1 <p < oo, is not (asq) though it is (wasq).
First we recall some definitions. An element f in a Banach function lattice

E is called order continuous if for every 0 < f,, < |f] a.e. such that f,, 1 O

a.e. we have that ||f,,|| | 0. We say that E is order continuous if every

element in E is order continuous. A Banach function lattice (E, [|-]|) has the

Fatou property if for any sequence (f,,) € E and any f € Ly(I) such that

0<f,<fae, f, T f ae, and sup||f,ll < oo we have that f € E and
n

Ifll = li;nllfnll . We know that C, ,, is order continuous and has the Fatou-

property.
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Proposition (2.2.1)[2]: The space C,,, does not contain an isomorphic

copy of c,.

Proof. Let (f,) be an increasing norm bounded sequence in Cp,,. It is
enough to show that (f,,) has a norm limit. If (f,,) has a pointwise a.e. limit
f, then it follows from the Fatou property that f is in C, ,. Moreover, put
In=f—fn-Then0 < g, < f — f; and g, 1 0. By order continuity we get
that || f — £l = Il g.ll = O as wanted.

It only remains to prove that the pointwise limit exists. (f,,) increasing
means that f,, (x) < f,+1(x) for a.e. x. By completeness it is enough to show
that (f,,(x)) is a bounded sequence for a.e. x. Assume not, i.e. that

sup f,(x) = oo onacompact A of positive Lebesgue measure A(A) > 0.
n

Split A into two parts A; and A, with A(4;) > 0 and A(4,) > 0 such that

x < yforallx € A;and y € A,.

We know that

K :f w(x)? dx > 0.
A

2

Let S = supl|f,|| < . Choose k such that SP < MPK where
n

M =1 [fi(®ldt.

A

Then

X 14 X 14
sp 2 lAlP = (w(x) | If(t)ldt> ax = | (w<x) | If(t)ldt> dx

=),

P
(W(x) |f(t)|dt> dx = | (W(x)M)P dx = MPK

2
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and we have a contradiction.

From Lemma (2.1.23) we now obtain the following.

Corollary (2.2.2)[2]: The Cesaro function space C,, ,, is not (asq).

A closed subspace X of a Banach space Y is said to be a u-summand in Y
if there is a subspace Z of Ysothat Y =X@ Z and if x € Xand z €

Zthenl|lx + z || = ||lx — z|.
Corollary (2.2.3)[2]: The space C,,, is a u-summand in its bidual.

Proof. We know that an order continuous Banach lattice not containing a

copy of ¢, is a u-summand in its bidual.

It was proved that C, 1, contains an asymptotically isometric copy of £;.

This was further extended to C,, ,,. We obtain the following result.

Proposition (2.2.4)[2]: The space C,, contains a complemented sublattice

isomorphic to #;.

We will now present a new class of (asq) spaces. For this we need to

introduce some concepts.

Recall that a subspace X in a Banach space Y is an ideal in Y if the
annihilator X+ is the kernel of a norm one projection on Y* . The subspace X
is called locally 1-complemented in Y if for every finite dimensional
subspace E of Y and every € > O there exists a linear operator u: E - X
such that u(e) = e forall e €e ENn X and ||lu|| < 1 + &. Fakhoury proved

that X is an ideal in Y precisely when it is locally 1-complementedin Y .
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We say that X is an almost isometric ideal (ai-ideal) in Y if X is locally
1-complemented in Y in such a way that the operator u : E — X is an almost
isometry, i.e. in addition to the above we have (1 + &)~ 1le]|| < [lu(e)|l <
(1 +¢)]le|| for all e € E. The fact that X is an ai-ideal in its bidual is

commonly referred to as the Principle of Local Reflexivity (PLR).

Lemma (2.2.5)[2]: If X is (asq) and Y is an ai-ideal in X then Y is (asq).

In particular (lasq) is inherited by ai-ideals.

Proof. Let y;,¥,,....,.yy € Sy and 1 > ¢ > 0. Find x € Sy such that
ly; + x|l <1 +§ . Now, choose an Z - isometry u : E — Y such that u is
the identity on E nY where E = span{(y;)N; = 1,x}. Define z = u(x)/llu(x)ll.

Then z € Sy and [|lu(x) — zIl = [llu(x)ll - 1| < and

<1+ ¢

& & &
ly; + 2l < lulyi + Dl + llu@) =2l < (1+7) (1+7) +5

4

so Y is (asq) by Proposition (2.1.18).
If X is an ideal in Y with an ideal projection P on Y* which for every
y* e Y* satisfies ||y*|| = [|Py*|l + lly* — Py™||, then X is said to be an M-
ideal in Y (P is called the M-ideal projection on Y*). If X is an M-ideal in
X** then X is said to be M-embedded. For M-ideals we often get (asq) for

free.

Theorem (2.2.6)[2]: Let Y be a proper subspace of a non-reflexive

Banach space X. If Y is both an M-ideal and an ai-ideal in X, then Y is (asq).

Proof. Let ¢ > 0 and choose 0 <§ < 1 with (1 +8)?(1+35(1 +68)?) <1l+e.
Write X** = (PX*)1 @, Y1+ . This is possible as Y is an M-ideal in X and
thus X* = P(X*) @, Y+ (P denotes here the M-ideal projection on X*). Let
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Y1, Y2, Yn €Sy and z € Spx+y1, and put E = span{(y)iL; 2z} = X™. Use
the PLR to find a J-isometry v : E — X which is the identity on E N X.
Further, put F =v(E) c X and use that Y is an ai-ideal in X to find
a o-isometry u:F =Y which is the identity on FnNnY. Now with
y = uv(z)/||luv(2)|| € Sy we use uv(y;) = y; to get

uv(z)
.+ = ||y; + < + §)?

yi + - ”
luv(2)I|

< @+ 8)%lly: + zll +

VA
z————) <1+e¢
||uv(z)||”)

since

”Z - ||uvZ(Z)||” - ||uv1(z)|| 11 = vl

< (1 + 81 = vl + lv@Il = llwv)II)
< (1 + 8)2(5 + 6(1 + 8)) < 35(1 + 8)
Using Proposition (2.1.18) we are done.

Since every Banach space is an ai-ideal in its bidual by the PLR we

immediately have the following corollary.
Corollary (2.2.7)[2]: Non-reflexive M-embedded spaces are (asq).

The following spaces are examples of M-embedded spaces: c,(I") (for
any set I'), K(H) of compact operators on a Hilbert space H, and C(T)/A
where T denotes the unit circle and A the disk algebra. From Example
(2.1.6) the space cy(#;) is (asq). However, this space contains a copy of ¢
and therefore can not be M-embedded. Thus the class of (asq) spaces

properly contains the class of M-embedded spaces.

From Theorem (2.2.6) we also obtain the following result.
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Corollary (2.2.8)[2]: Let X be a non-reflexive Banach space. Let Y be
both an M-ideal and an ai-ideal in X. Then both X and Y have the SD2P.

We start by introducing the notion of a general absolute sum of a family
of Banach spaces. Our goal is to show that (lasq) and (wasq) spaces are
stable under absolute sums and it turns out that locally and weakly

octahedral Banach spaces are stable by forming absolute sums too.

Let | be a non-empty set and let E be a R-linear subspace of R’ (the space

of all functions from I to R).

Definition (2.2.9)[2]: An absolute norm on E is a complete norm || - ||g
satisfying

(i) Given (a)ie;, (b)ie; € R with |a;| = |b;| for everyi €I, if (a;))ie; €E,

then (b;)ie; € E With [[(ay)ierlle = 1(by)ieslle-
(i) For every i € I, the function e;: — R given by e;(j) = 6;; for j € |,

belongs to I and ||e; ||z = 1.
We have the following lemma on absolute norms.

Lemma (2.2.10)[2]: Let E be as above with an absolute norm. Then

(i) ¢,(I) € E < ¢,(I) with contractive inclusions. Equivalently,

supfla;] i € 1} < ll(@ells < ) la

i€l
for all (a));e; € E.
(iv) Given (ay)ier , (bi);e; € R’ with |b;] < |a,| for everyi € |, if (a;)i; € E,

then (b;)ie; € E with [[(by)ierllg < “(ai)ieI“E'
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Note that E ¢ R! can be viewed as a Kéthe function: (In particular, going
back to the original three-space problem for the Hilbert spaces X =Y = #,,
Kalton and Peck choose

F (Z xiei> = Uoglixll - loglxil)xie;
[ i

L

This produces the the Kalton-Peck's space Z = Z,,)[9] space (and hence a
Banach lattice) on the space (I,P(l), x), where P(l) is the power set of | and u
Is the counting measure on 1. It is known that E is order continuous if and
only if E does not contain an isomorphic copy of £, if and only if span {e; :

I € 1}is dense in E.

The Kéthe dual E’ of a Banach space E < R with absolute norm is the

linear subspace of R! defined by
E':= {(ai)ia € R : supZ la;b;| < o, (b;)ic; € BE)}.
i€l
It is not hard to see that
@il = sup {Zlaim: (Bie eBE}
i€
defines an absolute norm on E'. Every (b;):; € E' defines a functional on E

by

(a)ier = Z ba;.

i€l
This induces an embedding E' — E* which is easily seen to be linear and
isometric. If span{e; : i € I} is dense in E then the embedding E' — E* is

surjective, and so E’ and E* can be identified.

Now, if (X;);¢; is a family of Banach spaces we put

39



[Dicr Xile := {(x:)ier € [ierXi : (lxil)ies € E}.

It is clear that this defines a subspace of the product space [@D;¢; X;]z Which

becomes a Banach space when given the norm

NCe)ier I == NCllx:Dier s (x)ier € [Dier Xile.
This Banach space is said to be the absolute sum of the family (X;);c; with
respect to E. Every (x;)ics € [®ie; X{ 1z defines a functional on
[Dier Xile by
(ier = ) ()
i€l

This embedding is isometric and is onto if span {e; : i € I} is dense in E.

Putting I =N and E = £,(I) it is clear that for 1 < p < oo the £, sum
(co sumif p = o) of a family of Banach spaces (X;);e; IS an absolute
sum with respect to E (for which [@®ie; X 1g = [Bie; Xilp+ &S
span{e; : [ € I} is dense in £,(I) in this case). It was proved that locally
and weakly octahedral spaces are stable by taking ¢, sums of two Banach
spaces. A closer look at the argument reveals that it extends to general

absolute sums as well. This can also be obtained from Propositions (2.2.11)
and (2.2.13) below.

Proposition (2.2.11)[2]: Let I be a set, E a subspace of R! with an
absolute norm, and (X;);¢; a family of Banach spaces which are locally
octahedral (resp. (lasq)). Then their absolute sum X = (@;¢; X;)g is locally
octahedral (resp. (lasq)).

Proof. Let ¢ > 0 and consider an x = (x;);¢; € X with norm 1. In both cases

we want to find y € Sy that satisfies
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a+e=|x xyllp = a— ¢

with o = 2 in the locally octahedral case (see Definition (2.1.4)) and a = 1 in
the (lasq) case (see Proposition (2.1.18)). By ignoring coordinates where
x; = 0 we may (and do) assume that x; # O for all i € I. By assumption,

for every i € I, there exists y; € Sy, such that

”lelll |

We may take y = (||xi||yi)ie, . Indeed,

Iylle = (YD ielle = N(lxdDielle =1
and
lx £yl = [|(||lx: = ”xi”yi”)iEI”E = (a = )lllx;Dielle = a — &
Similarly one has that ||[x £ y||z < a + €.

The same idea works for absolute sums of (wasq) spaces as long as we

have some control over the dual.

Proposition (2.2.12)[2]: Let E be a subspace of R’ with an absolute
norm such that span{e; : i € I} is dense in E and span {e; : i € I} is dense
in E*. If (X;)ie; IS a family of Banach spaces which are (wasq), then X =
(Dier Xi)e is (wasq).
Proof. Let x = (x;);¢; € Sx. Our task is to find a weakly-null sequence
(ym) € Sy such that

lx = ynlle = 1.

We may (and do) assume that x; = O for all i € I. By assumption, for every

i € I, there exist weakly-null sequences (y}) c Sx; such that
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- 1.

=
el =

Just like in Proposition (2.2.11), we let y, = (llx]ly});e; and get ||x =
Yollg = 1. Note that ||y, ||z = 1. Finally, let x* = (x;)ie; € X" and ¢ > 0.
Since span{e; : i € I}is dense in E* there is a finite set of indices F < I such

that ”(”x;”)iEI\F”E* <e&/2 Let

Find ny € N such that |x; ([|x;lly:)| < e/(2|F]) for all i € F, whenever n >

ne. (Possible since (y;) is weakly-null for every i € I). We get

PERCA

IEF

L")l < Ixp )l + llx™ = xpllellynlle < + |l Dienell . < €

whenever n > ng. Thus (y,,) is weakly-null.

For absolute sums of weakly octahedral spaces we have to work a bit

harder.

Proposition (2.2.13)[2]: Let I be a set, E a subspace of R! with an
absolute norm such that span{e; : i € I} is dense in E, and (X;);¢; a family
of Banach spaces which are weakly octahedral. Then their absolute sum

X = (D¢ X;)E is weakly octahedral.

Proof. Let e >0, let x* = (x})ics ... ., xV = (x)ie; € Sy, and x* = (x} );e; € By

Our task here is to find y € Sy such that

lx*+tyll = @A = &)(| Zierxf (x¥)|+¢) forall t>0and k=1,2,...,N.

Let z; = i if x; # 0 and z; = 0 otherwise. By the weak octahedrality of

(El

X;, forevery i € I, there exists a y; € Sy, such that
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(2.1)

k

)

k
P G

(el
E

If x} =0 for some i € I, then take y; to be any element from Sy, . Now

+ ty; +t) forallt>0andk = 1,2,..., N.

(2.1) implies that

EHC)
I

Since |[x*|l = Nl )ierllg+ < 1, there is a list of reals (a;);e; € R such

that ||(a;)ierlle = lI(lai])ierlle = 1 and

el2
Dl el > 2 -

i€l

lxf + tyill, = (1 — e/2)(—+ t) forallt > Oandk = 1,2,...,N.

/2)'

We take y = (|a;|yi)ier € Sx to get

el + eylly 2 Y 1l - [k + ey

i€l

k
> a-er2) Y i (B2 e

i€l

/2
> (1-e/2) (I D HEHI+ Il - ,2)t>

i€l

/2

(- e/2) x|l (I Z xi(xF)| + t)

i€l

= lx*I(1 —¢) (I Z x; (xF)] + t.)

i€l

>(1-
> ( 1

Dividing both sides by [|x*|| we get the desired inequality.

We have seen that for a sequence of non-trivial Banach spaces (X;) the

space cy(X;) is always (asq). Similarly £, (X;) is always octahedral.
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Note that X @, Y,1 <p < oo, can never be (asq), because it fails the
SD2P. But even though the SD2P property is stable by forming #; sums, it

turns out that the £, sum of Banach spaces can never be (asq).

Lemma (2.2.14)[2]: Let X and Y be nontrivial Banach spaces. Then
X @, Y is never (asq).

Proof. Let Z =X @, Y , x € Sy, and y € S, . Consider norm 1 elements
zZy = (—%x%y) and z, = (gx —gy). Assume on the contrary that there

is @ w = (wy, ) € Sy With [|z; £wl|| <1+ <. Then

1 2
[ [z =)

2
+ ”5y+wy 3

2 1 1
el + |55 < 5 (| -5+ we
1
< max{lzy +wll llzy —wi} < 1+3

so that [lw,|l < §+§ . Similarly ||jw,|| < §+§ . We get ||lw|| < 1 whichisa

contradiction.

Proposition (2.2.15)[2]: Let X and Y be nontrivial Banach spaces and
1<p<oo

(i) IfXD,Y is(lasqg), then X is (lasq).

(ii) IfX @, Y is (wasq), then X is (wasq).

Proof. (i). The function f(x) = x'/? is uniformly continuous on [0, 2] so

given ¢ > 0 there exists ¢ > 0 such that |f(x) — f(v)| < € whenever |x — y| < 6.

Also the function g(x) = xP is continuous at x = 1 so there exists # > 0 such
that |g(1) — g(y)| < & whenever |1 — y| < 1.

Let X @, Y be (lasq). Assume x € Sy. Then there is (u,v) € Sxe,Y
such that

44



1(x,0) = (w, v)ll, = (lx £ ull? + || v||P)P < 1+,
(Note that u # 0, else ||(x, v)|| = 2P > 1 + £.) We have (since t - tP is
increasing)
Ix £ulP+v[FP<@Q+n)P <1P+5=1+6
hence
Ix £ullP <1+6—lvlIP = ullP + [[v[IP = [Iv[IP + & = |lull” + 5.
Taking p-th roots we get
llx £ ull < [lull +¢
since ||[ul]” + 6 — ||lul|’| = 6. Letz = u/||ul|. Then
lx £zl < llx £ul| +[lz—ull < flull +e+1—lull =1+¢
(if). The proof is similar to (i). Indeed, for ¢, = %find the sequence n,, and

observe that if a sequence (u,, v,) converges weakly to (0, 0) in &, Y, then

u, converges weakly to 0 in X.

We end this section by showing that for finite £,, sums we only need to

assume that only one of the spaces is (lasq), (wasq) or (asq).
Proposition (2.2.16)[2]: Let X and Y be nontrivial Banach spaces.

(i) X @ Y is(lasq) if and only if either X or Y is (lasq).

(i) X @, Y is (wasq) if and only if either X or Y is (wasq).
(i) X @4 Y is (asq) if and only if either X or Y is (asq).

Proof. We will prove it only for (asq) spaces — others will follow similarly.
Suppose that Z =X @, Y is (asq). Let x;,x,,...,xy €Sy and y;,v,,...,yy € Sy .
Then (x;,y;)isin S, foreveryi =1,2,..., N and by our assumption there is

a sequence z, = (u,,v,) in B, such that ||(x; y;) * (u,,v,)|| = 1 for
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every i =1,2,...,N and ||z,|]|= 1. Since ||z,|| = 1there is a

subsequence such that either ||u,|| = 1 or ||v,|] = 1.
Thus one of the spaces X or Y must be (asq).
Suppose now that X is (asq). Let z; = (x;,y;) € Sy fori=1,2,...,N.

Using Proposition (2.1.17), we can find a sequence (u,) c By such that
[lunl| = 1 and [lx; £u,|l - 1 for every i = 1,2,...,N. Put z, = (u,,0).
Then liz,ll = llunll = 1 and |lz; % z, |l = max{llx; £ u,ll,y;} » max{1,lly;ll} = 1
foreveryi = 1,2,...,N. Thus Z is (asq).

We explore the connection between (asq) spaces and the intersection

property introduced.

A Banach space X has the intersection property (IP) if for every € > 0 there
exist x;,x,,...,xy in X with ||x;]| < 1,i= 1,2,...,N, such that if y € X

with ||x; £ y|| < 1, foreveryi =1,2,...,N, then||y|| < «.

We will say that X e-fails the IP, 0 < e < 1, if for all x;,x,,...,xy In X
with ||lx;|| < 1,i = 1,2,..., N, there exists a y € X such that ||x; £ y|| < 1
and [[yll > e.

Theorem (2.2.17)[2]: A Banach space X is (asq) if and only if X e-fails
the IPforall0 <e < 1.

Proof. Assume X is (asq) and let 0 < & < 1 be fixed.

Assume (x;)Y, € By . Choose § > 0 such that (1 + §)?¢ < 1 and

A+8)|xll<1fori=1,2,...,N.
Let E = span{(x;))_,}. By Theorem (2.1.21), there exists y € Sy such that

lx + ryll < @ + &)max(lixll, [7])
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for all x € E and all scalars r. In particular,
llx; £ (1 + 8)eyll < (1 + &)ymax(llx;[l, (1 + 6)e) < 1
and [|(L+ &)ey|l = (L + e > &
Conversely, assume X e-fails the IP for 0 < e <1 and let x;,x,,...,xy €
Sy. Let ¢ > 0. Since z; = % € By there exists a y € X with ||y|| >1- ¢

such that ||z; = y|| < 1. Note that y is the midpoint of the line segment [y +
z;,y — z;] hence ||y|| < 1. We get

&
lx; + vl < llx;— zill + llz; + vl <1 1337 1 =1 +1 < 1+ ¢
and
y y
e gl = e e = gl = 2

From Proposition (2.1.18) we conclude that X is (asq).
Example (2.2.18)[2]: The space X = £,,(Cx(S™)) is (asq) but not a
proper M-ideal in any superspace.
Here S,,, is the Euclidean sphere in R™** and
Ce(S™M)={f€C(S™): f(s)=—f(=s)Vse S™}
where C(S™) is the space of continuous functions on S™.

It is proved that this X not a proper M-ideal in any superspace. A small

adjustment to the proof shows that X e-fails the IP for every 0 < e < 1.

Example (2.2.19)[2]: For every 0 < & < 1 there exists a Banach space
which is not (lasq), but e-fails the IP.

Let r = 3/(1 — ¢) and consider the following G-space:
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X ={f € C[0,1]: f(0) = rf(1)}.
X is not (lasq): Let f£(x) = 1 on [o,f] and f(x) = TTH — xon [} 1. If
g € By with |[f(x) £g(x)|<1+6, then |g(x)] < (1 - %) + & everywhere.
We cannot have ||f £ gl <1+ dand||g|| >1—6whend < %
X e-fails the IP: First we note that if f € X and |[f|| < 1, then |[f(D)] < %
If not then |f(O)| = |[rf(D)]| =r|f(1)] > 1.

Let fi,f2,....fn € By and 0< & < 1. Since |f;(1)| <

X IR

, there exists
neighborhood of 1, say (a,1], where |f;(x)] <§ . Define g such that

supp g < (a,1) and ||gll = ¢ +%. For x € (a,1) we have

2 1
|fi(X)ig(x)|<;+8+;:g+1—g:1|

Hence ||f; £ gll < 1.

Next we will show that every (asq) space contains a separable subspace
which is (asq).
Proposition (2.2.20)[2]: If X is (asq), then for every separable subspace
Y of X there exists a separable subspace Zwith Y ¢ Z c X and Z is (asq).

Proof. LetY c X and let ¢, = 2 — n.

Let A; be a countable dense set in Sy . For each finite family G in A; find
Yy in Sy such that ||x £ y|| < 1+ & forall x € G. Let Y; be the closure of

span{Y, (y;)}. Y; is separable.

Let A, be a countable dense set in Sy, . For each finite family G in A,

find y; in Sy such that ||x £y.|| <1l+e¢, for all x € G. Let Y, be the
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closure of span{Y;, (v;)}. Y, is separable.
We continue in the same fashionand let Z = U Y,,.

Let z;,7,,...,zy €S, and ¢ > 0. Choose k such that ¢, < &/2 and find
X1, X2, ..., Xy IN Ay with [[x; — z|| < /2. Then there existsay in Sy, ., C

S,with ||z; £y||<1l+e&fori=12,...,N.

Proposition (2.2.21)[2]: If X is (lasq), then for every separable subspace
Y of X there exists a separable subspace ZwithY ¢ Z c X and Z is (lasq).

Proof. Same idea as for (asq), but we only need to consider single parent

families.
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Chapter 3

Banach Spaces and Superprojectivity

We show that the class of superprojective spaces is stable under finite

products, certain unconditional sums, certain tensor products, and other

operations, providing new examples.

Section (3.1): Some Properties of Superprojective Spaces

A Banach space X is called subprojective if every (closed) infinite-
dimensional subspace of X contains an infinite-dimensional subspace
complemented in X, and X is called superprojective if every infinite-
codimensional subspace of X is contained in an infinite-codimensional
subspace complemented in X. These two classes of Banach spaces were
introduced by Whitley

There are many examples of subprojective spaces, like £, for 1 < p < oo,
L,(0,1)for 2 < p < oo, C(K) with K a scattered compact and some Lorentz
and Orlicz spaces. It is not difficult to show that subspaces of subprojective
spaces are subprojective, and quotients of superprojective spaces are
superprojective and, as a consequence of the duality relations between
subspaces and quotients, a reflexive space is sub-projective (superprojective)
if and only if its dual space is superprojective (subprojective), which
provides many examples of reflexive superprojective spaces. However, the
only examples of non-reflexive superprojective spaces previously known are
the C(K) spaces with K a scattered compact and their infinite-dimensional

quotients.

50



Some of the duality relations between subprojective and superprojective

spaces are known to fail in general:

a) X being subprojective does not imply that X* is superprojective,

for instance for X = cpand X™ = ¢;.

b) X™ being subprojective does not imply that X is superprojective, for
instance for the hereditarily indecomposable space obtained whose

dual is isomorphic to ¢;.
However we do not know if the remaining relations are valid:
(@’) Does X being superprojective imply that X* is subprojective?
(b”) Does X* being superprojective imply that X is subprojective?

The answer to these two questions is likely negative, but we know of few
examples of non-reflexive super-projective spaces to check, and none of

them is a dual space.

Oikhberg and Spinu have studied the stability properties of subprojective
spaces under vector sums, tensor products and other operations, obtaining

plenty of new examples of subprojective spaces.

We will begin with some auxiliary results shows some properties of
subprojective and superprojective spaces, such as the fact that
superprojective spaces cannot contain copies of £;, which restricts the search
for non-reflexive examples of these spaces, and we also characterise the
superprojectivity of some projective tensor products. We show several
stability results for the class of superprojective spaces under finite products,
certain unconditional sums and certain tensor products, and we provide new

examples of superprojective spaces.
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The dual space of a Banach space X is X*, and the action of x* € X* on
x € X is written as (x*,x). Given a subset M of a Banach space X, its
annihilator in X* will be denoted by M+ if M is a subset of X*, its annihilator
in X will be denoted by M,. If (x;)nen IS @ Sequence in X, then
[x,,: n € N]will denote the closed linear span of (x;,), ey iN X. The injective
and projective tensor products of X and Y are respectively denoted by
XQ . Yand X ®, Y.

Operators will always be bounded. The identity operator on X is denoted
by Iy. Given an operator T: X — Y, N(T) and R(T) denote the kernel and the
range of T, and T*:Y* — X™ denotes its conjugate operator. An operator
T:X —= Y is strictly singular if T|,, is an isomorphism only if M is finite-
dimensional; and T is strictly cosingular if there is no operator Q:Y — Z
with Z infinite-dimensional such that QT is surjective or, equivalently, if
there is no infinite-codimensional (closed) subspace N of Y such that R(T) +
N=Y.

The way that superprojective Banach spaces are defined means that we
will be dealing with infinite-codimensional subspaces and their induced

quotients often, so we will adopt the following definition.

Definition (3.1.1)[3]: We will say that an operator T:X - Y is a

surjection if T is surjective and Y is infinite-dimensional.

The following results will be useful when dealing with complemented
subspaces, surjections and superprojective spaces. Similar results were given

to study improjective operators.
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Proposition (3.1.2)[3]: For a Banach space X, the following are

equivalent:

(i) X s superprojective;
(if) For any surjection T: X — Y, there exists another surjection S:Y — Z

such that N(ST)is complemented in X.

Proof. For the direct implication, let T: X — Y be a surjection, so that N(T)
Is infinite-codimensional in X. By the superprojectivity of X, N(T) is
contained in a complemented, infinite-codimensional subspace M of X, and
clearly T(M) is closed in Y. Thus the quotient map Q from Y onto Y/T (M) is

a surjection such that N(QT) = M is complemented in X.

For the converse implication, let M be an infinite-codimensional
subspace of X, so that Q,:X — X/M is a surjection. Then there exists
another surjection S: X/M — Z such that N(5Q,,) is infinite-codimensional

and complemented in X, and contains M.

The next result allows to push the complementation of a subspace

through an operator under certain conditions.

Proposition (3.1.3)[3]: Let X,Y and Z be Banach spaces and let T: X — Y

and S:Y — Z be operators such that ST is a surjection and N(ST) is

complemented in X. Then N(S) is complemented in Y.

Proof. Let H be a subspace of X such that X = N(ST) @ H. Since ST:X - Z
IS a surjection, ST|; must be an isomorphism onto Z; in particular, T|y is an
isomorphism and Y = N(S) @ T(H), as proved by the projection
T(ST|y)~2S:Y = Y,
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A simple consequence of Propositions (3.1.2) and (3.1.3) is the fact that the

class of superprojective spaces is stable under quotients.

Proposition (3.1.4)[3]: Let X be a superprojective Banach space and let

T.X — Y be a surjection. Then Y is superprojective.

Proof. Let S:Y — Z be a surjection; then ST is a surjection and, by
Proposition (3.1.2), there exists another surjection rR: Z - w such that N(RST)
Is complemented in X. By Proposition (3.1.3), N(RS) is complemented in Y,

which means, again by Proposition (3.1.2), that Y is superprojective.

We will state a technical observation on the behaviour of surjections on

spaces that have a complemented superprojective subspace.

Proposition (3.1.5)[3]: Let X be a Banach space, let P:X — X be a
projection with P(X) superprojective and let S: X — Y be a surjection such
that SP is not strictly cosingular. Then there exists another surjection
R:Y — Z such that N(RS) is complemented in X.

Proof. Let J: P(X) - X Dbe the natural inclusion; then SP = SJP is not
strictly cosingular, so neither is SJ:P(X) —» Y. Therefore, there exists
a quotient map Q:Y — W such that QSJ is a surjection, and Proposition
(3.1.2) provides another surjection R:W — Z such that N(RQSJ) is
complemented in P(X); by Proposition (3.1.3), N(RQS) is complemented in

X, where RQ:Y — Z is a surjection.

The following result gives some simple but useful necessary conditions

for a Banach space X to be subprojective or superprojective.
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Proposition (3.1.6)[3]: Let X and Z be infinite-dimensional Banach

spaces.

(i) If J:Z—-> X is a strictly cosingular embedding, then X is not
subprojective.
(i) If Q:X—>Z is a strictly singular surjection, then X is not
superprojective.
Proof. (i) If X =M @ H with M < J(Z), then Q4] is surjective. Since J is

strictly cosingular, H is finite-codimensional and M is finite-dimensional.

(i) If X = M @ H with N(Q) € M, then Q|4 is an embedding. Since Q is
strictly singular, H is finite-dimensional.

Proposition (3.1.6) has several straightforward consequences. Proposition
(3.1.7) was proved for subprojective spaces with the same example but a
different argument. Here we extend it to superprojective spaces. Recall that a
class C of Banach spaces satisfies the three-space propertyif a Banach space
X belongs to C whenever M and X/M belong to C for some subspace M of
X.

Proposition (3.1.7)[3]: The classes of subprojective and superprojective

spaces do not satisfy the three-space property.

Proof. Let 1 <p <o and recall that ¢, is both subprojective and
superprojective. Let Z,, be introduced by the Kalton—Peck space Then there
exists an exact sequence

0> 52,56, 50
in which i is strictly cosingular and q is strictly singular. By Proposition

(3.1.6), Z, is neither subprojective nor superprojective.
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Proposition (3.1.8)[3]: Let X be a Banach space containing a subspace

isomorphic to £,. Then X is not superprojective and X* is not subprojective.

Proof. If X contains a subspace isomorphic to ¢, then there exists
a surjective operator Q:X — £,which is 2-summing, therefore weakly
compact and completely continuous, therefore strictly singular: Indeed, if
Qly is an isomorphism, then M is reflexive and weakly convergent
sequences in M are convergent, so M is finite-dimensional. By Proposition

(3.1.6), X is not superprojective.

For the second part, observe that Q**: X™ — £, is also 2-summing. Then
Q** is strictly singular, hence Q*:¢, - X* is a strictly cosingular

embedding.

Proposition (3.1.8) allows to fully characterise the superprojectivity of C(K)
spaces. Recall that a compact space is called scattered if each of its non-

empty subsets has an isolated point.
Corollary (3.1.9)[3]: Let K be a compact set. Then C(K) is
superprojective if and only if K is scattered

Proof. If K is scattered, then C(K) is superprojective. On the other hand, if K
Is not scattered, then C(K) contains a copy of #;and cannot be

superprojective by Proposition (3.1.8).

It also follows immediately that certain tensor products cannot be

superprojective.

Corollary (3.1.10)[3]: Let X and Y be Banach spaces and suppose that
X admits an unconditional finite-dimensional decomposition and

L(X,Y*) # K(X,Y*). Then X ®, Y is not superprojective.
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Proof. Note that (X ®, Y)* = L(X,Y*). Since L(X,Y*) # K(X,Y*), we
have that L(X,Y*)contains ¢, hence X @, Y contains a (complemented)
copy of #;.

Since the spaces ¢, have an unconditional basis and are subprojective
and superprojective for 1<p <o, we can now characterise the

superprojectivity of the tensor products ¢, X, ty.

Corollary (3.1.11)[3]: Let 1 <p,q <. Then the following are

equivalent:

(i) ¢, ® ¢, is superprojective;

(ii) €, ®y 24is reflexive;
(i) L(£p. t3) = K(£p,45);
(iv) p >q/(q—1).

Proof. We have that ¢, ®, ¢, is reflexive if and only if L(¢,, ;) = K(£,,£;)
ifand only if p > q/(q —1). If L(£,,2q) # K(£p,€y), then £, X, £y is
not superprojective by Corollary (3.1.10); otherwise, ¢, X, t,is reflexive
and €, @, €, = (£p ®: €5)", s0 €5 . £ is reflexive and subprojective

and £, ® 4, is superprojective.
Corollary (3.1.12)[3]:¢, ®, ¢, is not superprojective for any 1 < p,q < .

Proof. If p is either lor strictly greater than 2, then L, itself is not
superprojective, so neither is £, X, t4, and similarly for g. Thus, we are
only concerned with the case 1 < p,q < 2, but then both L,, and L7 contain
complemented copies of ¢,, s0 L(Ly, L) # K(L,, L;)and £, & £, is not
superprojective by Corollary (3.1.10).
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Section (3.2): Stability Results for Superprojective.

We will show some stability results for the class of superprojective spaces
and proves that the direct sum of two superprojective Banach spaces is again

superprojective.

Proposition (3.2.1)[3]: Let X and Y be Banach spaces. Then X @Y is

superprojective if and only if both X and Y are superprojective.

Proof. X and Y are quotients of X @ Y; if X @ Y is superprojective, then so
are X and Y by Proposition (3.1.4).

Conversely, assume that X are Y are both superprojective, and define the
projections Py: X @Y - X @ Y, with range X and kernel Y, and Py.: X @
Y - X @Y, withrange Y and kernel X. Take surjection S: X @ Y — Z. Then
S = SPx + SPy is not strictly cosingular, so either SPy or SPy is not strictly
cosingular; without loss of generality, we will assume that it is SPy. By
Proposition (3.1.5), there exists another surjection R:Z — W such that
N(RS) is complemented in X@Y, which finishes the proof by Proposition
(3.1.2).

Recall that an operator T: X — Y is upper semi-Fredholm if N(T) is finite-
dimensional and R(T) is closed, and T is lower semi-Fredholm if R(T) is
finite-codimensional (hence closed). Note that T is lower semi-Fredholm if

and only if T* is upper semi-Fredholm.

Theorem (3.2.2)[3]: Let X be a Banach space, let A be a well-ordered set

and let (Py)jex and (Q3),e4 be bounded families of projections on X such
that:

(i) Pyx” > x* for every x* € X*;
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(i) P,B, = Ppinguvy and Q,Qy = Qminguqy fOr every u,v € 4;

(ii) Q,P, = PR,Q, foreverypu,ve A andQ,P, =P, if u =v;

(iv) Q;(X) is superprojective for every A € A;

(v) For every unbounded strictly increasing sequence (A;)xen Of elements
in A and every sequence (x;)ren Of Non-null elements in X* such that
x; €ER(Py) and x; € R(P; (I —Q; _)) for k> 1, the subspace
[x,:k € N], is contained in a complemented infinite-codimensional

subspace of X.
Then X is superprojective.

Here, an unbounded sequence in A is one that does not have an upper
bound within A. Also, this result is only really interesting if A does not have
a maximum element; otherwise, if A is the maximum of A, then P, = Iy by
condition (i) and Q; = Q;P; = Py = Ix by condition (iii), so X = Q,(X) is

already superprojective by condition (iv).

Proof. Let M be an infinite-codimensional subspace of X and let us denote
its natural quotient map by S: X — X/M. If there exists A € A such that SQ,
Is not strictly cosingular, then Proposition (3.1.5) provides another surjection
R:X/M — Z such that N(RS) is complemented in X. Since N(RS) is infinite-

codimensional and contains M we are done.

Otherwise, assume that SQ; is strictly cosingular for every 1 € A. Let
C >1 be such that ||P,]| < C and ||Q,]| < C forevery A € A, and let ¢ =
1/8C3 > 0. We will construct a strictly increasing sequence 1, < 1, <... of
elements in A and a sequence (x;;),en Of Nnorm-one elements in M+ € X*
such that |

<27*gand |

Qr,_ Xk Py xj — xi|| < 2 ¢ for every k € N, where we

write Q,, = O for convenience. To this end, let k € N, and assume that A;_
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has already been obtained. By hypothesis, Qj _ S*=(5Q,,_,)" is not an
iIsomorphism, where S$*: (X/M)* — X™ is an isometric embedding with range

M+, so there exists x;; € M+ such that ||x;|| =1 and | < 27k¢, and

Qs Xk

then there is 1, > A,_;such that |

Py xi — x|l < 27*e by condition (i), which

finishes the inductive construction process. Let H = [x;:k € N] < X*; then H;

Is infinite-codimensional and contains M.

It is easy to check that the operators Ty:= (I —Qy, — 1)P,, are
projections with norm [T, || < (1 + C)C < 2C?, and that T;,T; = 0 if i # j.

Let now z, = Ty (x;) = P (I — Qj,_,)x for each k € N; then

<2Fke+27keC < 2VkeC < 1/2,

+|

lz; — xill < |P,{k Xp — xp P; Q;._.xn

S0 1/2 < ||zg|| < 3/2 for every k € N. If we take x;, € X such that |[x;|| <

2 and (z, x;) = 1 for each k € N, and define z;, = Ty xy, it follows that
(zky zi) = (2, Texi) = Tz, i) = (2o i) = 1
forevery k € N and
(z{,z) =(T;z{,Tiz;) = (z{, T;Tjz;) = 0

If i # j, which makes (zy, z;)nen @ biorthogonal sequence in (X*, X). In the
spirit of the principle of small perturbations, let K: X — X be the operator

defined as K(x) = Y- 1{xy, — zn, x)z,; then

Nl zilllzall < Y @ rec)acy) = y 2= 1
n=1 n=1 n=1

so K is well defined and U =1 + K is an isomorphism on X. Moreover,

K*:X* - X" is defined as K*(x*) = Yo {(x*, z,)(X; — 2},), SO K*(z;) = x}; — z;,
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and U*(z,) = x;, forevery k € N. Let Z = [z,: k € N]; then U*(2) = H and
UH) =Z,.

Next we will show that Z is weak® closed inX*. Note first that
TiPa, = (1= Qa, ) PaPa = (1= Quy ) Pa, =Ty if i 2, and TyPy, = (I = Qu_, )Py, Py, =
(I = Qa,_)P2, =0 otherwise. Given that z, € R(Ty) for every k € N, this
means that P; z" =z if i = and P;.z; = 0 otherwise, so P; (Z) = [z,.... 2],
which is finite-dimensional, for every k € N. Let x* be a weak™ cluster
point of Z; then Py x™ € Py (Z) < Z and P} x” 2 x* by condition (i), so
x* € Zand Zis indeed weak™ closed. The fact that H = U*(Z) implies that

H is weak™ closed, as well.

This means, in turn, that no @, can be an isomorphism on H for any 1 €
A. To see this, consider the natural quotient Qy : X — X/H,, where X/H, is
infinite-dimensional. Since M < H , the operator Q4 factors through S =
Quy:X = X/M and, since SQ; is strictly cosingular for every A € A by our
initial hypothesis, it follows that Q5 @4 cannot be surjective for any 4 € 4,
or even lower semi-Fredholm; equivalently, @; cannot be upper semi-

Fredholm on H,* for any A € A, where H,* = H because H is weak*

closed.

Finally, we will check that the sequence (4;)xen IS Uunbounded. Assume,
to the contrary, that there existed some A € A such that A, < A for every
k € N. Then, for every k € N, we would have T;,Q; = (I — Qax-1)PaxQ1 =
(I — Qak-1)P3, = Tk, S0 Q32 = z;, and Q; would be an isomorphism on Z.
But then Q;U~" would be an isomorphism on H, where U= =1 — UK is
a compact perturbation of the identity, so Q; would be upper semi-Fredholm

on H, a contradiction.
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Now that the sequence (4;)xen IS known to be unbounded, condition (v)
states that Z, is contained in a complemented infinite-codimensional

subspace of X, and thenso is H, = U~1(Z)).

Note that any sequence (B,)n.en Of projections in X satisfying the
conditions of Theorem (3.2.2) effectively defines a Schauder decomposition
for X, where the components are the ranges of each operator B,(I —
P,_1) = B, — P,_4; equivalently, each B, is the projection onto the sum of
the first ncomponents. For the purposes of Theorem (3.2.2), these

components need not be finite-dimensional.

Regarding condition (v), a further remark is in order. It may very well be
the case that there are no unbounded strictly increasing sequences in A, for
instance if A = [0, w;), where w; is the first uncountable ordinal, in which
case condition(v) is trivially satisfied and does not impose any additional
restriction on X or the projections. In terms of the proof of Theorem (3.2.2),
this means that SQ, must be eventually not strictly cosingular for some 1 €
A, and this is so because Q; is an isomorphism on Z for any A greater than
the supremum of (A;)ken, SO Q3 is upper semi-Fredholm on H and SQ; is
not strictly cosingular, as per the last paragraphs of the proof of Theorem
(3.2.2).

We will not need the full strength of Theorem (3.2.2), projections

(Pa)aea = (Q1)req is involved.

Theorem (3.2.3)[3]: Let X be a Banach space, let A be a well-ordered set

and let (P;),e4 be a bounded family of projections on X such that:
(i) Pyx” 7x* for every x* € X*;
(i) P,B, = Ppinguvy forevery u, v € 4;
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(iii) P,(X) is superprojective for every 1 € A;

(iv) For every unbounded strictly increasing sequence (A )xen Of elements
in A and every sequence (x;)rey Of non-null elements in X* such that
x; €R(P;) and x; e R(P; —P; ) for k>1, the subspace [x;:k eN], is
contained in a complemented infinite-codimensional subspace of X.

Then X is superprojective.

Our first use of Theorems (3.2.2) and (3.2.3) will be to prove that the
(infinite) sum of superprojective spaces, such as £,(X,)or co(Xy), is also

superprojective, if the sum is done in a “superprojective” way.

Definition (3.2.4)[3]: We will say that a Banach space E € RN is a solid

sequence space if, for every (a,) ey € E and (B,)neny € RN with |8,] < |ay,]
for every n € N, it holds that (8,)) ey € E and ||(B,)nenll < 11(@) nenll-

We will say that E is an unconditional sequence space if it is a solid
sequence space and the sequence of canonical vectors (e;)iey IS @

normalised basis for E, where e; = (6;;) jen-

If E is an unconditional sequence space, then its canonical basis (e;;)nen
Is actually 1-unconditional, and its conjugate E* can be identified with a

solid sequence space itself in the usual way, where the action of

ﬁ - (ﬁn)nEN € E* on a = (an)nEN €EE iS (,3,0!) - Z?f:lﬁnan- If the
canonical basis (e,)ney IS shrinking in E, then E* is additionally

unconditional (the coordinate functionals are a basis for E™).

We have the following construction.

Definition (3.2.5)[3]: Let E be a solid sequence space and let (X,,) ey be

a sequence of Banach spaces. We will write E(X,,) for the Banach space of
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all sequences (x;)nen € [Inen X5 for which (||x,|)nen € E, With the norm
G dnenll = ll{lxnlDnenllE-
The identification of the dual of an unconditional sequence space with

another solid sequence space can be carried up to the sum of spaces.

Proposition (3.2.6)[3]: Let E be an unconditional sequence space and let
(X,,))en be a sequence of Banach spaces. Then E(X,,)* = E*(X,,).

Proof. Each (x;)neny € E*(X;,) clearly defines an element of E(X,,)", so we

only have to show the converse identification.

Let z* € E(X,)", let J,: X, = E(X,,) be the canonical inclusion of X,
into E(X,,) for eachn € N and let x,, = J,(z*) € X,, for each n € N; we
will prove that z* = (x;;)nen € E*(X3).

To prove that (x;)nen € E*(Xy), choose x,, € X,, such that [[x,|| =1
and (x5, x,) = %llx,*lll for each n € N, and take any non-negative

a = (ay)ney € E. By the definition of E(X,), we have that (a,x,;,)nen €
E(X,), so

D lillan <) 206ty = 2 ) () = 2 ) Gal2), ant)
n=1 n=1 n=1 n=1

=2 Z”Z*Jn(anxn)” = Z(Z*a(anxn)nEN> < 2”Z*””(anxn)nEN”
n=1
= 2[lz"[[llel].
This proves that (||x,||) € E* and, as a consequence, (x;)nen € E*(X,).

Now, given i € N and x; € X;, we have ((x;)nenJi(x:)) = (x{, x;) =
(z*,3;(%;),) s0 (x;)nen and z* coincide over the finitely non-null sequences

of E(X,) and therefore z* = (x;;)nen-
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We will prove that the sum of superprojective spaces is also
superprojective, if the sum is done in a superprojective way, which translates
to the requirement that the space E governing the sum must be
superprojective itself. This excludes £; and, more generally, imposes that
any unconditional basis in E be shrinking, for the same reasons that #; is not

superprojective.

Proposition (3.2.7)[3]: Let X be a superprojective Banach space and let

(%) nen be an unconditional basis of X. Then (x,;)nen 1S shrinking.

Proof .If (x,),.eny 1S unconditional but not shrinking, then X contains a
(complemented) copy of £; and cannot be superprojective by Proposition
(3.1.6).

Theorem (3.2.8)[3]: Let E be an unconditional sequence space and let
(x,,)nenbe a sequence of Banach spaces. Then E(X,,) is superprojective if

and only if all of E and X,, are superprojective.

Proof. Let X = E(X,). All of E and X,, are quotients of X; if X is

superprojective, then so are E and each X,,.

Assume now that E and each X,, are superprojective, and define the
projections P,: X = X as P,((x;)nen) = (x1,...,%,,0,...) foreachn € N.
We will prove that the sequence (B,),ey Meets the criteria of Theorem
(3.2.2). The fact that (P,),eny IS associated with the natural Schauder
decomposition of X = E(X,,) is enough for condition (ii) to hold. For
condition (iii), note that B,(X) is isometric to @}, X;, which is
superprojective by Proposition (3.2.1). As for condition (i), E is
superprojective and its canonical basis (e,)nen IS unconditional, therefore

shrinking by Proposition (3.2.1), so E* is unconditional and (B,;),ey IS the
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sequence of projections associated with the natural Schauder decomposition
of E(X,)* = E*(X}).

To prove condition (iv), let (n,),en be a strictly increasing sequence of
integers, let Ty = B, and Ty = B, — B, _, fork > 1, and let x; € R(T}) be
non-null for each k € N, as in Theorem (3.2.1). Define M = [x,:k € N],,

which is infinite-codimensional. Then x; € X* = E*(X,,), SO
x;; - (Oa"'aoaz:lk_1+11"'1z‘;‘klk 101"')1

where z; € X;". Pick a normalised z; € X; such that (z;,z;) > ||z||/2 for
each i € N, and consider the operator J: E — X defined as J((a;,)nen) =
(tnzy)nen, Which is an isometric embedding by the definition of
X = E(X,).

We claim that Q,J:E - X/M is a surjection. Indeed, given
X = (xp)nen € X, with each x,, € X, let a,, = (z,,, x,/{zp,, z,) if z;, # O,

else a,, =0, for each n € N, and define @ = (a;)nen- Then |a,| < 2||x,||

ny
[=Ng_q

forevery k e N,sox —J(a) € M and Qy(x) = QuJ(a) € R(Qum))-

foreveryn €N, so a € E, and {(x;,x — J(a)) = 3. Az % —aiz;) =0

Now, by the superprojectivity of E and Proposition (3.1.2), there exists
another surjection S: X/M — Z such that N(SQ,,J) is complemented in E;
by Proposition (3.1.3), N(5Q,,) is complemented in X, where M € N(SQy)

and R(SQy) = Z, which is infinite-dimensional.
We have the following result.

Lemma (3.2.9)[3]: Let X be a Banach space, let E be an unconditional

sequence space and let T, (T} ) ey be projections in X such that
(i) T,T;=0ifi #j;
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(i) T,T =TT, = Ty forevery k € N;

(ifi) R(T) embeds into E(R(Ty)) via the mapping that takes x € R(T) to
(T (%)) ken-

Let x, € R(T;) be non-null for each k €N. Then [x;:k € N],is

complemented in X.

Proof. We will assume without loss of generality that ||x;|| = 1 for every
k € N. Let Z = E(R(T})) and let U: R(T) — Z be the isomorphism into Z
defined as U(x) = (T (x))ken-

Note that, in fact, (Tx(x))ken = (T (T(%)))ken = U(T(x)) € Z for

every x € X, sO ([T (x)IDken € E and ||([IT(x) [Dren Iz = IU(T (x))1IZ
for every x € X. Define Q: X — E as Q(x) = ({xg,Xx))ken; then

[{xi, ) = KTy (x), ) = 1, T GO < (T (O
forevery x € X, so Q is well defined and ||Q|| < ||UT||. Also, (T (x))key € E

implies that T x 2 O for every x € X, so there exists a constant C such that
IT|l < C for every k € N.

Take now x;, € X such that (x;,x;) = 1 and ||x,|| < 2 for each k € N,
so that (x;, Tjx;) = (T;'x;, x;) = &;; for every i,j € N, and define J.E —» X
as J((@n)nen) = Xn=1nTn(xn). Then UJ((@n)nen)) = (2T (xXi))ken,
as seen by considering the action of UJ over the finitely non-null sequences
of E, where 1 < ||Tp(xp)l| <C for every k€N, so UJ:E - Z is an

isomorphism, and so must be J. Finally,

[00)

Q]((an)neN) = ((x,t, 2 anTn(xn») = (ak)keNl
kEeN

n=1

so Q] = Iz and JQ is a projection in X with kernel [x,: k € N],.
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Theorem (3.2.10)[3]: Let X and Y be ¢, or ¢, for 1 <p < co. Then
X ®. Y is superprojective.

Proof. Let R,:X —» X be the projection given by R, ((ay)ien) =
(aq,...,a,,0,...) for each n € N, and similarly for Y. (We are abusing the
notation here for the sake of simplicity in that Rr, is really a different
operator on each of X and Y unless they are the same space.) Define the
projections
P,= R, ® R,
Qn = IX ®£Y_(IX_Rn) ® (IY - Rn)
:Rn®Rn+(IX_Rn)®Rn+Rn®(IY_Rn)
We will prove that the sequences (B,),en and (Q,), ey Meet the criteria

of Theorem (3.2.2).

Conditions (ii) and (iii) are readily satisfied, because they clearly hold for

the elementary tensors e; ® e;. For condition (i), both X* and Y™ are £,
spaces for some 1 < q < oo, S0 R, (x™) > x* for every x* € x*, and similarly
for Y*, so P:(z*) = (R, @ R.)(z*) -z for every z2 e (X ®. V) =X ®, Y*,
again because it holds for the elementary tensors. For condition (iv), note
that the range of @, is the direct sum of the ranges of R, ® R,,, (Ix — R,)) ® R,,
and R,, @ (Iy — R,,), where the first one is finite-dimensional and the other
two are the sum of finitely many copies of N(R,) in X and Y, respectively,

which are finite-codimensional subspaces of X and Y, respectively, hence

superprojective.

To prove condition (v), let (ny),en De a strictly increasing sequence of

integers and let T; = B, and Ty = (I — Qy,_ )Py, for k > 1, as in Theorem
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(3.2.2). Note that, for k > 1, Tk is the projection Ty = (R, — Rp,_,) ®

(Rp, — R ), so T;T; =0if i #j. Using Tong’s result on diagonal

ng—1
submatrices, the operator T = Y32, T is a norm-one projection in X @, Y,
with T, T =TT, = T, for every k € N, and R(T) embeds into c,(R(Ty)) or
2,(R(T})) for suitable 1 < s < oo in the natural way, so Lemma (3.2.9)
ensures that [x;: k € N], is complemented in X &, Y for any choice of non-

null elements x; € R(Ty).

Theorem (3.2.10) can actually be extended to injective tensor products of
finitely many copies of ¢, and ¢,(1 <p < o) inductively in the obvious
way with only minor modifications.

We will show that C(K,X) is superprojective whenever so is X at least if

K is an interval of ordinals, which includes the case where K is scattered and

metrisable .
Theorem (3.2.11)[3]: Let X be a superprojective Banach space and let A

be an ordinal. Then Cy ([0, 1], X) and C([0, 1], X) are superprojective.

Proof. The proof will proceed by induction in A. Assume that Cy([O, u], X)
and C([O, u], X) are indeed superprojective for all u < A; we will first prove
that Cy ([0, 4], X) is superprojective too. If A is not a limit ordinal, then 1 =
pu + 1 for some p and Cy([0, 4], X) = C([O, u], X), which is superprojective
by the induction hypothesis.

Otherwise, if A is a limit ordinal, define the projections
P,u : CO([OvA]vX) - CO([OvA]vX)

as P,(f) = fxpo,q for each u < A. We will prove that the family (F,),<1

meets the criteria of Theorem (3.2.3). Condition (ii) is immediate to check.
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For condition (iii), B,(Co([0,1],X)) is isometric to C([O,u], X), which is

superprojective by the induction hypothesis.

For condition (i), we have Co([0,1])* = ¢, ([0,2)) and C,([0, 2] X)* =
(Co([0,2]) ®, X)* = Co([0,A])" @ X*,50 Co([0,4],X)" = £, ([0,1)) ®, X* =
¢, ([0,2),X™) and P/ (z) = zx[o 7 z forevery z € £, ([0, 1), X™).

As for condition (iv), let (Ax)reny be an unbounded strictly increasing
sequence of elements in [0, 1), should it exist, and let T, = Py, and T =
Py, — Py, fork>1, as in Theorem (3.2.3). Then T} is the projection
given by Ti(f) = fxp_,+14,) for k>1, so T;T; =0if i #j. Since
(A))ken 1S unbounded in [0,4), its supremum must be A itself, so
Co([0, 4], X) = co(R(T%)) = co(C([Ak—1 + 1,4,], X)) and Lemma (3.2.9),
with T = I, ensures that [x;:k € N], is complemented in C, ([0, 1], X) for

any choice of non-null elements x,, € R(Ty).

Finally, C([0,1],X) = Cy([O, 1], X) @ X, which is superprojective by
Proposition (3.2.1).

Note that unbounded strictly increasing sequences in [0, ) may not exist

for certain A, in which case the remark after Theorem (3.2.2) applies and B,

cannot be strictly cosingular for all u < A.
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Chapter 4

Banach Spaces and Subprojectivity

A Banach space X is called subprojective if any of its infinite
dimensional subspaces Y contains a further infinite dimensional subspace

complemented in X. We are devoted to systematic study of subprojectivity.

Section (4.1): General Facts about Subproectivity of Tensor

Products and Spaces of Operators.

A Banach space X is called subprojective if every subspace Y c X
contains a further subspace Z c Y, complemented in X. This notion was
introduced, in order to study the (pre)adjoints of strictly singular operators.
Recall that an operator T € B(X,Y) is strictly singular (T € SS(X,Y)) if T
IS not an isomorphism on any subspace of X. In particular, it was shown that,
If Y is subprojective, and, for T € B(X,Y ), T* € SS(Y*,X*),then T € SS(X,Y ).

Later, connections between subprojectivity and perturbation classes were
discovered. More specifically, denote by @, (X,Y) the set of upper semi-
Fredholm operators that is, operators with closed range, and finite

dimensional kernel. If @, (X,Y) # @, we define the perturbation class

PO, (X,Y)= {SE€B(X,Y):T+S € d,(X,Y)whenever T € &,(X,Y)}.
It is known that SS(X,Y) c P® + (X,Y). In general, this inclusion is
proper. However, we get SS(X,Y) = P® + (X,Y) if Y is subprojective .

Several classes of subprojective spaces are described. Common examples
of non-subprojective space are L;(0, 1) (since all Hilbertian subspaces of L,
are not complemented), C(A), where A is the Cantor set, or £, (for the same

reason). The disc algebra is not subprojective, it contains a copy of C(4),.
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L,(0,1) is subprojective if and only if 2 < p < . Consequently, the Hardy
space H, on the disc is subprojective for exactly the same values of p.
Indeed, H,, contains the disc algebra. For 1 < p < oo, H,, is isomorphic to
L,. The space H; contains isomorphic copies of L, for 1 <p < 2. On the

other hand, VMO is subprojective.

We prove that subprojectivity is stable under suitable direct sums.
However, subprojectivity is not a 3-space property. Consequently,
subprojectivity is not stable under the gap metric. Considering the place of
subprojective spaces in Gowers dichotomy, we observe that each
subprojective space has a subspace with an unconditional basis. However,
we exhibit a space with an unconditional basis, but with no subprojective

subspaces .

We investigate the subprojectivity of tensor products, and of spaces of
operators. A general result on tensor products Yyields the subprojectivity on
£,&¢, and £, ® ¢, for L < p,q < oo, as well as of K(L,,L,) for 1 <p <
2 < q < . We also prove that the space B(X) is never subprojective, and

give an example of non-subprojective tensor product £, &, £,.

We work with C(K) spaces, with K compact metrizable. We begin by
observing that C(K) is subprojective if and only if K is scattered. Then we
prove that C(K,X) is subprojective if and only if both C(K) and X are.
Turning to spaces of operators, we show that, for K scattered,
[14p(C(K),£,) is subprojective. Then we study continuous fields on a
scattered base space, proving that any scattered separable CCR C*-algebra is

subprojective.
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We show that, in many cases, subprojectivity passes from a sequence

space to the associated Schatten spaces.
Proceeding to Banach lattices, we prove that p-disjointly homogeneous p-
convex lattices (2 < p < o) are subprojective. We show that the lattice

X(#,) is subprojective whenever X is.

Consequently, if X is a subprojective space with an unconditional basis and

non-trivial cotype, then Rad(X) is subprojective.

We use the standard Banach space results and notation. By B(X, Y) and
K(X,Y) we denote the sets of linear bounded and compact operators,
respectively, acting between Banach spaces X and Y. B(X) refers to the
closed unit ball of X. For p € [1, ], we denote by p’ the “adjoint” of p (that
is, 1/p + 1/p' = 1).

We showing that subprojectivity passes to direct sums.

Proposition (4.1.1)[4]: (a) Suppose X and Y are Banach spaces. Then
the following are equivalent:

(i) Both X and Y are subprojective.

(i1)(2) X @ Y is subprojective.

(b) Suppose X;,X,,.. are Banach spaces, and & is a space with

a 1-unconditional basis. Then the following are equivalent:

(i) The spaces ¢, X, X5, ... are subprojective.
(i) X n X,), is subprojective.
In (b), we view € as a space of sequences of scalars, equipped with the norm

I'lle. G:n X,,). refers to the space of all sequences (x,)nen € [TnenXn

endowed with the norm ||(xp)nenll = I(l1xpllX)Ile. Due to the
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1-unconditionality  (actually,1-suppression  unconditionality  suffices),

(X n X,,). is a Banach space.

We begin by making two simple observations.

Proposition (4.1.2)[4]: Consider Banach spaces X and X’ and
T € B(X,X"). Suppose Y is a subspace of X, T|y is an isomorphism, and T(Y)

is complemented in X". Then Y is complemented in X.

Proof. If Q is a projection from X’ to T(Y), then T~1QT is a projection from
XontoY.

This immediately yields:

Corollary (4.1.3)[4]: Suppose X and X' are Banach spaces, and X' is
subprojective. Suppose, furthermore, that Y is a subspace of X, and there
exists T € B(X,X") so that T|y is an isomorphism. Then Y contains a

subspace complemented in X.

We have the following version of “Principle of Small Perturbations”. We

include the proof for the sake of completeness.

Proposition (4.1.4)[4]: Suppose (x;) is a seminormalized basic
sequence in a Banach space X, and (y;) is a sequence so that
limy, ||x; — yxll = 0. Suppose, furthermore, that every subspace of
span[yy : k € N] contains a subspace complemented in X. Then span[x; :

k € N] contains a subspace complemented in X.

Proof. Replacing x;, by x,/||x,||, we can assume that (x,) normalized.
Denote the biorthogonal functionals by x;, and set K = supy, ||x;||. Passing
to a subsequence, we can assume that >, ||xx — v« || < 1/(2K). Define the

operator U€& B(X) by setting Ux = Y x, (x)(yx — xi) . Clearly |[U|| < 1/2,
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and therefore, V. = Iy + U is invertible. Furthermore, Vx;, = y;. IfQisa
projection from X onto a subspace W c span[y, : k € N], then P = V-1QV is a

projection from X onto a subspace Z c span[xy : k € N].

(@) Throughout the proof, Py and P, stand for the coordinate projections
from X @Y onto X and Y, respectively. We have to show that any subspace

E of X @Y contains a further subspace G, complemented in X @ Y.

Show first that E contains a subspace F so that either Py|r or Py|g is an
iIsomorphism. Indeed, suppose Px|r is not an isomorphism, for any such F.
Then Py|j is strictly singular, hence there exists a subspace F c E, so that
Py|r has norm less than 1/2. But Py + Py = Iygy , hence, by the triangle
inequality, |[PyfIl = IIfIl = IPxfIl = lIf||/2 for any f € F. Consequently,

Py | is an isomorphism.

Thus, by passing to a subspace, and relabeling if necessary, we can
assume that E contains a subspace F, so that Py|F is an isomorphism. By

Corollary (4.1.3), F contains a subspace G, complemented in X.

Set F' = Px(F), and let V be the inverse of Py:F — F. By the
subprojectivity of X, F’ contains a subspace G’, complemented in X via a
projection Q. Then P = VQ Py gives a projectiononto G =V (G") c F.

(b) Here, we denote by P, the coordinate projection from X = (X, X )«
onto X,,. Furthermore, we set Q,, = Y 7.1 Px ,and Q;+_, — Q,.. We have to

show that any subspace Y c X contains a subspace Y,, complemented in X.

To this end, consider two cases.

(i) For some n, and some subspace Z c Y, Q,,|, is an isomorphism. By part
@), X1 ®..0 X, = Q,(X) is subprojective. Apply Corollary (4.1.3) to

obtain Y;.
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(if) For every n, Q,|y is not an isomorphism — that is, for every n € N, and
every € > 0, there exists a norm one y € Y so that ||Q,,y|| < &. Therefore,
for every sequence of positive numbers (g;), we canfind 0 =N, <N; < N, <

.., and a sequence of norm one vectors y; €Y , so that, for every
i (| ow il 1o, yill < e

By a small perturbation principle, we can assume that Y contains norm one
vectors (y';) so that Qu,y'; = Qy,, »'i =0 for every i. Write y'; =
(z));"* = Nyyq, with z; € X; .

Then Z =span[(0,...,0,z;,0,...):j €N] (z is in j-th position) is

-1
= llzll

and (z; ,z;) = 1.1fz; =0, set z; = 0. For x = (xj) jey € X, define Rx =

complemented in X. Indeed, if z; # O, find z; € X" so that |

7¥
]

(z7 ,x;)z;) ey It is easy to see that R is a projection onto Z, and ||R|| does
] 17717]

not exceed the unconditionality constant of «.

Now note that J:Z = E: (@121, @32,,...) = (a1llz4|], azllz,]],...) is an
isometry. LetY’ = span[y’; : i € N], and Y, = J(Y"). By the subprojectivity
of &,Y, contains a subspace W, which is complemented in & via a projection
R,. ThenJ~1R,JR is a projection from X onto Y, = J~1(W) c X.

Recall that if X is a Banach space, then

1
LX) = {x = (xp)qzg EX XX X X...: sup () |x"(x,)[P)P < oo},

xX*ex*

It is known that £, (X) is isomorphic to B(¢, ,X)(% + pi' = 1). We show

that, for X = ¢,.(r = p"), B({,+, X) contains a copy of ¢, and therefore, is
not subprojective. To this end, denote by (e;) and (f;) the canonical bases in
¢y and ¢, respectively. For a = (a;) € ¥, define B((,.X) 3 Ua : e; = af;.
Clearly, U is an isomorphism.
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Note that the situation is different for » < p’. Then, by Pitt’s Theorem,
B(£,,4,) = K(£,,¢;). In the next section we prove that the latter space is

subprojective.

We show that subprojectivity is not a 3-space property.

Proposition (4.1.5)[4]: For 1 < p < o there exists a non-subprojective
Banach space Z, , containing a subspace X, , so that X, and Z,/X,, are

isomorphic to £,,.

It is easy to see that subprojectivity is stable under isomorphisms.
However, it is not stable under a rougher measure of “closeness” of Banach
spaces — the gap measure. If Y and Z are subspaces of a Banach space X, we
define the gap (or opening)

0x(Y,2) :max{ sup dist(y,Z), sup dist(z,Y)}.

yey |lyll=1 z€Z ||z||=1

We refer to the comprehensive survey for more information. Here, we note
that 0, satisfies a “weak triangle inequality”, hence it can be viewed as a
measure of closeness of subspaces. The following shows that subprojectivity

IS not stable under 6.

Proposition (4.1.6)[4]: There exists a Banach space X with

a subprojective subspace Y so that, for every ¢ >0, X contains a non-

subprojective space Z with 64(Y,Z) < e.

Proof. Our Y will be isomorphic to #,, where p € (1, ) is fixed. By

p’
Proposition (4.1.5), there exists a non-subprojective Banach space W,
containing a subspace W, so that both W, and W' = W /W, are isomorphic

to £,,. Denote the quotient map W — W' by q. Consider X = W ¢, W' and
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Y =W, @, W c E. Furthermore, for £ > 0, define z, = {ew &, qw:w € W}.
Clearly, Y is isomorphic to ¢, & ¢, ~ £,,, hence subprojective, while Z, is

iIsomorphic to W, hence not subprojective. We have 04(Y,Z,) <e.

Looking at subprojectivity through the lens of Gowers dichotomy and
observing that a subprojective Banach space does not contain hereditarily

indecomposable subspaces, we immediately obtain the following.

Proposition (4.1.7)[4]: Every subprojective space has a subspace with

an unconditional basis.

The converse to the above proposition is false.

Proposition (4.1.8)[4]: There exists a Banach space with an

unconditional basis, without subprojective subspaces.

Proof. T. Gowers and B. Maurey construct a Banach space X with
a 1-unconditional basis, so that any operator on X is a strictly singular
perturbation of a diagonal operator. We prove that X has no subprojective
subspaces. In doing so, we are re-using the notation of that paper. In

particular, forn e Nand x € X,

We define ||x[[¢, as the supremum of ¥ii,|lx;|l, where x,,...,x, are
successive vectors so that x = ); x;. It is known that, for every block
ubspace Y in X, every ¢ > 1, and every n € N, there exists y € Y so that 1 =
Iyl < ll¥llny <c. This technical result can be used to establish a
remarkable property of X: suppose Y is a subspace of X, with a normalized
block basis (y,). Then any zero-diagonal (relative to the basis (yi))
operator on Y is strictly singular. Consequently, any T € B(Y) can be written

as T =A+S, where A is diagonal, and S is zero-diagonal, hence strictly
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singular. This result is proved for Y = X, but an inspection yields the

generalization described above.

Suppose, for the sake of contradiction, that X contains a subprojective
subspace Y. A small perturbation argument shows we can assume Y to be a
block subspace. Blocking further, we can assume that Y is spanned by a

block basis (y;), so that 1 = ||y;|| < ||y,-||(j) < 1+277 . We achieve the desired

contradiction by showing that no subspace of Z = span[y; + v,,¥5 + v4,...]1 1S

complemented in Y.

Suppose P is an infinite rank projection from Y onto a subspace of Z.

Write P = A+ S, where S is a strictly singular operator with zeroes on the
main diagonal, and A = (/1]-)7:1 is a diagonal operator (that is, Ay; = A;y;
for any j). As sup||yj||(j) <o, we have limSy; =0. Note that
j J
(A+5)> =A+S, hence diag (Af — ;) =A*—-A=S5—-AS—SA—S? s strictly
singular, or equivalently, lim A;(1 — A;) = 0. Therefore, there existsa 0 — 1
J
sequence (4';) so that A" — Ais compact (equivalenty, lim(4; — A';) = 0),
j

where A" = diag (1';) is a diagonal projection. Then P = A"+ §', where
S'=S+(A—-A") is strictly singular, and satisfies li]T_nS'yj =0. The
projection P is not strictly singular (since it is of infinite rank), hence A" =
P — S’ is not strictly singular. Consequently, the set j = {f e N:2’; =1} is
infinite.

Now note that, for any j, |Py; — v;|| > 17/2. Indeed, Py; € Z, hence we

can write Py; = Yy ax (Var-1 + yai) - Let € = [j/2]. By the 1-unconditionality
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of our basis,||y; — Py;|| = |ly; = ae(ze-1 + v20)|| = max{|1 — a,|, ||} = 172.

For j € J,S'y; = Py; — y;, hence ||S"y;|| = 172, which contradicts li}n||5’y,-|| = 0.

Finally, one might ask whether, in the definition of subprojectivity, the
projections from X onto Z can be uniformly bounded. More precisely, we
call a Banach space X uniformly subprojective (with constant C) if, for every
subspace Y c X, there exists a subspace Z c Y and a projection P: X — Z
with ||P]| < C. The proof essentially shows that the following spaces are
uniformly subprojective: (i) ¢, (1 <p <o) and cy; (ii) the Lorentz
sequence spaces [, ,; (iii) the Schreier space; (iv) the Tsirelson space; (V)
the James space. Additionally, L,(0,1) is uniformly subprojective for 2 <
p < oo. This can be proved by combining Kadets-Pelczynski dichotomy
with the results about the existence of “nicely complemented” copies of #,.
Moreover, any c,-saturated separable space is uniformly subprojective, since
any isomorphic copy of ¢, contains a A-isomorphic copy of c,, for any 1 > 1.
By Sobczyk’s Theorem, a A-isomorphic copy of c, is 2A-complemented in
every separable superspace. In particular, if K is a countable metric space,

then C(K) is uniformly subprojective.

However, in general, subprojectivity need not be uniform. Indeed,

suppose 2 <p; <p, <...<oo, and limp, = co. By Proposition (4.1.1)
n

(b), X = (Xn Ly, (0,1)), is subprojective. The span of independent Gaussian

random variables in L, (which we denote by G,) is isometric to Z,.

Therefore, any projection from L,, onto G, has norm at least co\/ﬁ, where ¢,

Is a universal constant. Thus, X is not uniformly subprojective.
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Section (4.2): Subprojectivity of Schatten Spaces and with
lattice Valued £p Spaces.

Suppose X;,X,,...,X, are Banach spaces with unconditional FDD,
implemented by finite rank projections (P;,, ), (P3,,). ..., (Pr ), respectively.
That is, P/,P/, =0 unless n =m, liIGnZﬁ:lPi’n = Iy; point-norm, and

i{upllZﬁ:liPi’nll < oo (this quantity is sometimes referred to as the FDD
=x

constant of X;). Let E;, = ran (P;,).

We say that a sequence (W), € X; ® X, ® ...® X is block-diagonal

if there exists a sequence 0 = N; < N, <...so that

Nji1 Njiq Njiq
wel D En|el D ke e Y B
n=Nj,1 n=Njy1 n=Njy1

Suppose ¢ is an unconditional sequence space, and ® is a tensor product of
Banach spaces. The Banach space X;®X,® ... ®X, is said to satisfy the
e-estimate if there exists a constant C > 1 so that, for any block diagonal

sequence (w;) jey in X, @X,® ... ®X,, we have

j

Corollary (4.2.1)[4]: Suppose the Banach spaces X; and X, have

(4.1)

ct ||(||w,-||)j€N LS < C||(||wj||)jEN

E

unconditional FDD, co-type 2 and type 2 respectively, and both X{ and X,
are subprojective. Then K(X{, X,) is subprojective.

This happens, for instance, if X; = L,(u) or €, (1 <p <2)and X, =
Lq(u) or €, (2 < q < ). Indeed, the type and cotype of these spaces are
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well known. The Haar system provides an unconditional basis for L,. The

existence of unconditional FDD of €, spaces is given.

Theorem (4.2.2)[4]: Suppose X;,X,,....X, are subprojective Banach

spaces with un-conditional FDD, and ® is a tensor product. Suppose,
furthermore, that for any finite increasing sequence i=[1<i; <...<...i, <k,

there exists an uncondi-tional sequence space ¢;, so that X; ®X;,®... ®X;,

satisfies the &;-estimate. Then X; ®X,® ... ®X, is subprojective.

A similar result for ideals of operators holds as well. We keep the
notation for projections implementing the FDD in Banach spaces X; and X,.
We say that a Banach operator ideal A is suitable (for the pair (X;, X,)) if the
finite rank operators are dense in A(X;,X,) (in its ideal norm). We say that a
sequence (wj)jen © A(X1,X3) is block diagonal if there exists a sequence
0=N; <N, <.. sothat, forany j,w; = (Pon; — Pan; IWj(Pin, — Pin;_,)- If
¢ IS an unconditional sequence space, we say that K(X;,X,) satisfies the

g-estimate if, for some constant C,

ZWJ

J

e b, =[S <, @2

A

holds for any finite block-diagonal sequence (w;).

Proof. We will prove the theorem by induction on k. Clearly, we can take
k = 1 as the basic case. Suppose the statement of the theorem holds for a
tensor product of any k — 1 subprojective Banach spaces that satisfy
e-estimate. We will show that the statement holds for the tensor product of k

Banach spaces X = X; ®X,® ... ®X,.
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For notational convenience, let P;,, = ¥x_1 Pj , and I; = Iy,. If A€ B(X)
is a projection, we use the notation A+ for I, — A. Furthermore, define the
projections Qn = P, ® Py ® ...® Py, and R, = Py ® Ps, ..® Pik,.
Renorming all X;’s if necessary, we can assume that their unconditional

FDD constants equal 1.
First show that, for any n,ranR; is subprojective. To this end, write
Rt =Yk . PO where the projections P®) are defined by
PA) =P, QL ®.Q I,
P2 =P, Q@ P, I3 R..Q I,
PB) =P, QP:L QPN QRIEQ..Q Ii,.........
P(k) = Pz, @ P ® ..Q Pir1y ® Prn
(note also that PO PU) = 0 unless i = j). Thus, there exists i so that P® is an

isomorphism on a subspace Y’ c Y . Now observe that the range of P® is

isomorphic to a subspace of #% (X®), where N = rank P,,, and
X0 =X QX% .. X_ X, Q.. QX,.

By the induction hypothesis, X® is subprojective. By Proposition (4.1.1),

ran PO is subprojective for every i, hence so is R;: .

Now suppose Y is an infinite dimensional subspace of X. We have to
show that Y contains a subspace Z, complemented in X. If there exists n €
N so that R; |y is not strictly singular, then, by Corollary (4.1.3), Z contains

a subspace complemented in X.

Now suppose R; |, is strictly singular for any n. It is easy to see that, for
any sequence of positive numbers (&,,), one can find 0 =n, <n; < n, <..,

and norm one elements x, €Y , so that, for any m, ||R: _ x| + ||xm —

Nm-1
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Qn,, *m|| < &nm. By @ small perturbation, we can assume that x,,, = R%__ Q. xp.

That is,

Xm € TAN ((Pl,nm - Pl,nm_l) by (PZ,nm - PZ,nm_l) K..Q (Pk,nm - Pk,nm_l))-

Let £,y = ran (P, — P,

iNm—1

), and W = span[Eip @ Ezpm @...Q Exm : m € N] C X.
Applying “Tong’s trick”, and taking the 1-unconditionality of our FDDs into

account, we see that
U: X->W:x 2((P1’nm —Pip, )®..Q (Pxn, — Pk,nm—1))x
m

defines a contractive projection onto W. Furthermore, Z = span[x,, : m € N]
is complemented in W. Indeed, the projection P;,, —P;, _ (i,m€N)is
contractive, hence we can identify E£,,,® ... ®E, with (B ® ...Q Epm) N X.
By the Hahn-Banach Theorem, for each m there exists a contractive
projection U,, on E;,,®...®E,,, with range span[x,,]. By our
assumption, there exists an unconditional sequence space & so that
X;®...®X, satisfies the e-estimate. Then, for any finite sequence
Wy € E1n® ... Q. (4.2.5) yields

X%

k

X%

k

< clldivew, e < clidiw DIl < ¢

Thus, Z is complemented in X.

Theorem (4.2.3)[4]: Suppose X; and X, are Banach spaces with
unconditional FDD, so that X; and X, are subprojective. Suppose,
furthermore,that the ideal A is suitable for (X;,X;), and A(X;, X,) satisfies
the e-estimate for some unconditional sequence &. Then A(X;,X,) is

subprojective.
Have the following consequences.
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Sketch of the proof of Theorem (4.2.3). On A(X;,X;) we define the
projection R, : A(X;,X,) = A(X1, X,) : w — P wP;,,. Then the range of
R; is isomorphic to X; @...® X; ® X, @D...6D X,. Then proceed as in the
the proof of Theorem (4.2.2) (with k = 2).

To prove Corollary (4.2.6), we need two auxiliary results.
Lemma (4.2.4)[4]: Suppose 1 <p; <o (1 <i<n)and X = ®,%p, .
() If X1/p; >n—1, then X satisfies the £ -estimate with 1/s =

X1/p; — (n—1).
(i (2) If X 1/p; <n — 1, then X satisfies the c,-estimate.

Proof. Suppose (w;) is a finite block-diagonal sequence in X. We shall show
that ||, wj|| = “(“Wj”)“s’ with s as in the statement of the lemma. To this

end, let (U;;) be coordinate projections on ¢, for every 1 < i < n, such
that w; = Uy; ®...Q Uyjw; , and for each i, U; Uy, =0 unless k = m,

Letting p; = p;/(p; — 1), We see that

|2 w, <Z W, ®,E)

Choose ®; & with ||¢|| < 1, and let §;; = U;;¢.. Then Zj||€ij||pi, <1,and

(Z w; @, &M < 2|(WJ ®; SCz>| = 2 |(Wj ®; fij>| = EHWJ” 1_[;:1 ”fij” '
j j J J

Now let 1/r = Y 1/p; = n — Y, 1/p;. By Holder’s Inequality,

= sup
fi€€p(v||fi”§l
L

1/, pli

(S(0)) =[1(S1er) =

j Ni=
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If Y1/p;<n — 1, then r < 1, hence ¥;[1,||&;]| <1. Therefore,

|2 wi|| < max; ||w;|| = (||w;])c, - Otherwise, r > 1, and

S

J

1/s

1/s 1/r
s<2||wj|r> <Z<ﬂfl||a,||>r> s<2||wj|r> = (lwlD,
j j j

where 1/s = 1 — 1/r = }1/p; — n + L.

In a similar fashion, we show that ||X;w;|| > (||w;|[)s. For s = oo, the
inequality ||Z;w;|| > max; ||w;| is trivial. If s is finite, assume Z,-||w,-||s =1

(we are allowed to do so by scaling). Find norm one vectors ¢;; € £,; so that

||S/T

§ij = Uygi, and [lwy| = (w; ®: &;). Lety; = [lwy[ ™. Then ;5] =1=3%,v]lw].

Further, set a;; = y/l=t?t/Gm=illiem 2D " An elementary calculation shows that

|2 wll= Qwes =Y [ aweg)=)rwl=1
j j

T -

J

This establishes the desired lower estimate.

Lemma (4.2.5)[4]: For 1<p; <0, X =4, ® ¢, &...Q ¢, satisfies
the #,.-estimate, where 1/r =) 1/p; if Y, 1/p; <1, and r = 1 otherwise.

Here, we interpret £, as c,.

Proof. The spaces involved all have the Contractive Projection Property (the
identity can be approximated by contractive finite rank projections). Thus,
the duality between injective and projective tensor products of finite

dimensional spaces shows that, for w € X,

Iwll = sup{|(x,w)| : x € £, ®... &2, lIxll <1}
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(here, as before, 1/p; + 1/p; = 1). Abusing the notation somewhat, we
denote by P;,, the projection on the span of the first m basis vectors of both

,, and fpir. Suppose a finite sequence (wy)¥_, € X is block-diagonal, or

more precisely, wy = ((Pym, — Pim,_,) ®-..® (Pom, — Bum,_,))Wi for
every k. Define the operator U on X by setting Ux = 115:1((P1,mk—
Pim ) ®..Q (Pum, — Pim,,))x. We also use U, to denote the
similarly defined operator on X*. By “Tong’s trick”, since X and X™* has an

unconditional basis, U(U,) is a contractive projection onto its range W (W,).
Then

k

= sup {| O w1 el < 1} - sup{| WCY w1+ el < 1}
% %
= sup {|Zwkaoxz| :lxllye < 1}-

k
Write Upx = Y¥_,x, . By Lemma (4.2.4) there is an s (either 1/s =
Y1/pi—(n—1)=1-X1/p;ors = ) [[(llxelDlls = Upxll < x|l < 1.

Moreover,

(Z Wi, Upx) = (Z Wy |2xk> = Z(Wklxﬁ,
k k k k

and therefore,

k

Corollary (4.2.6)[4]: The spaces X;® ...®X, and X; ®...Q X, are

= sup {EI(Wknka S lxedDlls < 1} = w1l
k

subprojective where X; is ether isomorphic to fpi (1 < p; <) or ¢, for

every 1 <i <n. For n = 2, this result goes back to (the injective and

projective cases, respectively).
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Suppose a Banach space X has an FDD implemented by projections (B,)-
that is, B,B, = 0 unlessn=m,supy. IIXN_,+B,|l < o, and l%ﬁnZﬁﬂPn = Iy
point-norm. We say that X satisfies the lower p-estimate if there exists a
constant C so that, for any finite sequence ¢; € ran P, |2, & |7 = ¢ X;]1& |-
The smallest C for which the above inequality holds is called the lower p-
estimate constant. The upper p-estimate, and the upper p-estimate constant,
are defined in a similar manner. Note that; if X is an unconditional sequence

space, then the above definitions coincide with the standard one.

Proof. Combine Theorem (4.2.2) with Lemma (4.2.4) and (4.2.5).

Corollary (4.2.7)[4]: Suppose the Banach spaces X; and X, have
unconditional FDD, satisfy the lower and upper p-estimates respectively,
and both X; and X, are subprojective. Then K(X;,X;) is subprojective.
Before proceeding, we mention several instances where the above corollary
Is applicable. Note that, if X has type 2 (cotype 2), then X satisfies the upper
(resp.lower) 2-estimate. Indeed, suppose X has type 2, and wy,...,w, are

such that w; = P;w; for any j. Then

1/2
|2Wj Y s < cr.00 <Zuw]||2>

(T, (X) is the type 2 constant of X). The cotype case is handled similarly.

< CAve,

Thus, we can state:

Proof . To apply Theorem (3.2.3), we have to show that K(X;, X,) satisfies
the c,y-estimate. By renorming, we can assume that the FDD constants of X;
and X, equal 1. Suppose (wy)Y_; is a block-diagonal sequence, with w,, =

(sznk — PZ,nk_l)Wk(Pl,nk — Plvnk—l)' Let w= Zk Wp. Then ”W” =
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“(Pz,nk - Pz,nk_l)W(Pl,nk - Pl,nk_1)|| = |lwgll, hence [[w]| = maxy [[wyll.
To prove the reverse inequality (with some constant), pick a norm one ¢ €
Xy, and let & = (Pyp, — Pip,_)x. Then n, = wé, satisfies (P,,, —
Pyp, Ik =Nk Setn = wé = ¥, n; . Denote by C;(C;) lower (upper) p-

estimate constants of X; (resp. X,). Then

IWellP = DlP < 6 ) TellP < € ) IwilP IgelP < maxliwgll, G ) 1glIP
k k k

>t
k

Taking the supremum over all &€ € B(X,), [[wll € (C,C,)YP max;, ||will.

p

< m}gxllwkllp C,Cy = C,CI€NIP.

In general, a tensor product of subprojective spaces (in fact, of Hilbert

spaces) need not be subprojective.

Proposition (4.2.8)[4]: There exists a tensor norm ®,, so that, for every
Banach spaces X and Y, X ®, Y is a Banach space, and ¢, @, ¥, is not

subprojective.

Proof. Note first that there exists a separable symmetric sequence space ¢
which is not subprojective. Indeed, let U be the space with an unconditional
basis which is complementably universal for all spaces with unconditional
bases. As noted, this space has a symmetric basis (in fact, uncountably many
non-equivalent symmetric bases). On the other hand, U is not subprojective,

since it contains a (complemented) copy of L, for 1 <p < 2. Renorming U

to make its basis 1-symmetric, we obtain &.

Now suppose X and Y are Banach spaces. Fore X Q Y , we set ||al|, =

sup{ll(u @ v)(a@)ll¢mxy}, where the supremum is taken over all

contractionsu : X - Hand v : Y - K (H and K are Hilbert spaces). Clearly

89



Xy isanormon Q Y . Itis easy to see that, forany a € X ® Y, Tx € B(X, X,),
and Ty € B(Y, ), lI(Tx @ Ty) (@)l < ITxllITyllllall,. Consequently, llx ® yll, =
Ixllllyll. Thus, |||, is indeed a tensor norm. We denote by X ®, Y the

completion of X @ Y in this norm.

If X and Y are Hilbert spaces, then for ae X ® Y we have ||af|, =
llallgx+yy. Identifying £, with its adjoint, we see that ¢ embeds into
£, ®, £, as the space of diagonal operators. As & is not subprojective,
neither is ¢, ®, 5.

Here is another wide class of non-subprojective spaces.

Theorem (4.2.9)[4]: Let X be an infinite dimensional Banach space.
Then B(X) is not subprojective.

Proof. Suppose, for the sake of contradiction, that B(X) is subprojective. Fix
a norm one element x* € X*. For x € X define T, € B(X) : y = (x*,y)x.
Clearly M ={T,.x € X} is a closed subspace of B(X), isomorphic to X.
Therefore, X is subprojective. By Proposition (4.1.7), we can find a subspace
N c M with an unconditional basis. We shall deduce that B(X) contains a

copy of £, which is not subprojective.

If N is not reflexive, then N contains either a copy of c, or a copy of #;,
any subspace of £,,(c,) contains a further subspace isomorphic to £, (resp.
o) and complemented in £, (resp. cq), hence we can pass from N to a
further subspace W, isomorphic to ¢; or ¢y, and complemented in X by a
projection P. Embed B(W) isomorphically into B(X) by sending T € B(W)
to PTP € B(X), where P is a projection from X onto W. It is easy to see that

B(W) contain subspaces isomorphic to ¢, thus, B(X) is not subprojective.
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There is only one option left: N is reflexive. Pick a subspace W c N,
complemented in X. It has the Bounded Approximation Property. As in the
previous paragraph, B(W’) embeds isomorphically into B(X). SinceB(W) #
K (W), shows that B(W) contains an isomorphic copy of £.,. This rule out
the subprojectivity of B(X).

We deal with spaces of functions on scattered spaces. Recall that a
topological space is scattered if every compact subset has an isolated point.
It is known that a compact set is scattered and metrizable if and only if it is
countable (in this case, C(K), and even its dual, are separable). It is well
known that, if K is a compact Hausdorff set, then C(K) is separable if and

only if K is metrizable.

If K is countable, then C(K) is c,y-saturated, and the copies of ¢, are
complemented, by Sobczyk’s Theorem. Otherwise, by Milutin’s Theorem,
C(K) is isomorphic to ¢([0,1]). Thus, a separable space C(K) is subprojective

if and only if K is scattered.

Furthermore, it is known that K is scattered if and only if it supports no
non-zero atomic measures. Then C(K)* is isometric to ¢,(K). Otherwise,
C(K)* contains a copy of L;(0,1). Thus, C(K)* is subprojective if and only

if K is scattered.

We study the subprojectivity of projective and injective tensor products
of C(K). We have the following:

Theorem (4.2.10)[4]: Suppose K is a compact metrizable space, and X is

a Banach space. Then the following are equivalent:

(i) K is scattered, and X is subprojective.
(i) C(K,X) is subprojective.
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Proof. The implication (ii) = (i) is easy. The space C(K,X) contains copies
of C(K) and of X, hence the last two spaces are subprojective. By the

preceding paragraph, K must be scattered.

To prove (i) = (ii), first fix some notation. Suppose A is a countable ordinal.
We consider the interval [0,4] with the order topology — that is, the topology
generated by the open intervals (o,5), as well as [0,5) and (a,4]. Abusing the
notation slightly, we write C(A, X) for C([O, 4], X).

Suppose K is scattered. K is isomorphic to [0,4], for some countable limit
ordinal A. Fix a subprojective space X. We use induction on A to show that,

for any countable ordinal 2,
C (A4, X) is subprojective. (4.3)

By Proposition (4.1.1), (4.2.10) holds for A < w (indeed, c is isomorphic to
Co, hence ¢(X) = ¢®X is isomorphic to cy(X) = c,® X). Let F denote the
set of all countable ordinals for which (4.2.10) fails. If F is non-empty, then
it contains a minimal element, which we denote by p. Note that p is a limit
ordinal. Indeed, otherwise it has an immediate predecessor u — 1. It is easy
to see that C(u, X) is isomorphic to C(u — 1,X) @ X, hence, by Proposition

(4.1.11),c(u — 1,X) is not subprojective. Let ¢o(u,X) ={f € C(M,X):éilﬁf(v) = 0}.

Clearly C(u, X) is isomorphic to Co(u, X) @ X, hence we obtain the desired

contradiction by showing that C,(u, X) is subprojective.

To do this, suppose Y is a subspace of Cy(u, X), so that no subspace of Y
Is complemented in Cy(u, X). For v < u, define the projection P,: C(u, X) -
C(v,X):f = f1[0,v]. If, for some v < u and some subspace Z c Y, P, |, is
an isomorphism, then Z contains a subspace complemented in X, by the

induction hypothesis and Corollary (4.1.13). Now suppose B, |y is strictly
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singular for any v. We construct a sequence of “almost disjoint” elements of
Y. To do this, take an arbitrary y,; from the unit sphere of Y. Pick v; < u so
that ||y, — B, y:|| <107'. Now find a norm one y, €Y so that
|P,,y2|| < 1072/2. Proceeding further in the same manner, we find a
sequence of ordinals 0 = v, <v; <v, <..,, and a sequence of norm one
elements y,,y,,...€ Y , so that [ly, — zl <107, where z, = (P,  — P,,_ )V«
The sequence (z) is equivalent to the ¢, basis, and the same is true for the
sequence (yx)-

Moreover, span [zy:k € N] is complemented in C(u, X). Indeed, let v =

supv, . We claim that ¢ = v. If v < g, then P, is an isomorphism on
k

span[y,: k € N], contradicting our assumption. Let W, = (B, — P,,_)(Co(X)),

and find a norm one linear functional wk so that w, (z,) = ||z||. Define

Q: Colut. X) = Cou X):f = D wie((Bo, = P, )f) 21
k

Note that limk ||(B,, — P,,_,)f|| = 0, hence the range of Q is precisely the
span of the elements z,. By Small Perturbation Principle, Y contains a

subspace complemented in Cy(u, X),.

The above theorem shows that C(K)® X is subprojective if and only if
both C(K) and X are. We do not know whether a similar result holds for

other tensor products. We have:

Proposition (4.2.11)[4]: Suppose K is a compact metrizable space, and
W is either £,(1 < p < o) or ¢,. Then C(K) ® W is subprojective if and

only if K is scattered.
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Proof. Clearly, if K is not scattered, then C(K) is not subprojective. So
suppose K is scattered. We deal with the case of W = £, as the ¢, case is
handled similarly. As before, we can assume that K = [0, 1], where X is a
countable ordinal. We use transfinite induction on A. The base case is easy:
if A is a finite ordinal, then C(1) ® £, = ¢5 @ ¢, is subprojective.
Furthermore the same is true for A = w (then C(A) = c).

Suppose, for the sake of contradiction, that A is the smallest countable
ordinal so that C(4) ®£’p IS not subprojective. Reasoning as before, we
conclude that A is a limit ordinal. Furthermore, C(4) ~ C,(4), hence

Co(4) ® £, is not subprojective.

Denote by @, : £, — £, the projection on the first n basis vectors in £,
and let Qi+ =1—Q,. For fec,(2) and an ordinal v < A, define B,f =

X[O,v]f’ and PVJ_ =1—- PV .

Suppose X is a subspace of Co(/l)®£’p which has no subspaces
complemented in Co(1) ® ¢,. By the induction hypothesis, (P, @ I{)p)|y IS
strictly singular for any v < A. Furthermore, (I¢ (1) ® Qn)|y must be
strictly singular. Indeed, otherwise Y has a subspace Z so that (I¢ ) ®
Q,)|, is an isomorphism, whose range is subprojective (the range of
I, ® Qp is isomorphic to the sum of n copies of C(), hence
subprojective). Therefore, forany v < Aand n €N, (I — Bt ® QD)|y is
strictly singular. Therefore we can find a normalized basis (x;) in Y, and
sequences 0 =vy<v;<...<1, and 0=ny<ny; <.., so that |x;—
(P;

Vi-1

assume that ||(P, ® Qu)x;|| <1073/2.Thus, by the Small Perturbation

® Q+_)x;|| < 1073i/2. By passing to a further subsequence, we can
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Principle, it suffices to show the following statement: If (y;) is a normalized
sequence is Cy(1) & ¢, so that there exist non-negative integers 0 = ny <
n,<n, <.., and ordinals 0 = v, <v; <v, <...< A, with the property
that y; = ((P,, = P_,) ® (Qn, — Qn,_,))y; for any i, then Y = spanly; :

i € N] is contractively complemented in C(K) ® .

Denote by X the span of all x’s for which there exists an i so that x =
(B, =P, ) ® (Qn,— Qn,_))x. Then Y is contractively complemented in
(K) ® ¢,. In fact, we can define a contractive projection onto X as follows.
Suppose first = ?’:1 a; @ b; , with bi’s having finite support in £,,. Then set
Pu =3%2 (P, — Py_,) ® (Qn, — Qn,_,))u . Due to our assumption on the
bi’s, there exists M so that Pu =Y ((B, — B, ) ® (Qn, — Qn,_,))u. TO show
that ||Pul| < |lull, define, for &= (&), € {—1,1}", the operator of
multiplication by Y.;—1 M&; X[y, ,+1,] ON Co(A). The operator V; € B(¢,) is
defined similarly. Bot U, and 1V, are contractive. Furthermore,
Pu = Ave. (U, @ V.)u. Therefore, we can use continuity to extend P to a

contractive projection from Cy(1) & £, onto X.

It to construct a contractive projection from X onto Y, we need to show
that the blocks of X satisfy the £,-estimate. That is, if x, = (R, - B, ) ®
(Qn, — Qu,_)x; for each i, then [IX; x; |I” = X;llx;||? . To this end, use trace
duality to identify (Co(1) &® £,)" with B(¢,, %1 ([0,4)),). P* is the “block”
projection onto the space of “block diagonal” operators which map the
elements of £, supported on (n;_,,n;] onto the vectors in £; supported on
(vi-1,v;]. If T/ s are the blocks of such an operator, then ||; T;||”" = X IIT:IIP",

where 1/p + 1/p’ = 1. By duality, [|X; x; 1P = X;llx;|IP.
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Lemma (4.2.12)[4]: Suppose X is a Banach space, K is a compact
metrizable scattered space, and 1<p <qg<o. Then, for any
T € [1gp(C(K), X), and any £ > 0, there exists a finite rank operator S €
[14,(C(K), X) with m,, (T — S) <e.

In proving Proposition (4.2.13) and Lemma (4.2.12), we consider the
cases of p = g and p < g separately. If p = g, we are dealing with g-summing

operators. By Pietsch Factorization Theorem, T € B(C(K), X) is g-summing

if and only if there exists a probability measure p on K so that T factors as
Toj, where j:C(K) - Ly(n) is the formal identity, and ||T|| < mq(T).
Moreover, « and T can be selected in such a way that ||T|| = =, (T). As K is

scattered, there exist distinct points kq, k,,... € K, and non-negative scalars

ay, az,.., sothat ¥ a; = 1, and u = 3; a; 6y, .
Now suppose T € B(C(K),X) satisfies 7,(T) = 1. Keeping the above

notation, find N € N so that (Z?‘;Nﬂai)% < ¢. Denote by u and v the
acting on L, (u). It is easy to see that rank u < N, and ||v;|| < &. Then S =
Tuj works in Lemma (4.2.12). If 1<p<gq, then [l ,(C(K),X)=
[141(C(K), X), with equivalent norms. Henceforth, we set p = 1. We have a
probability measure 4 on K, and a factorization T = T}, where j: C(K) —
Lq1 (1) is the formal identity, and T: L, (1) — X satisfies ||T|| < cmq1(T) (c
Is a constant depending on q).

In this case, the proof of Lemma (4.2.12) proceeds as for g-summing

operators, except that now, we need to select N so that c(X> y,1 a)? < e.
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Proposition (4.2.13)[4]: Suppose K is a scattered compact metrizable
space, and 1 < p < q < oo. Then the space [[,,(C(K), £,) is subprojective.

Recall that [],,(X,Y) stands for the space of (g,p)-summing operators —
that is, the operators for which there exists a constant C so that, for any

X1,.., X, €X,

1/q 1/p
Yirxli) ¢ sw (Y r]
; x*€B(X™) -

The smallest value of C is denoted by m,, (T).

Note that, if a compact Hausdorff space K is not scattered, then C(K)*

contains L, hence [],,(C(K),£,) is not subprojective.
We have the following lemma:

Proof. It is well known that, for any T, 7, (T) = m,, (T™*). Moreover, by
Lemma (4.2.12), any (q,p)-summing operator on C(K) can be approximated
by a finite rank operator. Then we can identify [[,,(C(K),X) with the
completion of the algebraic tensor product C(K)*®X in the appropriate
tensor norm which we denote by «. Recalling that C(K)* =#¢; (the
canonical basis in £, corresponds to the point evaluation functionals), we
can describe o in more detail: for u = }; a; ® x; € £,QX, |lull, = mqy (01),
where u:f, — X is defined by ub =), b(a;)x;. Furthermore, by the
injectivity of the ideal [1,, 74 (1) = mgp(kx © @), Where ky: X — X™is
the canonical embedding. Finally, ky o« = @™, with & : ¢, — X defined via
b = Y;b(a;)x;.

To finish the proof, we need to show that ¢;®,?, satisfies the £,

estimate. To this end, suppose we have a block-diagonal sequence (u;)i;,
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and show that ||¥; ;12 ~ ¥;llu;llZ . Abusing the notation slightly, we

identify u; with an operator from 2%, to €7 (where N is large enough), and
identify |||l with g, ().
First show that ||3; u;[|2 < c93;llu; |2, where c is a constant (depending
on g). We have disjoint sets (S;){; in{1,..., N} so that u;e; = O for j & ;.
Therefore there exists a probability measure u;, supported on S;, so that

Nuif 9 < cfmgp )N FINS P NI
p(K;)

for any f € % (c, is a constant). Now define the probability measure x on

{1, ... N}

u= (Z Tap (ui)q>_1 Z Tap(ui) ;-

For f € £Y, set f; = fxs, - Then the vectors w;f; are disjointly supported in

£y and therefore,

H (2 w)f

An easy calculation shows that

-1
”fl ”IL)p(”L.) = (2 T[qp(ui)q> 2 T[qp(ui)q ”fl ”IL)p(u) )

i i

q
= D sl < et ) meof A L WEN < <A D med® A,
L

L L

hence

H (2 w)f

1/ :
Therefore, mg, (X u;) < c(Zi nqp(ui)q) 7 for some universal constant c.

q
< (Z nqp(ui)q> hAse el =< (Z nqp(ui)q> AN A g

i i
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Next show that ||¥; u; |2 = ¢’?¥;llu; L, where ¢’ is a constant. There

exists a probability measure z on {1, ... ,N} so that, for any f € £%,

O uif)

For each i let o; = ||u|5i||{)N, and y; = p;/a; (if a; = 0, then clearly v; = 0).
1

q
> gy O w)UNAILPIAIL
i

Then for any i, and any f € £,

q
lugflle = H(Eui)(;csif) < 2y Q) w) AT IFIE

hence mg,(u;) < c’aillq mgp(Xiu; ) (' is a constant). As ¥, a; =1, we

conclude that }; g, (u;)? < ¢"Img, (X wy).

We refer for an introduction into continuous fields of Banach spaces. To
set the stage, suppose K is a locally compact Hausdorff space (the base
space), and (X;):ex IS a family of Banach spaces (the spaces X; are called
(fibers). A vector field is an element of [[;cx X; . A linear subspace X of

[1:ex X; is called a continuous field if the following conditions hold:

(i) Foranyte K, the set {x(t) : x € X} is dense in X;.

(if) For any x € X, the map t = ||x(t)|| is continuous, and vanishes at
infinity.

(ili) Suppose x is a vector field so that, for any ¢ >0 and any t € K,
there exist an open neighborhood U 3 tand y € X for which

lx(s) —y(s)|| < e foranys e U. Thenx € X.

Equipping X with the norm ||x|| = max, ||x(t)||, we turn it into a Banach

space.

We prove:
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Proposition (4.2.14)[4]: Suppose K is a scattered metrizable space, X is
a separable con-tinuous vector filed on K, so that, for every t € K, the fiber

X, is subprojective. Then X is subprojective.

Proof. Using one-point compactification if necessary, we can assume that K
Is compact. As before, we assume that K = [0, A] (A is a countable ordinal).
We denote by X(g) the set of all x € X which vanish at A. If v < A, we
denote by X, the set of all x € X3 which vanish outside of [0, v]. xx[o.] €
X for any x € X, hence X, is a Banach space. We then define the restriction
operator P, : X — Xp,. We denote by @,: X — X, the operator of evaluation

at v.

We say that a countable ordinal A has Property P if, whenever X is a
continuous separable vector field whose fibers are subprojective, then X is
subprojective. Using transfinite induction, we prove that any countable

ordinal has this property.

The base of induction is easy to handle. Indeed, when A is finite, then X
embeds into a direct sum of (finitely many) subprojective spaces X,,. Now
suppose, for the sake of contradiction, that A is the smallest ideal failing
Property P. Note that A is a limit ordinal. Indeed, otherwise it has an
Immediate predecessor A_, and X embeds into a direct sum of two

subprojective spaces — namely, Xp;_jand Xj.

Suppose Y is a subspace of X, so that no subspace of Y is complemented
in X. We shall achieve a contradiction once we show that Y contains a copy

of cy.

By Proposition (4.1.2), Q; is strictly singular on Y. Passing to a smaller
subsequence if necessary, we can assume that, Y has a basis (y;);en, SO that
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(i) for any finite sequence (a;), [|12; a;y; || > max; |a;]|/2, and (ii) for any i,
10, y;1| < 10~*'. Consequently, for any y e spanly; : j > il,11Qyll < 107*.
Indeed, we can assume that y is a norm one vector with finite support, and

write y as a finite sume y = }; a;y; .
By the above, |a;| < 2 for every i. Consequently,

ol < T lagll|Qaysl| <2%j5,107% < 107*.

Now construct a sequence v; < v, <...< A1 of ordinals, a sequence 1 =
n, <n, <..or positive integers, and a sequence xj,Xx,,... of norm one
vectors, so that (i) x; € span[y; : nj < i < nyy4], (ii) |Bx;|| < 107, and
(iii) ||P,,,,x:]| < 107*\. To this end, recall that, by Proposition (4.1.2) again,
P, |y is strictly singular for any v < A. Pick an arbitrary v; < A, and find a
norm 1 vector x; € span[yy,...,¥,,_ ] so that ||P, x;|| < 107*. We have
|Qax1 ]l < 10~*. By continuity, we can find v, > v; so that ||B,,x,|| < 107*.
Next find a norm one x, € span[y,, ,...,yn,_,] S0 that |[P, x| < 107®.

Proceed further in the same manner.

We claim that the sequence (x;) is equivalent to the canonical basis in c.

Indeed, for each i let x;" = B, x; + P, _x;, and x; = x; — x;' . Since we

Vit
are working with the sup norm, ||x;|| = ||x;|| = 1 for any i. Furthermore,
the elements x; are disjointly supported, hence, for any («;) finite sequence

of scalars (;), Xilla;x;|| = max; |a].

By the triangle inequality,

i i

which yields the desired result.

[ee]
< 2 la;] x|l < max |a;] 2 2-207*% <1073 max |a;|,
l l
i i=1
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To state a corollary of Proposition (4.2.14), recall that a C*-algebra A is
CCR (or liminal) if, for any irreducible representation = of A on a Hilbert
space H,m(A) = K(H). A C*-algebra A is scattered if every positive linear
functional on A is a sum of pure linear functionals (f € A* is called pure if it
belongs to an extreme ray of the positive cone of A*). For equivalent

descriptions of scattered C *-algebras.

Corollary (4.2.15)[4]: Any separable scattered CCR C*-algebra is

subprojective.

Proof. Suppose A is a separable scattered CCR C*-algebra. As shown, the
spectrum of a separable CCR algebra is a locally compact Hausdorff space.
If, in addition, the algebra is scattered, then its spectrum A is scattered as

well. In fact, A is separable. It is easy to see that any separable locally
compact Hausdorff space is metrizable. We have A can be represented as a
vector field overd, with fibers of the formm(4), for irreducible
representations z. As A is CCR, the spaces m(4) = K(H,;) (H, being a
separable Hilbert space) are subprojective. To finish the proof, apply
Proposition (4.2.14).

The last corollary leads us to

Conjecture (4.2.16)[4]: A separable C*-algebra is scattered if and only if

it is subprojective.

It is known that a scattered C*-algebra is GCR. However, it need not be
CCR (consider the unitization of K (¢,)).

We establish:

Proposition (4.2.17)[4]: Suppose €, is a symmetric sequence space, not
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containing c,.

Suppose, furthermore, that (z,,) < €, is a normalized sequence, so that, for
every k, lim,, ||Qxz,|| = 0. Then, for any £ > 0, €, contains sequences (Z,,)

and (zj,), so that:

(i) (Z,) is asubsequence of (z,).

(i) Xnllzn — zull < e

(iii) (z;,) lies in the subspace Z of €, , with the property that (i) Z is 3-
isomorphic to either ¢,,&,0r £, @ €, and (i) Z is the range of a

projection of norm not exceeding 3.

Proof. We implie the existence of (Z,,) and (z,;), so that (i) and (ii) are
satisfied, and z, =a @ Ey, + b Q E1i + ¢, Q Exi (k = 2). Thus, z, C
Z=Z7Z,+v7Z.+Z;, Wwhere Z.= spanfla @ E;;:k=2] (the row
component), Z. = span[b @ E;i : k = 2] (the column component), and Z,
(the diagonal component) contains ¢, & Ey, for any k. More precisely, we
can write ¢, = u,d, vy, Where u;, and v, are unitaries, and d; is diagonal.

Then we set Z; = span[uiE;jvi @ Exi i € Nk > 2].

It remains to build contractive projections B., P., and P, onto Z,., Z,., and
Z,, respectively, so that Z, UZ; c ker B.,Z, UZ; C ker P.,, and Z,. U
Z. C ker P,;. Indeed, then P = PB. + P. + P, is a projection onto Z, + Z. +
Z4, and the latter space is completely isomorphic to Z, =Z, @ Z. P Z,.
The spaces Z,,Z., and Z; are either trivial (zero-dimensional), or

iIsomorphic to ¢,,¢,, and &, respectively.

P, is nothing but a coordinate projection, in the appropriate basis:

ukEiivk®Ekk k= ‘EZ 2,l :_]

Pd(ukEijW ® Ekt’) = { 0 otherwise
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(for the sake of convenience, we setu; = vy = I,,). Next construct B. (F;
is dealt with similarly). If a = 0, just take B. = 0. Otherwise, let a’ = a/||a]],
and find f € €; sothat |[f|| =1 = (f,a’). For x = Xy pxxs & Ey, , define

Px=d® Z(f, x10)E1e,

£22
hence ||P-x||2 = X o0 [{f, x12)|?. 1t remains to show ||P.x|| < |lx||. This

inequality is obvious when B.x = 0. Otherwise, set, for £ > 2,

_ (f x10)
sz If x10) |22

Y= 1Ip, @ Xps2@pEp , andz = Ip; ® E1q. Thenlyllee = (Tesz lag|HY? =

1 =|zl|le, and zxy = Y, pss apx1p @ E;4. Therefore,

IIP-x|l = (fz a€x1£’> < Z QApX1p Z apx1p @ Eqq

£22 £22 £22

ap

= llzxyll

& &

< lizllollxllellylleo = lixlle

which is what we need.

Proposition (4.2.18)[4]: Suppose ¢ is a symmetric sequence space, not

containing c,. Then €, is subprojective if and only if ¢ is subprojective.

The assumptions of this proposition are satisfied, for instance, if
g= ¥p (1 <p <w),orifeis the Lorentz space I(w,p): (Given p,r € (0, ],
the Lorentz space LP"(Q) is defined by

LP7(Q) = {f € M(Q); Ifllpr |Ifllpra < «}[10]. However, not every
symmetric sequence space is subprojective. Indeed, suppose & is
Pelczynski’s universal space: it has an unconditional basis (u;) so that any
other unconditional basis is equivalent to its subsequence. As explained in,

has a symmetric basis. Fix 1 < p < g < 2. Then the Haar basis in L,(0,1)

104



is unconditional, hence L,(0, 1) is isomorphic to a complemented subspace
X of e It is well known that ¢, is contained in L,(0,1). Call the
corresponding subspace of € by X'.

Then no subspace of X" is complemented in E: otherwise, L,(0,1) would

contain a complemented copy of £, which is impossible.
For the proof, we need a technical result.

Proof. The space ¢, contains an isometric copy of ¢, hence
thesubprojectivity of €, implies that of €. To prove the converse, suppose ¢
Is subprojective, and Z, is a subspace of €, , and show that it contains a
further subspace Z, complemented in €,. To this end, find a normalized
sequence (z,) c Z,, so that lim,, ||Qxz,|| = O for every k. By Proposition
(4.2.18), (z,,) has a subsequence (z,,), contained in a subspace Z;, which is
complemented in €, , and isomorphic either to ¢ #,, or €@ ¢,. By
Proposition (4.1.1), Z, is subprojective, hence span[z,, : n € N] contains a

subspace complemented in Z;, hence also in €, .
As a consequence we obtain:

Proposition (4.2.19)[4]: The predual of a von Neumann algebra A is

subprojective if and only if A is purely atomic.

We say that A is purely atomic if any projection in it has an atomic
subprojection. It is easy to see that this happens if and only if
A= (;B(H;)). The “if” direction is easy. Conversely, if A is purely
atomic, denote by (e;);e; @ maximal collection of mutually non-equivalent
atomic projections in A. Denote by z(p) the central cover of p. Then
z(e;)z(ej) = 0ifi # j,and }; z(e;) = 1. Consequently, A = ¥, z(e;)A .
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For a fixed i, let (f;);e;i) be a maximal family of mutually orthogonal
atomic projections, so that e; is one of these projections. The f; ’s have the

same central cover (namely, z(e;)), hence they are all equivalent to e;.
Furthermore, (e;) = X e;) fj » hence z(e;)A is isomorphic to B(£,(J(i))).

Proof. If a von Neumann algebra A is not purely atomic, then, as explained,
A, contains a (complemented) copy of L;(0,1). This establishes the “only
If” implication of Proposition (4.2.19). Conversely, if A is purely atomic,
then A, is isometric to a (contractively complemented) subspace of €, (H),

and the latter is subprojective.

We say that X is p-disjointly homogeneous (p-DH for short) if every
disjoint normalized sequence contains a subsequence equivalent to the

standard basis of £,,.
For the sake of completeness we have

Proposition (4.2.20)[4]: Let X be a p-convex. Then every subspace,
spanned by a disjoint sequence equivalent to the canonical basis of £, is

complemented.

Proof. Let (x;) c X be a disjoint normalized sequence. Since X is DH, by
passing to a subsequence, (xj) is an £p basic sequence. Then, in the p-

concavification X, the disjoint sequence (x,”) is an £; basic sequence.

Therefore, there exists a functional x* € [(x,?)] such that x*(x;P) = 1 for

all k. By the Hahn-Banach Theorem x* can be extended to a positive

1
functional in X(,,y". Define a seminorm ||x||,, = (x*(|xP]))? on X. Denote by
N the subset of X on which this seminorm is equal to zero. Clearly, N is an

ideal, therefore, the quotient space X = X/ is a Banach lattice, and the
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quotient map Q: X — X is an orthomorphism. With the defined seminorm X

is an abstract L,-space, and the disjoint sequence Q(x;) is normalized.
Therefore it is an £, basic sequence that spans a complemented subspace (in
particular, Q is an isomorphism when restricted to [x,]). Let P be a

projection from X onto [Q (x})].
Then P = Q~1 PQ is a projection from X onto [x,].

Proposition (4.2.21)[4]: Let X be a p-convex, p-disjointly homogeneous
Banach lattice (p > 2). Then any subspace of X contains a complemented

copy of either £, or £,. Consequently, X is subprojective.

Proof. First, note that X is order continuous. Let M € X be an infinite
dimensional separable subspace. Then there exists a complemented order
ideal in X with a weak unit that contains M. Therefore, without loss of
generality, we may assume that X has a weak unit. Then there exists a

probability measure ¢ such that we have continuous embeddings

Leo(u) € X S Lp(p) S Loy(w) < Ly ().

Consequently, there exists a constant ¢; > 0 so that ¢, [|x||, < [|x]| for any

x € X.
We have the following:

Case 1. M contains an almost disjoint bounded sequence. By Proposition

(4.2.20) M contains a copy of £, complemented in X.

Case 2. The norms [|-|| and ||-||; are equivalent on M. Thus, there exists ¢, >

O so that, forany y € M,

cliyllz 2 cllylls = liyll =2 aliyll, = cllyll.
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In particular, M is embedded into L,(u) as a closed subspace. The
orthogonal projection from L, (u) onto M then defines a bounded projection

from X onto M.

The preceding result implies that Lorentz space A,, W (0,1) is subprojective

since it is p-DH and p-convex (p > 1).

If X'is a Banach lattice, and 1 < p < oo, denote by X(£,,) the completion of

the space of all finite sequences (x4,...,x,) (with x; € X), equipped with

the norm [|(xy, ..., %) Il = [|(; 1P )P ||, where
1 1
Q by = sup{lzaixil el < 1},wtth—+—, =1
i i i p p
We have:

Proposition (4.2.22)[4]: Suppose X is a subprojective separable space,
with the lattice structure given by an unconditional basis, and 1 < p < co.
Then X(?},) is subprojective.

Proof. To show that any subspace Y c X’(?;) has a further subspace Z,
complemented in X’(?;), let x1,x,,...and eq, e,, ... be the canonical bases in

X and ¢, respectively. Then the elements wu;; =x; ®e; form an

unconditional basis in X (£,,), with

1/p
||Zaijuij|: Z Z|aij|p Xi = Z Ssup |Zaijaij| Xi
I i Zjlajlp,51 j
X

Let P, be the canonical projection onto span[u;;:0 < i <n,j € N], and set

4)

X

P} =1—P,. The range of P, is isomorphic to t,, hence, if B[y is not
strictly singular for some n, we are done, by Corollary (4.1.3). If B,|Y is

strictly singular for every n, find a normalized sequence (y;) in Y, and 1 =
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ny <n, <.., so that ||B, || ||, y:|| <100-¢/2. By small perturbation, it

remains to prove the following: if y; = P;-P,

P, yi , then span[y;:i € N]
contains a subspace, complemented in X(#,). Further, we may assume that
for each i there exists M; so that we can write

Yi = z AUk -
ni<ksnj;,,1sjsM;

For each k € [n; +1,n;,4] (and arbitrary i € N) find a finite sequence
(e )ij =1 so that il " =1, and |X;aar, | = (Z;la,P)?.
Define U:X’(?;) = XUy, & oy X By (4.2.22), U is a contraction, and
Ulspan[yieny 1S an isometry. To finish the proof.

Recall that X is subprojective, and apply Corollary (4.1.3).

Recall that, for a Banach space X, we denote by Rad(X) the completion of
the finite sums Y, r,,x, (11, 75,... are Rademacher functions, and x;, x,,... € X)
in the norm of L,(X) (equivalently, by Khintchine-Kahane Inequality, in the

norm of L, (X)). If X has a unconditional basis (x;) and finite cotype, then

Rad(X) is isomorphic to X(¥,) (here we can view X as a Banach lattice, with
the order induced by the basis (x;)). Indeed, X is g-concave, forsome g. An

array (amn) can be identified both with an element of Rad(X) (with the norm

folllzmzn AmnTnXmll ), and with an element of X(¢,) (with the norm

“Zm(Zn |amn|2)1/2xm ||) Then
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D <

(Zlamnlz)ixm =

n

2

5 [[13 it
[ 3w ([
(55

where M, is a g-concavity constant, while D and C come from Khintchine’s

1
[t
0 m

)

m n
1
a Z f Z amnrn
0 n

m

Q=

<

<M, <M

1
\q

<

cM,

inequality. Thus, we have proved:

Proposition (4.2.23)[4]: If X is a subprojective space with an

unconditional basis andnon-trivial cotype, then Rad(X) is subprojective.
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