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Abstract  
We provide information about the structure of a sequence in a separable Banach space. We 

prove that non-reflexive spaces which are M-ideals in their biduals are almost square. We show 
that every space containing a copy of ܿ଴ can be renormed to be almost square. A local and a weak 
version of almost square spaces are also studied. We study superprojective Banach spaces. We 
show that they cannot contain copies of ℓଵ,which restricts the search for non-reflexive examples 
of these spaces. We examine the stability of subprojectivity of Banach spaces under various 
operations, such as direct or twisted sums, tensor products, and forming spaces of operators. 
Along the way, we obtain new classes of subprojective spaces.  
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 الخلاصة
 

إشترطنا معلومة حول بناء متتالیة في فضاء باناخ القابل للإنفصال . أوضحنا أن 

ً  M –الفضاءات غیر الإنعكاسیة والتي ھي مثالیات  في ثنائیاتھا المزدوجة ھي دائما

ً نسخة إلى  ً . وتم إیضاح أن أي فضاء محتویا یمكن أن یعاد إنتظامھا  0Cمربعة تقریبا

ً. تمت لیك دراسة الإصدارة الضعیفة والموضوعیة لفضاءات المربع ون مربع تقریبا

ً  .سقاطیةدرسنا فضاءات باناخ فوق الإ التقریبیة. وأوضحنا أنھا لایمكن أن تحتوي نسخا

والتي تقصر البحث لأجل أمثلة غیر إنعكاسیة لھذه الفضاءات. إختبرنا   ℓଵإلى 

حیث ھي تنوعة الإستقراریة تحت الإسقاطیة إلى فضاءات باناخ تحت عملیات م

أعطینا عائلات  .ة وضرب تنسروتكون فضاءات للمؤثراتكالمجامیع المباشرة والملتوی

  .إلى الفضاءات تحت الإسقاط
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Chapter 1 

Banach Spaces with Almost Overcomplete and 
Overtotal Sequences 

 

A sequence in a separable Banach space ܺ〈݌ݏ݁ݎ.  is 〈∗ܺ ݁ܿܽ݌ݏ ݈ܽݑ݀ ℎ݁ݐ ݊݅

said to be overcomplete (OC in short) 〈݈ܽݐ݋ݐݎ݁ݒ݋.݌ݏ݁ݎ (ܱܶ݅݊ ݏℎݐݎ݋)݊݋ ܺ〉 

whenever the linear span of each subsequence is dense in X ‹resp. each 

subsequence is total on X›. A sequence in a separable Banach space 

.݌ݏ݁ݎ〉ܺ  is said to be almost overcompletes (AOC in 〈∗ܺ ݁ܿܽ݌ݏ ݈ܽݑ݀ ℎ݁ݐ ݊݅

short) 〈݈ܽݐ݋ݐݎ݁ݒ݋ ݐݏ݋݈݉ܽ.݌ݏ݁ݎ (ݏ ݊݅ ܱܶܣℎݐݎ݋)݊݋ ܺ〉 whenever the closed 

linear span of each subsequence has finite codimension 

in〈݌ݏ݁ݎ.  .〈݊݋݅ݏ݊݁݉݅݀ ݁ݐ݂݅݊݅ ݏℎܽ ݁ܿ݊݁ݑݍ݁ݏܾݑݏ ℎܿܽ݁ ݂݋(ܺ ݊݅) ݎ݋ݐℎ݁ ܽ݊݊݅ℎ݈݅ܽݐ

We provide information about the structure of such sequences. In particular 

it can happen that, an AOC 〈ܱܶܣ.݌ݏ݁ݎ〉 given sequence admits countably 

many not nested subsequences such that the only subspace contained in the 

closed linear span of every of such subsequences is the trivial one 〈resp. the 

closure of the linear span of the union of the annihilators in X of such 

subsequences is the whole X〉. Moreover, any AOC sequence {ݔ௡}௡∈ℕ 

contains some subsequence {ݔ௡ೕ}௝∈ℕ that is OC in [{ݔ௡ೕ}௝∈ℕ]; any AOT 

sequence { ௡݂}௡∈ℕ contains some subsequence { ௡݂ೕ}௝∈ℕ that is OT on any 

subspace of X complemented to { ௡݂ೕ}௝∈ℕ
ୃ . 

We use standard Geometry of Banach spaces. In particular: 

(i) [S]stands for the closure of the linear span of the set S; 
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(ii)  The annihilator in ܺ∗  of a subset Γ of the Banach space X is the 

subspace ୄ߁ ⊂ ܺ∗ whose members are the bounded linear functionals 

on X that vanish on Γ; 

(iii) The annihilator in X of a subset Γ of the dual space ܺ∗ is the 

subspace ୃ߁ ⊂ ୃ߁,ܺ =∩௙∈௰  ;݂ݎ݁݇

(iv) A set ߁ ⊂ ܺ∗ is called total over X whenever ୃ߁ = {0}. 

A sequence in a Banach space X is called overcomplete (OC in short) in 

X whenever the linear span of each of its subsequences is dense in X. It is a 

well-known fact that overcomplete sequences exist in any separable Banach 

space. On the basis of this notion, we introduced the following new notions. 

(i) A sequence in a Banach space X is called almost overcomplete (AOC 

in short) whenever the closed linear span of each of its subsequences 

has finite codimension in X. 

(ii)  A sequence in the dual space X∗  of the Banach space X is called 

overtotal on X (OT in short) whenever each of its subsequences is 

total over X. 

(iii) A sequence in the dual space ܺ∗  of the Banach space X is called 

almost overtotal (AOT in short) on X whenever the annihilator        

(in X) of each of it’s subsequences has finite dimension. 

For instance, the fact that bounded AOC as well as AOT sequences must 

be strongly relatively compact makes it possible to answer quickly in the 

positive the following questions. 

(i) Must any infinite-dimensional closed subspace of ݈ஶ contain infinitely 

many linearly independent elements with infinitely many zero-

coordinates?  
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(ii)  Let ܺ ⊂  be an infinite-dimensional subspace of C(K) where K (ܭ)ܥ

is metric compact. Must an (infinite) sequence {ݐ௞}௞∈ℕ exist in K such 

that ݔ(ݐ௞) = 0 for infinitely many linearly independent ݔ ∈  ܺ ? 

Our first aim is to provide information about the structure of AOC and 

AOT sequences. In particular, for any separable Banach space X the 

following questions seem to be of interest. 

(i) Does an AOC sequence exist in X that admits countably many 

subsequences such that the intersection of their closed linear spans is 

the origin? 

(ii)  Does an AOT sequence exist on X that admits countably many 

subsequences such that the closure of the linear span of the union of 

their annihilators in X is the whole X? 

Our second aim is to give a possible explanation for the following fact. 

As a consequence of a theorem, by using strong relative compactness of 

bounded AOT sequences we get e.g., as a special case, that any infinite-

dimensional closed subspace of ݈௣ contains infinitely many elements with 

infinitely many zero-coordinates not only when p = ∞, as we mentioned at 

the beginning, but for any ݌ ≥ 1. However, the case ݌ < ∞ looks much 

more complicated to be handled than the case p = ∞. we provide an example 

to show one possible reason for that. 

Here we point out only the evident fact that, if {(ݔ௡ ,  ௡∗)} is a countableݔ

biorthogonal system, then neither {ݔ௡} can be almost overcomplete in 

 .[{௡ݔ}] can be almost overtotal on{∗௡ݔ} nor ,[{௡ݔ}]

We start by recalling a simple method, due to Ju. Lyubich, to get an 

overcomplete sequence in any separable Banach space X.  
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Fact (1.1)[1]: Let {݁௞}௞∈ℕ be any bounded sequence such that [{݁௞}௞∈ℕ] =

ܺ. Then the sequence  

௠ୀଶ{௠ݕ}
ஶ = { ෍݁௞݉ି௞

ஶ

௞ୀଵ

}௠ୀଶ
ஶ  

is OC in X. 

Proof. Let {ݕ௠೔}௝ୀଵ
ஶ  be any subsequence of {ݕ௠}௠ୀଶ

ஶ = { ∑ ݁௞݉ି௞ஶ
௞ୀଵ }௠ୀଶ

ஶ , 

let   

݂ ∈  ܺ∗  ∩ ௠௝ݕ}   }ୄ                                                 (1.1)  

and let D be the open unit disk in the complex field. Since the complex 

function ∅:ܦ → ℂ defined by ߮(ݐ)  = ∑ ݂(݁௞)ݐ௞ஶ
௞ୀଵ  is holomorphic, from 

(௠௝ݕ)݂ = ∅(1/ ௝݉)  = ݆ ݎ݋݂  0 = 1, 2, . . ., it follows ∅ ≡ 0 that forces ݂(݁௞) = 0 

for every k ∈ ℕ. Since f in (1.1) was arbitrarily chosen, it follows ቂ{ݕ௠௝}ቃ =

ܺ.  

Proposition (1.2)[1]: Any (infinite-dimensional) separable Banach space 

X contains an AOC sequence {ݔ௡}௡∈ℕ with the following property: for each 

݅ ∈ ℕ, {ݔ௡}௡∈ℕ admits a subsequence, that we denote by {ݔ௝௜}௝∈ℕ to lighten 

notation, such that both the following conditions are satisfied 

a) codim ܺ[{ݔ௝௜}௝∈ℕ] = ݅; 

b) ⋂ ௜∈ℕ[௝∈ℕ{௝௜ݔ}]  = {0}. 

Proof. Let the biorthogonal system {݁௞, ݁௞∗}௞∈ℕ ⊂ ܺ × ܺ∗ provide anormalized 

M-basis for X. We recall that, by definition, the sequence {݁௞∗}௞∈ℕ must be 

total on X. Moreover, it is a well-known fact that, at least when A is a finite 
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subset of ℕ, a (topological) complement in X to the subspace [{݁௞}௞∈஺] is the 

subspace [{݁௞}௞∈ℕ\஺]. For ݅ = 1, 2, . .. put  

௜ܻ =  ൣ{݁௞}௞∉{௜,௜ାଵ,௜ାଶ,…,ଶ௜ିଵ}൧                                           (1.2) 

so ܿ݉݅݀݋௑ ௜ܻ = ݅. For each integer ݅ ∈ ℕ, ௜ܻ  is a Banach space itself so, by 

Fact (1.1), the sequence {ݕ௠௜ }௠ஹଶ ⊂ ௜ܻ defined by  

௠௜ݕ =  ෍ ݉ି௜௞݁௞

ஶ

௞ୀଵ,௞ /∈{௜,௜ାଵ,௜ାଶ,...,ଶ௜ିଵ}

     ݅ =  1, 2, . . . ,݉ =  2, 3, . . .    (1.3) 

provides an OC sequence in ௜ܻ. 

Order in any way the countable set ∪௜∈ℕ,௠ஹଶ  .௡∈ℕ{௡ݔ} as a sequence {௜௠ݕ}

For each i, select a subsequence {ݔ௣௜ }௣∈ℕ of {ݔ௡}௡∈ℕ whose terms belong to 

௠௜ݕ} }௠ஹଶ: this last sequence being OC in ௜ܻ, we have ܿ݉݅݀݋௑[{ݔ௣௜ }௣∈ℕ]  =

௑݉݅݀݋ܿ ௜ܻ = ݅. Moreover, since the sequence {݁௞∗}௞∈ℕ is total on X, it is clear 

that ∩௜ୀଵஶ
௜ܻ = {0}, so ∩௜ୀଵஶ ௣௜ݔ}] }௣∈ℕ] = {0} too. 

It remains to show that the sequence {ݔ௡}௡∈ℕ is AOC in X. Let {ݔ௡௝}௝∈ℕ 

be any of its subsequences. Two cases are possible. 

A) For some i , ℕ∋݆{݆݊ݔ}
 contains infinitely many terms from {ݕ௠

i }௠ஹଶ: 

being {ݕ௠
i }௠ஹଶ OC in ௜ܻ, we have ܿ݉݅݀݋௑[{ݔ௡௝}௝∈ℕ ≤ ௑݉݅݀݋ܿ iܻ = i  

and we are done. 

B) For each ݅,  ௝∈ℕ contains at most finitely many terms from{௡௝ݔ}

௠௜ݕ} }௠ஹଶ. Take any  

݂ ∈ ௡௝ݔ}   }௝∈ℕୄ .                                                     (1.4) 
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We prove that ݂(݁௞) = 0 for every ݇ ∈ ℕ: it implies ݂ = 0, that means that 

 .௝∈ℕ is complete in X{௡௝ݔ}

Suppose by contradiction that ݂(݁௞ത ) ≠ 0 for some index ത݇: without loss of 

generality we may assume that ത݇ is the first of such indexes. For j ∈ ℕ, let  

௠(௝)ݕ
௜(௝)   = ௡௝ݔ   ; 

put  

= ܣ  {݅ ∶  ݅ =  ݅(݆), ݆ ∈  ℕ, ݅(݆)  >  ത݇}. 

Under our assumption ݅(݆) goes to infinity with j, so A is infinite and we 

have ݁௞ത ∈ ௜ܻ  for every ݅ ∈ ݅ For .ܣ ∈   put ,ܣ

݉௜  =  ݉݅݊{݉(݆) ∶  ݅(݆)  = ௠(௝)ݕ,݅ 
௜(௝)   ∈ ௠௜ݕ}  }௠ஹଶ}. 

From (1.4) it follows that, for each ݅ ∈   we have ,ܣ

݂(݁௞ത ) = −݉௜
௜௞ത   ෍ ݉௜

ି௜௞  ݂(݁௞)
ஶ

௞வ௞ത ,௞∉{௜,௜ାଵ,௜ାଶ,…,ଶ௜ିଵ}

                         (1.5) 

hence  

|݂(݁௞ത )| ≤ ݉௜
௜௞ത‖݂‖∑ ݉௜

ି௜௞ஶ
௞வ௞ത ,௞∉{௜,௜ାଵ,௜ାଶ,…,ଶିଵ} ≤  ‖݂‖∑ ݉௜

௜(௞തି௞)ஶ
௞ୀ௞തାଵ                   

≤  2‖݂‖݉௜
ି௜ → ݅ ݏܽ 0 → ∞                                        (1.6) 

that forces ݂(݁௞ത ) = 0, so contradicting our assumption. We are done. 

Our construction above can be modified by replacing (1.2) with 

 ௜ܻ  =  [{݁௞}௞ஷ௜]                                                          (1.7) 

and modifying (1.3), (1.5) and (1.6) according to that. In this case it is still 

true that ⋂[{ݔ௡௝}௝∈ℕ] = {0} as {ݔ௡௝}௝∈ℕ ranges among all possible 
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subsequences of the AOC sequence {ݔ௡}௡∈ℕ, but actually the codimension of 

the closure of the linear span of any subsequence is at most1. We need, the 

following alternative version. 

Proposition (1.3)[1]: Any (infinite-dimensional) separable Banach space 

X contains an AOC sequence {ݔ௡}௡∈ℕ with the following property: {ݔ௡}௡∈ℕ 

admits countably many subsequences {ݔ௝௜}௝∈ℕ, ݅ = 1, 2, . .., such that both 

the following conditions are satisfied 

a) ܿ݉݅݀݋௑[{ݔ௝௜}௝∈ℕ]  = 1 for each i; 

b) ⋂ ௜∈ℕ[௝∈ℕ{௝௜ݔ}]  = {0}. 

By the previous proposition, it is matter of evidence that actually the 

conclusion ⋂ ௜∈ℕ[௝∈ℕ{௝௜ݔ}] = {0} is due to the fact that infinitely many 

pairwise “skew” subsequences can be found of {ݔ௡}௡∈ℕ. This consideration 

is stressed by the following proposition. 

Proposition (1.4)[1]: Let {ݔ௡}௡∈ℕ be any AOC sequence in any (infinite-

dimensional) separable Banach space X and let {ݔ௝ଵ}௝∈ℕ ⊃ ௝∈ℕ{௝ଶݔ} ⊃ ௝∈ℕ{௝ଷݔ} ⊃. .. 

be any countable family of nested subsequences of {ݔ௡}௡∈ℕ. Then the 

increasing sequence of integers {ܿ݉݅݀݋௑[{ݔ௝௜}௝∈ℕ]}௜∈ℕ is finite (so eventually 

constant). 

Proof.  Let {ݔ௡}௡∈ℕ be an AOC not OC sequence in X and let {ݔ௝ଵ}௝∈ℕ be 

any of its subsequences whose linear span is not dense in X. Put  

ଵܺ =  ቂ൛ݔ௝ଵൟ௝∈ℕቃ , ଵ݌    = ௑݉݅݀݋ܿ  ଵܺ  ≥  1. 

If {ݔ௝ଵ}௝∈ℕ is OC in ଵܺ we are done; otherwise, let {ݔ௝௞ଵ }௞∈ℕ be any of its 

subsequences whose linear span is not dense in ଵܺ. Put  
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௝௞ଵݔ} }௞∈ℕ = ,௝∈ℕ{௝ଶݔ} ܺଶ = ,[௝∈ℕ{௝ଶݔ}]  ଶ݌  = ௑ܺଶ݉݅݀݋ܿ   >  .ଵ݌ 

Now we can continue in this way. Let us prove that this process must stop 

after finitely many steps. Assume the contrary, i.e. that a nested infinite 

family  

௝∈ℕ{௝ଵݔ} ⊃ ௝∈ℕ{௝ଶݔ} ⊃ . . .⊃ ௝∈ℕ{௝௜ݔ} ⊃ . . . 

of subsequences of {ݔ௡}௡∈ℕ can be found such that ݌௜ ↑ ∞ as ݅ ↑ ∞, where 

௜݌ = ௑݉݅݀݋ܿ ௜ܺ ℎ ௜ܺݐ݅ݓ  =  .[௝∈ℕ{௝௜ݔ}]

Under this assumption, we can construct a linearly independent sequence 

{ ௜݂}௜ୀଵஶ ⊂ ܺ∗ such that, for each ݅, ௜݂ ∈ ௜ܺାଵ
ୄ \ ௜ܺ

ୄ. For each i, let ݕ௜ be an 

element of the sequence {ݔ௝௜}௝∈ℕ not belonging to the sequence {ݔ௝௜ାଵ}௝∈ℕ 

such that ௜݂(ݕ௜) ≠ 0 (of course such an element must exist): because of our 

construction we have ௞݂(ݕ௜) = 0 for each ݇ < ݅. Without loss of generality 

we may assume ௜݂(ݕ௜)  = 1. 

Now, following a standard procedure due to Markushevich, put  

݃ଵ  =  ଵ݂, ݃ଶ  =  ଶ݂  −  ଶ݂(ݕଵ)݃ଵ,  ݃ଷ  =  ଷ݂  −  ଷ݂(ݕଵ)݃ଵ  −  ଷ݂(ݕଶ)݃ଶ, . . . . . .,

݃௞  =  ௞݂  −  ෍ ௞݂(ݕ௜)݃௜

௞ିଵ

௜ୀଵ

  , . . . . 

Clearly we have ݃௞(ݕ௜)  = ,݇ ௞,௜ for eachߜ ݅ ∈ ℕ, so actually {ݕ௞ ,݃௞}௞∈ℕ is a 

biorthogonal system with {ݕ௞}௞∈ℕ ⊂  ௡∈ℕ. This is a contradiction since{௡ݔ}

  .௡∈ℕ was an AOC sequence{௡ݔ}

As an immediate consequence we get the following 
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Corollary (1.5)[1]: Any AOC sequence {ݔ௡}௡∈ℕ in a separable Banach 

space X contains some subsequence {ݔ௡௝}௝∈ℕ that is OC in [{ݔ௡௝}௝∈ℕ] (with, 

of course, [{ݔ௡௝}௝∈ℕ] of finite codimension in X). 

The results shown about AOC sequences have a dual restatement for AOT 

sequences. 

Proposition (1.6)[1]: Let X be any (infinite-dimensional) separable 

Banach space. Then there is a sequence { ௡݂}௡∈ℕ ⊂ ܺ∗ that is AOT on X and, 

for each ݅ ∈ ℕ, admits a subsequence { ௝݂
௜}௝∈ℕ such that both the following 

conditions are satisfied 

a) ݀݅݉{ ௝݂
௜}௝∈ℕୃ = ݅; 

b) [ ⋃ { ௝݂
௜}௝∈ℕୃ

௜∈ℕ ]  = ܺ. 

Proof. The idea for the proof is the same as for the proof of Proposition 

(1.2), so we confine ourselves to sketch the fundamental steps. 

Let the biorthogonal system {݁௞ , ݁௞∗}௞∈ℕ ⊂ ܺ × ܺ∗ provide an M-basis for 

X with {݁௞∗}௞∈ℕ a norm-one sequence in ܺ∗. For ݅ = 1, 2, . .. put  

ܼ௜ = ൣ{݁௞}௞ୀ௜ଶ௜ିଵ൧, ௜ܻ = ൣ{݁௞}௞ஷ{௜,௜ାଵ,௜ାଶ,…,ଶ௜ିଵ}൧,  ∗ ௜ܻ =  [{݁௞∗}௞ஷ{௜,௜ାଵ,௜ାଶ,...,ଶ௜ିଵ}]. 

Clearly ܺ = ௜ܼ ⊕ ௜ܻ and  ∗ ௜ܻ
ୃ = ௜ܼ, so ݀݅݉ ∗ ௜ܻ

ୃ = ݅ for i =1, 2, .... For each 

integer ݅ ∈ ℕ, the sequence {ݕ௠∗௜}௠ஹଶ ⊂  ∗ ௜ܻ defined by  

௠∗௜ݕ = ෍ ݉ି௜௞݁௞∗
ஶ

௞ୀଵ,௞∉{௜,௜ାଵ,௜ାଶ,...,ଶ௜ିଵ}

       ݅ =  1, 2, . . . ,݉ =  2, 3, . . . 

being overcomplete in the Banach space  ∗ ௜ܻ, is overtotal on ௜ܻ. 

Order in any way the countable set ∪௜∈ℕ,௠ஹଶ } as a sequence {௠∗௜ݕ} ௡݂}௡∈ℕ. 

For each i, select a subsequence { ௣݂
௜}௣∈ℕ of { ௡݂}௡∈ℕ whose terms belong to 
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} ௠ஹଶ: since this last sequence is overtotal on ௜ܻ, we have{௠∗௜ݕ} ௣݂
௜}௣∈ℕୃ = ௜ܼ 

too, so dim{ ௣݂
௜}௣∈ℕୃ = ݅. Moreover, since the sequence {݁௞}௞∈ℕ is complete 

in X, we have [∪௜ୀଵஶ
௜ܼ] = ܺ. 

It remains to show that the sequence { ௡݂}௡∈ℕ is AOT on X. Let { ௡݂௝}௝∈ℕ 

be any of its subsequences. Two cases are possible. 

a) For some i , { ௡݂௝}௝∈ℕ contains infinitely many terms from {ݕ௠
∗i}௠ஹଶ: 

being {ݕ௠
∗i}௠ஹଶ OT on iܻ, we have { ௡݂௝}௝∈ℕୃ ⊂ పܼ̅, ݀݅݉{ ௡݂௝}௝∈ℕୃ ≤ i  

and we are done. 

b) For each ݅, { ௡݂௝}௝∈ℕ contains at most finitely many terms from 

ݔ ௠ஹଶ. Take any{௠∗௜ݕ} ∈ { ௡݂௝}௝∈ℕୃ : by proceeding exactly as in B) of 

the proof of Proposition (1.2), just interchanging the roles of points 

and functionals, we get ݁௞∗(ݔ) = 0 for every ݇ ∈ ℕ. {݁௞∗}௞∈ℕ being 

total on X, it follows x = 0. It means that { ௡݂௝}௝∈ℕ too is total on X and 

again we are done. 

The proof is complete.  

As we did for AOC sequences, with obvious modifications in the previous 

proof we can obtain for AOT sequences the following alternative version to 

Proposition (1.6): it is the dual version to Proposition (1.3). 

 Proposition (1.7)[1]: Let X be any (infinite-dimensional) separable 

Banach space. Then there is a sequence { ௡݂}௡∈ℕ ⊂ ܺ∗ that is AOT on X and 

admits countably many subsequences { ௝݂
௜}௝∈ℕ, ݅ = 1, 2, . . ., such that both the 

following conditions are satisfied 

a) ݀݅݉{ ௝݂
௜}௝∈ℕୃ = 1 for each i; 
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b) [ ⋃ { ௝݂
௜}௝∈ℕୃ

௜∈ℕ = ܺ. 

We point out that, though the existence of an AOT sequence on a Banach 

space X does not imply X to be separable (one of the significant applications 

of this concept we have shown was to the space ݈ஶ), the results we have 

shown in Propositions(1.6) and (1.7), as they have been stated, must concern 

only separable spaces. In fact, the annihilator of any subsequence of any 

AOT sequence being finite-dimensional, the closed linear span of the union 

of countably many of such annihilators must be separable too. 

Finally we notice that also Proposition (1.4) has its dual version that 

shows that the countably many subsequences in the statement of Proposition 

(1.7) cannot be assumed to be nested. The proof can be carried on exactly 

like the proof of Proposition (1.5), just interchanging the roles of points and 

functionals, so we omit it. 

Proposition (1.8)[1]: Let { ௡݂}௡∈ℕ be any sequence AOT on any (infinite-

dimensional) Banach space X and let { ௝݂
ଵ}௝∈ℕ ⊃ { ௝݂

ଶ}௝∈ℕ ⊃ { ௝݂
ଷ}௝∈ℕ ⊃. .. be 

anycountable family of nested subsequences of { ௡݂}௡∈ℕ. Then the increasing 

sequence of integers {݀݅݉{ ௝݂
௜}௝∈ℕୃ }௜∈ℕ is finite (so eventually constant). 

As an immediate consequence of Proposition (1.8) we get the following 

Corollary (1.9)[1]: Any AOT sequence { ௡݂}௡∈ℕ on a Banach space X 

contains some subsequence { ௡݂௝}௝∈ℕ  that is OT on any subspace of X 

complemented to { ௝݂
௡}௝∈ℕୃ  (with, of course, { ௝݂

௡}௝∈ℕୃ  of finite dimension). 

We are devoted to provide an example that may be of interest in Operator 

theory. It was proved e.g. that any infinite-dimensional closed subspace of ݈௣ 

contains infinitely many elements with infinitely many zero-coordinates not 
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only when ݌ = ∞, as we mentioned at the beginning, but for any p ≥1. In 

fact the following much more general results have been proved there. 

Theorem (1.10)[1]: Let X be a separable infinite-dimensional Banach 

space and ܶ:ܺ → ݈ஶ be a one-to-one bounded non-compactlinear operator. 

Then there exist an infinite-dimensional subspace ܻ ⊂ ܺ and a strictly 

increasing sequence {݊௞} of integers such that ݁௡ೖ(ܶݕ) = 0 for any ݕ ∈ ܻ 

and for any k (݁௡ the “n-coordinate functional” on ݈ஶ). 

Theorem (1.11)[1]: Let X,Y be infinite-dimensional Banach spaces. Let Y 

have an unconditional basis {ݑ௜}௜ୀଵஶ  with {݁௜}௜ୀଵஶ  as the sequence of the 

associated coordinate functionals. Let ܶ:ܺ → ܻ be a one-to-one bounded 

non-compact linear operator. Then there exist an infinite-dimensional 

subspace ܼ ⊂ ܺ and a strictly increasing sequence {݇௟} of integers such that 

݁௞௟(ܶݖ)  = 0 for any ݖ ∈ ܼ and any ݈ ∈ ℕ. 

To prove both the theorems, the fundamental tool was the fact that 

bounded AOT sequences are strongly relatively compact was then obtained 

as a quite easy consequence of the Ascoli–Arzelà Theorem: (if a sequence 

{ ௡݂}ଵஶ in C(X) is bounded and equicontinuous then it has a uniformly 

convergent subsequence. 

In this statement,  

(a) “ ℱ ½ ܥ(ܺ) is bounded” means that there exists a positive constant 

ܯ < ∞ such that |݂(ݔ)|. M for each ݔ ∈ ܺ and each ݂ ∈ ℱ and  

(b) “ ℱ ½ ܥ(ܺ) is equicontinuous” means that: for every ߝ > 0 there 

exist ߜ > 0 (which depends only on ߝ ) such that for ݔ, ݕ ∈ ܺ: 

,ݔ)݀ (ݕ < ߜ ⇒ (ݔ)݂| − |(ݕ)݂  < ⩝  ߝ ݂ ∈ ℱ 
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Where d is the metric on X)[5], the proof of Theorem (1.11) has 

required some additional delicate tools. One could expect that 

Theorem (1.11) should be proved in a simple way by the following 

argument. 

“Under notation as in the statement of Theorem (1.11), assume by 

contradiction that for each sequence of integers { ௝݅} we have ݀݅݉ ቀ{ܶ∗݁௜ೕ}
ୃቁ <

∞. Then the sequence {ܶ∗݁௜} ⊂ ܺ∗ is almost overtotal on X, so {ܶ∗݁௜} is 

relatively norm-compact in ܺ∗. {݁௜}  being the sequence of the coordinate 

functionals associated to the (unconditional) basis {ݑ௜} of Y, that forces T to 

be a compact operator, contradicting our assumption.” 

Example (1.12)[1]: There exist a Banach space Y with an unconditional 

basis {ݑ௜}௜∈ℕ, {݁௜}௜∈ℕ being the sequence of the associated coordinate 

functionals, and a non-compact operator ܶ: ܿ଴ → ܻ such that ܶ∗݁௜ → 0 as 

݅ → ∞ (so the sequence {ܶ∗݁௜} is relatively norm compact). 

Proof. Let {ݑ௜௞}௜ୀଵ௞  be the natural (algebraic) basis of ℝ௞. For ݇ ∈ ℕ, define 

௞ܶ:ℝ௞ → ℝ௞ in the following way  

௞ܶ ൭෍ܽ௜ݑ௜௞
௞

௜ୀଵ

 ൱ = ෍
ܽ௜ݑ௜௞

݇

 ௞

௜ୀଵ

, ܽ௜  ∈ ℝ ݂ݎ݋ ݅ =  1, . . . , ݇. 

Let ݈ஶ௞ .݌ݏ݁ݎ〉 ݈ଵ௞〉 be the k-dimensional space ℝ௞ endowed with the max-

norm 〈݌ݏ݁ݎ. ℎ݁ 1ݐ − :If we consider ௞ܶ .〈݉ݎ݋݊ ݈ஶ௞ → ݈ଵ௞, we easily get 

‖ ௞ܶ‖ = 1 for every ݇ ∈ ℕ. 

For a sequence {ܺ௞ , ‖·‖௑ೖ}௞ୀଵஶ  of Banach spaces, consider the Banach 

space (⊕௞ୀଵ
ஶ ܺ௞  )௖బ (the linear space, under the usual algebraic operations, 
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whose elements are the sequences {ݔ௞}௞ୀଵஶ , ௞ݔ ∈ ܺ௞ for each k, such that 

௞‖௑ೖݔ‖ → 0 as  ݇ → ∞, endowed with the norm ‖{ݔ௞}௞ୀଵஶ ‖ =  .(௞‖௑ೖݔ‖௞ݔܽ݉

Clearly we have  

ܿ଴  =  (⊕௞ୀଵ
ஶ ݈ஶ௞ )௖బ  .                                                        (1.8) 

Put  

ܻ = (⊕௞ୀଵ
ஶ ݈ଵ௞)௖బ   . 

Order the set ∪௞ୀଵஶ ௜ୀଵ௞{௜௞ݑ}  in the natural way and rename it as  

,ଵଵݑ} ,ଶଶݑ,ଵଶݑ . . . , ,ଵ௞ݑ . . . , ௞௞ݑ , . . . }  = ,ଵݑ}  ,ଷݑ,ଶݑ . . . }.                             (1.9)  

Of course {ݑ௜}௜ୀଵஶ is an unconditional basis both for ܿ଴ and for Y. Call ௞ܲ 

the natural norm-one projection of ܿ଴ onto ݈ஶ௞  suggested by (1.8) and define 

ܶ: ܿ଴ → ܻin the following way  

= ݔܶ ෍ ௞ܶ ௞ܲݔ
ஶ

௜ୀ଴

, ∋ ݔ  ܿ଴. 

T is a (linear) non-compact operator, since ฮܶ(∑ ௜௞௞ݑ
௜ୀଵ )ฮ = 1 and  ∑ ௜௞௞ݑ

௜ୀଵ  

is weakly null as ݇ → ∞. However, if we denote by {݁௜}௜ୀଵஶ  the sequence of 

the coordinate functionals associated to the basis {ݑ௜}௜ୀଵஶ of Y, it is true that 

ܶ∗݁௜ → 0 in ܺ∗ as ݅ → ∞. In fact, for ݔ = ∑ ∑ ௝௞௞ݑ௝௞ݔ
௝ୀଵ

ஶ
௞ୀଵ  ∈ ௖బܤ  the 

following holds   

หݔ௝௞ห ≤ 1    1 ≤ ݆ ≤ ݇, ݇ = 1, 2, . . . 

so, if we denote by ݑ௝೔
௞೔  the element ݑ௜ as identified by (9), we have  

|(ܶ∗݁௜)(ݔ)| = |݁௜(ܶݔ)| = |݁௜(෍෍ݔ௝௞ݑ௝௞/݇)
௞

௝ୀଵ

ஶ

௞ୀଵ

| = ௝೔ݔ|
௞೔ |/݇௜ ≤ 1/݇௜. 

Since ݇௜ → ∞ with i, we are done.  
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Chapter 2 

Almost Square Banach Spaces 

 
 We single out and study a natural class of Banach spaces – almost square 

Banach spaces. In an almost square space we can find, given a finite set 

,ଶݔ,ଵݔ . . . , ௜ݔ‖ ே in the unit sphere, a unit vector y such thatݔ −  is almost ‖ݕ

one. These spaces have duals that are octahedral and finite convex 

combinations of slices of the unit ball of an almost square space have 

diameter 

Section (2.1): Examples and Characterizations. 

Let X be a Banach space with unit ball ܤ௑, unit sphere ܵ௑, and dual space 

ܺ∗. 

Definition (2.1.1)[2]: We will say that a Banach space X is 

(i) locally almost square (lasq) if for every ݔ ∈  ܵ௑ there exists               

a sequence  

(௡ݕ) ⊂ ± ݔ‖ ௑ such thatܤ ‖௡ݕ → 1 and ‖ݕ௡‖ → 1. 

(ii) weakly almost square (wasq) if for every ݔ ∈  ܵ௑ there exists                     

a sequence (ݕ௡) ⊂ ± ݔ‖ ௑such thatܤ ‖௡ݕ → ‖௡ݕ‖ ,1 → 1 and ݕ௡  →  0 

weakly. 

(iii) almost square (asq) if for every finite subset (ݔ௜)௜ୀଵே ⊂ ܵ௑ there 

exists a sequence (ݕ௡) ⊂ ௜ݔ‖ ௑ such thatܤ  ± ‖௡ݕ →  1 for every 

݅ =   1, 2, . . . ,ܰ and ‖ݕ௡‖ →  1. 

Obviously (wasq) implies (lasq), but it is not completely obvious that 

(asq) implies (wasq). This will be shown in Theorem (2.1.24). 
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In the language of Schäefer  a Banach space X is (lasq) if and only if no ݔ ∈

 ܵ௑ is uniformly non-square. Gao and Lau considered the following 

parameter 

(ܺ)ܩ  = + ݔ‖}ݔܽ݉}݂݊݅}݌ݑݏ  ,‖ݕ  − ݔ‖ ∋ ݕ,{‖ݕ   ܵ௑}, ∋ ݔ  ܵ௒ }. 

We see that X is (lasq) if and only if G(X) = 1. Gao and Lau showed that ܮଵ 

is (lasq) while ܮ௣, 1 < ݌ ≤ ∞, and ℓ௣ , 1 ≤ ݌ ≤ ∞, are not. 

A separable Banach space X  has Kalton and Werner’s property (݉ஶ) if  

lim ݌ݑݏ
௡

+ ݔ‖ ‖௡ݕ  = ,‖ݔ‖)ݔܽ݉  lim ݌ݑݏ
௡

 (‖௡ݕ ‖

for every ݔ ∈  ܺ whenever ݕ௡ →  0 weakly. From Rosenthal’s ℓଵ theorem: 

(Let (ݔ௡) be a bounded sequence in a Banach space X. Either there is a 

subsequence which is equivalent to the ℓଵ-basis or there is a subsequence 

ᇱݔ converges for every ((௡ೖݔ)ᇱݔ) .which is weakly Cauchy (i.e (௡ೖݔ) ∈  ܺᇱ))[6] 

it is clear that such spaces must be (asq) if they do not contain a copy of ℓଵ. 

However, if X does not contain a copy of ℓଵ, then X  has propery (݉ஶ) if 

and only if, for any ε > 0, X is ε-isometric to a subspace of ܿ଴. We will see 

that this is much stronger than (asq), see for example in Corollary (2.2.7). 

Our main interest in the (*asq) properties come from their relation to 

diameter two properties. Recall that a slice of ܤ௑ is a set of the form 

(ߙ,∗ݔ)ܵ  = ݔ}  ∈ ௑ܤ ∶ (ݔ)∗ݔ  > 1 −  ,{ߙ

where ݔ∗ ∈ ܵ௑∗ and α > 0. we find the following definition. 

Definition (2.1.2)[2]: A Banach space X has the 

(i) local diameter 2 property (LD2P) if every slice of ܤ௑  has diameter 2. 
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(ii) diameter 2 property (D2P) if every nonempty relatively weakly open 

subset of ܤ௑ has diameter 2. 

(iii) strong diameter 2 property (SD2P) if every finite convex combination 

of slices of ܤ௑ has diameter 2. (i.e. ∑ ௜ߣ ௜ܵ
௡
௜ୀଵ   has diameter 2 whenever 

௜ߣ ≥ 0,∑ ௜ߣ = 1௡
௜ୀଵ  , and ܵଵ, . . . ,ܵ௡ are slices of ܤ௑.)  

The starting point was the observation by Kubiak that if X is (lasq) then X 

has the LD2P and similarly if X is (wasq) then X has the D2P. The basic idea 

from Kubiak’s proof works also for (asq): 

Proposition (2.1.3)[2]: If a Banach space X is (asq) then X has the 

SD2P.  

Proof. Let ௜ܵ = ,∗௜ݔ)ܵ  ,(௜ߝ ݅ = 1, . . . ,ܰ, be slices of ܤ௑ with ݔ௜∗ ∈  ܵܺ∗ and 

0 < ௜ߝ < 1.  

Let ߝ = ௜ݔ 4. Find/{௜ߝ}݊݅݉ ∈ ܵ௑ with ݔ௜∗ (ݔ௜) > 1 −  Find sequence .ߝ

± ௜ݔ‖ with (௡ݕ) ‖௡ݕ → 1 and ‖ݕ௡‖ → 1. Choose ݊଴ such that ฮݔ௜ ± ௡଴ฮݕ < 1 +  ߝ

for i = 1, 2, . . . ,N and ฮݕ௡଴ฮ >  1 −  Then .ߝ

(௡଴ݕ) ∗௜ݔ±  = ௜ݔ)∗௜ݔ   ± (௡଴ݕ  − (௜ݔ) ∗௜ݔ   <  1 + + ߝ  − ߝ   1 =  ߝ2 

and 

) ∗௜ݔ
௜ݔ ± ௡଴ݕ
1 + ߝ  ) =

1
1 + ߝ (௜ݔ)∗௜ݔ) ± ((௡଴ݕ)∗௜ݔ ≥

1
1 + ߝ (1 − ߝ − (ߝ2 > 1 − ௜ߝ . 

This means that (݅ݔ ± 0݊ݕ
)/(1 + (ߝ   ∈  ௜ܵ and ቛ0݊ݕ

ቛ > 1 −  ,and hence ߝ

by Lemma (2.2.1), X has the SD2P.  

It is known that the three diameter 2 properties are different. That the 

LD2P and the D2P are different was shown. That the D2P and the SD2P are 

different was shown . A natural question is whether (lasq), (wasq), and (asq) 
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are different properties. We will show that ܮଵ is a (wasq) space which is not 

(asq) in Corollary (2.1.25). 

Haller, Langemets, and Põldvere considered the following versions of 

octahedral norms. 

Definition (2.1.4)[2]: A Banach space X is said to be 

(i) locally ctahedral if for every ݔ ∈ ܵ௑ and every ε > 0 there is a ݕ ∈ ܵ௑ 

such that ‖ݔ ± ‖ݕ ≥ 2 −  .ߝ

(ii) weakly octahedral if for every finite subset (ݔ௜)௜ୀଵே ⊂ ܵ௑, every ݔ∗ ∈

∗௑ܤ  , and every ε > 0 there is a ݕ ∈ ܵ௑ such that 

௜ݔ‖  + ‖ݕݐ ≥ (1 − |(௜ݔ)∗ݔ|)(ߝ +  .for all i = 1, 2, . . . ,N and t > 0 (ݐ

(iii) octahedral if for every finite subset (ݔ௜)௜ୀଵே ⊂ ܵ௑ and every ε > 0 there 

is a ݕ ∈ ܵ௑ such that ‖ݔ௜  ± ‖ݕ ≥  2 −  .for all i = 1, 2, . . . ,N ߝ 

We have the following theorem . 

Theorem (2.1.5)[2]: Let X be a Banach space. Then 

(i) X has the LD2P if and only if ܺ∗ is locally octahedral. 

(ii) X has the D2P if and only if ܺ∗ is weakly octahedral. 

(iii) X has the SD2P if and only if ܺ∗ is octahedral. 

This theorem shows that the ℓଵ structure of the norm of ܺ∗ is connected 

to diameter two properties of the space. The connection between the SD2P 

and octahedrality has also been studied. We give characterizations of (lasq) 

and (asq) as the corresponding ℓஶ structure. (See Corollary (2.1.20) and 

Theorem (2.1.21)) 

We will give examples of spaces which are (lasq), (wasq), and (asq). We 

start with a few characterizations of (lasq) and (asq). In particular, we show 
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in Theorem (2.1.21) that if X is (asq) then for every finite-dimensional 

subspace E of X and every ε > 0 there is a ݕ ∈ ܵ௒ such that  

(1 − ,‖ݔ‖)max (ߝ  (|ߣ| ≤ ݔ‖ + ‖ݔߣ ≤ (1 + ,‖ݔ‖)max (ߝ  (|ߣ|

for all ݔ ∈  and all scalars λ. Using this we show, in Lemma (2.1.23), that ܧ

(asq) spaces have to contain almost isometric copies of ܿ଴. This in turn gives 

the second main result, Theorem (2.1.24), which shows that (asq) implies 

(wasq). The final main result is Theorem (2.1.28), where we show that every 

Banach space that contains a copy of ܿ଴ can be equivalently renormed to be 

(asq). 

We return to more examples. The result is that spaces which are M-ideals 

in their biduals are (asq) (see Theorem (2.2.6)). However, the class of (asq) 

spaces is much bigger than the class of spaces that are M-ideals in their 

biduals (see Examples (2.1.6) and (2.2.17)). 

We study the stability of both (local/weak) octahedrality and (*asq) when 

forming absolute sums of Banach spaces. We show that local and weak 

octahedral, (lasq), and (wasq) spaces have nice stability properties  but the 

situation is different for (asq). For 1 ≤ p < ∞ the ℓp-sum of two Banach 

spaces is never (asq). Note that an ℓ௣-sum of two Banach spaces can only be 

octahedral if p = 1 or p = ∞. 

We connect (asq) with the intersection property of Behrends and 

Harmand. We show that (asq) spaces fail the intersection property and give a 

quantitative version of this fact in Theorem (2.2.16).We also give an 

example of a space that fails the intersection property and is not (lasq). 

We follow standard Banach space notation. We consider real Banach 

spaces only. 
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We will provide examples of Banach spaces which are (lasq), (wasq), 

and (asq) and spaces which are not. Let us start with the prototype of an 

(asq) space - the space, ܿ଴, of null-sequences. 

Example (2.1.6)[2]: Let (ݔ௜)௜ୀଵே ⊂ ܵܿ଴ and ݁௡ the n’th standard basis 

vector in ܿ଴. Then it is clear that ‖ݔ௜  ± ݁௡‖ → 1 as n → ∞ for every ݅ =

 1, 2, . . . ,ܰ, so ܿ଴ is (asq). Also, as ݁௡  →  0 weakly in ܿ଴, it follows that ܿ଴ is 

(wasq). Given a sequence of Banach spaces ( ௜ܺ) it is clear that actually the 

ܿ଴-sum, ܿ଴( ௜ܺ) is (asq) (and (wasq)). In contrast to ܿ଴ being (asq), the space, 

c, of convergent sequences is not even (lasq). 

Example (2.1.7)[2]: Let ݔ = (1, 1, . . . , 1, . . . ) ∈ ܵ௖. Now, if ‖ݔ ± ‖௡ݕ →

1, then ‖ݕ௡‖  ↛  1. Because, if the value of one coordinate of ݕ௡ was close 

to ±1, then the maximum of that coordinate of ݔ ±  .௡ would be close to 2ݕ

And so c is not (lasq). 

Recall that a point x in the unit-ball ܤ௑ of a Banach space X is an extreme 

point in ܤ௑ if for every ݕ ∈ ݔ‖ ௑ withܤ ± ‖ݕ = 1 we have ‖ݕ‖ = 0. If for 

every sequence (ݕ௡) ⊂ ݔ‖ ௑ withܤ ± ‖௡ݕ → 1 we have ‖ݕ௡‖ →  0,  is said ݔ

to be a strong extreme point. 

Note that arguing similarly as in Example (2.1.7) we get that the sequence 

ݔ ,in this example must converge in norm to 0. Thus, by definition (௡ݕ) =

(1, 1, . . . , 1, . . . ) is a strong extreme point in ܤ௖ . 

Straight from the definition of a strong extreme point, we actually have 

the following general fact. 

Fact (2.1.8)[2]: The unit ball of (lasq) spaces cannot have strong extreme 

points. The constant 1 function in ℓஶ,0]ܥ, 1], and ܮஶ[0, 1] is a strong 
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extreme point in the unit ball of these spaces, so neither ℓஶ,0]ܥ, 1] nor 

,ஶ[0ܮ 1] are (lasq). We noted in the introduction that Gao and Lau have 

shown that ܮଵ[0, 1] is (lasq). 

Example (2.1.9)[2]: ܮଵ[0,1] is (wasq). Let ݂ ∈ ଵ and define ௡݂ܮܵ = ௡ݎ݂  where 

) are the Rademacher functions. Shows that (௡ݎ) ௡݂) ⊂  ଵ is weakly nullܮܵ

and that 

‖݂ ± ௡݂‖ଵ = න ± 1)|(ݐ)݂| ݐ݀((ݐ)௡ݎ  = න ݐ݀|(ݐ)݂|  ± න → ݐ݀(ݐ)௡ݎ|(ݐ)݂|  1 

Next we will present a whole class of spaces which are (wasq). This is 

the class of Cesàro function spaces.  

For an interval ܫ ⊂ ܴ by ܮ଴(ܫ) we denote the set of all (equivalence 

classes of) real valued Lebesgue measurable functions on I. Any Banach 

space ܧ = (ܫ)ܧ ⊂ ∋ ݂ with a norm ‖∙‖ satisfying the condition that (ܫ)଴ܮ

‖݂‖ and ܧ  ≤ ‖݃‖ whenever 0 ≤ ݂ ≤ ݃ a.e., ݂ ∈ ݃ and ,(ܫ)଴ܮ ∈  is called ܧ

a Banach function lattice. 

The Köthe dual of a Banach function lattice E on I is the space E′ of all 

݂ ∈ ‖݂‖ such that the associate norm (ܫ)଴ܮ ∶= ݌ݑݏ
௚∈஻ಶ

∫  ݔ݀|(ݔ)݃(ݔ)݂|
ூ   is 

finite. The Köthe dual is again a Banach function lattice. 

Let I = (0, l) where 0 < ݈ ≤ ∞ is fixed and let 0 < ߱ ∈  .be a weight (ܫ)଴ܮ

The weighted Cesàro function space on I is defined for 1 ≤ p < ∞ as 

(ܫ)௣,ఠܥ ∶= ቐ݂ ∈ :(ܫ)଴ܮ ‖݂‖஼೛,ഘ ∶= ቆන ቆ߱(ݔ)න ݐ݀|(ݐ)݂|
௫

଴
ቇ
௣ 

ூ
ቇݔ݀

ଵ/௣

<  ∞ቑ . 
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It is known that ܥ௣,ఠ =  in the natural pointwise order is a separable (ܫ)௣,ఠܥ 

order continuous Banach function lattice and hence order isometric to a 

Köthe function space. 

Kubiak proved the following result. 

Theorem (2.1.10)[2]: The space ܥ௣,ఠ is (wasq). 

Later we will show that ܥ௣,ఠ is not (asq). 

Note that the space ܥଵ,ଵ/௫[0,1] is isometrically isomorphic to ܮଵ[0,1]. Also, 

it is worth noting that for 1< p < ∞ and every weight ω every point on the 

unit sphere of ܥ௣,ఠ is extreme, i.e. ܥ௣,ఠ is strictly convex. Thus contrary to 

strong extreme points, extreme points do not seem to have anything to do 

with being (lasq), (wasq), or (asq). 

We provide examples of (asq), (lasq), and non-(lasq) from the class of 

Lindenstrauss spaces (i.e. the Banach spaces with duals isometric to ܮଵ(ߤ) 

for some positive measure μ). 

Definition (2.1.11)[2]: X is a G-space if there are a compact Hausdorff 

space K and (ݏ௜, ௜ݐ , (௜ߣ ∈ ܭ × ܭ × ℝ, ݅ in some index set I, such that X is 

isometric to 

{݂ ∈ (ܭ)ܥ  ∶ (௜ݏ)݂   = ∋ ݐ ݈݈ܽ ݎ݋݂ (௜ݐ)௜݂ߣ   .{ܭ 

X is a ܥఙ-space if there are a compact Hausdorff space K and an involutory 

homeomorphism ߪ ∶ → ܭ  .݅) ܭ  ଶߪ.݁  =  ݅݀௄) such that X is isometric to 

{݂ ∈ (ܭ)ܥ  ∶ (ݐ)݂   = ∋ ݐ ݈݈ܽ ݎ݋݂ ((ݐ)ߪ)݂−   .{ܭ 

X is a ܥ∑-space if it is a ܥఙ-space for some fixed point free involution σ on 

some K. 
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Note that every G-space is Lindenstrauss. It is also nown that an extreme 

point in a Lindenstrauss space is actually strongly extreme. So only the 

Lindenstrauss spaces without extreme points have the chance to be (lasq). 

Example (2.1.12)[2]: Lazar and Lindenstrauss considered the following 

example: 

ܺ =  ൜݂ ∈ ,0]ܥ 1]: 2݂(0) = −݂ ൬
1
3൰ , 2݂(1) = −݂ ൬

2
3൰
ൠ . 

Then ext  ܤ௑ = ∅ and X is a G-space of codimension 2 in C[0,1]. 

 The space X is (lasq). Indeed, let ݂ ∈ ܵ௑ and ε > 0. If ݂(0) ≠ 0, then 

since ݂(0)݂ ቀ1

3
ቁ < 0 there exists ݔ଴ ∈ (0, ଵ

ଷ
 ) such that ݂(ݔ଴) = 0. Let (a,b) 

be neighborhood of ݔ଴ such that |݂(ݔ)| < ,on (a,b) (and 0 ߝ ଵ
ଷ

 ∉ (ܽ, ܾ)).  

Define ݃(ݔ଴) = 1 and g(0) = 0 outside (a,b). Then 2݃(0) = 0 = −݃ ቀ1

3
ቁ and 

2݃(1) = 0 = −݃ ቀ2

3
ቁ so ݃ ∈ ܵ௑. Clearly ‖݂ ± ݃‖ < 1 +  .ߝ

If ݂(0) = 0, then ݂ ቀ1

3
ቁ =  0 and we can find neighborhoods A and B of 0 

and ଵ
ଷ
 where |݂(ݔ)| < Define ቀଵ .ߝ

ଷ
ቁ = −1,݃(0) =  1

2 , and g(x) = 0 outside A 

and B. Then ‖݂ ± ݃‖ < 1 + ݃ and ߝ ∈ ܵ௑. 

The space X is not (asq). To this end, consider the two functions ଵ݂ and 

ଶ݂ in ܵ௑ that look like this: 

 

                               Fig (2.1)                          Fig (2.2) 
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If ݃ ∈ ,0]ܥ 1] with ‖ ௜݂ ± ݃‖ < 1 + |݃| then ߝ < on ቂଵ ߝ
ଽ

, ଼
ଽ
ቃ from the second 

function and |݃| < ଵ
ଶ

+ ,on ቂ0 ߝ ଵ
ଽ
ቃ and ቂ଼

ଽ
, 1ቃ from the first. Thus no such g 

can exist in ܤ௑ with ‖݃‖ > 1 −  .ߝ

Example (2.1.13)[2]: Let ܭ = [0,1] and (ݐ)ߪ = 1 −  Then σ is a .ݐ

homeomorphism of K with ߪଶ  = ଵ .݀ܫ 
ଶ
  is a fixed point. Let 

ܺ =  {݂ ∈ (ݐ)݂:[0,1]ܥ = ݐ for all ((ݐ)ߪ)݂−  ∈ [0,1]} 

The space X is (asq). To see this, let ଵ݂, ଶ݂, . . . , ே݂  ∈  ܵ௑. Since                 

௜݂ ቀ
ଵ
ଶ
ቁ = − ௜݂ ൬ߪ ቀ

ଵ
ଶ
ቁ൰ = − ௜݂ ቀ

ଵ
ଶ
ቁ we must have ௜݂ ቀ

ଵ
ଶ
ቁ = 0. Now, find an 

interval (a,b) around ଵ
ଶ
 where | ௜݂(ݔ)| < ݅ ݎ݋݂ ߝ = 1, 2, . . . ,ܰ. Let ݃ ∈ ܵ௑ 

have its support on (a,b). Then ‖ ௜݂  ± ݃‖ < 1 + ‖݃‖ and ߝ = 1. F.ex. g 

could look something like this: 

 

Fig (2.3) 

Proposition (2.1.14)[2]: ܥఙ spaces are (asq) when σ has a non-isolated 

fixed point. 

Proof. Let X be a ܥఙ space. If ݔ଴ is a fixed point for σ, then               

(଴ݔ)݂ = ((଴ݔ)ߪ)݂− = ݂ for all (଴ݔ)݂− ∈ ܺ. Hence ݂(ݔ଴)  =  0 for all ݂ ∈

 ܺ. With a common non-isolated zero we can use the same idea as in the 

example above.  
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Proposition (2.1.15)[2]: If K is a locally compact Hausdorff space, then 

 .is (asq) (ܭ)଴ܥ

Proof. Let ଵ݂, ଶ݂, . . . , ே݂ ∈ ܵ஼బ(ܭ) Find compact ܮ ⊂ | such that ܭ ௜݂(ݔ)| <  ߝ

outside L. Let g be a norm one function with support on K \ L. Then 

‖ ௜݂ ± ݃‖ < 1 +  .ߝ

We get the following characterization of Banach spaces that are (lasq). 

Proposition (2.1.16)[2]: Let X be a Banach space. The following are 

equivalent. 

(i) X is (lasq). 

(ii) For every ݔ ∈ ܵ௑ there exists a sequence (ݕ௡) ⊂ ܺ such that ‖ݕ௡‖ → 1 

and ‖ݔ ± ‖௡ݕ → 1 as n → ∞. 

(iii) For every ݔ ∈ ܵ௑ there exists a sequence (ݕ௡) ⊂ ܵ௑ such that         

ݔ‖ ± ‖௡ݕ → 1 as n → ∞. 

(iv) For every ݔ ∈ ܵ௑ there exists a sequence (ݕ௡) ⊂      ௑ such thatܤ

‖௡ݕ‖ → 1  and ฮߣ௫௜  ± ௡ฮݕ → ݊ ݏܽ 1 → ∞ for all ߣ ∈ [0,1]. 

It is clear that we also have the following characterization of Banach 

spaces that are (asq). 

Proposition (2.1.17)[2]: Let X be a Banach space. The following are 

equivalent. 

(i) X is (asq). 

(ii) For every finite subset (ݔ௜)௜ୀଵே ⊂ ܵ௑ there exists a sequence (ݕ௡) ⊂ ܺ 

such that ‖ݕ௡‖ → 1 and ‖ݔ௜  ± ‖௡ݕ → 1 as n→∞ for every ݅ =

1, 2, . . . ,ܰ. 
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(iii) For every finite subset (ݔ௜)௜ୀଵே ⊂ ܵ௑ there exists a sequence (ݕ௡)  ⊂ ܵ௑ 

such that ‖ݔ௜  ± ‖௡ݕ → 1 as n → ∞ for every ݅ = 1, 2, . . . ,ܰ. 

(iv) For every finite subset (ݔ௜)௜ୀଵே ⊂ ܵ௑  there exists a sequence (ݕ௡) ⊂  ௑ܤ

such that ‖ݕ௡‖ → 1 and ฮߣ௫௜  ± ௡ฮݕ → 1 as n → ∞ for every ݅ =

1, 2, . . . ,ܰ and all λ ∈ [0,1]. 

Note that since we have finitely many vectors to play within the 

definition of (asq) we may drop the plusminus sign. 

Proposition (2.1.18)[2]: Let X be a Banach space.  

X is (lasq) if and only if for every ݔ ∈  ܵ௑ and ε > 0 there exists ݕ ∈ ܵ௑ 

such that ‖ݔ ± ‖ݕ ≤ 1 +   .ߝ

X is (asq) if and only if for every finite subset (ݔ௜)௜ୀଵே ⊂ ܵ௑ and ε > 0 

there exists ݕ ∈ ܵ௑ such that ‖ݔ௜ + ‖ݕ ≤ 1 +  .ߝ

We have the following lemma reference. 

Lemma (2.1.19)[2]: Assume ݔ, ݕ ∈ ܵ௑ such that 1 − ߝ ≤ ݔ‖ ± ‖ݕ ≤ 1 +  ,ߝ

then 

(1 − ,|ߙ|)ݔܽ݉(ߝ  (|ߚ|  ≤ + ݔߙ‖ ‖ݕߚ  ≤  (1 + ,|ߙ|)ݔܽ݉(ߝ   (|ߚ|

for all scalars α and β. 

Proof. Let ܯ = ,|ߙ|)ݔܽ݉  We need to show that .(|ߚ|

(1 − (ߝ   ≤  ฯ
ߙ
ܯ + ݔ

ߚ
ฯݕܯ ≤  (1 +  .(ߝ 

It is enough to show 

(1 − (ߝ   ≤ + ݔߣ‖  ‖ݕ  ≤  (1 +  (ߝ 

for all 0 < λ ≤ 1. We have 
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ݕଵିߣ‖ + ‖ݔ = ‖(1 + ݕ(ଵିߣ − ݕ) − ‖(ݔ ≥ (1 + (ଵିߣ − ݔ‖ − ‖ݕ  ≥ ଵିߣ −  ߝ

since ‖ݔ − ‖ݕ ≤  1 + + ݔߣ‖ Hence .ߝ  ‖ݕ  ≥ 1 − ߣߝ ≥ 1 −  .ߝ

Also 

ݕଵିߣ‖ + ‖ݔ = ଵିߣ)‖ − ݕ(1 + ݕ) + ‖(ݔ ≤ ଵିߣ) − 1) + 1 + ߝ = ଵିߣ +  ߝ

and hence ‖ݔߣ + ‖ݕ  ≤ 1 + ߣߝ ≤ 1 +   .ߝ

Corollary (2.1.20)[2]: If X is (lasq), then X contains almost isometric 

copies of ℓஶଶ .  

For (asq) Banach spaces we can say even more. 

Theorem (2.1.21)[2]: Let X be a Banach space. If X is (asq) then for 

every finite dimensional subspace ܧ ⊂ ܺ and ε > 0 there exists ݕ ∈ ܵ௑ such 

that 

(1− ,‖ݔ‖)ݔܽ݉(ߝ (|ߣ| ≤ + ݔ‖  ‖ݕߣ  ≤  (1 + ,‖ݔ‖)ݔܽ݉(ߝ   (|ߣ|

for all scalars λ and all x � E. 

Moreover, given a finite dimensional subspace ܨ ⊂ ܺ∗ we may choose 

the above y so that |݂(ݕ)| < ݂ for every  ‖݂‖ߝ ∈  .ܨ

It is clear from Proposition (2.1.18) that the above theorem is actually     

a characterization of (asq). 

Proof. Let E be a finite dimensional subspace of X and let ε > 0. Find ε /2-

net (ݔ௜)௜ୀଵே  for ܵா. Choose ݕ ∈ ܵ௑ such that ‖ݔ௜  ± ‖ݕ < 1 +  Assume .2/ߝ 

that ‖ݔ௜  ± ‖ݕ ≤ 1 −  then ,2/ߝ

1 = ‖௜ݔ‖ ≤
1
2
௜ݔ‖ + ‖ݕ  +

1
2
௜ݔ‖ − ‖ݕ  <

1
2 (1 + 2/ߝ  + 1 − (2/ߝ   =  1. 

Contradiction. So ‖ݔ௜ ± ‖ݕ > 1 −  .2/ߝ
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Let ݔ ∈ ܵா. Find i such that ‖ݔ௜ − ‖ݔ  <  Then .2/ߝ

ݔ‖ ± ‖ݕ ≤ ௜ݔ‖  ± ‖ݕ + ݔ‖ − ‖௜ݔ  < 1 +  ߝ 

and 

± ݔ‖ ‖ݕ = − ݔ‖  ௜ݔ   + ௜ݔ  ± ‖ݕ ≥ ௜ݔ‖ ± ‖ ݕ − ௜ݔ‖ − ‖ݔ  > 1 −  .ߝ 

Hence by using Lemma (2.1.19) we get 

(1 − ,‖ݔ‖)ݔܽ݉(ߝ (|ߣ| ≤ ݔ‖ + ‖ݕߣ  ≤ (1 + ,‖ݔ‖)ݔܽ݉(ߝ   (|ߣ|

for all scalars λ and all ݔ ∈  .ܧ

For the moreover part let ܨ ⊂ ܺ∗ be a finite dimensional subspace and let 

( ௜݂)௜ୀଵெ ⊂  ܵி be an ε/2-net. For each i choose ݖ௜ ∈ ܵ௑  with ௜݂(ݖ௜) > 1 −  .4/ߝ

Let ܧ′ = ,ܧ}݊ܽ݌ݏ ௜ୀଵெ(௜ݖ) } and use the first part of the proof to find ݕ ∈ ܵ௑ 

such that 

(1− ,‖ݔ‖)ݔܽ݉(4/ߝ  (|ߣ|  ≤ + ݔ‖ ‖ݕߣ  ≤  (1 + ,‖ݔ‖)ݔܽ݉(4/ߝ   (|ߣ|

for all scalars λ and all ݔ ∈  .′ܧ

Since | ௜݂(ݖ௜  ± |(ݕ ≤ ௜ݖ‖  ± ‖ݕ ≤  1 +  we get 4/ߝ 

= 2/ߝ− 1 − −4/ߝ (1 + (4/ߝ ≤ ௜݂(ݖ௜) − ௜݂(ݖ௜ − (ݕ = ௜݂(ݕ) ≤ ௜݂(ݖ௜ + (ݕ − ௜݂(ݖ௜)

≤ 1 + −4/ߝ 1 + = 4/ߝ  .2/ߝ 

so that | ௜݂(ݕ)| < ݂ Thus for every .2/ߝ ∈ ܵி we have  |݂(ݕ)| ≤ |(݂ −

௜݂)(ݕ)| + | ௜݂(ݕ)| ≤  .ߝ 

Let us note the following corollary. 

Corollary (2.1.22)[2]: If a Banach space X is (asq), then 0 ∈  .∗௑ܤ௪∗തതതതതതതതݐݔ݁ 

Repeated use of the theorem gives the following lemma. 



29 
 

Lemma (2.1.23)[2] If X is (asq), then for every finite dimensional 

subspace E of X and every ߝ > 0 there exists a subspace Y of X which is      

ε-isometric to ܿ଴ such that ܧ ⊕ ܻ is ε-isometric to ܧ ⊕ஶ ܿ଴. 

Proof. Find sequence (ߝ௡) ⊂ ℝା such that ∏ (1 + (௡ߝ < 1 + ஶߝ
௡ୀଵ  and 

∏ (1 − (௡ߝ > 1 − ஶߝ
௡ୀଵ . Using Theorem (2.1.21) we inductively choose        

a sequence (ݕ௡) ⊂ ܵ௑ such that  

(1− ,‖݁‖}ݔܽ݉(௡ߝ {|ߣ| ≤ ฮ݁ + ௬೙ฮߣ ≤ (1 + ,‖݁‖}ݔܽ݉(௡ߝ  {|ߣ|

for every ݁ ∈ ,ܧ}݊ܽ݌ݏ ߣ ௜ୀଵ௡ିଵ } and every(௜ݕ) ∈ ℝ. Then ܻ =  തതതതതതതതതതതതതതത is{(௡ݕ)}݊ܽ݌ݏ

ε-isometric to ܿ଴ and defining ܵ:ܧ ⊕ஶ ܿ଴ → ܧ ⊕ ܻ by ܵ(݁, ܽ) = ݁ + ܶܽ 

where ܶ ∶ ܿ଴ → ܻ is the ε-isometry. We have 

ะܵ(݁,෍ܽ௡݁௡

ே

௡ୀଵ

)ะ = ะ݁ + ෍ܽ௡ݕ௡

ே

௡ୀଵ

ะ ≤ (1 + ݔܽ݉(ேߝ ൝ะ݁ + ෍ܽ௡ݕ௡

ேିଵ

௡ୀଵ

ะ , |ܽܰ|ൡ ≤ ⋯  

≤ෑ(1 + ߝ௡)
ே

௡ୀଵ

,‖݁‖}ݔܽ݉ |ܽଵ|, |ܽଶ|, . . . , |ܽே|} < (1 + ะ(݁,෍ܽ௡݁௡(ߝ

ே

௡ୀଵ

)ะ, 

 and similarly ‖ܵ(݁,∑ ܽ௡݁௡ே
௡ୀଵ )‖ >  (1 − ∑,݁)ฮ(ߝ  ܽ௡݁௡ܰ

݊=1  )ฮ. Thus S must 

be an ε-isometry onto ܧ ⊕ ܻ since T is onto Y.  

A consequence of Lemma (2.1.23) is that the sequence (ݕ௡) in the 

definition of (asq) may be chosen to be weakly null. This enables us to 

connect the (asq) and (wasq) properties. 

Theorem (2.1.24)[2]: If a Banach space X is (asq) then for every 

,ଶݔ,ଵݔ . . . , ேݔ  ∈ ܵ௑ there exists (ݕ௡) ⊂ ௜ݔ‖ ௑ such thatܤ ± ‖௡ݕ → 1 for all 

݅, ௡ݕ → 0 weakly, and ‖ݕ௡‖ → 1. 

In particular, (asq) implies (wasq). 

Proof. Let ݔଵ, ,ଶݔ . . . ேݔ, ∈ ܵ௑ and ܧ = ௜ୀଵே(௜ݔ)}݊ܽ݌ݏ }, and choose                

a sequence (ݕ௡) ⊂ ܵ௑ as in Lemma (2.1.23) Let ܼ = ܧ ⊕ஶ ܿ଴ and ݖ௜ =

௜ݔ)  , 0) ∈ ܼ. Since the standard basis (݁௡)௡ୀଵஶ  ⊂  ܵ௖బ  is weakly null so is 
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௡ݓ = (0, ݁௡) in Z. By Lemma (2.1.23) there exists an ε-isometry S from Z 

onto ܧ ⊕ ܻ where ܻ =  The weak-weak continuity of S shows .{(௡ݕ)}݊ܽ݌ݏ 

that ݕ௡ → 0 weakly in ܨ ⊕ ܻ and hence also in X. 

By definition ܵ(݁, ±݁௡) = ݁ ± ݁ ௡ for everyݕ ∈  Since .ܧ

(1 − ,‖݁‖}ݔܽ݉(௡ߝ 1} ≤ ‖݁ ± ‖௡ݕ ≤ (1 + ,‖݁‖}ݔܽ݉(௡ߝ 1} 

for every ݁ ∈ we in particular have (1 ,ܧ − (௡ߝ ≤ ௜ݔ‖ ± ‖௡ݕ ≤ (1 + ௜ݔ ௡), soߝ  ±

௡ݕ → 1.  

Corollary (2.1.25)[2]: (asq) is strictly stronger than (wasq). 

Proof. From the theorem we have that all (asq) spaces are (wasq). By 

Example (2.1.9) ܮଵ[0,1] is (wasq), but ܮଵ[0,1] does not contain ܿ଴ so it is 

not (asq).  

Question (2.1.26)[2]: Is (wasq) strictly stronger than (lasq)? 

In Lemma (2.1.23) we proved that if X is (asq) then X contains almost 

isometric copies of ܿ଴. Accordingly a Banach space X contains an 

asymptotically isometric copy of ܿ଴ if for every null-sequence (ߝ௡)௡ୀଵஶ ⊂ (0,1) 

there exists a sequence (ݔ௡)௡ୀଵஶ  in X such that 

ݔܽ݉
௡∈ி

(1− (௡ߝ |ܽ௡| ≤ ะ෍ܽ௡ݔ௡
௡∈ி

ะ ≤ ݔܽ݉
௡∈ி

(1 + (௡ߝ |ܽ௡| 

for all choices of scalars (ܽ௡) and all finite subsets F of ℕ. Pfitzner showed 

that M-embedded spaces contain an asymptotically isometric copy of ܿ଴ 

using the local characterization of M-ideals. If we instead use Theorem 

(2.1.21) in Pfitzner’s proof we get the following. 

Proposition (2.1.27)[2]: If X is (asq), then X contains an asymptotically 

isometric copy of ܿ଴. Moreover, ܺ∗ contains an asymptotically isometric 
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copy of ℓଵ. 

We know that every (asq) space contains ܿ଴. Next we will show that any 

Banach space containing ܿ଴ can be equivalently renormed to be (asq). This 

improves the Proposition which says that any Banach space containing 

ܿ଴ can be equivalently renormed to have the SD2P. The proof of the 

following result is based on a renorming technique. 

Theorem (2.1.28)[2]: A Banach space can be equivalently renormed to 

be (asq) if and only if it contains a copy of ܿ଴. 

Proof. As an (asq)-space contains ܿ଴, the “only if part” is clear. 

For the “if” part, first renorm X to contain ܿ଴ isometrically. Denote by 

‖. ‖ the new norm on X. Let 

= ܣ  {ܻ ⊂  ܺ ∶ ܿ଴  ⊂  ܻ,  ,{݈ܾ݁ܽݎܽ݌݁ݏ ܻ

and order A by inclusion, i.e. ଶܻ ≤ ଵܻ ݂݅ ଶܻ ⊂ ଵܻ. For every ܻ ∈  there ܣ

exists by Sobczyk’s theorem: (Let X be a separable Banach space and Y a 

closed subspace of X. If ௢ܶ:ܻ ⟶  there ,ߣ ௢ is a linear operator of normܥ

exists an extension ܶ: ܺ ⟶  a projection ௒ܲ onto [7](ߣ௢ of norm at most 2ܥ

ܿ଴ with norm 2 or less. 

Let ௒ܲ be such a projection and for each ܻ ∈ ∋ ݔ and ܣ   ܻ let 

௒‖ݔ‖ ∶= ‖}ݔܽ݉  ௒ܲ(ݔ)‖, − ݔ‖  ௒ܲ(ݔ)‖}. 

Further let ܮ௒ ∶  ܺ → [0, (ݔ)௒ܮ be defined by [‖ݔ‖3 = ∋ ݔ ௒ if‖ݔ‖  ܻ and 0 

if ∉ ܻ . We can consider ܮ௒ as an element in the product space                    

Π = ∏ [0, ௫∈௑[‖ݔ‖3 . As Π is compact by Tychonoff’s theorem: ((Tychonoff) 

For each ݅ ∈ let ௜ܺ ,ܫ  be a nonempty topological space, and let ܺ = ∏ ௜ܺ௜∈ூ  , 

endowed with the product topology. 
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a) The following are equivalent: 

(i) Each ௜ܺ   is quasi-compact. 

(ii) X is quasi-compact. 

b) The following are equivalent: 

(i) Each ௜ܺ   is compact. 

(ii) X is compact. 

Every implication except (i) ⇒ (ii) in part a) is straightforward: let ݅ ∈  .ܫ 

Then ௜ܺ = ௜(ܺ), so if X is quasi-compact, so is ௜ܺߨ . Moreover, by the Slice 

Lemma, ௜ܺ  is homeomorphic to a subspace of X, so if X is Hausdorff, so is 

௜ܺ . Finally the product of Hausdorff spaces is Hausdorff. Henceforth by 

“Tychonoff’s Theorem”)[8] , the net (ܮ௒) ⊂  has a convergent subnet also ߎ

denoted by (ܮ௒). Finally define 

|||ݔ|||  =  ݈݅
௒݉
௒‖ݔ‖  . 

It is straightforward to show that ||| · ||| is a norm on X which satisfies 

ଵ
ଶ
‖ݔ‖ ≤ |||ݔ|||   ≤ ||| Also .‖ݔ‖3  · ||| extends the max norm ‖·‖ on ܿ଴. 

Finally we show that (ܺ, ||| · |||) is (asq). Let (ߝ௡)௡ୀଵஶ  be a strictly 

decreasing null sequence of positive reals, (ݔ௜)௜ୀଵே ⊂  ܵ(௑,|||·|||), (݁௡)௡ୀଵஶ  the 

sequence of standard basis vectors in ܿ଴, and ݁଴ the zero vector. The goal is 

to show that for all i = 1, . . . ,N we have |||ݔ௜ + ݁௞||| → 1 as k → ∞. 

Let ଴ܻ  = ௜ୀଵே(௜ݔ)}݊ܽ݌ݏ  , ܿ଴} and choose ଵܻ  ∈ with ଵܻ ܣ  ⊃ ଴ܻ such that 

for all i = 1, . . . ,N we have 

+ ௜ݔ|||| ݁଴||| − ௜ݔ‖  + ݁଴‖௒భ| <  .ଵߝ

Then for n ≥ 1 inductively choose ௡ܻାଵ ∈ with ௡ܻାଵ ܣ  ⊃ ௡ܻ such that for 

all i = 1, . . . ,N we have 
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|||௜ + ݁௞ݔ|||| − ௜ݔ‖ + ݁௞‖௒೙|  < ≥ ݇ ݕݎ݁ݒ݁ ݎ݋݂ ௡ߝ   ݊. 

(Note that the inequality above holds also for every ܻ ∈ ܻ with ܣ  ⊃ ௡ܻ.) 

Put ܻ = ∪௡ୀଵஶ
௡ܻതതതതതതതതതത. Note that ܻ ∈ as ܿ଴ ܣ  ⊂ ܻ and Y is separable. Observe 

that for all ݅ =  1, . . . ,ܰ and ݊ ≥ ݇ we have 

+ ௜ݔ||||  ݁௞||| − ௜ݔ‖  + ݁௞‖௒೙  |  ≤ |||௜ + ݁௞ݔ||||  − ௜ݔ‖ + ݁௞‖௒೙| < ௡ߝ  . 

so |||ݔ௜ +  ݁௞||| = ௜ݔ‖ + ݁௞‖௒ ܽߝ ݏ௡ ↓  0. In particular, we have 

௜ݔ‖ −  ௒ܲ (ݔ௜)‖ ≤ ௜‖௒ݔ‖  = ௜ݔ‖ + ݁଴‖௒  = ௜ݔ|||  + ݁଴|||  =  1. 

We now get for all ݅ =  1, . . . ,ܰ 

௜ݔ‖ + ݁௞‖௒ = ‖}ݔܽ݉  ௒ܲ (ݔ௜)  +  ݁௞‖, ௜ݔ‖ − ௒ܲ(ݔ௜)‖} ≤ ‖}ݔܽ݉  ௒ܲ(ݔ௜) + ݁௞‖, 1}  →  1 

as k → ∞ since ௒ܲ (ݔ௜) ∈ ܿ଴ and ܿ଴ is (asq).  

Section (2.2): Stability and Connection with the ܫ௣ 

Let us start this section by proving that the Cesàro function space ܥ௣,ఠ, 

for 1 ≤ p < ∞, is not (asq) though it is (wasq). 

First we recall some definitions. An element f in a Banach function lattice 

E is called order continuous if for every 0 ≤  ௡݂ ≤ |݂| a.e. such that ௡݂ ↓ 0 

a.e. we have that ‖ ௡݂‖ ↓ 0. We say that E is order continuous if every 

element in E is order continuous. A Banach function lattice (ܧ, ‖·‖) has the 

Fatou property if for any sequence ( ௡݂) ⊂ ݂ and any ܧ ∈  such that (ܫ)଴ܮ

0 ≤ ௡݂ ≤ ݂ a.e., ௡݂  ↑  ݂ a.e., and ݌ݑݏ
௡
‖ ௡݂‖ < ∞ we have that ݂ ∈  and ܧ

‖݂‖ = ݈݅
௡݉
‖ ௡݂‖ . We know that ܥ௣,ఠ is order continuous and has the Fatou-

property. 
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Proposition (2.2.1)[2]: The space ܥ௣,ఠ does not contain an isomorphic 

copy of  ܿ଴. 

Proof. Let ( ௡݂) be an increasing norm bounded sequence in ܥ௣,ఠ. It is 

enough to show that ( ௡݂)  has a norm limit. If ( ௡݂) has a pointwise a.e. limit 

f, then it follows from the Fatou property that f is in ܥ௣,ఠ. Moreover, put 

݃௡ = ݂ − ௡݂. Then 0 ≤ ݃௡ ≤ ݂ − ଵ݂ and ݃௡ ↓ 0. By order continuity we get 

that ‖݂ − ௡݂‖ = ‖ ݃௡‖ →  0 as wanted. 

It only remains to prove that the pointwise limit exists. ( ௡݂) increasing 

means that ௡݂(ݔ) ≤ ௡݂ାଵ(ݔ) for a.e. x. By completeness it is enough to show 

that ( ௡݂(ݔ)) is a bounded sequence for a.e. x. Assume not, i.e. that 

݌ݑݏ
௡

௡݂(ݔ)   =  ∞ on a compact A of positive Lebesgue measure λ(A) > 0. 

Split A into two parts ܣଵ and ܣଶ with ߣ(ܣଵ) > 0 and ߣ(ܣଶ) > 0 such that 

≥ ݔ ݔ for all ݕ  ∈ ݕ ଵ andܣ ∈  .ଶܣ

We know that 

= ܭ න ݔ݀ ௣(ݔ)ݓ
 

஺మ
 >  0. 

Let ܵ = ݌ݑݏ
௡
‖ ௡݂‖ < ∞. Choose k such that ܵ௣ <  where ܭ௣ܯ 

= ܯ න | ௞݂(ݐ)| ݀ݐ
 

஺భ
. 

Then 

ܵ௣  ≥ ‖ ௞݂‖௣ = න ቆ(ݔ)ݓන ݐ݀|(ݐ)݂|
௫

଴
ቇ
௣ 

ூ
≤ ݔ݀ න ቆ(ݔ)ݓන ݐ݀|(ݐ)݂|

௫

଴
ቇ
௣ 

2ܣ

ݔ݀ 

≥ න ቆ(ݔ)ݓන ݐ݀|(ݐ)݂|
 

1ܣ

ቇ
௣ 

2ܣ

= ݔ݀ න ݔ݀ ௣(ܯ(ݔ)ݓ)
 

2ܣ

 =  ܭ௣ܯ 
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and we have a contradiction.  

From Lemma (2.1.23) we now obtain the following. 

 

Corollary (2.2.2)[2]: The Cesàro function space ܥ௣,ఠ is not (asq). 

A closed subspace X of a Banach space Y is said to be a u-summand in Y 

if there is a subspace Z of Y so that ܻ = ܺ ⊕ ܼ and if ݔ ∈ ∋ ݖ ݀݊ܽ ܺ 

+ ݔ‖ ℎ݁݊ݐ ܼ  ‖ ݖ  = − ݔ‖   .‖ݖ 

Corollary (2.2.3)[2]: The space ܥ௣,ఠ  is a u-summand in its bidual. 

Proof. We know that an order continuous Banach lattice not containing a 

copy of ܿ଴ is a u-summand in its bidual.  

It was proved that ܥ௣,ଵ/௫ contains an asymptotically isometric copy of ℓଵ. 

This was further extended to ܥ௣,ఠ. We obtain the following result. 

Proposition (2.2.4)[2]: The space ܥ௣,ఠ contains a complemented sublattice 

isomorphic to ℓଵ. 

We will now present a new class of (asq) spaces. For this we need to 

introduce some concepts. 

Recall that a subspace X in a Banach space Y is an ideal in Y if the 

annihilator ܺୄ is the kernel of a norm one projection on ܻ∗ . The subspace X 

is called locally 1-complemented in Y if for every finite dimensional 

subspace E of Y and every ߝ > 0 there exists a linear operator ݑ ∶ ܧ  → ܺ 

such that u(e) = e for all ݁ ∈ ܧ ∩ ܺ and ‖ݑ‖ ≤  1 +  Fakhoury  proved .ߝ 

that X is an ideal in Y precisely when it is locally 1-complementedin Y . 
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We say that X is an almost isometric ideal (ai-ideal) in Y if X is locally   

1-complemented in Y in such a way that the operator u : E → X is an almost 

isometry, i.e. in addition to the above we have (1 + ‖݁‖ଵି(ߝ ≤ ‖(݁)ݑ‖ ≤

(1 + ݁ for all ‖݁‖(ߝ ∈  The fact that X is an ai-ideal in its bidual is .ܧ

commonly referred to as the Principle of Local Reflexivity (PLR). 

Lemma (2.2.5)[2]: If X is (asq) and Y is an ai-ideal in X then Y is (asq). 

In particular (lasq) is inherited by ai-ideals. 

Proof. Let ݕଵ,ݕଶ , . . . , ேݕ  ∈  ܵ௒ and 1 > ε > 0. Find ݔ ∈ ܵ௑ such that 

௜ݕ‖  + ‖ݔ  ≤ 1 + ఌ
ସ
  . Now, choose an ఌ

ସ
 - isometry u : E → Y such that u is 

the identity on ܧ ∩ ܻ where ܧ = (௝ݕ)}݊ܽ݌ݏ ௝ܰ = 1, = ݖ  Define .{ݔ  .‖(ݔ)ݑ‖/(ݔ)ݑ 

Then ݖ ∈ ܵ௒ and ‖(ݔ)ݑ − ‖ݖ = ‖(ݔ)ݑ‖| − 1| ≤ ఌ
ସ
   and  

௜ݕ‖  + ‖ݖ  ≤ ௜ݕ)ݑ‖ + ‖(ݔ + (ݔ)ݑ‖ − ‖ݖ ≤ ቀ1 +
ߝ
4
ቁ ቀ1 +

ߝ
4
ቁ +

ߝ
4
≤  1 +  .ߝ 

so Y is (asq) by Proposition (2.1.18).  

If X is an ideal in Y with an ideal projection P on ܻ∗  which for every 

∗ݕ ∈ ܻ∗  satisfies ‖ݕ∗‖ = ‖∗ݕܲ‖ + ∗ݕ‖ − -then X is said to be an M ,‖∗ݕܲ

ideal in Y (P is called the M-ideal projection on ܻ∗). If X is an M-ideal in 

ܺ∗∗, then X is said to be M-embedded. For M-ideals we often get (asq) for 

free. 

Theorem (2.2.6)[2]: Let Y be a proper subspace of a non-reflexive 

Banach space X. If Y is both an M-ideal and an ai-ideal in X, then Y is (asq). 

Proof. Let ε > 0 and choose 0 < ߜ <  1 with (1 + ଶ(1(ߜ + 1)ߜ3 + (ଶ(ߜ < 1 +  .ߝ

Write ܺ∗∗ = (ܲܺ∗)ୄ⊕ஶ ܻୄୄ . This is possible as Y is an M-ideal in X and 

thus ܺ∗ = ܲ(ܺ∗) ⊕ଵ ܻୄ  (P denotes here the M-ideal projection on ܺ∗). Let 
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,ଵݕ ,ଶݕ . . . , ேݕ ∈ ܵ௒ and ݖ ∈ ܵ(௉௑∗)఼ , and put ܧ = ௜ୀଵே(௜ݕ)}݊ܽ݌ݏ , {ݖ  ⊂  ܺ∗∗. Use 

the PLR to find a δ-isometry ݒ ∶ ܧ → ܺ which is the identity on ܧ ∩ ܺ. 

Further, put ܨ = (ܧ)ݒ ⊂ ܺ and use that Y is an ai-ideal in X to find              

a δ-isometry ݑ ∶ ܨ → ܻ which is the identity on ܨ ∩ ܻ. Now with             

ݕ = ‖(ݖ)ݒݑ‖/(ݖ)ݒݑ ∈ ܵ௒ ݒݑ ݁ݏݑ ݁ݓ(ݕ௜)  = ௜ݕ   to get 

௜ݕ‖ + ‖ݕ  = ฯݕ௜ +  
(ݖ)ݒݑ
ฯ‖(ݖ)ݒݑ‖ ≤  (1 + ଶ(ߜ  ฯݕ௜ +

ݖ
ฯ‖(ݖ)ݒݑ‖

≤  (1 + ௜ݕ‖)ଶ(ߜ  + ‖ݖ  +  ฯݖ −
ݖ

(ฯ‖(ݖ)ݒݑ‖  <  1 +  ߝ 

since 

ฯݖ −
ݖ

ฯ‖(ݖ)ݒݑ‖ =
1

‖(ݖ)ݒݑ‖ |1 − |‖(ݖ)ݒݑ‖ 

≤  (1 + − ଶ(|1(ߜ  |‖(ݖ)ݒ‖   + ‖(ݖ)ݒ‖|   − (|‖(ݖ)ݒݑ‖ 

≤  (1 + + ߜ)ଶ(ߜ  + 1)ߜ  ((ߜ   ≤ + 1)ߜ3   .ଶ(ߜ 

Using Proposition (2.1.18) we are done.  

Since every Banach space is an ai-ideal in its bidual by the PLR we 

immediately have the following corollary. 

Corollary (2.2.7)[2]: Non-reflexive M-embedded spaces are (asq). 

The following spaces are examples of M-embedded spaces: ܿ଴(߁) (for 

any set ߁), K(H) of compact operators on a Hilbert space H, and C(T)/A 

where T denotes the unit circle and A the disk algebra. From Example 

(2.1.6) the space ܿ଴(ℓଵ) is (asq). However, this space contains a copy of ℓଵ 

and therefore can not be M-embedded. Thus the class of (asq) spaces 

properly contains the class of M-embedded spaces. 

From Theorem (2.2.6) we also obtain the following result. 



38 
 

Corollary (2.2.8)[2]: Let X be a non-reflexive Banach space. Let Y be 

both an M-ideal and an ai-ideal in X. Then both X and Y have the SD2P. 

We start by introducing the notion of a general absolute sum of a family 

of Banach spaces. Our goal is to show that (lasq) and (wasq) spaces are 

stable under absolute sums and it turns out that locally and weakly 

octahedral Banach spaces are stable by forming absolute sums too. 

Let I be a non-empty set and let E be a R-linear subspace of ܴூ (the space 

of all functions from I to ℝ). 

Definition (2.2.9)[2]: An absolute norm on E is a complete norm || · ||ா 

satisfying 

(i) Given (ܽ௜)௜∈ூ  , ( ௜ܾ)௜∈ூ ∈ ℝூ |ℎ |ܽ௜ݐ݅ݓ  = | ௜ܾ| for every ݅ ∈ ∋ if (ܽ௜)௜∈ூ ,ܫ  ,ܧ

then (ܾ௜)௜∈ூ ∈ with ‖(ܽ௜)௜∈ூ‖ா ܧ =  ‖(ܾ௜)௜∈ூ‖ா. 

(ii) For every ݅ ∈ :the function ݁௜ ,ܫ ܫ → ℝ given by ݁௜(݆) = ௜௝ߜ  for j ∈ I, 

belongs to I and ‖݁௜‖ா =  1. 

We have the following lemma on absolute norms. 

Lemma (2.2.10)[2]: Let E be as above with an absolute norm. Then 

(iii) ℓଵ(ܫ)  ⊆ ⊇ ܧ   ℓஶ(ܫ) with contractive inclusions. Equivalently, 

|௜ܽ|}݌ݑݏ ∶ ݅ ∈ {ܫ  ≤  ‖(ܽ௜)௜∈ூ‖ா ≤෍ |ܽ௜|
௜∈ூ

 

for all (ܽ௜)௜∈ூ  ∈  .ܧ 

(iv)  Given (ܽ௜)௜∈ூ , ܫ∋݅(ܾ݅) ∈  ℝܫ with |ܾ௜|  ≤  |ܽ݅| for every i ∈ I, if (ܽ௜)௜∈ூ ∈  ,ܧ

then (ܾ௜)௜∈ூ ∈ with ‖(ܾ௜)௜∈ூ‖ா ܧ  ≤  ฮ(ܽ݅)݅∈ܫฮா. 
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Note that E ⊂ ℝ୍ can be viewed as a Köthe function: (In particular, going 

back to the original three-space problem for the Hilbert spaces ܺ = ܻ = ℓଶ, 

Kalton and Peck choose  

ܨ ൭෍ݔ௜݁௜
௜

൱ = ෍(݈ݔ‖݃݋‖ − ௜݁௜ݔ(|௜ݔ|݃݋݈
௜

 

This produces the the Kalton-Peck's space ܼ = ܼଶ,)[9] space (and hence a 

Banach lattice) on the space (I,P(I), μ), where P(I) is the power set of I and μ 

is the counting measure on I. It is known that E is order continuous if and 

only if E does not contain an isomorphic copy of ℓஶ if and only if span {e୧ ∶

i ∈ I} is dense in E.  

The Köthe dual ܧ′ of a Banach space ܧ ⊂ ℝூ  with absolute norm is the 

linear subspace of ℝூ defined by 

′ܧ ∶= ൝(ܽ௜)௜∈ூ ∈ ܴூ ∶ ෍݌ݑݏ |ܽ௜ ௜ܾ|
௜∈ூ

< ∞, ( ௜ܾ)௜∈ூ ∈ ா)ൡܤ . 

It is not hard to see that 

‖(ܽ௜)௜∈ூ‖ܧ′ ∶= ݌ݑݏ  ൝෍ |ܽ௜ܾ௜|
ܫ∋݅

∶  (ܾ௜)௜∈ூ ∈  ாൡܤ

defines an absolute norm on ܧ′. Every (ܾ௜)௜∈ூ ∈  defines a functional on E ′ܧ

by 

(ܽ௜)௜∈ூ →෍ܾ݅ܽ݅
ܫ∋݅

. 

This induces an embedding ܧ′ →  which is easily seen to be linear and ∗ܧ

isometric. If span{݁௜ ∶ ݅ ∈ ′ܧ is dense in E then the embedding {ܫ →  is  ∗ܧ

surjective, and so ܧ′ and ܧ∗ can be identified. 

Now, if ( ௜ܺ)௜∈ூ is a family of Banach spaces we put 
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[⊕௜∈ூ ܺ௜]ா ∶= ∋ ௜∈ூ(௜ݔ)}   ∏ ܺ௜௜∈ூ ∶ ∋ ௜∈ூ(‖௜ݔ‖)   .{ܧ 

It is clear that this defines a subspace of the product space [⊕௜∈ூ ௜ܺ]ா which 

becomes a Banach space when given the norm 

‖ ௜∈ூ(௜ݔ)‖ ∶= ௜∈ூ ‖ா(‖௜ݔ‖)‖  , ∋ ௜∈ூ(௜ݔ)  [⊕௜∈ூ ܺ௜]ா . 

This Banach space is said to be the absolute sum of the family ( ௜ܺ)௜∈ூ  with 

respect to E. Every (ݔ௜∗ )௜∈ூ ∈ [⊕௜∈ூ ௜ܺ
∗ ]ாᇱ defines a functional on 

[⊕௜∈ூ ௜ܺ]ா by 

(௜ݔ) ∗௜ݔ௜∈ூ →෍(௜ݔ)
௜∈ூ

 

This embedding is isometric and is onto if span {݁௜ ∶ ݅ ∈  .is dense in E {ܫ

Putting ܫ = ℕ and ܧ =  ℓ௣(ܫ) it is clear that for 1 ≤ ݌ ≤ ∞ the ℓ௣ sum 

(ܿ଴ ݌ ݂݅ ݉ݑݏ =  ∞) of a family of Banach spaces ( ௜ܺ)௜∈ூ  is an absolute 

sum with respect to E (for which [⊕௜∈ூ ௜ܺ
∗ ]ாᇱ = [⊕௜∈ூ ௜ܺ]ா∗ as        

span{݁௜ ∶  ݅ ∈  in this case). It was proved that locally (ܫ)is dense in ℓ௣ {ܫ

and weakly octahedral spaces are stable by taking ℓ௣ sums of two Banach 

spaces. A closer look at the argument reveals that it extends to general 

absolute sums as well. This can also be obtained from Propositions (2.2.11) 

and (2.2.13) below. 

Proposition (2.2.11)[2]: Let I be a set, E a subspace of ℝூ with an 

absolute norm, and ( ௜ܺ)௜∈ூ a family of Banach spaces which are locally 

octahedral (resp. (lasq)). Then their absolute sum ܺ = (⊕௜∈ூ ௜ܺ)ா is locally 

octahedral (resp. (lasq)). 

Proof. Let ε > 0 and consider an ݔ = ∋ ௜∈ூ(௜ݔ) ܺ with norm 1. In both cases 

we want to find ݕ ∈ ܵ௑  that satisfies 
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+ ߙ ≤ ߝ  ± ݔ‖  ா‖ݕ  ≥ − ߙ   ,ߝ 

with α = 2 in the locally octahedral case (see Definition (2.1.4)) and α = 1 in 

the (lasq) case (see Proposition (2.1.18)). By ignoring coordinates where 

௜ݔ = 0 we may (and do) assume that ݔ௜  ≠  0 for all ݅ ∈  ,By assumption .ܫ

for every ݅ ∈ ௜ݕ there exists ,ܫ ∈ ܵ௑௜ such that 

+ ߙ ≤ ߝ   ฯ
௜ݔ
‖௜ݔ‖

± ௜ฯݕ  ≥ − ߙ   .ߝ 

We may take ݕ =  ,௜∈ூ . Indeed(݅ݕ‖݅ݔ‖)

ா‖ݕ‖ = ௜∈ூ‖ா(‖݅ݕ‖‖݅ݔ‖)‖ = ௜∈ூ‖ா(‖݅ݔ‖)‖ = 1 

and 

± ݔ‖ ா‖ݕ = ฮ(ฮݔ௜  ± ฮ)௜∈ூฮா݅ݕ‖௜ݔ‖ ≥ ߙ) − ௜∈ூ‖ா(‖௜ݔ‖)‖(ߝ  = − ߙ   .ߝ 

Similarly one has that ‖ݔ ± ா‖ݕ ≤ ߙ +   .ߝ

The same idea works for absolute sums of (wasq) spaces as long as we 

have some control over the dual. 

Proposition (2.2.12)[2]: Let E be a subspace of  ܴூ with an absolute 

norm such that span{݁௜ ∶ ݅ ∈ ∗is dense in E and span {݁௜ {ܫ ∶ ݅ ∈  is dense {ܫ

in ܧ∗. If ( ௜ܺ)௜∈ூ is a family of Banach spaces which are (wasq), then ܺ =

(⊕௜∈ூ ௜ܺ)ா is (wasq). 

Proof. Let ݔ = ௜∈ூ(௜ݔ) ∈ ܵ௑. Our task is to find a weakly-null sequence 

(௡ݕ) ⊂ ܵ௑ such that 

± ݔ‖ ௡‖ாݕ → 1. 

We may (and do) assume that ݔ௜ ≠ 0 for all ݅ ∈  By assumption, for every .ܫ

݅ ∈ ௡௜ݕ) there exist weakly-null sequences ,ܫ ) ⊂ ܵ௑௜ such that 



42 
 

ฯ
௜ݔ
‖௜ݔ‖

± ௡௜ฯݕ → 1. 

Just like in Proposition (2.2.11), we let ݕ௡ = ݊ݕ‖݅ݔ‖)
݅ )௜∈ூ and ݃݁ݔ‖ ݐ ±

௡‖ாݕ → 1. Note that ‖ݕ௡‖ா = 1. Finally, let ݔ∗  = ௜∈ூ(∗ ௜ݔ)   ∈  ܺ∗ and ε > 0. 

Since span{݁௜∗ ∶ ݅ ∈ ܨ there is a finite set of indices ∗ܧ is dense in {ܫ ⊂  such ܫ

that ฮ(‖ݔ௜ ∗‖)௜∈ூ\ிฮா∗  <  Let .2/ߝ

∗ிݔ = ෍ݔ௜ ∗݁௜∗
௜∈ி

 . 

Find ݊଴ ∈ ℕ such that |݊ݕ‖݅ݔ‖)∗ ݅ݔ
݅ )| < ݅ for all (|ܨ|2)/ߝ ∈ ݊ whenever ,ܨ >

݊଴. (Possible since (ݕ௡௜ ) is weakly-null for every ݅ ∈  We get .(ܫ

|(௡ݕ)∗ݔ| ≤ |(௡ݕ)∗ிݔ| + ∗ݔ‖ − ௡‖ாݕ‖∗ி∗‖ாݔ ≤ อ෍ݔ௜∗ (‖ݔ௜‖ݕ௡௜ )
௜∈ி

อ+ ฮ(‖ݔ௜∗‖)௜∈ூ\ிฮா∗ <  ߝ

whenever ݊ > ݊଴. Thus (ݕ௡) is weakly-null.  

For absolute sums of weakly octahedral spaces we have to work a bit 

harder. 

Proposition (2.2.13)[2]: Let I be a set, E a subspace of ℝூ with an 

absolute norm such that span{݁௜ ∶ ݅ ∈ ) is dense in E, and {ܫ ௜ܺ)௜∈ூ a family 

of Banach spaces which are weakly octahedral. Then their absolute sum 

ܺ = (⊕௜∈ூ ௜ܺ)ா is weakly octahedral. 

Proof. Let ߝ > 0, let ݔଵ = ௜∈ூ(௜ଵݔ)  , . . . ேݔ,  = ௜∈ூ(௜ேݔ)  ∈ ܵ௑, and  ݔ∗ = ௜∈ூ( ∗௜ݔ) ∈  ∗௑ܤ

Our task here is to find ݕ ∈ ܵ௑ such that 

௞ݔ‖ + ா‖ݕݐ ≥ (1 − ∑|)(ߝ ௜∈ூ(௜௞ݔ) ∗௜ݔ | + ݐ  for all  (ݐ > 0 and  ݇ = 1, 2, . . . ,ܰ. 

Let ݖ௜∗ = ௫೔
∗

ฮ௫೔
∗ฮ

 if ݔ௜∗ ≠ 0 and ݖ௜∗ = 0 otherwise. By the weak octahedrality of 

௜ܺ , for every ݅ ∈ ௜ݕ there exists a ,ܫ ∈ ܵ௑௜ such that 
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(2.1) 

ብ
௜௞ݔ

ฮݔ௜௞ฮ 
+ ௜ብݕݐ 

ா

 ≥  (1 − )(2/ߝ 
|(௜௞ݔ)∗௜ݖ|
ฮݔ௜௞ฮ

+ ݐ ݈݈ܽ ݎ݋݂ (ݐ > 0 ܽ݊݀ ݇ =  1, 2, . . . ,ܰ. 

If ݔ௜௞ = 0 for some ݅ ∈  ௜ to be any element from ܵ௑௜ . Nowݕ then take ,ܫ 

(2.1) implies that 

ฮݔ௜௞ + ௜ฮாݕݐ   ≥  (1 − )(2/ߝ 
|(௜௞ݔ)∗௜ݔ|
ฮݔ௜௞ฮ

+ < ݐ ݈݈ܽ ݎ݋݂ (ݐ   0 ܽ݊݀ ݇ =  1, 2, . . . ,ܰ. 

Since ‖ݔ∗‖ = ∗௜∈ூ‖ா( ‖∗௜ݔ‖)‖  ≤ 1, there is a list of reals (ߙ௜)௜∈ூ ⊂ ℝ such 

that ‖(ߙ௜)௜∈ூ‖ா = ௜∈ூ‖ா(|௜ߙ|)‖  = 1 and 

෍‖ݔ௜∗‖ · |௜ߙ|
௜∈ூ

> − 1)‖∗ݔ‖
2/ߝ

1 −  .(2/ߝ 

We take ݕ = ௜∈ூ(௜ݕ|௜ߙ|) ∈ ܵ௑ to get 

௞ݔ‖‖∗ݔ‖  + ா‖ݕݐ  ≥෍‖ݔ௜∗‖ · ฮݔ௜௞ + ௜ฮݕݐ|௜ߙ| 
௜∈ூ

≥ (1− ‖∗௜ݔ‖෍(2/ߝ ቆ
|(௜௞ݔ) ∗௜ݔ|
ฮݔ௜∗ฮ

+ ቇݐ|௜ߙ|
௜∈ூ

≥ (1− |(௜௞ݔ)∗௜ݔ൭|෍(2/ߝ + −1)‖∗ݔ‖
2/ߝ

1 − ݐ(2/ߝ
௜∈ூ

൱

≥ (1−
2/ߝ

1 − −1)(2/ߝ |(௜௞ݔ)∗௜ݔ൭|෍‖∗ݔ‖(2/ߝ + ݐ
௜∈ூ

൱

= 1)‖∗ݔ‖ − |(௜௞ݔ) ∗௜ݔ൭|෍(ߝ + .ݐ
௜∈ூ

൱ 

Dividing both sides by ‖ݔ∗‖ we get the desired inequality.  

We have seen that for a sequence of non-trivial Banach spaces ( ௜ܺ) the 

space ܿ଴( ௜ܺ) is always (asq). Similarly ℓଵ ( ௜ܺ) is always octahedral. 
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Note that ܺ ⊕௣ ܻ, 1 < ݌ < ∞, can never be (asq), because it fails the 

SD2P. But even though the SD2P property is stable by forming ℓଵ sums, it 

turns out that the ℓଵ sum of Banach spaces can never be (asq). 

Lemma (2.2.14)[2]: Let X and Y be nontrivial Banach spaces. Then 

ܺ ⊕ଵ ܻ is never (asq). 

Proof. Let ܼ = ܺ ⊕ଵ ݔ , ܻ ∈ ܵ௑, and ݕ ∈ ܵ௒ . Consider norm 1 elements 

ଵݖ =  ቀ− ଵ
ଷ
,ݔ ଶ

ଷ
= ଶݖ ቁ andݕ  ቀଶ

ଷ
−,ݔ ଵ

ଷ
 ቁ. Assume on the contrary that thereݕ

is ܽ ݓ = ௫ݓ) (௬ݓ, ∈ ܵ௓ with ‖ݖ௜  ± ‖ݓ ≤ 1 +  ଵ
ଽ
 . Then 

‖௫ݓ‖ + ฯ
2
ฯݕ3 ≤

1
2 ൬ฯ−

1
3 ݔ + ௫ฯݓ + ฯ

2
ݕ3 + ௬ฯݓ + ฯ

1
3 ݔ + (௫ฯݓ + ฯ

2
ݕ3 − ௬ฯ൰ݓ

≤ ଵݖ‖}ݔܽ݉ + ,‖ݓ ଵݖ‖ {‖ݓ− ≤ 1 +
1
9 

so that ‖ݓ௫‖ ≤  1
3 + ଵ

ଽ
 . Similarly ฮݕݓฮ ≤  1

3 + ଵ
ଽ
 . We get ‖ݓ‖ < 1 which is a 

contradiction.  

Proposition (2.2.15)[2]: Let X and Y be nontrivial Banach spaces and 

1 ≤ ݌ < ∞. 

(i) If ܺ ⊕௣ ܻ is (lasq), then X is (lasq). 

(ii) If ܺ ⊕௣ ܻ is (wasq), then X is (wasq). 

Proof. (i). The function ݂(ݔ) =  ଵ/௣ is uniformly continuous on [0, 2] soݔ

given ε > 0 there exists δ > 0 such that |݂(ݔ) − |(ݕ)݂ ≤ ݔ| whenever ߝ − |ݕ ≤  .ߜ

Also the function ݃(ݔ) =  ௣ is continuous at x = 1 so there exists η > 0 suchݔ

that |݃(1) − |(ݕ)݃ ≤ whenever |1 ߜ − |ݕ ≤  .ߟ

Let ܺ ⊕௣ ܻ be (lasq). Assume ݔ ∈ ܵ௑. Then there is (ݑ, (ݒ ∈ ܵ௑⊕೛ܻ 

such that 
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,ݔ)‖ 0) ± ,ݑ) ௣‖(ݒ = ݔ‖) ± ௣‖ݑ + ௣)ଵ/௣‖ݒ ‖ ≤ 1 +  .ߟ

(Note that ݑ ≠ 0, else ‖(ݔ, ‖(ݒ = 2ଵ/௣ > 1 + ݐ We have (since (.ߝ ↦  ௣ isݐ

increasing) 

± ݔ‖ ௣‖ݑ + ݌‖ݒ‖ ≤ (1 + ௣(ߟ ≤ 1௣ + ߜ = 1 +  ߜ

hence 

± ݔ‖ ௣‖ݑ ≤ 1 + ߜ − ௣‖ݒ‖ = ௣‖ݑ‖ + ௣‖ݒ‖ − ௣‖ݒ‖ + ߜ = ௣‖ݑ‖ +  .ߜ 

Taking p-th roots we get 

ݔ‖ ± ‖ݑ ≤ ‖ݑ‖ +  ߝ

since |‖݌‖ݑ + − ߜ  |݌‖ݑ‖   = = ݖ Let .ߜ   Then .‖ݑ‖/ݑ 

ݔ‖ ± ‖ݖ ≤ ݔ‖ ± ‖ݑ + ݖ‖ − ‖ݑ ≤ ‖ݑ‖ + ߝ + 1 − ‖ݑ‖ = 1 +  .ߝ

(ii). The proof is similar to (i). Indeed, for ߝ௡  =  ଵ
௡
 find the sequence ߟ௡ and 

observe that if a sequence (ݑ௡ , ௡) converges weakly to (0, 0) in ⊕௣ݒ ܻ , then 

  .௡ converges weakly to 0 in Xݑ

We end this section by showing that for finite ℓஶ sums we only need to 

assume that only one of the spaces is (lasq), (wasq) or (asq). 

Proposition (2.2.16)[2]: Let X and Y be nontrivial Banach spaces. 

(i) ܺ ⊕ஶ ܻ is (lasq) if and only if either X or Y is (lasq). 

(ii) ܺ ⊕ஶ ܻ is (wasq) if and only if either X or Y is (wasq). 

(iii) ܺ ⊕ஶ ܻ is (asq) if and only if either X or Y is (asq). 

Proof. We will prove it only for (asq) spaces – others will follow similarly. 

Suppose that ܼ = ܺ ⊕ஶ ܻ is (asq). Let ݔଵ,ݔଶ, . . . , ேݔ ∈ ܵ௑ and ݕଵ, ,ଶݕ . . . , ேݕ ∈ ܵ௒ . 

Then (ݔ௜ ݅ ௜) is in ܵ௓ for everyݕ, = 1, 2, . . . ,ܰ and by our assumption there is 

a sequence ݖ௡ = ௡ݑ) ௜ݔ)|| ௓ such thatܤ ௡) inݒ, (௜ݕ,  ± ௡ݑ) , ||(௡ݒ → 1 for 
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every ݅ =  1, 2, . . . ,ܰ and ||ݖ௡|| → 1. Since ||ݖ௡|| → 1there is a 

subsequence such that either ||ݑ௡|| → 1 or ||ݒ௡|| → 1. 

Thus one of the spaces X or Y must be (asq). 

Suppose now that X is (asq). Let ݖ௜ = ௜ݔ)  , (௜ݕ  ∈  ܵ௓ for ݅ = 1, 2, . . . ,ܰ. 

Using Proposition (2.1.17), we can find a sequence (ݑ௡) ⊂  ௑ such thatܤ

ห|ݑ௡|ห → 1 and ‖ݔ௜  ± ‖௡ݑ → 1 for every ݅ =  1, 2, . . . ,ܰ. Put ݖ௡ = ,௡ݑ) 0). 

Then ‖ݖ௡‖ = ‖௡ݑ‖ → 1 and ‖ݖ௜ ± ‖௡ݖ = ௜ݔ‖}ݔܽ݉ ± {௜ݕ,‖௡ݑ → {‖௜ݕ‖,1}ݔܽ݉ =  1  

for every ݅ =  1, 2, . . . ,ܰ. Thus Z is (asq).  

We explore the connection between (asq) spaces and the intersection 

property introduced. 

A Banach space X has the intersection property (IP) if for every ߝ > 0 there 

exist ݔଵ, ,ଶݔ . . . , ‖௜ݔ‖ ே in X withݔ <  1, ݅ =  1, 2, . . . ,ܰ, such that if ݕ ∈  ܺ 

with ‖ݔ௜ ± ‖ݕ ≤ 1, for every ݅ = 1, 2, . . . ,ܰ, then ‖ݕ‖ ≤  .ߝ 

We will say that X ε-fails the IP, 0 < ߝ < 1, if for all ݔଵ,ݔଶ, . . . ,  ே in Xݔ

with ‖ݔ௜‖ <  1, ݅ = 1, 2, . . . ,ܰ, there exists a ݕ ∈ ܺ such that ‖ݔ௜ ± ‖ݕ ≤ 1 

and ‖ݕ‖ >  .ߝ 

Theorem (2.2.17)[2]: A Banach space X is (asq) if and only if X ε-fails 

the IP for all 0 < ߝ < 1. 

Proof. Assume X is (asq) and let 0 < ߝ < 1 be fixed. 

Assume (ݔ௜)௜ୀଵே ⊂ °௑ܤ  . Choose δ > 0 such that (1 + ≥ ߝଶ(ߜ   1 and 

(1 + ‖௜ݔ‖(ߜ ≤ ݅ ݎ݋݂ 1 = 1, 2, . . . ,ܰ. 

Let ܧ = ௜ୀଵே(௜ݔ)}݊ܽ݌ݏ }. By Theorem (2.1.21), there exists ݕ ∈ ܵ௑ such that 

+ ݔ‖ ‖ݕݎ  ≤  (1 + ,‖ݔ‖)ݔܽ݉(ߜ   (|ݎ|
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for all ݔ ∈  ,and all scalars r. In particular ܧ

௜ݔ‖ ± (1 + ‖ݕߝ(ߜ  ≤ (1 + ,‖௜ݔ‖)ݔܽ݉(ߜ (1 + (ߝ(ߜ ≤ 1 

and ‖(1 + ‖ݕߝ(ߜ = (1 + ߝ(ߜ >  .ߝ

Conversely, assume X ε-fails the IP for 0 < ε < 1 and let ݔଵ, ,ଶݔ . . . , ேݔ ∈

ܵ௑. Let ε > 0. Since ݖ௜  =  ௫೔
ଵାఌ

∈ °௑ܤ   there exists a ݕ ∈ ܺ with ‖ݕ‖ > 1 –  ߝ 

such that ‖ݖ௜  ± ‖ݕ ≤ 1. Note that y is the midpoint of the line segment [ݕ +

,௜ݖ ݕ − ‖ݕ‖ ௜] henceݖ ≤ 1. We get 

௜ݔ‖ + ‖ݕ  ≤ ௜ݔ‖  − +‖݅ݖ  ݅ݖ‖ + ‖ݕ  ≤ 1 −
1

1 + +ߝ   1 =  1 +
ߝ

1 + ߝ  <  1 +  ߝ 

and 

ฯݔ௜ +  
ݕ
ฯ‖ݕ‖ ≤ ௜ݔ‖  + ‖ݕ  +  ฯݕ −  

ݕ
ฯ‖ݕ‖ ≤  1 +  .ߝ2 

From Proposition (2.1.18) we conclude that X is (asq).  

Example (2.2.18)[2]: The space ܺ = ℓஶ(ܥ∑(ܵ௠)) is (asq) but not a 

proper M-ideal in any superspace. 

Here ܵ௠ is the Euclidean sphere in ܴ௠ାଵ and 

(௠ܵ)∑ܥ = {݂ ∈ (௠ܵ)ܥ ∶ (ݏ)݂  = ݏ∀ (ݏ−)݂− ∈  ܵ௠, } 

where ܥ(ܵ௠) is the space of continuous functions on ܵ௠. 

It is proved that this X not a proper M-ideal in any superspace. A small 

adjustment to the proof shows that X ε-fails the IP for every 0 < ε < 1. 

Example (2.2.19)[2]: For every 0 < ߝ < 1 there exists a Banach space 

which is not (lasq), but ε-fails the IP. 

Let r = 3/(1 − ε) and consider the following G-space: 
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ܺ = {݂ ∈ ,0]ܥ 1]:݂(0) =  .{(1)݂ݎ

X is not (lasq): Let ݂(ݔ) = ,0] ݊݋ 1 ଵ
௥
 ] and ݂(ݔ) = ௥ାଵ

௥
 − on [ ଵ ݔ 

௥
 , 1]. If 

݃ ∈ (ݔ)݂| ௑ withܤ ± |(ݔ)݃ < 1 + |(ݔ)݃| then ,ߜ < (1 −  ଵ
௥
 ) +  .everywhere ߜ

We cannot have ‖݂ ± ݃‖ < 1 + ‖݃‖ and ߜ > 1 − ≥ ߜ when ߜ  ଵ
ଶ௥

 . 

X  ε-fails the IP: First we note that if  ݂ ∈ ܺ and ‖݂‖ ≤ 1, then |݂(1)| ≤ ଵ
௥

. 

If not then |݂(0)| = |(1)݂ݎ| = |(1)݂|ݎ > 1. 

Let ଵ݂, ଶ݂, . . . , ே݂  ∈ | ௑ and 0< ε < 1. Sinceܤ  ௜݂(1)| ≤ ଵ
௥
 , there exists 

neighborhood of 1, say (a,1], where | ௜݂(ݔ)| < ଶ
௥
 . Define g such that 

supp ݃ ⊂ (ܽ, 1) and ‖݃‖ = ߝ + ଵ
௥
 . For ݔ ∈ (ܽ, 1) we have 

| ௜݂(ݔ) ± |(ݔ)݃ <
2
ݎ

+ ߝ +
1
ݎ

= ߝ + 1 − ߝ = 1. 

Hence ‖ ௜݂ ± ݃‖ ≤ 1. 

Next we will show that every (asq) space contains a separable subspace 

which is (asq). 

Proposition (2.2.20)[2]: If X is (asq), then for every separable subspace 

Y of X there exists a separable subspace Z with ܻ ⊂ ܼ ⊂ ܺ and Z is (asq). 

Proof. Let ܻ ⊂ ܺ and let ߝ௡ = 2 − ݊. 

Let ܣଵ be a countable dense set in ܵ௒ . For each finite family G in ܣଵ find 

ீݕ  in ܵ௑ such that ‖ݔ ± ‖ீݕ < 1 + ݔ ଵ for allߝ ∈  Let ଵܻ be the closure of .ܩ

span{ܻ,  .ଵܻ is separable .{(ீݕ)

Let ܣଶ be a countable dense set in ܵ௒భ  . For each finite family G in ܣଶ 

find ீݕ  in ܵ௑ such that ‖ݔ ± ‖ீݕ < 1 + ݔ ଶ for allߝ ∈  Let ଶܻ be the .ܩ
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closure of span{ ଵܻ,  .ଶܻ is separable .{(ீݕ)

We continue in the same fashion and let ܼ = ∪ ௡ܻതതതതതത. 

Let ݖଵ, ,ଶݖ . . . , ேݖ ∈ ܵ௓ and ε > 0. Choose k such that ߝ௞ <  and find 2/ߝ

,ଶݔ,ଵݔ . . . , ௜ݔ‖ ௞ withܣ ே inݔ − ‖௜ݖ < Then there exists a y in ܵ௒௞ାଵ .2/ߝ ⊂

ܵ௓ with ‖ݖ௜ ± ‖ݕ < 1 +   .for i = 1, 2, . . . ,N ߝ

Proposition (2.2.21)[2]: If X is (lasq), then for every separable subspace 

Y of X there exists a separable subspace Z with ܻ ⊂  ܼ ⊂  ܺ and Z is (lasq). 

Proof. Same idea as for (asq), but we only need to consider single parent 

families.  
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Chapter 3 

Banach Spaces and Superprojectivity 
We show that the class of superprojective spaces is stable under finite 

products, certain unconditional sums, certain tensor products, and other 

operations, providing new examples. 

Section (3.1): Some Properties of Superprojective Spaces  

A Banach space X is called subprojective if every (closed) infinite-

dimensional subspace of X contains an infinite-dimensional subspace 

complemented in X, and X is called superprojective if every infinite-

codimensional subspace of X is contained in an infinite-codimensional 

subspace complemented in X. These two classes of Banach spaces were 

introduced by Whitley  

There are many examples of subprojective spaces, like ℓ௣ for 1 ≤ ݌ < ∞, 

,௣(0ܮ 1)for 2 ≤ ݌ < ∞, C(K) with K a scattered compact and some Lorentz 

and Orlicz spaces. It is not difficult to show that subspaces of subprojective 

spaces are subprojective, and quotients of superprojective spaces are 

superprojective and, as a consequence of the duality relations between 

subspaces and quotients, a reflexive space is sub-projective (superprojective) 

if and only if its dual space is superprojective (subprojective), which 

provides many examples of reflexive superprojective spaces. However, the 

only examples of non-reflexive superprojective spaces previously known are 

the C(K) spaces with K a scattered compact and their infinite-dimensional 

quotients. 
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Some of the duality relations between subprojective and superprojective 

spaces are known to fail in general: 

a) X  being subprojective does not imply that ܺ∗ is superprojective, 

for instance for ܺ = ܿ଴and ܺ∗ = ℓଵ. 

b) ܺ∗ being subprojective does not imply that X is superprojective, for 

instance for the hereditarily indecomposable space obtained whose 

dual is isomorphic to ℓଵ. 

However we do not know if the remaining relations are valid: 

(a’) Does X  being superprojective imply that ܺ∗ is subprojective? 

(b’) Does ܺ∗ being superprojective imply that X is subprojective? 

The answer to these two questions is likely negative, but we know of few 

examples of non-reflexive super-projective spaces to check, and none of 

them is a dual space. 

Oikhberg and Spinu have studied the stability properties of subprojective 

spaces under vector sums, tensor products and other operations, obtaining 

plenty of new examples of subprojective spaces. 

We will begin with some auxiliary results shows some properties of 

subprojective and superprojective spaces, such as the fact that 

superprojective spaces cannot contain copies of ℓଵ, which restricts the search 

for non-reflexive examples of these spaces, and we also characterise the 

superprojectivity of some projective tensor products. We show several 

stability results for the class of superprojective spaces under finite products, 

certain unconditional sums and certain tensor products, and we provide new 

examples of superprojective spaces. 
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The dual space of a Banach space X is ܺ∗, and the action of ݔ∗ ∈ ܺ∗ on 

ݔ ∈ ܺ is written as 〈ݔ∗,  Given a subset M of a Banach space X, its .〈ݔ

annihilator in ܺ∗ will be denoted by ୄܯ if M is a subset of ܺ∗, its annihilator 

in X will be denoted by ୄܯ. If (ݔ௡)௡ ∈ ℕ is a sequence in X, then         

݊:௡ݔ] ∈ ℕ]will denote the closed linear span of (ݔ௡)௡ ∈ ℕ in X. The injective 

and projective tensor products of X and Y are respectively denoted by 

ܺ ⨶ఌ ܻ and ܺ ⨶గ ܻ. 

Operators will always be bounded. The identity operator on X is denoted 

by ܫ௑. Given an operator ܶ:ܺ → ܻ,ܰ(ܶ) and R(T) denote the kernel and the 

range of T, and ܶ∗:ܻ∗ → ܺ∗ denotes its conjugate operator. An operator 

ܶ:ܺ → ܻ is strictly singular if ܶ|ெ is an isomorphism only if M is finite-

dimensional; and T is strictly cosingular if there is no operator ܳ:ܻ → ܼ 

with Z infinite-dimensional such that QT is surjective or, equivalently, if 

there is no infinite-codimensional (closed) subspace N of Y such that ܴ(ܶ) +

ܰ = ܻ. 

The way that superprojective Banach spaces are defined means that we 

will be dealing with infinite-codimensional subspaces and their induced 

quotients often, so we will adopt the following definition. 

Definition (3.1.1)[3]: We will say that an operator ܶ: ܺ → ܻ is a 

surjection if T is surjective and Y is infinite-dimensional. 

The following results will be useful when dealing with complemented 

subspaces, surjections and superprojective spaces. Similar results were given 

to study improjective operators. 
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Proposition (3.1.2)[3]: For a Banach space X, the following are 

equivalent: 

(i) X is superprojective; 

(ii) For any surjection ܶ:ܺ → ܻ, there exists another surjection ܵ:ܻ → ܼ 

such that N(ST)is complemented in X. 

Proof. For the direct implication, let ܶ:ܺ → ܻ be a surjection, so that ܰ(ܶ) 

is infinite-codimensional in X. By the superprojectivity of X, ܰ(ܶ) is 

contained in a complemented, infinite-codimensional subspace M of X, and 

clearly T(M) is closed in Y. Thus the quotient map Q from Y onto ܻ/ܶ(ܯ) is 

a surjection such that ܰ(ܳܶ)  =  .is complemented in X ܯ

For the converse implication, let M be an infinite-codimensional 

subspace of X, so that ܳெ:ܺ →  is a surjection. Then there exists ܯ/ܺ

another surjection ܵ:ܺ/ܯ → ܼ such that ܰ(ܵܳெ) is infinite-codimensional 

and complemented in X, and contains M.  

The next result allows to push the complementation of a subspace 

through an operator under certain conditions. 

Proposition (3.1.3)[3]: Let X,Y and Z be Banach spaces and let ܶ:ܺ → ܻ 

and ܵ:ܻ → ܼ be operators such that ST is a surjection and N(ST) is 

complemented in X. Then N(S) is complemented in Y. 

Proof. Let H be a subspace of X such that  ܺ = ܰ(ܵܶ) ܺ:ܶܵ Since .ܪ⊕ → ܼ 

is a surjection, ܵܶ|ு must be an isomorphism onto Z; in particular, ܶ|ு is an 

isomorphism and ܻ = ܰ(ܵ)  as proved by the projection ,(ܪ)ܶ⊕ 

ܶ(ܵܶ|ு)ିଵܵ: ܻ → ܻ. 
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A simple consequence of Propositions (3.1.2) and (3.1.3) is the fact that the 

class of superprojective spaces is stable under quotients. 

Proposition (3.1.4)[3]: Let X be a superprojective Banach space and let 

ܶ:ܺ → ܻ be a surjection. Then Y is superprojective. 

Proof. Let ܵ:ܻ → ܼ be a surjection; then ST is a surjection and, by 

Proposition (3.1.2), there exists another surjection ܴ:ܼ → ܹ such that N(RST) 

is complemented in X. By Proposition (3.1.3), N(RS) is complemented in Y, 

which means, again by Proposition (3.1.2), that Y is superprojective.  

We will state a technical observation on the behaviour of surjections on 

spaces that have a complemented superprojective subspace. 

Proposition (3.1.5)[3]: Let X be a Banach space, let ܲ:ܺ → ܺ be a 

projection with P(X) superprojective and let ܵ:ܺ → ܻ be a surjection such 

that SP is not strictly cosingular. Then there exists another surjection 

ܴ:ܻ → ܼ such that N(RS) is complemented in X. 

Proof. Let ܬ:ܲ(ܺ) → ܺ be the natural inclusion; then ܵܲ =  is not ܲܬܵ

strictly cosingular, so neither is ܵܬ:ܲ(ܺ) → ܻ. Therefore, there exists           

a quotient map ܳ: ܻ → ܹ such that QSJ is a surjection, and Proposition 

(3.1.2) provides another surjection ܴ:ܹ → ܼ such that ܰ(ܴܳܵܬ) is 

complemented in P(X); by Proposition (3.1.3), N(RQS) is complemented in 

X, where ܴܳ:ܻ → ܼ is a surjection.  

The following result gives some simple but useful necessary conditions 

for a Banach space X to be subprojective or superprojective. 
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Proposition (3.1.6)[3]: Let X and Z be infinite-dimensional Banach 

spaces. 

(i) If ܬ:ܼ → ܺ is a strictly cosingular embedding, then X is not 

subprojective. 

(ii) If ܳ:ܺ → ܼ is a strictly singular surjection, then X is not 

superprojective. 

Proof. (i) If  ܺ = ܯ with ܪ⊕ܯ ⊆  is surjective. Since J is ܬthen ܳு ,(ܼ)ܬ

strictly cosingular, H is finite-codimensional and M is finite-dimensional. 

(ii) If ܺ = (ܳ)ܰ with ܪ⊕ܯ ⊆  then ܳ|ு is an embedding. Since Q is ,ܯ

strictly singular, H is finite-dimensional.  

Proposition (3.1.6) has several straightforward consequences. Proposition 

(3.1.7) was proved for subprojective spaces with the same example but a 

different argument. Here we extend it to superprojective spaces. Recall that a 

class C of Banach spaces satisfies the three-space propertyif a Banach space 

X belongs to C whenever M and ܺ/ܯ belong to C for some subspace M of 

X.  

Proposition (3.1.7)[3]: The classes of subprojective and superprojective 

spaces do not satisfy the three-space property. 

Proof. Let 1 < ݌ < ∞ and recall that ℓ௣ is both subprojective and 

superprojective. Let ܼ௣ be introduced by the Kalton–Peck space Then there 

exists an exact sequence  

0 →  ℓ௣   
௜
→ ܼ௣  

௤
→  ℓ௣  →  0 

in which ݅ is strictly cosingular and q is strictly singular. By Proposition 

(3.1.6), ܼ௣ is neither subprojective nor superprojective.  
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Proposition (3.1.8)[3]: Let X be a Banach space containing a subspace 

isomorphic to ℓଵ. Then X is not superprojective and ܺ∗ is not subprojective. 

Proof. If X contains a subspace isomorphic to ℓଵ, then there exists                  

a surjective operator ܳ:ܺ → ℓଶwhich is 2-summing, therefore weakly 

compact and completely continuous, therefore strictly singular: Indeed, if 

ܳ|ெ is an isomorphism, then M is reflexive and weakly convergent 

sequences in M are convergent, so M is finite-dimensional. By Proposition 

(3.1.6), X is not superprojective. 

For the second part, observe that ܳ∗∗:ܺ∗∗ → ℓଶ is also 2-summing. Then 

ܳ∗∗ is strictly singular, hence ܳ∗: ℓଶ → ܺ∗ is a strictly cosingular 

embedding.  

Proposition (3.1.8) allows to fully characterise the superprojectivity of C(K) 

spaces. Recall that a compact space is called scattered if each of its non-

empty subsets has an isolated point. 

Corollary (3.1.9)[3]: Let K be a compact set. Then C(K) is 

superprojective if and only if  K is scattered  

Proof. If K is scattered, then C(K) is superprojective. On the other hand, if K 

is not scattered, then C(K) contains a copy of ℓଵand cannot be 

superprojective by Proposition (3.1.8).  

It also follows immediately that certain tensor products cannot be 

superprojective. 

Corollary (3.1.10)[3]:  Let X and Y be Banach spaces and suppose that 

X admits an unconditional finite-dimensional decomposition and 

(∗ܻ,ܺ)ܮ  ≠ ܺ Then  .(∗ܻ,ܺ)ܭ ⨶గ ܻ is not superprojective. 
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Proof. Note that (ܺ ⨶గ ܻ)∗ ≡ (∗ܻ,ܺ)ܮ Since .(∗ܻ,ܺ)ܮ  ≠  we ,(∗ܻ,ܺ)ܭ

have that ܮ(ܺ,ܻ∗)contains ℓஶ, hence ܺ ⨶గ ܻ contains a (complemented) 

copy of ℓଵ.  

Since the spaces ℓ௣ have an unconditional basis and are subprojective 

and superprojective for 1 < ݌ < ∞, we can now characterise the 

superprojectivity of the tensor products  ℓ௣ ⨶గ ℓ௤. 

Corollary (3.1.11)[3]: Let 1 < ݍ,݌ < ∞. Then the following are 

equivalent: 

(i) ℓ௣ ⨶గ ℓ௤ is superprojective; 

(ii) ℓ௣ ⨶గ ℓ௤is reflexive; 

(iii) ܮ(ℓ௣, ℓ௤∗ )  = ,ℓ௣)ܭ ℓ௤∗ ); 

(iv) ݌ > ݍ)/ݍ − 1). 

Proof. We have that ℓ௣ ⨶గ ℓ௤ is reflexive if and only if ܮ(ℓ௣, ℓ௤∗ )  = ,ℓ௣)ܭ ℓ௤∗ ) 

if and only if ݌ > ݍ)/ݍ − 1). If  ܮ(ℓ௣, ℓ௤∗ )  ≠ ℓ௣)ܭ , ℓ௤∗ ), then ℓ௣ ⨶గ ℓ௤ is 

not superprojective by Corollary (3.1.10); otherwise, ℓ௣ ⨶గ ℓ௤is reflexive 

and ℓ௣ ⨶గ ℓ௤ = (ℓ௣∗ ⨶ఌ ℓ௤∗ )∗, so ℓ௣∗ ⨶ఌ ℓ௤∗  is reflexive and subprojective 

and ℓ௣ ⨶గ ℓ௤ is superprojective.  

Corollary (3.1.12)[3]:ℓ௣ ⨶గ ℓ௤ is not superprojective for any 1 ≤ ,݌ ݍ ≤ ∞. 

Proof. If p is either 1or strictly greater than 2, then ܮ௣ itself is not 

superprojective, so neither is ℓ௣ ⨶గ ℓ௤, and similarly for q. Thus, we are 

only concerned with the case 1 < ,݌ ݍ ≤ 2, but then both ܮ௣ and ܮ௤∗  contain 

complemented copies of ℓଶ, so ܮ)ܮ௣,ܮ௤∗ )  ≠ ,௣ܮ൫ܭ ∗௤ܮ ൯ܽ݊݀ ℓ௣ ⨶గ ℓ௤ is not 

superprojective by Corollary (3.1.10).  
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Section (3.2): Stability Results for Superprojective. 

We will show some stability results for the class of superprojective spaces 

and proves that the direct sum of two superprojective Banach spaces is again 

superprojective. 

Proposition (3.2.1)[3]: Let X and Y be Banach spaces. Then ܺ ⊕ ܻ is 

superprojective if and only if both X and Y are superprojective. 

Proof. X and Y are quotients of ܺ ⊕ ܻ; if ܺ ⊕ ܻ is superprojective, then so 

are X and Y by Proposition (3.1.4). 

Conversely, assume that X  are Y are both superprojective, and define the 

projections ௑ܲ:ܺ ⊕ ܻ → ܺ⊕ ܻ, with range X and kernel Y, and ௒ܲ:ܺ ⊕

ܻ → ܺ⊕ ܻ, with range Y and kernel X. Take surjection ܵ:ܺ ⊕ ܻ → ܼ. Then 

ܵ = ܵ ௑ܲ + ܵ ௒ܲ is not strictly cosingular, so either ܵ ௑ܲ or ܵ ௒ܲ is not strictly 

cosingular; without loss of generality, we will assume that it is ܵ ௑ܲ. By 

Proposition (3.1.5), there exists another surjection ܴ:ܼ → ܹ such that 

N(RS) is complemented in X⊕Y, which finishes the proof by Proposition 

(3.1.2).  

Recall that an operator ܶ:ܺ → ܻ is upper semi-Fredholm if N(T) is finite-

dimensional and R(T) is closed, and T is lower semi-Fredholm if R(T) is 

finite-codimensional (hence closed). Note that T is lower semi-Fredholm if 

and only if  ܶ∗ is upper semi-Fredholm. 

Theorem (3.2.2)[3]: Let X be a Banach space, let Λ be a well-ordered set 

and let ( ఒܲ)ఒ∈௸ and (ܳఒ)ఒ∈௸ be bounded families of projections on X such 

that: 

(i) ఒܲ
∗ݔ∗  

 ఒ   
ሱሮ ∗ݔ for every ∗ݔ  ∈ ܺ∗; 
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(ii) ఓܲ ఔܲ = ௠ܲ௜௡{ఓ,ఔ} and ܳఓܳఔ = ܳ௠୧୬{ఓ,ఔ} for every ߤ, ߥ ∈  ;߉

(iii) ܳఓ ఔܲ = ఔܲܳఓ  for every ߤ, ߥ ∈ and ܳఓ ,߉ ఔܲ = ఔܲ ≤ ߤ ݂݅   ;ߥ

(iv) ܳఒ(ܺ) is superprojective  for every ߣ ∈  ;߉

(v) For every unbounded strictly increasing sequence (ߣ௞)௞∈ℕ of elements 

in Λ and every sequence (ݔ௞∗)௞∈ℕ of non-null elements in ܺ∗ such that 

∗ଵݔ ∈ ܴ( ఒܲభ
∗ ) and ݔ௞∗ ∈ ܴ൫ ఒܲೖ

∗ ܫ) − ܳఒೖషభ
∗ )൯  for ݇ > 1, the subspace 

∗௞ݔ] : ݇ ∈ ℕ]ୄ is contained in a complemented infinite-codimensional 

subspace of X. 

Then X is superprojective. 

Here, an unbounded sequence in Λ is one that does not have an upper 

bound within Λ. Also, this result is only really interesting if Λ does not have 

a maximum element; otherwise, if λ is the maximum of Λ, then ఒܲ =  ௑ byܫ

condition (i) and ܳఒ = ܳఒ ఒܲ = ఒܲ = ܺ ௑ by condition (iii), soܫ = ܳఒ(ܺ) is 

already superprojective by condition (iv). 

Proof. Let M be an infinite-codimensional subspace of X and let us denote 

its natural quotient map by ܵ:ܺ → ∋ ߣ If there exists .ܯ/ܺ  such that ܵܳఒ ߉

is not strictly cosingular, then Proposition (3.1.5) provides another surjection 

ܯ/ܺ:ܴ → ܼ such that N(RS) is complemented in X. Since N(RS) is infinite-

codimensional and contains M we are done. 

Otherwise, assume that ܵܳఒ is strictly cosingular for every ߣ ∈  Let .߉

ܥ ≥ 1 be such that ‖ ఒܲ‖ ≤ ‖and  ‖ܳఒ ܥ ≤ ∋ ߣ for every ܥ = ߝ and let ,߉

ଷܥ1/8 > 0. We will construct a strictly increasing sequence ߣଵ < ଶߣ <. .. of 

elements in Λ and a sequence (ݔ௡∗)௡∈ℕ of norm-one elements in ୄܯ ⊆ ܺ∗ 

such that ฮܳఒೖషభ
∗ ௞∗ฮݔ < 2ି௞ߝ and ฮ ఒܲೖ

∗ ∗௞ݔ − ௞∗ฮݔ < 2ି௞ߝ for every ݇ ∈ ℕ, where we 

write ܳఒబ = 0 for convenience. To this end, let ݇ ∈ ℕ, and assume that ߣ௞ିଵ 
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has already been obtained. By hypothesis, ܳఒೖషభ
∗ ܵ∗ = (ܵܳఒೖషభ)∗ is not an 

isomorphism, where ܵ∗: ∗(ܯ/ܺ) → ܺ∗ is an isometric embedding with range 

∗௞ݔ so there exists ,ୄܯ ∈ ‖∗௞ݔ‖ such that ୄܯ = 1 and ฮܳఒೖషభ
∗ ௞∗ฮݔ < 2ି௞ߝ, and 

then there is ߣ௞ > ௞ିଵsuch that ฮߣ ఒܲೖ
∗ ∗௞ݔ − ௞∗ฮݔ < 2ି௞ߝ by condition (i), which 

finishes the inductive construction process. Let ܪ = ∗௞ݔ] :݇ ∈ ℕ]  ⊆ ܺ∗; then ୄܪ 

is infinite-codimensional and contains M. 

It is easy to check that the operators ௞ܶ: = ܫ) − ܳఒೖ − 1) ఒܲೖ  are 

projections with norm ‖ ௞ܶ‖ ≤ (1 + ܥ(ܥ ≤ ଶ, and that ௜ܶܥ2 ௝ܶ = 0 ݂݅ ݅ ≠ ݆. 

Let now ݖ௞∗ = ௞ܶ
(∗௞ݔ)∗  = ఒܲೖ

∗ ܫ) − ܳఒೖషభ
∗ ∗௞ݔ(  for each ݇ ∈ ℕ; then 

∗௞ݖ‖   − ‖∗௞ݔ  ≤ ฮ ఒܲೖ
∗ ∗௞ݔ   − ௞∗ฮݔ  + ฮ ఒܲೖ

∗  ܳఒೖషభ
∗ ௞∗ฮݔ < 2ି௞ߝ + 2ି௞ܥߝ ≤ 2ଵି௞ܥߝ < 1/2, 

so 1/2 < ‖∗௞ݖ‖ < 3/2 for every ݇ ∈ ܰ. If we take ݔ௞ ∈ ܺ such that ‖ݔ௞‖ <

2 and 〈ݖ௞∗ , 〈௞ݔ = 1 for each ݇ ∈ ܰ, and define ݖ௞ = ௞ܶݔ௞, it follows that  

∗௞ݖ〉 , 〈௞ݖ = ∗௞ݖ〉  , ௞ܶݔ௞〉 =  〈 ௞ܶ
∗௞ݖ  ∗ , 〈௞ݔ = ∗௞ݖ〉  , 〈௞ݔ =  1 

for every ݇ ∈ ℕ and  

,∗௜ݖ〉 〈௝ݖ = 〈 ௜ܶ
,∗௜ݖ∗ ௝ܶݖ௝〉 = ,∗௜ݖ〉 ௜ܶ ௝ܶݖ௝〉  =  0 

If  ݅ ≠ ݆, which makes (ݖ௞∗ ,  ௞)௡∈ℕ a biorthogonal sequence in (ܺ∗,ܺ). In theݖ

spirit of the principle of small perturbations, let ܭ:ܺ → ܺ be the operator 

defined as (ݔ)ܭ  =  ∑ ∗௡ݔ〉 − ∗௡ݖ ௡ஶݖ〈ݔ,
௡ୀଵ ; then  

෍‖ݔ௡ 
∗ − ‖௡ݖ‖‖∗௡ݖ 

ஶ

௡ୀଵ

 < ෍(2ଵି௡ܥߝ)(ܥ4ଶ)
ஶ

௡ୀଵ

  =  ෍ 2ି௡
ஶ

௡ୀଵ

=  1, 

so K is well defined and ܷ = ܫ +  ,is an isomorphism on X. Moreover ܭ

∗ܺ:∗ܭ → ܺ∗ is defined as (∗ݔ)∗ܭ  =  ∑ ,∗ݔ〉 z୬〉(x୬∗ − z୬∗)ஶ
௡ୀଵ , so ܭ∗(ݖ௞∗)  = ∗௞ݔ −  ∗௞ݖ
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and ܷ∗(ݖ௞∗)  = ∗௞ݔ  for every ݇ ∈ ܰ. Let ܼ = :∗௞ݖ] ݇ ∈ ℕ]; then ܷ∗(ܼ)  =  and ܪ

(ୄܪ)ܷ  = ܼୄ. 

Next we will show that Z is weak∗ closed in ܺ∗. Note first that             

௝ܶܲఒ೔ = ቀܫ − ܳఒೕషభቁܲఒೕܲఒ೔ = ቀܫ − ܳఒೕషభቁܲఒೕ = ௝ܶ  ݂݅ ݅ ≥ ݆, and ௝ܶܲఒ೔ = ܫ) − ܳఒೕషభ)ܲఒೕܲఒ೔ =

ܫ) − ܳఒೕషభ)ܲఒ೔ = 0 otherwise. Given that ݖ௞∗ ∈ ܴ( ௞ܶ
∗) for every ݇ ∈ ℕ, this 

means that ఒܲ೔
∗ ∗௝ݖ = ≤ ݅ ݂݅ ∗௝ݖ ݆ and ఒܲ೔

∗ ∗௝ݖ = 0 otherwise, so ఒܲೖ
∗ (ܼ)  = ,∗ଵݖ] . . . ,  ,[∗௞ݖ

which is finite-dimensional, for every ݇ ∈ ܰ. Let ݔ∗ be a weak∗ cluster 

point of Z; then ఒܲೖ
∗ ∗ݔ ∈ ఒܲೖ

∗ (ܼ)  ⊆ ܼ and ఒܲೖ
∗ ∗ݔ

௞
→  by condition (i), so ∗ݔ 

∗ݔ ∈ ܼ and  Z is indeed weak∗ closed. The fact that ܪ = ܷ∗(ܼ) implies that 

H is weak∗ closed, as well. 

This means, in turn, that no ܳఒ
∗ can be an isomorphism on H for any ߣ ∈

ܺ:To see this, consider the natural quotient ܳு఼ .߉ →  is ୄܪ/ܺ where ,ୄܪ/ܺ

infinite-dimensional. Since ܯ ⊆ ܵ the operator ܳு఼ factors through ,ୄܪ =

ܳெ:ܺ → ∋ ߣ and, since ܵܳఒ is strictly cosingular for every ܯ/ܺ  by our ߉

initial hypothesis, it follows that ܳு఼ܳఒ cannot be surjective for any ߣ ∈  ,߉

or even lower semi-Fredholm; equivalently, ܳఒ
∗ cannot be upper semi-

Fredholm on ୄୄܪ for any ߣ ∈ ୄୄܪ where ,߉ =  ∗because H is weak ܪ

closed. 

Finally, we will check that the sequence (ߣ௞)௞∈ℕ is unbounded. Assume, 

to the contrary, that there existed some ߣ ∈ ௞ߣ such that ߉ ≤  for every ߣ

݇ ∈ ℕ. Then, for every ݇ ∈ ℕ, we would have ௞ܶܳఒ = ܫ) − ܳఒ௞ିଵ) ఒܲ௞ܳఒ =

ܫ) − ܳఒ௞ିଵ) ఒܲೖ = ௞ܶ, so ܳఒ
∗௞ݖ∗ = ௞∗ and ܳఒݖ

∗ would be an isomorphism on Z. 

But then ܳఒ
∗ܷିଵ∗ would be an isomorphism on H, where ܷିଵ = ܫ − ܷିଵܭ is 

a compact perturbation of the identity, so ܳఒ
∗ would be upper semi-Fredholm 

on H, a contradiction. 
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Now that the sequence (ߣ௞)௞∈ℕ is known to be unbounded, condition (v) 

states that ܼୄ is contained in a complemented infinite-codimensional 

subspace of X, and then so is ୄܪ = ܷିଵ(ܼୄ).  

Note that any sequence ( ௡ܲ)௡∈ℕ of projections in X satisfying the 

conditions of Theorem (3.2.2) effectively defines a Schauder decomposition 

for X, where the components are the ranges of each operator ௡ܲ(ܫ −

௡ܲିଵ)  = ௡ܲ − ௡ܲିଵ; equivalently, each ௡ܲ is the projection onto the sum of 

the first ncomponents. For the purposes of Theorem (3.2.2), these 

components need not be finite-dimensional. 

Regarding condition (v), a further remark is in order. It may very well be 

the case that there are no unbounded strictly increasing sequences in Λ, for 

instance if ߉ = [0,߱ଵ), where ߱ଵ is the first uncountable ordinal, in which 

case condition(v) is trivially satisfied and does not impose any additional 

restriction on X or the projections. In terms of the proof of Theorem (3.2.2), 

this means that ܵܳఒ must be eventually not strictly cosingular for some ߣ ∈

and this is so because ܳఒ ,߉
∗ is an isomorphism on ܼ for any λ greater than 

the supremum of (ߣ௞)௞∈ℕ, so ܳఒ
∗ is upper semi-Fredholm on H and ܵܳఒ is 

not strictly cosingular, as per the last paragraphs of the proof of Theorem 

(3.2.2). 

We will not need the full strength of Theorem (3.2.2), projections 

( ఒܲ)ఒ∈௸ = (ܳఒ)ఒ∈௸ is involved. 

Theorem (3.2.3)[3]: Let X be a Banach space, let Λ be a well-ordered set 

and let ( ఒܲ)ఒ∈௸ be a bounded family of projections on X such that: 

(i) ఒܲ
∗ݔ∗

ఒ
∗ݔ for every ∗ݔ→ ∈ ܺ∗; 

(ii) ఓܲ ఔܲ = ௠ܲ௜௡{ఓ,ఔ} for every μ, ߥ ∈  ;߉
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(iii) ఒܲ(ܺ) is superprojective for every ߣ ∈  ;߉

(iv) For every unbounded strictly increasing sequence (ߣ௞)௞∈ℕ of elements 

in Λ and every sequence (ݔ௞∗)௞∈ℕ of non-null elements in ܺ∗ such that 

∗ଵݔ ∈ ܴ( ఒܲభ
∗ ) and ݔ௞∗ ∈ ܴ( ఒܲೖ

∗ − ఒܲೖషభ
∗ ) for ݇ > 1, the subspace [ݔ௞∗ :݇ ∈ ℕ]ୄ is 

contained in a complemented infinite-codimensional subspace of X. 

Then X is superprojective. 

Our first use of Theorems (3.2.2) and (3.2.3) will be to prove that the 

(infinite) sum of superprojective spaces, such as ℓ௣(ܺ௡)ݎ݋ ܿ଴(ܺ௡), is also 

superprojective, if the sum is done in a “superprojective” way. 

Definition (3.2.4)[3]: We will say that a Banach space ܧ ⊆ ℝℕ is a solid 

sequence space if, for every (ߙ௡)௡∈ℕ ∈ ௡∈ℕ(௡ߚ) and ܧ ∈ ℝℕ with |ߚ௡| ≤  |௡ߙ|

for every ݊ ∈ ℕ, it holds that (ߚ௡)௡∈ℕ ∈ ‖௡∈ℕ(௡ߚ)‖ and ܧ ≤  .‖௡∈ℕ(௡ߙ)‖

We will say that E is an unconditional sequence space if it is a solid 

sequence space and the sequence of canonical vectors (݁௜)௜∈ℕ is a 

normalised basis for E, where ݁௜ =  .௝∈ℕ(௜௝ߜ)

If E is an unconditional sequence space, then its canonical basis (݁௡)௡∈ℕ 

is actually 1-unconditional, and its conjugate ܧ∗ can be identified with a 

solid sequence space itself in the usual way, where the action of               

ߚ = ௡∈ℕ(௡ߚ) ∈ ߙ  on ∗ܧ = ௡∈ℕ(௡ߙ) ∈ 〈ߙ,ߚ〉 is ܧ =  ∑ ௡ஶߙ௡ߚ
௡ୀଵ . If the 

canonical basis (݁௡)௡∈ℕ is shrinking in E, then ܧ∗ is additionally 

unconditional (the coordinate functionals are a basis for ܧ∗). 

We have the following construction. 

Definition (3.2.5)[3]: Let E be a solid sequence space and let (ܺ௡)௡∈ℕ be 

a sequence of Banach spaces. We will write ܧ(ܺ௡) for the Banach space of 
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all sequences (ݔ௡)௡∈ℕ ∈ ∏ ܺ௡௡∈ℕ   for which (‖ݔ௡‖)௡∈ℕ ∈  with the norm ,ܧ

‖௡∈ℕ(௡ݔ)‖  =  .௡∈ℕ‖ா(‖௡ݔ‖)‖

The identification of the dual of an unconditional sequence space with 

another solid sequence space can be carried up to the sum of spaces. 

Proposition (3.2.6)[3]: Let E be an unconditional sequence space and let 

(ܺ௡)௡∈ℕ be a sequence of Banach spaces. Then ܧ(ܺ௡)∗ ≡  .(∗௡ܺ)∗ܧ

Proof. Each (ݔ௡∗)௡∈ℕ ∈  so we ,∗(௡ܺ)ܧ clearly defines an element of (∗௡ܺ)∗ܧ

only have to show the converse identification. 

Let ݖ∗ ∈ ௡:ܺ௡ܬ let ,∗(௡ܺ)ܧ →  be the canonical inclusion of ܺ௡ (௡ܺ)ܧ

into ܧ(ܺ௡) for each ݊ ∈ ܰ and let ݔ௡∗ = (∗ݖ)∗௡ܬ  ∈ ܺ௡∗  for each ݊ ∈ ℕ; we 

will prove that ݖ∗ = ௡∈ℕ(∗௡ݔ) ∈  .(∗௡ܺ)∗ܧ

To prove that (ݔ௡∗)௡∈ℕ ∈ ௡ݔ choose ,(∗௡ܺ)∗ܧ ∈ ܺ௡ such that ‖ݔ௡‖ = 1   

and 〈ݔ௡∗ , 〈௡ݔ ≥
ଵ
ଶ
∋ ݊ ௡∗‖ for eachݔ‖ ℕ, and take any non-negative              

ߙ = ௡∈ℕ(௡ߙ) ∈ ௡∈ℕ(௡ݔ௡ߙ) we have that ,(௡ܺ)ܧ By the definition of .ܧ ∈

 so ,(௡ܺ)ܧ

෍‖ݔ௡∗‖ߙ௡  
ஶ

௡ୀଵ

≤ ෍ ∗௡ݔ〉2 ௡ߙ〈௡ݔ,

ஶ

௡ୀଵ

 =  2෍〈ݔ௡∗ 〈௡ݔ௡ߙ,
ஶ

௡ୀଵ

=  2෍〈ܬ௡∗(ݖ∗),ߙ௡ݔ௡〉
ஶ

௡ୀଵ

=  2 ෍‖ݖ∗, ‖(௡ݔ௡ߙ)௡ܬ
ஶ

௡ୀଵ

= ,∗ݖ〉2  〈௡∈ℕ(௡ݔ௡ߙ)  ≤ ‖௡∈ℕ(௡ݔ௡ߙ)‖‖∗ݖ‖2 

=  .‖ߙ‖‖∗ݖ‖2 

This proves that (‖ݔ௡∗‖) ∈ ௡∈ℕ(∗௡ݔ) ,and, as a consequence ∗ܧ ∈  .(∗௡ܺ)∗ܧ

Now, given ݅ ∈ ℕ and ݔ௜ ∈ ௜ܺ, we have 〈(ݔ௡∗)௡∈ℕ, 〈(௜ݔ)௜ܬ = ,∗௜ݔ〉 〈௜ݔ =

,∗ݖ〉 J୧(x୧), 〉 so (ݔ௡∗)௡∈ℕ and ݖ∗ coincide over the finitely non-null sequences 

of  ܧ(ܺ௡) and therefore ݖ∗ =   .௡∈ℕ(∗௡ݔ)
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We will prove that the sum of superprojective spaces is also 

superprojective, if the sum is done in a superprojective way, which translates 

to the requirement that the space E governing the sum must be 

superprojective itself. This excludes ℓଵ and, more generally, imposes that 

any unconditional basis in E be shrinking, for the same reasons that ℓଵ is not 

superprojective. 

Proposition (3.2.7)[3]: Let X be a superprojective Banach space and let 

 .௡∈ℕ  is shrinking(௡ݔ) ௡∈ℕ be an unconditional basis of X. Then(௡ݔ)

Proof .If (ݔ௡)௡∈ℕ is unconditional but not shrinking, then X contains a 

(complemented) copy of ℓଵ and cannot be superprojective by Proposition 

(3.1.6). 

Theorem (3.2.8)[3]:  Let E be an unconditional sequence space and let 

 is superprojective if (௡ܺ)ܧ ௡∈ℕbe a sequence of Banach spaces. Then(௡ݔ)

and only if all of  E and ܺ௡ are superprojective. 

Proof. Let ܺ =  All of E and ܺ௡ are quotients of X; if X is .(௡ܺ)ܧ

superprojective, then so are E and each ܺ௡. 

Assume now that E and each ܺ௡ are superprojective, and define the 

projections ௡ܲ:ܺ → ܺ as ௡ܲ((ݔ௡)௡∈ℕ)  = ,ଵݔ) . . . , ,௡ݔ 0, . . . ) for each ݊ ∈ ℕ. 

We will prove that the sequence ( ௡ܲ)௡∈ℕ meets the criteria of Theorem 

(3.2.2). The fact that ( ௡ܲ)௡∈ℕ is associated with the natural Schauder 

decomposition of  ܺ =  is enough for condition (ii) to hold. For (௡ܺ)ܧ

condition (iii), note that ௡ܲ(ܺ) is isometric to ⊕௜ୀଵ
௡

௜ܺ, which is 

superprojective by Proposition (3.2.1). As for condition (i), E is 

superprojective and its canonical basis (݁௡)௡∈ℕ is unconditional, therefore 

shrinking by Proposition (3.2.1), so ܧ∗ is unconditional and ( ௡ܲ
∗)௡∈ℕ is the 
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sequence of projections associated with the natural Schauder decomposition 

of ܧ(ܺ௡)∗ ≡  .(∗௡ܺ)∗ܧ

To prove condition (iv), let (݊௞)௞∈ℕ be a strictly increasing sequence of 

integers, let ଵܶ = ௡ܲభ  and ௞ܶ = ௡ܲೖ − ௡ܲೖషభ  for ݇ > 1, and let ݔ௞∗ ∈ ܴ( ௞ܶ
∗) be 

non-null for each ݇ ∈ ℕ, as in Theorem (3.2.1). Define ܯ = ∗௞ݔ] : ݇ ∈ ℕ]ୄ, 

which is infinite-codimensional. Then ݔ௞∗ ∈ ܺ∗ ≡   so ,(∗௡ܺ)∗ܧ

∗௞ݔ  =  (0, . . . , 0, ௡ೖషభାଵݖ
∗ , . . . , ௡ೖݖ

∗  , 0, . . . ), 

where ݖ௜∗ ∈ ௜ܺ
∗. Pick a normalised ݖ௜ ∈ ௜ܺ such that 〈ݖ௜∗, 〈௜ݖ  ≥  ௜∗‖/2 forݖ‖

each ݅ ∈ ℕ, and consider the operator ܧ:ܬ → ܺ defined as ܬ((ߙ௡)௡∈ℕ) =

             ௡∈ℕ, which is an isometric embedding by the definition of(௡ݖ௡ߙ)

ܺ =  .(௡ܺ)ܧ

We claim that  ܳெ ܧ:ܬ →                 is a surjection. Indeed, given ܯ/ܺ

x = ௡∈ℕ(௡ݔ) ∈ ܺ, with each ݔ௡ ∈ ܺ௡ , let ߙ௡ = ∗௡ݖ〉 ∗௡ݖ〉/〈௡ݔ, , ∗௡ݖ ݂݅ 〈௡ݖ ≠ 0, 

else ߙ௡ = 0, for each ݊ ∈ ℕ, and define ߙ = |௡ߙ| ௡∈ℕ. Then(௡ߙ) ≤  ‖௡ݔ‖2

for every ݊ ∈ ℕ, so ߙ ∈ ∗௞ݔ〉 and ,ܧ , ݔ − 〈(ߙ)ܬ = ∑ ,∗௜ݖ〉 ௜ݔ − 〈௜ݖ௜ߙ = 0௡ೖ
௜ୀ௡ೖషభିଵ   

for every ݇ ∈ ℕ, so ݔ − (ߙ)ܬ  ∈ (ݔ)and ܳெ ܯ  = ܳெ(ߙ)ܬ  ∈ ܴ(ܳெܬ). 

Now, by the superprojectivity of E and Proposition (3.1.2), there exists 

another surjection ܵ:ܺ/ܯ → ܼ such that ܰ(ܵܳெܬ) is complemented in E; 

by Proposition (3.1.3), ܰ(ܵܳெ) is complemented in X, where ܯ ⊆ ܰ(ܵܳெ) 

and ܴ(ܵܳெ)  = ܼ, which is infinite-dimensional.  

We have the following result. 

Lemma (3.2.9)[3]: Let X be a Banach space, let E be an unconditional 

sequence space and let ܶ, ( ௞ܶ)௞∈ℕ be projections in X such that 

(i) ௜ܶ ௝ܶ = 0 ݂݅ ݅ ≠ ݆; 
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(ii) ௞ܶܶ = ܶ ௞ܶ = ௞ܶ for every ݇ ∈ ℕ; 

(iii) R(T) embeds into ܧ(ܴ( ௞ܶ)) via the mapping that takes ݔ ∈ ܴ(ܶ) to 

( ௞ܶ(ݔ))௞∈ℕ. 

Let ݔ௞∗ ∈ ܴ( ௞ܶ
∗) be non-null for each ݇ ∈ ℕ. Then [ݔ௞∗ : ݇ ∈ ℕ]ୄis 

complemented in X.  

Proof. We will assume without loss of generality that ‖ݔ௞∗‖ = 1 for every 

݇ ∈ ℕ. Let ܼ = )ܴ)ܧ ௞ܶ)) and let ܷ:ܴ(ܶ)  → ܼ be the isomorphism into Z 

defined as ܷ(ݔ)  = ( ௞ܶ(ݔ))௞∈ℕ. 

Note that, in fact, ( ௞ܶ(ݔ))௞∈ℕ = ( ௞ܶ(ܶ(ݔ)))௞∈ℕ = ((ݔ)ܶ)ܷ  ∈ ܼ for 

every ݔ ∈ ܺ, so (‖ ௞ܶ(ݔ)‖)௞∈ℕ ∈ ‖)‖  and ܧ ௞ܶ(ݔ)‖)௞∈ℕ ‖ா =  ܼ‖((ݔ)ܶ)ܷ‖

for every ݔ ∈ ܺ. Define ܳ:ܺ → (ݔ)ܳ as ܧ  = ∗௞ݔ〉)   ௞∈ℕ; then(〈ݔ,

∗௞ݔ〉| , |〈ݔ  =  |〈 ௞ܶ
,(∗௞ݔ)  ∗ |〈ݔ  = ∗௞ݔ〉|  , ௞ܶ(ݔ)〉|  ≤ ‖ ௞ܶ(ݔ)‖ 

for every ݔ ∈ ܺ, so Q is well defined and ‖ܳ‖ ≤ ‖ܷܶ‖. Also, ( ௞ܶ(ݔ))௞∈ℕ ∈  ܧ

implies that ௞ܶݔ 
௞
→ 0 for every ݔ ∈ ܺ, so there exists a constant C such that 

‖ ௞ܶ‖ ≤ ݇ for every ܥ ∈ ℕ. 

Take now ݔ௞ ∈ ܺ such that 〈ݔ௞∗ 〈௞ݔ, = 1 and ‖ݔ௞‖ ≤ 2 for each ݇ ∈ ℕ, 

so that 〈ݔ௜∗, ௝ܶݔ௝〉 = 〈 ௝ܶ
〈௝ݔ,∗௜ݔ∗ = ௜௝ߜ  for every ݅, ݆ ∈ ܰ, and define ܧ:ܬ → ܺ 

as ܬ((ߙ௡)௡∈ℕ)  = ∑ ௡ߙ ௡ܶ(ݔ௡)ஶ
௡ୀଵ . Then ܷ(ܬ((ߙ௡)௡∈ℕ))  = ௞ߙ) ௞ܶ(ݔ௞))௞∈ℕ, 

as seen by considering the action of UJ over the finitely non-null sequences 

of E, where 1 ≤ ‖ ௞ܶ(ݔ௞)‖ ≤ ݇ for every ܥ ∈ ℕ, so ܷܧ:ܬ → ܼ is an 

isomorphism, and so must be J. Finally,  

(௡∈ℕ(௡ߙ))ܬܳ =   ൭〈ݔ௞∗ ,෍ߙ௡ ௡ܶ(ݔ௡)
ஶ

௡ୀଵ

〉൱
௞∈ℕ

=  ,௞∈ℕ(௞ߙ) 

so ܳܬ = ∗௞ݔ] is a projection in X with kernel ܳܬ ா andܫ : ݇ ∈ ℕ]ୄ.  
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Theorem (3.2.10)[3]: Let X and Y be ܿ଴ or ℓ௣ for 1 < ݌ < ∞. Then 

ܺ ⨶ఌ ܻ is superprojective. 

Proof. Let ܴ௡:ܺ → ܺ be the projection given by ܴ௡ ((ߙ௞)௞∈ℕ) =

,ଵߙ) . . . ,௡ߙ, 0, . . . ) for each ݊ ∈ ℕ, and similarly for Y. (We are abusing the 

notation here for the sake of simplicity in that ܴ௡ is really a different 

operator on each of  X and Y unless they are the same space.) Define the 

projections  

௡ܲ =  ܴ௡  ⊗  ܴ௡   

ܳ௡  = ௑ܫ   ⨶ఌ ܻ − ௑ܫ) − ܴ௡)  ⊗ ௒ܫ)   −  ܴ௡)  

= ܴ௡ ⊗ܴ௡ + ௑ܫ) − ܴ௡)⊗ܴ௡ + ܴ௡ ⊗ ௒ܫ) − ܴ௡) 

We will prove that the sequences ( ௡ܲ)௡∈ℕ and (ܳ௡)௡∈ே meet the criteria 

of Theorem (3.2.2). 

Conditions (ii) and (iii) are readily satisfied, because they clearly hold for 

the elementary tensors ݁௜ ⊗ ௝݁. For condition (i), both ܺ∗ and ܻ∗ are ℓ௤ 

spaces for some 1 ≤ ݍ < ∞, so ܴ௡∗(ݔ∗)  
௡
→ ∗ݔ for every ∗ݔ ∈ ܺ∗ , and similarly 

for ܻ∗, so ௡ܲ
(∗ݖ)∗  = (ܴ௡∗ ⊗ܴ௡∗ (∗ݖ)(  

௡
→ ∗ݖ for every ∗ݖ ∈ (ܺ ⨶ఌ ܻ)∗ = ܺ∗⨶గ ܻ∗, 

again because it holds for the elementary tensors. For condition (iv), note 

that the range of ܳ௡ is the direct sum of the ranges of ܴ௡ ⊗ܴ௡, (ܫ௑ − ܴ௡)  ⊗ܴ௡ 

and ܴ௡ ⊗ ௒ܫ) − ܴ௡), where the first one is finite-dimensional and the other 

two are the sum of finitely many copies of  ܰ(ܴ௡) in X and Y, respectively, 

which are finite-codimensional subspaces of X and Y, respectively, hence 

superprojective. 

To prove condition (v), let (݊௞)௞∈ℕ be a strictly increasing sequence of 

integers and let ଵܶ = ௡ܲభ  and ௞ܶ = ܫ) − ܳ௡ೖషభ) ௡ܲೖ  for ݇ > 1, as in Theorem 
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(3.2.2). Note that, for ݇ > 1, ܶ݇ is the projection ௞ܶ = (ܴ௡ೖ − ܴ௡௞ିଵ)  ⊗

(ܴ௡௞ − ܴ௡௞ିଵ), so ௜ܶ ௝ܶ = 0 ݂݅ ݅ ≠ ݆. Using Tong’s result on diagonal 

submatrices, the operator ܶ =  ∑ ௞ܶ
ஶ
௞ୀଵ  is a norm-one projection in ܺ ⨶ఌ ܻ, 

with ௞ܶܶ = ܶ ௞ܶ = ௞ܶ for every ݇ ∈ ℕ, and R(T) embeds into ܿ଴(ܴ( ௞ܶ)) or 

ℓ௦(ܴ( ௞ܶ)) for suitable 1 < ݏ < ∞ in the natural way, so Lemma (3.2.9) 

ensures that [ݔ௞∗ : ݇ ∈ ℕ]ୄ is complemented in ܺ ⨶ఌ ܻ for any choice of non-

null elements ݔ௞∗ ∈ ܴ( ௞ܶ
∗).  

Theorem (3.2.10) can actually be extended to injective tensor products of 

finitely many copies of ܿ଴ and ℓ௣(1 < ݌ < ∞) inductively in the obvious 

way with only minor modifications. 

We will show that C(K,X) is superprojective whenever so is X at least if 

K is an interval of ordinals, which includes the case where K is scattered and 

metrisable . 

Theorem (3.2.11)[3]: Let X be a superprojective Banach space and let λ 

be an ordinal. Then ܥ଴([0, ,0])ܥ and (ܺ,[ߣ  .are superprojective (ܺ,[ߣ

Proof. The proof will proceed by induction in λ. Assume that ܥ଴([0,  (ܺ,[ߤ

and 0])ܥ, > ߤ are indeed superprojective for all (ܺ,[ߤ  we will first prove ;ߣ

that ܥ଴([0, ߣ is superprojective too. If λ is not a limit ordinal, then (ܺ,[ߣ =

ߤ + 1 for some μ and ܥ଴([0, (ܺ,[ߣ ≡ ,0])ܥ  which is superprojective ,(ܺ,[ߤ

by the induction hypothesis. 

Otherwise, if λ is a limit ordinal, define the projections  

ఓܲ ∶ ,଴([0ܥ  (ܺ,[ߣ → ,଴([0ܥ  (ܺ,[ߣ

as ఓܲ(݂)  = ݂߯[଴,ఓ] for each ߤ < ) We will prove that the family .ߣ ఓܲ)ఓழఒ 

meets the criteria of Theorem (3.2.3). Condition (ii) is immediate to check. 
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For condition (iii), ఓܲ(ܥ଴([0,  which is ,(ܺ,[ߤ,0])ܥ is isometric to ((ܺ,[ߣ

superprojective by the induction hypothesis. 

For condition (i), we have ܥ଴([0, ∗([ߣ =  ℓଵ ൫[0, ,଴([0ܥ ൯ and(ߣ ∗(ܺ,[ߣ =

,଴([0ܥ) ([ߣ ⨶ఌ ܺ)∗ = ,଴([0ܥ గ⨶∗([ߣ ܺ∗,so ܥ଴([0, ∗(ܺ,[ߣ =  ℓଵ ([0, ((ߣ ⨶గ ܺ∗ =

ℓଵ ([0, and ఓܲ (∗ܺ,(ߣ
(ݖ)∗  = [଴,ఓ]߯ݖ ఓ

→ ݖ for every ݖ ∈ ℓଵ ([0,  .(∗ܺ,(ߣ

As for condition (iv), let (ߣ௞)௞∈ℕ be an unbounded strictly increasing 

sequence of elements in [0, should it exist, and let ଵܶ ,(ߣ = ఒܲଵ and  ௞ܶ =

ఒܲ௞ − ఒܲ௞ିଵ for ݇ > 1, as in Theorem (3.2.3). Then ௞ܶ is the projection 

given by ௞ܶ(݂) = ݂߯[ఒೖషభାଵ,ఒೖ]  for ݇ > 1, so ௜ܶ ௝ܶ = 0 ݂݅ ݅ ≠ ݆. Since 

,௞∈ℕ is unbounded in [0(௞ߣ)  its supremum must be λ itself, so ,(ߣ

,଴([0ܥ (ܺ,[ߣ  = ܿ଴(ܴ( ௞ܶ))  = ܿ଴(ߣ])ܥ௞ିଵ + 1,  ,௞],ܺ)) and Lemma (3.2.9)ߣ

with ܶ = ∗௞ݔ] ensures that ,ܫ : ݇ ∈ ℕ]ୄ is complemented in ܥ଴([0,  for (ܺ,[ߣ

any choice of non-null elements ݔ௞∗ ∈ ܴ( ௞ܶ
∗). 

Finally, 0])ܥ, (ܺ,[ߣ = ,଴([0ܥ (ܺ,[ߣ ⊕ܺ, which is superprojective by 

Proposition (3.2.1). 

Note that unbounded strictly increasing sequences in [0, λ) may not exist 

for certain λ, in which case the remark after Theorem (3.2.2) applies and ఓܲ 

cannot be strictly cosingular for all ߤ <  .ߣ
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Chapter 4 

Banach Spaces and Subprojectivity 

A Banach space X is called subprojective if any of its infinite 

dimensional subspaces Y contains a further infinite dimensional subspace 

complemented in X. We are devoted to systematic study of subprojectivity.   

Section (4.1): General Facts about Subproectivity of Tensor 

Products and Spaces of Operators. 

A Banach space X is called subprojective if every subspace ܻ ⊂ ܺ 

contains a further subspace ܼ ⊂ ܻ, complemented in X. This notion was 

introduced, in order to study the (pre)adjoints of strictly singular operators. 

Recall that an operator ܶ ∈ ܶ) is strictly singular (ܻ,ܺ)ܤ ∈ ܵܵ(ܺ,ܻ)) if T 

is not an isomorphism on any subspace of X. In particular, it was shown that, 

if Y is subprojective, and, for ܶ ∈ ∗ܶ,( ܻ,ܺ)ܤ ∈ ܵܵ(ܻ∗,ܺ∗), then ܶ ∈ ܵܵ(ܺ,ܻ ). 

Later, connections between subprojectivity and perturbation classes were 

discovered. More specifically, denote by ߔା(ܺ,ܻ) the set of upper semi-

Fredholm operators that is, operators with closed range, and finite 

dimensional kernel. If ߔା(ܺ,ܻ) ≠ ∅, we define the perturbation class 

(ܻ,ܺ)ାߔܲ =  {ܵ ∈ ܶ:(ܻ,ܺ)ܤ + ܵ ∈ ∋ ܶ ݎ݁ݒℎ݁݊݁ݓ (ܻ,ܺ)ାߔ  .{(ܻ,ܺ)ାߔ

It is known that ܵܵ(ܺ,ܻ) ⊂ ߔܲ + (ܺ,ܻ). In general, this inclusion is 

proper. However, we get ܵܵ(ܺ,ܻ) = ߔܲ + (ܺ,ܻ) if Y is subprojective . 

Several classes of subprojective spaces are described. Common examples 

of non-subprojective space are ܮଵ(0, 1) (since all Hilbertian subspaces of ܮଵ 

are not complemented), ܥ(∆), where ∆ is the Cantor set, or ℓஶ (for the same 

reason). The disc algebra is not subprojective, it contains a copy of ܥ(∆),. 
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,௣(0ܮ 1) is subprojective if and only if 2 ≤ ݌ < ∞. Consequently, the Hardy 

space ܪ௣ on the disc is subprojective for exactly the same values of p. 

Indeed, ܪஶ contains the disc algebra. For 1 < ݌ <  ௣ is isomorphic toܪ ,∞

௣ for 1ܮ ଵ contains isomorphic copies ofܪ ௣. The spaceܮ < ݌ ≤ 2. On the 

other hand, VMO is subprojective. 

We prove that subprojectivity is stable under suitable direct sums. 

However, subprojectivity is not a 3-space property. Consequently, 

subprojectivity is not stable under the gap metric. Considering the place of 

subprojective spaces in Gowers dichotomy, we observe that each 

subprojective space has a subspace with an unconditional basis. However, 

we exhibit a space with an unconditional basis, but with no subprojective 

subspaces . 

We investigate the subprojectivity of tensor products, and of spaces of 

operators. A general result on tensor products  yields the subprojectivity on 

ℓ௣⨂ෙℓ௤ and ℓ௣ ⨶ ℓ௤ for 1 ≤ ,݌ ݍ < ∞, as well as of ܮ)ܭ௣ ௤) for 1ܮ, < ݌ ≤

2 ≤ ݍ < ∞. We also prove that the space B(X) is never subprojective, and 

give an example of non-subprojective tensor product ℓଶ⊗ఈ ℓଶ.  

We work with C(K) spaces, with K compact metrizable. We begin by 

observing that C(K) is subprojective if and only if K is scattered. Then we 

prove that C(K,X) is subprojective if and only if both C(K) and X are. 

Turning to spaces of operators, we show that, for K scattered, 

∏ ,(ܭ)ܥ) ℓ௤)௤௣  is subprojective. Then we study continuous fields on a 

scattered base space, proving that any scattered separable CCR ܥ∗-algebra is 

subprojective. 
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We show that, in many cases, subprojectivity passes from a sequence 

space to the associated Schatten spaces. 

Proceeding to Banach lattices, we prove that p-disjointly homogeneous p-

convex lattices (2 ≤ ݌  < ∞) are subprojective. We show that the lattice 

ܺ(ℓ௣)෫  is subprojective whenever X is. 

Consequently, if X is a subprojective space with an unconditional basis and 

non-trivial cotype, then Rad(X) is subprojective. 

We use the standard Banach space results and notation. By B(X, Y) and 

K(X,Y) we denote the sets of linear bounded and compact operators, 

respectively, acting between Banach spaces X and Y. B(X) refers to the 

closed unit ball of X. For ݌ ∈ [1,∞], we denote by ݌′ the “adjoint” of p (that 

is, 1/݌ + ′݌/1 = 1). 

We showing that subprojectivity passes to direct sums. 

Proposition (4.1.1)[4]: (a) Suppose X and Y are Banach spaces. Then 

the following are equivalent: 

(i) Both X and Y are subprojective. 

(ii) (2) X ⊕ Y is subprojective. 

(b) Suppose ଵܺ,ܺଶ, . .. are Banach spaces, and ߝ is a space with                      

a 1-unconditional basis. Then the following are equivalent: 

(i) The spaces ߝ, ଵܺ ,ܺଶ , . .. are subprojective. 

(ii)  (∑݊  ܺ௡)ఌ is subprojective. 

In (b), we view ߝ as a space of sequences of scalars, equipped with the norm 

‖·‖ఌ . (∑݊  ܺ௡)ఌ refers to the space of all sequences (ݔ௡)௡∈ℕ ∈ ∏ ܺ௡௡∈ℕ  , 

endowed with the norm ‖(ݔ௡)௡∈ℕ‖ =                    ఌ. Due to the‖(௡‖ܺ௡ݔ‖)‖
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1-unconditionality (actually,1-suppression unconditionality suffices), 

(∑݊  ܺ௡)ఌ is a Banach space. 

We begin by making two simple observations. 

Proposition (4.1.2)[4]: Consider Banach spaces X and X′, and               

ܶ ∈  Suppose Y is a subspace of ܺ,ܶ|௒ is an isomorphism, and T(Y) .(′ܺ,ܺ)ܤ

is complemented in X′. Then Y is complemented in X. 

Proof. If Q is a projection from X′ to T(Y), then ܶିଵܳܶ is a projection from 

X onto Y . 

This immediately yields: 

Corollary (4.1.3)[4]: Suppose X and X′ are Banach spaces, and X′ is 

subprojective. Suppose, furthermore, that Y is a subspace of X, and there 

exists ܶ ∈  so that ܶ|௒ is an isomorphism. Then Y contains a (′ܺ,ܺ)ܤ

subspace complemented in X. 

We have the following version of “Principle of Small Perturbations”. We 

include the proof for the sake of completeness. 

Proposition (4.1.4)[4]: Suppose (ݔ௞) is a seminormalized basic 

sequence in a Banach space X, and (ݕ௞) is a sequence so that              

݈݅݉௞ ௞ݔ‖  − ‖௞ݕ =  0. Suppose, furthermore, that every subspace of 

௞ݕ]݊ܽ݌ݏ ∶  ݇ ∈ ℕ] contains a subspace complemented in X. Then ݔ]݊ܽ݌ݏ௞ ∶

݇ ∈ ℕ] contains a subspace complemented in X. 

Proof. Replacing ݔ௞ by ݔ௞/‖ݔ௞‖, we can assume that (ݔ௞) normalized. 

Denote the biorthogonal functionals by ݔ௞∗, and set ܭ =  ௞∗‖. Passingݔ‖ ௞݌ݑݏ

to a subsequence, we can assume that ∑ ௞ݔ‖  − ௞‖௞ݕ  <  Define the .(ܭ2)/1

operator U∈ B(X) by setting ܷݔ = ∑ ௞ݕ)(ݔ)∗௞ݔ  − ௞)௞ݔ   . Clearly ‖ܷ‖ <  1/2, 
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and therefore, ܸ = ௑ܫ   +  ܷ is invertible. Furthermore, ܸݔ௞  =  ௞. If Q is aݕ 

projection from X onto a subspace ܹ ⊂ ௞ݕ]݊ܽ݌ݏ ∶ ݇ ∈ ℕ], then ܲ =  ܸିଵܸܳ is a 

projection from X onto a subspace ܼ ⊂ ௞ݔ]݊ܽ݌ݏ ∶ ݇ ∈ ℕ]. 

(a) Throughout the proof, ௑ܲ and ௒ܲ stand for the coordinate projections 

from X ⊕Y onto X and Y, respectively. We have to show that any subspace 

E of X ⊕Y contains a further subspace G, complemented in X ⊕ Y. 

Show first that E contains a subspace F so that either ௑ܲ|ி or ௒ܲ|ி is an 

isomorphism. Indeed, suppose ௑ܲ|ி is not an isomorphism, for any such F. 

Then ௑ܲ|ா is strictly singular, hence there exists a subspace ܨ ⊂  so that ,ܧ

௑ܲ|ி has norm less than 1/2. But ௑ܲ + ௒ܲ =  ௑⊕௒ , hence, by the triangleܫ 

inequality, ‖ ௒݂ܲ‖ ≥ ‖݂‖ − ‖ ௑݂ܲ‖ > ‖݂‖/2 for any ݂ ∈  ,Consequently .ܨ

௒ܲ|ி is an isomorphism.  

Thus, by passing to a subspace, and relabeling if necessary, we can 

assume that E contains a subspace F, so that ௑ܲ|ܨ is an isomorphism. By 

Corollary (4.1.3), F contains a subspace G, complemented in X. 

Set ܨ′ = ௑ܲ(ܨ), and let V be the inverse of ௑ܲ ∶ ܨ →  By the .′ܨ

subprojectivity of X, F′ contains a subspace G′, complemented in X via a 

projection Q. Then ܲ = ܸܳ ௑ܲ gives a projection onto ܩ = (′ܩ)ܸ ⊂  .ܨ

(b) Here, we denote by ௡ܲ the coordinate projection from ܺ =  (∑ ܺ௞௞  )ఌ 

onto ܺ௡. Furthermore, we set ܳ௡ =  ∑ ௞ܲ
௡
௞ୀଵ  , ܽ݊݀ ܳ௡ ୀ ଵ

ୄ − ܳ௡. We have to 

show that any subspace ܻ ⊂ ܺ contains a subspace ଴ܻ, complemented in X. 

To this end, consider two cases. 

(i) For some n, and some subspace ܼ ⊂ ܻ ,ܳ௡|௓ is an isomorphism. By part 

(a), ଵܺ ⊕ . . .⊕ܺ௡ = ܳ௡(ܺ) is subprojective. Apply Corollary (4.1.3) to 

obtain ଴ܻ. 
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(ii) For every ݊,ܳ௡|௒ is not an isomorphism – that is, for every ݊ ∈ ℕ, and 

every ߝ > 0, there exists a norm one ݕ ∈  ܻ so that ‖ܳ௡ݕ‖ <  ,Therefore .ߝ 

for every sequence of positive numbers (ߝ௜), we can find 0 = ଴ܰ < ଵܰ <  ଶܰ <

 . .., and a sequence of norm one vectors ݕ௜ ∈ ܻ , so that, for every 

݅, ฮܳே௜ݕ௜ฮ, ฮܳே೔శభ
ୄ ௜ฮݕ < ௜ߝ .  

By a small perturbation principle, we can assume that Y contains norm one 

vectors (ݕ′௜) so that ܳே೔ݕ′௜ = ܳே೔శభ
ୄ ௜′ݕ = 0 for every i. Write ݕ′௜ =

௝(௝ݖ)
ே೔శభ = ௜ܰାଵ, with ݖ௝ ∈ ௝ܺ  . 

Then ܼ = ,0)]݊ܽ݌ݏ . . . , 0, , ௝ݖ 0, . . . ): ݆ ∈ ℕ] (ݖ௝ is in j-th position) is 

complemented in X. Indeed, if ݖ௝  ≠  0, find ݖ௝∗ ∈ ௝ܺ
∗ so that ฮݖ௝∗ฮ =  ฮݖ௝ฮ

ିଵ
, 

and 〈ݖ௝∗ , 〈௝ݖ  =  1. ௝ݖ݂ܫ = 0, set ݖ௝∗ =  0. For ݔ = ∋ ௝∈ℕ(௝ݔ) ܺ, define ܴݔ =

 ௝∈ℕ. It is easy to see that R is a projection onto Z, and ‖ܴ‖ does(௝ݖ〈௝ݔ, ∗௝ݖ〉)

not exceed the unconditionality constant of ߝ. 

Now note that ܬ: ܼ → :ܧ ,ଶݖଶߙ,ଵݖଵߙ) . . . ) ↦ ,‖ଶݖ‖ଶߙ,‖ଵݖ‖ଵߙ) . . . ) is an 

isometry. Letܻ′ = ௜′ݕ]݊ܽ݌ݏ ∶ ݅ ∈ ℕ], and ఌܻ =  By the subprojectivity .(′ܻ)ܬ

of ߝ, ఌܻ contains a subspace W, which is complemented in ߝ via a projection 

ܴଵ. Then Jିଵܴଵܴܬ is a projection from X onto ଴ܻ = (ܹ)ଵିܬ ⊂ ܺ. 

Recall that if X is a Banach space, then 

ℓ௣௪௘௔௞(ܺ) = ݔ} = ௡ୀଵஶ(௡ݔ) ∈ ܺ × ܺ × ܺ. . . ∶ ݌ݑݏ
௫∗∈௑∗

(෍ (௣|(௡ݔ)∗ݔ|
ଵ
௣ < ∞}. 

It is known that ℓ௣
௪௘௔௞(ܺ) is isomorphic to ܤ(ℓ௣′ ,ܺ)(ଵ

௣
+ ଵ

௣′
= 1). We show 

that, for ܺ = ℓ௥(ݎ ≥  contains a copy of ℓ∞, and therefore, is (ܺ, ′ℓ௣)ܤ,(′݌
not subprojective. To this end, denote by (݁௜) and ( ௜݂) the canonical bases in 
ℓ௥ and ℓ௣′ respectively. For ߙ = (௜ߙ) ∈ ℓ∞, define ܤ(ℓ௣′,ܺ) ∋ ߙܷ ∶ ݁௜ ↦ ௜ߙ ௜݂. 
Clearly, U is an isomorphism. 
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Note that the situation is different for ݎ <  ,Then, by Pitt’s Theorem .′݌

ℓ௣ᇲ)ܤ , ℓ௥) = ℓ௣ᇲ)ܭ , ℓ௥). In the next section we prove that the latter space is 

subprojective. 

We show that subprojectivity is not a 3-space property. 

Proposition (4.1.5)[4]: For 1 < ݌ < ∞ there exists a non-subprojective 

Banach space ܼ௣ , containing a subspace ܺ௣ , so that ܺ௣ and ܼ௣/ܺ௣ are 

isomorphic to ℓ௣. 

It is easy to see that subprojectivity is stable under isomorphisms. 

However, it is not stable under a rougher measure of “closeness” of Banach 

spaces – the gap measure. If Y and Z are subspaces of a Banach space X, we 

define the gap (or opening) 

(ܼ,ܻ)௑߆  = ቊ  ݔܽ݉  ݌ݑݏ
௬∈௒,‖௬‖ୀଵ

(ܼ,ݕ)ݐݏ݅݀ , ݌ݑݏ
௭∈௓,‖௭‖ୀଵ

 .ቋ(ܻ,ݖ)ݐݏ݅݀

We refer to the comprehensive survey for more information. Here, we note 

that ߆௑ satisfies a “weak triangle inequality”, hence it can be viewed as a 

measure of closeness of subspaces. The following shows that subprojectivity 

is not stable under ߆௑. 

Proposition (4.1.6)[4]: There exists a Banach space X with                     

a subprojective subspace Y so that, for every ߝ > 0, X contains a non-

subprojective space Z with ߆௑(ܻ,ܼ) ≤  .ߝ

Proof. Our Y will be isomorphic to ℓ௣, where ݌ ∈ (1,∞) is fixed. By 

Proposition (4.1.5), there exists a non-subprojective Banach space W, 

containing a subspace ଴ܹ, so that both ଴ܹ and ܹ′ =  ܹ/ ଴ܹ are isomorphic 

to ℓ௣. Denote the quotient map ܹ → ܹ′ by q. Consider ܺ = ܹ⊕ଵܹ′ and 
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ܻ = ଴ܹ ⊕ଵܹ′ ⊂ ߝ Furthermore, for .ܧ > 0, define ܼఌ = ݓߝ} ⊕ଵ ݓ:ݓݍ ∈ ܹ}. 

Clearly, Y is isomorphic to ℓ௣ ⊕ ℓ௣ ∼ ℓ௣, hence subprojective, while ܼఌ  is 

isomorphic to W, hence not subprojective. We have  ߆௑(ܻ,ܼߝ)  ≤  .ߝ

Looking at subprojectivity through the lens of Gowers dichotomy and 

observing that a subprojective Banach space does not contain hereditarily 

indecomposable subspaces, we immediately obtain the following. 

Proposition (4.1.7)[4]: Every subprojective space has a subspace with 

an unconditional basis. 

The converse to the above proposition is false. 

Proposition (4.1.8)[4]: There exists a Banach space with an 

unconditional basis, without subprojective subspaces. 

Proof. T. Gowers and B. Maurey construct a Banach space X with                

a 1-unconditional basis, so that any operator on X is a strictly singular 

perturbation of a diagonal operator. We prove that X has no subprojective 

subspaces. In doing so, we are re-using the notation of that paper. In 

particular, for ݊ ∈ ℕ and ݔ ∈ ܺ, 

We define ‖ݔ‖(௡) as the supremum of ∑ ௜‖௡ݔ‖
௜ୀଵ  , where ݔଵ, . . .  ௡ areݔ,

successive vectors so that ݔ = ∑  ௜௜ . It is known that, for every blockݔ

ubspace Y in X, every ܿ > 1, and every n ∈ N, there exists ݕ ∈ ܻ so that 1 =

‖ݕ‖ ≤ (௡)‖ݕ‖ < ܿ. This technical result can be used to establish a 

remarkable property of X: suppose Y is a subspace of X, with a normalized 

block basis (ݕ௞). Then any zero-diagonal (relative to the basis (ݕ௞)) 

operator on Y is strictly singular. Consequently, any ܶ ∈  can be written (ܻ)ܤ

as ܶ = ߉ + ܵ, where ߉ is diagonal, and S is zero-diagonal, hence strictly 
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singular. This result is proved for Y = X, but an inspection yields the 

generalization described above. 

Suppose, for the sake of contradiction, that X contains a subprojective 

subspace Y. A small perturbation argument shows we can assume Y to be a 

block subspace. Blocking further, we can assume that Y is spanned by a 

block basis (ݕ௝), so that 1 = ฮݕ௝ฮ ≤ ฮݕ௝ฮ(௝)
< 1 + 2ି௝ . We achieve the desired 

contradiction by showing that no subspace of  ܼ = ଵݕ]݊ܽ݌ݏ + ଷݕ,ଶݕ + ,ସݕ . . . ] is 

complemented in Y. 

Suppose P is an infinite rank projection from Y onto a subspace of Z. 

Write ܲ = ߉ + ܵ, where S is a strictly singular operator with zeroes on the 

main diagonal, and ߉ = ൫ߣ௝൯௝ୀଵ 
ஶ

is a diagonal operator (that is, ݕ߉௝ =  ௝ݕ௝ߣ

for any j). As ݌ݑݏ
௝
ฮݕ௝ฮ(௝)

< ∞, we have ݈݅
௝݉
௝ݕܵ = 0. Note that                        

߉) + ܵ)ଶ = ߉ + ܵ, hence ݀݅ܽ݃ (ߣ௝ଶ − (௝ߣ = ଶ߉ − ߉ = ܵ − ܵ߉ − ߉ܵ − ܵଶ is strictly 

singular, or equivalently, ݈݅
௝݉
௝(1ߣ − (௝ߣ = 0. Therefore, there exists a 0 − 1 

sequence (ߣ′௝) so that ߉′ − is compact (equivalenty, lim ߉
௝

௝ߣ) − (௝′ߣ = 0), 

where ߉′ = ܲ is a diagonal projection. Then (௝′ߣ) ݃ܽ݅݀ = ′߉ + ܵ′, where 

ܵ′ = ܵ + ߉) − ݈݅ is strictly singular, and satisfies (′߉
௝݉
௝ݕ′ܵ = 0. The 

projection P is not strictly singular (since it is of infinite rank), hence ߉′ =

ܲ − ܵ′ is not strictly singular. Consequently, the set ܬ = {݆ ∈ ℕ: ௝′ߣ = 1} is 

infinite. 

Now note that, for any ݆, ฮܲݕ௝ − ௝ฮݕ > 1/2. Indeed, ܲݕ௝ ∈ ܼ, hence we 

can write ܲݕ௝ =  ∑ ଶ௞ିଵݕ)௞ߙ + ଶ௞)௞ݕ   . Let ℓ = ⌈݆/2⌉. By the 1-unconditionality 
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of our basis,ฮݕ௝ − ௝ฮݕܲ ≥ ฮݕ௝ − ଶℓିଵݕ)ℓߙ  + ଶℓ)ฮݕ  ≥ −1|}ݔܽ݉  ,|ℓߙ {|ℓߙ| ≥ 1/2. 

For ݆ ∈ ,ܬ ௝ݕ′ܵ = ௝ݕܲ − ௝ฮݕ′௝, hence ฮܵݕ ≥ 1/2, which contradicts ݈݅
௝݉
ฮܵ′ݕ௝ฮ = 0. 

Finally, one might ask whether, in the definition of subprojectivity, the 

projections from X onto Z can be uniformly bounded. More precisely, we 

call a Banach space X uniformly subprojective (with constant C) if, for every 

subspace ܻ ⊂ ܺ, there exists a subspace ܼ ⊂ ܻ and a projection P: X → Z 

with ‖ܲ‖ ≤  The proof essentially shows that the following spaces are .ܥ 

uniformly subprojective: (i) ℓ௣ (1 ≤ ݌ < ∞) and ܿ଴; (ii) the Lorentz 

sequence spaces ݈௣,௪; (iii) the Schreier space; (iv) the Tsirelson space; (v) 

the James space. Additionally, ܮ௣(0,1) is uniformly subprojective for 2 ≤

݌ < ∞. This can be proved by combining Kadets-Pelczynski dichotomy 

with the results about the existence of “nicely complemented” copies of ℓଶ. 

Moreover, any ܿ଴-saturated separable space is uniformly subprojective, since 

any isomorphic copy of ܿ଴ contains a λ-isomorphic copy of ܿ଴, for any ߣ > 1. 

By Sobczyk’s Theorem, a λ-isomorphic copy of ܿ଴ is 2λ-complemented in 

every separable superspace. In particular, if K is a countable metric space, 

then C(K) is uniformly subprojective.  

However, in general, subprojectivity need not be uniform. Indeed, 

suppose 2 < ଵ݌ < ଶ݌ < . . . < ∞, and ݈݅
௡݉
௡݌  = ∞. By Proposition (4.1.1) 

(b), ܺ = (∑ ௣೙௡ܮ (0,1))ଶ is subprojective. The span of independent Gaussian 

random variables in ܮ௣ (which we denote by ܩ௣) is isometric to ℓଶ. 

Therefore, any projection from ܮ௣ onto ܩ௣ has norm at least ܿ଴ඥ݌, where ܿ଴ 

is a universal constant. Thus, X is not uniformly subprojective.  
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Section (4.2): Subprojectivity of Schatten Spaces and with 

lattice Valued रࡼ Spaces. 

Suppose ଵܺ ,ܺଶ , . . . ,ܺ௞  are Banach spaces with unconditional FDD, 

implemented by finite rank projections ( ଵܲ௡
ᇱ  ), ( ଶܲ௡

ᇱ ), . . . , ( ௞ܲ ௡
ᇱ ), respectively. 

That is, ௜ܲ௡
ᇱ

௜ܲ௠
ᇱ = 0 unless ݊ = ݉, ݈݅

ே݉
∑ ௜ܲ௡

ᇱே
௡ୀଵ  =  ௑௜ point-norm, andܫ 

݌ݑݏ
ே,±

‖∑ ± ௜ܲ௡
ᇱே

௡ୀଵ ‖ < ∞ (this quantity is sometimes referred to as the FDD 

constant of  ௜ܺ). Let ܧ௜௡ = ) ݊ܽݎ ௜ܲ௡
ᇱ ). 

We say that a sequence (ݓ௝)௝ୀଵஶ ⊂ ଵܺ ⊗ܺଶ ⊗ . . .⊗ܺ௞  is block-diagonal 

if there exists a sequence 0 = ଵܰ < ଶܰ < . .. so that 

݆ݓ ∈ ቌ ෍ 1݊ܧ

݆ܰ+1

݊=݆ܰ+1

 ቍ⊗ቌ ෍ 2݊ܧ

݆ܰ+1

݊=݆ܰ+1

 ቍ⊗ . . .⊗  ቌ ෍ ݊݇ܧ

݆ܰ+1

݊=݆ܰ+1

 ቍ . 

Suppose ε is an unconditional sequence space, and ⨂෩  is a tensor product of 

Banach spaces. The Banach space ଵܺ⨂෩ܺଶ⨂෩  . . .⨂෩ܺ௞  is said to satisfy the       

ε-estimate if there exists a constant ܥ ≥ 1 so that, for any block diagonal 

sequence (ݓ௝)௝∈ே ݅݊ ଵܺ⨂෩ܺଶ⨂෩  . . .⨂෩ܺ௞, we have 

1−ܥ ቛ(ฮ݆ݓฮ)
݆∈ܰ
ቛ
ܧ
≤ ቯ෍݆ݓ

 

݆

ቯ ≤ (ฮ݆ݓฮ)ቛܥ 
݆∈ܰ
ቛ
ܧ

                                     (4.1) 

Corollary (4.2.1)[4]: Suppose the Banach spaces ଵܺ and ܺଶ have 

unconditional FDD, co-type 2 and type 2 respectively, and both ଵܺ
∗ and ܺଶ 

are subprojective. Then ܭ( ଵܺ,ܺଶ) is subprojective. 

This happens, for instance, if ଵܺ  = or ℭ௣ (1 (ߤ)௣ܮ < ݌ ≤ 2) and ܺଶ =

ℭ௤ (2 ݎ݋ (ߤ)௤ܮ ≤ ݍ < ∞). Indeed, the type and cotype of these spaces are 
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well known. The Haar system provides an unconditional basis for ܮ௣. The 

existence of unconditional FDD of ℭ௣ spaces is given. 

Theorem (4.2.2)[4]: Suppose ଵܺ,ܺଶ, . . . ,ܺ௞ are subprojective Banach 

spaces with un-conditional FDD, and ⨂෩  is a tensor product. Suppose, 

furthermore, that for any finite increasing sequence ݅ = [1 ≤ ݅ଵ < . . . < . . . ݅ℓ  ≤ ݇], 

there exists an uncondi-tional sequence space ߝ௜, so that ௜ܺభ⨂෩ ௜ܺଶ⨂෩ . . .⨂෩ ௜ܺ ௞ 

satisfies the ߝ௜-estimate. Then ଵܺ⨂෩ܺଶ⨂෩  . . .⨂෩ܺ௞  is subprojective. 

A similar result for ideals of operators holds as well. We keep the 

notation for projections implementing the FDD in Banach spaces ଵܺ and ܺଶ. 

We say that a Banach operator ideal A is suitable (for the pair ( ଵܺ,ܺଶ)) if the 

finite rank operators are dense in ܣ( ଵܺ ,ܺଶ) (in its ideal norm). We say that a 

sequence (ݓ௝)௝∈ே ⊂ )ܣ ଵܺ,ܺଶ) is block diagonal if there exists a sequence 

0 = ଵܰ < ଶܰ < . .. so that, for any ݆,ݓ௝ = ( ଶܲ,ேೕ  −  ଶܲ,ேೕషభ)ݓ௝( ଵܲ,ேೕ −  ଵܲ,ேೕషభ). If 

ε is an unconditional sequence space, we say that ܭ( ଵܺ,ܺଶ) satisfies the            

ε-estimate if, for some constant C,       

1−ܥ ቛ൫ฮ݆ݓฮ൯݆ቛܧ
≤ ቯ෍wj

 

݆

ቯ

A

≤ Cቛ൫ฮ݆ݓฮ൯݆ቛܧ
                                            (4.2) 

holds for any finite block-diagonal sequence (݆ݓ). 

Proof. We will prove the theorem by induction on k. Clearly, we can take       

k = 1 as the basic case. Suppose the statement of the theorem holds for a 

tensor product of any k − 1 subprojective Banach spaces that satisfy                  

ε-estimate. We will show that the statement holds for the tensor product of k 

Banach spaces ܺ = ଵܺ⨂෩ܺଶ⨂෩  . . .⨂෩ܺ௞ . 
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For notational convenience, let ௜ܲ௡ = ∑ ௜ܲ௞
ᇱ௡

௞ୀଵ  , and ܫ௜ = ܣ ௑೔. Ifܫ  ∈  (ܺ)ܤ

is a projection, we use the notation ୄܣ for ܫ௑  −  Furthermore, define the .ܣ

projections ܳ௡ = ଵܲ௡⊗ ଶܲ௡ ⊗ . . .⊗ ௞ܲ௡ and ܴ௡ = ଵܲ௡
ୄ ⊗ ଶܲ௡

ୄ  . . .⊗  ௞ܲ௡
ୄ . 

Renorming all ௜ܺ’s if necessary, we can assume that their unconditional 

FDD constants equal 1. 

First show that, for any ݊,  ௡ୄ is subprojective. To this end, writeܴ݊ܽݎ

ܴ௡ୄ = ∑ ܲ(௜)௞
௜ୀଵ  , where the projections ܲ(௜) are defined by 

ܲ(1)  =  ଵܲ௡  ⊗ ଶܫ   ⊗ . . .⊗ ௞ܫ  , 

ܲ(2)  =  ଵܲ௡
ୄ  ⊗  ଶܲ௡  ⊗ . ⊗ 3ܫ  . .⊗  ,௞ܫ 

ܲ(3)  =  ଵܲ௡
ୄ  ⊗  ଶܲ௡

ୄ  ⊗  ܲ3݊ ⊗ . ⊗ 4ܫ  . .⊗ ௞ܫ  , . . . . . . . . . 

ܲ(݇)  =  ଵܲ௡
ୄ  ⊗  ଶܲ௡

ୄ  ⊗ . . .⊗  ௞ܲିଵ,௡
ୄ  ⊗  ௞ܲ௡ 

(note also that ܲ(௜)ܲ(௝) = 0 unless i = j). Thus, there exists i so that ܲ(௜) is an 

isomorphism on a subspace ܻ′ ⊂ ܻ . Now observe that the range of ܲ(௜) is 

isomorphic to a subspace of ℓஶே (ܺ(௜)), where ܰ =  ௜ܲ௡, and ݇݊ܽݎ

ܺ(௜) = ଵܺ⨂෪ܺଶ⨂෪ . . .⨂෪ ௜ܺିଵ⨂෪ ௜ܺାଵ⨂෪ . . .⨂෪ܺ௞ . 

By the induction hypothesis, ܺ(௜) is subprojective. By Proposition (4.1.1), 

ran ܲ(௜) is subprojective for every i, hence so is ܴ௡ୄ . 

Now suppose Y is an infinite dimensional subspace of X. We have to 

show that Y contains a subspace Z, complemented in X. If there exists ݊ ∈

 ℕ so that ܴ௡ୄ|௒ is not strictly singular, then, by Corollary (4.1.3), Z contains      

a subspace complemented in X. 

Now suppose ܴ௡ୄ|௓ is strictly singular for any n. It is easy to see that, for 

any sequence of positive numbers (ߝ௠), one can find 0 = ݊଴ < ݊ଵ <  ݊ଶ < . .., 

and norm one elements ݔ௠ ∈ ܻ , so that, for any ݉, ฮܴ௡೘షభ
ୄ ௠ฮݔ + ฮݔ௠ −
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ܳ௡೘ݔ௠ฮ < ௠ݔ ௠. By a small perturbation, we can assume thatߝ = ܴ௡೘షభ
ୄ ܳ௡೘ݔ௠. 

That is, 

௠ݔ ∈ )൫ ݊ܽݎ ଵܲ,௡೘ −  ଵܲ,௡೘షభ) ⊗ ( ଶܲ,௡೘ − ଶܲ,௡೘షభ) ⊗ . . .⊗ ( ௞ܲ,௡೘ − ௞ܲ,௡೘షభ)൯. 

Let ܧ௜௠  = ) ݊ܽݎ  ௜ܲ,௡೘ − ௜ܲ,௡೘షభ), and ܹ = .⊗ଶ௠ܧ⊗ଵ௠ܧ]݊ܽ݌ݏ  . ௞௠ܧ⊗. ∶ ݉ ∈ ℕ] ⊂ ܺ. 

Applying “Tong’s trick”, and taking the 1-unconditionality of our FDDs into 

account, we see that  

ܷ ∶ ܺ → ܹ ∶ )෍൫↦ ݔ ଵܲ,௡೘ − ଵܲ,௡೘షభ) ⊗ . . .⊗ ( ௞ܲ,௡೘ − ௞ܲ,௡೘షభ)൯ݔ
௠

   

defines a contractive projection onto W. Furthermore, ܼ = ௠ݔ]݊ܽ݌ݏ ∶ ݉ ∈ ℕ] 

is complemented in W. Indeed, the projection ௜ܲ,௡೘ − ௜ܲ,௡೘షభ(݅,݉ ∈ ℕ) is 

contractive, hence we can identify ܧଵ௠⨂෩  . . .⨂෩ܧ௞௠ ଵ௠ܧ) ℎݐ݅ݓ   ⊗ . . (௞௠ܧ⊗. ∩ ܺ. 

By the Hahn-Banach Theorem, for each m there exists a contractive 

projection ܷ௠ on ܧଵ௠⨂෩  . . .⨂෩ܧଶ௠, with range ݊ܽ݌ݏ[ݔ௠]. By our 

assumption, there exists an unconditional sequence space ε so that 

ଵܺ⨂෩  . . .⨂෩ܺ௞  satisfies the ε-estimate. Then, for any finite sequence                

௠ݓ ∈ ଵ௠⨂෩ܧ  . . .⨂෩ܧ௞௠, (4.2.5) yields 

ะ෍ܷ݇݇ݓ

݇

ะ ≤ ߝ‖(‖݇ݓܷ݇‖)‖ܥ ≤ ߝ‖(‖݇ݓ‖)‖ܥ ≤ 2ܥ ะ෍ܷ݇݇ݓ

݇

ะ . 

Thus, Z is complemented in X. 

Theorem (4.2.3)[4]: Suppose ଵܺ and ܺଶ are Banach spaces with 

unconditional FDD, so that ଵܺ
∗ and ܺଶ are subprojective. Suppose, 

furthermore,that the ideal A is suitable for ( ଵܺ ,ܺଶ), and A( ଵܺ,ܺଶ) satisfies 

the ε-estimate for some unconditional sequence ε. Then ܣ( ଵܺ ,ܺଶ) is 

subprojective.  

Have the following consequences. 
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Sketch of the proof of Theorem (4.2.3). On ܣ( ଵܺ,ܺଶ) we define the 

projection ܴ௡ ∶ )ܣ ଵܺ ,ܺଶ) → )ܣ ଵܺ,ܺଶ) ∶ ݓ ↦ ଶܲ௡
ୄ ݓ ଵܲ௡. Then the range of 

ܴ௡ୄ is isomorphic to ଵܺ
∗ ⊕. . .⊕ ଵܺ

∗ ⊕ܺଶ ⊕. . .⊕ܺଶ. Then proceed as in the 

the proof of Theorem (4.2.2) (with k = 2). 

To prove Corollary (4.2.6), we need two auxiliary results. 

Lemma (4.2.4)[4]: Suppose 1 < > ௜݌ ∞ (1 ≤ ݅ ≤ ݊) and ܺ =  ⨂ෙ ௜ୀଵ
௡ ℓ௣೔  . 

(i) If ∑ ௜݌/1 > ݊ − 1, then X satisfies the ℓ௦-estimate with 1/ݏ =

∑ ௜݌/1 − (݊ − 1). 

(ii) (2) If  ∑ ௜݌/1  ≤ ݊ − 1, then X satisfies the ܿ଴-estimate. 

Proof. Suppose (ݓ௝) is a finite block-diagonal sequence in X. We shall show 

that ฮ∑ ௝௝ݓ ฮ = ฮ(ฮݓ௝ฮ)ฮ
௦
, with s as in the statement of the lemma. To this 

end, let ( ௜ܷ௝) be coordinate projections on ℓ௣೔  for every 1 ≤  ݅ ≤  ݊, such 

that ݓ௝ =  ଵܷ௝ ⊗. . .⊗ܷ௡௝ݓ௝ , and for each i, ௜ܷ௞ ௜ܷ௠ = 0 unless k = m. 

Letting ݌௜ᇱ =  we see that ,(௜ ି ଵ݌)/௜݌

ቯ෍݆ݓ

݆

ቯ = ݌ݑݏ
݅݌ℓ∋݅ߦ

′ ,ฮ݅ߦฮ≤1
ቮ〈෍݆ݓ

݆

,⊗݅ ቮ〈݅ߦ . 

Choose ⊗௜ ௜ߦ  with ฮ݅ߦฮ ≤ 1, and let ߦ௜௝ = ௜ܷ௝݅ߦ. Then ∑ ฮߦ௜௝ฮ
௣೔
ᇲ

௝ ≤ 1, and 

ቮ〈෍݆ݓ ,⊗݅ ݅ߦ
݆

〉ቮ ≤෍ห〈݆ݓ ,⊗݅ ห〈݅ߦ
݆

= ෍ቚ〈݆ݓ ,⊗݅ ቚ〈݆݅ߦ
݆

≤෍ฮ݆ݓฮෑ ቛ݆݅ߦቛ
݊

݅=1
݆

. 

Now let 1/ݎ =  ∑ ௜ᇱ݌/1 = ݊ − ∑ ௜݌/1 . By Hölder’s Inequality, 

ቌ෍൭ෑቛ݆݅ߦቛ
݊

݅=1

൱
ݎ

݆

ቍ

ݎ/1

≤ෑቌ෍ቛ݆݅ߦቛ
݅݌
′

݆

ቍ

݅݌/1
′

݊

݅=1

≤ 1. 
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If ∑ ௜݌/1 ≤ ݊ −  1, then r ≤ 1, hence ∑ ∏ ฮߦ௜௝ฮ௡
௜ୀଵ௝ ≤ 1. Therefore, 

ฮ∑ ௝௝ݓ ฮ  ≤ ௝ݔܽ݉  ฮݓ௝ฮ = (ฮݓ௝ฮ)௖బ  . Otherwise, r > 1, and 

ቯ෍݆ݓ

݆

ቯ ≤ ቌ෍ฮ݆ݓฮ
ݏ

݆

ቍ

ݏ/1

ቌ෍(ෑ ቛ݆݅ߦቛ
݊

݅=1
)
ݎ

݆

ቍ

ݎ/1

≤ ቌ෍ฮ݆ݓฮ
ݏ

݆

ቍ

ݏ/1

=  (ฮ݆ݓฮ)
ݏ
, 

where 1/ݏ =  1 − = ݎ/1   ∑ ௜݌/1  −  ݊ +  1. 

In a similar fashion, we show that ฮ∑ ௝௝ݓ ฮ > (ฮݓ௝ฮ)௦. For s = ∞, the 

inequality ฮ∑ ௝௝ݓ ฮ > ∑ ௝ฮ  is trivial. If s is finite, assumeݓ௝ ฮݔܽ݉  ฮݓ௝ฮ
௦

௝ = 1 

(we are allowed to do so by scaling). Find norm one vectors ߦ௜௝ ∈ ℓ௣಺ᇲ so that 

௜௝ߦ = ௜ܷ௝ߦ௜, and ฮݓ௝ฮ = ௝ ,⊗௜ݓ〉 ௝ߛ ௜௝〉. Letߦ = ฮݓ௝ฮ
௦/௥. Then ∑ ௝௥௝ߛ = 1 = ∑ ௝ฮ௝ݓ௝ฮߛ  . 

Further, set ߙ௜௝ = ௝ߛ 
∏ ௣೗

ᇲ  ೗ಯ೔ /(∑ ∏  ௣೗
ᇲ

೗ಯ೘
೙
೘సభ ) . An elementary calculation shows that 

௝ߛ = ∏ ௜௝௡ߙ
௜ୀଵ  , and ∑ ௜௝ߙ

௣೔
ᇲ

௝ = 1. Let ߦ௜ = ∑ ௜௝௝ߦ௜௝ߙ   . Then ‖ߦ‖௣ᇱ =, and therefore, 

ቯ෍݆ݓ

݆

ቯ ≥  〈෍݆ݓ ,⊗݅ ݅ߦ
݆

〉 = ෍ෑ ݆݅ߙ ݅⊗, ݆ݓ〉 〈݆݅ߦ
݊

݅=1
݆

= ෍ ฮ݆ݓฮ݆ߛ
݆

=  1. 

This establishes the desired lower estimate. 

Lemma (4.2.5)[4]: For 1 ≤ ௜݌ ≤ ∞,ܺ = ℓ௣భ ⨶ ℓ௣మ ⨶. . .⨶ ℓ௣೙  satisfies 

the ℓ௥-estimate, where 1/ݎ = ∑ ∑ ௜ if݌/1 ௜݌/1 < 1, and r = 1 otherwise. 

Here, we interpret ℓஶ as ܿ଴. 

Proof. The spaces involved all have the Contractive Projection Property (the 

identity can be approximated by contractive finite rank projections). Thus, 

the duality between injective and projective tensor products of finite 

dimensional spaces  shows that, for ݓ ∈ ܺ, 

‖ݓ‖ = |〈ݓ,ݔ〉|൛݌ݑݏ  ∶ ݔ ∈ ℓ௣భᇲ⨂ෙ . . .⨂ෙℓ௣೙ᇲ ‖ݔ‖, ≤ 1 ൟ 
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(here, as before, 1/݌௜ᇱ + ௜݌/1 = 1). Abusing the notation somewhat, we 

denote by ௜ܲ௠ the projection on the span of the first m basis vectors of both 

ℓ௣೔  and ℓ௣೔ᇲ. Suppose a finite sequence (ݓ௞)௞ୀଵே ∈ ܺ is block-diagonal, or 

more precisely, ݓ௞ = ൫( ଵܲ,௠ೖ  − ଵܲ,௠ೖషభ)⊗. . .⊗ ( ௡ܲ,௠ೖ − ௡ܲ,௠ೖషభ)൯ݓ௞ for 

every k. Define the operator U on X by setting ܷݔ = ∑ (൫ ଵܲ,௠ೖ −
ே
௞ୀଵ

ଵܲ,௠ೖషభ) ⊗ . . .⊗ ( ௡ܲ,௠ೖ − ௡ܲ,௠ೖషభ)൯ݔ. We also use ଴ܷ to denote the 

similarly defined operator on ܺ∗. By “Tong’s trick”, since X and ܺ∗ has an 

unconditional basis, ܷ( ଴ܷ) is a contractive projection onto its range ܹ( ଴ܹ). 

Then 

ะ෍݇ݓ

݇

ะ = |൝ ݌ݑݏ  〈෍݇ݓ, ݔ
݇

〉 | ∶ ∗ܺ‖ݔ‖ ≤ 1ൡ = ݌ݑݏ  ൝| 〈ܷ(෍݇ݓ

݇

), 〈ݔ | ∶ ∗ܺ‖ݔ‖ ≤ 1ൡ

= ݅ݔ0ܷ,݇ݓ൝|෍ ݌ݑݏ 
݇

| ∶ ∗ܺ‖ݔ‖  ≤  1ൡ . 

Write ଴ܷݔ = ∑ ௞ேݔ
௞ୀଵ  . By Lemma (4.2.4) there is an s (either 1/s =

 ∑ ௜ᇱ݌/1 − (n − 1) = 1 −∑ ௜݌/1 or s = ௦‖(‖௞ݔ‖)‖ (∞  =  ‖ ଴ܷݔ‖  ≤ ‖ݔ‖ ≤ 1. 

Moreover, 

〈෍ݓ௞ ,ܷ଴ݔ
௞

〉 =  〈෍ݓ௞
௞

,෍ݔ௞
௞

〉 = ෍〈ݓ௞ , 〈௞ݔ
௞

, 

and therefore, 

ะ෍ݓ௞
௞

ะ = ݌ݑݏ  ൝෍ ௞ݓ〉| , |〈௞ݔ
௞

∶ ௦‖(‖௞ݔ‖)‖  ≤ 1ൡ  =  .௥‖(‖௞ݓ‖)‖ 

Corollary (4.2.6)[4]: The spaces ଵܺ⨂ෙ  . . .⨂ෙܺ௡ and ଵܺ ⨶. . .⨶ܺ௡ are 

subprojective where ௜ܺ  is ether isomorphic to ℓ௣௜ (1 ≤ ௜݌ < ∞) or ܿ଴ for 

every 1 ≤ ݅ ≤ ݊. For n = 2, this result goes back to (the injective and 

projective cases, respectively). 
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Suppose a Banach space X has an FDD implemented by projections ( ௡ܲ
ᇱ)–

that is, ௡ܲ
ᇱ
௠ܲ
ᇱ = 0 unless n = m, ∑‖ ±,ே݌ݑݏ ± ௡ܲ

ே
௡ୀଵ ‖ < ∞, and ݈݅

ே݉
∑ ௡ܲ
ே
௡ୀଵ   =  ௑ܫ

point-norm. We say that X satisfies the lower p-estimate if there exists a 

constant C so that, for any finite sequence ߦ௝ ∈ ௝ܲ ݊ܽݎ   ,ฮ∑ ௝௝ߦ ฮ ௣ ≥ ∑ܥ ฮߦ௝ฮ
௣

௝ . 

The smallest C for which the above inequality holds is called the lower p-

estimate constant. The upper p-estimate, and the upper p-estimate constant, 

are defined in a similar manner. Note that; if X is an unconditional sequence 

space, then the above definitions coincide with the standard one. 

Proof. Combine Theorem (4.2.2) with Lemma (4.2.4) and (4.2.5). 

Corollary (4.2.7)[4]: Suppose the Banach spaces ଵܺ and ܺଶ have 

unconditional FDD, satisfy the lower and upper p-estimates respectively, 

and both ଵܺ
∗ and ܺଶ are subprojective. Then ܭ( ଵܺ,ܺଶ) is subprojective. 

Before proceeding, we mention several instances where the above corollary 

is applicable. Note that, if X has type 2 (cotype 2), then X satisfies the upper 

(resp.lower) 2-estimate. Indeed, suppose X has type 2, and ݓଵ, . . .  ௡ areݓ,

such that ݓ௝ = ௝ܲݓ௝ for any j. Then 

ቯ෍݆ݓ

݆

ቯ ≤ ±݁ݒܣܥ ቯ෍±݆ݓ

݆

ቯ ≤ ฮ݆ݓቌ෍ฮ(ܺ)2ܶܥ 
2

݆

ቍ

1/2

 

( ଶܶ(ܺ) is the type 2 constant of X). The cotype case is handled similarly. 

Thus, we can state: 

Proof . To apply Theorem (3.2.3), we have to show that Ƙ( ଵܺ ,ܺଶ) satisfies 

the ܿ଴-estimate. By renorming, we can assume that the FDD constants of ଵܺ 

and ܺଶ equal 1. Suppose (ݓ௞)௞ୀଵே  is a block-diagonal sequence, with ݓ௞ =

 ( ଶܲ,௡ೖ  −  ଶܲ,௡ೖషభ)ݓ௞( ଵܲ,௡ೖ − ଵܲ,௡ೖషభ). Let ݓ = ∑ ௞௞ݓ . Then ‖ݓ‖ ≥
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 ฮ( ଶܲ,௡ೖ − ଶܲ,௡ೖషభ)ݓ( ଵܲ,௡ೖ − ଵܲ,௡ೖషభ)ฮ = ‖ݓ‖ ௞‖, henceݓ‖  ≥ ௞ݔܽ݉   .‖௞ݓ‖ 

To prove the reverse inequality (with some constant), pick a norm one ߦ ∈

ଵܺ, and let ߦ௞ = ( ଵܲ,௡ೖ − ଵܲ,௡ೖషభ)ݔ. Then ߟ௞ = ) ௞ satisfiesߦݓ  ଶܲ,௡ೖ −

ଶܲ,௡ೖషభ)ߟ௞ = = ߟ ௞. Setߟ ߦݓ = ∑ ௞௞ߟ  . Denote by ܥଵ(ܥଶ) lower (upper) p-

estimate constants of ଵܺ (resp. ܺଶ). Then 

௣‖ߦݓ‖  = ௣‖ߟ‖  ≤ ௞‖௣ߟ‖ଵ෍ܥ
௞

≤ ௞‖௣ݓ‖ଶ෍ܥ
௞

௞‖௣ߦ‖ ≤ ݔܽ݉
௞
௞‖௣ݓ‖ ௞‖௣ߦ‖ଶ෍ܥ 

௞

≤ ݔܽ݉ 
௞
௞‖௣ݓ‖ ଵܥଶܥ  ะ෍ߦ௞

௞

ะ
௣

=  .௣‖ߦ‖ଵܥଶܥ

Taking the supremum over all ߦ ∈ )ܤ ଵܺ), ‖ݓ‖ ≤  .‖௞ݓ‖ ௞ݔܽ݉ ଵ/௣(ଶܥଵܥ) 

In general, a tensor product of subprojective spaces (in fact, of Hilbert 

spaces) need not be subprojective. 

Proposition (4.2.8)[4]: There exists a tensor norm ⊗ఈ, so that, for every 

Banach spaces X and Y , X ⊗ఈ Y is a Banach space, and ℓଶ⊗ఈ ℓଶ is not 

subprojective. 

Proof. Note first that there exists a separable symmetric sequence space ߝ 

which is not subprojective. Indeed, let U be the space with an unconditional 

basis which is complementably universal for all spaces with unconditional 

bases. As noted, this space has a symmetric basis (in fact, uncountably many 

non-equivalent symmetric bases). On the other hand, U is not subprojective, 

since it contains a (complemented) copy of ܮ௣ for 1 < ݌ < 2. Renorming U 

to make its basis 1-symmetric, we obtain ߝ. 

Now suppose X and Y are Banach spaces. For ∈ ܺ ⊗ ܻ , we set ‖ܽ‖ఈ =

ݑ)‖}݌ݑݏ ⊗  ఌ(ு,௄)}, where the supremum is taken over all‖(ܽ)(ݒ

contractions ݑ ∶ ܺ → ݒ and ܪ ∶ ܻ →  Clearly .(H and K are Hilbert spaces) ܭ
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⊗ఈ is a norm on ⊗ܻ . It is easy to see that, for any ܽ ∈ ܺ ⊗ܻ, ௑ܶ ∈  ,(଴ܺ,ܺ)ܤ

and ௒ܶ ∈ ,ܻ)ܤ ଴ܻ), ‖( ௑ܶ ⊗ ௒ܶ)(ܽ)‖ఈ  ≤ ‖ ௑ܶ‖‖ ௒ܶ‖‖ܽ‖ఈ. Consequently, ‖ݔ ⊗ ఈ‖ݕ  =

ܺ Thus, ‖·‖ఈ is indeed a tensor norm. We denote by .‖ݕ‖‖ݔ‖ ⊗ఈ  ܻ the 

completion of ܺ ⊗ ܻ in this norm. 

If X and Y are Hilbert spaces, then for ܽ ∈ ܺ ⊗ ܻ we have ‖ܽ‖ఈ =

‖ܽ‖ఌ(௑∗,௒). Identifying ℓଶ with its adjoint, we see that ߝ embeds into 

ℓଶ ⊗ఈ ℓଶ as the space of diagonal operators. As ߝ is not subprojective, 

neither is ℓଶ ⊗ఈ ℓଶ. 

Here is another wide class of non-subprojective spaces. 

Theorem (4.2.9)[4]: Let X be an infinite dimensional Banach space. 

Then B(X) is not subprojective. 

Proof. Suppose, for the sake of contradiction, that B(X) is subprojective. Fix 

a norm one element ݔ∗ ∈ ܺ∗. For ݔ ∈ ܺ define ௫ܶ ∈ (ܺ)ܤ ∶ ↦ ݕ  .ݔ〈ݕ,∗ݔ〉

Clearly ܯ = { ௫ܶ: ݔ ∈ ܺ} is a closed subspace of B(X), isomorphic to X. 

Therefore, X is subprojective. By Proposition (4.1.7), we can find a subspace 

ܰ ⊂  with an unconditional basis. We shall deduce that B(X) contains a ܯ

copy of ℓஶ, which is not subprojective. 

If N is not reflexive, then N contains either a copy of ܿ଴ or a copy of ℓଵ, 

any subspace of ℓ௣(ܿ଴) contains a further subspace isomorphic to ℓ௣ (resp. 

ܿ଴) and complemented in ℓ௣ (resp. ܿ଴), hence we can pass from N to a 

further subspace W, isomorphic to ℓଵ or ܿ଴, and complemented in X by a 

projection P. Embed B(W) isomorphically into B(X) by sending ܶ ∈  (ܹ)ܤ

to PTP ∈ B(X), where P is a projection from X onto W. It is easy to see that 

B(W) contain subspaces isomorphic to ℓஶ, thus, ܤ(ܺ) is not subprojective. 
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There is only one option left: N is reflexive. Pick a subspace ܹ ⊂ ܰ, 

complemented in X. It has the Bounded Approximation Property. As in the 

previous paragraph, ܤ(ܹ) embeds isomorphically into ܤ(ܺ). Sinceܤ(ܹ) ≠

 contains an isomorphic copy of ℓஶ. This rule out (ܹ)ܤ shows that ,(ܹ)ܭ

the subprojectivity of B(X). 

We deal with spaces of functions on scattered spaces. Recall that a 

topological space is scattered if every compact subset has an isolated point. 

It is known that a compact set is scattered and metrizable if and only if it is 

countable (in this case, C(K), and even its dual, are separable). It is well 

known that, if K is a compact Hausdorff set, then C(K) is separable if and 

only if K is metrizable. 

If K is countable, then (ܭ)ܥ is ܿ଴-saturated, and the copies of ܿ଴ are 

complemented, by Sobczyk’s Theorem. Otherwise, by Milutin’s Theorem, 

 is subprojective (ܭ)ܥ Thus, a separable space .([0,1])ܥ is isomorphic to (ܭ)ܥ

if and only if K is scattered. 

Furthermore, it is known that K is scattered if and only if it supports no 

non-zero atomic measures. Then (ܭ)ܥ∗ is isometric to ℓଵ(K). Otherwise, 

 is subprojective if and only  ∗(ܭ)ܥ ,ଵ(0,1). Thusܮ contains a copy of  ∗(ܭ)ܥ

if K is scattered. 

We study the subprojectivity of projective and injective tensor products 

of C(K). We have the following: 

Theorem (4.2.10)[4]: Suppose K is a compact metrizable space, and X is 

a Banach space. Then the following are equivalent: 

(i) K is scattered, and X is subprojective. 

(ii) C(K,X) is subprojective. 



92 
 

Proof. The implication (ii) ⇒ (i) is easy. The space C(K,X) contains copies 

of C(K) and of X, hence the last two spaces are subprojective. By the 

preceding paragraph, K must be scattered. 

To prove (i) ⇒ (ii), first fix some notation. Suppose λ is a countable ordinal. 

We consider the interval [0,λ] with the order topology – that is, the topology 

generated by the open intervals (α,β), as well as [0,β) and (α,λ]. Abusing the 

notation slightly, we write (ܺ,ߣ)ܥ for 0])ܥ,  .(ܺ,[ߣ

Suppose K is scattered. K is isomorphic to [0,λ], for some countable limit 

ordinal λ. Fix a subprojective space X. We use induction on λ to show that, 

for any countable ordinal λ, 

 (4.3)                                         .݁ݒ݅ݐ݆ܿ݁݋ݎ݌ܾݑݏ ݏ݅ (ܺ,ߣ)ܥ

By Proposition (4.1.1), (4.2.10) holds for ߣ ≤ ߱ (indeed, c is isomorphic to 

ܿ଴, hence ܿ(ܺ) = ܿ⨂෕ܺ is isomorphic to ܿ଴(ܺ)  =  ܿ଴⨂෕ ܺ). Let F denote the 

set of all countable ordinals for which (4.2.10) fails. If F is non-empty, then 

it contains a minimal element, which we denote by μ. Note that μ is a limit 

ordinal. Indeed, otherwise it has an immediate predecessor ߤ − 1. It is easy 

to see that (ܺ,ߤ)ܥ is isomorphic to ߤ)ܥ − 1,ܺ) ⊕ܺ, hence, by Proposition 

ߤ)ܥ,(4.1.11) − 1,ܺ) is not subprojective. Let ܥ଴(ߤ,ܺ) = {݂ ∈ :(ܺ,ߤ)ܥ ݈݅݉
ఔ→ఓ

(ߥ)݂ = 0}. 

Clearly (ܺ,ߤ)ܥ is isomorphic to ܥ଴(ߤ,ܺ) ⊕ܺ, hence we obtain the desired 

contradiction by showing that ܥ଴(ߤ,ܺ) is subprojective. 

To do this, suppose Y is a subspace of ܥ଴(ߤ,ܺ), so that no subspace of Y 

is complemented in ܥ଴(ߤ,ܺ). For ߥ < define the projection ఔܲ ,ߤ (ܺ,ߤ)ܥ: →

:(ܺ,ߥ)ܥ ݂ ↦ ଵ݂[0, ߥ If, for some .[ߥ < ܼ and some subspace ߤ ⊂ ܻ, ఔܲ|௓ is 

an isomorphism, then Z contains a subspace complemented in X, by the 

induction hypothesis and Corollary (4.1.13). Now suppose ఔܲ|௒ is strictly 
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singular for any ν. We construct a sequence of “almost disjoint” elements of 

Y. To do this, take an arbitrary ݕଵ from the unit sphere of Y. Pick ߥଵ <  so ߤ

that ฮݕଵ − ఔܲభݕଵฮ < 10ିଵ. Now find a norm one ݕଶ ∈ ܻ so that      

ฮ ఔܲభݕଶฮ <  10ିଶ/2. Proceeding further in the same manner, we find a 

sequence of ordinals 0 = ଴ߥ < ଵߥ < ଶߥ <. .., and a sequence of norm one 

elements ݕଵ,ݕଶ, . . .∈ ܻ , so that ‖ݕ௞ − ‖௞ݖ  < 10ି௞, where ݖ௞ = ( ఔܲೖ − ఔܲೖషభ)ݕ௞. 

The sequence (ݖ௞) is equivalent to the ܿ଴ basis, and the same is true for the 

sequence (ݕ௞). 

Moreover, span [ݖ௞: ݇ ∈ ℕ] is complemented in (ܺ,ߤ)ܥ. Indeed, let ߥ =

݌ݑݏ
௞
 ௞ . We claim that μ = ν. If ν < μ, then ఔܲ is an isomorphism onߥ

span[ݕ௞ : ݇ ∈ ℕ], contradicting our assumption. Let ௞ܹ = ( ఔܲೖ − ఔܲೖషభ)(ܥ଴(ܺ)), 

and find a norm one linear functional wk so that ݓ௞(ݖ௞)  =  ௞‖. Defineݖ‖ 

(ܺ,ߤ)଴ܥ:ܳ → ݂:(ܺ,ߤ)଴ܥ ↦෍ݓ௞൫( ఔܲೖ − ఔܲೖషభ)݂൯
௞

௞ݖ . 

Note that limk ฮ( ఔܲೖ − ఔܲೖషభ)݂ฮ  =  0, hence the range of Q is precisely the 

span of the elements ݖ௞. By Small Perturbation Principle, Y contains a 

subspace complemented in ܥ଴(ߤ,ܺ),. 

The above theorem shows that (ܭ)ܥ⨂ෙ  ܺ is subprojective if and only if 

both C(K) and X are. We do not know whether a similar result holds for 

other tensor products. We have: 

Proposition (4.2.11)[4]: Suppose K is a compact metrizable space, and 

W is either ℓ௣(1 ≤ ݌ < ∞) or ܿ଴. Then (ܭ)ܥ ⨶ܹ is subprojective if and 

only if  K is scattered. 
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Proof. Clearly, if K is not scattered, then C(K) is not subprojective. So 

suppose K is scattered. We deal with the case of ܹ = ℓ௣, as the ܿ଴ case is 

handled similarly. As before, we can assume that ܭ = [0,  where λ is a ,[ߣ

countable ordinal. We use transfinite induction on λ. The base case is easy: 

if λ is a finite ordinal, then (ߣ)ܥ ⨶ ℓ௣  =  ℓஶே ⨶ ℓ௣ is subprojective. 

Furthermore the same is true for ߣ =  ߱ (then C(λ) = c). 

Suppose, for the sake of contradiction, that λ is the smallest countable 

ordinal so that (ߣ)ܥ ⨶ ℓ௣ is not subprojective. Reasoning as before, we 

conclude that λ is a limit ordinal. Furthermore, (ߣ)ܥ ∼  hence ,(ߣ)଴ܥ

(ߣ)଴ܥ ⨶ ℓ௣ is not subprojective. 

Denote by ܳ௡ ∶ ℓ௣ → ℓ௣ the projection on the first n basis vectors in ℓ௣, 

and let ܳ௡ୄ = ܫ − ܳ௡. For ݂ ∈ > ߥ and an ordinal (ߣ)଴ܥ define ఔ݂ܲ ,ߣ  =

 ߯[଴,ఔ]݂, and ఔܲ
ୄ = ܫ − ఔܲ . 

Suppose X is a subspace of ܥ଴(ߣ) ⨶ ℓ௣ which has no subspaces 

complemented in ܥ଴(ߣ) ⨶ ℓ௣. By the induction hypothesis, ( ఔܲ ⊗  ℓ೛)|௒ isܫ

strictly singular for any ߥ < ஼బ(ఒ)ܫ) ,Furthermore .ߣ  ⊗ܳ௡)|௒ must be 

strictly singular. Indeed, otherwise Y has a subspace Z so that (ܫ஼బ(ఒ) ⊗

ܳ௡)|௓ is an isomorphism, whose range is subprojective (the range of 

஼బ(ఒ)ܫ ⊗ܳ௡ is isomorphic to the sum of n copies of C(λ), hence 

subprojective). Therefore, for any ߥ < ݊ and ߣ  ∈ ܫ) ,ܰ − ఔܲ
ୄ⊗ܳ௡ୄ)|௒ is 

strictly singular. Therefore we can find a normalized basis (ݔ௜) in Y, and 

sequences 0 = ଴ߥ < ଵߥ <. . . < and 0 ,ߣ = ݊଴ < ݊ଵ < . .., so that ฮݔ௜ −

( ఔܲ೔షభ
ୄ ⊗ܳ௡೔షభ

ୄ ௜ฮݔ( <  10ିଷ௜/2. By passing to a further subsequence, we can 

assume that ฮ( ఔܲ೔ ⊗ܳ௡೔)ݔ௜ฮ < 10ିଷ௜/2.Thus, by the Small Perturbation 
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Principle, it suffices to show the following statement: If (ݕ௜) is a normalized 

sequence is ܥ଴(ߣ) ⨶ ℓ௣, so that there exist non-negative integers 0 = ݊଴ <

݊ଵ < ݊ଶ < . ..,, and ordinals 0 = ଴ߥ < ଵߥ < ଶߥ <. . . <  with the property ,ߣ

that ݕ௜ = ൫( ఔܲ೔ − ఔܲ೔షభ) ⊗ (ܳ௡೔ − ܳ௡೔షభ)൯ݕ௜ for any i, then ܻ = ௜ݕ]݊ܽ݌ݏ ∶

݅ ∈ ℕ] is contractively complemented in (ܭ)ܥ ⨶ ℓ௣. 

Denote by X the span of all x’s for which there exists an i so that  ݔ =

൫( ఔܲ೔ − ఔܲ೔షభ) ⊗ (ܳ௡೔ − ܳ௡೔షభ)൯ݔ. Then Y is contractively complemented in 

(ܭ) ⨶ ℓ௣. In fact, we can define a contractive projection onto X as follows. 

Suppose first = ∑ ௝ܽ ⊗ ௝ܾ
ே
௝ୀଵ  , with bi’s having finite support in ℓ௣. Then set 

= ݑܲ ∑ ൫( ఔܲ೔ − ఔܲ೔షభ) ⊗ (ܳ௡೔ − ܳ௡೔షభ)൯ݑஶ
௜ୀଵ  . Due to our assumption on the 

bi’s, there exists M so that ܲݑ = ∑ ൫( ఔܲ೔ − ఔܲ೔షభ)  ⊗  (ܳ௡೔ − ܳ௡೔షభ)൯ݑ.ெ
௜ୀଵ   To show 

that ‖ܲݑ‖ ≤ ߝ define, for ,‖ݑ‖ = ௜ୀଵெ(௜ߝ) ∈ {−1, 1}ெ, the operator of 

multiplication by ∑ ௜߯[ఔ೔షభାଵ,ఔ೔]௜ୀଵߝܯ  on ܥ଴(ߣ). The operator ఌܸ ∈  is (ℓ௣)ܤ

defined similarly. Bot Uఌ and ఌܸ  are contractive. Furthermore,                          

ݑܲ = ఌ(Uఌ݁ݒܣ ⊗ ఌܸ)ݑ. Therefore, we can use continuity to extend P to a 

contractive projection from ܥ଴(ߣ) ⨶ ℓ௣ onto X.  

It to construct a contractive projection from X onto Y, we need to show 

that the blocks of X satisfy the ℓ௣-estimate. That is, if ݔ௜ = ൫ ఔܲ೔ − ఔܲ೔షభ൯ ⊗

൫ܳ௡೔ − ܳ௡೔షభ൯ݔ௜ for each i, then ‖∑ ௜௜ݔ  ‖௣ = ∑ ௜‖௣௜ݔ‖  . To this end, use trace 

duality to identify (ܥ଴(ߣ) ⨶ ℓ௣)∗ with ܤ(ℓ௣ , ℓଵ ([0, ,((ߣ ). ܲ∗ is the “block” 

projection onto the space of “block diagonal” operators which map the 

elements of ℓ௣ supported on (݊௜ିଵ, ݊௜] onto the vectors in ℓଵ supported on 

,௜ିଵߥ) ௜]. If ௜ܶߥ
ᇱ s are the blocks of such an operator, then ‖∑ ௜ܶ௜ ‖௣ᇱ =  ∑ ‖ ௜ܶ‖௣ᇱ௜  , 

where 1/݌ + ′݌/1  = 1. By duality, ‖∑ ௜௜ݔ  ‖௣ = ∑ ௜‖௣௜ݔ‖ .  
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Lemma (4.2.12)[4]: Suppose X is a Banach space, K is a compact 

metrizable scattered space, and 1 ≤ ݌ ≤ ݍ < ∞. Then, for any                            

ܶ ∈  ∏ ௤௣(ܺ,(ܭ)ܥ) , and any ߝ > 0, there exists a finite rank operator ܵ ∈

 ∏ ௤௣(ܺ,(ܭ)ܥ)  with ߨ௣௤(ܶ − ܵ) <  .ߝ

In proving Proposition (4.2.13) and Lemma (4.2.12), we consider the 

cases of p = q and p < q separately. If p = q, we are dealing with q-summing 

operators. By Pietsch Factorization Theorem, ܶ ∈  is q-summing (ܺ,(ܭ)ܥ)ܤ

if and only if there exists a probability measure μ on K so that T factors as 

 ෨ܶ   ⃘݆, where ݆:(ܭ)ܥ → ‖ܶ‖ is the formal identity, and (ߤ)௤ܮ ≤  .(ܶ)௤ߨ

Moreover, μ and ෨ܶ  can be selected in such a way that ฮ ෨ܶฮ =  ௤(ܶ). As K isߨ 

scattered, there exist distinct points ݇ଵ, ݇ଶ, . . .∈  and non-negative scalars ,ܭ

,ଶߙ,ଵߙ . .., so that ∑ ௜௜ߙ = 1, and ߤ = ∑ ௞೔௜ߜ௜ߙ   . 

Now suppose ܶ ∈ (ܶ)௤ߨ satisfies (ܺ,(ܭ)ܥ)ܤ = 1. Keeping the above 

notation, find ܰ ∈ ℕ so that (∑ ௜ஶߙ
௜ୀேାଵ )

భ
೜ <  Denote by u and v the .ߝ

operators of multiplication by ߯{௞భ,...,௞ಿ} and ߯{௞ಿశభ,௞ಿశమ,...}, respectively, 

acting on ܮ௤(ߤ). It is easy to see that rank ݑ ≤  ܰ, and ฮݒ௝ฮ < ܵ Then .ߝ  =

෨݆ܶݑ works in Lemma (4.2.12). If 1 ≤ ݌ < ∏  then ,ݍ ௤௣(ܺ,(ܭ)ܥ) =

∏ ௤ଵ(ܺ,(ܭ)ܥ) , with equivalent norms. Henceforth, we set p = 1. We have a 

probability measure μ on K, and a factorization ܶ = ෨݆ܶ, where ݆:(ܭ)ܥ →

:is the formal identity, and ෨ܶ (ߤ)௤ଵܮ (ߤ)௤ଵܮ → ܺ satisfies ฮ ෨ܶฮ ≤  ௤ଵ(ܶ) (cߨܿ

is a constant depending on q). 

In this case, the proof of Lemma (4.2.12) proceeds as for q-summing 

operators, except that now, we need to select N so that ܿ(∑ ௜ஶߙ
௜ୀேାଵ )ଵ/௤ <  .ߝ
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Proposition (4.2.13)[4]: Suppose K is a scattered compact metrizable 

space, and 1 ≤ ݌ ≤ ݍ < ∞. Then the space ∏ ,(ܭ)ܥ) ℓ௤)௤௣  is subprojective. 

Recall that ∏ (ܺ,ܻ)௤௣  stands for the space of (q,p)-summing operators – 

that is, the operators for which there exists a constant C so that, for any 

,ଵݔ . . . , ∋ ௡ݔ ܺ, 

൭෍‖ܶݍ‖݅ݔ
݅

൱
ݍ/1

≤ ݌ݑݏ ܥ
(∗ܺ)ܤ∋∗ݔ

൭෍ ݌|(݅ݔ)∗ݔ|

݅

൱
݌/1

 . 

The smallest value of C is denoted by ߨ௣௤(ܶ). 

Note that, if a compact Hausdorff space K is not scattered, then (ܭ)ܥ∗ 

contains ܮଵ, hence ∏ ,(ܭ)ܥ) ℓ௤)௤௣  is not subprojective.  

We have the following lemma: 

Proof. It is well known that, for any ܶ,ߨ௤௣(ܶ) =  ௤௣(ܶ∗∗). Moreover, byߨ

Lemma (4.2.12), any (q,p)-summing operator on C(K) can be approximated 

by a finite rank operator. Then we can identify ∏ ௤௣(ܺ,(ܭ)ܥ)  with the 

completion of the algebraic tensor product (ܭ)ܥ∗⨂ܺ in the appropriate 

tensor norm which we denote by α. Recalling that (ܭ)ܥ∗ = ℓଵ (the 

canonical basis in ℓଵ corresponds to the point evaluation functionals), we 

can describe α in more detail: for ݑ = ∑ ܽ௜௜ ௜ݔ ⨂ ∈ ℓଵ⨂ܺ, ఈ‖ݑ‖ =  ,(തݑ)௤௣ߨ

where ݑത: ℓஶ → ܺ is defined by ݑതܾ = ∑ ܾ(ܽ௜)ݔ௜௜ . Furthermore, by the 

injectivity of the ideal ∏  ௤௣ (തݑ)௤௣ߨ,  = ∘ ௑ߢ)௤௣ߨ  ܺ:௑ߢ ത), whereݑ  → ܺ∗∗ is 

the canonical embedding. Finally, ߢ௑ ∘ തݑ = ෤ݑ ෤∗∗, withݑ ∶ ܿ଴ → ܺ defined via 

= ෤ܾݑ  ∑ ܾ(ܽ௜)ݔ௜௜  . 

To finish the proof, we need to show that ℓଵ⨂ఈℓ௤ satisfies the ℓ௤ 

estimate. To this end, suppose we have a block-diagonal sequence (ݑ௜)௜ୀଵ௡ , 
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and show that ‖∑ ௜௜ݑ ‖ఈ
௤ ∼  ∑ ௜‖ఈݑ‖

௤
௜  . Abusing the notation slightly, we 

identify ݑ௜ with an operator from ℓஶே  ℓ௤ே (where N is large enough), and ݋ݐ 

identify ‖·‖ఈ with ߨ௤௣(·). 

First show that ‖∑ ௜௜ݑ ‖ఈ
௤ ≤ c୯∑ ௜‖ఈݑ‖

௤
௜ , where c is a constant (depending 

on q). We have disjoint sets ( ௜ܵ)௜ୀଵ௡  ݅݊ {1, . . . ,ܰ} so that ݑ௜ ௝݁ = 0 for ݆ ∉ ௜ܵ. 

Therefore there exists a probability measure ߤ௜, supported on ௜ܵ, so that 

௜݂‖௤ݑ‖ ≤ ܿଵ
௤ߨ௤௣(ݑ௜)௤‖݂‖ஶ

௤ି௣ ‖݂‖௅೛(ഋ೔)
௣  

for any ݂ ∈ ℓஶே  (ܿଵ is a constant). Now define the probability measure μ on 

{1, . . . ,N}: 

ߤ = ൭෍ߨ௤௣(ݑ௜)௤
௜

൱
ିଵ

෍ߨ௤௣(ݑ௜)௤ߤ௜
௜

. 

For ݂ ∈ ℓஶே , set ௜݂ = ݂߯ௌ೔  . Then the vectors ݑ௜ ௜݂ are disjointly supported in 

ℓ௤, and therefore, 

ะ(෍݅ݑ
݅

)݂ะ
ݍ

 = ෍ฮ݂݅݅ݑฮ
ݍ

݅

≤ ܿ1
(݅ݑ)݌ݍߨ෍ݍ

∞ฮ݂݅ฮݍ
݌−ݍ

 ฮ݂݅ฮ(݅ߤ)݌ܮ

݌

݅

≤ ܿ1
∞‖݂‖ݍ

݌−ݍ  ෍(݅ݑ)݌ݍߨ
(݅ߤ)݌ܮฮ݂݅ฮݍ

݌

݅

. 

An easy calculation shows that 

‖ ௜݂‖௅೛(ఓ೔)
௣ = ൭෍ߨ௤௣(ݑ௜)௤

௜

൱
ିଵ

 ෍ߨ௤௣(ݑ௜)௤‖ ௜݂‖௅೛(ఓ)
௣

௜

, 

hence 

ะ(෍ ݅ݑ
݅

)݂ะ
ݍ

≤ ܿ1
ݍ ൭෍ (݅ݑ)݌ݍߨ

ݍ

݅

൱‖݂‖∞
(݅ߤ)݌ܮ෍ฮ݂݅ฮ݌−ݍ

݌

݅

= ܿ1
ݍ ൭෍(݅ݑ)݌ݍߨ

ݍ

݅

൱ ‖݂‖∞
(ߤ)݌ܮ‖݂ ‖݌−ݍ

݌ . 

Therefore, ߨ௤௣(∑ ௜௜ݑ ) ≤ ܿ൫∑ ௤௜ ൯(௜ݑ)௤௣ߨ
ଵ/௤

, for some universal constant c. 
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Next show that ‖∑ ௜௜ݑ ‖ఈ
௤ ≥ ܿᇱ௤ ∑ ௜‖ఈݑ‖

௤
௜  , where c′ is a constant. There 

exists a probability measure μ on {1, . . . ,N} so that, for any ݂ ∈ ℓஶே , 

ะ(෍ݑ௜݂
௨

)ะ
௤

≥  ܿଶ
௤ߨ௤௣(෍ݑ௜

௜

)௤‖݂‖ஶ
௤ି௣‖݂‖௅೛(ఓ)

௣  

For each i let ߙ௜ = ฮߤ|ௌ೔ฮℓభಿ
, and ߤ௜ = ௜ߙ ௜ (ifߙ/௜ߤ = 0, then clearly ݑ௜ = 0). 

Then for any i, and any ݂ ∈ ℓஶே , 

௜݂‖௤ݑ‖  =  ะ(෍ݑ௜
௜

)(߯ௌ೔݂)ะ
௤

≤ ܿଶ
௤ߨ௤௣(෍ݑ௜

௜

)௤ߙ௜‖݂‖ஶ
௤ି௣  ‖݂‖௅೛(ఓ೔)

௣ , 

hence ߨ௤௣(ݑ௜) ≤ ௜ߙ′ܿ
ଵ/௤ ߨ௤௣(∑ ௜௜ݑ  ) (c′ is a constant). As ∑ ௜ߙ = 1௜  , we 

conclude that ∑ ௤௜(௜ݑ)௤௣ߨ ≤  ܿᇱ௤ߨ௤௣(∑ ௜௜ݑ ). 

We refer for an introduction into continuous fields of Banach spaces. To 

set the stage, suppose K is a locally compact Hausdorff space (the base 

space), and ( ௧ܺ)௧∈௄ is a family of Banach spaces (the spaces ௧ܺ  are called 

(fibers). A vector field is an element of ∏ ௧ܺ௧∈௄  . A linear subspace X of 

∏ ௧ܺ௧∈௄  is called a continuous field if the following conditions hold: 

(i) For any t ∈ K, the set {(ݐ)ݔ ∶ ݔ  ∈ ܺ} is dense in ௧ܺ . 

(ii)  For any x ∈ X, the map ݐ ↦  is continuous, and vanishes at ‖(ݐ)ݔ‖

infinity. 

(iii) Suppose x is a vector field so that, for any ߝ > 0 and any ݐ ∈  ,ܭ

there exist an open neighborhood ܷ ∋ ݕ and ݐ ∈ ܺ for which 

(ݏ)ݔ‖ − ‖(ݏ)ݕ < ∋ ݔ for any s ∈ U. Then ߝ  ܺ. 

Equipping X with the norm ‖ݔ‖ = ௧ݔܽ݉   we turn it into a Banach ,‖(ݐ)ݔ‖ 

space. 

We prove: 
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Proposition (4.2.14)[4]: Suppose K is a scattered metrizable space, X is 

a separable con-tinuous vector filed on K, so that, for every ݐ ∈  the fiber ,ܭ

௧ܺ  is subprojective. Then X is subprojective. 

Proof. Using one-point compactification if necessary, we can assume that K 

is compact. As before, we assume that ܭ = [0,  .(λ is a countable ordinal) [ߣ

We denote by ܺ(଴) the set of all ݔ ∈  ܺ which vanish at λ. If ߥ ≤  we ,ߣ

denote by [ܺఔ] the set of all ݔ ∈ ఒܺ  which vanish outside of [0, [଴,ఔ]߯ݔ .[ߥ ∈

ܺ for any x ∈ X, hence [ܺఔ] is a Banach space. We then define the restriction 

operator ఔܲ ∶ ܺ → [ܺఔ]. We denote by ܳఔ :ܺ → ܺఔ the operator of evaluation 

at ν. 

We say that a countable ordinal λ has Property P if, whenever X is a 

continuous separable vector field whose fibers are subprojective, then X is 

subprojective. Using transfinite induction, we prove that any countable 

ordinal has this property. 

The base of induction is easy to handle. Indeed, when λ is finite, then X 

embeds into a direct sum of (finitely many) subprojective spaces ܺఔ . Now 

suppose, for the sake of contradiction, that λ is the smallest ideal failing 

Property P. Note that λ is a limit ordinal. Indeed, otherwise it has an 

immediate predecessor ିߣ, and X embeds into a direct sum of two 

subprojective spaces – namely, [ܺఒష] and ఒܺ. 

Suppose Y is a subspace of X, so that no subspace of Y is complemented 

in X. We shall achieve a contradiction once we show that Y contains a copy 

of ܿ଴. 

By Proposition (4.1.2), ܳఒ is strictly singular on Y. Passing to a smaller 

subsequence if necessary, we can assume that, Y has a basis (ݕ௜)௜∈ℕ, so that 
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(i) for any finite sequence (ߙ௜), ‖∑ ௜௜ݕ௜ߙ  ‖ > ௜ݔܽ݉   ,௜|/2, and (ii) for any iߙ| 

‖ܳఒ ݕ௜‖ < 10ିସ௜. Consequently, for any ݕ ∈ ௝ݕ]݊ܽ݌ݏ ∶ ݆ > ݅],‖ܳఒݕ‖ <  10ିସ௜ . 

Indeed, we can assume that y is a norm one vector with finite support, and 

write y as a finite ݕ ݁݉ݑݏ = ∑ ௝௝ݕ௝ߙ  .  

By the above, |ߙ௜| ≤  2 for every i. Consequently, 

‖ܳఒݕ‖ ≤ ∑ ௝ฮ௝ݕ௝|ฮܳఒߙ|  ≤ 2∑ 10ିସ௝௝வ௜   <  10ିସ௜. 

Now construct a sequence ߥଵ < ଶߥ <. . . < of ordinals, a sequence 1 ߣ =

݊ଵ < ݊ଶ  < . .. or positive integers, and a sequence ݔଵ, ,ଶݔ . .. of norm one 

vectors, so that (i) ݔ௝ ∈ ௜ݕ]݊ܽ݌ݏ ∶ ௝݊ ≤ ݅ < ௝݊ାଵ], (ii) ฮ ఔܲ೔ݔ௜ฮ <  10ିସ௜, and 

(iii)  ฮ ఔܲ೔శభݔ௜ฮ < 10ିସ௜. To this end, recall that, by Proposition (4.1.2) again, 

ఔܲ  |௒ is strictly singular for any ν < λ. Pick an arbitrary ߥଵ < λ, and find a 

norm 1 vector ݔଵ ∈ ,ଵݕ]݊ܽ݌ݏ  . . . ௡మషభ] so that ฮݕ, ఔܲభݔଵฮ < 10ିସ. We have 

‖ܳఒݔଵ‖ < 10ିସ. By continuity, we can find ߥଶ > ଵ so that ฮߥ ఔܲమݔଵฮ < 10ିସ. 

Next find a norm one ݔଶ ∈ ௡మݕ]݊ܽ݌ݏ  , . . . , ௡యషభ] so that ฮݕ ఔܲమݔଵฮ <  10ି଼. 

Proceed further in the same manner. 

We claim that the sequence (ݔ௜) is equivalent to the canonical basis in ܿ଴. 

Indeed, for each i let ݔ௜ᇱᇱ  =  ఔܲ೔ݔ௜ + ఔܲ೔శభݔ௜, and ݔ௜ᇱ = ௜ݔ −  ௜ᇱᇱ . Since weݔ 

are working with the sup norm, ‖ݔ௜ᇱ‖ = ‖௜ݔ‖  =  1 for any i. Furthermore, 

the elements ݔ௜ᇱ are disjointly supported, hence, for any (ߙ௜) finite sequence 

of scalars (ߙ௜),∑ ௜ᇱ‖௜ݔ௜ߙ‖ = ௜ݔܽ݉   .|௜ߙ| 

By the triangle inequality, 

อะ෍ߙ௜ݔ௜
௜

ะ − ะ෍ߙ௜ݔ௜ᇱ

௜

ะอ ≤෍ |௜ߙ|
௜

‖௜ᇱᇱݔ‖ < ݔܽ݉
௜

௜| ෍2ߙ| · 20ିସ௜
ஶ

௜ୀଵ

 < 10ିଷ݉ܽݔ
௜

 ,|௜ߙ|

which yields the desired result. 
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To state a corollary of Proposition (4.2.14), recall that a ܥ∗-algebra A is 

CCR (or liminal) if, for any irreducible representation π of A on a Hilbert 

space (ܣ)ߨ,ܪ =  algebra A is scattered if every positive linear-∗ܥ A .(ܪ)ܭ

functional on A is a sum of pure linear functionals (݂ ∈  is called pure if it ∗ܣ

belongs to an extreme ray of the positive cone of ܣ∗). For equivalent 

descriptions of scattered ܥ∗-algebras. 

Corollary (4.2.15)[4]: Any separable scattered CCR ܥ∗-algebra is 

subprojective. 

Proof. Suppose A is a separable scattered CCR ܥ∗-algebra. As shown, the 

spectrum of a separable CCR algebra is a locally compact Hausdorff space. 

If, in addition, the algebra is scattered, then its spectrum ܣመ is scattered as 

well. In fact, ܣመ is separable. It is easy to see that any separable locally 

compact Hausdorff space is metrizable. We have A can be represented as a 

vector field over ܣ෡ , with fibers of the form (ܣ)ߨ, for irreducible 

representations π. As A is CCR, the spaces (ܣ)ߨ =  గ being aܪ) (గܪ)ܭ

separable Hilbert space) are subprojective. To finish the proof, apply 

Proposition (4.2.14). 

The last corollary leads us to 

Conjecture (4.2.16)[4]: A separable ܥ∗-algebra is scattered if and only if 

it is subprojective. 

It is known  that a scattered ܥ∗-algebra is GCR. However, it need not be 

CCR (consider the unitization of ܭ(ℓଶ)). 

We establish: 

Proposition (4.2.17)[4]: Suppose ℭఌ  is a symmetric sequence space, not 
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containing ܿ଴. 

Suppose, furthermore, that (ݖ௡) ⊂ ℭఌ is a normalized sequence, so that, for 

every k, ݈݅݉௡ ‖ܳ௞ݖ௡‖ = 0. Then, for any ε > 0, ℭఌ contains sequences (̃ݖ௡) 

and (ݖ௡ᇱ ), so that: 

(i) (̃ݖ௡)  is a subsequence of (ݖ௡). 

(ii) ∑ ௡ݖ̃‖ − ௡ᇱݖ  ‖௡  <  .ߝ 

(iii) (ݖ௡ᇱ ) lies in the subspace Z of ℭఌ  , with the property that (i) Z is 3-

isomorphic to either ℓଶ, ,ߝ ⊕ℓଶ ݎ݋  and (ii) Z is the range of a ,ߝ

projection of norm not exceeding 3. 

Proof. We implie the existence of (̃ݖ௡)  and  (ݖ௡ᇱ ), so that (i) and (ii) are 

satisfied, and ݖ௞ᇱ = ܽ ⊗ ଵ௞ܧ + ܾ ⊗ ଵ௞ܧ + ܿ௞ ≤ ݇) ௞௞ܧ⊗  2). Thus, ݖ௡ᇱ ⊂

ܼ = ܼ௥ + ܼ௖ + ܼௗ, where ܼ௥ = ܽ]݊ܽ݌ݏ  ⊗ ଵ௞ܧ ∶ ݇ ≥ 2] (the row 

component), ܼ௖ = ܾ]݊ܽ݌ݏ  ⊗ ଵ௞ܧ ∶ ݇ ≥ 2] (the column component), and ܼௗ 

(the diagonal component) contains ܿ௞ ௞௞ܧ⊗ , for any k. More precisely, we 

can write ܿ௞ =  .௞ are unitaries, and ݀௞ is diagonalݒ ௞ andݑ ௞, whereݒ௞݀௞ݑ

Then we set ܼௗ = ௞ݒ௜௜ܧ௞ݑ]݊ܽ݌ݏ ௞௞ܧ⊗ ∶ ݅ ∈ ℕ,݇ ≥ 2]. 

It remains to build contractive projections ௥ܲ , ௖ܲ, and ௗܲ onto ܼ௥ , ܼ௖ , and 

ܼௗ, respectively, so that ܼ௖ ∪ ܼௗ ⊂ ௥ܲ ݎ݁݇  ,ܼ௥ ∪ ܼௗ ⊂ ௖ܲ, and ܼ௥ ݎ݁݇  ∪

ܼ௖ ⊂ ܲ ௗܲ. Indeed, then ݎ݁݇ =  ௥ܲ + ௖ܲ + ௗܲ is a projection onto ܼ௥ +  ܼ௖ +

 ܼௗ, and the latter space is completely isomorphic to ܼ଴ = ܼ௥ ⊕ܼ௖ ⊕ܼௗ . 

The spaces ܼ௥ , ܼ௖, and ܼௗ are either trivial (zero-dimensional), or 

isomorphic to ℓଶ, ℓଶ, and ε, respectively. 

ௗܲ is nothing but a coordinate projection, in the appropriate basis: 

ௗܲ൫ݑ௞ܧ௜௝ݒℓ⊗ܧ௞ℓ൯ = ቄݑ௞ܧ௜௜ݒ௞ ௞௞ܧ⊗     ݇ =  ℓ ≥  2, ݅ =  ݆
݁ݏ݅ݓݎℎ݁ݐ݋                             0
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(for the sake of convenience, we set ݑଵ = ଵݒ  = ℓమ). Next construct ௥ܲܫ   ( ௖ܲ  

is dealt with similarly). If a = 0, just take ௥ܲ = 0. Otherwise, let ܽ′ = ܽ/‖ܽ‖, 

and find ݂ ∈ ℭఌ∗ so that ‖݂‖ = 1 = 〈݂, ܽ′〉. For ݔ = ∑ ௞ℓ௞,ℓܧ⊗௞ℓݔ  , define 

௥ܲݔ =  ܽ′ ⊗෍〈݂, ଵℓܧ〈ଵℓݔ
ℓஹଶ

, 

hence ‖ ௥ܲݔ‖ఌଶ = ∑ |〈݂, ଵℓ〉|ଶℓவଶݔ . It remains to show ‖ ௥ܲݔ‖ ≤  This .‖ݔ‖

inequality is obvious when ௥ܲݔ = 0. Otherwise, set, for ℓ ≥  2, 

ℓߙ =
തതതതതതതതത〈ଵℓݔ,݂〉

(∑ |〈݂, ଵℓ〉|ଶℓவଶݔ )ଵ/ଶ , 

ݕ = ℓమܫ  ⊗∑ ℓଵℓஹଶܧℓߙ  , andݖ = ஶ‖ݕ‖ଵଵ. Thenܧ⊗ℓଶܫ =  (∑ ℓ|ଶℓஹଶߙ| )ଵ/ଶ =

1 = ݕݔݖ ஶ, and‖ݖ‖ = ∑ ଵℓℓஹଶݔℓߙ   ,ଵଵ. Thereforeܧ⊗

‖ ௥ܲݔ‖ఌ = ൭݂,෍ߙℓݔଵℓ
ℓஹଶ

൱ ≤ ะ෍ߙℓݔଵℓ
ℓஹଶ

ะ
ఌ

= ะ෍ߙℓݔଵℓ⊗ܧଵଵ
ℓஹଶ

ะ
ఌ

 = ఌ‖ݕݔݖ‖

≤ ஶ‖ݕ‖ఌ‖ݔ‖ஶ‖ݖ‖ = ఌ‖ݔ‖   , 

which is what we need. 

Proposition (4.2.18)[4]: Suppose ε is a symmetric sequence space, not 

containing ܿ଴. Then ℭఌ is subprojective if and only if  ε is subprojective. 

The assumptions of this proposition are satisfied, for instance, if                 

ε =  ℓ୮ (1 ≤ p < ∞), or if ε is the Lorentz space l(w, p): (Given ݌, ݎ ∈ (0,∞], 

the Lorentz space ܮ௣,௥(Ω) is defined by  

௣,௥(Ω)ܮ = ൛݂ ∈ ௣,௥   ‖݂‖௣,௥;ஐ‖݂‖ ;(Ω)ܯ < ∞ൟ)[10]. However, not every 

symmetric sequence space is subprojective. Indeed, suppose ε is 

Pelczynski’s universal space: it has an unconditional basis (ݑ௜) so that any 

other unconditional basis is equivalent to its subsequence. As explained in, ε 

has a symmetric basis. Fix 1 < ݌ < ݍ < 2. Then the Haar basis in ܮ௣(0, 1) 
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is unconditional, hence ܮ௣(0, 1) is isomorphic to a complemented subspace 

X of ε. It is well known that ℓ௤ is contained in ܮ௣(0, 1). Call the 

corresponding subspace of ε by ܺ′. 

Then no subspace of ܺ′ is complemented in E: otherwise, ܮ௣(0, 1) would 

contain a complemented copy of ℓ௤, which is impossible. 

For the proof, we need a technical result. 

Proof. The space ℭఌ contains an isometric copy of ε, hence 

thesubprojectivity of ℭఌ implies that of ε. To prove the converse, suppose ε 

is subprojective, and ܼ଴ is a subspace of ℭఌ , and show that it contains a 

further subspace Z, complemented in ℭఌ. To this end, find a normalized 

sequence (ݖ௡) ⊂ ܼ଴, so that ݈݅݉௡ ‖ܳ௞ݖ௡‖ = 0 for every k. By Proposition 

௡ᇱݖ) has a subsequence (௡ݖ) ,(4.2.18) ), contained in a subspace ܼଵ, which is 

complemented in ℭఌ , and isomorphic either to ߝ, ℓଶ, or ߝ ⊕  ℓଶ. By 

Proposition (4.1.1), ܼଵ is subprojective, hence ݖ]݊ܽ݌ݏ௡ᇱ ∶ ݊ ∈ ℕ] contains a 

subspace complemented in ܼଵ, hence also in ℭఌ . 

As a consequence we obtain: 

Proposition (4.2.19)[4]: The predual of a von Neumann algebra A is 

subprojective if and only if A is purely atomic. 

We say that A is purely atomic if any projection in it has an atomic 

subprojection. It is easy to see that this happens if and only if                   

ܣ = (∑ ௜(௜ܪ)ܤ )ஶ. The “if” direction is easy. Conversely, if A is purely 

atomic, denote by (݁௜)௜∈ூ a maximal collection of mutually non-equivalent 

atomic projections in A. Denote by z(p) the central cover of p. Then 

)ݖ(௜݁)ݖ ௝݁) = 0 if ݅ ≠ ݆, and ∑ ௜(௜݁)ݖ = 1. Consequently, ܣ = ∑ ௜ܣ(௜݁)ݖ  . 
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For a fixed i, let ( ௝݂)௝∈௃(௜) be a maximal family of mutually orthogonal 

atomic projections, so that ݁௜ is one of these projections. The ௝݂  have the ݏ’ 

same central cover (namely, ݖ(݁௜)), hence they are all equivalent to ݁௜. 

Furthermore, (݁௜) = ∑ ௝݂௝∈௃(௜)   , hence ݖ(݁௜)ܣ is isomorphic to ܤ(ℓଶ(ܬ(݅))). 

Proof. If a von Neumann algebra A is not purely atomic, then, as explained, 

,ଵ(0ܮ contains a (complemented) copy of ∗ܣ 1). This establishes the “only 

if” implication of Proposition (4.2.19). Conversely, if A is purely atomic, 

then ܣ∗ is isometric to a (contractively complemented) subspace of ℭଵ(ܪ), 

and the latter is subprojective.  

We say that X is p-disjointly homogeneous (p-DH for short) if every 

disjoint normalized sequence contains a subsequence equivalent to the 

standard basis of ℓ௣. 

For the sake of completeness we have 

Proposition (4.2.20)[4]: Let X be a p-convex. Then every subspace, 

spanned by a disjoint sequence equivalent to the canonical basis of ℓ௣, is 

complemented. 

Proof. Let (ݔ௞) ⊂ ܺ be a disjoint normalized sequence. Since X is DH, by 

passing to a subsequence, (ݔ௞) is an ℓp basic sequence. Then, in the p-

concavification ܺ(௣) the disjoint sequence (ݔ௞௣) is an ℓଵ basic sequence. 

Therefore, there exists a functional ݔ∗ ∈ (௞௣ݔ)∗ݔ such that [(௞௣ݔ)] = 1 for 

all k. By the Hahn-Banach Theorem ݔ∗ can be extended to a positive 

functional in ܺ(௣)
∗. Define a seminorm ‖ݔ‖௣ = ((|௣ݔ|)∗ݔ)

భ
೛ on X. Denote by 

N the subset of X on which this seminorm is equal to zero. Clearly, N is an 

ideal, therefore, the quotient space ෨ܺ = ܺ/ࣨ is a Banach lattice, and the 



107 
 

quotient map ܳ:ܺ → ෨ܺ  is an orthomorphism. With the defined seminorm ෨ܺ 

is an abstract ܮ௣-space, and the disjoint sequence ܳ(ݔ௞) is normalized. 

Therefore it is an ℓ௣ basic sequence that spans a complemented subspace (in 

particular, Q is an isomorphism when restricted to [ݔ௞]). Let ෨ܲ be a 

projection from ෨ܺ onto [ܳ(ݔ௞)]. 

Then ܲ = ܳିଵ ෨ܲܳ is a projection from X onto [ݔ௞]. 

Proposition (4.2.21)[4]: Let X be a p-convex, p-disjointly homogeneous 

Banach lattice (p ≥ 2). Then any subspace of X contains a complemented 

copy of either ℓ௣ or ℓଶ. Consequently, X is subprojective. 

Proof. First, note that X is order continuous. Let ܯ ⊆ ܺ be an infinite 

dimensional separable subspace. Then there exists a complemented order 

ideal in X with a weak unit that contains M. Therefore, without loss of 

generality, we may assume that X has a weak unit. Then there exists a 

probability measure μ  such that we have continuous embeddings 

(ߤ)ஶܮ ⊆ ܺ ⊆ (ߤ)௣ܮ ⊆ (ߤ)ଶܮ ⊆  .(ߤ)ଵܮ

Consequently, there exists a constant ܿଵ > 0 so that ܿଵ‖ݔ‖௣ ≤  for any ‖ݔ‖

ݔ ∈ ܺ. 

We have the following: 

Case 1. M contains an almost disjoint bounded sequence. By Proposition 

(4.2.20) M contains a copy of ℓ௣ complemented in X. 

Case 2. The norms ‖·‖ and ‖·‖ଵ are equivalent on M. Thus, there exists ܿଶ >

0 so that, for any ݕ ∈  ,ܯ

ܿଶ‖ݕ‖ଶ ≥  ܿଶ‖ݕ‖ଵ  ≥ ‖ݕ‖  ≥  ܿଵ‖ݕ‖௣  ≥  ܿଵ‖ݕ‖ଶ. 
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In particular, M is embedded into ܮଶ(ߤ) as a closed subspace. The 

orthogonal projection from ܮଶ(ߤ) onto M then defines a bounded projection 

from X onto M. 

The preceding result implies that Lorentz space Λ௣ ,ܹ(0,1) is subprojective 

since it is p-DH and p-convex (p ≥ 1). 

If X is a Banach lattice, and 1 ≤ ݌  < ∞, denote by ܺ(ℓ௣)෫  the completion of 

the space of all finite sequences (ݔଵ, . . . , ௜ݔ ௡) (withݔ ∈ ܺ), equipped with 

the norm ‖(ݔଵ, . . . , ‖(௡ݔ =  ฮ(∑ ௜|௣௜ݔ|  )ଵ/௣ฮ, where 

(෍ ௜|௣ݔ|
௜

)ଵ/௣  = ݌ݑݏ  ൝|෍ߙ௜ݔ௜
௜

| ∶ ෍ ௜|௣ᇱߙ|
௜

≤ 1ൡ ℎݐ݅ݓ,
1
݌ +

1
′݌  = 1. 

We have: 

Proposition (4.2.22)[4]: Suppose X is a subprojective separable space, 

with the lattice structure given by an unconditional basis, and 1 ≤ ݌ < ∞. 

Then ܺ(ℓ௣)෫  is subprojective.  

Proof. To show that any subspace ܻ ⊂ ܺ(ℓ௣)෫  has a further subspace Z, 

complemented in ܺ(ℓ௣)෫ , ,ଶݔ,ଵݔ ݐ݈݁ . .. and ݁ଵ, ݁ଶ, . .. be the canonical bases in 

X and ℓ௣, respectively. Then the elements ݑ௜௝ = ௜ݔ ⊗ ௝݁ form an 

unconditional basis in ܺ(ℓ௣)෫ , with 

 ቛ෍ܽ௜௝ݑ௜௝ቛ = ቱ෍ቌ෍ |ܽ௜௝|௣
௝

ቍ

ଵ/௣

௜

௜ቱݔ

௑

 =  ቯ෍ቌ ݌ݑݏ
∑ |ఈೕ|೛ᇲೕ ஸଵ

|෍ߙ௜௝ܽ௜௝
௝

| ቍݔ௜
௜

ቯ

௑

         (4) 

Let ௡ܲ be the canonical projection onto ݑ]݊ܽ݌ݏ௜௝: 0 ≤ ݅ ≤ ݊, ݆ ∈ ℕ], and set 

௡ܲ
ୄ = ܫ − ௡ܲ. The range of ௡ܲ is isomorphic to ℓ௣, hence, if ௡ܲ|௒ is not 

strictly singular for some n, we are done, by Corollary (4.1.3). If ௡ܲ|ܻ is 

strictly singular for every n, find a normalized sequence (ݕ௜) in Y, and 1 =
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݊ଵ < ݊ଶ < . .., so that ฮ ௡ܲ೔ݕ௜ฮ,ฮ ௡ܲ೔శభ
ୄ ௜ฮݕ < 100ି௜/2. By small perturbation, it 

remains to prove the following: if ݕ௜ = ௡ܲ೔
ୄ

௡ܲ೔శభݕ௜ , then ݕ]݊ܽ݌ݏ௜ : ݅ ∈ ℕ] 

contains a subspace, complemented in ܺ(ℓ௣)෫ . Further, we may assume that 

for each i there exists ܯ௜ so that we can write 

௜ݕ = ෍ ܽ௞ೕݑ௞ೕ
௡೔ழ௞ஸ௡೔శభ,ଵஸ௝ஸெ೔

 . 

For each ݇ ∈ [݊௜ + 1, ݊௜ାଵ] (and arbitrary ݅ ∈ ܰ) find a finite sequence 

௜௝(௞ೕߙ)
ெ = 1 so that ∑ |௞ೕߙ|

௣ᇱ
௝ = 1, and |∑ ௞ೕܽ௞ೕ௝ߙ | = (∑ |ܽ௞ೕ|

௣
௝ )ଵ/௣. 

Define ܷ:ܺ(ℓ௣)෫ ௞ೕݑ:ܺ→ ↦  ௞. By (4.2.22), U is a contraction, andݔ௞ೕܽ௞ೕߙ

ܷ|௦௣௔௡[௬೔:௜∈ே] is an isometry. To finish the proof. 

Recall that X is subprojective, and apply Corollary (4.1.3). 

Recall that, for a Banach space X, we denote by Rad(X) the completion of 

the finite sums ∑ ,ଵݎ) ௡ݔ௡ݎ ,ଶݎ . . .௡   are Rademacher functions, and ݔଵ,ݔଶ, . . .∈ ܺ) 

in the norm of ܮଵ(ܺ) (equivalently, by Khintchine-Kahane Inequality, in the 

norm of ܮ௣(ܺ)). If X has a unconditional basis (ݔ௜) and finite cotype, then 

Rad(X) is isomorphic to ܺ(ℓଶ)෫  (here we can view X as a Banach lattice, with 

the order induced by the basis (ݔ௜)). Indeed, X is q-concave, forsome q. An 

array (amn) can be identified both with an element of Rad(X) (with the norm 

∫ ‖∑ ∑ ܽ௠௡ݎ௡ݔ௠௡௠ ‖ଵ
଴  ), and with an element of ܺ(ℓଶ)෫  (with the norm 

ฮ∑ (∑ |ܽ௠௡|ଶ௡ )ଵ/ଶݔ௠௠ ฮ). Then 
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ቱ෍൭෍|ܽ௠௡|ଶܦ
௡

൱

ଵ
ଶ

௠ݔ
௠

ቱ ≤ ะ෍න |෍ܽ௠௡ݎ௡|ݔ௠
௡

ଵ

଴௠

ะ = ะන |෍෍ܽ௠௡ݎ௡ݔ௠|
௡௠

ଵ

଴
ะ

≤ ะන ෍෍ܽ௠௡ݎ௡ݔ௠
௡௠

ଵ

଴
ะ ≤ ൭න ะ෍෍ܽ௠௡ݎ௡ݔ௠

௡௠

ะ
௤ଵ

଴
൱

ଵ
௤

≤ ௤ܯ ቱ൭න อ෍෍ܽ௠௡ݎ௡ݔ௠
௡௠

อ
௤ଵ

଴
൱

ଵ
௤

ቱ ≤ ௤ܯ ቱ෍൭න อ෍ܽ௠௡ݎ௡
௡

อ
௤ଵ

଴
൱

ଵ
௤

௠ݔ
௠

ቱ ≤ 

௤ܯܥ ቯ෍൭෍ |ܽ௠௡|ଶ
௡

൱
ଵ/ଶ

௠ݔ
௠

ቯ , 

where ܯ௤ is a q-concavity constant, while D and C come from Khintchine’s 

inequality. Thus, we have proved: 

Proposition (4.2.23)[4]: If X is a subprojective space with an 

unconditional basis andnon-trivial cotype, then Rad(X) is subprojective. 
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