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Chapter 1 

On Isomorphically Polyhedral ℒஶ-Spaces 

 

We show that there exist ℒஶ-subspaces of ageneralized. 

Section (1.1): Isomorphically Polyhedral Spaces 

A Banach space is said to be polyhedral if the closed unit ball of every 

finite dimensional subspace is the closed convex hull of a finite number of 

points. Polyhedrality is a geometrical notion: ܿ is polyhedral while c is not. 

It is also an hereditary notion: every subspace of a polyhedral space is 

polyhedral. The isomorphic notion associated with polyhedrality is: A 

Banach space is said to be isomorphically polyhedral if it admits a 

polyhedral renorming. The simplest examples of isomorphically polyhedral 

spaces are the (ߙ)ܥ spaces for ߙ an ordinal, and their subspaces. In [5] we 

surveyed what is known about polyhedral ℒஶ-spaces, which can be 

summarized as follows: 

(i) There are polyhedral spaces which are not ℒஶ: indeed, any non ℒஶ 

subspace of ܿ(߁) — recall that subspaces of ܿ(߁) are ℒஶ-spaces if 

and only if they are isomorphic to ܿ(ܫ). 

(ii) There are Lindenstrauss spaces not polyhedral: 0]ܥ, 1]. 

(iii) A result of Fonf [8] asserts that preduals of ℓଵ are isomorphically 

polyhedral. 

(iv) Fonf informed us that the result fails for ℓଵ(߁): Kunen’s compact ࣥ 

provides, under CH, a scattered, non metrizable, compact so that 

 space has the rare property that every uncountable set of (ࣥ)ܥ
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elements contains one that belongs to the closure of the convex hull 

of the others. And this property was used by Jiménez and Moreno to 

show that every equivalent renorming of ܥ(ࣥ) has only a countable 

number of weak*-strongly exposed points. Thus, no equivalent 

renorming can be polyhedral. At the same time ܥ(ࣥ)∗ =  ℓଵ(߁) 

since ࣥ is scattered. 

(v) The trees T for which ܥ(ܶ) is isomorphically polyhedral are 

characterized. Thus, there are scattered compact K (not depending on 

CH as it occurs with Kunen’s compact) such that (ܭ)ܥ is not 

isomorphically polyhedral. 

Whether isomorphically polyhedral ܮஶ-spaces are isomorphically 

Lindenstrauss. The purpose of this note is to show that the answer is no. 

A Banach space X is said to be an ℒஶ,⋋-space if every finite dimensional 

subspace F of X is contained in another finite dimensional subspace of X 

whose Banach-Mazur distance to the corresponding space ℓஶ
  is at most λ . 

The space X is said to be an ℒஶ-space if it is an ℒஶ,⋋-space for some λ. The 

basic theory and examples of ℒஶ-spaces. A Banach space X is said to be a 

Lindenstrauss space if it is an isometric predual of some space ܮଵ(ߤ). 

Lindenstrauss spaces correspond to ℒஶ,ଵశ-spaces. A Lindenstrauss space is 

an ℒஶ,ଵ-space if and only if it is polyhedral (i.e., the unit ball of every finite 

dimensional subspace is a polytope). 

A Banach space X is said to have Pelczyński’s property (V) if each 

operator defined on X is either weakly compact or an isomorphism on a 

subspace isomorphic to ܿ. Pelczyński shows that C(K)-spaces enjoy 
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property (V), and Johnson and Zippin  that Lindenstrauss spaces also have 

(V). 

Let ߙ: ܣ → ܼ and ߚ: ܤ → ܼ be operators acting between Banach spaces. the 

pull-back space PB is defined as ܲܤ = ,ߙ)ܤܲ (ߚ = {(ܽ, ܾ) ∈ ܣ ⊕ஶ :ܤ (ܽ)ߙ =

 It has the property of yielding a commutative diagram .{(ܾ)ߚ

 

 

                                                                                                              (1) 

 

 

in which the arrows after primes are the restriction of the projections onto 

the corresponding factor. Needless to say (1) is minimally commutative in 

the sense that if the operators ߚ ᇱᇱ ∶ → ܥ  ߙ′′ and ܣ  ∶ → ܥ  ߙ satisfy ܤ  ∘

ߚ′′ = ߚ ∘ ߛ then there is a unique operator ,ߙ′′ ∶ ܥ → = ߚ′′ such that ܤܲ

= ߚ′′ and ߛߚ′  (ܿ)ߛ ,Clearly .ߛߚ′   = ,(ܿ)ߚ′′)  ‖ߛ‖ and ((ܿ)ߙ′′ ≤

,‖ߙ′′‖}ݔܽ݉   is. As a consequence of ߙ is onto if ߙ′ Quite clearly .{‖ߚ′′‖

this, if one has an exact sequence  

                                                                                                                      (2) 

and an operator ݑ ∶ → ܣ   ܼ then one can form the pull-back diagram of the 

couple (ߨ,  :(ݑ

 

 

                                                                                                                (3) 

 ߚ′
PB 

 ߙ′

 ߚ
B Z 

A 

 ߙ

0 Y X Z 0 
 ߡ ߨ

0 Y X Z 0 
 ߡ ߨ

A PB 

ᇱ ݑ
ᇱ ߨ

u 
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Recalling that ′ߨ is onto and taking ݆(ݕ) = (0,  it is easily seen that the ,((ݕ)ߡ

following diagram is commutative: 

 

                                                                                                                (4) 

 

 

Thus, the lower sequence is exact, and we shall refer to it as the pull-back 

sequence. The well-known splitting criterion is: the pull-back sequence 

splits if and only if u lifts to X; i.e., there is an operator ܷ: ܣ → ܺ such that 

= ܷߨ  .ݑ 

Theorem (1.1.1)[1]: There is a separable isomorphically polyhedral ℒஶ 

space that is not isomorphically Lindenstrauss. Moreover, it is a subspace of 

an isomorphically polyhedral Lindenstrauss space. 

Proof. We need to recall from [1] the existence of nontrivial exact sequences 

 

in which the quotient map q is strictly singular. This fact makes Ω fail Pe 

lczy´nski’s property (V). Since Lindenstrauss spaces share with (ܭ)ܥ-spaces 

Pe lczyński’s property (V), the space Ω is not isomorphic to a Lindenstrauss 

space. Of course it is an ℒஶ-space since this is a 3-space property. Thus, our 

purpose is to show that there is an Ω as above that is isomorphically 

polyhedral. 

We recall from [1] the parameter ߩே(ܿ), defined as the the least constant 

such that if ܶ: ܿ → ℓஶ(߱ே) is a bounded linear operator such that 

0 Y X Z 0 
 ߡ ߨ

A PB 

ᇱ ݑ
ᇱ ߨ

u 

0 Y 0 
j 

 Ω ܿ 0 (ఠ߱)ܥ 0
 ݍ
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,ݔܶ)ݐݏ݅݀ ((ே߱)ܥ ≤ ݔ ݈݈ܽ ݎ݂ ‖ݔ‖ ∈ ܿ then there is a linear map ܮ: ܿ →

ܶ‖ with (ே߱)ܥ − ‖ܮ  ≤  .ே(ܿ)ߩ

We show that ݈݅݉ ߩே(ܿ) = +∞. Now we need a specific choice for each N: 

there is a bounded operator ேܶ ∶ ܿ → ℓஶ(߱ே) so that ݀݅ݐݏ( ேܶݔ, ((ே߱)ܥ ≤

ݔ for all ‖ݔ‖ ∈ ܿ but such that if ܧ ⊂ ܿ is a subspace of ܿ almost 

isometric to ܿ then ߩே(ܿ) ≤  2‖ ேܶ − :ܮ for any linear map ‖ܮ  ܿ →

 .(ே߱)ܥ

Let, for each N, a linear continuous operator ேܶ ∶ ܿ → ℓஶ(߱ே) as above. 

We form the twisted sum space 

(ே߱)ܥ ⊕்ಿ ܿ  = (ே߱)ܥ)  × ܿ, ‖∙‖ ேܶ) 

endowed with the norm ‖(ℎ, ಿ்‖(ݔ = − ℎ‖}ݔܽ݉   ேܶݔ‖,  This yields .{‖ݔ‖

an exact sequence 

 

 

with embedding ݅ே(݂) = (݂, 0) and quotient map ݍே(݂, (ݔ =  The identity .ݔ

map ݅݀: (ே߱)ܥ ⊕்ಿ ܿ  ⟶ (ே߱)ܥ ⊕ஶ ܿ is an isomorphism since 

‖ ேܶ‖ିଵ‖(݂, ಿ்‖(ݔ ≤  ‖(݂, ஶ‖(ݔ ≤ ‖ ேܶ‖‖(݂, ಿ்‖(ݔ  

and therefore the space ܥ(߱ே) ⊕்ಿ ܿ is isomorphically polyhedral. We 

need now to use the main result in [1] asserting that in a separable 

isomorphically polyhedral space every norm can be approximated by a 

polyhedral norm. Let ‖∙‖ಿ  be a polyhedral norm in ܥ(߱ே) ⊕்ಿ ܿ that is 

2-equivalent to ‖∙‖ಿ . 

 (ே߱)ܥ 0 0
݅ே  ேݍ 

(ே߱)ܥ ⊕்ಿ ܿ ܿ 
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The sequence (4) splits, but the norm of the projection goes to infinity 

with N: Indeed, if 

ܲ ∶ (ே߱)ܥ  ⊕்ಿ ܿ →  (ே߱)ܥ

is a linear continuous projection then P has to have the form ܲ(݂, (ݔ = (݂ −

,ݔܮ 0), where ܮ: ܿ → ݔ is a certain linear map. Thus, if (ே߱)ܥ ∈ ܿ is a 

norm one element, one gets ܲ( ேܶݔ, (ݔ = ( ேܶݔ − ,ݔܮ 0) and thus ேܶݔ −

ݔܮ  ≤ ‖ hence ,‖ݔ‖‖ܲ‖ ேܶ − ‖ܮ ≤ ‖ܲ‖. The choice of ேܶ forces 

lim
ே→ஶ

݂݅݊ ‖ܲ‖ = +∞. Therefore, the ܿ-sum 

 

 

cannot split. The space ܿ(ܥ(߱ே) ⊕ಿ ܿ) is isomorphically polyhedral as 

any ܿ-sum of polyhedral spaces. We now define a suitable operator ߂ so 

that when making the pull-back diagram 

 

 

 

 

the map q is strictly singular. That prevents Ω from being Lindenstrauss 

under any equivalent renorming.  

Pick as Δ the diagonal operator ܿ  → ܿ(ܿ) induced by the scalar sequence 

(ே(ܿ)ିଵ/ଶߩ) ∈ ܿ; i.e., 

(ݔ)߂  =  .ே(ݔே(ܿ)ିଵ/ଶߩ) 

0 0 ܿ(ܥ(߱ே)) 
 (ேݍ)

ܿ(ܥ(߱ே)) ⊕ಿ ܿ ܿ(ܿ) 

0 0 ܿ(ܥ(߱ே)) 
 (ேݍ)

ܿ(ܥ(߱ே)) ⊕ಿ ܿ ܿ(ܿ) 

 ݍ
0 ܿ(ܥ(߱ே)) Ω ܿ 0 

Δ ߜ 
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Assume that q is not strictly singular. Then, there is a subspace E of ܿ 

and a linear bounded map ܸ: ܧ → Ω so that ܸݍ =  ா. By the ܿ saturation|߂

and the distortion properties of c0, there is no loss of generality assuming 

that E is an almost isometric copy of ܿ. By the commutativity of the 

diagram (ݍே)ܸߜ = (݁)ܸߜேݍ ா, which in particular means that|߂ =

݁ ே(ܿ)ିଵ/ଶ݁ for allߩ ∈  has on E the form ܸߜ This means that the map .ܧ

,ே݁ܮ) ேܮ ே(ܿ)ିଵ/ଶ݁)ே whereߩ ∶ ܧ →  ,is a linear map; by continuity (ே߱)ܥ

there is a constant M so that (ܮே݁, (ே(ܿ)ିଵ/ଶ݁ߩ ≤  which means ,‖݁‖ܯ 

ฮܮே݁ −  ேܶߩே(ܿ)ିଵ/ଶ݁ฮ ≤  ‖݁‖ܯ 

and thus 

ேܮே(ܿ)ଵ/ଶߩ  −  ேܶ ≤  .ே(ܿ)ଵ/ଶߩܯ 

This contradicts the fact that ܧ = ܿ, the definition of ߩே(ܿ) and the 

choice of ேܶ. 

To conclude the proof, the definition of pull-back space implies that Ω is 

actually a subspace of ܿ(ܥ(߱ே) ⊕ಿ ܿ) ⊕ஶ ܿ, hence isomorphically 

polyhedral.  

Since ܿ(ܥ(߱ே))  ≃  the space Ω above yields a twisted sum ,(ℕ߱)ܥ 

 

in which q is strictly singular. The dual sequence 

 

necessarily splits and thus Ω∗ can be renormed to be ℓଵ, although Ω cannot 

be endowed with an equivalent norm | ∙ | so that (Ω, | ∙ |)∗ = ℓଵ. Moreover, 

 ݍ
 Ω ܿ 0 (ఠ߱)ܥ 0

0 ℓଵ Ω∗ 0 ℓଵ 
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Ω is actually a subspace of the isomorphically polyhedral Lindenstrauss 

space c(C(ω) ⊕ొ c) ⊕  c0. 

We show now that one can produce an ℒஶ-variation of Ω still farther 

from Lindenstrauss spaces. Lazar and Lindenstrauss showed that 

Lindenstrauss polyhedral spaces X enjoy the property that compact X-valued 

operator admit equal norm extensions. We introduce the Lindenstrauss-Pe 

lczyński spaces (in short ℒ-spaces) as those Banach spaces E such that all 

operators from subspaces of ܿ into E can be extended to ܿ. The spaces are 

so named because Lindenstrauss and Pelczyński first proved in [1] that 

 spaces have this property. Lindenstrauss spaces have also the property-(ܭ)ܥ

(as well as ℒஶ-spaces not containing ܿ and, of course, all their 

complemented subspaces. The construction of the space Ω above has been 

modified in [1] to show that for every subspace ܪ ⊂ ܿ there is an exact 

sequence 

 

in which the space Ωୌ is not a Lindenstrauss-Pelczyński space [1]; more 

precisely, there is an operator ܪ →  Ωு  that cannot be extended to the whole 

ܿ. 

Proposition (1.1.2)[1]: There is an isomorphically polyhedral ℒஶ-space 

that is not an LPspace. 

Proof. Consider the exact sequence 0 → ܥ(߱ఠ) → Ω → ܿ → 0 with 

strictly singular quotient constructed above. Since every quotient of c0 is 

isomorphic to a subspace of ܿ, we can consider that there is an embedding 

ுݑ ∶ ܿ/ܪ → ܿ. The pull-back sequence 0 → ܥ(߱ఠ)→ ுܲ → ܿ/0 → ܪ 

also has strictly singular quotient map. We form the commutative diagram 

Ωୌ (ఠ߱)ܥ 0  ܿ 0 

p 
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                                                                                                                (5) 

 

 

 

 

 

 

to show, exactly as in [1] that Ωு  is not an ℒ࣪-space since j cannot be 

extended to ܿ through i. The space Ωு has been obtained from a pull-back 

diagram 

 

 

                                                                                                                (6) 

 

 

 

and thus it is a subspace of Ω ⊕ ܿ, hence isomorphically polyhedral.  

 

 

ுܲ (ఠ߱)ܥ 0  ܿ/0  ܪ 
 

Ωு (ఠ߱)ܥ 0  ܿ  0 
ܳ 

 ݐ

0 ܿ(ܥ(߱ே)) Ω ܿ  0 
ܳ 

 ுݑ

0 0 

ுܲ (ఠ߱)ܥ 0  ܿ/0  ܪ 
 

0 = 0 

Ωு (ఠ߱)ܥ 0  ܿ  0 
ܳ 

= H H 

݆ ݅ 

 ݐ
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Chapter 2 

Polyhedral Direct Sums of Banach sSpaces, and Generalized 

Centers of Finite Sets 

 

A Banach space X is said to satisfy (ܥܩ) if the set ܧ (ܽ) of minimizers 

of the function ܺ ∋ ݔ ⟼ ݔ‖)݂ − ܽଵ‖, . . . , ݔ‖ − ܽ‖) is nonempty for each 

integer ݊ ≥ 1, each ܽ ∈ ܺ and each continuous nondecreasing coercive 

real-valued function ݂ on ℝା
 . We study stability of certain polyhedrality 

properties under making direct sums, in order to be able to use results of, 

Lindenstrauss and  an appropriate for every topological space. 

Section (2.1): Finite Polyhedral Sums and Arbitrary ࢉ-Sums: 

In Approximation Theory and Mathematical Economy, one often looks 

for a point in a Banach space X that would approximate (in an appropriate 

sense) a given bounded set ܣ ⊂ ܺ. Such problems, sometimes called one-

point location problems, consist in minimizing a function depending on the 

distances from the elements of A.  

Given a real-valued nondecreasing function ݂ on ℝା
 ∶=  [0, ∞), we are 

interested in the set ܧ (ܽ) of minimizers of the function 

(ݔ)߮ = ݔ‖)݂  − ܽଵ‖, . . . , − ݔ‖ ܽ‖)    (ݔ ∈ ܺ). 

The Banach space X is said to satisfy (ܥܩ) if ܧ (ܽ) is nonempty whenever 

n is a positive integer, ܽ ∈ ܺ , and ݂ is continuous, nondecreasing and 

coercive. This property was introduced and studied in [2]. For instance, 

every dual Banach space satisfies (ܥܩ). One of the results in [2] states that if 

X is a finite-dimensional polyhedral Banach space and T is any topological 
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space then the function space ܥ(ܶ, ܺ) (of bounded continuous functions of 

T into X) satisfies (ܥܩ).  

We always consider ℝ partially ordered by the coordinate-wise 

ordering. By ℝା
  we denote the corresponding positivecone (i.e., the cone of 

all nonnegative elements). 

Given a Banach space X, we denote by ܤ  and ܤ
 its closed and open unit 

ball. Then ܵ = ܤ߲  is the unit sphere. For ܧ ⊂ ܺ∗ and ݔ ∈ ܺ, we use the 

notation 〈ܧ, 〈ݔ = ݂ :(ݔ)݂ } ∈  .{ܧ

For ݔ ∈ ܺ and ݎ ≥ 0, we define ݔ)ܤ, (ݎ = ݔ + ܤݎ   and ܤ(ݔ, (ݎ =

,ݔ)ܤ ݐ݊݅ =) (ݎ ݔ + ܤݎ
 ݂݅ ݎ > 0). A boundary of X is a set ܤ ⊂ ∗ܤ   such 

that for each ݔ ∈ ܺ there exists ݂ ∈ ß such that ‖ݔ‖ =  ,in other words) (ݔ)݂

‖ݔ‖ = ,ß〉 ݔܽ݉ ݔ for each 〈ݔ ∈ ܺ). 

By the Krein–Milman theorem (let K be a compact convex subset of X. 

Then, the theorem states K that  is the closed convex hull of itsextreme 

points. 

The closed convex hull above is defined as the intersection of all closed 

convex subsets of X that contain K)[5], the set ݁ݐݔ(ܤ∗) (extreme points of 

 .∗) is always a boundaryܤ

It is well known that the subdifferential (in the sense of Convex Analysis) 

of the norm ‖∙‖ at x is exactly the set 

(ݔ)‖∙‖߲  = {݂ ∈ ܤ ∶ (ݔ) ݂  =  .{‖ݔ‖

Observe that ߲‖∙‖(ݔ)  = (‖ݔ‖/ݔ)‖∙‖߲   ⊂ ܵ∗    for ݔ ≠ 0, and ߲‖∙‖(0)  =  .∗ܤ 
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A Banach space X is called polyhedral if the unit ball of each of its finite-

dimensional subspaces is a polytope; in this case we say that X satisfies (ܲ). 

Many important results on polyhedral Banach spaces are due to V.P.  

Definition (2.1.1)[2]: A Banach space is said to satisfy: 

(a) (ܲ∆) if X is polyhedral and there exists a boundary ß for X such that 

(ݔ)‖∙‖߲  ∩ ß is finite for each ݔ ∈ ܵ   . 

(b) (∗) if there exists a boundary B for X such that 

(ݔ)݂ < 1 whenever ݔ ∈ ܵ and ݂ is a ݓ∗-cluster point of ß  

(that is, if ݂ is a ݓ∗-cluster point of ß then either  ‖݂‖ < 1 or ݂ does not 

attain its norm). 

Fact (2.1.2)[2]: Let X be a Banach space. 

(a) The properties (ܲ), (ܲ∆) and (∗) are hereditary to closed subspaces. 

(b) One has the implications (∗) ⇒ (ܲ∆) ⇒ (ܲ), and no other implication 

holds true. 

(c) In Definition 1.2(a), (b), one can equivalently consider the particular 

boundary ß =  .(∗ܤ)ݐݔ݁ 

(d) If X satisfies (ܲ∆) then each point ݔ ∈ ܵ has a neighborhood V in 

which ܤ coincides with a finite intersection of 

         closed halfspaces having x as a boundary point, that is, 

∩ ܤ ܸ = ሩ(ݔ + (ܪ ∩ ܸ


ୀଵ

 

       where each ܪ is of the form ܪ = ݕ}  ∈ ܺ: ℎ(ݕ) ≥ 0} with ℎ ∈  ܵ∗   . 
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(e) For finite-dimensional X, the conditions (∗),(ܲ∆) and (ܲ) are 

equivalent. 

Proof. For (c) and (d), see [2]; (a) easily follows from (c) and (b) can be 

found in [2]. Finally, if X is a finite-dimensional polyhedral space then 

∗ܤ)ݐݔ݁  ) is a finite boundary for X, hence X satisfies (∗). This, together 

with (b), gives (e).  

A function ߨ: ℝା
 → ℝା is a norm on ℝା

  if it is subadditive and positively 

homogeneous, and (ݐ)ߨ = 0 ⇔ ݐ = 0. 

A norm ߨ on ℝା
  is polyhedral if it is of the form (ݐ)ߨ =  (ݐ)ଵஸஸ ݃ݔܽ݉

where ݃ଵ, . . . , ݃ ∈ (ℝ)∗. In this case we say that the family {݃ଵ, . . . , ݃} 

generates ߨ. 

Given ߨ ∶ ℝା
 → ℝା, we consider the following two canonical extensions of 

 :to the whole ℝ ߨ

(ݐ)ොߨ = (ݐ)ߨ    ݀݊ܽ    (|ݐ|)ߨ  = ݐ)ߨ ∨ 0) 

(as usual, we denote |ݐ| = ݐ ∨ (ݐ−) = ,|ଵݐ|) . . . ,  .((|ݐ|

It is not difficult to show the following basic properties. 

Lemma (2.1.3)[2]: Let π be a polyhedral nondecreasing norm on ℝା
୬ . 

Then every minimal family {gଵ, . . . , g୫} ⊂ (ℝ୬)∗ generating π is contained in 

(ℝ୬)ା
∗  (i.e., each g j is nondecreasing on ℝ୬, or equivalently, its coordinates 

in the canonical identification (ℝ୬)∗ = ℝ୬ are all nonnegative). 

Proof. Fix k ∈  {1, . . . , m}. By minimality, there exists t ∈ ℝା
୬  with π(t) =

݃(ݐ) > ݆ :(ݐ)݃}ݔܽ݉ ∈ {1, . . . , ݉}, ݆ ≠  ݇}. By continuity, ݃ =  in an ߨ

open ball contained in ℝା
 . The fact that ݃  is nondecreasing in an open ball 

easily implies that ݃  is nondecreasing on the whole ℝ.  
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Let n be a positive integer, X a Banach space. Given ݂: ℝା
 →  ℝ and ܽ =

(ܽଵ, . . . , ܽ) ∈ ܺ , consider the function ߮ ∶ ܺ → ܴ, given by 

(ݔ)߮ = ݔ‖)݂ − ܽଵ‖, . . . , − ݔ‖ ܽ‖). 

We define 

(ܽ)ݎ = ݂݅݊߮(ܺ)        (݂ −  ,(ܽ ݂ ݏݑ݅݀ܽݎ

(ܽ) ܧ = ݔ ∈ (ݔ)߮ :ܺ = − ݂ (ܽ)   (the set ofݎ      .(ܽ of ݏݎ݁ݐ݊݁ܿ

Moreover, if ܧ ܧ ≠ ∅, we say that a admits f -centers. 

If ݂ is of the form ݂(ݐଵ, . . . , (ݐ = ߩ  whereݐߩ ଵஸஸݔܽ݉ = ,ଵߩ) . . . , (ߩ ∈

(0, ∞), we denote 

(ܽ)ఘݎ = ,(ܽ)ݎ (ܽ)ఘܧ =  .(ܽ)ܧ

If ܧఘ(ܽ) ≠  ∅, we say that a admits weighted Chebyshev centers for the 

weight ρ. 

Definition (2.1.4)[2]: A Banach space X is said to satisfy (ܥܩ) if for 

each positive integer n, every ܽ ∈ ܺ admits ݂–centers whenever ݂: ℝା
 →  ℝ 

is a continuous, nondecreasing and coercive function. 

Theorem (2.1.5)[2]: A Banach space X satisfies (GC) if and only if, for 

each positive integer n and each ρ ∈ (0, ∞)୬, every a ∈ X୬ admits weighted 

Chebyshev centers for the weight ρ. 

Let us recall some (semi)continuity notions for multivalued mappings. 

Definition (2.1.6)[2]: Let T be a Hausdorff topological space, X a normed 

linear space, : ܶ → 2, ݐ ∈ ܶ . 
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(a) F is l.s.c. (lower semicontinuous) at ݐ if for each open set ܣ ⊂ ܺ 

such that ܣ ∩ (ݐ)ܨ ≠ ∅ there exists a neighborhood ܸ ⊂ ܶ of ݐ 

such that ܣ ∩ (ݐ) ܨ ≠ ∅ whenever ∈ ܸ . 

(b) F is u.s.c. (upper semicontinuous) at ݐ if for each open set ܣ ⊂ ܺ 

such that ܨ(ݐ) ⊂ ܸ there exists a neighborhood ܣ ⊂ ܶ of ݐ such 

that (ݐ)ܨ ⊂ ∋ whenever ܣ ܸ . 

(c) F is H-l.s.c. (Hausdorff lower semicontinuous) at ݐ if for each ߝ > 0 

there exists a neighborhood ܸ ⊂ ܶ of ݐ such that ܨ(ݐ) ⊂ (ݐ)ܨ +

∋ ெ wheneverܤߝ ܸ . 

(d) F is H-u.s.c. (Hausdorff upper semicontinuous) at ݐ if for each ߝ >

0 there exists a neighborhood ܸ ⊂ ܶ of ݐ such that (ݐ)ܨ ⊂ (ݐ)ܨ +

∋ ெ wheneverܤߝ ܸ . 

(e) Let “s.c.” denote one of the four semicontinuity properties defined in 

(a)–(d). We say that F is s.c. on a set ܧ ⊂ ܶ if the restriction ܨ |ா is 

s.c. at each point of E. 

(f) The effective domain of F is the set ݀(ܨ)݉ = ݔ} ∈ (ݔ)ܨ :ܶ ≠  ∅}. 

It is easy to see that one always has the implications H-l.s.c.⇒l.s.c., and 

u.s.c.⇒H-u.s.c. Moreover, F is both H-l.s.c. and H-u.s.c. at ݐ if and only if 

F is continuous at ݐ with respect to the Hausdorff pseudometric 

݀ு(ܣ, (ܤ  = ݔܽ݉  ൜ݑݏ
∈

݀(ܽ, (ܤ , ݑݏ
∈

݀(ܾ,  ൠ(ܣ

on 2ெ. (Note that ݀ு, restricted to the closed elements of 2ெ, is a metric 

with values in [0,∞].) In this case we say that F is H-continuous at ݐ. 

We shall need the following two lemmas. The first one, Lemma (2.1.7). 
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Lemma (2.1.7)[2]: Let T, S be Hausdorff topological spaces, X, Y 

normed linear spaces. 

(a) Let F: T → 2ଡ଼ be Hausdorff lower (upper) semicontinuous on 

dom(F), ϕ: S → T continuous, ψ: X → Y uniformly continuous. Then 

also the mappings 

Fଵ ∶ S → 2ଡ଼, Fଵ(s) = F(φ(s)), 

Fଶ ∶  T → 2ଢ଼ , Fଶ(t)  =  ψ(F(t)), 

are Hausdorff lower (upper) semicontinuous on their effective 

domains. 

(b) Let F: T → 2ଡ଼ be l.s.c., and f: T → X continuous. Then the 

multivalued mappings t ⟼  F(t) + f(t) and t ⟼ F(t) are l.s.c. 

Lemma (2.1.8)[2]: Let K be a compact Hausdorff topological space, X a 

Banach space. Let Φ ∶ K → 2ଡ଼ be l.s.c. with nonempty closed convex values. 

Let ε >  0 and a continuous v: K → X be such that 

Φ(t) ∩ B(v(t), ε) = ∅      (t ∈ K). 

Then Φ admits a continuous selection u: K → X such that |u(t) − v(t)| ≤ ε 

for each ∈ K . 

Proof. Consider the mappings Φଵ(t) = Φ(t) ∩ B(v(t), ε) and Φଶ(t) =

Φଵ(t)തതതതതതത. We can write 

Φଵ(t) = v(t) + ([Φ(t) − v(t)] ∩ B(0, ε)). 

By Lemma (2.1.7)(b), Φ − v is l.s.c.; and this easily implies that [ߔ − [ݒ ∩

,(0ܤ   ଶ are l.s.c., andߔ ଵ andߔ ,is l.s.c., too. By Lemma (2.1.7) (b) again (ߝ

hence, by Michael’s selection theorem:  
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 (Let ܧ be a Banach space, ܺ a paracompact space and ܨ :  ܺ →  lower ܽܧ 

hemicontinuous multivalued map with nonempty convexclosed values. Then 

there exists a continuous selection ݂ :  ܺ →  .ܨ ofܧ 

Conversely, if any lower semicontinuous multimap from topological 

space ܺ to a Banach space, with nonempty convex closed values admits 

continuous selection, then ܺ is paracompact. This provides another 

characterization forparacompactness)[6], there exists a continuous ݑ: ܭ → ܺ 

such that (ݐ)ݑ ∈ (ݐ)ଶߔ ⊂ (ݐ)ߔ ∩ ,0)ܤ ݐ) (ߝ ∈   .(ܭ

Corollary (2.1.9)[2]: Let K be a compact Hausdorff topological space, X 

a Banach space, and Gଵ, Gଶ: K → 2ଡ଼ two bounded l.s.c. multivalued 

mappings with nonempty closed convex values. For i = 1, 2, let Σ୧ ⊂

 C(K, X) be the set of all continuous selections of G୧ . 

Then 

distୌ(Σଵ, Σଶ) ≤ sup
୲∈

dୌ൫Gଵ(t), Gଶ(t)൯                              (1) 

(where distୌ and dୌ denote the Hausdorff distance in C(K, X) and X, 

respectively). 

Proof. Consider an arbitrary ε > sup
୲∈

dୌ (Gଵ(t), Gଶ(t)). Given v ∈ Σଵ, we 

have (ݐ)ݒ ∈ (ݐ)ଶܩ + ܤߝ
 , that is, ܩଶ(ݐ)  ∩ ,(ݐ)ݒ)ܤ (ߝ  ≠ ∅, for each ݐ ∈

ݓ By Lemma (2.1.8), there exists .ܭ ∈ ,ܭ)ܥ ܺ) such that (ݐ)ݓ ∈ (ݐ)ଶܩ ∩

,(ݐ)ݒ)ܤ ݐ) (ߝ ∈ ݓ Since .(ܭ ∈ ݒ ଶ, we haveߑ ∈ ଶߑ +  (,). This provesܤߝ

ଵߑ ⊂ ଶߑ +  ଶ, we get thatߑ ଵ andߑ (,). Interchanging the role ofܤߝ

,ଵߑ)ுݐݏ݅݀ (ଶߑ ≤                             Now, (1) follows by passing to limit for .ߝ

ߝ ↘ ,(ݐ)ଵܩ)௧∈ ݀ுݑݏ   .((ݐ)ଶܩ
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We are interested in stability of the properties (ܥܩ), (ܲ), (ܲ∆) and (∗) 

under making finite “polyhedral direct sums” and arbitrary ܿ-sums. The 

case of (ܥܩ) has been already done in [2], while the other cases, though 

simple, are new. 

Definition (2.1.10)[2]: We say that a Banach space X is a polyhedral 

direct sum of Banach spaces ଵܺ, . . . , ܺ  if ܺ = ଵܺ ⊕· · ·⊕ ܺ and the norm 

on X is of the form 

‖ݔ‖ = ଵ‖భݔ‖ߨ  , . . . , ‖ݔ‖ , = ݔ ,ଵݔ)  . . . , (ݔ  ∈  ܺ, 

where ߨ is a polyhedral nondecreasing norm on ℝା
 . In this case, we shall 

write 

X = (Xଵ ⊕· · ·⊕ X୬) . 

Let us recall the definition of the c-sum of Banach spaces Xஓ (γ ∈ Γ ), 

where Γ is an arbitrary (nonempty) set. It is the Banach space 

ܺ ≡ ൬ ⊕
ఊ∈௰

ܺఊ൰
బ

= ቊݔ = ఊ∈௰(ఊݔ) ∶ ఊݔ  ∈ ܺఊ ݂ߛ ݎ ∈ ,߁ ൬ฮݔఊฮ
ം

൰
ఊ∈௰

 ∈ ܿ(߁)ቋ 

in the norm ‖ݔ‖ = ఊฮݔఊ∈௰ ฮݔܽ݉
ം

 . 

Theorem (2.1.11)[2]: Let X = (Xଵ ⊕ · · · ⊕ X୬) be a polyhedral direct 

sum of Banach spaces X୧(1 ≤ i ≤ n). Let ࣪ be one of the properties 

(GC), (P). Then the following conditions are equivalent: 

(i) X satisfies ࣪; 

(ii) each X୧ satisfies ࣪. 

Proof. The equivalence for ࣪ =  is a very particular case of [2]. Let us (ܥܩ)

consider the case ࣪ = (ܲ). The implication (i) ⇒ (ii) is obvious since, for 
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each i, the mapping ܺ ∋ ݕ ⟼ ଵ
గ()

 (0, . . . , 0, ,ݕ 0, . . . , 0) ∈ ܺ  (where y is at the 

i-th position) is an isometric linear embedding of ܺ  into X, and the property 

(ܲ) is hereditary. 

(ii) ⇒ (i) for ࣪ = (ܲ). Let {݃ଵ, . . . , ݃} ⊂ (ℝ)∗ be a minimal family 

that generates ߨ. Then, by Lemma (2.1.3), we can identify each ݃   with a 

vector ݃ = (݃
ଵ, . . . , ݃

) ∈ ℝ such that ݃
 ≥ 0 (1 ≤ ݅ ≤ ݊). For 1 ≤ ݅ ≤

 ݊, let ܲ ∶ ܺ → ܺ be the canonical projection ݔ ⟼ -. Let Y be a finiteݔ

dimensional subspace of X. Then each ܻ = ܲ(ܻ), being a finite-dimensional 

subspace of ܺ  , is polyhedral and hence there exists a finite set ܨ ⊂ ܻ
∗  

such that ‖∙‖ = ܨ〉ݔܽ݉ ∋ ܻ. Now, for each ݊ 〈·, ܻ , we can write 

‖ݕ‖ = ‖ߨ  ଵܲݕ‖భ , . . . , ‖ ܲ ݕ‖ = ݔܽ݉ 
ଵஸஸ

 ݃
‖ ܲ ‖ݕ 



ୀଵ

= ݔܽ݉ 
ଵஸஸ

 ݃
 ܨ〉ݔܽ݉   , ܲ 〈ݕ 



ୀଵ

. 

Denoting ܧ
 = {݃

 (݂ ∘  ܲ): ݂ ∈ ⊃) {ܨ ܻ∗), we have 

‖ݕ‖ =  max
ଵஸஸ

max 〈 ݆ܧ
݅ , ݕ

݊

݅=1

〉 . 

Since the set ⋃ (∑ ܧ


ୀଵ  )
ୀଵ  is finite, Y is polyhedral by [2].  

The following fact is a particular case of a general chain rule formula for 

subdifferentials of convex functions. 

Proposition (2.1.12)[2]: Let X = (Xଵ ⊕· · ·⊕ X୬) be a finite 

polyhedral direct sum of Banach spaces, π defined as in [2], x ∈ X. Then the 

following chain rule formula holds 
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߲‖⋅‖(ݔ) = ൝ݔ∗ ∈ ∗ݔ :∗ܺ =  ߦ
ݑ)∗

∗ ∘ ܲ)


ୀଵ

, ∗ߦ ∈ ,‖ଵݔ‖)ߨ߲ . . . , ,(‖ݔ‖ ݑ
∗ ∈ ߲‖∙‖(ݔ)ൡ, 

where P୧ is the canonical projection of X onto X୧, and ξ∗ = (ξଵ
∗  , . . . , ξ୬

∗  ) ∈

ℝ୬ (= (ℝ୬)∗).  

Symbolically, ∂‖⋅‖X(x) = ∑ [∂π(‖xଵ‖, . . . , ‖x୬‖)]୧ · [∂‖⋅‖X  (x୧)]  ∘  P୧
୬
୧ୀଵ . 

Lemma (2.1.13)[2]: Let X be a real vector space, A, B ⊂ X and [a, b] ⊂

ℝା. Then 

ext([a, b]  ·  A) ⊂ a ext(A)  ∪  b ext(A), ext(A + B) ⊂ ext(A)  +  ext(B). 

The equivalence in Theorem (2.1.11) does not hold for ࣪ = (ܲ∆) or ࣪ =

(∗). For these properties, we have to consider only particular polyhedral 

direct sums. To this end, we introduce the following notion. 

Definition (2.1.14)[2]: Given ݅ ∈ {1, . . . , ݊}, a norm ߨ on ℝା
  is said to be 

handy in the i-th coordinate if for each ̅ݐ ∈ ℝା
 \ {0} with ݐ̅ = 0 we have 

̅ݐ)ߨ + ߬ ݁) = ߬ whenever (̅ݐ)ߨ > 0 is sufficiently small (where ݁ denotes 

the i-th canonical unit vector of ℝ). 

Example (2.1.15)[2]: Let ߩଵ, . . . , ߩ > 0. The polyhedral nondecreasing 

norm (ݐ)ߨ =  on ℝାݐߩ ଵஸஸݔܽ݉
  is handy in each coordinate. On the other 

hand, the polyhedral nondecreasing norm (ݐ)ߨ  = ∑ ݐߩ

ୀଵ   on ℝା

  is handy 

in no coordinate. 

Theorem (2.1.16)[2]: Let X = (Xଵ ⊕ · · · ⊕  X୬) be a polyhedral direct 

sum of Banach spaces X୧ (1 ≤ i ≤ n). Let ࣪ be one of the properties 

(P∆), (∗). Then the following conditions are equivalent: 

(i) X satisfies ࣪; 

(ii) for each i ∈ {1, . . . , n} one has: 
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(a) X୧ satisfies ࣪, and 

(b) either dim(X୧) < ∞ or π is handy in the i-th coordinate. 

Proof. Let {݃ଵ, . . . , ݃}  ⊂  (ℝ)∗ ≅ ℝ be a minimal family that generates 

Write ݃ .ߨ  =  (݃
ଵ, . . . , ݃

) (1 ≤ ݆ ≤ ݉).  

(i)⇒(ii). Since ܺ  is isometric with a closed subspace of X and ࣪ is 

hereditary, (a) is satisfied. Assume that (b) fails. Then, for some ݅ ∈

{1, . . . , ݊}, we have ݀݅݉( ܺ) = ∞ and, for some ̅ݐ ∈ ℝା
  \ {0} with ݐ̅ = 0, 

we have ̅ݐ)ߨ + ߬ ݁) > ߬ for each (ݐ)ߨ > 0. Since ߨ is the maximum of 

finitely many linear functionals, the function ߬ ↦ ̅ݐ)ߨ  +  ߬ ݁) is the 

maximum of finitely many affine functions. Consequently, ( డగ
డ௧

) +  the) (̅ݐ)

i-th right partial derivative of ߨ at ̅ݐ) is positive. This implies (via the Hahn–

Banach theorem) (If : ܸ → ܴ is a sublinear function, and ߮: ܷ → ܴ is 

a linear functional on a linear subspace ܷ ⊆ ܸ which is dominated by pon U, 

i.e. 

(ݔ)߶ ≤ ݔ  ݈݈ܽ ݎ݂              (ݔ) ∈ ܷ 

then there exists a linear extension ߰: ܸ → ܴ of ߮ to the whole space V, i.e., 

there exists a linear functional ߰ such that 

(ݔ)߰ ≤ ݔ  ݈݈ܽ ݎ݂               (ݔ)߮ ∈ ܷ 

(ݔ)߰ ≤ ݔ ݈݈ܽ ݎ݂                (ݔ) ∈ ܸ)[7] that there exists ℎ = (ℎଵ, . . . , ℎ) ∈

with ℎ (̅ݐ)ߨ߲ > 0. Fix ݔ = ,ଵݔ) . . . , (ݔ ∈ ܺ such that ฮݔฮ
ೕ

= ̅(1ݐ ≤ ݆ ≤ ݊). 

In particular, ݔ ≠  0 and ݔ = 0. For ݆ ≠  ݅, fix any ݑ
∗ ∈  ߲‖·‖ೕ  Then, by .(ݔ) 

Proposition (2.1.16), ߲‖·‖ (ݔ) contains the (w∗-compact) set 
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 ℎ · ൫ݑ
∗ ∘ ܲ൯



ୀଵ
ஷ

+ ℎ · ܤ)
∗ ∘  ܲ) 

which is infinite-dimensional and is contained in ܵ∗ . By the Krein–Milman 

theorem [5], this set has infinitely many extreme points. Now, Fact (2.1.2) 

easily implies that this is in contradiction with (i). 

(ii) ⇒ (i) for ࣪ =  (ܲ∆). First observe that, in the case that ݀݅݉( ܺ) =

∞, the condition (b) implies that ( డగ
డ௧

) + (ݐ) = ( డగ
డ௧

) + (ݐ) = 0 whenever 

∋ ݐ  ℝା
  \ {0}, ݐ = 0; and for such t, since ( డగ

డ௧
) − (ݐ) = 0 by definition of 

ߨ , we must have ℎ = 0 whenever ℎ = (ℎଵ, . . . , ℎ) ∈  ,In other words .(ݐ)ߨ߲

if [߲ߨ(ݐ)]  ≠ {0} then either ݐ  ≠ 0 or ݀݅݉( ܺ) < ∞. 

Second, by Theorem (2.1.11) and Fact (2.1.2) X is polyhedral. Now, given 

ݔ ∈ ܵ ܺ, the point ݐ = (‖xଵ‖ଡ଼భ , . . . , ‖x୬‖ଡ଼  ) is nonzero, and the chain rule 

(Proposition (2.1.12) implies that 

߲‖·‖ (ݔ) = [߲ߨ(ݐ)] · ൣ߲‖·‖(ݔ) ∘  ܲ൧


ୀଵ

=  [(ݐ)ߨ߲] ·  ܲ
∗൫߲‖·‖(ݔ)൯



ୀଵ
[డగ(௧)] ஷ{}

. 

Each summand of the last sum is the algebraic product of a compact 

subinterval of ℝା with a finite-dimensional polytope. By Lemma (2.1.13), 

߲‖·‖(ݔ) has only finitely many extreme points. Using Fact (2.1.2), we 

conclude that (i) holds. 

(ii) ⇒ (i) for ࣪ = (∗). By Fact (2.1.2)(c), each ܺ  satisfies the condition 

in Definition (2.1.1) with the particular boundary ß = ܤ)ݐݔ݁
∗  ). We shall 

show that the set 
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ß = ራ൫݃
ଵßଵ  ×· · ·×  ݃

ß൯


ୀଵ

 

is a boundary for X, satisfying the condition from the definition . 

Given ܾ ∈ ݆ there exist ,ܤ ∈ {1, . . . , ݉} and ܾ ∈ ß(1 ≤ ݅ ≤ ݊)  such that 

ܾ = (݃
ଵܾଵ, . . . , ݃

ܾ). Then ܾ(ݔ) = ∑ ݃


ܾ(ݔ)
ୀଵ  ≤ ∑ ݃

 ‖ݔ‖

ୀଵ  ≤ ݔ)‖ݔ‖ ∈

ܺ). Thus ß ⊂ ∗ܤ    . 

Given ݔ ∈ ܺ \ {0}, put ݐ = , ଵ‖భݔ‖) . . . , ݆ ‖ ) and takeݔ‖ ∈ {1, . . . , ݉} 

such that (ݐ)ߨ = ݃(ݐ). For each ݅ ∈ {1, . . . , ݊} there exists ܾ ∈ ß such 

that ‖ݔ‖ = ܾ(ݔ). Then ‖ݔ‖ = (ݐ)ߨ  =  ݃(ݐ) = ∑ ݃
‖ݔ‖


ୀଵ  =

∑ ݃
ܾ(ݔ)

ୀଵ  = ܾ where (ݔ)ܾ ∶= (݃
ଵܾଵ, . . . , ݃

ܾ) ∈ ß. Thus ß is a 

boundary for X. 

It remains to show (∗). Let ݂ = ( ଵ݂, . . . , ݂) be a w∗-cluster point of ß, and 

ݔ = ,ଵݔ) . . . , (ݔ ∈ ܺ \ {0}. There exists ݇ ∈ {1, . . . , ݉} such that ݂ is a w∗-

cluster point of ܥ: = ݃
ଵßଵ × · · · × ݃

ß. Denote ݐ = ଵ‖భݔ‖) , . . . ,  ‖) andݔ‖

consider two cases. 

Case 1: ݃(ݐ) < ,For every choice of (ܾଵ .(ݐ)ߨ . . . , ܾ) ∈ ßଵ × · · · × ß, the 

functional ܾ: = (݃
ଵ ܾଵ, . . . , ݃

ܾ) ∈ (ݔ)ܾ satisfies ܥ = ∑ ݃
 ܾ(ݔ)

ୀଵ  ≤

∑ ݃
 ‖ݔ‖


ୀଵ = ݃(ݐ). Since ݂ is a w∗-cluster point of C, we have ݂(ݔ) ≤

 ݃(ݐ) < (ݐ)ߨ =  .‖ݔ‖

Case 2: ݃(ݐ) =  The fact that ݂ is a w∗-cluster point of C means that .(ݐ)ߨ

for each ݅ ∈ {1, . . . , ݊} one has ݂ ∈ ݃
ప ßప

௪∗തതതതതതതത, and there exists ݅ ∈ {1, . . . , ݊} for 

which ݂ is a w∗-cluster point of ݃
 ß. Thus ݃

 > 0 and ß ≡ ܤ)ݐݔ݁ 
∗  ) is 

infinite, hence ݀݅݉( ܺ = ∞ (otherwise ܺ
∗ would be a finite-dimensional 
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polyhedral space by [2]. We claim that ‖ݔ‖ ≡ ݐ > 0. (Indeed, if ݐ =  0 

then (b) implies that for some (small) ߬ > 0 we have ݃(ݐ + ߬ ݁) ≤ + ݐ)ߨ 

߬ ݁) = (ݐ)ߨ  = ݃(ݐ), and this leads to 0 < ߬ ݃
 = ߬ ݃(݁) =  ݃(ݐ +

߬ ݁) −  ݃(ݐ) ≤  0, a contradiction.) 

For ݃
 > 0 put ܾ: = 

ೖ
 , and for ݃

 = 0 put ܾ =  0. Observe that bi is a w∗-

cluster point of ß , and hence ‖ݔ‖ > ܾ(ݔ). Consequently, ‖ݔ‖ =

(ݐ)ߨ = ݃(ݐ) = ∑ ݃
  ‖ݔ‖


ୀଵ > ∑ ݃

 ܾ(ݔ)
ୀଵ  =  The proof is .(ݔ)݂ 

complete.  

Finally, we prove a theorem about arbitrary c0-sums. Its proof is easy and 

standard. 

Theorem (2.1.17)[2]: Let {Xஓ: γ ∈ Γ} be an arbitrary (nonempty) family 

of Banach spaces,  one of the properties (GC), (P), (P∆), (∗). Then the 

following conditions are equivalent: 

(i) X: = (⊕ஓ∈ Xஓ)c satisfies ; 

(ii) each Xஓ satisfies . 

Proof. The case  =  is contained in [2]. Now let (ܥܩ) ∈ {(ܲ), (ܲ∆), (∗)}. 

The implication (i) ⇒ (ii) is immediate from the fact that each ܺఊ  is 

isometric to a subspace of X. The implication (ii) ⇒ (i) for  = (ܲ) is well 

known (see [1, Section 3, (ℓ)]). 

(ii) ⇒(i) for  =  (ܲ∆). Fix ∈ ܵ  . It is easy to see that, in a 

neighborhood U of x, we have ‖ݕ‖ = ఊݕ|ఊ∈௰బݔܽ݉  | >  0 where ߁ ⊂  is a ߁

finite set. Thus ‖ݕ‖ = ฮ ௰ܲబ ฮݕ 


 where ܼ = (⊕ఊ∈௰బ ܺఊ  )ஶ and ௰ܲబ: ܺ → ܼ 

is the canonical projection. 
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By Theorem (2.1.15) and Example (2.1.16), Z satisfies (ܲ∆). It follows that 

߲‖∙‖ (ݔ) = ௰ܲబ
∗ (߲‖∙‖ ( ௰ܲబݔ)) has finitely many extreme points, and we 

are done. 

(ii) ⇒(i) for  = (∗). For ∈  let ßఊ be a boundary for ܺఊ , satisfying , ߁

the condition from the definition of (∗). Let {݁ఊ}ఊ ∈  be the canonical ߁

Schauder basis of ܿ(߁). Consider the set 

:ܤ = {ܾ݁ఊ: ߛ ∈ ,߁ ܾ ∈ ßఊ  } 

(where be ߛ ∈ ܺ∗ ≅ (⊕ఊ∈௰  ܺఊ
∗ )1 has value b at ߛ and is null at all other 

points). It is easy to see that this set is a boundary for X. If ݂ is a w∗-cluster 

point of ß then either ݂ = 0 or ݂ = ℎ݁ఊ where ߛ ∈  and h is a w∗-cluster ߁

point of ßఊ . In the second case, we have ݂(ݔ) = ℎ(ݔఊ) <   whenever‖ݔ‖

ݔ ∈ ܺ \ {0}. The proof is complete.  

Example (2.1.18)[2]: The Banach space 

ቆ
∞
⊕

݊ = 1
ℓଵ(݊)ቇ

బ

, 

 the ܿ-direct sum of the ℓଵ(݊) (i.e., n-dimensional ℓଵ) spaces, satisfies (GC) 

and (∗) (and hence also (ܲ∆)). 
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Section (2.2): Direct Applications to Generalized Centers and 

The X -center Map for ࡷ),  :Spaces (ࢄ

It is not a new idea that Chebyshev and similar centers of finite sets can 

be viewed as best approximations in the direct sum ܺ, equipped with an 

appropriate norm, by elements of a certain subspace, namely the “diagonal” 

ܦ = ,ଵݔ)} . . . , (ݔ ∈ ܺ: ݔଵ = · · · =  ,}. Thus, under appropriate assumptionsݔ

we may be able to deduce results about centers from known results about 

nearest points. And this is what we are going to do in this section. 

Let n be a positive integer, ߨ a nondecreasing norm on ℝା
 , ܺ a Banach 

space. Consider the ߨ-direct sum 

(X୬) = (X ⊕· · ·⊕ X)ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
୬

π 

with its norm ‖ݑ‖గ = , ଵ‖ݑ‖)ߨ . . . , ‖ ). Let ݀ݑ‖ ∶ ܺ →   be theܦ 

canonical identification, given by ݀(ݔ) = ,ݔ)  . . . ,  .(ݔ

Since ‖݀(ݔ)‖గ  = ,గ(1‖ݔ‖ . . . , ݔ) (1 ∈ ܺ), ݀ is a positive multiple of an 

isometry. 

Now, given ܽ = (ܽଵ, . . . , ܽ) ∈ ܺ, the ߨ-centers of a are the minimizers 

of the function ߮(ݔ)  = ݔ‖)ߨ  − ܽଵ‖, . . . , ݔ‖ − ܽ‖) = ‖݀(ݔ) − ܽ‖గ . 

Thus the ߨ-centers of a correspond (in the identification ݀) to the nearest 

points to a in the diagonal ܦ. 

Corollary (2.2.1)[2]: Let X, n and π be as above. Let Pୈ ∶ (X୬) →

2ୈ  be the metric projection (i.e., the “nearest point map”), given by 

Pୈ  (u)  = {v ∈ D୬: ‖u −  v‖ =  dist (u, D୬)}. 

Then E (a) = d୬
ିଵ (Pୈ(a)) for each ∈ (X୬) . 
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As usual, the support of a vector t ∈  ℝା
୬   is the set spt(t) =  {i: t୧ > 0}. 

Definition (2.2.2)[2]: We shall say that a norm ߨ on ℝା
  is handy if ߨ is 

handy in each coordinate.  

Theorem (2.2.3)[2]: Let X be a Banach space satisfying (GC) and (P∆), 

and let π be a polyhedral nondecreasing norm on ℝା
୬ . Assume that either 

dim(X) < ∞or π is handy. 

(a) The π-center map E on X୬ is H-l.s.c. (in particular, E admits a 

continuous selection). 

(b) If, in addition, X satisfies (∗) then E is H-continuous on X୬. 

Proof. Since X is (GC), Corollary (2.2.1) implies that ܦ is proximinal in 

(ܺ)గ , that is, the metric projection ܲ   has nonempty values. By Theorem 

(2.1.16), (ܺ)గ satisfies (ܲ∆) [and (∗) whenever X satisfies (∗)] By [2], ܲ  

is H-l.s.c. [and H-continuous if (ܺ)గ has (∗)]. The rest follows from 

Corollary (2.2.1) (existence of a continuous selection for ܧగ is guaranteed by 

Michael’s selection theorem [6]).  

By ܥ(ܶ, ܺ) we mean the Banach space of all bounded continuous X-valued 

functions on a topological space T, equipped with the supremum norm. For 

T compact, we write just ܥ(ܶ, ܺ) (instead of ܥ(ܶ, ܺ)). 

Every ܽ ∈ , ܶ)ܥ ܺ) can be considered as a continuous function ܽ: ܶ → ܺ, 

defined by ܽ(ݐ)  =  (ܽଵ(ݐ), . . . , ܽ(ݐ)). 

Observation (2.2.4)[2]: Let T be a topological space, X a Banach space, 

݂: ℝା
 → ℝ a nondecreasing function. Then 

((ݐ)ܽ) ݎ ≤ ܽ)        (ܽ)ݎ ∈ ,ܶ)ܥ ܺ) , ݐ ∈ ܶ). 
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Proof. 

r(a(t)) = inf
୶∈ଡ଼

f(‖x − aଵ(t)‖, . . . , ‖x − a୬(t)‖)

=  inf
୴∈େౘ(,ଡ଼)

f(‖v(t) − aଵ(t)‖, . . . , ‖v(t) − a୬(t)‖)

≤ inf
୴∈େౘ( ,ଡ଼)

f(‖v − aଵ‖ஶ, . . . , ‖v − a୬‖ஶ) =  r (a). 

Now, we prove the first main result of the present paper. It generalizes 

[2] saying that ܥ(ܶ, ܺ) satisfies (GC) whenever X is a finite-dimensional 

polyhedral space. Observe that every finite-dimensional polyhedral space 

satisfies (GC) (by compactness) and (ܲ∆) (by Fact (2.1.2)). 

Theorem (2.2.5)[2]: Let X be a Banach space satisfying (GC) and (P∆). 

Then Cୠ(T, X) satisfies (GC) for every topological space T. (In particular, 

each nonempty finite subset of Cୠ(T, X) has a Chebyshev center.) 

Proof. Fix ߩ ∈ (0, ∞). Since the polyhedral nondecreasing norm (ݐ)ߨ =

ݐߩ ଵஸஸݔܽ݉  ݐ)  ∈ ℝା
 ) is handy, ܧఘ admits a continuous selection ݁: ܺ →

ܺ (Theorem (2.2.3)). Given ܽ ∈ ,ܶ)ܥ ܺ)݊ = ,ܶ)ܥ ܺ), ݑ ݐݑ = ݁ ∘

 ܽ: ܶ → ܺ. For each ݐ ∈ ܶ, (ݐ)ݑ ∈  and hence, by Observation ((ݐ)ܽ)ఘܧ

(2.2.4), 

(ܽ)ఘݎ  ≥ ݑݏ
௧∈்

((ݐ)ܽ)ఘݎ = ݑݏ 
௧∈்

ݔܽ݉
ଵஸஸ

(ݐ)ݑ‖ߩ − ܽ(ݐ)‖

= ݔܽ݉ 
ଵஸஸ

ݑ‖ߩ − ܽ‖ஶ . 

This implies that ݑ ∈ ܽ ఘ(ܽ). We have proved that eachܧ ∈ ,ܶ)ܥ ܺ) 

admits weighted Chebyshev centers for all weights. Apply Theorem (2.1.5).  

We study the multivalued ߨ-center map 

గܧ ∶ ,ܭ)ܥ  ܺ) → 2(,), 
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where ߨ is a nondecreasing norm on ℝା
 ,  is a compact Hausdorff ܭ

topological space, and X is a Banach space. 

Notation (2.2.6)[2]:  Let K, X be as above. 

(a) For ܽ ∈ ,ܭ)ܥ ܺ), we define ොܽ ∈ ,ܭ)ܥ ܺ) by 

ොܽ(ݐଵ, . . . , (ݐ = (ܽଵ(ݐଵ), . . . , ܽ(ݐ)). 

(b) We define ߆: ,ܭ)ܥ ܺ) → ,ܭ)ܥ ܺ) by 

,ଵݐ)ݑ߆ . . . , (ݐ  = ,(ଵݐ)ݑ) . . . ,  ,((ݐ)ݑ

that is, ݑ߆ = ݀ ∘ ݑ   (where ݀ is the canonical map of X onto the diagonal 

 .( of ܺܦ

Obviously, for every direct-sum norm on ܺ  is a linear isomorphism ߆ ,

of ܭ)ܥ, ܺ) into ܭ)ܥ, ܺ). 

The following simple lemma gives possibility to represent ߨ-centers in 

the space ܭ)ܥ, ܺ) as continuous selections of certain multivalued mappings 

on ܭ with values in ܺ. 

Lemma (2.2.7)[2]: Let π, K and X be as above, a ∈ C(K, X)୬. Then 

Θ(E (a)) is exactly the set 

E (aො) ∶= v ∈  C(K୬, X୬): v(t) ∈ Ψ(t) for all t =  (tଵ, . . . , t୬)  ∈  K୬, 

where 

Ψ(t)  = ൜
B (aො(tଵ, . . . , t୬), r (a))  ∩  D୬       if tଵ =· · ·= t୬,
B (aො(tଵ, . . . , t୬), r(a))                            otherwise. 

Proof. Given ݑ ∈ ,ܭ)ܥ ܺ), we have the following chain of obvious 

equivalences  

ݑ ∈ ݑ‖)ߨ ݂݂݅(ܽ)గܧ − ܽଵ‖ஶ, . . . , ݑ‖ − ܽ‖ஶ) ≤  (ܽ) గݎ
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,ଵݐ∀ ݂݂݅ . . . , ݐ  ∈ (ଵݐ)ݑ‖)ߨ    :ܭ − ܽଵ(ݐଵ)‖, . . . , (ݐ)ݑ‖ − ܽ(ݐ)‖) ≤  (ܽ) గݎ 

,ଵݐ∀ ݂݂݅ . . . , ݐ ∈ :ܭ ,ଵݐ)௨߆     . . . , (ݐ  ∈ )గܤ  ොܽ(ݐଵ, . . . , ,(ݐ  .((ܽ) గݎ

Now, the inclusion ߆(ܧగ(ܽ)) ⊂ ) గܧ ොܽ) is clear. To show the other 

inclusion, assume ݒ ∈ )గܧ ොܽ). Then, for each ߬ ∈ ,ܭ ( ߬)ଵݒ =· · ·= ( ߬)ݒ  =

,ଵݐ)ݑ߆ and ,( ߬)ݑ : . . . , (ݐ = ,ଵݐ)ݒ  . . . , (ݐ  ∈ ) గܤ ොܽ(ݐଵ, . . . , ,(ݐ  గ(ܽ)) wheneverݎ

,ଵݐ . . . , ݐ ∈ = ݑ߆ ,That is .ܭ ݑ and ݒ  ∈  .(ܽ)గܧ

Lemma (2.2.7) suggests to study the set of continuous selections of 

mappings of type. The main such result, Theorem (2.2.10), needs two 

preliminary steps. 

The following proposition can be easily proved by adapting methods 

from [2]. 

Proposition (2.2.8)[2]: Let X be a Banach space, Y ⊂ X a closed 

subspace. Consider the multivalued mapping 

G: ܺ → 2,        (ݔ)ܩ = ,ݔ)ܤ 1) ∩ ܻ . 

(a) If X satisfies (P∆), then G is H-l.s.c. on its effective domain. 

(b) If X satisfies (∗), then G is H-continuous on its effective domain. 

Proof. In this section we are going to prove Proposition (2.2.11). Our proof 

is just an easy extension of analogous results in [2] concerning metric 

projection, since ܲ (ݔ)  = ,ݔ)ݐݏ݅݀ whenever (ݔ)ܩ  ܻ ) = 1 (Y is a closed 

subspace of X, G is as in Proposition (2.2.11). Lemma(2.2.9) , (i) ⇒ (ii), was 

essentially claimed at the beginning of the proof of [2, Proposition (2.2.6)]; 

Proposition (2.2.11) corresponds to [2, Proposition (2.2.6)], while 

Proposition (2.2.11) is based on [2], Theorem (2.2.4). 
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Lemma(2.2.9)[2]: Let X be a Banach space, x ∈ Sଡ଼  . The following 

assertions are equivalent: 

(i) x is a (QP)-point for X, that is, there exists a neighborhood U of x 

such that [x, y] ⊂ Sଡ଼  whenever y ∈ U ∩ Sଡ଼ ; 

(ii) There exists r > 0 such that x + ଶ୰(୶ି୶బ)
‖୶ି୶బ‖ ∈ Bଡ଼  whenever x ∈ Bଡ଼  and 

0 < ‖x − x‖ < r. 

Proof. (i) ⇒ (ii). Let U be as (i). Choose ݎ ∈ (0, 1) such that ݔ)ܤ, (ݎ3  ⊂

 ܷ. Let ∈ ܤ , 0 < ݔ‖ − ‖ݔ < ,ݎ ݑ = ݔ + ଶ(௫ି௫బ)
‖௫ି௫‖  . 

Assume that ‖ݑ‖ > 1. Since ݔ ∈ ,ݔ) (ݑ ∩ ,ݔ] , we haveܤ [ݑ ∩ ܤ =

,ݔ]  ଵݔ ଵ] for someݔ ∈ ,ݔ) ଵݔ Obviously .(ݑ ∈ ܵ . Fix ݒ ∈ ,ଵݔ)  so close (ݑ

to ݔଵ to have 1 < ‖ݒ‖ < 1 + Since ቛ .ݎ ௩
‖௩‖

− ቛݔ = ݒ ቛ( ଵ
‖௩‖

− 1) + − ݒ)

)ቛݔ ≤ ‖ݒ‖) − 1) + ݑ‖ − ‖ݔ < ݎ + ݎ2 = we must have [ ௩ ,ݎ3
‖௩‖ , [ݔ  ⊂  ܵ. 

Since ݔଵ ∈ ,ݒ) ଵݔ we can write ,(0ݔ = + ݒݐ (1 − ݐ where 0ݔ(ݐ ∈ (0, 1). But 

ܵ  ∋ ଵݔ = ‖ݒ‖ݐ) + (1 − ((ݐ · ቈ
‖ݒ‖ݐ

‖ݒ‖ݐ + (1 − (ݐ
ݒ

‖ݒ‖ +
1 − ݐ

‖ݒ‖ݐ + (1 − (ݐ
 ݔ

leads to a contradiction since the point in square brackets is of norm one and 

‖ݒ‖ݐ + (1 − (ݐ  > + ݐ (1 − (ݐ = 1. 

(ii) ⇒ (i). Let ݎ > 0 be as in (ii). We claim that ܷ = ,ݔ)ܤ  satisfies (ݎ

(i). If this is not the case, there exists ݕ ∈ ,ݔ)ܤ (ݎ ∩  ܵ   such that 

,ݕ] [ݔ  ∩ ܤ 
 ≠ ∅. This clearly implies that ݂݂ܽ{ݕ, {ݔ  ∩ ܤ  = ,ݕ]   [ݔ

(“aff” denotes the affine hull). By (ii), ∶= ݔ +  ଶ(௬ି௫బ)
‖௬ି௫బ‖ ∈   . On the otherܤ

hand, since ‖ݑ − ‖ݔ = < ݎ2  ݕ‖ − ∋ ݑ ‖, we haveݔ ,ݕ}݂݂ܽ  \ {ݔ

,ݕ]  [ݔ = ,ݕ}݂݂ܽ ܤ \ {ݔ   , a contradiction.  
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Lemma(2.2.10)[2]:  Let Y be a closed subspace of a Banach space X, q ∶

 X →  X/Y the corresponding quotient map. Let G be as in Proposition 

(2.2.9), and 

R: X/Y → 2ଡ଼ , R(ξ ) = qିଵ(ξ ) ∩ Bଡ଼ . 

Then dom(R) = q(B X ), and 

G(x)  =  x −  R(q(x))  and R(ξ )  =  σ(ξ )  −  G(σ(ξ ))(x ∈ X, ξ ∈  X/Y ), 

where σ ∶  X/Y →  X is a continuous selection of qିଵ (it exists by Michael’s 

selection theorem). 

Proof. Everything follows easily from the following chain of obvious 

equivalences. 

ݖ ∈ (ݖ)ݍ ݂݅ ݕ݈݊ ݀݊ܽ ݂݅     ( (ݔ)ݍ)ܴ  = ,(ݔ)ݍ ‖ݖ‖ ≤  1 

ݔ ݂݅ ݕ݈݊ ݀݊ܽ ݂݅ − = ݖ  ∋ ݕ :  ܻ , ݔ‖ − ‖ݕ  ≤ 1 

= ݖ ݂݅ ݕ݈݊ ݀݊ܽ ݂݅ ݔ  − ,ݕ  ∋ ݕ  .(ݔ)ܩ 

Let us recall the statement of Proposition (2.2.9). 

 Corollary (2.2.11)[2]: Let X be a Banach space, Y ⊂ X a closed 

subspace. Consider the multivalued mapping 

F: X × ℝା → 2ଡ଼, F(x, r) = B(x, r) ∩ Y . 

(a) If X satisfies (P∆), then F is H-l.s.c. on its effective domain. 

(b) If X satisfies (∗), then F is H-continuous on its effective domain. 

Proof. Fix (̅ݔ, (ݎ̅ ∈ ݎ̅ If ., (ܨ)݉݀ > 0, then for all (ݔ, (ݎ ∈  that ( ܨ)݉݀

are sufficiently close to (̅ݔ, ,ݔ)ܨ we have (ݎ̅ (ݎ = ௫)ܤ]ݎ


, 1) ∩ ܻ] = ௫)ܩݎ

) 

where G is as in Proposition (2.2.8). By that theorem and Lemma (2.1.7), F 
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has the required (semi)continuity property at (̅ݔ, ݎ̅ Now, assume that .(ݎ̅ =

0. Then (̅ݔ, (ݎ̅ = ,ݔ̅)ܨ 0) = {ݔ̅} ⊂ ܻ . If ݕ ∈ ,ݔ) ܨ ݕ‖ then ,(ݎ − ‖ݔ̅  ≤

ݕ‖ − ‖ݔ + ݔ‖ − ‖ݔ̅ ≤ ݎ + ݔ‖ − -ௗ(ி) is H|ܨ This shows that .‖ݔ̅

continuous at (̅ݔ, 0).  

Theorem (2.2.12)[2]: Let κ be a compact Hausdorff topological space, 

κ0 ⊂ κ a closed set, ࣲ a Banach space satisfying (∗), Y ⊂ ࣲ a closed 

subspace, r: C(κ, ࣲ) → [0, ∞) a continuous function. For a ∈ C(κ, ࣲ), 

denote 

Φୟ(t) = ቊ B൫a(t), r(a)൯ ∩ Y            fort ∈  κ,
B(a(t), r(a))               for t ∈ κ \ κ,

 

and 

Σ(a) = {v ∈ C(κ, ࣲ): v(t) ∈ Φୟ(t) for all t ∈ κ}. 

Consider the set D = {a ∈ C(κ, ࣲ): Φୟ(t) ≠  ∅  for each t ∈ κ}.  

Then: 

(a) Σ(a)  ≠  ∅ for each a ∈ D; 

(b) the multivalued mapping Σ: D → 2େ(κ,ࣲ) is H-continuous. 

Proof.  

(a) Fix ܽ ∈  We .0ߢ\ ߢ  is obviously H-continuous onߔ The map .ܦ

claim that ߔ is H-l.s.c. (and hence l.s.c.) at the points of 0ߢ. By 

Corollary (2.2.9), ߔ|ߢ is H-continuous. Given ̅ݐ ∈ ߝ  andߢ > 0, 

there exists a neighborhood U of ̅ݐ such that: 

a. ߔ(̅ݐ) ⊂ (ݐ)ߔ + ࣲܤߝ
  whenever ݐ ∈ ܷ ∩  ;ߢ

b. (̅ݐ)ܽ)ܤ, ((ܽ)ݎ  ⊂ ,(ݐ)ܽ)ܤ  ((ܽ)ݎ  + ࣲܤߝ
  whenever ݐ ∈  .ߢ\ܷ



34 
 

Thus, also for ݐ ∈ (̅ݐ)ߔ , we haveߢ\ܷ ⊂ ,(̅ݐ)ܽ)ܤ ((ܽ)ݎ ⊂ (ݐ)ߔ + ࣲܤߝ
  . 

This proves our claim. Now, (a) follows by Michael’s selection theorem [6]. 

(b) Fix തܽ ∈ ߝ and ܦ > 0. Then ܥ: = തܽ(ߢ) × )ݎ} തܽ)} is a compact set 

contained in ݀(ܨ)݉, where F (x, r) = B(x, r) ∩ Y .  Since F is H-continuous 

on ݀(ܨ)݉ (Corollary (2.2.9)), a standard compactness argument shows that 

there exists ߜ > 0 such that ݀ு(ݔ)ܨ, ,(ݎ ,ݕ)ܨ ((ݏ < ,ݔ) whenever ߝ (ݎ ∈

,ܥ ,ݕ) (ݏ ∈ ,(ܨ)݉݀ ݔ‖ − ‖ݕ < ݐ| and ߜ − > ݏ ߟ Let .ߜ ∈ (0,  be such (ߜ

that |ݎ(ܽ) − )ݎ തܽ)| < ܽ whenever ߜ ∈ ,ܦ ‖ܽ − തܽ‖ஶ <  Now, it is obvious .ߟ

that 

݀ு(ߔ(ݐ), ((ݐ)തߔ < ݐ ݎ݁ݒℎ݁݊݁ݓ     ߝ  ∈ ,ߢ ܽ ∈ ,ܦ ‖ܽ − തܽ‖ஶ <  .ߟ 

By Corollary (2.1.12), ݀݅ݐݏு(ߑ(ܽ), )ߑ തܽ)) ≤ ܽ whenever ߝ  ∈ ,ܦ ‖ܽ −

തܽ‖ஶ <   .ߟ

Now, we can easily deduce the second main result of the present paper. It 

seems to be new even for finite-dimensional polyhedral spaces X. 

Theorem (2.2.13)[2]: Let K be a compact Hausdorff topological space, 

X a Banach space satisfying (GC) and (∗), n a positive integer, and π a 

polyhedral nondecreasing norm on ℝା
୬ . Assume that either X is finite-

dimensional or π is handy (see Definition (2.2.2)). Then the π-center map 

E: C(K, X)୬ → 2େ(,ଡ଼) 

is nonempty-valued and H-continuous on C(K, X)୬. 

Proof. In the notation of Lemma (2.2.7),  ܧగ(ܽ) = ଵି߆ ∘ )గܧ ොܽ) (ܽ ∈

,ܭ)ܥ  ܺ)). Thus it suffices to show that ܧగ (·) is H-continuous on the set 

ࣞ = { ොܽ: ܽ ∈ ,ܭ)ܥ ܺ)}. 
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Recall that ܭ)ܥ, ܺ) satisfies (GC) by Corollary (2.2.5) and Fact (2.1.2).       

In particular, the mapping Ψ from Lemma (2.2.7) has nonempty values for 

every ොܽ ∈ = Now, it suffices to apply Theorem (2.2.12) with .ܦ

ࣲ ݀݊ܽ ܭ =  (ܺ)గ . (Notice that ࣞ ⊂   (.in this case ܦ

Recall that, given a finite set ܣ = {ܽଵ, . . . , ܽ} in a Banach space X, the 

set (ܣ)ܧ of all Chebyshev centers of A coincides with the set ܧ(ܽ) of 

weighted Chebyshev centers of the n-tuple ܽ = (ܽଵ, . . . , ܽ) ∈ ܺ  for the 

constant weight  = (1, . . . , 1). 

Let us write ℕ = {1, 2, . . . } for the set of positive integers. Given ݉ ∈ ℕ, 

we denote 

 ࣪(ܺ) = ܣ ∈ 2: 1 ≤ ≥ ܣ ݀ݎܽܿ  ݉. 

Let us state the following quite natural lemma. The main technical 

“difficulty” stays in the fact that an element of ࣪(ܺ) can have a cardinality 

k smaller than m, and it is not an ordered k-tuple. 

Lemma (2.2.14)[2]: Let m ∈ ℕ, and X a Banach space in which every 

nonempty set of at most m elements admits a Chebyshev center. Assume 

that the mapping E ∶ X୫ → 2ଡ଼ is H-continuous. Then the Chebyshev-center 

map A ⟼  E(A) is continuous in the Hausdorff metric on ୫࣪(X). 

Proof. First observe that the continuity of the ܧ-map on ܺ  implies that the 

-maps on ܺܧ  (1 ≤ ݇ ≤ ݉) are all Hcontinuous. This follows immediately 

from the fact that, for the max-norms on ܺ and on ܺ , the embedding 

:ߞ ܺ(ݔଵ, . . . , (ݔ → ,ଵݔ) . . . , ݔ , ݔ , . . . , (ݔ ∈ ܺ is an isometry and 

(ݔ)ܧ = ݔ for each ((ݔ)ߞ)ܧ ∈ ܺ . 

Fix ܣ ∈ ࣪(ܺ) and ߝ > 0. Denote k = card A, ܣ = {ܽଵ, . . . , ܽ} and ∆= ଵ
ଶ
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݉݅݊{ฮܽ − ܽฮ ∶ ݅ ≠ ݆}. Clearly 1 ≤ ݇ ≤  ݉ and  ∆> 0. Put 

ܵ = = ݏ} ,ଵݏ) . . . , (ݏ ∈ ℕ: |ݏ| ∶= ଵݏ +· · · ݏ+  ≤ ݉}. 

For each ݏ ∈ ܵ, define ܽ(ݏ) ∈ ܺ|௦| by 

(ݏ)ܽ  =  (ܽଵ, . . . , ܽଵᇣᇧᇧᇤᇧᇧᇥ
௦భ

, . . . , ܽ , . . . , ܽᇣᇧᇧᇤᇧᇧᇥ
௦ೖ

) 

Since the set S is finite and the ܧ-maps on ܺ  (1 ≤ ݇ ≤ ݉) are H-

continuous, there exists ߜ ∈ (0, ∆) such that 

݀ு(ܧ(ܾ), ((ܽ)ܧ < ݏ ݎ݁ݒℎ݁݊݁ݓ            ߝ ∈ ܵ, ܾ ∈ ܺ|௦|,  ‖ܾ − ஶ‖(ݏ)ܽ <  .ߜ 

Now, let ܤ ∈ ࣪(ܣ) be such that ݀ு(ܤ, (ܣ  < ߜ Since .ߜ  < ∆, the sets ܤ ∶

= ܤ ∩ )ܤ ܽ  , 1) (ߜ ≤  ݆ ≤  ݇) are nonempty and pairwise disjoint, and ܤ =

⋃ ܤ

ୀଵ   . Denote ݏ = ܤ ݀ݎܽܿ    and ܤ = {ܾଵ

(), . . . , ܾ௦ೕ
() } (1 ≤  ݆ ≤ ݇). 

Then the point 

ܾ = ቀܾଵ
(ଵ) , . . . , ܾ௦భ

(ଵ) , . . . , ܾଵ
() , . . . , ܾ௦ೖ

()ቁ 

belongs to ܺ|௦| where ݏ = ,ଵݏ) . . . , ܾ‖ ), andݏ − ஶ‖(ݏ)ܽ <  Thus .ߜ

݀ு((ܤ)ܧ, ((ܣ)ܧ = ݀ு൫ܧ(ܾ), ൯((ݏ)ܽ)ܧ <   .ߝ 

Corollary (2.2.15)[2]: Let K be a compact Hausdorff topological space 

and X a Banach space satisfying (GC) and (∗). Then each nonempty finite 

set in Cୠ(K, X) admits a Chebyshev center, and for each positive integer m 

the Chebyshev-center map A ↦  E(A) is continuous in the Hausdorff metric 

on ୫࣪(Cୠ(K, X)). 

Proof. The assertion follows from Theorem (2.2.11) and Lemma (2. 2.12) 

by observing that the maximum norm (ݐ)ߨ =  on ℝାݐ ଵஸஸݔܽ݉
  is handy 

(݊ ∈ ℕ).  
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Proposition (2.2.16)[2]: Let X be a Banach space, Y ⊂ X a closed 

subspace. Consider the multivalued mapping 

G: X → 2ଡ଼ , G(x) = B(x, 1)  ∩  Y . 

(a) If X satisfies (P∆), then G is H-l.s.c. on its effective domain. 

(b) If X satisfies (∗), then G is H-continuous on its effective domain. 

Proof. By Lemma A.2, it suffices to prove the same properties for the 

multivalued mapping R (in place of G).  

(a) Let X satisfy (ܲ∆). By [2, Theorems (2.2.4) and (2.1.14)], R is l.s.c. 

on ݀݉(ܴ) = /ܤ and H-continuous on ,(ܤ)ݍ
 = ܤ)ݍ 

 ). 

We have to show that ܴ|( ) is H-l.s.c. at each point of ݍ(ܤ)  ∩  ܵ/  . 

Fix ߦ ∈ ( ܤ)ݍ  ∩ ܵ/  and ݔ ∈  By [2, Theorem (2.1.13)] (see .(ߦ)ܴ

also [2, Fact (2.1.14)] or our Fact (2(d).1.12)), each point of ܵ  is a (QP)-

point for X, a notion defined in Lemma A.1. Hence there exists ݎ > 0 as in 

Lemma A.1(ii). Fix an arbitrary ߝ ∈ (0,  .(ݎ

Since ܴ|() is l.s.c. at ξ0, there exists a relative neighborhood V of ߦ in 

ߦ such that, for each (ܤ)ݍ ∈ కݔ there exists ,{ߦ} \ ܸ ∈ (ߦ)ܴ ∩

,ݔ)ܤ .(ߝ ,ݓܰ  , ߦ ℎܿݑݏ ݎ݂

xஞ +
r(xஞ − x)
ฮxஞ − xฮ

= x + ൫ฮxஞ − xฮ + r൯  
xஞ − x

ฮxஞ − xฮ
∈ Bଡ଼ 

since ݎ + ฮݔక − ฮݔ < ,ߦ :So we have the following situation .ݎ2 ∋ ߦ

,( ܤ)ݍ  ߦ ≠ ,ߦ  ݔ ∈ ,(ߦ)ܴ  ∋ ߦݔ ,(ߦ)ܴ  ݎ > 0, కݔ + 
(௫ି௫బ)

ฮ௫ି௫బฮ
∈  . By directܤ 

application of [2, Lemma (2.1.16)], we get 
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ݑݏ
௭బ∈ோ(కబ)

,ݖ)ݐݏ݅݀ (( ߦ)ܴ ≤
2ฮݔక  − ฮݔ 

ݎ
<

ߝ2
ݎ

ߦ)       ∈  .({ߦ} \ ܸ

This proves that ܴ|() is H-l.s.c. atߦ. 

(c) If X satisfies (∗), R is H-u.s.c. on ܤ)ݍ  ) by [2, Theorem (2.2.7)].  
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Chapter 3 

Best Approximation in Polyhédral Banach Spaces 

 

 We study conditions under which the metric projection of a polyhedral 

Banach space X onto a closed subspace is Hausdorff lower or upper 

semicontinuous. 

We show contains examples illustrating the importance of some hypotheses 

in the main results. 

 Section (3.1):Polyhedral Banach Spaces and Matric 

Projections with Hausdorff Lower and Upper semicontncity: 

 X denotes a real Banach space such that ݀݅݉ܺ ≥ 2, with closed unit ball 

ܤ  , open unit ballܤ
 and unit sphere ܵ , and ܺ∗ is the dual of X. The set of 

all nonempty bounded closed convex subsets of X is denoted by ßܥܥ(ܺ), 

and [ݔ, [ݕ  = ,ݔ}ݒ݊ܿ   is the closed segment with endpoints x and y. We {ݕ

shall use the following further notations. 

By ݁ܥݐݔ we denote the set of the extreme points of a convex set C. By 

 we mean the relative interior of C in the sense of convex analysis, that ܥ݅ݎ

is, the relative interior of C in its affine hull ݂݂ܽܥ.  

For ݔ ∈ ܵ,  ,is the image of x by the (multivalued) duality mapping (ݔ)ܦ

i.e. 

(ݔ)ܦ = (ݔ)ܦ = { ݂ ∈ ܵ∗ ∶ (ݔ)݂ = 1}. 

Observe that ݁(ݔ)ܦݐݔ = (ݔ)ܦ ∩  .∗ by the Krein–Milman theoremܤݐݔ݁
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If A is a set in ܺ∗, then ܣ′ denotes the set of all w*-accumulation points 

(called also w*-limit points or w*-cluster points) of A: 

′ܣ = { ݂ ∈ ܺ∗ ∶ ݂ ∈  .{∗തതതതതതതതത௪{ ݂ }\ܣ 

Recall also that a set ß ⊂  ∗ is 1-norming ifܤ

‖ݔ‖  = ݑݏ 
∈

 (3.1)                                              .(ݔ)݂

A boundary for X is a 1-norming set ß ⊂  ∗ such that the supremum inܤ

(3.1) is in fact a maximum for each ݔ ∈ ܺ. The set ݁ܤݐݔ∗ is an example of 

a boundary. 

Definition (3.1.1)[3]: A set ܲ ∈  is a polytope if the intersection (ܺ)ܥܥܤ

of P with any finitedimensional affine set is a (finite-dimensional) polytope. 

A Banach space X is said to be polyhedral if ܤ is a polytope. 

Let us recall that X is polyhedral iff each two-dimensional subspace of X 

is polyhedral [3] 

If X is polyhedral, then the set w*- exp ܤ∗ (of all w*-exposed points of ܤ∗) 

coincides with the set w*-strexpܤ∗  (of all w*-strongly exposed points of 

 ∗); moreover, this set is a boundary which is contained in any otherܤ

boundary, and for each of its elements ݂ , the face ݂ିଵ(1) ∩ ܵ has 

nonempty relative interior in ܵ . 

A finite-dimensional space X is polyhedral iff ܺ∗ is polyhedral. On the 

other hand, an infinite-dimensional dual Banach space is never polyhedral 

[3] (even it is not isomorphic to any polyhedral space [4]). 

Fact (3.1.2)[3]: ([6]). If P is a separable polytope in a Banach space, then 

affP is closed and riܲ ≠  ∅. 
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We shall deal with the following three geometric properties, two of them 

already defined in Introduction.  

Definition (3.1.3)[3]: Let X be a Banach space. We say that X satisfies (∗

) if there exists a boundary ß ⊂ ܵ∗ such that 

(ݔ)݂ < ݔ ݎ݁ݒℎ݁݊݁ݓ       1 ∈ ܵ  ܽ݊݀ ݂ ∈ ß′.                          (3.2)  

We say that X satisfies (߂) if there exists a boundary ß ⊂ ܵ∗ such that 

(ݔ)ܦ ∩ ß ݅ݎ݂ ݁ݐ݂݅݊݅ ݏ ݁ܽܿℎ ݔ ∈ ܵ .                                     (3.3) 

We say that X is (ܳܲ) (“quasi-polyhedral” [1]) if each ݔ ∈ ܵ has a 

neighborhood V such that [ݔ, [ݕ ⊂ ܵ whenever ݕ ∈ ܸ ∩ ܵ. 

Lemma (3.1.4)[3]: Let X be a polyhedral Banach space, ß ⊂ ܵ∗  a 

boundary for ܺ, ݔ ∈ ܵ . Then 

(ݔ)ܦ = (ݔ)ܦ]∗തതതതതതത௪ݒ݊ܿ ∩ ß]. 

In particular, (ݔ)ܦ  = (ݔ)ܦ]ݒ݊ܿ   ∩  ß] whenever (ݔ)ܦ ∩ ß is finite. 

Proof. Denote ܤ = (ݔ)ܦ ∩ ß. If the assertion is not true, there exists ݂ ∈

ݕ . By the Hahn–Banach theorem, there existsܤ∗തതതതതതത௪ݒ݊ܿ\(ݔ)ܦ ∈ ܺ such that 

(ݕ)݂ > ∈బݑݏ  Note that y cannot be a multiple of x since all the .(ݕ)݃ 

involved functionals have value 1 at x. Consider the two-dimensional 

subspace ܻ = ,ݔ}݊ܽݏ   .{ݕ

Since ܤ is a polygon, a part of ܵ consists of two nondegenerate line 

segments [ݔ, ,ݔ]  ଵ]  andݒ ,ଵݒ ଶ], whereݒ   . Forܤ ଶ are two of the vertices ofݒ

݅ = 1, 2, fix an arbitrary ݓ ∈ ,ݔ) ݒ  ) and choose ݃ ∈ ß such that ݃(ݓ) =

1. This implies that [ݔ, ݒ  ] ⊂ ݃ 
ିଵ(1) and hence ݃ ∈  . It is easy to seeܤ
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that ݂| ∈ (ݔ)ܦ = [݃ଵ|, gଶ|ଢ଼ ]. But then we get ݂(ݕ) ≤ ,(ݕ)ଵ݃}ݔܽ݉ ݃ଶ(ݕ)} ≤

∈బݑݏ   .a contradiction ,(ݕ)݃ 

It is well known that the properties defined in Definition (3.1.3) are 

hereditary and, moreover, they are satisfied by any finite-dimensional 

polyhedral space X; for this and the following fact see. 

Fact (3.1.5)[3]: The following implications hold: 

(a) (∗)  ⇒ (ܳܲ) with (߂)  ⇔  ;(߂) ℎݐ݅ݓ ݈ܽݎℎ݁݀ݕ݈

(b) (ܳܲ) ⇒  .݈ܽݎℎ݁݀ݕ݈

Moreover, none of the simple implications “ ⇒ ” can be reversed.  

Observation (3.1.6)[3]: A Banach space X is polyhedral with (߂) if and 

only if for each ݔ ∈ ܵ there exist a neighborhood V of x and finitely many 

closed halfspaces ܪଵ, . . . , ܤ  , such thatܤ , each containingܪ ∩ ܸ = ଵܪ) ∩

… ∩ (ܪ  ∩ ܸ (that is, roughly speaking, each ݔ ∈ ܵ has a neighborhood in 

which ܤ coincides with a finite intersection of closed halfspaces containing 

 .( ܤ

Proof. Let X be polyhedral with (߂). By Fact (3.1.5), X is (QP). It follows 

easily (see also [2]) that there exists a neighborhood U of x such that (ݕ)ܦ ⊂

∋ whenever (ݔ)ܦ ଵܷ ∶= ܷ ∩ ܵ . The set ܤ ∶= (ݔ)ܦ   ∩  ß is finite and, by 

Lemma (3.1.4), (ݔ)ܦ = ݕ . Thus, for anyܤݒ݊ܿ ∈ ଵܷ, ‖ݕ‖ = 1 =

(ݕ)݂∈(௫)ݑݏ = ∈బݔܽ݉  :ܸ The open set .(ݕ)݂   = ⋃ ߣ ଵܷఒவ   contains x and 

satisfies ܸ ∩ ܤ = ܸ ∩ ⋂ ∈బ݂ܪ   where ܪ = ݖ} ∈ ܺ: (ݔ)݂ ≤ 1}. 

On the other hand, if X satisfies the condition with halfspaces, it is (QP) 

and hence polyhedral. Moreover, the norm-one functionals that define all 
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involved halfspaces form a boundary ß that satisfies (4) in Definition 

(3.1.3).  

The following fact is an easy consequence of the definition of property (∗). 

Fact (3.1.7)[3]: Let X be polyhedral with (∗), ݔ ∈ ܵ . Then 

ℎ  (ݔ)ℎ}ݑݏ ∈ {(ݔ)ܦ\ܤ < 1, 

where ß is any boundary satisfying (3) in Definition (3.1.3). 

Lemma (3.1.8)[3]: Let X be a polyhedral Banach space, ß ⊂ ܵ∗ a 

boundary for ܺ, ,ݔ ∋ ݕ  ܺ such that [ݔ, [ݕ ∩ ܤ = Then there exists ℎ .{ݔ} ∈

ß such that ℎ(ݔ) = 1 and ℎ(ݕ) > 1. 

Proof. The assumptions imply that ݔ ∈ ܵ and ∉   . If y is a (necessarilyܤ

positive) multiple of x, then any ℎ ∈ (ݔ)ܦ ∩ ß works. Now, assume that ܼ ∶

= ,ݔ}݊ܽݏ  ∌  is a polygon. Ifܤ has dimension two. Then {ݕ   , then xܤݐݔ݁

is an interior point of one of the faces of ܤ . Then any ℎ ∈ (ݔ)ܦ ∩ ß works 

since ‖ݖ‖ = ℎ(ݖ) whenever ݖ ∈ ܼ is sufficiently near to x. If ∈   , thenܤݐݔ݁

two distinct faces ܨଵ,   meet at x. Since ß is a boundary, thereܤ ଶ ofܨ

exist ℎଵ, ℎଶ ∈ ß such that ܨ ⊂ ℎ
ିଵ(1) (݅ = 1, 2). Then ‖ݖ‖ =

,(ݖ)ℎଵ}ݔܽ݉ ℎଶ(ݖ)} whenever ݖ ∈ ܼ is sufficiently near to x. It follows that, 

for some ݅ ∈ {1, 2}, ℎ = ℎ works.  

Lemma (3.1.9)[3]: Let X be a polyhedral Banach space, ß ⊂ ܵ∗ a 

boundary for ܺ, ݔ ∈ ܵ . Consider the sets 

= ܤ (ݔ)ܦ ∩ ß, ܣ = ሩ ℎିଵ(1)
∈బ 

, ܨ = ܣ ∩ ܵ = ܣ ∩  .ܤ

Then ܣ = ݔ and ܨ݂݂ܽ ∈  .ܨ݅ݎ 
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Proof. Obviously, the affine set A and the convex set F are closed. If ܣ =

= ܨ we have also ,{ݔ}   and the assertion is satisfied. Now, suppose {ݔ} 

ܣ ≠ ݔ Fix an arbitrary .{ݔ}  ∈ :ܻ and observe that {ݔ}\ܣ = ,ݔ}݊ܽݏ  {ݔ

has dimension two. If ݔ ∈  ܤ  then two distinct faces of the polygonܤݐݔ݁ 

meet at ݔ. Denote by C one of these two faces that does not contain x. Since 

ß is a boundary for X, there exists ℎ ∈ ß such that ܥ ⊂ ℎିଵ(1). But in this 

case we have ℎ(ݔ) = 1 ܽ݊݀ ℎ(ݔ) < 1, a contradiction with the fact that 

ݔ ∈  .ܤ  is an interior point of a face ofݔ Hence .ܣ

In fact, we have proved that each line in A containing ݔ intersects F in a 

nondegenerate segment with ݔ in its relative interior, that is, ݔ is an 

algebraic interior point of F in A. A standard Baire category argument 

implies that ݔ ∈   .which completes the proof ,ܨݐ݊݅ 

In what follows, Y is a closed subspace of a Banach space X, and ݍ: ܺ →

ܺ/ܻ is the corresponding quotient map. Recall that the metric projection 

onto Y is the multivalued mapping 

ܲ: ܺ →  2 , ܲ(ݔ) = ݕ} ∈ ܻ: ݔ‖ − ‖ݕ = ,ݔ)݀ ܻ)}, 

where ݀(ݔ, ܻ ) = ,ݔ)ݐݏ݅݀ ܻ) = ݅݊ ௬݂∈‖ݔ −  We say that Y is proximinal .‖ݕ

if ܲ(ݔ) ≠ ∅ for each ݔ ∈ ܺ; and Y is strongly proximinal [11] if ܲ(ݔ) ≠ ∅ 

and ݀(ݕ, ܲ(ݔ)) → 0 whenever ݔ ∈ ܺ, {ݕ} ⊂ ܻ , ݔ‖ − ‖ݕ → ,ݔ)݀ ܻ). 

The following definition weakens the notion of strong proximinality by 

considering only the points ݔ ∈ ܺ for which ܲ(ݔ) is nonempty. 

Definition (3.1.10)[3]: We shall say that Y is relatively strongly 

proximinal if 

ݕ)݀ , ܲ (ݔ)) → 0  
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whenever ݔ ∈ ܺ, ܲ(ݔ) ≠ ∅, {ݕ} ⊂ ܻ, ݔ‖ − ‖ݕ  → ,ݔ)݀  ܻ). 

Let us recall basic definitions about multivalued mappings. For our 

purposes it suffices to remain within the framework of normed linear spaces. 

Definition (3.1.11)[3]: Let ܮ, ܮ :ܨ ,be normed linear spaces ܯ →

2ெ, ݔ ∈  .ܮ

(a) F is l.s.c. (lower semicontinuous) at ݔ if for each open set ܣ ⊂  ܯ 

such that ܣ ∩ (ݔ)ܨ ≠ ∅ there exists a neighborhood ܸ ⊂  ݔ of ܮ

such that ܣ ∩ (ݔ)ܨ ≠ ∅ whenever ݔ ∈ ܸ. 

(b) F is u.s.c. (upper semicontinuous) at ݔ if for each open set ܣ ⊂  ܯ

such that ܨ(ݔ) ⊂ ܸ there exists a neighborhood ܣ ⊂   suchݔ of ܮ

that (ݔ)ܨ ⊂ ݔ whenever ܣ ∈ ܸ. 

(c) F is H-l.s.c. (Hausdorff lower semicontinuous) at ݔ if for each ߝ > 0 

there exists a neighborhood ܸ ⊂ (ݔ)ܨ  such thatݔ of ܮ ⊂ (ݔ)ܨ +

ݔ ெ wheneverܤߝ ∈ ܸ. 

(d) F is H-u.s.c. (Hausdorff upper semicontinuous) at ݔ if for each ߝ > 0 

there exists a neighborhood ܸ ⊂ (ݔ)ܨ  such thatݔ of ܮ ⊂ (ݔ)ܨ +

ݔ ெ wheneverܤߝ ∈ ܸ. 

(e) Let “s.c.” denote one of the four semicontinuity properties defined in 

(a)–(d). We say that F is s.c. on a set ܧ ⊂  ா is|ܨ if the restriction ܮ

s.c. at each point of E. 

(f) The effective domain of F is the set ݀ܨ݉ = ݔ} ∈ :ܮ (ݔ)ܨ ≠  ∅}. 

1. It is easy to see that one always has the implications H-l.s.c. ⇒ l.s.c., 

and u.s.c. ⇒ H-u.s.c.. 

Moreover, F is both H-l.s.c. and H-u.s.c. at ݔ if and only if F is continuous 

at ݔ with respect to the Hausdorff pseudometric 
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݀ு(ܣ, (ܤ = ݔܽ݉ ൜ݑݏ
∈

݀(ܽ, (ܤ , ݑݏ
∈

݀(ܾ,  ൠ(ܣ

on 2ெ. (Note that ݀ு, restricted to the closed elements of 2ெ, is a metric 

with values in [0, ∞].) 

Definition (3.1.12)[3]: Given a closed subspace ܻ ⊂ ܺ, we define the 

multivalued mapping 

ܴ: ܺ/ܻ → 2 , ܴ (ߦ ) = ( ߦ)ଵିݍ ∩  , ܤ

where ݍ: ܺ →  ܺ/ܻ is the quotient map. 

Observe that ܴ݀݉ = /ܤ and this set contains ( ܤ)ݍ
  = ܤ)ݍ 

). It is 

easy to see that Y is proximinal if and only if (ܤ  )  =  . /ܤ 

Appropriate versions of the following technical lemma and its corollary 

(Corollary (3.1.14)) are true for bounded closed convex sets. However, for 

simplicity of formulation, we state them just for ܤ . 

Lemma (3.1.13)[3]: Suppose that 

,ߦ ߦ ∈ ܤ)ݍ   ), ߦ ≠ ,ߦ  ݔ ∈ ܴ (ߦ), ݔ ∈ ܴ(ߦ ), ݎ > 0,

ݔ + ݔ) ݎ − ݔ‖(ݔ − ‖ݔ ∈ ܤ . 

Then 

ݑݏ
௭బ∈ோೊ (కబ)

,ݖ)݀ ܴ(ߦ )) ≤
− ݔ‖2 ‖ݔ 

ݎ
 

 Proof. Fix an arbitrary ݖ ∈ ܴ(ߦ). Define ݖ = ݔ + 
‖௫ି௫బ‖ା

ݖ) −  ,(ݔ

and observe that ݖ ∈ ௫ݑ An easy calculation shows that, for .(ߦ)ଵିݍ = ݔ +

ݎ  (௫ି௫బ)
‖௫ି௫బ‖

 , we have 
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= ݖ
− ݔ‖ ‖ݔ 

− ݔ‖ ‖ݔ  + ݎ
௫ݑ +

ݎ
− ݔ‖ ‖ݔ  + ݎ

 .ݖ

Consequently, ݖ ∈ , ௫ݑ  sinceܤ ݖ ∈ ݖ  . It follows thatܤ ∈ ܴ(ߦ), and 

hence ݀(ݖ, ܴ(ߦ )) ≤ ݖ‖ − ‖ݖ = ‖௫ି௫బ‖
‖௫ି௫బ‖ା 

௫ݑ‖  − ‖ݖ  ≤ ଶ‖௫ି௫బ‖
‖௫ି௫‖ା 

≤

ଶ‖௫ି௫‖


 .  

Corollary (3.1.14)[3]: The multivalued mapping RY is locally Lipschitz 

(in the Hausdorff metric) on ܤ/
  . 

Proof. Given ߦ ∈ /ܤ
  , fix an arbitrary ݔ ∈ (ߦ)ଵିݍ ∩ ܤ

. Let ݎ >  0 be 

such that ݔ + ܤ ݎ5 ⊂  . Consider, in /ܻ , arbitrary two distinct pointsܤ

,ߦ ∋ ߟ ߦ  + /ܤ ݎ
 . There exists ݔ ∈ ݔ‖ such that ( ߦ)ଵିݍ − ‖ݔ <  Then . ݎ

ݔ ∈ ݔ  implies thatܤ ∈ ܴ(ߦ). There exists ݕ ∈ ݔ‖ such that (ߟ)ଵିݍ −

‖ݕ < ߦ‖2 − ߦ‖ Since .‖ߟ − ‖ߟ < ݕ we have , ݎ2 ∈ ݔ + ܤݎ4 ⊂ ݔ +

ܤݎ5 ⊂ ݕ  ; henceܤ ∈ ܴ(ߟ). Moreover, ݑ௫: = ݔ + ݔ)ݎ − ݔ‖(ݕ − ‖ݕ ∈

ݔ) + (ܤݎ + ܤݎ ⊂ ,ݖ)݀(ߟ)௭∈ோೊݑݏ , . By Lemma (3.1.13)ܤ ܴ(ߦ)) ≤
ଶ


ݔ‖ − ‖ݕ ≤ ସ


ߦ‖  −  we conclude that ,ߟ and ߦ By interchanging .‖ߟ

݀ு(ܴ (ߦ ), ܴ(ߟ)) ≤  ସ


ߦ‖  − ,ߦ whenever ‖ߟ ߟ ∈ ߦ + /ܤ ݎ 
  .  

The next lemma gives a link between semicontinuity properties of the metric 

projection ܲ and those of ܴ . It is based on the following simple 

observation. 

Observation (3.1.15)[3]: If ݔ ∈ ܺ, ,ݔ)݀ ܻ) = 1 and ߦ =  then ,(ݔ)ݍ

ܴ(ߦ) = ݔ − ܲ(ݔ). 

Proof. The formula follows from the following chain of obvious 

equivalences. 
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ݖ ∈ ܴ(ߦ)    ݂݂݅(ݖ)ݍ = ,ߦ ‖ݖ‖ ≤ 1 

− ݔ ݂݂݅                                            ݖ  = ݕ ∈ ܻ, ݔ‖ − ‖ݕ ≤ 1 

ݖ ݂݂݅                              = ݔ − ,ݕ ݕ ∈ ܲ(ݔ).  

Lemma (3.1.16)[3]: Let “s.c.” denote one of the properties l.s.c., u.s.c., 

H-l.s.c., H-u.s.c. Then ܲ is s.c. on its effective domain if and only if RY is 

s.c. on the set ߑ = (ܴ݉݀) ∩ ܵ/ܻ = ܤ)ݍ  ) ∩ ܵ/ܻ . 

Proof. First, notice that ܲ is semi-linear with respect to Y in the sense that 

ܲ(ݔ ݐ)  = ݔ)and ܲ (ݔ)ܲ ݐ  + (ݕ = ܲ(ݔ) + ݔ whenever ݕ ∈ ܺ, ݕ ∈ ܻ and 

ݐ ∈ ℝ. Moreover, the restriction ( ܲ)|ௗೊ  is obviously s.c. at each point of 

Y. It follows easily by homogeneity that ܲ is s.c. on its effective domain if 

and only if ܲ is s.c. on the set 

ܵ = ଵ(ܵ/ܻ)ିݍ ∩ ݉݀ ܲ = ݔ}  ∈ ݉݀ ܲ: ,ݔ)݀ ܻ) =  1}. 

For ݔ ∈ ܵ, Observation (3.1.15) implies that ܲ(ݔ)  = ݔ  − ܴ((ݔ)ݍ) and 

(ݔ)ݍ ∈  .It follows that ܲ is s.c. on S whenever ܴ is s.c. on Σ .ߑ

On the other hand, the multivalued mapping ିݍଵ: ܺ/ܻ → 2 is l.s.c. 

(since q is open) and hence admits a continuous selection ߪ by Michael’s 

selection theorem. Now, for ߦ ∈ ,( ߦ) ߪ)݀ we have ,ߑ ܻ) = ܻ/ܺ‖ߦ‖ = 1 

and ܴ(ߦ) = (ߦ)ߪ − ܲ((ߦ)ߪ) (Observation (3.1.15)), and hence (ߦ)ߪ ∈ ܵ. 

It follows that ܴ is s.c. on ߑ whenever ܲ is s.c. on S.  

Lemma (3.1.17)[3]: (Separable Reduction). Assume that our multivalued 

mapping ܴ is not H-u.s.c. on ݍ(ܤ). Then X contains a separable closed 

subspace ܺ such that, for ܻ = ܻ ∩ ܺ, the corresponding mapping 

ܴబ ∶ ܺ/ ܻ → 2బ , ܴబ(ߟ)  = (ߟ) ଵିݍ  ∩ బܤ  
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(where ݍ: ܺ → ܺ/ ܻ is the quotient map) is not H-u.s.c. on q(ܤబ). 

Proof. Assume that ܴ is not H-u.s.c. at some ߦ ∈  There exist .(ܤ)ݍ

{ߦ} ⊂ ܤ)ݍ  ), ݔ ∈ ܴ(ߦ) and ܽ > 0 such that ݀(ݔ , ܴ(ߦ)) ≥ ܽ. Fix an 

arbitrary ݔ ∈ ܴ(ߦ) and, for each ݊ ≥ 1, find ݖ ∈  such that (ߦ)ଵିݍ

ݖ‖ − ‖ݔ < ߦ‖  − ‖ߦ  +  ଵ


 . Define 

ܺ = ஹ{ݔ}]തതതതതതത݊ܽݏ ∪  .[ஹଵ{ݖ}

The subspace ܻ = ܻ ∩ ܺ contains all the points ݖ − ≤ ݊)ݔ  1). Put 

ߟ = ߟ and (ݖ)ݍ = ߟ and observe that ,(ݔ)ݍ → ݖ  sinceߟ →  . Forݔ

݊ ≥ 0, we have ݔ ∈ (ߟ) ଵିݍ ∩ బܤ =  ܴబ(ߟ). Since ܴబ(ߟ) = ݔ) +

ܻ) ∩ బܤ ⊂ ݔ) + ܻ) ∩ ܤ = ܴ (ߦ), we have 

ݔ)݀ , ܴబ(ߟ)) ≥ ݔ)݀ , ܴ (ߦ)) ≥ ܽ    (݊ ≥ 1) 

which shows that ܴబ  is not H-u.s.c. at ߟ. _ 

As a starting point, we shall prove a result about lower semicontinuity 

(rather than Hausdorff lower semicontinuity) of ܲ (Theorem (3.1.22)). The 

main tool is the following proposition. 

Proposition (3.1.18)[3]: Let Y be a closed subspace of a Banach space X. 

Let ܪଵ, . . . ,  be closed halfspaces in X. Then the mapping : ܺܪ → 2 , 

given by 

,ଵݔ)ܨ . . . , (ݔ = ܻ ∩ ሩ(ݔ + ( ܪ 


ୀଵ

 

is lower semicontinuous on its effective domain.  

Proof. If (ݔଵ, . . . , (ݔ ∈   forܪ and some translate of Y belongs to ܨ ݉݀

some i , then necessarily ܻ ⊂ ݔ +   . Hence we can (and do) suppose thatܪ
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Y is not parallel to any ܪ , the topological boundary of ܪ(݅ = 1, . . . , ݊). By 

Lemma (3.1.22), 

,ଵݔ)ܨ . . . , (ݔ = ሩ(ݎ (ݔ)) + ෩ܪ



ୀଵ

 

where ݎ: ܺ → ܻ is a continuous retraction and ܪ෩ =  ܻ ∩   is a closedܪ

halfspace in ܻ(݅ = 1, . . . , ݊). By Lemma (3.1.20), the mapping ܻ →

2 , ,ଵݕ) . . . , (ݕ ⟼ ⋂ ݕ) + ෩)ܪ
ୀଵ , is lower semicontinuous on its effective 

domain; hence also F is.  

Lemma (3.1.19)[3]: Let ܪଵ, . . . ,   be closed halfspaces in a normedܪ

linear space X. Then the mapping : ܺ → 2 , given by 

,ଵݔ)ܨ . . . , (ݔ = ሩ(ݔ + (ܪ


ୀଵ

 

is lower semicontinuous on dom F. 

Proof. The case of dim ܺ < ∞ was proved in [3]. Indeed, if ܪ = ݔ} ∈

ܺ: ݂ (ݔ)  ≥ ,{ ݐ ܮ = ⋂ ݂
ିଵ (0)

ୀଵ   and ݍ: ܺ →  is the quotient map, the ܮ/ܺ

sets ܪ෩ =  . ܻ/ are hyperplanes in the (finite-dimensional) space (ܪ)ݍ

Hence the mapping ܨ෨: (ܺ/ܮ) → 2/ , ,ଵߦ)෨ܨ . . . , (ߦ = ⋂ ߦ) + ෩)ܪ
ୀଵ , is 

lower semicontinuous on its effective domain. The rest follows from the fact 

that ܨ = ଵିݍ ∘ ෨ܨ  ∘  ܳ where ܳ(ݔଵ, . . . , (ݔ = ,(ଵݔ)ݍ) . . . ,  since ܳ is ,((ݔ)ݍ

continuous and q is open.  

Fact (3.1.20)[3]: Let Y be a closed subspace of a Banach space X. Then 

there exists a continuous retraction p of X onto Y. 
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Proof. Let ݍ: ܺ → ܺ/ܻ be the quotient map and G be a positively 

homogeneous continuous selection of ିݍଵ (the so-called Bartle–Graves 

mapping). Then  (ݔ) = ݔ −   .defines the desired retraction ((ݔ)ݍ)ܩ

Lemma (3.1.21)[3]: Let Y be a closed subspace of a Banach space X. Let 

H be a closed halfspace in X that contains no translate of Y. Then ܪ෩ = ܻ ∩  ܪ

is a closed halfspace in Y , and there exists a continuous retraction r of X 

onto Y such that 

ܻ ∩ ݔ) + (ܪ = (ݔ)ݎ + ݔ ℎܿܽ݁ ݎ݂        ෩ܪ ∈ ܺ. 

Proof. Let ݂ ∈ ܺ∗\ܻୄ and ݐ ∈ ℝ be such that ܪ = ݔ} ∈∶ (ݔ)݂ ≥  .{ݐ

Obviously ܪ෩ is a closed halfspace in Y since f is not constant on Y. Fix ݕ ∈

ܻ such that ݂(ݕ) = 1. By Fact (3.1.20), there exists a continuous retraction 

p of ݂ିଵ(0) onto ܻ ∩ ݂ିଵ(0). Then the mapping (ݔ)ݎ = ݔ)  ݕ(ݔ)݂ −

((ݔ)ݎ)݂ )is a continuous retraction onto Y such thatݕ(ݔ)݂ =  for all (ݔ)݂

ݔ ∈ ܺ. This easily implies the assertion.  

Theorem (3.1.22)[3]: Let X be a polyhedral Banach space with (߂), ܻ ⊂

ܺ ܽ closed subspace. Then the corresponding mapping ܴ is l.s.c. on its 

effective domain ݍ(ܤ). 

Proof. We want to prove that the restriction ܴ|( ) is l.s.c. at each ߦ ∈

ߦ This is certainly true for .(ܤ)ݍ ∈ /ܤ
  by Corollary (3.1.17). 

Now, let ߦ ∈ (ܤ)ݍ ∩ ܵ/ . Fix ݔ ∈ ܴ(ߦ) and an open neighborhood 

V of ݔ. Since ݔ ∈ ܵ , we can apply Observation (3.1.7): by taking a 

smaller neighborhood we can suppose that there exist finitely many closed 

halfspaces ܪ ⊂ ܺ(݅ = 1, . . . , ݊) such that 
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ܤ ⊂ ሩ ܪ



ୀଵ

       ܽ݊݀       ܸ ∩ ܤ = ܸ ∩ ሩ ܪ



ୀଵ

 . 

Observe that ݔ ∈ ܴ (ߦ) ∩  ܸ = ݔ) +  ܻ ) ∩ ܤ   ∩  ܸ = ݔ)  +  ܻ ) ∩

⋂ ܪ

ୀଵ ∩  ܸ = ݔ + [ܻ ∩ ⋂ ܪ) − )ݔ

ୀଵ ∩  (ܸ − )]. Thus 0ݔ  ∈  ,(ݔ)ߔ

where the multivalued mapping 

(ݔ)ߔ ∶= ܻ ∩ ሩ(ܪ  − (ݔ 


ୀଵ

 

is l.s.c. on its effective domain (Proposition (3.1.18)). Choose ߝ > 0 and an 

open neighborhood W of ݔ so that ܹ + ܤߝ ⊂ ܸ. By the lower 

semicontinuity of ߔ, there exists an open neighborhood U of ݔ such that 

ݔ‖ − ‖ݔ < (ݔ)ߔ     ݀݊ܽ   ߝ ∩ (ܹ − (ݔ  ≠ ݔ    ݎ݁ݒℎ݁݊݁ݓ     ∅ ∈ ܷ, (ݔ)ߔ

≠ ∅. 

Notice that ݍ(ܷ) is an open set in /ܻ . For ߦ ∈ (ܷ)ݍ ∩ ݔ choose ( ܤ)ݍ ∈

(ߦ)ଵିݍ ∩ ܷ and observe that 

(ݔ)ߔ ⊃ ܻ ∩ ܺܤ) − (ݔ = ݔ)] + ܻ) ∩ [ܤ − ݔ = ܴ(ߦ) − ݔ ≠  ∅. 

Consequently, 

∅ ≠ (ݔ)ߔ ∩ (ܹ − (ݔ ⊂ (ݔ)ߔ ∩ (ܸ − (ݔ = (ݔ + ܻ) ∩ ሩ ܪ



ୀଵ

∩ ܸ൩ − ݔ

= [ܴ (ߦ) ∩ ܸ] −  ,ݔ

which implies that ܴ (ߦ ) ∩ ܸ ≠ ∅. The proof is complete.  

The step from “l.s.c.” to “H-l.s.c.” is now guaranteed by the following 

easy consequence of Lemma (3.1.13). 
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Proposition (3.1.23)[3]: Let X be (ܳܲ), ܻ ⊂ ܺ a closed subspace. If ܲ 

is l.s.c. on its effective domain, then ܲ is H-l.s.c. on its effective domain. 

Proof. By Lemma (3.1.16), we have to show that RY is H-l.s.c. on ܧ: =

(ܤ)ݍ ∩ ܵ/ whenever it is just l.s.c. on E. Given ߦ ∈  choose an ,ܧ

arbitrary ݔ ∈ ܴ (ߦ). The fact that X is (QP) easily implies that there exists 

ݎ > 0 such that 

ݔ +
ݔ) ݎ2 − (ݔ

ݔ‖ − ‖ݔ
∈ ݔ ݎ݁ݒℎ݁݊݁ݓ ܤ ∈ ܵ , 0 < ݔ‖ − ‖ݔ  <  (3.4)            . ݎ 

Let ߝ ∈ (0,  , there exists aߦ be given. Since ܴ|ா is l.s.c. at ( ݎ

neighborhood ܷ ⊂ ܵ/ of ߦ such that for each ߦ ∈ ܷ ∩ కݔ there exists ܧ ∈

ܴ (ߦ) ∩ ,ݔ)ܤ  ߦ Now, for .(ߝ ∈ ܷ ∩ ,ܧ ߦ ≠  , (5) implies thatߦ 

௫ݑ : = కݔ +
కݔ) ݎ − (ݔ
కݔ‖ − ‖ݔ

= ݔ  + ൫ݎ + కݔ‖ − ‖൯ݔ
కݔ − ݔ

కݔ‖ − ‖ݔ
∈  ܤ

since ݎ + కݔ‖ − ‖ݔ < కݔ and ݎ2 ∈ ܵ  . By Lemma (3.1.13), we have the 

estimate ݑݏ௭బ∈ோೊ (కబ) ݀(ݖ, ܴ(ߦ ))  ≤
ଶ‖௫ି௫బ‖


<  ଶఌ


 , which completes the 

proof.  

Theorem (3.1.24)[3]: Let X be a polyhedral Banach space with (߂), ܻ ⊂ ܺ 

a closed subspace. Then ܲ is H-l.s.c. on its effective domain. 

Proof. By Theorem (3.1.22) and Lemma (3.1.16), ܲ is l.s.c. on its effective 

domain. Now, Fact [1] and Proposition (3.1.23) conclude the proof.  

Property (Δ) of a polyhedral Banach space is not sufficient for Hausdorff 

upper semicontinuity of ܲ , even if Y is proximinal and of codimension two. 

In Theorem (3.1.26), we give a positive result under the stronger assumption 

that X is a Banach space with (∗). Let us start with the following simple 
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Observation (3.1.25)[3]: Let ܯ, ܻ be subspaces of a vector space X. If 

M has finite codimension in X, then ܯ ∩ ܻ has finite codimension in Y. 

Proof. Put = ܯ ∩ ܻ . Let ଵܻ be an algebraic complement of N in Y. Then 

ܯ ∩ ଵܻ = ܯ) ∩ ܻ) ∩ ଵܻ = ܰ ∩ ଵܻ = {0}. Consequently, ܿ݉݅݀ ܰ =

݀݅݉ ଵܻ ≤ ܯ݉݅݀ܿ  < ∞.  

Recall that, given a closed subspace ܻ ݂ ܺ, ܺ :ݍ → ܺ/ܻ denotes the 

quotient map, and ܴ: ܺ/ܻ → 2 is defined by ܴ(ߦ) = (ߦ)ଵିݍ ∩  . ܤ

Theorem (3.1.26)[3]: Let X be a polyhedral Banach space with (∗), ܻ ⊂

ܺ ܽ closed subspace. Then the corresponding mapping ܴ is H-u.s.c. on its 

effective domain ݍ(ܤ ). 

Proof. By separable reduction (Lemma (3.1.17)), we may assume that X is 

separable. Suppose that ܴ is not H-u.s.c. at some ߦ ∈ ܤ)ݍ  ). There exist 

{ߦ} ⊂ ܤ)ݍ  ), ݖ ∈ ܴ(ߦ) and ܽ > 0 such that ߦ →   andߦ

,ݖ)݀ ܴ(ߦ)) > ܽ. 

By Corollary (3.1.14), we must have ߦ ∈  ܵ/ . Since ܴ(ߦ) is a 

separable polytope, Fact (3.1.2) assures that ܮ ∶=  is closed and (ߦ) ܻܴ݂݂ܽ

there exists ݔ ∈  riܴ(ߦ) (the relative interior of ܴ(ߦ)). Consider the 

sets 

ܤ = (ݔ)ܦ ∩ ß, ܣ = ሩ ℎିଵ(1)
∈బ

, ܨ = ܣ ∩ ܵ = ܣ ∩ ܤ  . 

By Lemma (3.1.9), ܣ = ݔ and ܨ݂݂ܽ ∈ Let us denote ܴ .ܨ݅ݎ =

ܴ(ߦ) − ,ݔ ܮ = ܮ − ,ݔ ܨ = ܨ − ,ݔ ܣ = ܣ −  .ݔ

We claim that 

ܮ = ܣ  ∩ ܻ.                                                      (3.5) 
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To see this, notice that ܴ(ߦ) ⊂ ܵ and ݔ ∈  riܨ imply ܴ(ߦ) ⊂  Then .ܣ

ܨ ∩ ݔ) + ܻ) = ܣ ∩ ܤ ∩ ݔ) + ܻ) = ܣ ∩ ܴ(0ߦ) = ܴ(0ߦ), and hence 

ܣ ∩ ܻ = ℝାܨ ∩ ܻ = ℝା(ܨ ∩ ܻ) = ℝାܴ =  denotes the ܧ (where ℝାܮ

set of all positive multiples of the elements of E), which is (3.6). 

Since ܣ is a subspace of finite codimension in X, by Observation 

(3.1.25) we can write 

ܻ = ܮ  ⊕  ܸ                                                     (3.6) 

where V is a finite-dimensional subspace. 

By Theorem (3.1.22), ܴ is l.s.c. on ݍ(ܤ), hence there exist points ݔ ∈

ܴ(ߦ) such that ݔ → ݖ . Sinceݔ − ݔ ∈ ܻ , (3.7) implies that we can 

write 

ݖ = ݔ + ݕ + ݕ    ݁ݎℎ݁ݓ    ݒ ∈ ,ܮ ݒ ∈ ܸ. 

By passing to a subsequence, we can suppose that ݒ → ∋ ݒ   ܸ. 

We claim that ݒ = 0. Indeed, if not, then ݒ ∈ ܮ\ܻ = ݔ . Sinceܣ\ܻ ∈

ݔ] we must have ,ܨ݅ݎ + ,ݒ [ݔ  ∩ ܤ  =  By Lemma (3.1.8), there .{ݔ}

exists ℎ ∈ ݔ) such that ℎܤ + (ݒ  > 1. Observe that ܮ ⊂ ܣ ⊂  ℎିଵ(0). 

Thus we have 1 < ℎ(ݔ + (ݒ = ݈݅݉ ℎ(ݔ + (ݒ = ݈݅݉ ℎ(ݖ − (ݕ =

݈݅݉ ℎ(ݖ) ≤ 1, a contradiction which proves that ݒ →  0. 

Since ݕ ∈ ܮ ⊂ ݔ  andܣ ∈  the numbers ,ܨݐ݊݅

ݐ  ∶= ݐ}ݔܽ݉ ≥ 0: ݔ + ݕ ݐ ∈ {ܨ = ݐ}ݔܽ݉ ≥ 0: ݔ + ݕ ݐ ∈ ܴ (ߦ)}  

are positive and there exists ݎ > 0 such that ݎ ≤ ‖ݕ ݐ‖ ≤ 2 for each n. 

Moreover, ‖ݕ‖ = ݖ‖ − ݔ − ‖ݒ ≥ ݖ‖ − ‖ݔ − ݔ‖ − ‖ݔ −  ‖andݒ‖

‖ݕ‖ ≤ 2 + ݖ‖ ‖. Sinceݒ‖ − ‖ݔ  >  ܽ, we can suppose that ܽ < ‖ݕ‖ <
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3 for each n. Then 
ଷ

< ݐ < ଶ

 . Passing to a subsequence, we can suppose 

that ݐ → ݐ > 0. 

We claim that ݐ < 1. To see this, suppose the contrary, i.e., ݐ ≥  1. Then 

ݐ
ᇱ ∶= ݐ}݊݅݉  , 1} → 1 and ݔ + ݐ

ᇱ ݕ  ∈ ܴ (ߦ). Consequently 

ܽ < ݖ‖ − ݔ − ݐ
ᇱ ‖ݕ  = ݔ‖ + ݒ + ݕ − ݔ − ݐ

ᇱ ‖ݕ 

≤ ݔ‖ − ‖ݔ + ‖ݒ‖ + 3(1 − ݐ
ᇱ ) →  0. 

This contradiction proves that 0 < ݐ < 1. 

We can suppose that ݐ <  1 for each n. Then the definition of ݐ implies 

that [ݔ + ݕݐ  , ݔ + [ݕ ∩ ܤ   = ݔ}  +  }. By Lemma (3.1.8), thereݕݐ

exist functionals ℎ ∈ ݔ)ܦ + (ݕݐ ∩ ß such that ℎ(ݔ  + (ݕ > 1. It 

follows that ℎ ∉ (ݔ) ℎݑݏ ,Hence, by Fact (3.1.7) .(ݔ)ܦ  = ߪ : < 1. 

Then 

ℎ(ݕ)  =
1
ݐ

[ℎ(ݔ + (ݕ ݐ  −  ℎ(ݔ)] ≥
1 − ߪ 

ݐ
. 

But then we get 

1 ≥ (ݖ)ℎ ݑݏ ݈݉݅ = ݔ)ℎ ݑݏ ݈݉݅ + ݒ + (ݕ = ݔ)ℎ ݑݏ ݈݉݅ + (ݕ

= ݔ)]ℎݑݏ ݈݉݅ + (ݕݐ + (1 − [(ݕ))ℎݐ

≥ 1 + ݑݏ ݈݉݅
(1 − )(1ݐ − (ߪ

ݐ
=

1 + (1 − − )(1ݐ ( ߪ
ݐ

> 1, 

a contradiction which completes the proof.  

Theorem (3.1.27)[3]: Let X be a polyhedral Banach space with (∗), ܻ ⊂

ܺ a closed subspace. Then Y is relatively strongly proximinal and ܲ is 

Hausdorff continuous on its effective domain. 
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Proof. By Theorem (3.1.26) and Lemma (3.1.16), ܲ|ௗೊ  is H-u.s.c. By 

Theorem (3.1.24) and Fact (3.1.5), it is also H-l.s.c. Finally, Y is relatively 

strongly proximinal by Theorem (3.2.1) proved in the next section (3.2).  

Corollary (3.1.29)[3]: Let X satisfy (∗). Then every proximinal subspace 

of X is strongly proximinal and the corresponding metric projection is 

Hausdorff continuous. 
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Section (3.2):  Proximinality of Subspaces and Polyhedrality of 

Quotients with Examples: 

Let Y be a closed subspace of a Banach space X. Recall that ݍ: ܺ → ܺ/ܻ 

denotes the quotient map, and ܲ: ܺ → 2 is the metric projection onto Y. By 

 we mean the set of all norm-attaining elements of ܺ∗. For definitions (ܺ)ܣܰ

of proximinality and strong proximinality. 

In this section, we consider the following four properties, already 

introduced in Introduction: 

(A) Y is strongly proximinal; 

(B) Y is proximinal; 

(C) ܻୄ ⊂  ;(ܺ)ܣܰ

(D) ܺ/ܻ is polyhedral. 

Y will be of finite codimension in X. 

Obviously,(A) implies (B).  

(a) for Y proximinal, (A) holds iff ܲ is H-u.s.c. (Theorem (3.2.1)); 

(b) for ܺ/ܻ reflexive, (B) implies (C) (Observation (3.2.2)); 

(c) for ܺ/ܻ finite-dimensional, [(C) and (D)] implies (B) (Lemma 

(3.2.3)). 

The implication “ ⇐ ” in (a) seems to be new. In its proof (proof of 

Theorem (3.2.1)), it is quite convenient to use our mapping ܴ (see 

Definition (3.1.13). 

Theorem (3.2.1)[3]: Let Y be a closed subspace of a Banach space X. 

Then Y is relatively strongly proximinal if and only if the metric projection 
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ܲ is H-u.s.c. on its effective domain. (In particular, a proximinal subspace Y 

is strongly proximinal if and only if ܲ is H-u.s.c.) 

Proof. The implication “ ⇒ ” follows easily from definitions. (For Y 

proximinal, it has been observed in [1].) Let us show the other implication. 

Assume that Y is not relatively strongly proximinal. This means that there 

exist ݔ ∈ ݉݀ ܲ , {ݕ} ⊂ ܻ and ܽ > 0 such that ‖ݔ − ݕ → ,ݔ)݀ ܻ) and 

ݕ)݀ , ܲ(ݔ)) > ܽ for each n. Since obviously ∉ ܻ , by homogeneity we can 

(and do) suppose that ݀(ݔ, ܻ) = 1. Define 

ݔ =
ݔ

− ݔ‖ ‖ݕ
, ݖ = ݔ −

ݕ

ݔ‖ − ‖ݕ
=

ݔ − ݕ

ݔ‖ − ‖ݕ
,

ߦ = (ݔ)ݍ = ,(ݖ)ݍ = ߦ  .(ݔ)ݍ

Then we have: ܴ(ߦ) = ݔ − ܲ(ݔ) (Observation (3.1.16)), ߦ ∈ ܤ)ݍ  ) ∩

ܵ/, ߦ ∈ ݖ and (ܤ)ݍ ∈ (ߦ)ଵିݍ  ∩ ܤ = ܴ(ߦ) for each n; and ߦ →  ߦ

since ݔ → ݔ‖ ݁ܿ݊݅ݏ ,Now .ݔ − ‖ݕ → 1, we can write 

lim ݅ ݂݊
→ஶ

,ݖ)݀ ((ߦ) ܻܴ =  ݈݅݉  ݅ ݂݊݀
→ஶ

 ൬
ݕ

− ݔ‖ ‖ݕ 
− ݔ  , ܲ(ݔ) − ൰ݔ

=  ݈݅݉  ݅ ݂݊݀
→ஶ

൬
ݕ

− ݔ‖ ‖ݕ
+ − ݔ)  ,(ݔ ܲ (ݔ)൰  

=  ݈݅݉  ݅ ݂݊݀
→ஶ

൬
ݕ

− ݔ‖ ‖ݕ
, ܲ(ݔ)൰ = ݈݅݉  ݅ ݂݊݀

→ஶ
ݕ) , ܲ (ݔ))  ≥  ܽ. 

It follows that ܴ|() is not H-u.s.c. at ߦ. By Lemma (3.1.17), ܲ is not H-

u.s.c. on its effective domain.  

Observation (3.2.2)[3]: (a) If ܻୄ ⊂  .then ܺ/ܻ is reflexive ,(ܺ)ܣܰ

(b) If Y is proximinal and ܺ/ܻ is reflexive, then ܻୄ ⊂  .(ܺ)ܣܰ
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Proof. (a) is an immediate consequence of the James theorem (In order that 

a bounded, closed and convex subset K of a Banach space be weakly 

compact, it suffices that every functional attain its supremum on K)[8]. To 

show (b), fix an arbitrary ݂ ∈ ܻୄ  = (ܺ/ܻ)∗. There exists ߦ ∈ ܵ/ such that 

(ߦ)݂ = ‖݂‖. Since Y is proximinal, there exists ∈ ܴ(ߦ) = (ߦ)ଵିݍ ∩ ܵ . 

Then ݂(ݔ) = (ߦ)݂ = ‖݂‖ implies that ݂ ∈   .(ܺ)ܣܰ

Lemma (3.2.3)[3]: Let X be a Banach space, ܻ ⊂ ܺ a closed subspace of 

finite codimension. If ܻୄ ⊂  and ܺ/ܻ is polyhedral, then Y is (ܺ)ܣܰ

proximinal. 

Proof. Since ܤ/ is a finite-dimensional polytope, it is a convex hull of its 

extreme points (that are also exposed points, in this case). For ∈  , /ܤݐݔ݁

take ݂ ∈ ఼ܵ  such that ݂(ߦ) = 1 and ݂(ߟ) < 1 whenever ߟ ∈  .{ ߦ}\ /ܤ

Since ݂ ∈ ݔ there exists ,(ܺ)ܣܰ ∈ ܵ with 1 = (ݔ)݂ =  By the .((ݔ)ݍ)݂

choice of  , we must have (ݔ)ݍ = /ܤݐݔ݁ We have proved that . ߦ ⊂

/ܤ ,Consequently .(ܤ)ݍ = (/ܤݐݔ݁)ݒ݊ܿ  ⊂  which implies that ,(ܤ)ݍ

ܤ)ݍ  ) =   ./ . And this is equivalent to proximinality of Yܤ

In the rest of this section, as well as in the following sections containing 

counterexamples, we consider the properties (A)–(D) in the case of a finite-

codimensional subspace Y of X, under suitable assumptions on X, stronger 

than polyhedrality (namely, property (∗) or polyhedrality with (߂)). See 

Definition (3.1.3) for properties (∗) and (߂). 

Theorem (3.2.4)[3]: Let X be a polyhedral Banach space with (߂), ܻ ⊂ ܺ 

a closed subspace of finite codimension. If Y is proximinal then the quotient 

ܺ/ܻ is polyhedral. 
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Proof. We have to prove that the finite-dimensional space ܻୄ (the dual of 

ܺ/ܻ) is polyhedral. Suppose this is not the case. Then there exists a 

sequence { ݂}ୀଵ
ஶ ⊂ ߦ ఼ of pairwise distinct functionals. Letܤݐݔ݁ ∈ ܵ/ 

be such that ݂(ߦ) = 1(݊ ≥ 1). By compactness (ܺ/ܻ has finite 

dimension!), we can suppose that ߦ →  . By proximinality of Y and byߦ

Theorem (3.1.23), the mapping ܴ(ߦ) = ( ߦ)ଵିݍ ∩   has nonempty valuesܤ

and is lower semicontinuous on ܵ/ ; hence it admits a continuous selection 

(Michael’s theorem)[5]. It follows that there exist points ݔ ∈ ܵ such that 

(ݔ)ݍ = ݊  for allߦ ≥ 0, and ݔ → . Observe that ݂ݔ ∈  for each (ݔ)ܦ 

݊ ≥ 1. 

By Fact (3.1.6), X is (ܳܲ); hence (ݖ)ܦ ⊂ ݖ for each (ݔ)ܦ ∈ ܵ 

sufficiently close to ݔ (cf. [2]). It follows that ݂ ∈  for each (ݔ)ܦ

sufficiently large n. Observe that the duality mapping of ܺ/ܻ satisfies 

(ߦ) /ܦ = (ݔ)ܦ ∩ ܻୄ. For each sufficiently large n, we have 

݂ ∈ (ݔ)ܦ  ∩ ఼ܤݐݔ݁  = (ߦ) /ܦ  ∩ ∗(/)ܤݐݔ݁ = (ߦ) /ܦݐݔ݁   

= (ݔ)ܦ)ݐݔ݁  ∩ ܻୄ). 

But this is a contradiction since the last set is finite (indeed, ܦ(ݔ) is a 

finite-dimensional polytope by the property (߂) and Lemma (3.1.5)).  

Lemma (3.2.5)[3]: Let X be a Banach space with (∗), ܤ ⊂ ܵ∗ the 

corresponding boundary. Let a sequence {ߣ} ⊂  ଵ be such that the߉

functionals  

݂ =  (ℎ)ℎߣ
∈ß

          (݊ ∈ ℕ) 
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converge in the weak* topology to some ݂ ∈ ܵ∗  ∩  Then there exist .(ܺ)ܣܰ

∋ ߣ  :ଵ and an increasing sequence {݊} of positive integers such that߉

 ,(ߣ)ݑݏ has a finite support ߣ •

• ݂ = ∑ ℎ∈ß(ℎ)ߣ  , 

• ‖ ݂ೖ −  ݂‖ → 0, ೖߣ‖ − ଵ‖ߣ   →  0. 

Proof. Since ⋃ supp(λ୬)ஹଵ  is countable, a standard diagonal method gives 

a subsequence of {ߣ} that converges pointwise to some ߣ ∈  for ;߉

simplicity, let us denote it again by {ߣ}. 

Let ݔ ∈  ܵ be such that ݂(ݔ) = 1. Since X has (∗), the set ܤ ∶=

(ݔ)ܦ  ∩ ß is finite. By Fact (3.1.8), ߪ: = ∈\బݑݏ  ℎ(ݔ) < 1. Now, we 

have 

݂(ݔ)  =  (ݔ)(ℎ)ℎߣ
∈ß

 ≤  (ℎ)ߣ + ߪ
∈బ

 (ℎ)ߣ
∈ß\బ

= (1 − (ߪ  (ℎ)ߣ + ߪ
∈బ

. 

It follows that 

 (ℎ)ߣ
∈బ

≥ ݂(ݔ) − ߪ 
1 − ߪ  . 

Passing to limits, we obtain ∑ (ℎ)ߣ ≥ 1∈బ . Consequently, ‖ߣ‖ଵ = 1 and 

(ߣ)ݑݏ ⊂  . By the well-known fact that pointwise and normܤ

convergence coincide on the unit sphere of ℓଵ(ß), we get that ‖ߣ  −

ଵ‖ߣ   →  0. And this easily implies that ‖݂݊ − ݂‖ →  0.  

As a consequence of Lemma (3.2.5), we get the following proposition. 

Notice that ܵ∗ ∩ (ܺ)ܣܰ =  .(ܵ)ܦ



63 
 

Proposition (3.2.6)[3]: Let X be a Banach space with (∗). Let {݂݊} ⊂

݂ be a sequence converging in the weak* topology to a functional (ܵ)ܦ ∈

ܦ Then .(ܵ)ܦ − 1( ݂݊)  ⊂  .ଵ( ݂) for each sufficiently large nିܦ

Proof. Assume the contrary. Passing to a subsequence, we can suppose that 

(݂݊)ଵିܦ ⊄  .݊ ℎܿܽ݁ ݎ݂      ( ݂ )ଵିܦ

By Lemma (3.1.5), we have ݂, ݂ ∈ where ß ,ܤݒ݊ܿ  ⊂ ܵܺ∗ is a boundary 

satisfying (3) in Definition (3.1.3). By Lemma (3.2.5), passing to a further 

subsequence, we can suppose that ݂, f can be expressed as convex 

combinations 

݂ =  ℎ(ℎ)݊ߣ
ℎ∈ß

, ݂ =  ℎ(ℎ)ߣ
ℎ∈ß

, 

where ߣ, ߣ ∈ ߣ ଵ have finite supports and߉ → ℓଵ ݊݅ ߣ 
ା (ß). There exists an 

index ݊ such that 

(ߣ)ݑݏ   ⊂ ≤ ݊ ݎ݁ݒℎ݁݊݁ݓ       (ߣ)ݑݏ   ݊. 

Now, let ݊ ≥ ݊ and ݔ ∈ ଵ( ݂݊). Since 1ିܦ = (ݔ)݂݊ = ∑ ∈ß(ݔ)(ℎ)ℎߣ  , 

we must have ℎ(ݔ) = 1 whenever ℎ ∈   It follows that .(ߣ)ݑݏ

(ݔ)݂ =  (ݔ)ℎ(ℎ)ߣ
∈௦௨(ఒ)

=  (ℎ)ߣ
∈௦௨(ఒ)

= 1, 

that is, ݔ ∈ (݂݊)ଵିܦ ଵ(݂). We have proved thatିܦ ⊂  ଵ(݂), which is aିܦ

contradiction.  

Amir and Deutsch [1] defined the following notion: given a Banach 

space E, a point ݔ ∈ ܵா  is a (ܳܲ)-point of BE if there exists a neighborhood 

U of x such that  

,ݕ] [ݔ ⊂ ܵா ݕ     ݎ݁ݒℎ݁݊݁ݓ       ∈ ܷ ∩ ܵா .                                      (3.7) 
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Thus the space E is (ܳܲ) if and only if each point of its unit sphere is a 

(ܳܲ)-point of ܵா. It is easy to see (cf. [11, Section 3]) that (3.8) in this 

definition can be equivalently replaced with any of the following two 

conditions: 

(ݕ)ாܦ ⊂ ݕ    ݎ݁ݒℎ݁݊݁ݓ     (ݔ)ாܦ ∈ ܷ ∩ ܵா  ;                    (3.8) 

ܯ∃ ⊂ ܵாdense such that: (ݕ)ாܦ ∩ (ݔ)ாܦ ≠ ∅  whenever ݕ ∈ ܷ ∩  (3.9)   .ܯ

Theorem (3.2.8)[3]: Let X be a Banach space with (∗). Then: 

(a) weak* and norm convergence of sequences coincide in the set 

(ܵ)ܦ = (ܺ)ܣܰ ∩ ܵ∗  ; 

(b) every element of ܦ(ܵ) is a (ܳܲ)-point of ܤ∗ . 

Proof. (a) and (b) follow from Lemma (3.2.5) and Proposition (3.2.6), 

respectively. (For (b) use (10) with ܧ = ܺ∗, ܯ = .(ܵ)ܦ )  

Theorem (3.2.8)[3]: Let X be a Banach space with (∗), ܻ ⊂ ܺ a closed 

subspace of finite codimension. If ܻୄ ⊂  then the quotient ܺ/ܻ is ,(ܺ)ܣܰ

polyhedral and the subspace Y is strongly proximinal. 

Proof. By Corollary (3.1.29), it suffices to show that Y is proximinal. By 

Lemma (3.2.3), this will be proved once we show that ܺ/ܻ is polyhedral, or 

equivalently, that ܻୄ = (ܺ/ܻ)∗ is polyhedral. If ܻୄ is not polyhedral, ܻୄ is 

not (ܳܲ). Thus there exist ݂, ݂ ∈ ఼ܵ(݊ ∈ ℕ) such that ݂ → ݂ and 

[ ݂ , ݂ ] ⊄ ఼ܵ . By Proposition (3.3.6), we can suppose that 

)ଵିܦ ݂) ⊂ ∋ ݊) (݂)ଵିܦ ℕ). 

Choose ݔ ∈ )ଵିܦ ݂). Then ݂(ݔ) = 1 and also ݂(ݔ) = 1, which implies 

that ݂ , ݂ ∈ ] ,Consequently .((ݔ)ݍ) /ܦ ݂, ݂ ] ⊂ ((ݔ)ݍ)/ܦ ⊂ ఼ܵ , 

which is a contradiction.  
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Example (3.2.9)[3]: There exist a Banach space X, isomorphic to ܿ, and 

a closed subspace ܻ ⊂ ܺ of codimension two such that: 

(a) X is polyhedral with (߂), 

(b) Y is proximinal, 

(c) Y is not strongly proximinal, 

(d) ܲ  is not H-u.s.c. 

Proof. Let {݁} be the standard basis of ܿ. For ݔ = ∑ ݁ݔ
ஶ
ୀଵ ∈ ܿ, define 

|||ݔ||| = ݔܽ݉ ൜‖ݔ‖ஶ, ݑݏ
ஹଷ

൬
݊

݊ + 1
|2ݔ| +

2
݊ + 1

|൰ൠݔ| . 

Clearly, ||| ∙ ||| is an equivalent norm on ܿ. Put ܺ = (ܿ, ||| ∙ |||). 

To prove (a), fix ∈ ܵ . Find an integer ݊ ≥ 3 such that |ݔ| < ଵ
଼
  

whenever ݊ ≥ ݊. Let ݕ = ∑ ݁ݕ
ஶ
ୀଵ ∈ ܵ be such that ‖ݕ − ஶ‖ݔ ≤ ଵ

଼
. 

Then, for ݊ ≥ ݊, we have |ݕ| ≤ ଵ
ସ
 and  

݊
݊ +  1

|ଶݕ| +
2

݊ + 1
|ݕ| ≤

݊
݊ + 1

+
1

2(݊ + 1)
=

2݊ + 1
2݊ + 2

<  1. 

It easily follows that, in a certain neighborhood of ݔ,   coincides with aܤ

finite intersection of closed halfspaces. Now, (a) follows from Observation 

(3.1.7). 

Consider the canonical projection ߨଶ: ܺ → ܼ ∶= ,ଵ݁}݊ܽݏ  ݁ଶ}, defined 

by ߨଶ(∑ ݁ݔ
ஶ
ୀଵ  ) = ଵ݁ଵݔ +  ,ଶ݁ଶ. The norm of X is a lattice norm, that isݔ

|||ݔ||| ≤ ,ݔ whenever |||ݕ||| ݕ ∈ ܺ are such that |ݔ| ≤  | for each n. Letݕ|

ݔ ∈ ܺ. Define ܻ = ∋ തതതതതതത{݁}ஹଷ and observe that, for every݊ܽݏ ܻ , we have 

ݔ||| − |||ݕ ≥ ݔ)ଶߨ||| − |||(ݕ = |||(ݔ)ଶߨ||| = ݔ||| − ݔ) −  .|||((ݔ)2ߨ
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Since − ߨଶ(ݔ) ∈ ܻ , we have ݔ − (ݔ)ଶߨ ∈ ܲ(ݔ), which proves that Y is 

proximinal. 

By the last inequality, the quotient map ݍ: ܺ → ܺ/ܻ , restricted to Z, is an 

isometry between Z and ܺ/ܻ . Thus we can consider our multivalued 

mapping ܴ (see Definition (3.1.13)) as a mapping ܴ ∶  ܼ → 2 , ܴ(ݖ) =

ݖ) + ܻ) ∩  . Since Y is proximinal, ܴܤ =  / . Consider the pointsܤ

ݖ = ݁ଵ + ݁ଶ, ݖ = ݁ଵ +
݊ − 1

݊
݁ଶ,

ݔ = ݁ଵ +
݊ − 1

݊
݁ଶ + ݁ (݊ ≥ 3). 

It is easy to see that |||ݖ|||  = |||ݖ|||   = |||ݔ|||   =  1. Thus we have ݔ ∈

 ܴ (ݖ) (݊ ≥ 3), and ݖ → ݔ . Now, observe that everyݖ ∈ ܴ (ݖ) is of 

the form ݔ = ݁ଵ + ݁ଶ + ∑ ݁ݐ
ஶ
ୀଷ , where 

ାଵ
 +  ଶ

ାଵ
|ݐ|  ≤ 1. The last 

inequality easily implies that |ݐ| ≤ ଵ
ଶ
 for every ݊ ≥ 3.We conclude that 

݀|||∙|||൫ݔ , ܴ(ݖ)൯ ≥  ݀‖∙‖ಮ൫ݔ, ܴ(ݖ)൯ ≥
1
2

      (݊ ≥  3), 

and the restriction ܴ|ௌೋ is not H-u.s.c. at ݖ. By Lemma (3.1.17), ܲ is not 

H-u.s.c. By Theorem (3.2.1), Y is not strongly proximinal.  

The aim of this section is to provide Example (3.2.13). Let us start with 

some preparatory facts. The criterion of polyhedrality in Proposition (3.2.10) 

is of independent interest. 

For a set ܣ ⊂ ܺ∗, we use the following notation for its annihilators: 

ୃܣ = ݔ}  ∈ ܺ: |ݔ ≡ 0}, ୃܣ  = ܨ}  ∈ ܺ∗∗ ∶ |ܨ ≡ 0}. 



67 
 

Proposition (3.2.10)[3]: Let X be a Banach space and ß ⊂  ∗ aܤ

boundary for X. Assume that for each ݂ ∈ ß′ ∩  there exists a ( ܵ)ܦ

symmetric set ܭ ⊂ ܺ∗ such that ݀݅݉(ୃܭ) ≤ 1 and ݂ + ܭ ⊂ ∗ܤ  . Then X is 

polyhedral. 

Proof. Consider an arbitrary two-dimensional subspace Y of X. Suppose that 

∗ is not a polytope. Then ßܤ   has infinitely many extreme points. Since 

 ∗ is closed (hence compact), it contains pairwise distinct functionalsܤݐݔ݁

݃, ݃ଵ, ݃ଶ , . .. such that ݃ → ݃. For each ݊ ≥ 1, an easy application of the 

Krein–Milman theorem gives existence of ݂ ∈ ∗ such that ݂|ܤݐݔ݁ = ݃. 

Let ݂ be a w*-limit point of { ݂}ஹଵ. Then ݂| = ݃ and ݂ ∈

′(∗ܤݐݔ݁)  ⊂ ß′, where the last inclusion follows from the Krein Milman 

theorem [5]. Moreover, for some ∈ ܵ ⊂ ܵ , we have ݂(ݕ) = ݃(ݕ) = 1, 

which implies that ݂ ∈ ß′ ∩  By our assumption, there exists a .( ܵ)ܦ 

symmetric set ܭ ⊂ ܺ∗ such that ݀݅݉ୃܭ ≤ 1 and ݂ + ܭ ⊂  ∗ . Since Yܤ

cannot be contained in ୃܭ, there exists ℎ ∈ such that ℎ| ܭ ≠ 0. Since ݂ =

 ଵ
ଶ

( ݂ + ℎ) + ଵ
ଶ

( ݂ − ℎ) ܽ݊݀ ݂ ± ℎ ∈ ∗ , we have ݃ܤ = ଵ
ଶ

(݃ + ℎ|) +

ଵ
ଶ

(݃ − ℎ|) and ݃ ±  ℎ| ∈ ∗ܤ  , a contradiction with the fact that ݃ ∈

∗ܤݐݔ݁   . 

Let ܫ ⊂ ܴ be an interval and ߮: ܫ → ℝ a convex function. Recall that the 

epigraph of ϕ is the set 

(߮)݅݁  = ,ݐ)}  (ݏ ∈ ܫ  × ℝ: ݏ ≥  .{(ݐ)݂

We shall need the following simple lemma based on elementary properties 

of convex functions of one real variable. 
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Lemma (3.2.11)[3]: Let ߮: (−ߜ, (ߜ  →  ℝ be a convex function with 

߮(0) = 0, (ݐ)߮ > ݐ ݎ݂ 0 ∈ (0, ′߮ and ,(ߜ + (0) = 0. Then there exist 

points  = ,ݐ) (ݏ ∈ ℝଶ (݊ ∈ ℕ) such that: 

(a) ߜ > ଵݐ > ଶݐ > ⋯ > 0, ݏ > 0(݊ ∈ ℕ), ݐ → 0; 

(b) for each n, the line ߉ = ,}݂݂ܽ  ାଵ} does not intersect the

epigraph of ߮; 

(c) the slopes ݀ of ߉ (݊ ∈ ℕ) form a decreasing sequence. 

proof. Take any decreasing sequence {߬} ⊂ (0,  ,߮ of smooth points of (ߜ

such that ߬ →  0. Denoting ݀ =  ଵ
ଶ

߮′(߬), we have ݀ ≥ ݀ାଵ > 0(݊ ∈

ℕ) and ݀ →  ଵ
ଶ

߮′ + (0) = ା߮ ݁ܿ݊݅ݏ) 0
ᇱ  is right continuous, see [18, p. 7]). 

By passing to a subsequence, we can suppose that {݀} is decreasing. 

Let ߉ be the tangent line to the graph of ଵ
ଶ

߮ at the point of abscissa ߬, that 

is the line of equation 

= ݏ
1
2

߮(߬)  +  ݀(ݐ − ߬). 

Since ߮(ݐ) ≥ 0 for ݐ ∈ ,ߜ−) 0), and ߉ supports ݁݅(ଵ
ଶ

߮) at the point of 

abscissa ߬, it is easy to see that ߉ does not intersect ݁݅(߮). For each n, let 

  = ݐ)  , ାଵ. Since ߬ାଵ߉  and߉ ) be the point of intersection ofݏ <

ݐ < ߬ ܽ݊݀ ଵ
ଶ

߮(߬ + 1) < ݏ < ଵ
ଶ

߮(߬), the points  have the required 

properties.  

Now we are ready for our second example. It shows that, the implications 

(C) ⇒ (B) and (C) ⇒ (D) fail in general polyhedral spaces. (We already 

know from Theorem (3.2.8) that they hold under the assumption that X 

satisfies (∗). 
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Example (3.2.12)[3]: There exists a polyhedral Banach space E, 

isomorphic to ܿ, and a closed subspace ܻ ⊂  of codimension two, such ܧ

that ܻୄ ⊂ ,(ܧ)ܣܰ ܻ is not proximinal, and ܧ/ܻ is not polyhedral. 

The proof of Example (3.2.13) will be done in several steps. 

First step of construction. We consider the elements of the sequence spaces 

ܿ, ℓଵ, ℓஶ to be of the form ܽ = (ܽ, ܽଵ, ܽଶ, . . . ), that is, the indexing starts 

with 0. Let {ݑ}ஹ and {݁}ஹ be the canonical bases of ܿ and ℓଵ = (ܿ)∗, 

respectively. Define 

ܭ = തതതതതതത൛±4ି (݁ଵݒ݊ܿ − ݁ ): ݅ ≥ 2ൟ, 

ܸ = ℓభܤ ൣ∗തതതതതതത௪ݒ݊ܿ  ∪  ±(݁ + ൧(ܭ = ℓభܤൣݒ݊ܿ  ∪  ±(݁ +  ൧(ܭ

 (the last equality holds since ܤℓభ and K are w*-compact and convex). Then 

V is the dual unit ball of an equivalent norm ‖ ∙ ‖ on ܿ, given by 

‖ݔ‖ =  .(ܸ)ݔ ݔܽ݉

We define ܺ = (ܿ, ‖ ∙ ‖). 

Let us define also ܨଵ, ଶܨ  ∈  ℓஶ, ݃ ∈ ℓଵ and ܮ ⊂ ܺ∗ by 

ଵܨ  =  (1, 1, 1, . . . ), ଶܨ  =  (1, −1, −1, . . . ), 

݃ =  ݁ଵ  −  2ି ݁  ,
ஹଶ

 

ܮ = ,݁}݊ܽݏ ݃}. 

It is easy to see that ݑ = ଵ
ଶ

ଵܨ) + ,(ଶܨ ܭ ⊂ (ଵܨ)ݎ݁ܭ ∩ ,(ଶܨ)ݎ݁ܭ ݑ ∈

 ܵ , ݁ ∈ ܵ∗  and ܨ ∈ ܵ∗∗(݅ = 1, 2). Note that ܨଵ(݁)  = ଶ(݁)ܨ =
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1, (݃)ଵܨ = ଵ
ଶ

, (݃)ଶܨ = ିଵ
ଶ

 , and hence ܨଵ| and ܨଶ| are linearly 

independent ܦ∗(݁)  = ,ଵܨ]   .[ଶܨ

Claim 1. (the closed segment with endpoints ܨଵ,  ,ଶ). Consequentlyܨ

 (݁)ܦ  = ଵ|ܨ]   , ଶ|ܨ  ] by the Hahn–Banach theorem. 

Proof. First, let us show that ݎ݁ܭ(ܨଵ)  ∩ (ଶܨ)ݎ݁ܭ   = തതതതതതത{݁ଵ݊ܽݏ  − ݁}ஹଶ. 

The inclusion “ ⊃ ” follows from the fact ݐℎܽ݇ܨ ݐ (݁ଵ  −  ݁  )  =  0 (݇ =

 1, 2, ݅ ≥  1). The equality holds since both the left- and the right-hand side 

have codimension two (indeed, ℓଵ = ଵ݁}݊ܽݏ − ݁  }ஹଶ  ⊕ ,݁}݊ܽݏ  ݁ଵ}). 

Now, since ܨ (݁) = 1(݇ = 1, 2), we have the inclusion [ܨଵ, [ଶܨ  ⊂

∗ܦ   (݁). On the other hand, if ܩ ∈ (݁)ܩ ∗(݁), thenܦ = 1 and (by 

symmetry of K) ܩ| ≡ 0. Thus ܩ ∈ തതതതതതത{݁ଵ݊ܽݏ] − ݁ }ஹଶ]ୄ = (ଵܨ)ݎ݁ܭ] ∩

ୄ[(ଶܨ)ݎ݁ܭ = ,ଵܨ}݊ܽݏ  ܩ ଶ}. Writeܨ = ଵܨߣ + ,ߣ ଶ, whereܨߤ ∋ ߤ  ℝ. Since 

1 = (݁)ܩ  = ߣ  + ܩ we have ,ߤ = ଵܨߣ + (1 − ଶܨ(ߣ =  (1, ߣ2 − 1, ߣ2 −

1, . . . ). Now, 1 ≥ |(ଵ݁)ܩ| = ߣ2| − 1| implies that ߣ ∈ [0, 1], and hence ݃ ∈

ଵܨ] +   .[ଶܨ

Claim 2. If ݂ = ܽ݁ + ܾ݃ ∈ ܵ satisfies ܾ > 0, then ܨଶ(݂) < (݂)ଵܨ <  1. 

Proof. The first inequality is clear: ܨଵ(݂) = ܽ + ܾଶ > ܽ − ܾଶ =  ଶ( ݂ ). Toܨ

prove the second inequality, assume the contrary, that is ܨଵ(݂) = 1. Since 

݂ ∈ ܸ, we can write 

݂ = ݖ ݐ + ݒݏ +  ,ݓݎ

where , ,ݏ ݎ ≥ 0, ݐ + ݏ + ݎ = 1, ݖ ∈ ݁ + ,ܭ ݒ ∈ −݁ + ,ܭ ݓ ∈ ℓభܤ  . 

Since ܨଵ(ݖ) = (ଵ݁ܨ = 1, (ݒ)ଵܨ = ଶ(݁)ܨ = −1, (ݓ)ଵܨ ≤ ଵ‖ݓ‖ଵ‖ஶܨ‖ ≤ 1, 

we have 
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1 = (݂)ଵܨ = ݐ − ݏ + (ݓ)ଵܨ ݎ ≤ ݐ − ݏ + ݎ ≤ ݐ + ݏ + ݎ = 1. 

Thus the above inequalities are in fact equalities. This means that ݏ = 0, and 

either ݎ = 0 or ܨଵ(ݓ) = 1. If ܨଵ(ݓ) = 1, we necessarily have ݓ =

∑ ߙ  ݁ஹ   with ߙ ≥ 0(݅ ≥ 0), and if ݎ = 0 we can take ݓ = 0. In both 

cases, for each ݅ ≥ 2, we have 

−2ିܾ = (ݑ)݂ = (ݑ)ݖݐ + (1 − (ݑ)ݓ(ݐ ≥ −4ି ݐ ≥ −4ି . 

It follows that ܾ ≤ 2ି for each ݅ ≥ 2, and hence ܾ ≤ 0, which is a 

contradiction that completes the proof.  

Observation. Note that Claim 1 and the second part of Claim 2 imply that the 

line ܨଵ| = 1 is tangent to the “half-sphere” {ܽ݁ + ܾ݃ ∈ ܵ: ܾ ≥ 0} at ݁. 

Second step of construction. For better understanding of the following 

geometric construction in L, the reader is invited to sketch a simple diagram. 

The line ܨଵ| = 1 supports ܮܤ at ݁. Hence, if we consider an appropriate 

coordinate system, centered at ݁ and with axis of abscissae on the line 

ଵ|ܨ = 1, then the points of ܵ that are sufficiently near to ݁ will form the 

graph of a convex function, defined in a neighborhood of the origin of the 

axis of abscissae. By Observation above, we can apply Lemma (3.2.11) to 

get pairwise distinct points ݂ = ܽ݁ + ܾ݃ ∈ ܵ(݊ ∈ ℕ) such that an, 

ܾ > 0, ܾ ↘  0, ܽ →  1, each line ߉ = ݂݂ܽ{ ݂ , ݂ାଵ} is disjoint from ܤ , 

and the angle between ߉ and the line ܨଵ| = 1 tends decreasingly to 0. 

Observe that the lines ߉ଵ and ݑ = 1 are not parallel since their angle is 

greater than the one between ߉ଵ and ܨଵ| = 1. Let ℎ ∈  be the common ܮ

point of the lines ߉ଵ and ݑ| = −1. By our construction, the compact 

convex set 
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ܥ = തതതതതതതൣ{± ݂ݒ݊ܿ  }ஹଶ  ∪ {±ℎ}൧ 

contains ܤ , we have 

= ܥݐݔ݁  {ℎ, ଶ݂, ଷ݂, . . . , ݁, −ℎ, − ଶ݂, − ଷ݂, . . . , −݁}, 

and ߲ܥ (the boundary of C in L) consists of the segments 

[ℎ, ଶ݂], [ ଶ݂, ଷ݂], [ ଷ݂, ସ݂], . . . , [݁0, −ℎ], [−ℎ, − ଶ݂], [− ଶ݂, − ଷ݂], [− ଷ݂, − ସ݂], . . . , [−݁, ℎ]

 Define 

ܹ = ܸ]∗തതതതതതത௪ݒ݊ܿ ∪ [ܥ = ܸ]ݒ݊ܿ ∪  .[ܥ

Then W is the dual unit ball of an equivalent norm ||| ∙  ||| on ܿ, given by 

|||ݔ||| ∶= (ܹ)ݔ ݔܽ݉   = ,‖ݔ‖}ݔܽ݉   .{(ܥ)ݔ ݔܽ݉

Denote ܧ = (ܿ, ||| ∙ |||). 

Define ܻ =  Then Y is a subspace of codimension two in E, and .ୃܮ

∗(ܻ/ܧ) = ܻୄ = ,ܮ)ܤ ,Since .ܮ ||| ∙ |||) =  is not a polytope, the quotient ܥ

 .is not polyhedral ܻ/ܧ

Claim 3. E is polyhedral. 

Proof. Notice that ܹ = ∗തതതതതതത௪ݒ݊ܿ  where ,ܤ 

ܤ = {±݁}ஹ ∪ ൛±݁ ± 4ି (݁ଵ − ݁  )ൟஹଶ ∪ {± ݂}ஹଶ  ∪ {±ℎ}.       (3.10) 

Moreover, B is a boundary for E (since ݂  → ݁ and ݁ ±  4ି (݁ଵ − ݁) →

݁), and the only w*-limit points of B are the three points 0, ±݁. Observe 

that ୃܭ =  ℝݑ. Thus E is polyhedral by Proposition (3.2.10).  

Claim 4. ܻୄ ⊂  .(ܧ)ܣ ܰ

Proof. We have to show that, for each ݂ ∈ ܵா ∩ ܻୄ =  ߲ܹ ∩ ܮ =  ߲ܥ, 

there exists a nonzero ݔ ∈ (ݔ)݂ such that ܧ = =) |||ݔ|||  .((ܹ)ݔ ݔܽ݉
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If ݂ ∈ [݁, −ℎ] or ݂ ∈ [−݁, ℎ], we can take ݔ = = ݔ ݎݑ  ,ݑ−

respectively. If f belongs to any other of the segments that compose ߲ܥ (the 

boundary of C in L), then this segment is contained in one of the lines ߉. 

Moreover, this ߉ is disjoint from V and supports C at f . Since V is           

w*-compact and ߉ is w*-closed, the Hahn–Banach separation theorem [7] 

gives existence of some ݔ ∈ (ܸ)ݔ ݔܽ݉ such that {0}\ܧ < (߉)ݔ ݂݊݅ =  .ߙ :

Since x is necessarily constant on ߉, we have ݉ܽݔ ݔ(ܹ) ≤ ߙ =   .(ݔ)݂

Claim 5. Y is not proximinal in E. 

Proof. We want to show that (ܵா) ≠ ܵா/ , where ܧ :ݍ →  is the ܻ/ܧ

quotient map. Since (in canonical identifications) ܮ =  we have ,∗( ܻ/ܧ)

ܻ/ܧ = ∗∗(ܻ/ܧ) =  Thus we can identify q with the restriction map .∗ܮ

ܧ :ݍ → ,∗ܮ ↦ ݔ  (3.11)                                 . ܮ|ݔ 

We have ܨଵ| ∈  ܵ∗ since ݉ܽܨ ݔଵ(ܥ) = ଵ(݁)ܨ = 1. Let us prove that 

ଵ|ܨ ∉ (ܵா  ). If this is not the case, there exists ݔ ∈ ܵா with ݔ| =  ଵ| . Inܨ

particular, ݁(ݔ) = ଵ(݁)ܨ = 1. Since ‖݁‖ = |||݁||| = 1, the inclusion 

∗ாܤ ⊃ ∗ܤ  and Claim 1 imply that ݔ ∈ ா∗(݁)ܦ ⊂ ா∗(݁)ܦ = ,ଵܨ  ଶ]. Butܨ

this implies that ݔ = ,ଵܨ]  sinceݑ [ଶܨ ∩ ܧ = = ଵ|ܨ Thus we get .{ݑ} 

(݃)ଵܨ | , a contradiction sinceݑ  ≠  0 =   .(ݑ)݃ 

The proof of Example (3.2.12) is complete. 

In this section we provide the following example which shows that the 

implication (B) ⇒ (D) does not hold for general polyhedral spaces. (We 

already know from Theorem (3.2.4) that it holds under the additional 

assumption that X satisfies (߂).) 
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Example (3.2.13)[3]: There exists a polyhedral Banach space E, 

isomorphic to c0, and a closed subspace ܻ ⊂  of codimension two, such ܧ

that Y is proximinal and ܧ/ܻ is not polyhedral. 

The proof of Example (3.2.13) will go in a similar, but simpler, way as 

that of Example (3.2.12). First step of construction. Let {ݑ  }ஹ and {݁ }ஹ 

be the canonical bases (indices starting from zero!) of ܿ and ℓ1 = (ܿ)∗, 

respectively. Define 

ܭ = തതതതതതതݒ݊ܿ ൜±
1
݅

݁: ݅ ≥ 1ൠ, 

ܸ = ∗തതതതതതത௪ݒ݊ܿ  ℓଵܤൣ  ∪ ±(݁ + ൧(ܭ = ℓଵܤൣݒ݊ܿ  ∪ ±(݁ +  ൧.    (3.13)(ܭ 

Then V is the dual unit ball of an equivalent norm ‖ ∙ ‖ on 

ܿ, ‖ݔ‖ ݕܾ ݊݁ݒ݅݃  = ܺ We define .(ܸ)ݔ ݔܽ݉  = (ܿ, ‖ ∙ ‖). 

Observe that ܭ݊ܽݏ ⊂ (ݑ)ݎ݁ܭ ⊂ ܺ∗, ܭ݊ܽݏ ݐݑܾ ≠  by the (ݑ)ݎ݁ܭ

Baire category theorem (indeed, ܭ݊ܽݏ = ⋃ ஹଵܭ݊   while K has empty 

relative interior in ݎ݁ܭ(ݑ)). Fix an arbitrary g ∈  and ܭ݊ܽݏ \ (ݑ)ݎ݁ܭ

define ܮ ⊂ ܺ∗ by 

ܮ = ,݁}݊ܽݏ ݃}. 

Since ݑ attains its maximum over V at ݁, we have ݁ ∈  ܵ∗  . 

Claim 1′. ܦ∗(݁) = (݁)ܦ ,Consequently .{ݑ} = |ݑ}   } by the Hahn–

Banach theorem. 

Proof. If ܨ ∈ |ܨ ∗(݁) thenܦ ≡ 0 and ܨ(݁) = 1. Hence ܨ =  . Theݑ

other implication is obvious.  

Claim 2′. If ݂ ∈ ܵ and ݂ ≠ ݁, then ݂(ݑ) < 1. 



75 
 

Proof. If ݂ ∈ ܵ and ݂(ݑ) = 1, then (3.13) implies that ݂ ∈ ݁ +  On the .ܭ

other hand, ݂ = ݁ + ܾ݃ for some ܾ ∈ ܴ, since ݂(ݑ) = 1 and ݃(ݑ) = 0. 

Thus ܾ݃ ∈ ܾ which is possible only if ,ܭ = 0.  

Second step of construction. By Claim 1′, the line u0|L = 1 is tangent to ܵ at 

݁; and by Claim 2′, ݁ is the unique common point of this line and ܵ . As 

in the “Second step of construction” in the proof of Example (3.1.12), we 

can apply Lemma (3.2.11) to get pairwise distinct points ݂ = ܽ݁ + ܾ݃ ∈

ܵ  (݊ ∈ ℕ) such that an, ܾ > 0, ܾ ↘ 0, ܾ → 1, each line ߉ =

݂݂ܽ{ ݂ , ݂ାଵ} is disjoint from ܤ , and the angle between ߉ and the line 

|ݑ  =  1 tends decreasingly to 0. 

Let ℎ ∈ |ݑ ଵ and߉ be the common point of the lines ܮ = −1. As in the 

proof of Example (3.2.12), the compact convex set 

ܥ = ݆ { ݆ ݂ ±}]തതതതതതതݒ݊ܿ ≥ 2 ∪  {±ℎ}] 

contains ܤ , its extreme points are the points ℎ, ଶ݂, ଷ݂, . . . , ݁, −ℎ −

 ଶ݂, − ଷ݂, . . . , −݁, and its boundary (in L) consists of the segments 

[ℎ, ଶ݂], [ ଶ݂, ଷ݂], [ ଷ݂, ସ݂], . . . , [݁0, −ℎ], [−ℎ, − ଶ݂], [− ଶ݂, − ଷ݂], [− ଷ݂, − ସ݂], . . . , [−݁, ℎ]

Define 

ܹ = ܸ]∗തതതതതതത௪ݒ݊ܿ ∪ [ܥ = ܸ]ݒ݊ܿ ∪  .[ܥ

Then W is the dual unit ball of an equivalent norm ||| ∙ ||| on ܿ, given by 

:|||ݔ||| = (ܹ)ݔ ݔܽ݉ = ,‖ݔ‖}ݔܽ݉ ܧ Denote .{(ܥ)ݔ ݔܽ݉ = (ܿ0, ||| ∙ |||). 

Define ܻ =               Then Y is a subspace of codimension two in E, and .ୃܮ

= ∗( ܻ/ܧ)  ܻ = ,ܮ)ܤ ,Since .ܮ  ||| ∙ |||)  =  is not a polytope, the quotient ܥ 

 .is not polyhedral ܻ/ܧ

Claim 3′. E is polyhedral. 
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Proof. The proof is identical to that of Claim 3 in the proof of Example 

(3.2.12).  

Claim 4′. Y is proximinal in E. 

Proof. As in Claim 5 (proof of Example (3.2.12)), we can canonically 

identify the quotient map ܧ :ݍ →  with the restriction map. We have to ܧ/ܺ 

show that (ܵா)  =  ܵ∗  . 

Let ℓ ∈  ܵ∗ . There exists ݂ ∈ ܵ = ߲ܥ such that the line ℓ =  1 

supports C at f . If ݂ = ݁, then ℓ = that is ℓ ,(Claim 1′) ܮ|ݑ  =  Let .(ݑ)ݍ

݂ ≠ ݁. Then the line ℓ = 1 is disjoint from ܤ∗ . As in the proof of Claim 4 

(proof of Example (3.1.12)), the Hahn–Banach separation theorem (applied 

to the sets ܤ∗ܽ݊݀ ℓିଵ(1) in the w*-topology) gives a nonzero ݔ ∈ ܺ such 

that |||ݔ||| = (ܹ)ݔ ݑݏ = |ݔ ݀݊ܽ 1 = ℓ. Then ݔ ∈ ܵா and ℓ =   .(ݔ)ݍ

The proof of Example (3.2.13) is complete. 
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Chapter 4 

Smooth and Polyhedral Approximation in Banach Spaces 

 

We show that norms on certain Banach spaces X can be approximated 

uni-formly, on bounded subsets of X by Cஶ smooth norms and polyhedral 

norms. we show that this holds for any equivalent norm on c(Γ), where Γ is 

an arbitrary set. We also give a necessary condition for the existence of a 

polyhedral norm on a weakly compactly generated Banach space. 

Section (4.1): Approximation of Norms: 

Given a Banach space (ܺ, ‖∙‖) and ߝ > 0, we say that a new norm ||| ∙ ||| 

is    ߝ -equivalent to ‖∙‖ if 

|||ݔ||| ≤ ‖ݔ‖  ≤  (1 +  ,|||ݔ|||(ߝ

for all ݔ ∈  ܺ. Suppose that P is some geometric property of norms, such as 

smoothness or strict convexity. We shall say that a norm ‖∙‖ can be 

approximated by norms having P if, given any ߝ > 0, there exists a norm 

having P that is ߝ -equivalent to ‖∙‖. This is equivalent to the statement, 

often seen in the relevant literature, that ‖∙‖  may be approximated 

uniformly, and with arbitrary precision, on bounded subsets of X by norms 

having P. 

The question of whether all equivalent norms on a given Banach space 

can be approxi-mated by norms having P is a recurring theme in renorming 

theory. It is known to be true if P is the property of being strictly convex, or 

locally uniformly rotund.  
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Several works in the literature, such as [4,9], have addressed this question  

in the case of ܥ smoothness or polyhedrality. 

Definition (4.1.1)[4]: We say the norm ‖∙‖ of a Banach space X is ܥ 

smooth if its kth Fréchet derivative exists and is continuous at every point of 

ܺ\{0}. The norm said to be ܥஶ smooth if this holds for all ݇ ∈ ℕ. 

For separable spaces, we have the following recent and conclusive result. 

Theorem (4.1.2)[4]: Let X be a separable Banach space with a ܥ 

smooth norm. Then any equivalent norm on X can be approximated by ܥ 

smooth norms. 

There is an analogous result to Theorem (4.1.2) for polyhedral norms. 

Definition (4.1.3)[4]: We say a norm ‖∙‖  on a Banach space X is 

polyhedral if, given any finite-dimensional subspace Y of X, the restriction of 

the unit ball of ‖∙‖  to Y is a polytope. 

Theorem (4.1.4)[4]: Let X be a separable Banach space with a polyhedral 

norm. Then any equivalent norm on X can be approximated by polyhedral 

norms. 

Very little is known in the non-separable case. In this paper, we will 

focus much of our attention on the following class of spaces. 

Definition (4.1.5.)[4]: Let Γ be a set. The set ܿ(Γ) consists of all 

functions ݔ ∶ Γ → ℝ, with the property that {ߛ ∈ Γ ∶ |(ߛ)ݔ| ≥  is finite {ߝ

whenever ߝ > 0. We equip ܿ(Γ) with the norm ‖∙‖ஶ, where ‖ݔ‖ஶ =

:|(ߛ)ݔ|} ݔܽ݉  ∋ ߛ Γ}. 

When Γ is uncountable, ܿ(Γ) is non-separable. The structure of ܿ(Γ) 

strongly promotes the existence of the sorts of norms under discussion in 
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this paper. For example, it is well known that the canonical norm on ܿ(Γ) is 

polyhedral, and that it can be approximated by ܥஶ smooth norms. In terms 

of finding positive non-separable analogues of Theorems (4.1.2) and (4.1.4), 

this class of spaces is a very plausible candidate. 

The most general result concerning this class to date is given below. We 

shall call a norm ‖∙‖ on ܿ(Γ) a lattice norm if ‖ݔ‖ ≤ ,ݔ whenever ‖ݕ‖  ∋ ݕ

ܿ(Γ) satisfy |(ߛ)ݔ| ≤ ߛ for each |(ߛ)ݕ| ∈ Γ.  

Theorem (4.1.6)[4]: Every equivalent lattice norm on ܿ(Γ) can be 

approximated by ܥஶ smooth norms. 

The following result completely settles the approximation problem in the 

case of ܿ(Γ), from the point of view of ܥஶ smooth norms and polyhedral 

norms. It solves a special case of [4]. 

Theorem (4.1.7)[4]: Let Γ be an arbitrary set, and let ‖∙‖  be an arbitrary 

equivalent norm on ܿ(Γ). Then ‖∙‖  can be approximated by both ܥஶ norms 

and polyhedral norms. 

Theorem (4.1.7) is a consequence of a more general result, Theorem 

(4.1.15), which involves spaces having Markushevich bases.  

Definition (4.1.8.)[4]: Let (ܺ, ‖∙‖) be a Banach space. A subset B of the 

closed unit ball ܤ∗ is a called a boundary of ‖∙‖  if, for each x in the unit 

sphere ܵ, there exists ݂ ∈ (ݔ)݂ such that ܤ = 1. 

This is also known as a James boundary of X in the literature. The dual 

unit sphere S∗  and the set ݁ݐݔ(ܤ∗) of extreme points of the dual unit ball 

 ∗ are always boundaries of ‖∙‖, by the Hahn-Banach Theorem and (theܤ

proof of the) Krein-Milman Theorem, respectively. It is worth noting that 
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the property of being a boundary is not preserved by isomorphisms in 

general: a boundary of ‖∙‖ may not be a boundary of ||| ∙ |||, where ||| ∙ ||| is 

an equivalent norm. Since we will be changing norms in this paper, it will be 

necessary to bear this in mind. 

Boundaries play a key role in the theory of both smooth norms and 

polyhedral norms. If (ܺ, ‖∙‖) has a boundary that is countable or otherwise 

well-behaved, then X enjoys good geometric properties as a consequence  

Recall that an element ݂ ∈  ∗ is called a w*-strongly exposed point ofܤ

ݔ ∗ if there existsܤ ∈ (ݔ)݂  such thatܤ = 1 and, moreover, ‖݂ − ݂‖ →

 0 whenever ( ݂) ⊆ (ݔ)∗ is a sequence satisfying ݂ܤ → 1. It is a simple 

matter to check that the (possibly empty) set w*-str ݁ݔ(ܤ∗) of w*-strongly 

exposed points of ܤ∗ is contained in any boundary of ‖∙‖. We recall the 

following important result of Fonf, concerning polyhedral norms. 

Theorem (4.1.9)[4]:  Let ‖∙‖  be a polyhedral norm on a Banach space X 

having density character ߢ. Then w*-str ݁ݔ(ܤ∗) has cardinality ߢ and is a 

boundary of ‖∙‖  (so is the minimal boundary, with respect to inclusion). 

Moreover, given ݂ ∈ ∗ݓ − ܣ the set ,(∗ܤ)ݔ݁ ݎݐݏ  ∩   has non-emptyܤ

interior, relative to the affine hyperplane ܣ ∶= ݔ}  ∈ (ݔ)݂    :ܺ = 1}. 

In particular, if X is separable and ‖∙‖  is polyhedral, then w*-str 

,ܺ) is a countable boundary. Conversely, according to [4], if (∗ܤ)ݔ݁ ‖∙‖) 

is a Banach space and ‖∙‖ has a countable boundary B, then X admits 

equivalent polyhedral norms that approximate ‖∙‖. Thus, in the separable 

case, the existence of equivalent polyhedral norms can be characterised 

purely in terms of the cardinality of the boundary. 
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In the non-separable case however, any analogous characterisations, if 

they exist, must generally rely on more than the cardinality of the boundary 

alone. There exist Banach spaces (ܺ, ‖∙‖) having no equivalent polyhedral 

norms, yet X has density the continuum c, and ‖∙‖  has boundary B of 

cardinality c. Such Banach spaces can take the form ܺ =  where T is ,(ܶ)ܥ

the 1-point compactification of a suitably chosen locally compact scattered 

tree. 

Recall that a Banach space X is weakly compactly generated 

= ܺ ݂݅ (ܩܥܹ) ܭ where ,(ܭ)‖∙‖തതതതതതത݊ܽݏ  ⊆ ܺ is weakly compact. Separable 

spaces and reflexive spaces are WCG. Exam-ples of WCG spaces that are 

neither include the ܿ(Γ) spaces above.  

Theorem (4.1.10)[4]: Let X be WCG, and let the norm ‖∙‖ on X be 

polyhedral. Then the boundary w*-str ݁ݔ(ܤ∗) of ‖∙‖  may be written as 

∗ݓ − (∗ܤ)ݔ݁ ݎݐݏ = ራ ܦ

ஶ

ୀଵ

, 

where each ܦ is relatively discrete in the w*-topology. 

The theorem above should be compared to the following sufficient 

condition: if the norm ‖∙‖  on X admits a boundary B such that ܤ = ⋃ ܦ
ஶ
ୀଵ  

and ܤ = ⋃ ܭ
ஶ
ୀଵ  , where each ܦ is relatively discrete in the w*-topology, 

and each Km is w*-compact, then ‖∙‖  can be approximated by polyhedral 

norms. Thus Theorem (4.1.10) can be considered as a step towards a 

characterisation of the existence of polyhedral norms, in the WCG case. 

Definition (4.1.11)[4]: We call an indexed set of pairs (݁ఊ , ݁ఊ
∗)ఊ∈ ⊆ ܺ ×

ܺ∗ a Markushevich basis (or M-basis) if 
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• ݁ఈ
∗ ( ఉ݁) = ఈఉ, (that is, (݁ఊߜ , ݁ఊ

∗)ఊ∈ is a biorthogonal system); 

തതതതതതത‖∙‖(݁ఊ)ఊ∈݊ܽݏ • =  ܺ, and 

• (݁ఊ
∗)ఊ∈ separates the points of X. 

Furthermore, an M-basis is called strong if ݔ ∈ തതതതതതത‖∙‖൛݁ఊ݊ܽݏ  ∶  ݁ఊ
(ݔ)∗ ≠ 0ൟ for 

all ݔ ∈ ܺ, shrinking if ܺ∗ = ݁)‖∙‖തതതതതതത݊ܽݏ  ∗)ఊ∈, and weakly compact if {݁ఊ ∶

ߛ ∈ Γ} ∪ {0} is weakly compact. 

The existence of an M-basis allows us to define supports of functionals in 

the dual space. 

Definition (4.1.12)[4]: Let X be a Banach space with an M-basis 

(݁ఊ , ݁ఊ
∗)ఊ∈ܽ݊݀ ݈݁ݐ ݂ ∈ ܺ∗. 

Define the support of ݂ (with respect to the basis) to be the set  

(݂)ݑݏ = ߛ } ∈ Γ ∶  ݂(݁ఊ)  ≠ 0} . 

We say f has finite support if ݑݏ(݂) is finite. 

The main result of this section, Theorem (4.1.15), states that if X has a 

strong M-basis then, given the right circumstances, the norm on X can be 

approximated by norms having boundaries that consist solely of elements 

having finite support. The following result illustrates the relevance of such 

boundaries to the current discussion. It amalgamates two theorems, both of 

which are stated with broader hypotheses in their original forms. 

Theorem (4.1.13)[4]:  Let a Banach space X have a strong M-basis, and 

suppose that the norm ‖∙‖  has a boundary consisting solely of elements 

having finite support. Then ‖∙‖  can be approximated by both ܥஶ norms and 

polyhedral norms. 
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Now, for the rest of this section, we will assume that the Banach space X 

has a strong M-basis (݁ఊ, ݁ఊ
∗)ఊ∈, such that ฮ݁ఊฮ = 1 for all  ߛ ∈ Γ. 

Furthermore, we will suppose that there is some fixed ܮ ≥ 0 satisfyinge 

݁ఊ
∗ ≤ ߛ  for all ܮ ∈ Γ. 

Given ݂ ∈ ܺ∗, set ‖݂‖ଵ = ∑ |݂(݁ఊ)|ఊ∈  , whenever this quantity is finite, 

and set ‖݂‖ଵ = ∞ otherwise. Observe that if ݔ = ∑ ݁ఊ
ംఊ∈ி(ݔ)∗  , for some 

finite ܨ ⊆  then ,߁

|(ݔ)݂| ≤  |݁ఊ
|(ఊ݁)݂| |(ݔ)∗

ఊ∈ி

≤ ‖ݔ‖ ܮ   |݂(݁ఊ)| 
ఊ∈ி

≤  , ଵ‖݂‖ ‖ݔ‖ ܮ 

whence ‖݂‖ ≤ ݂ ଵ for all‖݂‖ ܮ  ∈ ܺ∗. It is also easy to see that ‖∙‖ଵ is              

a w*-lower semicontinuous function on ܺ∗, and that given ݎ >  0, the norm-

bounded set 

ܹ = {݂ ∈ ܺ∗ ∶ ‖݂‖ଵ ≤⋋} , 

is symmetric, convex and w*-compact. 

Let us consider the set ܤ = {݂ ∈ ܵ∗ ∶ ‖݂‖ଵ < ∞}. Evidently, B is the 

countable union of the sets ܵ∗ ∩ ܹ ݎ   , ∈ ℕ, which are w*-closed in ܵ∗. If 

ܵ∗ ∩ ܹ  contains a non-empty norm-open subset of ܵ∗ , for some ݎ ∈ ℕ, 

then it is a straightforward matter to show that there exists ܯ ≥ 0 such that 

‖݂‖ଵ ≤ ݂ for all ‖݂‖ ܯ  ∈ ܺ∗, whence ܵ∗ ∩ ெܹ  =  ܵ∗ and X is 

isomorphic to ܿ(Γ) via the map ݔ ↦  (݁ఊ
 ఊ∈௰. If there is no such r, then((ݔ)∗

of course B is of first category in ܵ∗ . If X is not isomorphic to any space of 

the form ܿ(Γ), then ܤ ≠ ܵ∗ , but B may still be a boundary of ‖∙‖.  

We shall be interested in cases where B is a boundary of ‖∙‖. 

The following lemma will be used in Theorem (4.1.15). 
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Lemma (4.1.14)[4]: Suppose that B as defined above is a boundary of 

‖∙‖. Then ܺ∗ = തതതതതതത‖∙‖(݁ఊ݊ܽݏ 
∗),i.e., the M-basis of X is shrinking. 

Proof. Let ܨ ⊆  be finite, and define ߁

ܺி = തതതതതതത‖∙‖(݁ఊ)ఊ∈௰\ி     and     ிܹ݊ܽݏ  = ఊ݁)݊ܽݏ
∗)ఊ∈ி . 

Then ிܹ =  ܺ ୄ
ி

 (the inclusion ܺ ୄ
ி

⊆  ிܹ  follows from the fact that the basis 

is strong), and thus ܺ∗/ ிܹ  naturally identifies with ܺி
∗ , and ฮ݂ ↾ಷฮ =

݀(݂, ிܹ  ) for all ݂ ∈ ܺ∗, where 

݀(݂, ிܹ) = ݂݅݊ {‖݂ − ݃‖ ∶ ݃ ∈ ிܹ } . 

Suppose, for a contradiction, that there exists ݂ ∈ ܺ∗ and ߝ >  0, such 

that ݀(݂, ிܹ  ) > ⊇ ܨ for all finite ߝ ‖݂‖ Let F0 be empty. Since .߁ =

 ݀(݂, ிܹబ) > ݔ take a unit vector ,ߝ ∈ ܺ having finite support, such that 

(ݔ)݂ > ଵܨ Set .ߝ = . Since ቛ݂ݔ ݑݏ ↾ಷభ
ቛ =  ݀(݂, ிܹభ )  >  there ,ߝ

exists a unit vector ݔଵ ∈ ܺ having finite support in 1ܨ \߁, such that 

(ଵݔ)݂  > ଶܨ Define .ߝ = ଵܨ ∪  ଵ. Continuing like this, we get aݔ ݑݏ 

sequence of unit vectors (ݔ) having finite, pairwise disjoint supports, such 

that ݂(ݔ) >  .is not weakly null (ݔ) ,for all i. Clearly ߝ

On the other hand, if ݂ ∈ ݕ and ܤ  = ∑ ݁ఊ
ఊఊ∈ி݁(ݕ)∗   is a unit vector, 

where ܨ ⊆  is finite, then ߁

|(ݕ)݂|  ≤  |݁ఊ
|(ఊ݁)݂| |(ݕ)∗

ఊ∈௰

 ≤ ܮ   |݂(݁ఊ)|
ఊ∈ி

. 

It follows that ݂(ݔ) → 0 as ݊ → ∞. This holds for every element of B, 

which is a boundary, so ݔ → 0 weakly, by Rainwater’s Theorem (Let ܺ be 
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a Banach space, let {ݔ} be a bounded sequence in ܺ and ݔ ∈ ܺ. If ݂(ݔ) →

݂ for every (ݔ)݂ ∈ ݔ  then ,(∗ܤ)ݐݔܧ
௪
→  .ݔ

The symbol ݔ
௪
→  ∗ weܤ denotes the convergence in weak topology. By ݔ

denote the unit ball of the dual ܺ∗ and ݐݔܧ(ܤ∗) is the set of all extreme 

points of this set.)[9]. This is a contradiction.  

We can now prove Theorem (4.1.15). The method of proof owes a debt 

to [4], although the approximation scheme used in that result fails in the case 

under consideration here, and substantial modifications must be made. 

Theorem (4.1.15)[4]: Let a Banach space X have an M-basis as above, 

and suppose that B as above is a boundary. Given ߝ > 0, there exists an ߝ -

approximation ||| ∙ ||| of ‖∙‖, which has a boundary consisting solely of 

elements having finite support. Consequently, by Theorem (4.1.13), ‖∙‖ can 

be approximated by ܥஶ smooth norms and polyhedral norms. 

Proof. Fix ߝ ∈ (0, 1). Suppose ݂ ∈ ܺ∗ satisfies ‖݂‖ଵ < ∞. We define a 

sequence of positive numbers and a sequence of subsets of  Γ inductively. 

To begin, set 

,݂) 1) = :|(ఊ݁)݂|} ݔܽ݉ ߛ ∈ ,݂)ܩ  ݀݊ܽ {߁ 1) = ߛ} ∈ :߁ |݂(݁ఊ)| = ,ݖ) 1)} . 

Given ݊ ≥ 2, we define 

,݂) ݊)  = ൜
|(ఊ݁)݂|} ݔܽ݉) ∶ ߛ ∈ ,݂)ܩ\߁ ݊ − ,ݖ)ܩ\߁ ݂݅    {(1 ݊ − 1) ≠ ∅
,݁ݏ݅ݓݎℎ݁ݐ                                                                                         0

 

,݂)ܩ ݀݊ܽ ݊)  = ߛ }  ∈ ߁ ∶  |݂(݁ఊ)|  ≥ ,݂)  ݊)}. 

Observe that the set ܩ(݂, ݊) is finite if and only if (݂, ݊)  ≠ 0 and, in 

this case, ‖݂‖ଵ ≥ ,݂) ,݂)ܩ|(݊ ݊)|. By induction, |ܩ(݂, ݊)| ≥ ݊ for all n, so 

,݂) ݊)  ≤  ‖݂‖ଵ ݊ିଵ and, in particular, (݂, ݊) → 0. By construction, the 
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sequence ((݂, ݊)) is decreasing, and strictly decreasing on the set of 

indices n at which it is non-zero. If (݂, ݊) = 0 for some ݊ ∈ ℕ, then 

݂(݁ఊ)  ≠ 0 for at most finitely many ߛ and hence ݂ has finite support. Thus, 

when f has infinite support, we get a strictly decreasing sequence of positive 

numbers (݂, ݊) → 0, and a strictly increasing sequence of finite sets 

,݂)ܩ) ݊)). 

Provided ܩ(݂, ݊) is finite, we define 

,݂)ݓ ݊) =  ݊݃ݏ ቀ݂൫݁ఊ൯ቁ ݁ఊ
∗

ఊ∈ீ(,)

, 

ܽ݊݀ ℎ(݂, ݊)  = ((݂, ݅)  − ,݂)  ݅ + ,݂)ݓ((1  ݅).


ୀଵ

 

Let  ߛ ∈ ߛ  If .߁ ∈ \߁ ⋃ ,݂)ܩ ݊)ஶ
ୀଵ  , then ℎ(݂, ݉)(݁ఊ) = 0 = ݂(݁ఊ) for all 

m. Otherwise, let n be minimal, subject to the condition  ߛ ∈ ,݂)ܩ  ݊). By 

minimality, we have (݂, ݊) = |݂(݁ఊ)|. 

If ݉ < ݊, then ℎ(݂, ݉)(݁ఊ = 0. If ݉ ≥ ݊, then we can see that 

ℎ(݂, ݉)(݁ఊ)  = ((݂, ݅)  − ,݂)  ݅ + ((ߛ)݂)݊݃ݏ ((1 


ୀ

= ,݂)]  ݊)  − ,݂)  ݊ +  1) 

,݂) +                                         ݊ + 1) − ,݂)  ݊ +  2) 

                                        + . . . − . .. 

,݂) +                                         ݉)  − ,݂)  ݉ +  ((ఊ݁)݂)݊݃ݏ[(1 

                                    =  ห݂൫݁ఊ൯ห݊݃ݏ ቀ݂൫݁ఊ൯ቁ − ,݂)  ݉ + ݊݃ݏ(1  ቀ݂൫݁ఊ൯ቁ 
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                                    =  ݂(݁ఊ)  − ,݂)  ݉ +  .((ఊ݁)݂)݊݃ݏ (1 

From the calculation above and the fact that (݂, ݉ + 1) < |݂(݁ఊ)|, we 

have 

|ℎ(݂, ݉)(݁ఊ)|  = |(ఊ݁)݂|)(ఊ݁)݂)݊݃ݏ|   − ,݂)  ݉ +  1))|  

=  |݂(݁ఊ)|  − ,݂)  ݉ +  1). 

,݂) ݁ܿ݊݅ܵ ݉ +  1)  ≥  0, ,݂)ℎ| ݊݅ܽݐܾ ݁ݓ |(ߛ݁)(݉  ≤  .|(ߛ݁)݂| 

Therefore, for all  ߛ ∈ ,߁ |ℎ(݂, |(ߛ݁)(݉  ≤ ,݂)and ℎ |(ߛ݁)݂|  (ߛ݁)(݉ →

݉ as (ߛ݁)݂ → ∞. We apply Lebesgue’s Dominated Convergence Theorem 

to conclude that ‖݂ −  ℎ(݂, ݉)‖ଵ  →  0. Since ‖ ∙ ‖ ≤ ‖ܮ ∙ ‖ଵ, we also get 

‖݂ −  ℎ(݂, ݉)‖ →  0. Since the signs of ݓ(݂, ,݂)ݓ and (ߛ݁)(݅  agree (ߛ݁)(′݅

whenever they are non-zero, 

‖ℎ(݂, ݊)‖ଵ = ((݂, ݅) − ,݂)  ݅ + ,݂)ݓ‖ ((1  ݅)‖ଵ



ୀଵ

 

=  ,݂) ݅)  − ,݂)  ݅ + ,݂)ܩ|((1 ݅)|.


ୀଵ(

 

Therefore, if ݂ has infinite support, then ‖݂‖ଵ = ∑ ,݂)) ݅)  −ஶ
ୀଵ

,݂)  ݅ + ,݂)ܩ|((1 ݅)|. 

Given ݉ > ݊, define 

݃(݂, ݊, ݉)  = ቐ
‖݂ −  ℎ(݂, ݊)‖ଵ

,݂)ܩ| ݉)| ,݂)ݓ ,݂)ܩ| ݂݅       (݉ ݉)| < ∞,

.݁ݏ݅ݓݎℎ݁ݐ                                                            0
 

and ݆(݂, ݊, ݉) = ℎ(݂, ݊) + ݃(݂, ݊, ݉), ݉ > ݊. Observe that ݑݏ(݆(݂, ݊, ݉)) ⊆

,݂)ܩ ݉). 

Let ܤ = ∗ܤ ∩ ܹ = {݂ ∈ :∗ܤ ‖݂‖ଵ ≤ ܤ ,Of course .{ݎ ⊆ ⋃ ܤ
ஶ
ୀଵ  . We let 
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ܸ = ݆(݂, ݊, ݉): ݂ ∈ ܤ , ݉ > ݊   and ‖݂ − ݆(݂, ݊, ݉)‖ <  2ି(୰ାଶ)ε, 

= ܸ ݐ݁ݏ ݀݊ܽ ራ(1 + 2ିߝ) ܸ

ஶ

ୀଵ

. 

Define |||ݔ||| = ݔ)݂}ݑݏ ∶ ݂ ∈ ܸ }. This is the norm that we claim                 

ε-approximates ‖∙‖ and has a boundary consisting solely of elements having 

finite support. 

First of all, we prove that ‖ݔ‖ < |||ݔ||| ≤ (1 + ݔ whenever |||ݔ|||(ߝ ≠

0. Take ݔ ∈ ܺ with ‖ݔ‖ = 1 and let ݂ ∈ (ݔ)݂ such that ܤ = 1 (which is 

possible as B is a bound- ary of ‖∙‖). Let r be minimal, such that ݂ ∈  .ܤ

Since ‖݂‖ ≤ ݂ ଵ for all‖݂‖ܮ  ∈ ܺ∗, and ‖݂ − ݆(݂, ݊, ݉)‖ଵ ≤  2 ‖݂ −

ℎ(݂, ݊)‖ଵ, it follows that there exists n such that ‖݂ − ݆(݂, ݊, ݉)‖ <

2ି(ାଶ)ߝ whenever ݉ > ݊. In particular, 

|||ݔ||| ≥ (1 + 2ିߝ)݆(݂, ݊, ݊ + (ݔ)(1 ≥ (1 + 2ି1)(ߝ − 2ି(ାଶ)ߝ)

≥ 1 + 2ି(ାଵ)ߝ. 

To secure the other inequality, simply observe that if ݂ ∈ ݉ ,ܤ > ݊ and 

‖݂ − ݆(݂, ݊, ݉)‖ < 2ି(ାଶ)ߝ, then 

(1 + 2ିߝ)݆(݂, ݊, (ݔ)(݉ ≤ (1 +  2ି1)(ߝ + 2ି(ାଶ)ߝ)

≤ 1 + (2ି + 2ି(ାଶ) + 2ି(ଶାଶ))ߝ ≤ 1 +  .ߝ

This means that |||ݔ||| ≤ 1 + ‖ݔ‖ ,By homogeneity .ߝ < |||ݔ||| ≤ (1 +

ݔ whenever ‖ݔ‖ (ߝ ≠  0. 

Now we show that ||| ∙ ||| has a boundary consisting solely of elements 

having finite support. By Krein Milman’s Theorem [5], we know that  

∗(|||∙|||,)ܤ)ݐݔ݁ )  ⊆  തܸ௪∗ . Define 
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= ܦ ሩ ቌራ(1 + 2ି௦ߝ) ௦ܸ

ஶ

௦ୀ

തതതതതതതതതതതതതതതതതതതത௪∗

ቍ
ஶ

ୀଵ

, 

and let ݀ ∈ ݎ For each .ܦ ∈ ℕ, ‖݀‖ ≤  (1 + 2ି1)(ߝ + 2ି(ାଶ)ߝ), and 

hence ‖݀‖ ≤ 1. 

Therefore, if |||ݔ|||  =  1, then 

(ݔ)݀ ≤ ‖ݔ‖ ‖݀‖ ≤ ‖ݔ‖ < 1. 

It follows that, with respect to ||| ∙ |||, none of the elements of D are 

norm-attaining. Consequently, ܤ෨ = ||| is a boundary of ܦ\(∗(|||·|||,)ܤ)ݐݔ݁ ∙

|||. We claim that every element of ܤ෨  has finite support. 

Given  ݂ ∈ ݂ we have ,ܤ ∈ (1 + 2ିߝ) ܸഥ
௪∗

 for some ݎ ∈ ℕ. For a 

contradiction, we will assume that f has infinite support. According to 

Lemma (3.1.14), our M-basis is shrinking. It follows that supp g is countable 

for all ݃ ∈ ܺ∗. Thus, ܸഥ
௪∗

is Corson compact in the w*-topology, which 

implies that it is a Fréchet-Urysohn space. In particular, there exist 

sequences ( ݂) ⊆ ,, and (݊)ܤ (݉)  ⊆  ℕ, with ݊ < ݉ for all ݇ ∈ ℕ, 

such that (݆(݂݇, ݊݇, ݉݇))  ⊆  ܸ  and ݆(݂݇, ݊݇, ݉݇)  
௪∗

ሱሮ  ݈, where ݈ =

(1 + 2ିߝ)ିଵ݂. 

We claim that, in fact, ݂
௪∗

ሱሮ  ݈. First, we show that ℎ( ݂ , ݊)
௪∗

ሱሮ  ݈. To this 

end, suppose that |ܩ( ݂ , ݉)| ↛ ∞. Then by taking a subsequence if 

necessary, there exists ܰ ∈ ℕ such that | ݑݏ(݆( ݂ , ݊ , ݉))| ≤

)ܩ| ݂ , ݉)| ≤ ܰ for all k. But as ݆( ݂ , ݊ , ݉) 
௪∗

ሱሮ ݈, this would force 

|(݈)ݑݏ| ≤ ܰ < ∞, which is not the case. Thus we must have 

)ܩ| ݂ , ݉)| → ∞. Therefore, for all  ߛ ∈ )݃ ,߁ ݂ , ݊ , ݉)(݁ఊ) → 0 as ݇ →
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∞. Since ‖ ∙ ‖ ≤ ‖ܮ ∙ ‖ଵ , the sequence (݃( ݂, ݊ , ݉)) is bounded. 

Therefore, ݃( ݂ , ݊ , ݉) 
௪∗

ሱሮ  0 and hence ℎ( ݂ , ݊) 
௪∗

ሱሮ  ݈. 

We will now show that ݂  −  ℎ( ݂ , ݊) 
௪∗

ሱሮ 0. For each  ߛ ∈ | ,߁ ݂(ߛ)  −

 ℎ( ݂ , ݊)(݁ఊ)|  ≤ | ݂(݁ఊ)|, so ‖ ݂ −  ℎ( ݂, ݊)‖ଵ ≤ ‖ ݂‖ଵ . Therefore, 

( ݂ −  ℎ( ݂ , ݊)) is a bounded sequence. 

Given  ߛ ∈  ,߁

|( ݂ −  ℎ( ݂, ݊))(݁ఊ)|  ≤ )  ݂ , ݊ +  1)  ≤
‖ ݂‖ଵ

)ܩ| ݂, ݊ +  1)|
≤

ݎ
)ܩ| ݂, ݊ +  1)|

. 

Since ℎ(݂݇, ݊݇) 
௪∗

ሱሮ  ݈, as above, the infinite support of ݈ ensures that 

,݂݇)ܩ| ݊݇)|  →  ∞. Therefore, (݂݇ −  ℎ(݂݇, ݊݇))(݁ఊ) → 0 and hence ݂ −

 ℎ( ݂ , ݊) 
∗ݓ

ሱሮ  0 as ݇ → ∞. It follows that ݂
∗ݓ

ሱሮ  ݈ as claimed, and hence ݈ ∈

 .ܤ 

Fix ݊ ∈  ℕ such that ‖݈ −  ℎ(݈, ݊)‖ଵ < ݉ Then for all .ߝଵ2ି(ାଷ)ିܮ  > ݊, 

‖݈ −  ݆(݈, ݊, ݉)‖ ≤ − ݈ ‖ܮ   ݆(݈, ݊, ݉)‖ଵ ≤ − ݈‖ ܮ2   ℎ(݈, ݊)‖ଵ  <  2ି(ାଶ)ߝ. 

So ݆(݈, ݊, ݉)  ∈  ܸ for all ݉ >  ݊. Let 

⋋ =
,݈)) ݉)  − ,݈)  ݉ + ,݈)ܩ|((1  ݉)|

‖݈ −  ℎ(݈, ݊)‖ଵ
. 

Note that ⋋>  0 whenever ݉ > ݊. Since ‖݈ −  ℎ(݈, ݊)‖ଵ  = ∑ ,݈)) ݅)  −ஶ
ୀାଵ

,݈) ݅ + ,݈)ܩ|((1 ݅)|, we get ∑ ⋋=  1ஶ
ୀାଵ  . 

 ⋋ ݆(݈, ݊, ݉)
ஶ

ୀାଵ

=  ⋋ ℎ(݈, ݊) 
ஶ

ୀାଵ

+  ⋋ ݃(݈, ݊, ݉)
ஶ

ୀାଵ

=  ℎ(݈, ݊)  +  ,݈)) ݅)  − ,݈)  ݅ + ,݈)ݓ((1  ݅)  =  ݈.
ஶ

ୀାଵ
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Therefore, ݂ is a nontrivial convex combination of elements of (1 +

2ିߝ) ܸ ⊆ ݂ so ,∗(|||·|||,)ܤ ∉ ݂ and hence ,(∗(|||·|||,)ܤ)ݐݔ݁  ∉ ෨ܤ . This gives 

us our desired contradiction. In conclusion, ܤ෨  is a boundary of                  

||| ∙ ||| consisting solely of functionals having finite support.  

Theorem (4.1.7) becomes a trivial consequence of Theorem (4.1.15). 

Proof of Theorem (4.1.7). In this case ܤ = (ܵబ(௰),‖∙‖)∗ , so it is a boundary of 

‖∙‖.  

It is worth remarking that the implication (d) ⇒ (c) of [12, Theorem 

(4.1.15)] is essentially Theorem (4.1.15), but with the additional assumption 

that the M-basis is countable. The method of proof in that case is completely 

different from the one presented here.  
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Section (4.2): A Necessary Condition for Polyhedrality in 

WCG Spaces: 

We begin this section with a lemma. It is based on straightforward 

geometry and is probably folklore, but is included for completeness since we 

have no direct reference for it. 

Lemma (4.2.1)[4]: Suppose that ܦ ⊆ ݂ ∗ has the property that for allܤ ∈

ݔ there exists ,ܦ ∈ ܺ and ݎ > 0 such that ฮݔ + ฮݖ  = ݔ)݂  +  (ݖ 

whenever ‖ݖ‖ <   . Thenݎ

ݎ (1) ≤ ฮݔฮ, and 

‖ݖ‖ (2) < ݃ ݀݊ܽ ݎ ∈ ݔ)݃ implies {݂} \ ܦ + (ݖ   <  ฮݔ +  .ฮݖ 

In particular, if ݂, ݃ ∈ ݔare distinct then ฮ ܦ  − ฮݔ  ≥  . ݎ

Proof. 

(1) Suppose that ฮݔฮ < ݕ  . Letݎ ∈ ܺ satisfy ‖ݕ‖ < ݎ − ฮݔฮ. Then 

ฮ±ݕ − ฮݔ <   and soݎ

(ݕ)݂  = ‖ݕ‖ = ‖ݕ−‖  = (ݕ−)݂   =  ,(ݕ)݂− 

meaning that ݕ ∈ ݂ It follows that .݂ ݎ݁݇ = 0, which is impossible. 

(2) Suppose ‖ݖ‖ < ,ݎ ݃ ∈ ݔ)݃ and {݂}\ܦ + (ݖ   =  ฮݔ +  ฮ. Sinceݖ 

݃ ≠ ݂ we can find ݕ ∈ (ݕ)݃ such that ݂ ݎ݁݇ > 0 and ‖ݕ‖ < ݎ −

݂ ݎ݁݇ Otherwise we would have .‖ݖ‖  ⊆ ݃ so ,݃ ݎ݁݇  =  for some ݂ߙ

ݔ)݂ and since ,ߙ + (ݖ  = ฮݔ + ฮݖ  = ݔ)݃  + (ݖ  = ݔ)݂ߙ +  ,(ݖ 

and ฮݔ + ฮݖ  >  0 by (1), we conclude that ݃ = ݂, which is not the 

case. Thus ‖ݕ + ‖ݖ  <   and soݎ

ฮݔ + + ݕ  ฮݖ  = ݔ)݂  + + ݕ  (ݖ   = ݔ)݂  +  .(ݖ 
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On the other hand, 

ฮݔ + + ݕ  ฮݖ  ≥ ݔ)݃  + + ݕ  (ݖ   > ݔ)݃  + (ݖ   =  ฮݔ + ฮ ݖ  = ݔ)݂  +  .(ݖ 

Finally, if ݂, ݃ ∈ ݔare distinct and ฮ ܦ  − ฮݔ  <   , then by (2) we wouldݎ

have 

ฮݔฮ = ݃൫ݔ൯ =  ݃ ቀݔ +  ൫ݔ − ൯ቁݔ  < ฮݔ +  ൫ݔ − ݔ   ൯ฮ =  ฮݔฮ . 

Armed with this lemma, we can give the proof of Theorem (4.1.10). 

Proof  of  Theorem (4.1.10). Since X is WCG, we can find a weakly 

compact M-basis (݁ఊ, ݁ఊ
∗) ∈ ݔ  be the set ofܧ of X. Let߁ ∈ ܺ that can be 

written as a linear combination of at most n elements of (݁ఊ) ∈  Let us .߁

define ܤ ∶= ∗ݓ −  According to Theorem (4.1.9), for each .(∗ܤ)ݔ݁ ݎݐݏ

݂ ∈ ∋ ݔ we can find a point ,ܤ (ఊ݁)݊ܽݏ  ∈  that lies in the interior of ߁

ܣ ∩  . is the supporting hyperplane as defined in that theoremܣ , whereܤ 

By a straightforward argument, it follows that there exists ݎ > 0 such that 

+ ݔ‖ ‖ݖ  = ݔ)݂ + ‖ݖ‖ whenever (ݖ <  .ܧ Any such x belongs to some .ݎ

Therefore, given ݂ ∈ ݊ we can define ݊ to be the minimal ,ܤ ∈ ℕ for which 

we can find an x and r as above, with ݔ ∈  .ܧ

Define ܦ, to be the set of all ݂ ∈ such that ݊ ܤ = ݊, and there exist x and 

r, as described above, which in addition satisfy ݎ ≥ 2ି and 

ݔ =  ܽఊ݁ఊ
ఊ∈ி

, 

where ܨ ⊆ |has cardinality n and |ܽఊ ߁  ≤  ݉ for all  ߛ ∈  Any such pair .ܨ 

,ݔ) ݂ will be called a witness for (ݎ ∈  .,ܦ
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Evidently, ܤ = ⋃ ,ܦ
ஶ
,ୀଵ  . We claim that each ܦ, is relatively discrete 

in the norm topology. For a contradiction, suppose otherwise and let ݂, ݂  ∈

− ݂‖ , such thatܦ ݂‖ →  0. For each ݇ ∈ ℕ, select a witness (ݔ ,  ) forݎ

݂. The set 

ܮ = ቐ ܽఊ݁ఊ
ఊ∈ி

∶ ܨ  ⊆ |ఊܽ| ݀݊ܽ ݊ ݕݐ݈݅ܽ݊݅݀ݎܽܿ ݏℎܽ ߁ ≤ ߛ  ݈݈ܽ ݎ݂ ݉ ∈ ቑܨ , 

is weakly compact, being a natural continuous image of [−݉, ݉] × ({݁ఊ ∶

ߛ   ∈ {߁ ∪ {0}). 

Thus, by the Eberlein-Ŝmulyan Theorem (Let ܺ be a Banach space. For 

subset ܭ the following are equivalent. a) ܭ is relatively ߪ(ܺ, ܺ∗) compact, 

i.e. ߪܭ(ܺ, ܺ∗) is compact. b) Every sequence in ܭ contains a ߪ(ܺ, ܺ∗)-

convergent subsequence. c) Every sequence in ܭ has a ߪ(ܺ, ܺ∗)-

accumulation point. We will need the following Lemma.)[10], and by taking 

a subsequence of (ݔ) if necessary, we can assume that the ݔ tend weakly 

to some ݕ ∈ ݕ We claim that .ܮ ∈ ݆  for someܧ < ݊. Indeed, if 

ݕ =  ܽఊ݁ఊ
ఊ∈ி

, 

where ܨ ⊆ ≠ has cardinality n and ߁  0 for all  ߛ ∈  ܭ then there exists a ,ܨ 

for which ݁ఊ
(ݔ)∗ ≠ 0 for all  ߛ ∈ ݇ and all ܨ  ≥   can beݔ Because each .ܭ

expressed as a linear combination of n elements of (݁ఊ)ఊ∈௰, it follows that 

ݔ ∈ ≤ ݇ ఊ∈ி whenever(ఊ݁)݊ܽݏ   .ܭ 

Indeed, if 

= ݓ  ܾఊ݁ఊ
ఊ∈ீ

, 
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where ܩ ⊆ has cardinality n, and  if ݁ఊ ߁
(ݓ)∗  ≠ 0 for all  ߛ ∈  then ,ܨ 

necessarily ܨ ⊆  and equality of these sets follows since their ,ܩ 

cardinalities agree. Because the ݔ , ݇ ≥  belong to a finite-dimensional,ܭ 

space, it follows that ‖ݕ − ‖ݔ  →  0. However, by Lemma (4.2.1), we 

know that the ݔ are uniformly separated in norm by 2ି (≤  ), so theyݎ 

cannot converge in norm to anything. 

Thus ݕ ∈ > ݆  for someܧ   ݊, as claimed. Now fix ݖ ∈ ܺ such that 

‖ݖ‖ <  2ି. We have ‖ݔ  + ‖ݖ  = ݂(ݔ + ≥ for all k, because 2ି (ݖ

݂‖ . Asݎ  −  ݂‖ →  0 and ݔ + ݖ  → + ݕ ݔ‖ weakly, we get ݖ + ‖ݖ →

ݕ)݂  + (ݖ  ≤ ݕ +  On the other hand, by w-lower semicontinuity of the .ݖ 

norm, ‖ݕ + ‖ݖ  ≤ ݕ)݂  + + ݕ‖ So the equality .(ݖ ‖ݖ  = ݕ)݂  +  holds (ݖ

whenever ‖ݖ‖ <  2ି. In particular, 1 = ‖ݔ‖  → ݕ However .‖ݕ‖ ∈  ܧ

and ݆ < ݊, and this contradicts the minimal choice of ݊ = ݊. 

Thus each ܦ, is relatively discrete in the norm topology. Since ܦ,  ⊆

 and since the norm and w*-topologies agree on B, it follows that Dn,m is ܤ 

relatively discrete in the w*-topology as well.  

Finally, we recall that a Banach space X is called weakly Lindel¨of 

determined (WLD) if ܤ∗ is Corson compact in the w*- topology. The class 

of  WLD spaces includes all WCG spaces. Any polyhedral Banach space is 

an Asplund space (this follows, for example, from [4]), and any WLD 

Asplund space is WCG. Therefore Theorem (4.1.10) extends to all WLD 

polyhedral spaces.  
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