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Abstract

We classify the isomorphically polyhedral £,,_space, direct sum of Banach space, generalized
centers of finite sets, best approximation and smoothness in polyhedral Banach Spaces.
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Chapter 1

On Isomorphically Polyhedral £ -Spaces

We show that there exist £,-subspaces of ageneralized.
Section (1.1): Isomorphically Polyhedral Spaces

A Banach space is said to be polyhedral if the closed unit ball of every
finite dimensional subspace is the closed convex hull of a finite number of
points. Polyhedrality is a geometrical notion: ¢, is polyhedral while ¢ is not.
It is also an hereditary notion: every subspace of a polyhedral space is
polyhedral. The isomorphic notion associated with polyhedrality is: A
Banach space is said to be isomorphically polyhedral if it admits a
polyhedral renorming. The simplest examples of isomorphically polyhedral
spaces are the C(a) spaces for a an ordinal, and their subspaces. In [5] we
surveyed what is known about polyhedral L.-spaces, which can be

summarized as follows:

(i) There are polyhedral spaces which are not L : indeed, any non L,
subspace of c,(I") — recall that subspaces of ¢, (I") are L.,-spaces if
and only if they are isomorphic to cy(1).

(if) There are Lindenstrauss spaces not polyhedral: C[O, 1].

(ili) A result of Fonf [8] asserts that preduals of ¢, are isomorphically
polyhedral.

(iv) Fonf informed us that the result fails for £,(I"): Kunen’s compact K
provides, under CH, a scattered, non metrizable, compact so that

C(¥) space has the rare property that every uncountable set of
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elements contains one that belongs to the closure of the convex hull
of the others. And this property was used by Jiménez and Moreno to
show that every equivalent renorming of C(X) has only a countable
number of weak -strongly exposed points. Thus, no equivalent
renorming can be polyhedral. At the same time C(¥)* = #,(I')
since X is scattered.

(v) The trees T for which C(T) is isomorphically polyhedral are
characterized. Thus, there are scattered compact K (not depending on
CH as it occurs with Kunen’s compact) such that C(K) is not

isomorphically polyhedral.

Whether isomorphically polyhedral L.-spaces are isomorphically

Lindenstrauss. The purpose of this note is to show that the answer is no.

A Banach space X is said to be an L, , -space if every finite dimensional
subspace F of X is contained in another finite dimensional subspace of X
whose Banach-Mazur distance to the corresponding space £ is at most A .
The space X is said to be an L, -space if it is an L, , -space for some A. The
basic theory and examples of L., -spaces. A Banach space X is said to be a
Lindenstrauss space if it is an isometric predual of some space L;(u).
Lindenstrauss spaces correspond to L, 1+-spaces. A Lindenstrauss space is
an L, 1-space if and only if it is polyhedral (i.e., the unit ball of every finite

dimensional subspace is a polytope).

A Banach space X is said to have Pelczynski’s property (V) if each
operator defined on X is either weakly compact or an isomorphism on a

subspace isomorphic to c¢,. Pelczynski shows that C(K)-spaces enjoy



property (V), and Johnson and Zippin that Lindenstrauss spaces also have
(V).

Let a: A - Z and . B — Z be operators acting between Banach spaces. the
pull-back space PB is defined as PB = PB(a,B) ={(a,b) € A D B: a(a) =
B(b)}. It has the property of yielding a commutative diagram

!

PB——— A

, 1)
al ﬁ la

B~ o Z

in which the arrows after primes are the restriction of the projections onto
the corresponding factor. Needless to say (1) is minimally commutative in
the sense that if the operators " : € - A and "a: C — B satisfy ao
"B = B o"a, then there is a unique operator y : C —» PB such that " =
‘By and "B = 'By. Clearly, vy(c) = ("B(c).,"a(c)) and |yl <
max{||"a||,||"”Bl|}. Quite clearly 'a is onto if « is. As a consequence of

this, if one has an exact sequence

L T
0 Y X Z 0 (2)

and an operator u : A — Z then one can form the pull-back diagram of the

couple (m, u):

L T
00— Y — X Z 0
’uT Tu ©)
'
PB—— A



Recalling that 'm is onto and taking j(y) = (0, «(y)), it is easily seen that the

following diagram is commutative:

L i
0 Y X Z 0
| W T @
] n
0 —> Y — pB A 0

Thus, the lower sequence is exact, and we shall refer to it as the pull-back
sequence. The well-known splitting criterion is: the pull-back sequence
splits if and only if u lifts to X; i.e., there is an operator U: A — X such that

nU = u.

Theorem (1.1.1)[1]: There is a separable isomorphically polyhedral £,
space that is not isomorphically Lindenstrauss. Moreover, it is a subspace of

an isomorphically polyhedral Lindenstrauss space.

Proof. We need to recall from [1] the existence of nontrivial exact sequences

0—> C(w®) o ! ce —> 0
in which the quotient map q is strictly singular. This fact makes Q fail Pe
Iczy’nski’s property (V). Since Lindenstrauss spaces share with € (K)-spaces
Pe Iczynski’s property (V), the space Q is not isomorphic to a Lindenstrauss
space. Of course it is an L.,-space since this is a 3-space property. Thus, our
purpose is to show that there is an Q as above that is isomorphically

polyhedral.

We recall from [1] the parameter py(c,), defined as the the least constant

such that if T:cy— fo(w™)is a bounded linear operator such that



dist(Tx, C(w™)) < ||x|| for all x € ¢, then there is a linear map L:c, —
C(™) with ||T — L|| < py(co)-
We show that lim py(cy) = +o0. Now we need a specific choice for each N:
there is a bounded operator Ty : ¢y = o (w") so that dist(Tyx, C(w")) <
||x|| for all x € ¢, but such that if E c ¢, is a subspace of c, almost
isometric to ¢, then py(co) < 2||Ty — L|| for any linear map L:cy —
C (™).

Let, for each N, a linear continuous operator Ty : ¢g = o (w") as above.

We form the twisted sum space
C(w™) Dr, co = (C (™) x co, Il Ty)

endowed with the norm ||(h, x)|lr, = max{llh — Tyx||, ||x[|}. This yields

an exact sequence

in
0—> (") —> C(") Br co —5 ¢ —> 0

with embedding iy (f) = (f,0) and quotient map gy (f, x) = x. The identity

map id: C(w") B, co — C(w") B co is an isomorphism since

ITW TG D7y < NG lleo < NN )M,

and therefore the space C(w") Dr, co Is isomorphically polyhedral. We
need now to use the main result in [1] asserting that in a separable
isomorphically polyhedral space every norm can be approximated by a

polyhedral norm. Let ||-||, be a polyhedral norm in C(w") Dr, co that is

2-equivalent to |||l p,, -



The sequence (4) splits, but the norm of the projection goes to infinity
with N: Indeed, if

P: C(w") D, co = C(w™)

Is a linear continuous projection then P has to have the form P(f,x) = (f —
Lx,0), where L:cy = C(w™) is a certain linear map. Thus, if x € ¢, is a
norm one element, one gets P(Tyx,x) = (Tyx — Lx,0) and thus Tyx —
Lx < ||P||||x]l, hence ||Ty —L|l <||P||. The choice of Ty forces

Allim inf ||P|| = +oo. Therefore, the cy-sum

(an)

0——> co(C(wM)) —> co(C (™)) DOpry o —> colc)) —> 0

cannot split. The space cy(C(w™) Dp, o) is isomorphically polyhedral as

any co-sum of polyhedral spaces. We now define a suitable operator 4 so

that when making the pull-back diagram

(an)

0——> c¢o(C(wM)) —> co(C (™)) @pry 0 —> colcy) —> 0

[s a
Q — ce —=> 0

0 —> ¢o(C(wV)) —> 7

the map q is strictly singular. That prevents Q from being Lindenstrauss

under any equivalent renorming.
Pick as A the diagonal operator ¢, — cy(cy) induced by the scalar sequence
(pn(co) M?) € coi e,

A(x) = (pn(co) 2 x)y.



Assume that q is not strictly singular. Then, there is a subspace E of ¢,
and a linear bounded map V: E — Q so that qV = 4,g. By the ¢, saturation
and the distortion properties of c0, there is no loss of generality assuming
that E is an almost isometric copy of c,. By the commutativity of the

diagram (qn)6V = A4, which in particular means that qy6V(e) =
pn(co)~Y?e for all e € E. This means that the map 8V has on E the form
(Lye, py(co)2e)y Where Ly : E — C(w") is a linear map; by continuity,
there is a constant M so that (Lye, py(co)~%e) < M]|e]|, which means
|Lyve — Tupn(co) 2e|| < Milell
and thus
pn(co)2Ly — Ty < Mpy(co)*2.

This contradicts the fact that E = ¢y, the definition of py(cy) and the

choice of Ty.

To conclude the proof, the definition of pull-back space implies that € is
actually a subspace of cy(C(w") Dp, co) D co, hence isomorphically

polyhedral.
Since co(C(w™)) = C(wN), the space Q above yields a twisted sum
0 —> C(w®) —> Q0 L o —> 0
in which q is strictly singular. The dual sequence
0 — ¢ —> o —> t1 —> 0

necessarily splits and thus Q* can be renormed to be #,, although Q cannot

be endowed with an equivalent norm | - | so that (Q,| - |)* = #;. Moreover,



Q is actually a subspace of the isomorphically polyhedral Lindenstrauss
space ¢o(C(w™) @p, Co) @ cO.

We show now that one can produce an L. -variation of Q still farther
from Lindenstrauss spaces. Lazar and Lindenstrauss showed that
Lindenstrauss polyhedral spaces X enjoy the property that compact X-valued
operator admit equal norm extensions. We introduce the Lindenstrauss-Pe
Iczynski spaces (in short Lp-spaces) as those Banach spaces E such that all
operators from subspaces of ¢, into E can be extended to c,. The spaces are
so named because Lindenstrauss and Pelczynski first proved in [1] that
C (K)-spaces have this property. Lindenstrauss spaces have also the property
(as well as L.-spaces not containing c, and, of course, all their
complemented subspaces. The construction of the space () above has been
modified in [1] to show that for every subspace H c c, there is an exact

sequence
0 — C(w®) —> Q4 ——> ‘% —> 0
in which the space Qp is not a Lindenstrauss-Pelczynski space [1]; more

precisely, there is an operator H — () that cannot be extended to the whole

Co-

Proposition (1.1.2)[1]: There is an isomorphically polyhedral £,,-space

that is not an LPspace.

Proof. Consider the exact sequence 0 — C(w®) — Q — ¢, — 0 with
strictly singular quotient constructed above. Since every quotient of cO is
Isomorphic to a subspace of c,, we can consider that there is an embedding
uy : co/H — cy. The pull-back sequence 0 — C(w®)— Py LA co/H— 0

also has strictly singular quotient map. We form the commutative diagram

8



!
0—> C(w®) Py L c/H—> 0
H ? t (5)
0—> C(o®) Qy P R 0

to show, exactly as in [1] that Qg is not an LP-space since j cannot be

extended to ¢, through i. The space Q4 has been obtained from a pull-back

diagram
0——>¢,(C(w™) Q . coc —> O
| “H
0—> C(w®)—> Pu L co/H——> 0 (6)
| t

0—> C(w®)—> QH? co, —> O

and thus it is a subspace of Q @ c,, hence isomorphically polyhedral.



Chapter 2

Polyhedral Direct Sums of Banach sSpaces, and Generalized

Centers of Finite Sets

A Banach space X is said to satisfy (GC) if the set E¢ (a) of minimizers
of the function X 3 x — f(|lx — a4ll,..., llx — a,||) is nonempty for each
integer n > 1, each a € X™ and each continuous nondecreasing coercive
real-valued function f on R”. We study stability of certain polyhedrality
properties under making direct sums, in order to be able to use results of,

Lindenstrauss and an appropriate for every topological space.
Section (2.1): Finite Polyhedral Sums and Arbitrary cy-Sums:

In Approximation Theory and Mathematical Economy, one often looks
for a point in a Banach space X that would approximate (in an appropriate
sense) a given bounded set A c X. Such problems, sometimes called one-
point location problems, consist in minimizing a function depending on the

distances from the elements of A.

Given a real-valued nondecreasing function f on R% := [0, )", we are

interested in the set E¢ (a) of minimizers of the function

p(x) = fllx—aqll,....IIx —aul) (x €X).
The Banach space X is said to satisfy (GC) if E; (a) is nonempty whenever
n is a positive integer,a € X™, and f is continuous, nondecreasing and
coercive. This property was introduced and studied in [2]. For instance,
every dual Banach space satisfies (GC). One of the results in [2] states that if
X is a finite-dimensional polyhedral Banach space and T is any topological

10



space then the function space C, (T, X) (of bounded continuous functions of
T into X) satisfies (GC).

We always consider R™ partially ordered by the coordinate-wise
ordering. By R we denote the corresponding positivecone (i.e., the cone of

all nonnegative elements).

Given a Banach space X, we denote by By and By its closed and open unit
ball. Then Sy = dBy is the unit sphere. For E ¢ X* and x € X, we use the
notation (E, x) = { f(x): f € E}.

For x € X and r >0, we define B(x,r) =x+7rBy and B(x,7) =
int B(x,7) (= x +rB2 if r > 0). A boundary of X is a set B © By~ such
that for each x € X there exists f € 3 such that ||x|| = f(x) (in other words,

l|lx|| = max (B3, x) for each x € X).

By the Krein—-Milman theorem (let K be acompact convex subset of X.
Then, the theorem states K that is the closed convex hull of itsextreme

points.

The closed convex hull above is defined as the intersection of all closed
convex subsets of X that contain K)[5], the set ext(Bx+) (extreme points of

By+) is always a boundary.

It is well known that the subdifferential (in the sense of Convex Analysis)

of the norm ||| at x is exactly the set

Al ll(x) ={f € Bx: f (x) = Ilx[}
Observe that a||]|(x) = a|||l(x/]|x|]) < Sk« forx # 0, and d||:]|(0) = By-.

11



A Banach space X is called polyhedral if the unit ball of each of its finite-
dimensional subspaces is a polytope; in this case we say that X satisfies (P).

Many important results on polyhedral Banach spaces are due to V.P.
Definition (2.1.1)[2]: A Banach space is said to satisfy:

(@) (PA) if X is polyhedral and there exists a boundary 3 for X such that
all*|l(x) n R is finite for each x € Sy .
(b) () if there exists a boundary B for X such that

f(x) < 1whenever x € Sy and f is a w*-cluster point of 3

(that is, if f is a w*-cluster point of 3 then either ||f|| <1 or f does not

attain its norm).
Fact (2.1.2)[2]: Let X be a Banach space.

(@) The properties (P), (PA) and () are hereditary to closed subspaces.

(b) One has the implications (x) = (PA) = (P), and no other implication
holds true.

(c) In Definition 1.2(a), (b), one can equivalently consider the particular
boundary 3 = ext(Bx+).

(d) If X satisfies (PA) then each point x € Sy has a neighborhood V in

which By coincides with a finite intersection of

closed halfspaces having x as a boundary point, that is,

m
B, nV:ﬂ(x+Hl-)nV

=1

where each H; is of the form H; = {y € X: h;(y) = 0} with h; € Sy~ .

12



(e) For finite-dimensional X, the conditions (x),(PA)and (P) are

equivalent.

Proof. For (c) and (d), see [2]; (a) easily follows from (c) and (b) can be
found in [2]. Finally, if X is a finite-dimensional polyhedral space then
ext(By-) is a finite boundary for X, hence X satisfies (x). This, together
with (b), gives (e).

A function m: R} — R, is a norm on R?% if it is subadditive and positively
homogeneous, and 7(t) =0 < t = 0.

A norm 7 on RY is polyhedral if it is of the form m(t) = max;<j<m g;(t)
where g4,...,9m € (R™)*. In this case we say that the family {gy,...,9m}

generates 7.

Given  : R} - R, we consider the following two canonical extensions of
7 to the whole R™:

#(t) = nw(t]) and 7(t) =n(tVv0)
(as usual, we denote |[t] =t vV (=t) = (Jt1l,- .., |ta]))-

It is not difficult to show the following basic properties.

Lemma (2.1.3)[2]: Let = be a polyhedral nondecreasing norm on RY.
Then every minimal family {g,,...,9,} © (R®)* generating m is contained in
(R™)7% (i.e., each g j is nondecreasing on R", or equivalently, its coordinates

in the canonical identification (R")* = R" are all nonnegative).

Proof. Fix k € {1,...,m}. By minimality, there exists t € R} with m(t) =
gk (t) > max{g;(t).j €{1,...,m},j # k}. By continuity, g, =m in an
open ball contained in R. The fact that g, is nondecreasing in an open ball

easily implies that g, is nondecreasing on the whole R".

13



Let n be a positive integer, X a Banach space. Given f: R} - R and a =

(aq,...,a,;) € X™, consider the function ¢ : X - R, given by
e(x) = fllx —aqll,.... llx —anl).
We define
re(a) = info(X) (f — radius of a),
Ef (a) = x € X: ¢(x) =17(a) (thesetof f — centers of a).
Moreover, if E Er # @, we say that a admits f -centers.

If £ is of the form f(¢ty,...,t,) = maxi<i<n pit; Where p = (py,...,pn) €

(0, 00)™, we denote

r,(a) = 15(a), E,(a) = Ef(a).
If E,(a) # @, we say that a admits weighted Chebyshev centers for the
weight p.

Definition (2.1.4)[2]: A Banach space X is said to satisfy (GC) if for
each positive integer n, every a € X™ admits f—centers whenever f: R} - R

IS a continuous, nondecreasing and coercive function.

Theorem (2.1.5)[2]: A Banach space X satisfies (GC) if and only if, for
each positive integer n and each p € (0,)", every a € X" admits weighted

Chebyshev centers for the weight p.

Let us recall some (semi)continuity notions for multivalued mappings.

Definition (2.1.6)[2]: Let T be a Hausdorff topological space, X a normed

linear space, : T — 2%, t, €T .

14



(@) F is l.s.c. (lower semicontinuous) at t, if for each open set A c X
such that A n F(t,) # @ there exists a neighborhood V < T of ¢,
suchthat An F (t) # @ whenever e V .

(b) F is u.s.c. (upper semicontinuous) at t, if for each open set A c X
such that F(t,) < A there exists a neighborhood V c T of t, such
that F(t) A whenever e 1V .

(c) F is H-l.s.c. (Hausdorff lower semicontinuous) at ¢, if for each e > 0
there exists a neighborhood V c T of t, such that F(t,) c F(t) +
By, Wwhenever e V.

(d) F is H-u.s.c. (Hausdorff upper semicontinuous) at t, if for each ¢ >
0 there exists a neighborhood V < T of t, such that F(t) c F(¢t,) +
By, Wwhenever e V.

(e) Let “s.c.” denote one of the four semicontinuity properties defined in
(@)-(d). We say that F is s.c. on a set E c T if the restriction F |z is
s.C. at each point of E.

(f) The effective domain of F is the set dom(F) = {x € T: F(x) + 0}.

It is easy to see that one always has the implications H-l.s.c.=l.s.c., and

u.s.c.=2H-u.s.c. Moreover, F is both H-l.s.c. and H-u.s.c. at ¢, if and only if

F is continuous at t, with respect to the Hausdorff pseudometric

dy(A,B) = max{sup d(a,B),sup d(b,A)}

acA bEB

on 2M. (Note that dy, restricted to the closed elements of 2™, is a metric

with values in [0,00].) In this case we say that F is H-continuous at t,.

We shall need the following two lemmas. The first one, Lemma (2.1.7).

15



Lemma (2.1.7)[2]: Let T, S be Hausdorff topological spaces, X, Y

normed linear spaces.

(@)Let F: T — 2% be Hausdorff lower (upper) semicontinuous on
dom(F),¢: S — T continuous, P: X — Y uniformly continuous. Then
also the mappings
Fi:S—- 2% F1(s) = F(@(s)).

Fp: T2, Fo() = Y(FD)),
are Hausdorff lower (upper) semicontinuous on their effective
domains.

(b)Let F:T —» 2% be ls.c., and f:T - X continuous. Then the
multivalued mappings t — F(t) + f(t) and t — F(t) are l.s.c.

Lemma (2.1.8)[2]: Let K be a compact Hausdorff topological space, X a
Banach space. Let ® : K — 2% be I.s.c. with nonempty closed convex values.

Let £ > 0 and a continuous v: K = X be such that
o) NB°(v(t),e) =0 (teK).

Then & admits a continuous selection u: K — X such that Ju(t) —v(t)| < ¢

for each € K .
Proof. Consider the mappings ®,(t) = ®(t) N BO(v(t),g) and d,(t) =
@, (t). We can write
@, (t) = v(t) + ([@(t) — v(t)] n B°(0, ¢)).
By Lemma (2.1.7)(b), ® — v is l.s.c.; and this easily implies that [® — v] N

B°(0,¢) is l.s.c., too. By Lemma (2.1.7) (b) again, @, and &, are l.s.c., and

hence, by Michael’s selection theorem:

16



(Let E be a Banach space, X a paracompact space and F: X — Ea lower

hemicontinuous multivalued map with nonempty convexclosed values. Then
there exists a continuous selection f : X — Eof F.

Conversely, if any lower semicontinuous multimap from topological
space X to a Banach space, with nonempty convex closed values admits
continuous selection, then X is paracompact. This provides another
characterization forparacompactness)[6], there exists a continuous u: K = X
such that u(t) € @,(t) c @(t) n B(0,¢) (t € K).

Corollary (2.1.9)[2]: Let K be a compact Hausdorff topological space, X

a Banach space, and G;,G,:K — 2% two bounded l.s.c. multivalued
mappings with nonempty closed convex values. For i=1,2, let %; C

C(K, X) be the set of all continuous selections of G; .

Then
disty(Z4,2;) < supdy(G,(t), G, (1) €))
tek

(where disty and dy denote the Hausdorff distance in C(K,X) and X,

respectively).

Proof. Consider an arbitrary € > sup dy (G;(t),G,(t)). Given v € Z;, we
tek

have v(t) € G,(t) + eB? , that is, G,(t) N By(v(t), &) # @, for each t €
K. By Lemma (2.1.8), there exists w € C(K,X) such that w(t) € G,(t) N
B(v(t),¢) (t € K). Since w € X;, we have v € X, + B¢ xy. This proves
21 © Xy +eBexxy. Interchanging the role of X; and X,, we get that
disty(2,,2,) <e. Now, (1) follows Dby passing to Ilimit for
€N supeeg dp(G1(t), G2(t)).

17



We are interested in stability of the properties (GC), (P), (PA) and (*)
under making finite “polyhedral direct sums” and arbitrary c,-sums. The
case of (GC) has been already done in [2], while the other cases, though

simple, are new.

Definition (2.1.10)[2]: We say that a Banach space X is a polyhedral
direct sum of Banach spaces X;,..., X, if X = X; @- - -@® X,, and the norm

on X is of the form
lxllx = mllxallx, - lxnllx,,, x = (x1,...,%,) € X,

where 7 is a polyhedral nondecreasing norm on R%. In this case, we shall

write
X= (Xl @ ) '®Xn)n-

Let us recall the definition of the c,-sum of Banach spaces X, (y € T'),

where T is an arbitrary (nonempty) set. It is the Banach space

X = (EB Xy> = {x =(xy)yer: x, €X, fory €T, <||xy||Xy> € cO(I")}

Yer Co Yer

in the norm ||x||x = max, ey ||xy||Xy .

Theorem (2.1.11)[2]: Let X = (X; @ - - - @© X,) be a polyhedral direct
sum of Banach spaces X;(1 <i<n). Let P be one of the properties

(GC), (P). Then the following conditions are equivalent:

(i) X satisfies P;
(if)each X; satisfies 2.

Proof. The equivalence for P = (GC) is a very particular case of [2]. Let us

consider the case P = (P). The implication (i) = (ii) is obvious since, for
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each i, the mapping X; o y — @ ©,...,0,¥,0,...,0) € X (wherey is at the
I-th position) is an isometric linear embedding of X; into X, and the property
(P) is hereditary.

(ii) = (i) for P = (P). Let {g1,...,9m} < (R™)* be a minimal family
that generates 7. Then, by Lemma (2.1.3), we can identify each g; with a
vector g; = (gj,....g7) € R® such that gt > 0(1<i<mn). For 1 <i <
n, let P; : X — X; be the canonical projection x — x;. Let Y be a finite-
dimensional subspace of X. Then each Y; = P;(Y), being a finite-dimensional
subspace of X; , is polyhedral and hence there exists a finite set F; c Y;*

such that |||y, = max(F;,") on Y;. Now, for each € Y, we can write
lyllx = mllPyllx, - 1B Yllx, = pl]agcnz GiP; yllx,

max Z g] max(F; , P; y).

1<sjsm

Denoting Ef = {gi(f o P;): f € Fi}(c Y*), we have
n

Iyllx = max max <Z Ej.y)
=1

Since the set UL, (X2, E; Y is finite, Y is polyhedral by [2].

The following fact is a particular case of a general chain rule formula for

subdifferentials of convex functions.

Proposition (2.1.12)[2]: Let X=(X; D - -® X,)x be a finite
polyhedral direct sum of Banach spaces, 7t defined as in [2], X € X. Then the

following chain rule formula holds
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where P, is the canonical projection of X onto X;, and & = (& ,...,&,) €
R™ (= (R")").

Symbolically, 9[-[x(x) = iz [0TUIx4 L, ..., IXaIDIi - [l 1 (X1 © P

Lemma (2.1.13)[2]: Let X be a real vector space, A,B c Xand [a,b] c
R,. Then

ext([a,b] - A) c aext(A) U bext(A), ext(A +B) c ext(A) + ext(B).

The equivalence in Theorem (2.1.11) does not hold for 7 = (PA) or P =
(*). For these properties, we have to consider only particular polyhedral

direct sums. To this end, we introduce the following notion.

Definition (2.1.14)[2]: Giveni € {1,...,n}, anorm 7 on R7} is said to be
handy in the i-th coordinate if for each t € R?\ {0} with t; = 0 we have
n(t + 7t e;) = m(t) whenever T > 0 is sufficiently small (where e; denotes

the i-th canonical unit vector of R™).

Example (2.1.15)[2]: Let p4,...,p, = 0. The polyhedral nondecreasing
norm (t) = max;<;<n P;t; ON RY} is handy in each coordinate. On the other
hand, the polyhedral nondecreasing norm m(t) = Y, p;t; on R% is handy

in no coordinate.

Theorem (2.1.16)[2]: Let X= (X, D - - - @ X,)x be a polyhedral direct
sum of Banach spaces X; (1 <i<n). Let P be one of the properties

(PA), (). Then the following conditions are equivalent:
(i) X satisfies P;
(if) foreachi € {1,...,n} one has:
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(a) X; satisfies P, and
(b) either dim(X;) < oo or 1 is handy in the i-th coordinate.

Proof. Let {g;,...,9m} © (R™)* = R" be a minimal family that generates
m. Write g; = (g},....97) (1 <j <m).

()=(ii). Since X; is isometric with a closed subspace of X and 2 is
hereditary, (a) is satisfied. Assume that (b) fails. Then, for some i €
{1,...,n}, we have dim(X;) = o and, for some t € R} \ {0} with t; =0,
we have (t + te;) > m(t) for each T > 0. Since w is the maximum of

finitely many linear functionals, the function 7+~ m(t+ te;) is the

maximum of finitely many affine functions. Consequently, (%) + (t) (the
i-th right partial derivative of  at t) is positive. This implies (via the Hahn-
Banach theorem) (Ifp:V — Ris a sublinear function, and ¢:U — R is

a linear functional on a linear subspace U < V which is dominated by pon U,

l.e.

d(x) < (x) forall xeU
then there exists a linear extension y:V — R of ¢ to the whole space V, i.e.,

there exists a linear functional y such that

Y(x) < o(x) forall x €U

Y(x) < px) for all x € V)[7] that there exists h = (hy,...,h,) €
o7t (t) with h; > 0. Fix x = (xy,...,x,) € X such that [|x;||, =Z;(1 <j <n).
J

In particular, x # Oand x; = 0. For j # i, fixany u; € a||-||X]. (%;). Then, by

Proposition (2.1.16), d||-||x (x) contains the (w*-compact) set
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n
zhj (w0 P;) + h; - (By: © P)
=1
j#i
which is infinite-dimensional and is contained in Sy- . By the Krein—Milman

theorem [5], this set has infinitely many extreme points. Now, Fact (2.1.2)

easily implies that this is in contradiction with (i).
(i) => (i) for P = (PA). First observe that, in the case that dim(X;) =

0, the condition (b) implies that (2-) + (£) = (25) + (t) = O whenever

t € R \{0},t; =0; and for such t, since (g) — (t) = 0 by definition of
t, we must have h; = O whenever h = (hq,..., h,) € 07 (t). In other words,
if [07T(t)]; # {0} theneithert; # 0 or dim(X;) < oo.

Second, by Theorem (2.1.11) and Fact (2.1.2) X is polyhedral. Now, given

x € § X, the point ¢ = (|IX¢]lx, ..., lIXnllx, ) is nonzero, and the chain rule

(Proposition (2.1.12) implies that

a1l (x)—E[ano:)] [o1111x, G » P Z 7], - P; (@111, ()
=] {0}
Each summand of the last sum is the algebraic product of a compact
subinterval of R, with a finite-dimensional polytope. By Lemma (2.1.13),
d||-llx(x) has only finitely many extreme points. Using Fact (2.1.2), we
conclude that (i) holds.

(if) = (i) for P = (). By Fact (2.1.2)(c), each X; satisfies the condition
in Definition (2.1.1) with the particular boundary B; = ext(Bx; ). We shall

show that the set
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Is a boundary for X, satisfying the condition from the definition .

Given b € B, there exist j € {1,...,m} and b; € B;(1 <i <n) such that
b=(gjby,....g}by). Then b(x) =X, gjb(x) <Xk, gjllxilly, < llxli(x €
X). Thus B c By- .
Given x € X \{0}, put t = (llxqllx, ..., [[xpllx, ) and take j € {1,...,m}
such that m(t) = g;(t). For each i € {1,...,n} there exists b; € ; such
that |lx;|lx, = b;(x;). Then |lx|lx = m(t) = g;(t) = XL, gillxllx, =
19ibi(x;) = b(x) where b:=(g}bs,....g}'by) €R. Thus B is a
boundary for X.
It remains to show (). Let f = (f1,..., f,) be a w*-cluster point of (3, and
x = (xq,...,%x,) € X\ {0}. There exists k € {1,...,m} such that f is a w*-
cluster point of C: = gz, % - - - x ggR,. Denote t = (|lxyllx,, ..., lIx,llx,) and
consider two cases.
Case 1: g, (t) < m(t). For every choice of (bq,...,b,) € 31 % - x[3,, the
functional b:= (g} by,...,glb,) € C satisfies b(x) = Y™, gib;(x;) <
?zlg,icllxillxi = gx(t). Since f is a w-cluster point of C, we have f(x) <
g (t) < m(t) = [lx]|.

Case 2: g, (t) = m(t). The fact that f is a w*-cluster point of C means that

for each i € {1,...,n} one has f; € gLRY", and there exists i € {1,...,n} for
which f; is a we-cluster point of g;.B;. Thus g; >0 and B; = ext(By: ) is

infinite, hence dim(X; = oo (otherwise X;° would be a finite-dimensional
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polyhedral space by [2]. We claim that ||x;||x, = t; > 0. (Indeed, if t; = 0
then (b) implies that for some (small) = > 0 we have g, (t +7¢;) < n(t +
Te;) = m(t) = gi(t), and this leads to 0 <71 gl =17 gy(e;) = gp(t+

Te;) — gr(t) < 0, acontradiction.)

For gi > 0 put b;: = L, and for g = O put b; = 0. Observe that bi is a w*-

gk
cluster point of 3; , and hence [[x;||x, > b;(x;). Consequently, [|x|[x =
n(t) = g;(t) = Tt Gillxillx, > Ziti gibi(x) = f(x). The proof s
complete.

Finally, we prove a theorem about arbitrary cO-sums. Its proof is easy and
standard.
Theorem (2.1.17)[2]: Let {X,:y € T'} be an arbitrary (nonempty) family
of Banach spaces, p one of the properties (GC), (P), (PA), (x). Then the
following conditions are equivalent:

(1) X:= (Dyer X,)c, satisfies p;

(ii)each X, satisfies p.
Proof. The case p = (GC) is contained in [2]. Now let p € {(P), (PA), (*)}.
The implication (i) = (ii) is immediate from the fact that each X, is
iIsometric to a subspace of X. The implication (ii) = (i) for p = (P) is well
known (see [1, Section 3, (¥)]).

(i) =(@) for p = (PA). Fix €Sy . It is easy to see that, in a
neighborhood U of x, we have ||ly|lx = max,er,|y, | > O where I c I'is a
finite set. Thus [lyllx = ||Pp, y||Z where Z = (Byer, Xy ) and Pri X > Z

Is the canonical projection.
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By Theorem (2.1.15) and Example (2.1.16), Z satisfies (PA). It follows that
A|-llx (x) = Pr, (Al[llz (Pr,x)) has finitely many extreme points, and we
are done.

(ii) =(i) for p = (x). For € I' , let 3, be a boundary for X, , satisfying
the condition from the definition of (x). Let {e,}, € I' be the canonical

Schauder basis of cy(I"). Consider the set
B:={be,;y €Tl bef,}

(where be y € X* = (@yer X, )1 has value b at y and is null at all other
points). It is easy to see that this set is a boundary for X. If f is a w*-cluster
point of B3 then either f =0 or f = he, where y € I' and h is a w*-cluster
point of 3, . In the second case, we have f(x) = h(x,) < ||x|lx whenever

x € X \{0}. The proof is complete.
Example (2.1.18)[2]: The Banach space

< D £1(n)> )
n=1

Co

the ¢,-direct sum of the ¢,(n) (i.e., n-dimensional ¢,) spaces, satisfies (GC)
and (*) (and hence also (PA)).
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Section (2.2): Direct Applications to Generalized Centers and
The X -center Map for C(K, X) Spaces:

It is not a new idea that Chebyshev and similar centers of finite sets can
be viewed as best approximations in the direct sum X,,, equipped with an
appropriate norm, by elements of a certain subspace, namely the “diagonal”
D, ={(xq,...,%x,) € X,;: x; =+ - = x,}. Thus, under appropriate assumptions,
we may be able to deduce results about centers from known results about

nearest points. And this is what we are going to do in this section.

Let n be a positive integer, m a nondecreasing norm on R%, X a Banach

space. Consider the m-direct sum

XM, =X --dX)m

n

with its norm ||u|l; = wt(lluqllx ..., llu,llx ). Let d,, : X - D, be the

canonical identification, given by d,,(x) = (x,...,x).

Since ||d, ()l = llxll-(1,...,1) (x € X),d,, is a positive multiple of an

isometry.

Now, given a = (a4, ..., a,) € X,, the m-centers of a are the minimizers
of the function @(x) = m(llx —aill,.... llx — anll) = lldn(x) —all,
Thus the m-centers of a correspond (in the identification d,,) to the nearest

points to a in the diagonal D,,.

Corollary (2.2.1)[2]: Let X, n and m be as above. Let Pp_: (X") =

2Pn pe the metric projection (i.e., the “nearest point map”), given by
Pp, (U) ={v €Dy:llu — V|l = disty (u,Dy)}
Then E; (a) = dy* (Pp_(a)) for each € (Xp)r -
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As usual, the support of a vector t € R} is the set spt(t) = {i: t; > 0}.

Definition (2.2.2)[2]: We shall say that a norm = on R% is handy if 7 is

handy in each coordinate.

Theorem (2.2.3)[2]: Let X be a Banach space satisfying (GC) and (PA),
and let T be a polyhedral nondecreasing norm on R%. Assume that either

dim(X) < ooor m is handy.

(@) The m-center map E,; on X, is H-lLs.c. (in particular, E; admits a
continuous selection).
(b) If, in addition, X satisfies () then E,; is H-continuous on X,,.
Proof. Since X is (GC), Corollary (2.2.1) implies that D,, is proximinal in
(X™)r , that is, the metric projection P, has nonempty values. By Theorem
(2.1.16), (X™), satisfies (PA) [and (x) whenever X satisfies ()] By [2], Pp_
is H-l.s.c. [and H-continuous if (X™), has (x)]. The rest follows from

Corollary (2.2.1) (existence of a continuous selection for E,; is guaranteed by

Michael’s selection theorem [6]).

By C,(T,X) we mean the Banach space of all bounded continuous X-valued
functions on a topological space T, equipped with the supremum norm. For
T compact, we write just C(T, X) (instead of Cp, (T, X)).

Every a € C,(T ,X)™ can be considered as a continuous function a: T - X™,
defined by a(t) = (a,(t),...,a,(t)).

Observation (2.2.4)[2]: Let T be a topological space, X a Banach space,

f: R} — R anondecreasing function. Then

17 (a(t)) < 1p(a) (a e C(T,X)™tET).
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Proof.

re(a(t)) = j{g;(f(llx —a,(OIl,.... [Ix—a,®)I)
= veci{‘(fr,X) f(lv(t) —a; OIl,..., Iv(t) —a,(®)I)
< Vecibrg ,X)f(llv — & lloos. . IV = aylle) = re(a).

Now, we prove the first main result of the present paper. It generalizes
[2] saying that C, (T, X) satisfies (GC) whenever X is a finite-dimensional
polyhedral space. Observe that every finite-dimensional polyhedral space
satisfies (GC) (by compactness) and (PA) (by Fact (2.1.2)).

Theorem (2.2.5)[2]: Let X be a Banach space satisfying (GC) and (PA).
Then C,, (T, X) satisfies (GC) for every topological space T. (In particular,
each nonempty finite subset of C, (T, X) has a Chebyshev center.)

Proof. Fix p € (0,00)". Since the polyhedral nondecreasing norm m(t) =
max;<i<n p;it; (t € RY) is handy, E, admits a continuous selection e: X™ —
X (Theorem (2.2.3)). Given a € Cp(T,X)n = C,(T,X"),putu=-eo
a:T - X. For each t € T,u(t) € E,(a(t)) and hence, by Observation
(2.2.4),

n(a) = supr,(a(t)) = sup max p;|lu(t) — a; ()l
teT ter 1sisn

= ;ggflpillu — [ o -

This implies that u € E,(a). We have proved that each a € C,(T,X)"
admits weighted Chebyshev centers for all weights. Apply Theorem (2.1.5).

We study the multivalued rr-center map

E.: C(K,X)" - 2¢(KX),
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where m is a nondecreasing norm on R}, K is a compact Hausdorff

topological space, and X is a Banach space.
Notation (2.2.6)[2]: Let K, X be as above.

(@) Fora € C(K,X)", we define @ € C,(K™ X™) by

a(ty,..., ty) = (a1(t1),. .., an(tn))-
(b) We define @: C(K,X) —» C(K™ X™) by

Ou(ty, ..., tn) = ((ty),..., u(tn)),

that is, Ou = d,, o u (where d,, is the canonical map of X onto the diagonal
D,, of X™).
Obviously, for every direct-sum norm on X™, @ is a linear isomorphism

of C(K,X) into C(K™ X™).

The following simple lemma gives possibility to represent r-centers in
the space C(K, X) as continuous selections of certain multivalued mappings

on K™ with values in X™.

Lemma (2.2.7)[2]: Let m, K and X be as above, a € C(K,X)™. Then
O(E, (a)) is exactly the set

E. (8) :=v € C(K™ X™):v(t) € ¥(t)forallt = (t;,...,t,) € K",
where

— BT[ (a(tla .- -’tn)a M (a)) N Dn if t1 — = tna
v = {Bn (A(ty, ..., t,), r.(a) otherwise.

Proof. Given u € C(K,X), we have the following chain of obvious

equivalences

u € Ex(a)iff n(llu — aslleo, ., llu — anlleo) < 73 (@)
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iff vy, ... .ty € K0 m(llu(ty) — as (@), lultn) — an(E)I) < 7 (a)
iff Vti,....tg €Ki Oy(ty,... ty) € Br(a(ty,... tn), 77 ().

Now, the inclusion @(E,(a)) c E, (@) is clear. To show the other
inclusion, assume v € E_(&). Then, foreacht € K,v,(t) =---= v,(t) =
‘u(t), and Ou(ty,... . t,) = v(ty,...,t,) € B, (A(ty,...,t,) 1,(a)) Whenever
t1,...,tn € K. Thatis, Ou = v and u € E,(a).

Lemma (2.2.7) suggests to study the set of continuous selections of

mappings of type. The main such result, Theorem (2.2.10), needs two

preliminary steps.
The following proposition can be easily proved by adapting methods

from [2].

Proposition (2.2.8)[2]: Let X be a Banach space, Y c X a closed

subspace. Consider the multivalued mapping
GX-2% Gx)=B(x1)nY.
(@) If X satisfies (PA), then G is H-l.s.c. on its effective domain.
(b) If X satisfies (x), then G is H-continuous on its effective domain.

Proof. In this section we are going to prove Proposition (2.2.11). Our proof
Is just an easy extension of analogous results in [2] concerning metric
projection, since Py (x) = G(x) whenever dist(x,Y) =1 (Y is a closed
subspace of X, G is as in Proposition (2.2.11). Lemma(2.2.9) , (i) = (ii), was
essentially claimed at the beginning of the proof of [2, Proposition (2.2.6)];
Proposition (2.2.11) corresponds to [2, Proposition (2.2.6)], while
Proposition (2.2.11) is based on [2], Theorem (2.2.4).
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Lemma(2.2.9)[2]: Let X be a Banach space, X, € Sx . The following

assertions are equivalent:

(1) X is @ (QP)-point for X, that is, there exists a neighborhood U of x,

such that [Xy,y] € Sx whenevery € U N Sy ;

2r(x—xg)

(if) There exists r > O such that X, +=-=—
—&0

€ Bx whenever x € By and
0 <|[Ix=Xoll <.

Proof. (i) = (ii). Let U be as (i). Choose r € (0,1) such that B(x,,3r) c

2r(x—xgq)

U.Lete By, 0<|lx — x|l <1,u=x7 + .
%0 < Ilx — x| o+

Assume that |lu|| > 1. Since x € (xy,u) N By, we have [xy,u] N By =

[x0, x1] for some x; € (x,,u). Obviously x; € Sy . Fix v € (x1,u) so close

to x; to have 1 <|lv||<1+r. Since ||ﬂ—x0|| = ”(ﬂ_l) (v

xo)” < (vl = 1) + [lu — xo|l < 7+ 2r = 3r, we must have [ —,x,] C Sy.

lvll”’
Since x; € (v, xp), we can write x; = tv + (1 — t)x, where t € (0, 1). But

tllvll v

tllvll + @ =) (vl tIIVII+(1—t) ]

Sx 3x = (tllvll+ (@A —1t))- [

leads to a contradiction since the point in square brackets is of norm one and
tvl|+ (@A —-t) >t +(1—t) =1.

(if) = (i). Let r > 0 be as in (ii). We claim that U = By(x,, r) satisfies
(i). If this is not the case, there exists y € By(xy,7) N Sy such that
[v,x,] N B2 = @. This clearly implies that aff{y.x,} N By = [y,%,]

(“aff” denotes the affine hull). By (ii), := x, + Zﬁ;{;xﬁ) € By . On the other

hand, since |lu—xyl|l= 2r >|ly —xoll, we have u € aff{y,xo}\
[y, xo]l = af f{y,xo} \ Bx , acontradiction.
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Lemma(2.2.10)[2]: Let Y be a closed subspace of a Banach space X, q :

X —= X/Y the corresponding quotient map. Let G be as in Proposition
(2.2.9), and

R: X/Y - 2%, R(E)=q () nBy.
Then dom(R) = q(B X), and
G(x) = x— R(q(x)) andR() = o(§) — G(c(§)(X € X, § € X/Y),

where o : X/Y — X is a continuous selection of g~ (it exists by Michael’s

selection theorem).

Proof. Everything follows easily from the following chain of obvious

equivalences.
z€R(q(x)) ifandonlyif q(z) =q(x), izl <1
ifandonlyif x— z =:y € Y, lx—yll<1
if and only if z = x — vy, y € G(x).
Let us recall the statement of Proposition (2.2.9).

Corollary (2.2.11)[2]: Let X be a Banach space, Y c X a closed

subspace. Consider the multivalued mapping
F:X xR, — 2% F(x,r) =B(XxnNnY.
(@) If X satisfies (PA), then F is H-l.s.c. on its effective domain.
(b) If X satisfies (x), then F is H-continuous on its effective domain.

Proof. Fix (x,7) € dom(F),. If ¥ > 0, then for all (x,r) € dom(F ) that
are sufficiently close to (%,7) we have F(x,r) = r[B(f, 1)nY]= ra(f)

where G is as in Proposition (2.2.8). By that theorem and Lemma (2.1.7), F
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has the required (semi)continuity property at (x,7). Now, assume that © =
0. Then (x,7) =F(x,0)={x}cY . If yeF (x,7r), then ||y — x|l <
ly — x|l +[[x —x|| <7+ [[x —x||. This shows that F|zome) Is H-

continuous at (i, 0).

Theorem (2.2.12)[2]: Let K be a compact Hausdorff topological space,

Ko € K a closed set, X' a Banach space satisfying (x),Y € X a closed

subspace, r:C(K,X) — [0,)a continuous function. For a € C(K,X),

denote

B(a(t),r(@) ny fort € Ky,
B(a(t),r(a)) fort € K\ K,

D, (1) = {
and
2(a) = {v e C(K, X): v(t) € ®,(t) forall t € K}.
Consider the set D = {a € C(K, X): ®,(t) # @ foreacht € K}.
Then:

(@) Z(a) # @ foreacha € D;

(b) the multivalued mapping =: D — 2¢(¢X) js H-continuous.

Proof.

(@) Fix a € D. The map @&, is obviously H-continuous on K \K,. We

claim that @, is H-l.s.c. (and hence l.s.c.) at the points of K,. By
Corollary (2.2.9), &,|K, is H-continuous. Given t € K, and £ > 0,
there exists a neighborhood U of t such that:

a. ®,(t) c ®,(t) + B whenever t € U N Ky;

b. B(a(t),r(a)) c B(a(t),r(a)) + eBY whenever t € U\K,.
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Thus, also for t € U\K,, we have &,(f) c B(a(t),r(a)) c &,(t) + eBY .
This proves our claim. Now, (a) follows by Michael’s selection theorem [6].

(b)Fix a €D and € > 0. Then C:= a(K,) x{r(a)} is a compact set
contained in dom(F), where F (x, r) = B(x, r) N Y. Since F is H-continuous
on dom(F) (Corollary (2.2.9)), a standard compactness argument shows that
there exists § > 0 such that dy(F(x,7r),F(y,s)) <& whenever (x,r) €
C,(y,s) edom(F),|lx—yll<é and [t—s <. Let n € (0,6) be such
that |r(a) — r(a)| < 6 whenever a € D, ||la — al|l, < n. Now, it is obvious
that

dy(D,(t), Pz(t)) < € whenevert € K,a € D,|la — allo < 7.

By Corollary (2.1.12), disty(2(a),2(a)) < ¢ whenever a € D, ||la —
allow < 7.
Now, we can easily deduce the second main result of the present paper. It

seems to be new even for finite-dimensional polyhedral spaces X.

Theorem (2.2.13)[2]: Let K be a compact Hausdorff topological space,
X a Banach space satisfying (GC) and (*), n a positive integer, and m a
polyhedral nondecreasing norm on RY. Assume that either X is finite-

dimensional or & is handy (see Definition (2.2.2)). Then the m-center map
Eq: C(K, X)? — 26K
is nonempty-valued and H-continuous on C(K, X)".

Proof. In the notation of Lemma (2.2.7), E,(a) =0 1o E_ (@) (a €
C(K,X)™). Thus it suffices to show that E,; (+) is H-continuous on the set

D ={a:a € C(K,X)"}.
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Recall that C(K, X) satisfies (GC) by Corollary (2.2.5) and Fact (2.1.2).

In particular, the mapping ¥ from Lemma (2.2.7) has nonempty values for
every a € D. Now, it suffices to apply Theorem (2.2.12) with =
K™ and X = (X™), . (Notice that D < D in this case.)

Recall that, given a finite set A = {a,,...,a,} in a Banach space X, the
set E(A) of all Chebyshev centers of A coincides with the set E;(a) of
weighted Chebyshev centers of the n-tuple a = (a4,...,a,) € X™ for the

constant weight 1 = (1,...,1).

Let us write N = {1, 2,...} for the set of positive integers. Given m € N,

we denote
pP,(X)=A€2X:1< card A <m.

Let us state the following quite natural lemma. The main technical
“difficulty” stays in the fact that an element of ,,,(X) can have a cardinality

k smaller than m, and it is not an ordered k-tuple.

Lemma (2.2.14)[2]: Let m € N, and X a Banach space in which every
nonempty set of at most m elements admits a Chebyshev center. Assume
that the mapping E; : X™ — 2% is H-continuous. Then the Chebyshev-center

map A — E(A) is continuous in the Hausdorff metric on $, (X).

Proof. First observe that the continuity of the E;-map on X™ implies that the
E{-maps on X* (1 < k < m) are all Hcontinuous. This follows immediately
from the fact that, for the max-norms on X* and on X™, the embedding
OXfQeq . oox,) = (Xq, .o X Xpr -, X)) €EX™ is an  isometry  and
E;(x) = E{({(x)) for each x € X*,

FixA € P,(X)and € > 0. Denote k =card A, A = {a,,...,a,} and A= %
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min{“ai — aj|| :i# j}Clearlyl <k < mand A> 0. Put
S={s =(sq,...,5;) €ENF: |s| ;= s, + - - +5, < m}.
For each s € S, define a(s) € X!*! by

a(s) = (@y,....as,.... Ak, ..., Q)

R g
S Sk

Since the set S is finite and the E;-maps on X* (1 <k <m) are H-
continuous, there exists § € (0, A) such that

dy(E1(b),E1(a)) <¢ whenever s € S,b € XISl ||b — a(s)|le < 6.
Now, let B € Py, (A) be such that d (B,A) < 4. Since § < A, the sets B; :
=B NBy(a;,6) (1 < j< k) are nonempty and pairwise disjoint, and B =
U¥_,B; . Denote s;= card B; and B;={b;",....b’}(1 < j<k).

Then the point

1 1 k k
p=(b b, b0 1)

belongs to X! where s = (s4,...,s%), and ||b — a(s)|lo < 8. Thus
dy(E(B),E(4)) = dy(E1(b),E1(a(s))) < «.

Corollary (2.2.15)[2]: Let K be a compact Hausdorff topological space
and X a Banach space satisfying (GC) and (x). Then each nonempty finite
set in Cy (K, X) admits a Chebyshev center, and for each positive integer m
the Chebyshev-center map A — E(A) is continuous in the Hausdorff metric
on Py, (Cy (K, X)).

Proof. The assertion follows from Theorem (2.2.11) and Lemma (2. 2.12)
by observing that the maximum norm m(t) = max;<;<, t; On R% is handy
(n €N).
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Proposition (2.2.16)[2]: Let X be a Banach space, Y c X a closed
subspace. Consider the multivalued mapping
G:X—- 2%, G(X)=B(x,1) n Y.
(@) If X satisfies (PA), then G is H-l.s.c. on its effective domain.
(b) If X satisfies (x), then G is H-continuous on its effective domain.

Proof. By Lemma A.2, it suffices to prove the same properties for the
multivalued mapping R (in place of G).

(@) Let X satisfy (PA). By [2, Theorems (2.2.4) and (2.1.14)], R is L.s.c.

on dom(R) = q(By), and H-continuous on B¢,y = q(BY).
We have to show that R|, s, ) is H-1.s.c. at each point of q(Bx) N Sy .

Fixéy € q(Bx) N Sx,y and xy € R(&). By [2, Theorem (2.1.13)] (see
also [2, Fact (2.1.14)] or our Fact (2(d).1.12)), each point of Sy is a (QP)-
point for X, a notion defined in Lemma A.1. Hence there exists » > 0 as in
Lemma A.1(ii). Fix an arbitrary € € (0, r).

Since R|qeg,) Is I.s.c. at £0, there exists a relative neighborhood V of &, in
q(By) such that, for each & €V \{{}, there exists x; € R(§) N
B%(xy,€). Now, for such &,

r(Xg — Xo)
Ixg = ol

Xg — X
:x0+(||xg—x0||+r)meBx

XE+
since r + ||xg — xo|| <2r. So we have the following situation: &,¢ €

r(xg—xo)

e =xoll

q(Bx ). & # &0,x0 € R(&o),x§ € R(§),r>0,x; + € By. By direct

application of [2, Lemma (2.1.16)], we get
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|2

_ 2||sz - X
sup dist(zy,R(¢)) < - (E e V\{D.

Zo€ER(So)

This proves that R| 4z, is H-l.s.c. at&,.

(c) If X satisfies (*), R is H-u.s.c. on q(Byx ) by [2, Theorem (2.2.7)].
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Chapter 3

Best Approximation in Polyhédral Banach Spaces

We study conditions under which the metric projection of a polyhedral
Banach space X onto a closed subspace is Hausdorff lower or upper

semicontinuous.

We show contains examples illustrating the importance of some hypotheses
in the main results.
Section (3.1):Polyhedral Banach Spaces and Matric
Projections with Hausdorff Lower and Upper semicontncity:

X denotes a real Banach space such that dimX > 2, with closed unit ball
By , open unit ball BY and unit sphere Sy , and X* is the dual of X. The set of
all nonempty bounded closed convex subsets of X is denoted by RCC (X),

and [x,y] = conv{x,y} is the closed segment with endpoints x and y. We

shall use the following further notations.

By extC we denote the set of the extreme points of a convex set C. By
riC we mean the relative interior of C in the sense of convex analysis, that

Is, the relative interior of C in its affine hull af fC.

For x € Sy, D(x) is the image of x by the (multivalued) duality mapping,

.e.
D(x) = Dx(x) ={f € Sx» : f(x) = 1}.

Observe that extD(x) = D(x) N extBy- by the Krein—-Milman theorem.

39



If Ais asetin X*, then A" denotes the set of all w*-accumulation points

(called also w*-limit points or w*-cluster points) of A:

A={fex :fe A[fI}

Recall also that a set [ © By- is 1-norming if

x| = sup f(x). (3.1)
feB

A boundary for X is a 1-norming set 3 € By- such that the supremum in
(3.1) is in fact a maximum for each x € X. The set extBy- is an example of

a boundary.

Definition (3.1.1)[3]: A set P € BCC(X) is a polytope if the intersection

of P with any finitedimensional affine set is a (finite-dimensional) polytope.
A Banach space X is said to be polyhedral if By is a polytope.

Let us recall that X is polyhedral iff each two-dimensional subspace of X

is polyhedral [3]

If X is polyhedral, then the set w*- exp By- (of all w*-exposed points of By+)
coincides with the set w*-strexpBy+ (of all w*-strongly exposed points of
By+); moreover, this set is a boundary which is contained in any other
boundary, and for each of its elements f , the face f~1(1) NSy has

nonempty relative interior in Sy .

A finite-dimensional space X is polyhedral iff X* is polyhedral. On the
other hand, an infinite-dimensional dual Banach space is never polyhedral

[3] (even it is not isomorphic to any polyhedral space [4]).

Fact (3.1.2)[3]: ([6]). If P is a separable polytope in a Banach space, then

affP is closed and riP #= @.
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We shall deal with the following three geometric properties, two of them

already defined in Introduction.
Definition (3.1.3)[3]: Let X be a Banach space. We say that X satisfies (x
) if there exists a boundary 3 © Sy~ such that
f(x) <1 wheneverx €Sy and f € . (3.2)
We say that X satisfies (4) if there exists a boundary 3 c Sy~ such that
D(x) N B is finite for each x € Sy . (3.3)

We say that X is (QP) (“quasi-polyhedral” [1]) if each x € Sy has a
neighborhood V such that [x, y] € Sy whenever y € V N Sy.

Lemma (3.1.4)[3]: Let X be a polyhedral Banach space, R c Sy« a
boundary for X, x € Sy . Then

D(x) = conv" [D(x) n R].
In particular, D(x) = conv[D(x) n 3] whenever D(x) n 3 is finite.

Proof. Denote B, = D(x) n [3. If the assertion is not true, there exists f €
D(x)\conv" B,. By the Hahn—Banach theorem, there exists y € X such that
f(y) > supgep, g(y). Note that y cannot be a multiple of x since all the
involved functionals have value 1 at x. Consider the two-dimensional

subspace Y = span{x, y}.

Since By is a polygon, a part of S, consists of two nondegenerate line
segments [x,v;] and [x,v,], where v,, v, are two of the vertices of By . For
i =1,2, fixan arbitrary w; € (x,v; ) and choose g; € I3 such that g;(w;) =

1. This implies that [x,v; ] © g; (1) and hence g; € B,. It is easy to see
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that f|, € Dy(x) = [g1ly. 921y ]. But then we get f(y) < max{g,(y),g.(¥)} <
supgeg, 9(v), a contradiction.

It is well known that the properties defined in Definition (3.1.3) are
hereditary and, moreover, they are satisfied by any finite-dimensional

polyhedral space X; for this and the following fact see.

Fact (3.1.5)[3]: The following implications hold:

(@) () = (QP) with (4) & polyhedral with (4);

(b) (QP) = polyhedral.

Moreover, none of the simple implications “ = ” can be reversed.

Observation (3.1.6)[3]: A Banach space X is polyhedral with (4) if and
only if for each x € Sy there exist a neighborhood V of x and finitely many
closed halfspaces H;, ..., H,, each containing By , such that By NV = (H; N
.. N Hy) NV (that is, roughly speaking, each x € Sy has a neighborhood in
which By coincides with a finite intersection of closed halfspaces containing
By ).

Proof. Let X be polyhedral with (4). By Fact (3.1.5), X is (QP). It follows
easily (see also [2]) that there exists a neighborhood U of x such that D(y) c
D(x) whenever € U; :=U NSy . The set B, := D(x) n 3 is finite and, by
Lemma (3.1.4), D(x) =convB,. Thus, for any yeU,|y|l=1=
suprepef (v) = maxsep, f(y). The open set V:= U;50AU; contains x and

satisfies V.N By =V N Ngep, Hf Where Hp = {z € X: f(x) < 1}.

On the other hand, if X satisfies the condition with halfspaces, it is (QP)

and hence polyhedral. Moreover, the norm-one functionals that define all
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involved halfspaces form a boundary 3 that satisfies (4) in Definition
(3.1.3).

The following fact is an easy consequence of the definition of property (*).
Fact (3.1.7)[3]: Let X be polyhedral with (x),x € Sy . Then

sup{h(x) h € B\D(x)} <1,
where 13 is any boundary satisfying (3) in Definition (3.1.3).

Lemma (3.1.8)[3]: Let X be a polyhedral Banach space, B c Sy« a
boundary for X,x,y € X such that [x,y] n By = {x}. Then there exists h €
3 such that h(x) = 1 and h(y) > 1.

Proof. The assumptions imply that x € Sy and & By . If y is a (necessarily
positive) multiple of x, then any h € D(x) n 3 works. Now, assume that Z :
= span{x, y} has dimension two. Then B is a polygon. If & extB, , then x
Is an interior point of one of the faces of B, . Then any h € D(x) n I3 works
since ||z|| = h(z) whenever z € Z is sufficiently near to x. If € extBy , then
two distinct faces F;, F, of B, meet at x. Since 3 is a boundary, there
existh;,h, ER  such thatF;c h;*(1) (i=1,2). Then |z| =
max{h,(z), h,(2)} whenever z € Z is sufficiently near to x. It follows that,

forsome i € {1, 2}, h = h; works.
Lemma (3.1.9)[3]: Let X be a polyhedral Banach space, B c Sy« a

boundary for X, x, € Sy . Consider the sets

By, =D(x,) NB, A= ﬂ (1), F=ANSy=ANBy
heB,

Then A = af fF and x, € riF.
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Proof. Obviously, the affine set A and the convex set F are closed. If A =
{x0}, we have also F = {x,} and the assertion is satisfied. Now, suppose
A # {x,}. Fix an arbitrary x € A\{x,} and observe that Y:= span{x,, x}
has dimension two. If x, € extBy then two distinct faces of the polygon By
meet at x,. Denote by C one of these two faces that does not contain x. Since
R is a boundary for X, there exists h € B such that C ¢ h~1(1). But in this
case we have h(x,) = 1and h(x) < 1, a contradiction with the fact that

x € A. Hence x, is an interior point of a face of By.

In fact, we have proved that each line in A containing x, intersects F in a
nondegenerate segment with x, in its relative interior, that is, x, is an
algebraic interior point of F in A. A standard Baire category argument

implies that x, € int,F, which completes the proof.

In what follows, Y is a closed subspace of a Banach space X, and q: X —
X/Y is the corresponding quotient map. Recall that the metric projection

onto Y is the multivalued mapping
PrX-> 2", P)={yeY:x—yll=d(x")}
where d(x,Y ) = dist(x,Y) = inf,eyllx — y||. We say that Y is proximinal

If Py(x) # @ for each x € X; and Y is strongly proximinal [11] if Py (x) # @
and d(y,,, Py(x)) = O whenever x € X,{y,} € Y, |lx — y,|| = d(x,Y).

The following definition weakens the notion of strong proximinality by

considering only the points x € X for which Py (x) is nonempty.

Definition (3.1.10)[3]: We shall say that Y is relatively strongly

proximinal if

d(Yn, Py (x)) = 0
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whenever x € X, Py(x) #= 0,{y,,} Y, |lx — y,|| = d(x,Y).

Let us recall basic definitions about multivalued mappings. For our

purposes it suffices to remain within the framework of normed linear spaces.

Definition (3.1.11)[3]: Let L,M be normed linear spaces, F:L —

2M x, € L.

(@) F is Ls.c. (lower semicontinuous) at x, if for each open set A ¢ M
such that A n F(x,) # @ there exists a neighborhood V < L of x,
such that An F(x) # @ whenever x € V.

(b) F is u.s.c. (upper semicontinuous) at x, if for each open set A ¢ M
such that F(x,) < A there exists a neighborhood V < L of x, such
that F(x) € Awhenever x € V.

(c) F is H-l.s.c. (Hausdorff lower semicontinuous) at x, if for each e > 0
there exists a neighborhood V < L of x, such that F(x,) € F(x) +
By, Whenever x € V.

(d) F is H-u.s.c. (Hausdorff upper semicontinuous) at x, if for each e > 0
there exists a neighborhood V < L of x, such that F(x) c F(x,) +
By, Whenever x € V.

(e) Let “s.c.” denote one of the four semicontinuity properties defined in
(@)-(d). We say that F is s.c. on a set E c L if the restriction F|g is
s.c. at each point of E.

(f) The effective domain of F is the set domF = {x € L. F(x) + 0}.

1. It is easy to see that one always has the implications H-l.s.c. = l.s.c.,

and u.s.c. = H-u.s.c..

Moreover, F is both H-l.s.c. and H-u.s.c. at x, if and only if F is continuous

at x, with respect to the Hausdorff pseudometric
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dy(A,B) = max {Sup d(a,B),sup d(b, A)}

acA bEB

on 2M. (Note that dy, restricted to the closed elements of 2™, is a metric

with values in [0, c0].)

Definition (3.1.12)[3]: Given a closed subspace Y c X, we define the
multivalued mapping
Ry: X/Y — 2%, Ry (§)=q ()N By,
where q: X — X/Y is the quotient map.
Observe that domRy = q(By ) and this set contains By,y = q(BY). Itis

easy to see that Y is proximinal if and only if (By ) = Byx/y -

Appropriate versions of the following technical lemma and its corollary
(Corollary (3.1.14)) are true for bounded closed convex sets. However, for

simplicity of formulation, we state them just for By .

Lemma (3.1.13)[3]: Suppose that

0.§ € q(By), § # $o, xo € Ry (&), x € Ry(¢), r >0,

x + 1 (x — x0)||lx — xol| € By.

Then
2|x — x|
sup  d(zo,Ry(§)) < ——
Zo€Ry ($o) r
Proof. Fix an arbitrary z, € Ry(&,). Define z = x + . (zo — x9),
llx=2xol[+7

and observe that z € g~1(&). An easy calculation shows that, for u, = x +

(x—xp)

. we have
[[x—x0|
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X — Xoll r
X

0 .

= VA
lIx = xoll +7 lIx = xoll +7

Consequently, z € By since u, ,zy € By . It follows that z € Ry (£), and

|x—%oll 2||x—xoll

hence  d(z0,Ry(£)) < |1z — zo|| =

Tereer e — Zoll =

T |lx—=x0||+r T

2||x—x0]|
" .

Corollary (3.1.14)[3]: The multivalued mapping RY is locally Lipschitz

(in the Hausdorff metric) on BY,y .

Proof. Given &, € B,y , fix an arbitrary x, € g (&) N BY. Letr > 0 be

such that x, + 5r By  By. Consider, in /Y , arbitrary two distinct points

&n € & +r BY,y. There exists x € g~1(& ) such that ||x — x,|| < . Then

x € By implies that x € Ry (§). There exists y € g~ 1(n) such that ||x —
yIl <2[|E—=n|. Since ||§—n||<2r , we have y € x +4rBy C x, +
5rBy € By ; hence y € Ry(n). Moreover, u,.=x+r(x—y)||lx —y| €
(xo +7Bx) + 1By € By . By Lemma (3.1.13), sup,eg,(n)d(z Ry($)) <

§||x—y||s§ II€ —n||]. By interchanging ¢ and 7, we conclude that

d(Ry (€ ), Ry()) < = |I€ — 7| whenever §,7 € & + 7 BYy .

The next lemma gives a link between semicontinuity properties of the metric
projection Py and those of Ry . It is based on the following simple

observation.
Observation (3.1.15)[3]: If x € X,d(x,Y) = 1 and & = q(x), then

Ry(§) = x — Py(x).
Proof. The formula follows from the following chain of obvious

equivalences.
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z€Ry() iffq(z) =¢ llzll <1
iffx —z=yeY|x—-yll<1
iff z=x—y,y € Py(x).
Lemma (3.1.16)[3]: Let “s.c.” denote one of the properties l.s.c., u.s.c.,

H-l.s.c., H-u.s.c. Then Py is s.c. on its effective domain if and only if RY is
s.c.onthesetX = (domRy) N Sx/Y = q(Bx ) N Sx/Y .

Proof. First, notice that Py is semi-linear with respect to Y in the sense that
Py(t x) = t Py(x) and Py(x +y) = Py(x) +y whenever x € X,y € Y and
t € R. Moreover, the restriction (Py)|gzomp, is Obviously s.c. at each point of
Y. It follows easily by homogeneity that Py is s.c. on its effective domain if

and only if Py is s.c. on the set
S =q 1(5x/Y) ndomP, = {x € domPy.d(x,Y) = 1}.
For x € S, Observation (3.1.15) implies that Py(x) = x — Ry(q(x)) and

q(x) € 2. It follows that Py is s.c. on S whenever Ry is s.c. on X.

On the other hand, the multivalued mapping q~1: X/Y - 2¥ is ls.c.
(since q is open) and hence admits a continuous selection o by Michael’s
selection theorem. Now, for & € X, we have d(o (¢),Y) = ||€||IX/Y =1
and Ry (&) = a (&) — Py(a(&)) (Observation (3.1.15)), and hence o(§) € S.

It follows that Ry is s.c. on X whenever Py is s.c. on S.

Lemma (3.1.17)[3]: (Separable Reduction). Assume that our multivalued
mapping Ry is not H-u.s.c. on q(Byx). Then X contains a separable closed

subspace X, such that, for Y, = Y n X,,, the corresponding mapping

Ry, : Xo/Yy = 2%, Ry,(m) = q7'° () N By,
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(where qo: Xo = X /Y, is the quotient map) is not H-u.s.c. on q(By, ).

Proof. Assume that Ry is not H-u.s.c. at some &, € q(By). There exist
{&.} € q(Bx ), x, € Ry(&,) and a > 0 such that d(x,, Ry(&,)) = a. Fix an

arbitrary x, € Ry(&,) and, for each n > 1, find z, € g~ 1(&,) such that

1 :
1zn = Xoll < lI$n — $oll + — . Define

Xo = spanl{xp}nso U {Zn}n=1l
The subspace Y, =Y n X, contains all the points z, —x,(n = 1). Put
Nn = qo(2,) and ny = qo(x,), and observe that n,, = n, since z,, = x,. For
n =0, we have x,, € ¢7'° (,) N Bx, = Ry, (11,). Since Ry (o) = (xo +

Yo) N By, © (xo +Y) N By = Ry (&), we have

d(xn, Ry,(n0)) = d(xn, Ry (§p)) =2a (n=1)
which shows that Ry is not H-u.s.c. atng. _

As a starting point, we shall prove a result about lower semicontinuity
(rather than Hausdorff lower semicontinuity) of P, (Theorem (3.1.22)). The

main tool is the following proposition.

Proposition (3.1.18)[3]: Let Y be a closed subspace of a Banach space X.
Let Hq,...,H, be closed halfspaces in X. Then the mapping : X,, = 2y ,
given by

n

Fooox) =¥ [ o+ Hy)

i=1
is lower semicontinuous on its effective domain.
Proof. If (x{,...,x,) € dom F and some translate of Y belongs to H; for
some i, then necessarily Y c x; + H; . Hence we can (and do) suppose that
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Y is not parallel to any H; , the topological boundary of H;(i = 1,...,n). By
Lemma (3.1.22),

n

Flaa ) = [ )0 ) + A,

i=1
where r;: X — Y is a continuous retraction and ; = Y N H; is a closed
halfspace in Y(i=1,...,n). By Lemma (3.1.20), the mapping Y, —
2Y (¥1,...,yn) — N, (y; + H)), is lower semicontinuous on its effective

domain; hence also F is.

Lemma (3.1.19)[3]: Let Hy,...,H, be closed halfspaces in a normed

linear space X. Then the mapping : X™ — 2% | given by

Py = [ |G+ H)

Is lower semicontinuous on dom F.

Proof. The case of dim X < oo was proved in [3]. Indeed, if H; ={x €
X fi(x)=t;},L=N~,f1(0) and q: X - X/L is the quotient map, the
sets H; = q(H;) are hyperplanes in the (finite-dimensional) space /Y .
Hence the mapping F:(X/L)" — 2%/L F(&,,...,&) = NM (& +H), is
lower semicontinuous on its effective domain. The rest follows from the fact
that F=q 1o Fo Q where Q(x,...,x,) = (q(x1),...,q(x,)), since Q is
continuous and q is open.

Fact (3.1.20)[3]: Let Y be a closed subspace of a Banach space X. Then

there exists a continuous retraction p of X onto Y.
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Proof. Let g: X — X/Y be the quotient map and G be a positively
homogeneous continuous selection of g~ (the so-called Bartle-Graves

mapping). Then p(x) = x — G(q(x)) defines the desired retraction.

Lemma (3.1.21)[3]: Let Y be a closed subspace of a Banach space X. Let

H be a closed halfspace in X that contains no translate of Y. Then H =Y n H
is a closed halfspace in Y , and there exists a continuous retraction r of X

onto Y such that
YN(x+H)=r(x)+H  foreachx€X.

Proof. Let f € X*\Y! and t€ R be such that H = {x €: f(x) > t}.
Obviously H is a closed halfspace in Y since f is not constant on Y. Fix y, €
Y such that f(y,) = 1. By Fact (3.1.20), there exists a continuous retraction
p of f71(0) onto Y n f~1(0). Then the mapping r(x) = f(x)y, p(x —
f(x)yy)is a continuous retraction onto Y such that f(r(x)) = f(x) for all

x € X. This easily implies the assertion.

Theorem (3.1.22)[3]: Let X be a polyhedral Banach space with (4),Y c
X a closed subspace. Then the corresponding mapping Ry is l.s.c. on its
effective domain q(By).

Proof. We want to prove that the restriction Ry |, g,y is |.s.C. at each &, €

q(By). This is certainly true for &, € B, by Corollary (3.1.17).

Now, let &, € q(Bx) N Sx/y . FiX xq € Ry (&) and an open neighborhood

V of x,. Since x, € Sy , we can apply Observation (3.1.7): by taking a
smaller neighborhood we can suppose that there exist finitely many closed
halfspaces H; < X(i = 1,...,n) such that
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n n
BXcﬂHi and VnBXZVnﬂHi.
i=1 =

=1
Observe that xg €ERy )N V=, +Y)N By NV = (xo+ Y)N
?lei N V - xO + [Y N n?:l(Hi - xO) N (V - xO)] ThUS O € ¢(x0),
where the multivalued mapping

n

d(x) =Y N ﬂ(Hi ~ x)

i=1
Is I.s.c. on its effective domain (Proposition (3.1.18)). Choose € > 0 and an
open neighborhood W of x, so that W +eBy c V. By the lower

semicontinuity of @, there exists an open neighborhood U of x,, such that

|lx —xpll| <€ and @(x)N(W —xy) #D whenever x € U,®(x)
* Q.

Notice that g(U) is an open set in /Y . For £ € q(U) n q(By ) choose x €
g~ (&) n U and observe that

P(x)DYN(BX —x)=[(x+Y)NBx] —x =Ry (§) —x # 0.

Consequently,

Q);tq)(x)n(W—xo)c(b(x)n(V—x)=[(x+Y)nﬂHinV _x

=1

=[Ry (§)NV] —x,
which implies that Ry (£ ) NV # @. The proof is complete.

The step from “l.s.c.” to “H-l.s.c.” is now guaranteed by the following

easy consequence of Lemma (3.1.13).
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Proposition (3.1.23)[3]: Let X be (QP),Y c X a closed subspace. If P,

Is I.s.c. on its effective domain, then Py is H-l.s.c. on its effective domain.

Proof. By Lemma (3.1.16), we have to show that RY is H-l.s.c. on E: =
q(Bx) N Sx,y whenever it is just l.s.c. on E. Given &, € E, choose an
arbitrary x, € Ry (&,). The fact that X is (QP) easily implies that there exists

r > 0 such that

Xo € By whenever x € Sy ,0 < ||[x —xo|| < 7. (3.4)

Let € € (0,r) be given. Since Ry|p is ls.c. at &, there exists a
neighborhood U < Sy of &, such that for each & € U N E there exists x; €
Ry (§) N By(xg,€). Now, foré e UNE, & # &, (5) implies that

r (X — Xo)
l|l2xe — xoll

Xg — Xo

=Xx9 t(r+|x X
o (o llxg = ol o=y

Uy = Xg + € By

since 7 + ||xz — xo|| < 2r and x; € Sy . By Lemma (3.1.13), we have the

2IIJCE onI

estimate sup, e, (&,) 4(Z0, Ry(§)) < , which completes the

T

proof.

Theorem (3.1.24)[3]: Let X be a polyhedral Banach space with (4),Y c X
a closed subspace. Then Py is H-l.s.c. on its effective domain.

Proof. By Theorem (3.1.22) and Lemma (3.1.16), Py is l.s.c. on its effective

domain. Now, Fact [1] and Proposition (3.1.23) conclude the proof.

Property (A) of a polyhedral Banach space is not sufficient for Hausdorff
upper semicontinuity of Py , even if Y is proximinal and of codimension two.
In Theorem (3.1.26), we give a positive result under the stronger assumption

that X is a Banach space with (*). Let us start with the following simple
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Observation (3.1.25)[3]: Let M,Y be subspaces of a vector space X. If

M has finite codimension in X, then M Nn'Y has finite codimension in Y.

Proof. Put = M nY . Let Y; be an algebraic complement of N in Y. Then
MnY,=MnY)nY; =NnY, ={0}. Consequently, codimy N =
dimY; < codimyM < co.

Recall that, given a closed subspace Y of X,q: X = X/Y denotes the
quotient map, and Ry: X/Y — 2% is defined by Ry (§) = ¢ 2(§) N By .

Theorem (3.1.26)[3]: Let X be a polyhedral Banach space with (x),Y c
X a closed subspace. Then the corresponding mapping Ry is H-u.s.c. on its

effective domain q(By ).

Proof. By separable reduction (Lemma (3.1.17)), we may assume that X is
separable. Suppose that Ry is not H-u.s.c. at some &, € q(By ). There exist
{£&.}cq(Bx ).z, €ERy(&,) and a>0 such that ¢&,-¢&, and

d(zn, Ry (§0)) > a.
By Corollary (3.1.14), we must have &, € Sy,y . Since Ry(&,) is a
separable polytope, Fact (3.1.2) assures that L := affRY (&) is closed and

there exists x, € riRy(&,) (the relative interior of Ry(&,)). Consider the

sets

By =D(x,)NBR, A= ﬂ h™1(1), F=ANSy=ANBy.
heEB,
By Lemma (3.1.9), A=affF and x, € riF. Let us denote R, =
Ry(&y) —x9, Lo =L —x¢,Fy = F — x9, A9 = A — x.
We claim that
Ly= 4,NY. (3.5)
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To see this, notice that Ry (&y) € Sy and x, € riF imply Ry(&,) < A. Then

FN(xg+Y)=ANByNn(xy+Y)=ANRy(£0) = Ry(£0), and hence
AoNY =R*F,nY =RY(F,nY) =R*R, = L, (where R*E denotes the

set of all positive multiples of the elements of E), which is (3.6).

Since A, is a subspace of finite codimension in X, by Observation

(3.1.25) we can write
Y =L, DV (3.6)
where V is a finite-dimensional subspace.

By Theorem (3.1.22), Ry is l.s.c. on q(By), hence there exist points x,, €
Ry (&) such that x,, = x,. Since z, — x, €Y, (3.7) implies that we can
write

Zp = Xp + Yo+ v, wWhere y, €Lyv,EV.
By passing to a subsequence, we can suppose that v, - v € V.

We claim that v = 0. Indeed, if not, then v € Y\L, = Y\A4,. Since x, €
riF, we must have [x, +v,xo] N By = {x,}. By Lemma (3.1.8), there
exists h € B, such that h(x, + v) > 1. Observe that L, c 4, € h~1(0).
Thus we have 1< h(xy+v)=Ilimh(x,+v,)=Ilimh(z,—y,) =

lim h(z,) < 1, a contradiction which proves that v,, - O.
Since y, € L, € Ay and x, € int,F, the numbers
t,:=max{t =2 0:x,+ty, € F} =max{t = 0:x, +ty, € Ry ((y)}

are positive and there exists r > 0 such that r < ||t,, y,,|| < 2 for each n.
Moreover, Iyl = l1zn — xn — vall = Nz — X0l — Il — X0l — [|vxlland

|yl < 2 + ||v,]||. Since ||z, — xo|| = a, we can suppose that a < ||y, || <

55



2 .
3 for each n. Then g <tp <_. Passing to a subsequence, we can suppose
that t,, — t, > 0.

We claim that t, < 1. To see this, suppose the contrary, i.e., t, = 1. Then

t;, := min{t,,1} - 1and x, + t;, y, € Ry (&,). Consequently

a< ”Zn_xo - trllyn” — ”xn+vn+yn_x0 _trllyn”

< |lxn = xoll + llvnll +3(1 —t) = O.
This contradiction proves that 0 < t, < 1.

We can suppose that t,, < 1 for each n. Then the definition of t,, implies
that [xg + t,Vn, X0 + 1 N By = {x, + t,y,}. By Lemma (3.1.8), there
exist functionals h, € D(xq + t,y,) N B such that h,(x, +y,) > 1. It
follows that h, & D(x,). Hence, by Fact (3.1.7), sup, h,(xy) =:0 <1.
Then

1 l1-o0
hn(yn) - t_[hn(xo + tn yn) - hn(xo)] = t .

n n

But then we get

1 > lim sup h,(z,) = lim sup h,(x, + v, +y,) = lim sup h,(xy, + y,)

= lim Suphn[(xo + tnyn) + (1 - tn)hn(yn)]

1-t)1-0) 1+(1-1¢y)(1 —0)>1
t, B to

> 1+ lim sup

a contradiction which completes the proof.

Theorem (3.1.27)[3]: Let X be a polyhedral Banach space with (x),Y c

X a closed subspace. Then Y is relatively strongly proximinal and Py is

Hausdorff continuous on its effective domain.
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Proof. By Theorem (3.1.26) and Lemma (3.1.16), Py|4omp, is H-u.s.c. By
Theorem (3.1.24) and Fact (3.1.5), it is also H-l.s.c. Finally, Y is relatively
strongly proximinal by Theorem (3.2.1) proved in the next section (3.2).

Corollary (3.1.29)[3]: Let X satisfy (x). Then every proximinal subspace
of X is strongly proximinal and the corresponding metric projection is

Hausdorff continuous.
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Section (3.2): Proximinality of Subspaces and Polyhedrality of

Quotients with Examples:

Let Y be a closed subspace of a Banach space X. Recall that g: X — X/Y
denotes the quotient map, and Py: X — 2Y is the metric projection onto Y. By
NA(X) we mean the set of all norm-attaining elements of X*. For definitions

of proximinality and strong proximinality.

In this section, we consider the following four properties, already

introduced in Introduction:

(A) Y is strongly proximinal,
(B) Y is proximinal,

(C) Yt c NA(X);

(D) X/Y is polyhedral.

Y will be of finite codimension in X.
Obviously,(A) implies (B).

(a) for Y proximinal, (A) holds iff Py is H-u.s.c. (Theorem (3.2.1));

(b) for X/Y reflexive, (B) implies (C) (Observation (3.2.2));

(c)for X/Y finite-dimensional, [(C) and (D)] implies (B) (Lemma
(3.2.3)).

The implication “ < ” in (a) seems to be new. In its proof (proof of

Theorem (3.2.1)), it is quite convenient to use our mapping Ry (See
Definition (3.1.13).

Theorem (3.2.1)[3]: Let Y be a closed subspace of a Banach space X.

Then Y is relatively strongly proximinal if and only if the metric projection
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Py is H-u.s.c. on its effective domain. (In particular, a proximinal subspace Y

Is strongly proximinal if and only if Py is H-u.s.c.)

Proof. The implication “ =" follows easily from definitions. (For Y
proximinal, it has been observed in [1].) Let us show the other implication.
Assume that Y is not relatively strongly proximinal. This means that there
exist x € domPy ,{y,} cY and a > 0 such that ||x —y, = d(x,Y) and
d(y,, Py(x)) > a for each n. Since obviously € Y , by homogeneity we can
(and do) suppose that d(x,Y) = 1. Define

__x g = — Yn  _ X~ n

lx = yall’ T Al =yall e = yall’
$n = q(xn) = q(2n).§ = q(x).

Then we have: Ry (&) = x — Py(x) (Observation (3.1.16)), £ € q(Bx ) N
Sxrv:én € q(By) and z, € ¢~ *(§,) N By = Ry(&,) for each n; and &, — ¢

since x,, = x. Now, since ||x — y,|| = 1, we can write

Xn

lim inf d(z,, RY (£)) = lim infd (y—”— xn,Py(x)—x)
n—-oo n-oo ”x - n”
= liminfd (y—n+ (x —x,), Py (x))
n—oo ”x _yn”
= liminfd (y—n,Py(x)) = liminfd(y,, Py (x)) = a.
n—oo ”x _yn” n—-oo

It follows that Ry |4z, is not H-u.s.c. at ¢&. By Lemma (3.1.17), Py is not H-

u.s.c. on its effective domain.
Observation (3.2.2)[3]: (a) If Y1 © NA(X), then X/Y is reflexive.

(b) If Y is proximinal and X/Y is reflexive, then Y+ c NA(X).
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Proof. (a) is an immediate consequence of the James theorem (In order that
a bounded, closed and convex subset K of a Banach space be weakly
compact, it suffices that every functional attain its supremum on K)[8]. To
show (b), fix an arbitrary f € Y+ = (X/Y)*. There exists & € Sy, such that
£ =|If|l. Since Y is proximinal, there exists € Ry (§) = q~1(¢§) n Sy .
Then f(x) = f(&) = ||f|| implies that f € NA(X).

Lemma (3.2.3)[3]: Let X be a Banach space, Y c X a closed subspace of
finite codimension. If Y+ c NA(X) and X/Y is polyhedral, then Y is

proximinal.

Proof. Since By,y is a finite-dimensional polytope, it is a convex hull of its
extreme points (that are also exposed points, in this case). For € extBy,y ,
take f € Sy+ such that f(§) =1 and f(n) <1 whenever n € By,y \{¢ }.
Since f € NA(X), there exists x € Sy with 1 = f(x) = f(q(x)). By the
choice of , we must have gq(x) =& . We have proved that extBy,y C
q(By). Consequently, By,y = conv(extBy,y) < q(By), which implies that
q(Bx ) = Byx,y . And this is equivalent to proximinality of Y.

In the rest of this section, as well as in the following sections containing
counterexamples, we consider the properties (A)—(D) in the case of a finite-
codimensional subspace Y of X, under suitable assumptions on X, stronger
than polyhedrality (namely, property (*) or polyhedrality with (4)). See
Definition (3.1.3) for properties (x) and (4).

Theorem (3.2.4)[3]: Let X be a polyhedral Banach space with (4),Y c X
a closed subspace of finite codimension. If Y is proximinal then the quotient
X/Y is polyhedral.
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Proof. We have to prove that the finite-dimensional space Y+ (the dual of
X/Y) is polyhedral. Suppose this is not the case. Then there exists a
sequence {f,}n=1 € extB,. of pairwise distinct functionals. Let &, € Sx/y
be such that f,(§,) =1(n>1). By compactness (X/Y has finite
dimension!), we can suppose that &, — &,. By proximinality of Y and by
Theorem (3.1.23), the mapping Ry () = ¢~ (¢ ) n By has nonempty values
and is lower semicontinuous on Sy, ; hence it admits a continuous selection
(Michael’s theorem)[5]. It follows that there exist points x,, € Sy such that
q(x,) =&, forall n >0, and x,, = x,. Observe that f,, € D(x,,) for each

n > 1.

By Fact (3.1.6), X is (QP); hence D(z) c D(x,) for each z € Sy
sufficiently close to x, (cf. [2]). It follows that f, € D(x,) for each
sufficiently large n. Observe that the duality mapping of X/Y satisfies

Dy /vy (o) = D(x,) N Y. For each sufficiently large n, we have
fa € D(x0) NextByr = Dyyy ($o) N extBxsy)y = extDysy (o)
= ext(D(x,) NY1).

But this is a contradiction since the last set is finite (indeed, D(x,) is a

finite-dimensional polytope by the property (4) and Lemma (3.1.5)).

Lemma (3.2.5)[3]: Let X be a Banach space with (x),B c Sy- the

corresponding boundary. Let a sequence {1,} c A; be such that the

functionals

fo=) M(h  (nEN)

hen

61



converge in the weak* topology to some f € Sy« N NA(X). Then there exist

A € A; and an increasing sequence {n,} of positive integers such that:

* 1 has a finite support supp (1),
* f=Zrer AR,
| for, = fIl = 0,14, — Ally = O.

Proof. Since U,»; supp(A,) is countable, a standard diagonal method gives
a subsequence of {A,} that converges pointwise to some A € A; for

simplicity, let us denote it again by {1,,}.

Let x, € Sy be such that f(x,) =1. Since X has (), the set B, :=
D(xo) N B is finite. By Fact (3.1.8), 0. = suppep\p, h(xo) < 1. Now, we
have

fu30) = ) Iah(x) £ ) MW +0 D ()

heR heB, heR\B,

:(1—0)2 A(h)+o.

hEB,

It follows that

Z ﬂn(h) > fn(xo) - U.

1—-o0
heB,

Passing to limits, we obtain },cp A(h) = 1. Consequently, [|A]l; =1 and
supp(1) € B,. By the well-known fact that pointwise and norm
convergence coincide on the unit sphere of #;(R), we get that ||A, —
All; = 0. And this easily implies that ||f — f|| — O.

As a consequence of Lemma (3.2.5), we get the following proposition.
Notice that Sy- N NA(X) = D(Sy).
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Proposition (3.2.6)[3]: Let X be a Banach space with (x). Let {f } ¢

D(Sx) be a sequence converging in the weak* topology to a functional f €
D(Sx). ThenD —1(f) D~Y( f) for each sufficiently large n.

Proof. Assume the contrary. Passing to a subsequence, we can suppose that
D7'(f )¢ D '(f) foreachn.

By Lemma (3.1.5), we have f,,f € convB, where B c Sy+ is a boundary
satisfying (3) in Definition (3.1.3). By Lemma (3.2.5), passing to a further
subsequence, we can suppose that f,, f can be expressed as convex

combinations
o= An(Wh, f= AR
heRr heRr
where 1, A € A, have finite supports and 1,, » A in £7 (R). There exists an
index ny such that

supp(1) < supp(1,) whenevern = n,.
Now, let n >nqy and x € D™'(f,). Since 1 = f (x) = XpepAn(h)h(x),
we must have h(x) = 1 whenever h € supp(4,,). It follows that

f@= ) k= ) AW=1

hesupp(X) hesupp(R)

that is, x € D™'(f). We have proved that D~*(f,) € D™'(f), which is a

contradiction.

Amir and Deutsch [1] defined the following notion: given a Banach
space E, a point x € Sg is a (QP)-point of BE if there exists a neighborhood
U of x such that

[y,x] € S whenever yeUnNS. (3.7)
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Thus the space E is (QP) if and only if each point of its unit sphere is a
(QP)-point of Sg. It is easy to see (cf. [11, Section 3]) that (3.8) in this
definition can be equivalently replaced with any of the following two

conditions:
Dr(y) € Dg(x) whenever y € UNSg; (3.8)
IM c Sgdense such that: Dz (y) N Dg(x) = @ whenevery e U n M. (3.9)
Theorem (3.2.8)[3]: Let X be a Banach space with (x). Then:
(@) weak* and norm convergence of sequences coincide in the set
D(Sx) = NA(X) N Sy- ;
(b) every element of D(Sy) is a (QP)-point of By- .
Proof. (a) and (b) follow from Lemma (3.2.5) and Proposition (3.2.6),
respectively. (For (b) use (10) with E = X*, M = D(Sx).)

Theorem (3.2.8)[3]: Let X be a Banach space with (),Y c X a closed
subspace of finite codimension. If Y+ c NA(X), then the quotient X/Y is

polyhedral and the subspace Y is strongly proximinal.

Proof. By Corollary (3.1.29), it suffices to show that Y is proximinal. By
Lemma (3.2.3), this will be proved once we show that X/Y is polyhedral, or
equivalently, that Y+ = (X/Y)* is polyhedral. If Y1 is not polyhedral, Y+ is
not (QP). Thus there exist f,f, € Sy+(n € N) such that f, —» f and
[f. f1¢& Sy+. By Proposition (3.3.6), we can suppose that

D™ (fp) € D7H(f) (n EN).
Choose x,, € D~1(f,,). Then f,,(x,) = 1 and also f(x,,) = 1, which implies
that fo. f € Dxsy (q(xn)). Consequently, [fn f 1< Dxsv(q(xn)) € Syr,

which is a contradiction.
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Example (3.2.9)[3]: There exist a Banach space X, isomorphic to c,, and
a closed subspace Y < X of codimension two such that:

(a) X is polyhedral with (4),

(b)Y is proximinal,

(c) Y is not strongly proximinal,

(d) Py is not H-u.s.c.

Proof. Let {e,} be the standard basis of c,. For x = }..°_; x,,e,, € ¢, define

n 2
bl = max {llln, sup (g 2l + S bl )
Clearly, ||| - ]| is an equivalent norm on cy. Put X = (co, ||| - |-

To prove (a), fix € Sy . Find an integer n, > 3 such that |x,| <§

whenever n > n,. Let y =Y 1 y,e, € Sy be such that ||y — x|l < %

1
Then, for n = n,, we have |y, | < " and

N 2 - n N 1 _2n+1<
n+1|y2| n+1|yn|_n+1 2(n+1) 2n+2

It easily follows that, in a certain neighborhood of x, By coincides with a
finite intersection of closed halfspaces. Now, (a) follows from Observation
(3.1.7).

Consider the canonical projection m,: X = Z := span{e,, e,}, defined
by m,(Xm=1 Xnen ) = X161 + x5e,. The norm of X is a lattice norm, that is,
X < Iyl whenever x, y € X are such that |x,| < |y,]| for each n. Let

x € X. Define Y = span{e, },,=3 and observe that, for every € Y , we have

Hlx =yl = [l (x = I = Iz (Ol = [llx = (¢ =72
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Since —m,(x) €Y , we have x — m,(x) € Py(x), which proves that Y is

proximinal.

By the last inequality, the quotient map g: X — X/Y , restricted to Z, is an
iIsometry between Z and X/Y . Thus we can consider our multivalued
mapping Ry (see Definition (3.1.13)) as a mapping Ry : Z —» 2X Ry (2) =

(z+Y) N By .Since Y is proximinal, Ry = By,y . Consider the points

n—1

Zy :el+ez, Zn:el+ €y,

n—1

X, = e + e, +e, (n = 3).

It is easy to see that |||zo]l] = llznlll = llIxx]ll] = 1. Thus we have x,, €

Ry (z,) (n = 3), and z, — z,. Now, observe that every x € Ry (z,) is of

n 2
mx=e +e,+ Y2 —_ + — < 1.
the form x =e; +e, + Y. st,e,, Where =t |t,] < 1. The last

inequality easily implies that |¢,,| < %for every n = 3.We conclude that

1
djp (¥ Ry (20)) 2 djo (%n, Ry (20)) 25 (n 2 3),
and the restriction Ry, is not H-u.s.c. at z,. By Lemma (3.1.17), Py is not
H-u.s.c. By Theorem (3.2.1), Y is not strongly proximinal.

The aim of this section is to provide Example (3.2.13). Let us start with
some preparatory facts. The criterion of polyhedrality in Proposition (3.2.10)

is of independent interest.
Foraset A c X*, we use the following notation for its annihilators:

AT={xeXx|,=0}, A" ={FeX*™:F|, =0}
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Proposition (3.2.10)[3]: Let X be a Banach space and B c By- a
boundary for X. Assume that for each f € B'n D(Sy) there exists a
symmetric set K c X* such that dim(K") < 1 and f + K c By- . Then X is
polyhedral.

Proof. Consider an arbitrary two-dimensional subspace Y of X. Suppose that
By is not a polytope. Then RBy+ has infinitely many extreme points. Since
extBy- is closed (hence compact), it contains pairwise distinct functionals
90, 91, 92, - - such that g, — g,. For each n > 1, an easy application of the
Krein—-Milman theorem gives existence of f,, € extBy- such that f,|y = gn.
Let f, be a w*limit point of {f,}n,-1. Then fyly =g, and f, €
(extBx+)" < B, where the last inclusion follows from the Krein Milman
theorem [5]. Moreover, for some € Sy c Sy , we have f,(y) = go(y) = 1,
which implies that f, € B’ N D(Sy ). By our assumption, there exists a
symmetric set K ¢ X* such that dimK™ < 1 and f, + K © By« . Since Y

cannot be contained in KT, there exists h € K such that k|, # 0. Since f, =
“(fo+h)+>(fo—h) and fy £ h € By- , we have go =>(go +hly) +
%(g0 — hly) and g, = h|y € By+ , a contradiction with the fact that g, €
extBy- .
Let I ¢ R be an interval and ¢: I — R a convex function. Recall that the
epigraph of ¢ is the set
epi(p) = {(t,s) €  xR:s = f(t)}.

We shall need the following simple lemma based on elementary properties

of convex functions of one real variable.
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Lemma (3.2.11)[3]: Let ¢:(—6,6) - R be a convex function with
@(0) =0,¢0(t) >0 fort e (0,8), and ¢+ (0) =0. Then there exist
points p,, = (t,, s,,) € R? (n € N) such that:

@ds>t;>t,>-->0,s,>0neN),t, = 0;

(b)for each n, the line A, = aff{p, pns+1} does not intersect the
epigraph of ¢;

(c) the slopes d,, of A,, (n € N) form a decreasing sequence.

proof. Take any decreasing sequence {t,} < (0, §) of smooth points of ¢,

such that z,, - 0. Denoting d, = %(p'(‘rn), we have d,, > d,,; >0(n €
N) and d,, - %(p' + (0) = 0 (since ¢!, is right continuous, see [18, p. 7]).

By passing to a subsequence, we can suppose that {d,} is decreasing.

Let A,, be the tangent line to the graph of %(p at the point of abscissa t,,, that

is the line of equation

1
S :z(p(Tn) + dn(t _Tn)-

Since @(t) = 0 for t € (—46,0), and A,, supports epi(% @) at the point of
abscissa t,,, it is easy to see that A,, does not intersect epi(¢). For each n, let
pn = (t,,s,) be the point of intersection of A, and A,,.;. Since 1,,; <
t, <1, and %(p(‘rn +1)<s, < %(p(rn), the points p,, have the required
properties.

Now we are ready for our second example. It shows that, the implications
(C) = (B) and (C) = (D) fail in general polyhedral spaces. (We already
know from Theorem (3.2.8) that they hold under the assumption that X
satisfies ().

68



Example (3.2.12)[3]: There exists a polyhedral Banach space E,
iIsomorphic to ¢y, and a closed subspace Y c E of codimension two, such

that Y+ ¢ NA(E),Y is not proximinal, and E/Y is not polyhedral.
The proof of Example (3.2.13) will be done in several steps.

First step of construction. We consider the elements of the sequence spaces
Co, ¥1, o 10 be of the form a = (ay, a4,a,,...), that is, the indexing starts
with 0. Let {u;};>, and {e;};>o be the canonical bases of ¢, and ¢; = (c,)",

respectively. Define

K =conv{+47" (e; — ¢;):i = 2},

Vv = WW*[ Be, U x(ey + K)] = conv[B{)1 U x(ey + K)]
(the last equality holds since B, and K are w*-compact and convex). Then
V is the dual unit ball of an equivalent norm || - || on ¢, given by

|x|| = max x(V).

We define X = (co. || * |I)-
Let us define also F;, F, € ¢,,g €1 and L c X* by

F, = (1,1,1,..)F = (1,-1,-1,...),

g — é —ZZ_iei,

i=2
L = span{ey, g}.
It is easy to see that up == (Fy +F,),K © Ker(F;) n Ker(Fy),uo €

SX ,eo E Sx* and Fi E Sx**(l — 1, 2) NOte that Fl(eo) — Fz(eo) —
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1,F1(g):%,F2(g):_71 , and hence F,|; and F,|, are linearly

independent Dy-(ey) = [Fi, F,].
Claim 1. (the closed segment with endpoints F;, F,). Consequently,
D; (eg) = [Fil.,F;|. ] by the Hahn—-Banach theorem.

Proof. First, let us show that Ker(F;) N Ker(F,) = span{e; — e;}i>2-

The inclusion “ o " follows from the fact that Fk (e, — ¢;) = 0(k =
1,2,i = 1). The equality holds since both the left- and the right-hand side

have codimension two (indeed, #; = span{e; — e; };>» @D span{ey, e1}).

Now, since Fj (ey) = 1(k =1,2), we have the inclusion [F;,F,] C
Dy (ep). On the other hand, if G € Dy-(ey), then G(ey) =1 and (by
symmetry of K) G|y =0. Thus G € [span{e; — e; }i»2]* = [Ker(F;) n
Ker(F,))]* = span{F,, F,}. Write G = AF, + uF,, where 4,z € R. Since
1=G(ey) = A+u, we have G =AF,+(1-A)F, = (1,21 —-1,21 -
1,...). Now, 1 > |G(e;)| = |24 — 1] implies that A € [0, 1], and hence g €
[F, + F2].

Claim 2. If f = aey + bg € S, satisfies b > 0, then F,(f) < F,(f) < 1.

Proof. The first inequality is clear: F;(f) =a+ b, >a—b, = F,(f). To
prove the second inequality, assume the contrary, that is F;(f) = 1. Since

f €V, we can write
f=tz+sv+rw,
Where,s,rzO,t+s+r=1,z€e0+K,vE—e0+K,WEB{)1.

Since Fy(z) = Fie9) = 1, F;(v) = F,(ep) = =1, F; (W) < [|Fy|[lIW]l, < 1,

we have

70



1=F({(f)=t—-s+rFw)<t—-s+r<t+s+r=1

Thus the above inequalities are in fact equalities. This means that s = 0, and
either r=0 or F;(w)=1. If F;(w) =1, we necessarily have w =
Yisoaie; With a; = 0(i = 0), and if r =0 we can take w = 0. In both

cases, for each i > 2, we have
—27'h = f(u;) = tz(u) + (1 — )w(u) = -4~ t = —47",

It follows that b <27 for each i > 2, and hence b <0, which is a

contradiction that completes the proof.

Observation. Note that Claim 1 and the second part of Claim 2 imply that the

line F;|, = 1 is tangent to the “half-sphere” {ae, + bg € S;: b = O} at e,.

Second step of construction. For better understanding of the following

geometric construction in L, the reader is invited to sketch a simple diagram.

The line F;|, = 1 supports BL at e,. Hence, if we consider an appropriate
coordinate system, centered at e, and with axis of abscissae on the line
Fi|, = 1, then the points of S; that are sufficiently near to e, will form the
graph of a convex function, defined in a neighborhood of the origin of the
axis of abscissae. By Observation above, we can apply Lemma (3.2.11) to
get pairwise distinct points f, = a,eq + b,g € S;(n € N) such that an,
b, >0,b, N 0,a, — 1, eachline A, = aff{ f, fns1} 1S disjoint from B, ,

and the angle between A,, and the line F; |, = 1 tends decreasingly to 0.

Observe that the lines A; and u, = 1 are not parallel since their angle is
greater than the one between A; and F;|, = 1. Let h € L be the common
point of the lines A; and u,|, = —1. By our construction, the compact

convex set
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C = conv[{i fi}js2 U {ih}]
contains B;, , we have
extC = {h.fo. fs....e0,—h. = fo.— f..... —€o},

and d,C (the boundary of C in L) consists of the segments

[hva]v [f21f3]v [f3vf4-]v R [eov _h]v [_hv - fZ]v [_ va - f3]v [_ f3v - f4-]v R [_eOvh]

Define
W =tonv” [V U C] = conv[V U C].
Then W is the dual unit ball of an equivalent norm ||| - ||| on c,, given by
[x[l] := max x(W) = max{||x||, max x(C)}.
Denote £ = (co, [I] - 1]

Define Y = LT. Then Y is a subspace of codimension two in E, and
(E/Y)* =Y+ = L. Since, B(L,||| - ||]|) = C is not a polytope, the quotient
E/Y is not polyhedral.

Claim 3. E is polyhedral.

Proof. Notice that W = conw™ B, where
B ={%e}izoU{xeo 47 (e1—¢;)}, , U{x fi}j=2 U{xh} (310)

Moreover, B is a boundary for E (since f; — ey and e, + 47" (e; — ¢;) -
ep), and the only w*-limit points of B are the three points 0, +e,. Observe
that KT = Ru,. Thus E is polyhedral by Proposition (3.2.10).

Claim4.Y+ c N A(E).

Proof. We have to show that, for each f €S nYt = oW nL = 9,C,

there exists a nonzero x € E such that f(x) = |||x]|] (= max x(W)).
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If fe€ley,—h] or f€[—ey h], we can take x =ugor x = —uy,
respectively. If f belongs to any other of the segments that compose 9, C (the
boundary of C in L), then this segment is contained in one of the lines A4,,.
Moreover, this A, is disjoint from V and supports C at f . Since V is
w*-compact and A,, is w*-closed, the Hahn-Banach separation theorem [7]
gives existence of some x € E\{0} such that max x(V) < inf x(4,) = : a.

Since x is necessarily constant on A,,, we have max x(W) < a = f(x).
Claim 5. Y is not proximinal in E.

Proof. We want to show that (Sg) # Sg;y , Where q: E = E/Y is the
quotient map. Since (in canonical identifications) L = (E/Y )", we have
E/Y = (E/Y)™ = L*. Thus we can identify g with the restriction map

q.E - L, x » x|L. (3.11)

We have F,|, € S;- since max F;(C) = F;(ep) = 1. Let us prove that
Fi|. € (Sg). If this is not the case, there exists x € Sz with x|, = F;|, . In
particular, ey(x) = Fi(ep) = 1. Since |leoll = |lleoll] = 1, the inclusion
By D By-and Claim 1 imply that x € Dg+(ey) € Dg+(ey) = Fy, F,]. But
this implies that x = u, since [F;, F;] N E = {uy}. Thus we get F|, =

Uy |, , a contradiction since F;(g) = 0 = g(uy).
The proof of Example (3.2.12) is complete.

In this section we provide the following example which shows that the
implication (B) = (D) does not hold for general polyhedral spaces. (We
already know from Theorem (3.2.4) that it holds under the additional
assumption that X satisfies (4).)
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Example (3.2.13)[3]: There exists a polyhedral Banach space E,
iIsomorphic to c0, and a closed subspace Y c E of codimension two, such

that Y is proximinal and E/Y is not polyhedral.

The proof of Example (3.2.13) will go in a similar, but simpler, way as
that of Example (3.2.12). First step of construction. Let {u; };>o and {e; }io
be the canonical bases (indices starting from zero!) of ¢, and £1 = (cy)",

respectively. Define
1
K= conv{i?ei: [ = 1},

V = tonv” [B{)1 U=x(e, + K)] = conv[B{)1 U=x(ey + K)]. (3.13)
Then V is the dual unit ball of an equivalent norm |/-|| on
co, given by ||x|| = max x(V). We define X = (co. || - ||)-

Observe that spanK c Ker(u,) c X*, but spanK # Ker(u,) by the
Baire category theorem (indeed, spanK = U,>;nK while K has empty
relative interior in Ker(uy)). Fix an arbitrary g € Ker(uy) \ spanK and
define L ¢ X* by

L = span{ey, g}.
Since u attains its maximum over V at ey, we have e, € Sy~ .
Claim 1'. Dy(ey) = {uy}. Consequently, D;(e;) = {ug|; } by the Hahn-
Banach theorem.

Proof. If F € Dy-(ey) then F|lx, =0 and F(ey) = 1. Hence F =u,. The

other implication is obvious.

Claim?2'. If f €S, and f # e, then f(uy) < 1.
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Proof. If f € S; and f(u,) = 1, then (3.13) implies that f € e, + K. On the
other hand, f = e, + bg for some b € R, since f(u,) =1 and g(u,) =0.
Thus bg € K, which is possible only if b = 0.

Second step of construction. By Claim 1, the line uO|L = 1 is tangent to S; at
eo; and by Claim 2’, e, is the unique common point of this line and S; . As
in the “Second step of construction” in the proof of Example (3.1.12), we
can apply Lemma (3.2.11) to get pairwise distinct points f,, = a,ey, + b, g €
S, (neN) such that an, b,>0,b,N0,b, -1, each line A, =
af f{ fu: fn+1} 1S disjoint from B; , and the angle between A, and the line

uy|;, = 1 tends decreasingly to 0.

Let h € L be the common point of the lines A; and uy|;, = —1. As in the

proof of Example (3.2.12), the compact convex set
C=conv[{xfj}j=2 U {xh}]

contains B; , its extreme points are the points h,f,, f3,...,eq,—h —

fo,— f3....,—eq, and its boundary (in L) consists of the segments

[hva]v [f21f3]v [f3vf4-]v R [eov _h]v [_hv - fZ]v [_ va _f3]v [_ f3v _f4-]1 ] [_eOvh]

Define
W =tonv” [V U C] = conv[V U C].

Then W is the dual unit ball of an equivalent norm ||| - ||| on ¢y, given by
HxIl: = max x(W) = max{||x||, max x(C)}. Denote E = (cO, ||| - lID.

Define Y =LT. Then Y is a subspace of codimension two in E, and
(E/Y )" =Y = L. Since, B(L, ||| - |l]) = C is not a polytope, the quotient
E/Y is not polyhedral.

Claim 3'. E is polyhedral.
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Proof. The proof is identical to that of Claim 3 in the proof of Example
(3.2.12).

Claim 4'. Y is proximinal in E.

Proof. As in Claim 5 (proof of Example (3.2.12)), we can canonically
identify the quotient map g: E — X/E with the restriction map. We have to
show that (Sg) = S;- .

Let £ € S;- . There exists f €S, =0,C such that the line £ = 1
supports C atf. If f = ey, then £ = uy|L (Claim 1'), that is £ = q(u,). Let
f # ey. Then the line £ = 1 is disjoint from By . As in the proof of Claim 4
(proof of Example (3.1.12)), the Hahn-Banach separation theorem (applied
to the sets By-and £~1(1) in the w*-topology) gives a nonzero x € X such
that |||x||| = sup x(W) = 1l and x|, = ¢. Then x € S; and £ = q(x).

The proof of Example (3.2.13) is complete.
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Chapter 4

Smooth and Polyhedral Approximation in Banach Spaces

We show that norms on certain Banach spaces X can be approximated
uni-formly, on bounded subsets of X by C* smooth norms and polyhedral
norms. we show that this holds for any equivalent norm on cy(T’), where T is
an arbitrary set. We also give a necessary condition for the existence of a

polyhedral norm on a weakly compactly generated Banach space.
Section (4.1): Approximation of Norms:

Given a Banach space (X, ||]]) and € > 0, we say that a new norm ||| - |||

is & -equivalent to ||-]| if

[x[ll < llxll < @+ e)lllx]ll,
for all x € X. Suppose that P is some geometric property of norms, such as
smoothness or strict convexity. We shall say that a norm ||-|| can be
approximated by norms having P if, given any &€ > 0, there exists a norm
having P that is € -equivalent to [|-]|. This is equivalent to the statement,
often seen in the relevant literature, that ||| may be approximated
uniformly, and with arbitrary precision, on bounded subsets of X by norms

having P.

The question of whether all equivalent norms on a given Banach space
can be approxi-mated by norms having P is a recurring theme in renorming
theory. It is known to be true if P is the property of being strictly convex, or

locally uniformly rotund.
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Several works in the literature, such as [4,9], have addressed this question

in the case of C* smoothness or polyhedrality.

Definition (4.1.1)[4]: We say the norm ||-|| of a Banach space X is C*
smooth if its kth Fréchet derivative exists and is continuous at every point of
X\{0}. The norm said to be C* smooth if this holds for all k € N.

For separable spaces, we have the following recent and conclusive result.

Theorem (4.1.2)[4]: Let X be a separable Banach space with a C¥
smooth norm. Then any equivalent norm on X can be approximated by C*

smooth norms.

There is an analogous result to Theorem (4.1.2) for polyhedral norms.

Definition (4.1.3)[4]: We say a norm ||/|| on a Banach space X is
polyhedral if, given any finite-dimensional subspace Y of X, the restriction of

the unit ball of ||-]| to Y is a polytope.

Theorem (4.1.4)[4]: Let X be a separable Banach space with a polyhedral

norm. Then any equivalent norm on X can be approximated by polyhedral

norms.

Very little is known in the non-separable case. In this paper, we will

focus much of our attention on the following class of spaces.

Definition (4.1.5.)[4]: Let T be a set. The set ¢y(I') consists of all
functions x : I' > R, with the property that {y € ' : |x(y)| = &} is finite
whenever ¢ > 0. We equip co(I") with the norm [|-]|, Where ||x|l, =
max {|x(¥)|:y €T}.

When T is uncountable, c,(T) is non-separable. The structure of cy(T)

strongly promotes the existence of the sorts of norms under discussion in
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this paper. For example, it is well known that the canonical norm on cy(T) is
polyhedral, and that it can be approximated by € smooth norms. In terms
of finding positive non-separable analogues of Theorems (4.1.2) and (4.1.4),

this class of spaces is a very plausible candidate.

The most general result concerning this class to date is given below. We

shall call a norm ||-|| on ¢, (T") a lattice norm if ||x]|| < ||y|| whenever x,y €
co(T) satisfy |x(y)]| < |y(y)| foreachy €T.

Theorem (4.1.6)[4]: Every equivalent lattice norm on co(I') can be

approximated by € * smooth norms.

The following result completely settles the approximation problem in the
case of ¢y (T'), from the point of view of C* smooth norms and polyhedral

norms. It solves a special case of [4].

Theorem (4.1.7)[4]: Let T be an arbitrary set, and let ||-|| be an arbitrary

equivalent norm on ¢, (T"). Then ||-|| can be approximated by both C* norms

and polyhedral norms.

Theorem (4.1.7) is a consequence of a more general result, Theorem

(4.1.15), which involves spaces having Markushevich bases.

Definition (4.1.8.)[4]: Let (X, |I-]]) be a Banach space. A subset B of the
closed unit ball By- is a called a boundary of ||-|| if, for each x in the unit
sphere Sy, there exists f € B such that f(x) = 1.

This is also known as a James boundary of X in the literature. The dual
unit sphere Sy~ and the set ext(By-) of extreme points of the dual unit ball
By~ are always boundaries of [|-||, by the Hahn-Banach Theorem and (the

proof of the) Krein-Milman Theorem, respectively. It is worth noting that
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the property of being a boundary is not preserved by isomorphisms in
general: a boundary of ||-|| may not be a boundary of ||| - |||, where ||| - ||] is
an equivalent norm. Since we will be changing norms in this paper, it will be

necessary to bear this in mind.

Boundaries play a key role in the theory of both smooth norms and
polyhedral norms. If (X, ||-]|]) has a boundary that is countable or otherwise

well-behaved, then X enjoys good geometric properties as a consequence

Recall that an element f € By- is called a w™-strongly exposed point of
By if there exists x € By such that f(x) = 1 and, moreover, ||f — f,Il =
O whenever (f,)) € By- is a sequence satisfying f,(x) — 1. It is a simple
matter to check that the (possibly empty) set w™-str exp(By+) of w”-strongly
exposed points of By~ is contained in any boundary of ||-||. We recall the

following important result of Fonf, concerning polyhedral norms.

Theorem (4.1.9)[4]: Let ||]| be a polyhedral norm on a Banach space X
having density character k. Then w'-str exp(Byx-) has cardinality x and is a
boundary of ||-|| (so is the minimal boundary, with respect to inclusion).
Moreover, given f € w* — str exp(Bx-+), the set Af N By has non-empty

interior, relative to the affine hyperplane A; := {x € X: f(x) = 1}.

In particular, if X is separable and ||-|| is polyhedral, then w"-str
exp(Byx-+) is a countable boundary. Conversely, according to [4], if (X,[|-]])
is a Banach space and ||-]| has a countable boundary B, then X admits
equivalent polyhedral norms that approximate ||-||. Thus, in the separable
case, the existence of equivalent polyhedral norms can be characterised

purely in terms of the cardinality of the boundary.
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In the non-separable case however, any analogous characterisations, if
they exist, must generally rely on more than the cardinality of the boundary
alone. There exist Banach spaces (X, ||-||) having no equivalent polyhedral
norms, yet X has density the continuum c, and ||-|| has boundary B of
cardinality c. Such Banach spaces can take the form X = C(T), where T is
the 1-point compactification of a suitably chosen locally compact scattered

tree.

Recall that a Banach space X is weakly compactly generated
(WCG) if X = span'l(K), where K < X is weakly compact. Separable
spaces and reflexive spaces are WCG. Exam-ples of WCG spaces that are

neither include the c,(T") spaces above.

Theorem (4.1.10)[4]: Let X be WCG, and let the norm ||:|| on X be
polyhedral. Then the boundary w*-str exp(Bx-) of ||-|| may be written as

w* — str exp(Bx+) = U D, ,

n=1
where each D,, is relatively discrete in the w*-topology.

The theorem above should be compared to the following sufficient
condition: if the norm ||-|| on X admits a boundary B such that B = U;—-; D,,
and B = U _, K,, , where each D,, is relatively discrete in the w”-topology,
and each Km is w'-compact, then ||| can be approximated by polyhedral
norms. Thus Theorem (4.1.10) can be considered as a step towards a

characterisation of the existence of polyhedral norms, in the WCG case.

Definition (4.1.11)[4]: We call an indexed set of pairs (e, e;),er S X %
X" a Markushevich basis (or M-basis) if
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* eq(eg) = Gqp, (that is, (e, e)),er is a biorthogonal system);
. Span”'”(ey)yer = X, and
* (e))yer separates the points of X.

Furthermore, an M-basis is called strong if x € span!l{e, : e;(x) + 0} for
all x € X, shrinking if X* = span!'ll(e x),¢r, and weakly compact if {e, :
y € I'} U {0} is weakly compact.

The existence of an M-basis allows us to define supports of functionals in
the dual space.

Definition (4.1.12)[4]: Let X be a Banach space with an M-basis

(ey.ey)yerand let f € X™.
Define the support of f (with respect to the basis) to be the set

supp(f) ={y €T : f(e,) #0}.
We say f has finite support if supp(f) is finite.

The main result of this section, Theorem (4.1.15), states that if X has a
strong M-basis then, given the right circumstances, the norm on X can be
approximated by norms having boundaries that consist solely of elements
having finite support. The following result illustrates the relevance of such
boundaries to the current discussion. It amalgamates two theorems, both of

which are stated with broader hypotheses in their original forms.

Theorem (4.1.13)[4]: Let a Banach space X have a strong M-basis, and

suppose that the norm ||-|| has a boundary consisting solely of elements
having finite support. Then ||-|| can be approximated by both € * norms and

polyhedral norms.

82



Now, for the rest of this section, we will assume that the Banach space X
has a strong M-basis (e, e;)yer, such that |le,||=1 for all y€eT.
Furthermore, we will suppose that there is some fixed L > O satisfyinge

e, < Lforall y €T.

Given f € X*, set [|f]l; = Xyer|f(e,)], whenever this quantity is finite,
and set ||f|l; = oo otherwise. Observe that if x =}, cr e;(x)ey , for some
finite F € I', then

| ()l SZIe;(x)I lf(e)l < L IIxIIZIf(ey)I < LIl Iflly,
YEF YEF

whence ||f|| < L||f]l; for all f € X*. It is also easy to see that ||-||; is
a w”-lower semicontinuous function on X*, and that given r > 0, the norm-

bounded set
W ={f e X" lIfll, =x},
is symmetric, convex and w*-compact.

Let us consider the set B = {f € Sx- : |[|f||; < «}. Evidently, B is the
countable union of the sets Sy« N W,., r € N, which are w*-closed in Sy-. If
Sx+ N W, contains a non-empty norm-open subset of Sy- , for some r € N,
then it is a straightforward matter to show that there exists M > 0O such that
Ifll; < MI|fll for all fe€X*, whence Sy-NW, = Sy» and X is
isomorphic to c,(T') via the map x = (e, (x)),¢r. If there is no such r, then

of course B is of first category in Sy« . If X is not isomorphic to any space of

the form ¢, (T'), then B # Sy- , but B may still be a boundary of ||-]|.
We shall be interested in cases where B is a boundary of ||-]|.

The following lemma will be used in Theorem (4.1.15).
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Lemma (4.1.14)[4]: Suppose that B as defined above is a boundary of
I-II. Then X* = span!l(e;),i.e., the M-basis of X is shrinking.

Proof. Let F € I be finite, and define
Xp = Span”'”(ey)yep\p and  Wg = span(ey)yer -
Then Wy = X% (the inclusion X% C Wy follows from the fact that the basis

is strong), and thus X*/W naturally identifies with X7, and ||f Iy, || =
d(f,Wg ) forall f € X*, where

d(f W) =inf{llf —gll : g € W }.
Suppose, for a contradiction, that there exists f € X* and € > 0, such
that d(f,Wr) > efor all finite F < I'. Let FO be empty. Since ||f]l =

d(f,Wg,) > &, take a unit vector x, € X having finite support, such that

= d(f,Wg,) > ¢, there

f(xp) > €. Set F; =supp x,. Since ||f FXFl
exists a unit vector x; € X having finite support in '\ F1, such that
f(x;) > ¢. Define F, =F; U supp x,. Continuing like this, we get a
sequence of unit vectors (x,) having finite, pairwise disjoint supports, such
that f(x,,) > e forall i. Clearly, (x;,) is not weakly null.

On the other hand, if f € B and y =Y, crey(y)e, is a unit vector,
where F € T is finite, then

FOI < ) 1esOIIFE] < LY If (e,
YEr YEF

It follows that f(x,) = 0 as n — co. This holds for every element of B,

which is a boundary, so x,, = 0 weakly, by Rainwater’s Theorem (Let X be
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a Banach space, let {x,,} be a bounded sequence in X and x € X. If f(x,,) —

f(x) forevery f € Ext(Bx-), then x, 5 x.

The symbol x,, % x denotes the convergence in weak topology. By By+ we
denote the unit ball of the dual X* and Ext(By-) is the set of all extreme

points of this set.)[9]. This is a contradiction.

We can now prove Theorem (4.1.15). The method of proof owes a debt
to [4], although the approximation scheme used in that result fails in the case

under consideration here, and substantial modifications must be made.

Theorem (4.1.15)[4]: Let a Banach space X have an M-basis as above,

and suppose that B as above is a boundary. Given ¢ > 0, there exists an ¢ -
approximation ||| - ||| of |||, which has a boundary consisting solely of
elements having finite support. Consequently, by Theorem (4.1.13), ||-|| can

be approximated by € * smooth norms and polyhedral norms.

Proof. Fix € € (0,1). Suppose f € X* satisfies ||f]|; < oo. We define a
sequence of positive numbers and a sequence of subsets of I' inductively.

To begin, set

p(f,1) =max{|f(e)l:y € 'tand G(f 1) ={y €I':|f(e))| =p(z,1)}.
Given n = 2, we define

(max{lf(e,))l:y €eI\G(f,n—1)} if ING(zn—1)+0
0 otherwise,
and G(f,n) = {y €l : |f(e)| = p(f. M)}
Observe that the set G(f,n) is finite if and only if p(f,n) # 0 and, in
this case, ||f|l; = p(f,n)|G(f,n)|. By induction, |G(f,n)| = n for all n, so
p(f,n) < |Ifllyn~! and, in particular, p(f,n) — 0. By construction, the

p(fim) ={
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sequence (p(f,n)) is decreasing, and strictly decreasing on the set of
indices n at which it is non-zero. If p(f,n) =0 for some n € N, then
f(ey) # 0 for at most finitely many y and hence f has finite support. Thus,
when f has infinite support, we get a strictly decreasing sequence of positive

numbers p(f,n) —» 0, and a strictly increasing sequence of finite sets
(G(f.n)).

Provided G (f,n) is finite, we define

w(f,n) = z sgn (f(ey)) ey

YeG(f.n)
and h(fm) = ) (p(f.)) = p(f.i + DIW(.D.

Let y €. If y € '\Uy~;G(f,n), then h(f,m)(e,) =0 = f(e,) for all
m. Otherwise, let n be minimal, subject to the condition y € G(f,n). By

minimality, we have p(f,n) = |f(e,)I.

If m <n, then h(f,m)(e, = 0. If m = n, then we can see that

h(f. m)(e,) = Z(P(f,i) = p(f,i + 1)) sgn(f(v))

= [p(f,n) — p(fin + 1)
+p(fin+1)— p(fin + 2)

+...— ..

+p(fim) = p(fim + Dlsgn(f(e,)
= [f(ey)lsan (f(ey)) = pUim + Dsgn (f(ey))
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= f(ey) — p(fym + 1) sgn(f(ey)).
From the calculation above and the fact that p(f,m +1) <|f(e,)|, we
have
|h(f, m)(ey)| = Isgn(f(e)(f (e — p(fim + 1))]
= Ifle)l = p(fym + 1).
Since p(f,m + 1) = 0,we obtain |h(f,m)(e,)| < |f(e))l
Therefore, for all y €T, |h(f,m)(e,)| < |f(e,)| and h(f,m)(e,) —
f(e,) as m — oo. We apply Lebesgue’s Dominated Convergence Theorem
to conclude that ||f — h(f,m)|l; — O. Since || -|| < L|| ||, we also get
If — h(f,m)|l = 0. Since the signs of w(f,i)(e,) and w(f,i")(e,) agree

whenever they are non-zero,

IR(E I = Y @D = Pt + D) WDl

= > p(f.0) = p(fi +IG( D

i=1(
Therefore, if f has infinite support, then ||fll; =X2,(p(f,i) —
p(f,i + )G DI

Given m > n, define

— h(f, )
g(finm) = {”f |G(f(fn)7;)” w(f,m) if |G(f,m)| < oo,

0 otherwise.

and j(f,n,m) = h(f,n) + g(f,n,m),m > n. Observe that supp(j(f,n,m)) <
G(f,m).

Let B, = By N W, ={f € By ||f|l; < r}. Of course, B € Uy~ B,-. We let
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V. =j(f.nm):f € B,m=>n and||f —j(f,nm)|| < 27+,
and setV = U(l + 277V,
r=1

Define |[||x]]] = sup{f(x: f € V}. This is the norm that we claim
g-approximates ||-|| and has a boundary consisting solely of elements having

finite support.

First of all, we prove that [|x|| < [||x|]] < (1 + &)|||x]||] whenever x #
0. Take x € X with ||x|]| =1 and let f € B such that f(x) =1 (which is
possible as B is a bound- ary of ||-||). Let r be minimal, such that f € B,.
Since |Ifll = Lliflly for allfeX® and |If—j(finm)lly< 21f -
h(f,n)|l;, it follows that there exists n such that ||f —j(f,n,m)| <

2-("+2) ¢ whenever m > n. In particular,

HIxlll = (1 +277e)j(f nn + 1)(x) = (L +277e)(1 — 270 *2e)

> 1+ 2" ()¢,

To secure the other inequality, simply observe that if f € B,, m >n and
If —j(f,nm)|l <27*2g, then

(1+277e)j(f,nm)(x) < (1 + 277e)(1+27 )

<1+ T+270D 427D <1 + ¢,

This means that |||x||]| < 1+ e. By homogeneity, [|x| <]||x]|] < @+

€) ||x|| whenever x = 0.

Now we show that ||| - ||| has a boundary consisting solely of elements

having finite support. By Krein Milman’s Theorem [5], we know that

ext(B(X’”””)*) c VW*. Define
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%) w

D =ﬁ | Ja+zsen ),

S=r

and let d € D. For each r €N, ||d|| < (1 +2Te)(1+2-*+2¢), and
hence ||d|| < 1.

Therefore, if |||x]|]] = 1, then
d(x) < lldll llx]l < x|l < 1.
It follows that, with respect to ||| - |||, none of the elements of D are

norm-attaining. Consequently, B = ext(Bex1-inH\P is a boundary of [[] -

|||. We claim that every element of B has finite support.

Given f € B, we have f € (1+2‘Te)l7rw* for some r e N. For a
contradiction, we will assume that f has infinite support. According to

Lemma (3.1.14), our M-basis is shrinking. It follows that supp g is countable

for all g € X*. Thus, IZW*is Corson compact in the w-topology, which
implies that it is a Fréchet-Urysohn space. In particular, there exist

sequences (fyx) € B, and (ng), (m;) € N, with n, <m,; for all k € N,

such that (j(fk,nk,mk)) < V. and j(fk,nk,mk)m—l> [, where [=
1+277e)7 1y,

We claim that, in fact, ko—1> L. First, we show that h(fk,nk)m—l> l. To this
end, suppose that |G(fi,my)| » . Then by taking a subsequence if

necessary, there exists N €N such that |supp((fi, ni,mg))| <

1G(fom)| <N for all k. But as j(fe, ne, my) — 1, this would force
|supp(l)] < N < oo, which is not the case. Thus we must have

|G (fx, mi)| — oo. Therefore, for all y € I, g(fy,ng, my)(e,) >0 as k -
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. Since ||| <L|-I|l. . the sequence (g(fi,nk,my)) is bounded.

Therefore, g(fi., ni, my) % 0 and hence h(f;, ny) it l.

We will now show that f;, — h(fy, ng) 2, 0. For each YET, |f(¥) —
h(fi, i) ()] < |fk(ey)l, so Ifx — h(fr, ) lls < lIfklly . Therefore,
(fk — h(fx,nyx)) is a bounded sequence.

Given y €T,

Il fll1 r
|(fk_ h(fkvnk))(ey)l = p(fkvnk+ 1) = |G(fkynk+ 1)| = |G(fkvnk+ 1)'

Since h(f,.ny) it [, as above, the infinite support of [ ensures that

|G(f, m)| — oo. Therefore, (f, — h(f,.n))(ey,) > 0 and hence f —

h(fi,ny) %, 0as k - oo. It follows that fkg [ as claimed, and hence | €
B,.

Fixn € Nsuchthat ||l — h(l,n)|l; < L~12=*3)¢ Then for all m > n,
Il — j@nmll < LI — j(,n,m)lly < 2L Il — h(I,n)ll; < 27(+2g,
Soj(l,n,m) € V. forallm > n. Let

.= em) — ptm + 1)IGEm)]
" Il = h@ )y |

Note that x,,> 0 whenever m > n. Since ||l — h(l,n)|l; =22, (p Q) —
p(l,i + )G )], we get Xooniixm= 1.

[00] [00]

Z mjlin,m) = Z m h(l,n) + i m g(l,n,m)

m=n+1 m=n+1 m=n+1

= h(ln) + Z WD) — p(li + D))w(li) = L

m=n+1
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Therefore, f is a nontrivial convex combination of elements of (1 +
Z_rE)Vr c B(X,|||-|||)*’ SO f & ext(B(XJ”_”D*), and hence f & B. This giVES
us our desired contradiction. In conclusion, B is a boundary of
[11 - ||| consisting solely of functionals having finite support.

Theorem (4.1.7) becomes a trivial consequence of Theorem (4.1.15).

Proof of Theorem (4.1.7). In this case B = S (ry, 1|+ » SO it is a boundary of
111l

It is worth remarking that the implication (d) = (c) of [12, Theorem
(4.1.15)] is essentially Theorem (4.1.15), but with the additional assumption
that the M-basis is countable. The method of proof in that case is completely

different from the one presented here.
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Section (4.2): A Necessary Condition for Polyhedrality in
WCG Spaces:

We begin this section with a lemma. It is based on straightforward
geometry and is probably folklore, but is included for completeness since we
have no direct reference for it.

Lemma (4.2.1)[4]: Suppose that D € By has the property that for all f €

D, there exists x; €X and r; >0 such that ||x;+ z|| = f(x; + 2)

whenever ||z|| < ¢ . Then

(1) T'f < ||Xf||, and

(2) llzll < 71F and g € D \{f} implies g(xs + z) < ||xf + z||
In particular, if £, g € D are distinct then ||x, — x¢|| > 5.
Proof.

(1) Suppose that ||xs|| <7; . Let y € X satisfy [|yll <7y — ||x||. Then
£y — x| <7 andso
fO) =lyll=ll=yll = f(=y) = =f),
meaning that y € ker f. It follows that f = O, which is impossible.
(2) Suppose |Izll <17, 9 € D\{f} and g(x; + z) = ||x;+ z||. Since
g # f we can find y € ker f such that g(y) >0 and ||y|| <7 —
|lz||. Otherwise we would have ker f € ker g, so g = af for some
a, and since f(x;+ z)= ||xf + z|| = g(xf + z) = af (x; + 2),
and ||x; + z|| > 0 by (1), we conclude that g = f, which is not the

case. Thus |ly + z|| <y andso

s+ vy + z|| = flxr+ y + 2) = f(x+ 2).
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On the other hand,
e+ y + 2|2 glp+y +2) > g+ 2) = ||xp+ z|| = f(x+ 2).

Finally, if f, g € D are distinct and ||x;, — x|| <7, then by (2) we would

have

lxgll = 9(xo) = 9 (x + (x = 27)) <l + (xg = %)l = Izl
Armed with this lemma, we can give the proof of Theorem (4.1.10).

Proof of Theorem (4.1.10). Since X is WCG, we can find a weakly
compact M-basis (e,,e,) € I'of X. Let E,, be the set of x € X that can be
written as a linear combination of at most n elements of (e,) € I'. Let us
define B := w* — str exp(Bx-+). According to Theorem (4.1.9), for each
f € B, we can find a point x € span(e,) € I' that lies in the interior of
Ar N By, Where A¢ is the supporting hyperplane as defined in that theorem.
By a straightforward argument, it follows that there exists » > 0 such that

llx + z|| = f(x + z) whenever ||z|| < r. Any such x belongs to some E,,.

Therefore, given f € B, we can define ny to be the minimal n € N for which

we can find an x and r as above, with x € E,,.

Define Dy, , to be the set of all f € B such that n, = n, and there exist x and
r, as described above, which in addition satisfy » = 27™ and
o z ayey
YEF

where F € I' has cardinality n and |a,| < m forall y € F. Any such pair

(x,r) will be called a witness for f € D, ,.
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Evidently, B = Uy =1 Dn.m - We claim that each D,, ,,, is relatively discrete

in the norm topology. For a contradiction, suppose otherwise and let f, f;, €
Dy, ., such that ||f — fi|l = O. For each k € N, select a witness (xy, 1) for

fi- The set

L= z aye, : F ST has cardinality nand |a,| <m forall y €F ¢,
YEF

is weakly compact, being a natural continuous image of [-m, m]"™ x ({e, :
y € ryu{op™.

Thus, by the Eberlein-Smulyan Theorem (Let X be a Banach space. For
subset K the following are equivalent. a) K is relatively o(X,X™) compact,
l.e. Ko(X,X") is compact. b) Every sequence in K contains a a(X,X")-
convergent subsequence. c) Every sequence in K has a o(X,X")-
accumulation point. We will need the following Lemma.)[10], and by taking
a subsequence of (x;) if necessary, we can assume that the x; tend weakly

to some y € L. We claim that y € E; for some j < n. Indeed, if
y = z ayey
YEF

where F € I has cardinality nand # O for all y € F, then there exists a K

for which ey (x;) # 0 forall y € F and all k = K. Because each x; can be
expressed as a linear combination of n elements of (e, ), ¢r, it follows that

xx € span(ey,),er Whenever k = K.

Indeed, if

w ZZbyey,
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where ¢ S I' has cardinality n, and if e,(w) # 0 for all y € F, then
necessarily F < G, and equality of these sets follows since their
cardinalities agree. Because the x;,k = K,belong to a finite-dimensional
space, it follows that ||y — xi|| = 0. However, by Lemma (4.2.1), we
know that the x; are uniformly separated in norm by 27 (< ry), so they

cannot converge in norm to anything.

Thus y € E; for some j < n, as claimed. Now fix z € X such that
llz|| < 27™. We have ||x, + z|| = fi(x; + z) for all k, because 27 <
7. As |If — fill= 0 and x;, + z - y +z weakly, we get ||x; + z|| =
f(y+ z) <y + z. On the other hand, by w-lower semicontinuity of the
norm, |ly + z|| < f(y +z). So the equality ||y + z|| = f(y + z) holds
whenever [|z|| < 27™. In particular, 1 = ||lx.|| = [|lyll. However y € E;

and j < n, and this contradicts the minimal choice of ny = n.

Thus each D,, ,,, is relatively discrete in the norm topology. Since D, ,, €
B and since the norm and w*-topologies agree on B, it follows that Dn,m is

relatively discrete in the w”-topology as well.

Finally, we recall that a Banach space X is called weakly Lindel of
determined (WLD) if By- is Corson compact in the w™- topology. The class
of WLD spaces includes all WCG spaces. Any polyhedral Banach space is
an Asplund space (this follows, for example, from [4]), and any WLD
Asplund space is WCG. Therefore Theorem (4.1.10) extends to all WLD

polyhedral spaces.
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