Chapter 2
Real Analytic Families of Harmonic Functions and

a domain with Small Hole

We show a general result on continuation propeties of some
particular assumptions real analytic familes of harmonic functions in
domains with a small hole and we prove that the validity of the
equality u.(p)= U,[e] for negative depends on the parity of the
dimension.

Section(2.1): Main Results for Real Analytic Families of Harmonic
Function on Q (&)

Wefix onceforallne N, n>3,][0,1]. Here N denotes the set of
natural numbers including 0. Then we fix two sets and 2° in the n-
dimensional Euclidean space R».The letter ‘i’ stands for ‘inner domain’
and the letter ‘0’ stands for ‘outer domain’. We assume that i and O
satisfy the following condition Qi and 29 are open bounded connected
subsets of Rt of (13) class €%« such that R\ cIf2i and R~ \ ¢I2° are
connected, and such that the origin 0 of R® belongs both to 2¢ and n°.

Here cI2 denotes the closure of 2 for all 2 € R . For the
definition of functions and sets of the usual Schauder class €%« and C1«
, we refer for example to Gilbarg and Trudinger .

We note that condition (13) implies that 2i and 2° have no holes
and that there exists a real number g, such that

go>0and eclic N°forall € € [-g4,0] - (14)
Then we denote by (¢) the perforated domain defined by
Q(e) = 2%\ (ecl)) Ve € [-£0,€0)
A simple topological argument shows that (¢) is an open bounded
connected subset of R"of class C* for all € € [-£4,0] \ {0} . Moreover, the

boundary (&) has exactly the two connected components 9.2° and 0.2,
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for all £ € [-£0,50] . We also note that (0) = 2°\{0}.
Now let fi € C1(82) and f°e CL «(00°). Let £ € [-£0, &0] \ {0}. We
consider the following boundary value problem

Au=20 in2(¢e),

u(x) = fi(x/s) forx € €00, (15)
u(x) = f°(x) for x € aN°.

As is well known, the problem in (3) has a unique solution in

CL(cIN((g)). We denote such a solution by u.Then we fix a point p in
N°\ {0} and we take &, €[0,50] , such that p € 2(¢) for all € € [0, &] . In
particular, it makes sense to consider us(p) for all € € [0,e,] . Thus we
can ask the following question. What can be said of the map from [0, &;]
to R which takes ¢ to (p)?
Questions of this type have been largely investigated by the so called
Asymptotic Analysis. We mention here as an example the work of
Maz'ya, Nazarov, and Plamenevskij]. The techniques of Asymptotic
Analysis aim at representing the behavior of (p) as € =0* in terms of
regular functions of € plus a remainder which is smaller than a known
infinitesimal function of ¢. Instead, by the different approach proposed
by Lanza de Cristoforis and by possibly shrinking 5, we can represent
the function which takes ¢ to u:(p) as the restriction to [0,e;] of a real
analytic map defined on [-&p,&p].

We can consider what we call the ‘macroscopic’ behaviour of the
family {u:}€ps,). Indeed, if 2y S 02° is open, and 0¢ cl2u, and ey €
[0,€0] is such that clQy N(ecl) = @ for all € € [-em,em] , then clOu S
cl(e) for all € € [0, em]. Thus it makes sense to consider the restriction
ue\c1om for all € € [0,em]. In particular, it makes sense to consider the
map from [0,en] to C1e(clf2m) which takes € to uaciom. Then we prove in
Proposition (2.2.1)[2] that there exists a real number €1 € [0, €] such
that the following statement holds.

(a1) Let 2un € 1° be open and such that 0 & cl2u. Let em € [0, £1] be
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such that c12m N(eclN?) =@ for all € € [-em,em] .Then there exists a real
analytic operator Uy from [-em,en] to C12(clf2y) such that
us\ciom = [e] Ve €0, em]. (16)
Here the letter ‘M’ stands for ‘macroscopic’. But we can also consider
the ‘microscopic’ behavior of the family {u:} ¢ j0,; in proximity of the
boundary of the hole. To do so we denote by (¢.) the rescaled function
which takes x € (1/€)clQ(¢) to ue(ex), for all e€[0,0].
If 2, € R\ cltis open, and e, € [0, €1] is such that ecl2,, < Q0 for all
€ € [-em,] ,then cl,, € (1/€)N(e) for all € € [0, €] and it makes sense
to consider the map from [0, £,]
to Cl2(clN») which takes € to uc(e.). In Proposition (2.2.1)[2] we
prove that there exists 1€ [0, €0) such that the following statement
holds.
(a2) Let 2,»<S R\ be open and bounded. Let &, € [0, €1] be such that
eclNy, <€ NOfor all € € [-em,]. Then there exists a real analytic operator
Um from [-em,em]. t0 CL2(clN.) such that
us(e)com=[e] Ve€]O0, enl]. (17)
Here the letter ‘m’ stands for ‘microscopic’.
We now observe that Proposition (2.2.1 )[2] states that the equalities
in (16) and (17) hold in general only for ¢ positive, but the functions
ugciom, Umle], ue(e.); and Un[e] are defined also for € negative. Thus, it
is natural to formulate the following question.
What happens to the equalities in (16) and (17) for € negative? (18)
The purpose is to answer to the question formulated here above.
In particular, we prove in Theorem ( 2.1.8)[2] that the equalities in
(16) and (17) hold also for & negative if the dimension n is even.
Instead, if the dimension n is odd we show in Proposition (2.2.3 )[2]
that the equalities in (16) and (17) hold for € negative only if there

exists a real constant c such that fi = c and f°= c identically (so that
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(x) = cforall x € cIn(€) and € € [-g0,0] \ {0}.)

However, we note that the conditions expressed in (a1) and (a2) are
not related to the particular boundary value problem in (3). Indeed, we
could prove the validity of (a1) and (a2) for families of functions {u.}: e
oe0] Which are solutions of problems with different boundary
conditions, such as those considered in Lanza de Cristoforis. For this
reason, we investigate the properties of families of functions {u<}ce[o.1]
such that

(a0) u. € C1(clN(¢e)) and Au.=0in (¢) for all € € [0,&1]
and which satisfy the conditions in (a1) and (a2), but which are not
required to satisfy any specific boundary condition on d2(e1). To do so,
we introduce the following terminology.

Let 1€ [0, &o0]. We say that {uc} < e[0¢ IS a right real analytic
family of harmonic functions on (1) if it satisfies the conditions in (ao),
(a1),(a2). We say that {u:} € €[-e1, 1] is a real analytic family of harmonic
functions on (1) if it satisfies the following conditions (bo)-(b1).

(bo) vo € C1 = (cI12°) and Avo = 0 in N9, € Cl2(clN(e)) and Av: =0 in
N(e) for all € € [-g1,64] \ {O}.

(b1) Let 2y < 029 be open and such that 0 & clu. Let ey € [0, &1]
be such that clQu N eclNi = @ for all € € [-en,]. Then there exists a real
analytic operator Vy from [-em, em] to C1(cI2n) such that

Veicrom = Vul[e] Ve € [-em,em].

(b2) Let 2Qu € R\ It be an open and bounded subset. Let en € [0,
€1] be such that ecl.,. € 20 for all € € [-em, £m]. Then there exists a real
analytic operator V,, from [-&m, em] to C1(clf4) such that

ve(€)iciom = [€] Ve € [-em, €m] \{O} . (19)
Here (¢.) denotes the map which takes x € (1/¢)ci2(e) to ve(ex), for all
€ € [-e1,e1]\{0} .
We also note that we do not ask in condition (b2) that the equality in
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(7) holds fore=0. In particular, vo(0.)|ciom IS necessarily a constant
function on cl2., while V, [0] may be nonconstant. Finally, we say that
{we} ¢ e [-514,1 1S @ real analytic family of harmonic functions on 20 if it
satisfies the following conditions (co),(c1).

(Co) we € CL(cINO) and Aw:=0in N0 for all e€[-£1,&1].

(c1) The map from [-£1, 1] to C1(cI2°) which takes ¢ to w. is real
analytic.

We state the results in Theorems (2.1.8) and (2.1.9), where we
consider separately the case of dimension n even and of dimension n
odd, respectively. In particular, by Theorems (2.1.8 ) and ( 2.1.9) we
can deduce the validity of the following statements (j) and (jj).

(J) If the dimension n is even and {u.} < e [0, «07 IS a right real analytic
family of harmonic functions on (&) then there exists a real analytic
family of harmonic functions
{ve}eel-e1.110N () such that us = v for all € € [0,e1].

(i) If the dimension n is odd and {v:} e [-¢1, £17 IS a real analytic family of
harmonic functions on (&) then there exists a real analytic family of
harmonic functions

{we} sef-e1611 ON N9such that ve = wejcin(e) for all & € [-e1,£1].
In particular we note that for n odd statement (jj) implies that for each
€ € [-e1,1] the function ve can be extended inside the hole &0t to
aharmonic function defined on the whole of 2°. As is well known, the
condition of existence of an extension of a harmonic function defined
on (&) to is quite restrictive. Hence, case (jj) has to be considered, in a
sense, as exceptional.

We introduce some known results of Potential Theory. In
particular, we adopt the approach proposed by Lanza de Cristoforis for
the analysis of elliptic boundary value problems in domains with a

small hole. Accordingly, we show that the boundary value problem in

21



(3) is equivalent to a suitable functional equation A = 0, where A is a
real analytic operator between Banach spaces. Then we analyze
equation A4 = 0 by exploiting the Implicit Function Theorem for real
analytic functions . We prove theorems (2.1.8) and (2.1.9), where we
consider separately case n even and n odd, respectively. Then in
Examples (2.1.10), (2.1.11) and (2.1.12) we show that the the
assumptions in Theorems (2.1.8) and (2.1.9) cannot be weakened in a
sense which we clarify below. In particular, by Examples (2.1.11) and
(2.1.12) we deduce that analogs of statements (j) and (jj) do not hold if
we replace the assumption that u.,ve, ws are harmonic with the weaker
assumption that u. ,v., we are real analytic. In the last Section 4 we
consider some particular cases and we show some applications of
Theorems (2.1.8) and (2.1.9).

We consider the family {u:} - e [0, c0} Of the solutions C1(cI2(¢)) in of
3).

We show that there exists € € [0, e1] such that {u.} < [0, <0} Satisfies
the conditions in (a1) and (a2) we also prove that we can take g1 = g if
the dimension n is even. In Proposition (2.2.1)[2] we assume that n is
even and we consider a right real analytic family {u.}ejo.c0y Of harmonic
function on 2(¢). Then, conditions (al) and (a2) imply that uejciom and
can be represented by means of convergent power series of € for ¢
small and positive. Under the condition that either 2i= -0t or that 2°=
-0 satisfies some suitable symmetry assumptions, and we obtain some
additional information on the power series expansion of ugcom and
(€.)|c10m for e small and postive.

We answer to the question in (6) by exploiting Theorem (2.1.9).

We denote by S, the function from R\ {0} to R defined by

x>

Sa(x) = 2.

vx € R\ {0}.

Here S, denotes the (n-1) dimensional measure of the unit sphere in R
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As is well known S, is the fundamental solution of the Laplace
operator in R . Let Q be an open bounded subset of R” of class C1« .Let
U € CO (02). Then we denote by [u] the single layer potential of density
u. Namely [u] is the function from R to R defined by

V] ()=, Snlx = YIu()doy, VxER™
Then we have the following well known Lemma.
Lemma (2.1.1.)[2]: Let 2 be an open bounded subset of R» of class C*.
Let { be an open bounded subset of R»\ cI/2.Then the map from €0«
(00).to Cl« (c1N) which takes u to] [u]jce is linear and continuous, and
the map from C%2(9N).to C12(cIN) which takes u to v[u]|ca is linear
and continuous. Moreover, the map from €°%(9Q) to C1*(d) which
takes u to [u]jen is a linear homeomorphism .We observe that the last
sentence of Lemma (2.1.1) holds only if the dimension n is greater or
equal than 3. Indeed, in the planar case the map which takes u to [u]jee
is not in general a homeomorphism from C%(d£).to C1«(d) ,we have
assumed that n > 3 and thus we can exploit Lemma (2.1.1) to convert a
Dirichlet boundary value problem for the Laplace operator into a
system of integral equations. In order to study the integral equations
corresponding to the Dirichlet problem in the perforated domain (),
with € € [-£0,0]\ {0} we now introduce the operators A1and A-1.Let 6 {-
1,-1} then we denote by As = (AL, AY) the operator from
[-€0, €0] X CL(00Y) X Cre (8£2°) X CO« (9£7) X €O« (00°) to CL« (302Y) X
Cla (0020)
Defined by
o L& fi £ i, 101(x) = 6, Su(x — Y)u'(¥) do,
+[5 i Sn(ex = Y)u°(y) doy, - fi(x) Vx€d;,

A [e f1 fO pi 10 (%) = 72 [ i Snlx — ex)u* (y) doy,

500 Sn(x = Wu°(y) doy, - fO(x) Vx€aN°
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forall (e fi fO ui, u°) € [-go0,e0]X CL*(00) X C12(0N°) x CO*(0NY) X
C%2(9NO% then, by Lemma (2.1.1) we deduce the validity of the
following Proposition (2.1.2).
Proposition (2.1.2) [2]: Let £2¢, 20. be as in (1). Let eobe as in (2). Let
€ [-€0,0] \ {0} . Let (fi, ) € C1(002Y) X C1*(0N°) Let 8 = (sgn €)*. Then
there exists a unique pair of functions (uf, u°) € €% (90 X C° (909
such that
Ag [&, f1, fO, 1, 1% = (0, 0). (20)

Moreover, the function u from (¢) to R defined by
(x) =2 [, Sn(x —ey)day, +[, 0Sn(x —y)u°(y)do, VxE€clf(e)
is the unique solution in C1e(cl(€)) of the boundary value problem in
3).
Proposition (2.1.3): Let 2/, 2%°be asin (1). Let 6 € {-1, 1}. Let (f!, fO)
€ Cl2(0") X C1=(00N°). Then, there exists a unique pair of functions
(ut, u%) € €o(047) X CO=(a42°) such that

A6 [0, , £O, i, u°] = (0,0). (21)
Moreover, the function u = [u%]|c00 is the unique solution in €1« (9.00)
of the boundary value problem

{Au =0 inaQ°,
u=1f°" on aQ°
Proof: We observe that the equation in (9) is equivalent to the
following system of equations
{ev[ui].agi +v[u°](0) = £ on 002!,

v[’lia00 = f° on 00°.
Then the validity of the Lemma can be deduced by Lemma (2.1.1).
In the following Propositions (2.1.5),(2.1.6 ) and ( 2.1.7) we exploit
the Implicit Function Theorem for real analytic maps to investigate the
dependence of the solution (ui, u°) of the Equations in (8) and (9)

upon (&, fi, f°) in particular, in Proposition (2.1.5 ) we study what
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happens for & small, while in Propositions (2.1.6 ) and (2.1.7 ) we
consider the case of dimension n even and odd, respectively. To prove
Propositions (2.1.5 ),(2.1.6 ) and ( 2.1.7) we need to analyze the
regularity of the operator As. The definition of As involves the single
layer [u] and also integral operators which display no singularity. To
analyze their regularity we need the following Lemma (2.1.4).
Lemma (2.1.4)[2]: Let 2, 2 be open bounded subsets of R of class CL.
Then the following statements hold.
(i) The map G from {(¥), ¢, p) € C2«(3Q , Rn)X CLe(d0, Rn)X C0«(0.0) :
Y (002) N ¢p(02) = B} to C1= (3N) which takes (Y, ¢, 1) to the function
G[y, ¢, u] defined by

G o= [,,SnWx) — p)u(y)do, Vx e,
is real analytic.
(iDThe map H from {(®, ¢, p)€ Cre(cIQ Ry)X C1«(8N, R7)X C0«(0.2) :
@(cl) N $(002) = @} to Cre(cI) which takes (@, ¢, 1) to the function
H[®, ¢, u] defined by

H[®, ¢, u] =[, , Sn(®(x) — d())u(y) doy, Vx€cll,
is real analytic.
Proposition (2.1.5)[2]: Let £2¢ 20 be as in (1).Let & be as in (2) Let
6e{-1,1}. Let (fi, fO)€ CL2(aN)X CO«(aNO). Let the pair (4, fi°) be the
unique solution in Co«(00N)X Co«(a°) of A0, fi, fOui°]=0. Then
there exist & in [0, eo]Jand an open neighborhood U of (fi f°) in
Cle(dNH)X €O 2(9N°), and an open neighborhood V of (i A°) in
Cox(0N)X CO«(aN0), and a real analytic operator Mg = (Mis, M%) from
[-€, E]XU toV such that the set of zeros of AgIn[-&, £]XU X V coincides
with the graph of My. In particular,

e, fi, fO, M[e,0]]= (00) V(e fif%) € [-€ EIXU.  (22)

Proof: We note that the existence and uniqueness of the solution (4,

go)follows by Proposition (2.1.3). We now prove the statement by
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applying the Implicit Function Theorem for real analytic maps to the
equation in (10) around (0, £, £, &, /1°). To do so, we first show that A
is real analytic from [-e0,e0]X C12(00Q)X CL«(9N°) XCO¢(aNH)X
C02(9N°) to C12(0N)X CL2(00°) . By Lemma (2.1.4)(i) the map from [-
£0,€0]X C%¢(00°) to C1e(0N") which takes (&, w0 tothe function
J3 g0 Sn(ex = Y)u’(y) do, of x € a0¢ is real analytic Lemma (2.1.1)
implies that the map from C%(0Q2¢) to C1*(a0Y) which takes ui to the
function fagisn(x —-y) ui(y)day of x € dNtis real analytic. Then, by
standard calculus in Banach space we deduce that Al is real analytic
from [-eo, €0] X C12(8£2") X CL*(00%) X CO*(3NY) XC0(9N2O) to C1«(9NY)
. By a similar argument we can show that A% is real analytic from [-&o,
g0]X CLe(aY) X C1e(aNO) X Co«¢(aN) XCOo«(a0N°) to Cr*(aN°). Hence
A% is real analytic.
Now we observe that the partial differential of 4s at (0, ¢, fO, &, /i)
with respect to the variables (ui, u%) is delivered by the following
formulas
o0y Ag [0, f1, £0, %, @01, w0) (x) (23)
=0 [, Sn(x = Y) ' )day + [0S °(y) doy,  Vx €040,
aGu 0y A [0, £1, fO, i1, 1 (ut, pr0)(x) = [ o Sn(x = ¥) u°(¥)doy,  Vx €
a0
for all (ut , u%e Co%(aNY) XC%(dN°.We have to show that the
differential (., .0)4e [0, fi, O, @, [°] is a linear homeomorphism. By the
Open Mapping Theorem, it suffices to show that it is a bijection from
CO(0021) XCO«(000°) to C1a(9N2) X C1a(9N9).
Let (fi f°) € €1(aNY) X €1«(aNP). By the equalities in (11) and by
Lemma (2.1.1) we deduce that there exists a unique pair (u , u°e€
CO2(aNY) XC°«(aN°) such that
w 0o [0, £, 0, @, 1(at, 1°) = (%, f°)
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(see also the proof of Lemma (2.1.3)) Hence we can invoke the Implicit
Function Theorem for real analytic maps in Banach spaces and deduce
the existence of *, U, V, M? as in the statement.
Proposition (2.1.6)[2]: Let 2, 2% be as in (1). Let &0 be as in (2). If the
dimension n is even, then there exists a real analytic map M = (Mt, M©)
from [-go,60] X C12(002Y) X C12(30°) to C0«(00) XC%(30°) such that
Aufe, f1 O, M [, £, fO11 = (0, 0) (24)
for all (e, f, f9) € [-g0,0] X CL2(00Y) X CL*(0.20).
Proof: By Propositions (2.1.2) and (2.1.3) we deduce that there exists
a unigue map M from [-eo, g0] X C12(9NY) X CL*(9NO°) to CO«(aNY) X
C%2(9N°% which satisfies (12) We show that M is real analytic by
exploiting the Implicit Function Theorem for real analytic maps.
By Lemmas (2.1.1) and (2.1.4) and by standard calculus in Banach
space we verify that A1 is real analytic from [-eo, €0] X C1*(002%) X
C1a(902°) X CO«(0NY) X CO*(000°) to Cre(aN) X C1a(9NO) (see also the
proof of Proposition (2.1.5)) By the Implicit Function Theorem for real
analytic maps, it clearly suffices to prove that if (¢, f% f0)is in [-go0,e0] X
Cla(9NH)X C12(0NO) then the partial differential of A1 at (e, f% f°, M [¢,
fi, f9D with respect to the variables (u¢ , u® is a linear
homeomorphism from C%«(90n) X (C%(dN° onto Cle(dN)) X
C12(9N%)By Proposition(2.1.5), we can confine ourselves to consider
(e, fi, f9) in ([-€0, €0] \ {0}) X CLe(02)) X C1(00°). By standard
calculus in Banach space, the partial differential (u;uq)A1 [€, f1 O M [,
f% f9] is delivered by the following formulas
(o) Ay [0, 7, 0, f1t, AO1(i, %) ()
=[30: 50 (x = Y) E)doy, + [, 0 Splex = y)A°(y) doy,  Vx € 042,
w0y AT [0, f1, £O, i, Ol ¢, A°)(x)

= en2[, i Sp(x — &y) @' (Y)doy + [, 0 Sn(x — y)A°(y) day, Vx€ 010°,

for all (&, %) € CO2(9029) X C°«(9.2°) then by Lemma (2.1.1) and by the
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Open Mapping Theorem, we deduce that . x0) A1[e, f5 f°, M [¢, fi, fO]]
is a linear homeomorphism from C%2(9£2Y) X C%*(3°) onto C1«(d0Y)
X C1e(010) the proof of the Proposition is now complete.
Proposition (2.1.7)[2]: Let 2{ 2% be asin (1).Let eo be asin (2). If the
dimension n is odd, then there exist real analytic maps M, = (M} ,
M) from [0,£0] X C1e(902Y) X C1(902°) to CO0«(dN)X CO=(0°) and M_
= (ML, M%) from to [-e0, 0] X CLe(90i) X C1e(3N°) to CO*(aN)X
Co2(000) such that

Aile f1 O, My [e, f1 £O11 = (0, 0)
for all (¢, fi, f°) €[0, e0] XC1x(00Y) X C12(aNO), and such that

A e fi fO, My [e, £ £l = (0,0)
for all (¢, f%, f0) € [-e0, 0] XCL2(00Y) X CL*(0.20).

We prove theorems (2.1.8) and (2.1.9). In theorem (2.1.8) we
consider the case of dimension n even. We note that theorem (2.1.8)
implies the validity of statement (j).

Theorem (2.1.8)[2]: Assume that the dimensionn is even. Let , 2%be
asin (1). Let eo be asin (2). Let 1€ [0, &o]. let {Uc}eefo,1) be a family of
functions which satisfies the condition in (a0) and such that
(i) there exists a real analytic operator BY from [-€1, 1] to C1%(0.02°)
such that

ue (x) = B9[] (x) forall x e dN%and all € € [0, &1],
(i) there exists a real analytic operator Bifrom [-e1, €1] to C12(0.0Y)
such that

ue (ex) = Bi[€] (x) forall x € aRiand all € € [0, €1].
Then there exists a family of functions {v¢} c[-¢,. &, Which satisfies the
conditions in (bo) - (b2) and such that u. = v. for all € € [0, €1].
Proof: Let M = (M!, M%) be the map in Proposition (2.1.6) we set

vi(x) = em2[, 1 Sy (x — ey) M'[e, B'[e], B°[e]l(y)do, VX E (&)

for all € € [-e1, £,]\M0}, and vi(x) = 0 for all x € cI2° . Then we set
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vd(x) = em2f, 1, Sn(x — y) M°[e, B'[¢], B°[€]1(¥)day,
v.(x) = vi:(x) + (%), Vx € cl(e),

for all € € [-4, &;].By classical Potential Theory, we deduce that {ve} ce[-
¢e1¢1] satisfies the condition in (bo). Now let Qu, em be as in (b1). Let Vi
= vacoum for all € € [-en, em]. We show that Vi is real analytic and hence
{Ve}el-e1, 17 Satisfies the condition in (b1). To do so we prove that Vi is
real analytic in a neighborhood of a fixed point " of [-em, em] We note
that cIQu N £°clQ =@.Then, by a standard argument based on the
existence of smooth partitions of unity and on Sard’s Theorem we can
show that there exists an open bounded set 20of class C1« such that Qu
c Nc N0 and cI2 N €10Q: = @. Then, by the continuity of the real
function which takes ¢ to dist (ecl, cIQ2)= inf{|x-y| : x € eclt, y€ clQ}
we deduce that there exists § > 0 such that eclQiN clZ = @ for all
e€[e™-6, £€+6]. Possibly shrinking § we can assume that [¢*-6, €'+6]< [-
€1, €1]. Then, by Lemma (2.1.4)(ii) and by the real analyticity of M , B!,
BO we verify that the map from [&*-8, €"+48] to C1«(cl2) which takes ¢ to
viacg 1S real analytic. Then, by the boundedness of the restriction
operator from C1(clf2) to Cl«(clu) and by standard calculus in
Banach space, the map from [, €*+6] to C1e(cINu) which takes € to
Viacom is real analytic. By Lemma (2.1.1) and by the real analyticity of
M , Bt , B9 and by the boundedness of the restriction operator from
Cla(clNO) to Cle(clNm) we deduce that the map from [£*-8, €*+6] to
Cte(clNm) which takes € to v9:c0m IS real analytic. Then the map from
[e*-6, e+8] to CL(cIm) which takes € to Vi [e] = Vigerom + V0% craom IS
real analytic. Thus, {ve}cee,s) Satisfies the conditions in (b1). Now
we prove that {v.} [+, ) Satisfies the conditions in (b2). Let 2, and
embeasin (b2). Let [€] be defined by

Vilel(x) = [y 00 Sn(x — ¥) M'[g, B'[€], B°[e]1(v)day,

+[, 00 Sn(ex — y) M°[e, B'[€], B°[]1(y)do,  Vx € clfdn
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for all € € [-&m, em] Clearly,
ve (ex) = [e](x) Vx Eclm, € €E[-em em]\{0}. (25)

We prove that the map from [-em, em] to C1(clf2x) Which takes ¢ to
Vm[e] is real analytic.
To do so we prove that Vi, is real analytic in a neighborhood of a fixed
point &* of [-em, em]. By a standard argument based on the existence of
smooth partitions of unity, and on Sard’s Theorem, and on the
continuity of the distance function, we verify that there exist 6§ > 0
and an open bounded subset 2 of R~ \ ¢/ of class C1« such that 2., S
Nand ecI € NOfor all [¢*- &, e+ 8] possibly shrinking § we can assume
that [¢™- 8, €+ 6] S [-em, em].

Then we set
Vlel(x) = [, 51 Sa(x — y) M'[e, B'[¢], B°[]1(¥)day,

+ [, g0 Sn(ex — y) M°[, B'[¢], B°[]1(y)do, ~ VxEclf]

for all € € [¢*- &, &'+ &]. So that Vi, [€] = Vi [€]jciom ToOr all £ €[&*- 5, &'+
6]. Then, by Lemma (2.1.1) and by Lemma (2.1.4)(ii), and by the real
analyticity of M, and by standard calculus in Banach space, we deduce
that V., is real analytic from [¢*- §, &+ &] to Cle(cl2). Then, by the
boundedness of the restriction operator from C1(cI) to C1¢(cln), Vm
is real analytic from [&- &, €'+ §] to C1e (cI2»). Thus, the validity of
(b2) follows. Moreover, by Proposition (2.1.2) and by the uniqueness of
the solution of the Dirichlet boundary value problem in (&) we deduce
that u.= v.for € € [0, £1]. The validity of the theorem is now verified.

We now consider the case of dimension n odd and we prove
Theorem (2.1.9).
Theorem (2.1.9)[2]: Assume that the dimension n is odd. Let Q¢ 2%e
asin (1) Let eo be as in (2). Let g0 € [0, €0]. Let {ve} ce-¢1, <17 be a family
of functions which satisfies the condition in (bo) and such that

(i) there exists a real analytic operator B0 from [-&1, €1] to s C1e (c1£2°)
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such that
us (x) = BO [¢] (x) for all x € dN%nd all €€ [-¢, & ],
(i) there exists a real analytic operator B from [-&1, €1] to C1« (cINY)
such that
ue (ex) = Bi[e] (x) for all x € d2%and all €€ [-€1, €1] \ {0}.
Assume that the family {ve} e [,s) Satisfies at least one of the
following conditions (iii) and (iv).
(iii)There exist an open non-empty subset Qu of 2°\{0} and a real
number eu€[0, €1] such that clQm Necli =@ for all € € [-em, em], and a
real analytic operator Vy from [-eum, em] to C1(cIf2n) such that
Veerom=Vule] Ve € [-em, eu].
(iv) There exist a bounded open non-empty subset 2, of, R» \ cI, and
a real number en€ [0, €1] such that ecl2,, € 2°for all € € [-&m, em] and a
real analytic operator V., from [-&m, em] to C1(cl2:y) such that
Vee)lciom =Vm [€] Ve € [-em, em] \ {0}
Then there exists a family of functions {w¢} ce[-e1, £1 Which satisfies the
conditions in (co), (c1) and such that v: = we|ciom for all e€[-¢,, &].
Proof: Let M, = (Mi, MY?), & U be as in Propositions (2.1.5) with 8 = 1,
and f'= B'[0] and f°= B°[0] We show that M![e, Bi[¢], B°[]] =0 for
€ in an open neighborhood of 0.
To do so we first prove that both conditions (iii) and (iv) imply that

there exists €, € [0, €] such that
[ Sue= )i e, B, BN G o
20t

=0 VxeodnNsee[-E,0] (26)
Assume that {v:} ce [-s,, 2] Satisfies the condition in (iii). We can take &v €
[0, inf {eum, £}] such that ([¢], B? [€]) € U for all €€ [-&wm, En]. Then we set

Ve (x) = &v2 [, Sp(x — ey)Mj [e, B'[] B°[]l(¥)d oy (27)
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+[og0 Sn(x = ¥) M [e, B[], B°[ell(v)doy, Ve cl(e),
for all € € [-&m, Ev]\{0}, and
Uo(x) = [, ,:Sn(x — ey) MP[0, B'[0], B°[0]1(y)dao, Vx€E cI®. (28)
Then Propositions (2.1.2) and (2.1.3) imply that ¥, = v, for all €€ [0,
&u]. SO that Tejciom = Vejcrom for all € [0, &v]. We observe that the map
from €€ [-Em, Eu] to CY (cIfum) which takes & to Tqcom is real analytic
(see also the argument developed in the proof of Theorem (2.1.8) for
Vm). Then, by the assumption in (iii) and by the Identity Principle for
real analytic maps, we have Ueciom = vecrom for all €€ [-Em, Eu]. We note
that 7¢ is harmonic on £2(¢) for all e€ [-&u, Eu] .Thus, the equality Tejciom
= vgcom implies that ¥: = v.on the whole of cI2u(e) for all e€ [-&n, En].
In particular,
U(ex) =ve(ex) Vx€ 00, € € [-&y, 0],
which in turn implies that
- FpgeSn(x = Y [e, B'[€], BLeN () do, (29)
+ [0 Sn(x = Y)Y 2, B'[e], B[el1(v)doy, = B[] (x)
for all x € 80, € € [-&n, 0]. By the definition of M1 in Proposition (2.1.5)
we have A4[e, Bi[e], B[¢], M. [¢, B[], B°[¢]]] = O for all £€ [-&m, &n]. In
particular, for € [-&n, 0] we have
Ay [e,B[e], B®[e], M, [&, B'[€], B°[€]]] (x) (30)
= [y Sn e = )M! [, B[], B[]] ) do
o0 Sn(ex = y) M e, B[], B°[e]l(y)da, — B'[€](x) =0 Vx €00
Then, by (17) and (18) we deduce the validity of (14) in case (iii) with
E.= ém.
We now assume that (iv) holds. Then there exists & € [0, inf {em, £}]
such that
(B[], B°[€]) € U for all €€ [-Em, &n].
We set
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7(x) = w2(sgn e) [, Sn(x — ey) Mi[e, B'[€], B°[e]l(¥)d gy,
+[500 Sn(x — ¥) M?[e, B'[€], B°[]l(¥)doy,  Vx € cl(e),
for all € € [-&n, Ex]\{0} and
To(x) = [, Sa(x — €y) M2[0, B'[0], B°[0]1(y)d g, Vx € cl°.
By Propositions (2.1.2) and (2.1.3) we deduce that v = v, for all €€ [0,
&m]. So that
Ve (ex) = (ex) Vx €, € €0, &n)].
Then we set
Vnlel(x) = [ Sn(x — ¥) M[e, B'[], B°[]](v)day,
+ 500 Sn(ex — y) M°[e, B'[€], B°[€]1(y)do, ~ VXE clm
for all € € [-&m, &n]. We observe that V" is a real analytic map from [-&n,
&m] to CL ¢(cly) and that v:(x) = Vale](x) for all x€ clx and for all
€€ [-Em, En]\{O} (see also the argument developed in the proof of
Theorem (2.1.8) for then, by the assumption in (iv) and by the Identity
Principle for real analytic maps we have V[e] = Vm|[e] for all €€ [-&n,
&m], and thus ¢ (€.)] = ve (€)|c1om for all €€ [-&m, Ex]\{0}. We now note
that v is harmonic on (¢) for all e€ [-&n, &n]. Thus, the equality
V(&) |c1om = ve(€.)|c1om iIMplies that 7: = v on the whole of c(¢) for all e€
[-&m, Ex]\{O}. In particular,
7(x) = ve(x) Vx €000 | e€[-&n 0],

which in turn implies that
&2, . Sn(x — £y) M'[¢, B'[¢], B[] (v)do,

+J300Sn(x = ¥) M{[e, B'[¢], B°[e]1(¥)da, — B[e](x) (31)
for all x € 900, € [-&m, 0]. By the definition of M, in Proposition (2.1.5)
we have A,[e, B'[¢], B°[€], M,[e, B![¢], B°[€]]] = O for all €€ [-&m, &u]. IN
particular, for € € [-&y, 0] we have

A} [¢,B'[€], B°[e], M, [¢, B'[¢], B°[€]1](x) (32)

=gn-2 faQiSn(x —ey) M} [e, B'[¢], Bo[e]] (y)do,
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+ 300 Sn(x —¥) M1[e, B'[¢], B°[e]1(¥)do, — B°[€](x)

=0 Vx€ean’
Then, by (19) and (20) we deduce that

S50 Sn(x — &) Mile, B'[e], B°[€]](y)da, =0
Vx €90N° £€[-&n,0]. (33)
Now let € [-&u, 0]. Let v be the function from R \ i to R defined
by
v (%) = [ i Su(x — £y) Mi[e, B[], B°[]1(y)do, Vx €R"\ el

Then we have v¥(x) = 0 for all x € R\ cI2° and equality (21) implies
that v#(x) =0
For all x € 31° . Moreover, by the decay properties at infinity of S, we

have IIim v#(x) = 0.Thus v¥ Racno coincides with the unique
X|—00

solution of the exterior homogeneous Dirichlet problem in R»\ ¢/0°
which vanishes at infinity. Accordingly

v#(x) = 0 for all x € R*\ cInO.
We now observe that 4 v¥(x) = 0 for all x €R*\ ecI. Thus, by the
Identity Principle for real analytic functions we have v¥(x) = 0 for all x
€ R™\efi In particular, v¥(ex) = 0 for all x € 8. Then by a
straightforward calculation we deduce the validity of (14) in case
(iv) with &, = &n.
Hence, the equality in (14) holds both in case (iii) and (iv) with &, € [0,
£]. Then Lemma (2.1.1) implies that M} [e, Bi[e], Bo[e]]: O forall € € [-
€., 0]. Thus, by a standard argument based on the Identity Principle for

real analytic functions we deduce that
Mi [e, Bi[e], Bo[e]]: 0 Vxe[-&,4] (34)
We now observe that the equality in (22) implies that
Agle, B'[€], B°[€] 0, Mi[e, B[£], B°[£]]] = (O, 0)

vxe[-§,£] 0€{l 1} (35)
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Let M, and M_ be as in Proposition (2.1.7). Then by equality (23), and
by Lemma (2.1.1), and by Propositions (2.1.2), (2.1.7), and by a

standard argument based on the Identity Principle for real analytic
functions we verify that M: [e,Bi[e],BO[e]] = 0 for all € [0, &1], and
that M* [e,Bi[e],BO[e]] = 0 for all €€ [-&, 0], and that
M3 |e,Bile] B°[el| = M9 |e,Bi[e] Ble]| for ec [0,&], and that
M° [g,Bi[g],BO[g]] =0 [g,Bi[g],BO[g]] for e€ [-£.,0],
So, if we set

If M9 [e,Bi[e],BO[e]] if €€[&, &l

m°[e] ={ MY [e,Bi[e],BO[e]] if € € [-£&, 8]

kM? [e,Bi[e],BO[e]] if € €[—gq,— &.]

and we define
w(x) = faxz" Sp (x-y)m°[e]l(y)do, Vx € clO, €€ [-g4, 4],

then {w:} ¢ [-«, ¢, Satisfies the conditions in (co), (c1) and ve = wejciace)
for all €€ [-&,, €] (see also Propositions (2.1.2) and (2.1.3)) The
validity of the theorem is now verified. We now show that in Theorem
(2.1.8) it is necessary to require the validity of condition (iii) or of
condition (iv). To do so, we construct for n odd a family of functions
{ve} e [, &) Which satisfies the conditions in (bo) , (i), (ii) but not the
conditions in (iii) and (iv) (see Example (2.1.10) here below) In
particular, for such a family it is not possible to find {we}:e [-¢, ) Which
satisfies the conditions in (co), (c1) and such that ve = wejcine) for all
€E [-&4, €4].
Example (2.1.10)[2]: Assume that the dimension n is odd. Assume
that 20 and Qicoincide withthe set {x e R" : | x| <1}, Let2(e) ={x €
R : |e| < |x| < 1} for all €€ [-1, 1]. Let v, be the function from () to R
defined by
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Elsln—z

(x) = 1_|£|n_2(|x|2'” -1) Vx € cl(e)

for all ee [-1, 1]\{0}. Let vo(x) = O for all x € cIQ°. Then {ve} ec -1 1
satisfies the condition in (bo) and the conditions in (i), (ii) of Theorem
(2.1.9) but not the conditions in (iii) and (iv).

Proof: Let €€ [-1, 1]\{0}. Then v. € C1(cIN(€)) and we have Av. =0 in
0(¢). Further (x) =0 if |[x| = 1, and ve(x) = ¢ if |x] = |¢ | for all € [-1,
1].Thus {v<} e [-1, 17 satisfies the condition in (bo) and the conditions in
(1), (it) of Theorem(2.1.9). Now let xo be a point of Rrwith 0 < [x| < 1.
We show that the map which takes € to (xo) is not real analytic in a
neighborhood of € =0. In particular {v¢} <€ [-1, 17 does not satisfy the
condition in (iii).

To do so, we prove that the map which takes ¢ to g|e|* 2 /(1 — |¢|*?)

is not in €1 for € in a neighborhood of 0. We note that

5|5|n_2

1_|£|n—2 = g|g|n-21/)1(g)+l/)2(g) Ve € [-1, 1]

with Y1(e) = (1-22)1 and Y2(e) = €22 *1 (1-£2(m2))-1 The maps Y1
and Y- are real analytic from [-1, 1] to R and we have ¥1(0) = 1. We

observe that (%)(n-l)(e|e|n-2) = (n-1)! sgn €. Then we deduce that

(2" (ZL2) = (1)t (590 &) pale)rpa(e) Ve € [11M0} (36)
where Y3 is a continuous map from [-1, 1] to R. The function on the
right hand side of (24) has no continuous extension on [-1, 1] and our
proof is complete. The proof that {v:} -1, 17 does not satisfy (iv) is
similar and is accordingly omitted.

We show in the following Example (2.1.11) that analogues of Theorem
(2.1.8) and statement (j) do not hold if we replace the assumption that
U is harmonic on 0(¢) for € € [0, 1] with the weaker assumption that
ue is real analytic on Q2(¢).Similarly, we show in Example (2.1.12) that
analogs of Theorem (2.1.9) and statement (jj) are not true if we

replace the assumption that and w. are harmonic on 2(e) and 29,
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respectively, with the weaker assumption that v. and w. are real
analytic on (&) and 2° respectively.
Example (2.1.11)[2]: Let 2° and 0 be equal to {x € R : |x| < 1}. Let
(&)= {xeR":|e| <|x| <1}forall €€[-1,1].
Let u. be the function of C1«((¢)) defined by

us (x) = |x| Vx € clf(e), €€][0,1].

Then U is real analytic on (¢) for all € € [0, 1] and the family { u:} e
0,11 satisfies the conditions in (ai), (az2), but there exists no family of
functions {v:} e [-1,17 on £2(&) which satisfies the conditions in (b1), (b2)
and such that u. = v forall € € [0, 1].

Proof: Clearly u. belongs to C1« (ci2(¢)) and is real analytic on 2(¢)
forall e € [0, 1].
Moreover, a straightforward calculation shows that { u} e o g
satisfies the conditions in (a1), (a2), Assume by contradiction that there
exists a family {v:} « 1,13 of functions on (¢) which satisfies the
conditions in (b1), (b2) and such thatu, = v, for all € € [0, 1]. Then
condition (b1) and the Identity Principle for real analytic maps imply
that we have ve(x) = |x| forall x e R with1/2 < |x| <landforall ¢ €
[ -1/2, 1/2]. Condition (b2) and the Identity Principle for real analytic
maps imply that we have v:(ex) = ¢|x|forall x e R with1 < |x| <2
and forall e € [ -1/2, 1/2]\{0}. Let "€ [-1/2,-1/4]. Let x*€ R with 1/2
< |x*| < 2]¢’]. So that 1< [x*/&*| <2. Then ve(x") = |x*| and ve(x*) =
ve(e(x*/€Y)) = €*|x*/ €| = -|x*|. Acontradiction.
Example (2.1.12)[2]: Let 2°and 2ibe equal to {x € R" : |x| < 1}. Let
(&)= {xeR" :|¢g|] <|x| <1} forall € € [-1, 1]. Let v, be the function of
CL(clN(e)) defined by

(x) = €2/ |x|? vxe(e), e€][-1 1]\{0}.
Let vo(x) = O for all x € cIN° Then vo is real analytic on 2°, and v; is

real analytic on Q2(¢) for all € € [-1, 1]\{0}, and the family {v¢} e [-1, 1
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satisfies the conditions in (b1), (b2), but for any fixed ¢" € [-1, 1]\{0}
there exists no function w real analytic on 29 which satisfies the
equality ves = wecra(e) -

Proof: Clearly v, belongs to C1(cIf(¢)) and is real analytic on 2(¢) for
all € € [-1, 1]\{0}.

Moreover, a straightforward calculation that {v:} e [-1 17 Satisfies the
conditions in (b1), (b2). Now let & € [-1, 1]\{0}. Let & be a real
analytic map on 020 \ {0} such that ve* = & . By the ldentity
Principle for real analytic maps we deduce that «e+(x) =(€")2/|x|? for
all x € N°\{0}. Thus &¢ has no continuous extension on 2° and the
validity of the statement follows.

Section (2.2): Some Particular Cases:

We consider some particular cases and we show some
consequences of Theorems (2.1.8) and (2.1.9). In the following
Proposition (2.2.1) we show that the family {u} se[0,:0; Of the solutions
of the boundary value problem in (3) satisfies the conditions in (a1)
and (a2) for some 1€ [0, &o].

Proposition (2.2.1)[2]: Let £2{, 2% be as in (1). Let €0 be as in (2). Let (
fi, f9) € Cle(aN) X Cre(0NO). Let u. denote the unique solution in
Cle(cl(g)) of the boundary value problem in (3) for all e [0, &q].
Then there exists €1€ [0, €o]. such that the family { u:} € [0,¢,] satisfies
the conditions in (a1) and (a2) If the dimension n is even, then we can
take 1 = €o.

Proof: If the dimension n is even, then the validity of the Proposition
follows by Theorem (2.1.8) with €1 = g0 and [e] = f, B[e] = fO° for all
€€ [-£4, £1]. SO let n be odd. Let M;= (ML ,M?), & be as in Propositions
(2.15)withf =1, fi= fiand fO= fO.We set &1 = €. Let 2y and ey be
as in (al) . Let v: be defined as in (15), (16) with B‘[¢] = fiand B[] =

fo for all e [-& &],then we set Uu[e] = U ¢jciam for all €€ [-em, em]. Then
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we show that U is real analytic from [-em, em] to CL2(cl2um) (see also
the argument exploited in the proof of Theorem (2.1.8) for Vu.) The
validity of (a1) is thus proved.

Now let and en be as in (a2). Let [€] be defined by

Unlel(xX) = [y Sn(x — y) Mile f*.f°1() doy

+ fyqnSu(ex =) MSLe, £ fO1(v) doy  Vx € cln
for all €€ [-em, em]. Clearly,
ue(ex) = Unm[e]( x) Vx € cln

for all € € [0, em]. We verify that Un is real analytic from [-em, em]. tO
Cla(clNnm) (see also the argument exploited in the proof of Theorem
(2.1.8) for V) Accordingly the validity of (a2) follows.

In the following Proposition (2.2.2)we assume that n is even and
we consider a family { u:} ce0,:17 0f harmonic functions on 2(e) which
satisfies the conditions in Theorem (2.1.8). Then we investigate the
power series that describe ueciom and (€.) ciam for small and positive
under suitable symmetry assumptions on B¢, B, 2¢and °.
Proposition (2.2.2.)[2]: Assume that n is even. Let ¢ 2° be as in (1).
Let €0 be as in (2). Let €1 € [0, €0]. Let {ue} ce[o, 13, B and BO be as in
Theorem (2.1.8). Let 2y, em be as in (b1). Let 2m, em be as in (b2). Let ¢
€ { -1, 1}. Then the following statements hold.

(@) IfNi=-Ntand

Bile]l(x) = {B[-el(-x),  B°[e](y) = {B[-€](v)
forall x € 00f, y € 000, ¢ € [-€1, €1], then there exist & € [0, en] and a
sequence {umjjen in C12(cly) such that

Ueler = (1D 72 Z‘f:ouM,jezj Ve € [0, én],

where the series converges in C1e(clQu).
(ii) If N°=-N°%and

Bile]l(x) = {B[-€l(x),  B°lel(y) = {B°[-€](-y)

forallx € 002!,y € 000, € € [-€1, €1], then there exist & € [0, em] and a
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sequence {umjjjen in C12(clNx) such that
ue(e)jrom = ECO2FL uy, €2 Ve €0, Enl,
where the series converges in C1e(clQn).
Proof: Let {v:} [« be as in Theorem (2.1.8). Then {v.} e [ ¢
satisfies the conditions in (b1), (b2) and we deduce that there exist &y €
[0, em], én € [0, em] and sequences in CL(cl2u) and {vmjjen in
Cla(clNm) such that
Velelom = Nj2o Uy j € VEE [-Em, En,
Ve(€.)lctom = Xjeo U j g/ VeE€ [-Em, En]\{0},
where the first and second series converge in Cle(cl2y) and
Cla(clNn), respectively.
Then, by the assumptions in (i) and by Proposition (2.1.2), and by the
uniqueness of the solution of the Dirichlet problem in (¢) for all €€ [-
&u, Eu]\{0}. We deduce that (¢) = (-¢) and that v = {v. for all €€ [-&p,
EwI\{0}. Thus we have Y52, vy j (-€) = (X2 v ; €’ forall e€ [-&m, £],
which implies that vum 2j++g)s2=0for all jEN.
If we now set um, = vmzj+a-gys2 for all jEN, then the validity of statement
(i) follows.
Similarly, by the assumptions in (ii) and by Proposition (2.1.2), and by
the uniqueness of the solution of the Dirichlet problem in (¢) for €€ [-
&m, Em]\{0}, we deduce that 2(e) = -02(-¢) and that v: = {v. (-x) for all
X € clQn and all €€ [-&n, Ex]\{0}. In particular (ex) = {v-¢ (-ex) for all x
€ and all € [-&n, En]\{0}. We deduce that Y72, vy j (&) = (X520 Vi,
¢’ for all €€ [-&n, ], which in turn implies that vm2j+1+¢)72 = 0 for all
JEN. If we now set um, = vm2j+-q)72 for all jEN, then the validity of
statement (ii) follows. Now let n be odd. Let {u:} e 0,07 denote the
family of the solutions of (3). As an immediate consequence of the
following Proposition (2.2.3) one can verify that the equalities in (4)

and (5) hold for € negative only if there exists ¢ € R such that u:(x) =c
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for all x € cI2(¢) and €€ [0, €o].
Proposition (2.2.3)[2]: Assume that n is odd. Let 2¢ 020 be as in (1).
Let 0 be as in (2). Let €1 € [0, €o]. Let {ve} e [, &, and BO be as in
Theorem (2.1.9). Then the following statements are equivalent.
(i) There exist functions € C1(d0Y) and f° € C1« (002°) such that Bi[e] =
fiand Bo[e] = fOfor all €€ [-&4, &].
(i) There exists a constant ¢ € R such that (x) =c for all x € (¢) and all
€€ [-€l, €1].
Proof: Clearly statement (ii) implies (i). So we have to show that (i)
implies (ii) By Theorem (2.1.9) there exists a family {w¢} s [, &) Of
harmonic functions on 20 such that v. = wejcin for all €€ [-e1, €1]. In
particular we have wo2° = B0 [¢] = fO for all €€ [-£1, £1] and (&.)o0i =
Bi[e] = fifor all €€ [-€1, e1]\{0} . By the uniqueness of the solution of
the Dirichlet problem in 20 and by Lemma (2.1.1) we deduce that w: =
wo for all € [-€1, €1] and that there exists u%e €%« (901°) such that
(%) = [0S0 (-¥)°(Y)do, Vx€clN®, €€ [-e1,e1]  (37)
We now prove that fiis constant on d£2:. Indeed, equality (¢.); = fifor
all €€ [-e1, €1]\{0} and (25) imply that
(%) = [, 0050 (ex-y)°(¥)doy,  Vx €002, €€ [-e1, e1]\{0}.  (38)
Since the map from [-e1, €1] to C1(0£2%) which takes ¢ to the

function [, ,S, (ex-y)°(y)da, of x € 02" is real analytic, we can take

the limit as e—0 in (26) and we obtain

(%) = [500Sn @)°(y)doy, = wo(0)  Vx € 02
Now let &* € [0, €1] be fixed. Then we have wo(x) = we(x) = fi(x/e*) =
wo(0) for all x € €90t Since wo is harmonic in €0 we deduce that
wo(x) = wo(0) for all x € e*cl .
Then, by the Identity Principle for real analytic functions wo(x) =
wo(0) for all x € cIN°. By defining ¢ = wo(0) the validity of statement

(i) follows.
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