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 Chapter 1 

Analytic Free Maps 
We show analytic fee maps analogues of classical analytic functions 

in several complex variables and are defined in terms of noncommuting 

variables amongst which there are on relations.Analytic free maps include 

vector valued polynomials in free noncommuting variables and form a 

canonical class of mappings form one noncommutative domain in say as a 

natural extension. 

Section﴾1.1﴿: Free Maps and a Proper Free Map is Bianalytic  

The notion of an analytic, free or non-commutative, map arises naturally in 

free probability, the study of non-commutative (free) rational functions and 

systems theory . Rigidity results for such functions paralleling those for 

their classical commutative counterparts are established. The free setting 

leads to substantially stronger results. Namely, if ݂ is a proper analytic free 

map from a non-commutative domain in ৯ variables to another in ৯͂ 

variables, then ݂ is injective and ৯͂ ≥ ৯. If in addition ৯͂ = ৯, then ݂ is onto 

and has an inverse which is itself a (proper) analytic free map. This 

injectivity conclusion contrasts markedly to the classical case where a 

(commutative) proper analytic function ݂ from one domain in ℂ৯ to another 

in ℂ , need not be injective, although it must be onto.  

This section contains the background on non-commutative sets and 

on free maps. As we shall see, free maps which are continuous are also 

analytic in several senses. Fix a positive integer ৯. Given a positive integer 

݊, let (ℂ) denote ৯-tuples of ݊×݊ matrices. Of course, (ℂ) is naturally 

identified with (ℂ)⊗ ℂ৯. 

A sequence ࣯ = ((݊))ℕ, where ࣯(݊) ⊆ ݊ߊ(ℂ)৯ is a non-

commutative set if it is closed with respect to simultaneous unitary 

similarity; i.e., if ܺ ߳ ࣯(݊) and ܷ is an ݊⨉݊ unitary matrix, then 
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ܷ*ܷܺ = (ܷ*ܺ1ܷ, ... , ܷ*ܺ৯ܷ) ߳ ࣯(݊); 

and if it is closed with respect to direct sums; i.e., if ܺ߳ ࣯(݊) and ܻ ߳ 

࣯(݉) implies 

ܺ ⊕ ܻ = ቀܺ   ૭
૭   ܻቁ ∈ ࣯(݊+݉). 

Non-commutative sets differ from the fully matricial ℂ৯-sets in that the 

latter are closed with respect to simultaneous similarity, not just 

simultaneous unitary similarity. Remark (1.1.4) below briefly discusses the 

significance of this distinction for the results on proper analytic free maps. 

The non-commutative set ࣯ is a non-commutative domain if each 

(݊) is open and connected. Of course the sequence (ℂ)g = (݊ܯ(ℂ)৯) is itself 

a non-commutative domain. Given 0 < ߝ, the set ࣨߝ = ((݊)) given by 

 (1)  {₂ߝ > *݆݆ܺܺ ∑ : (ℂ) ߳ ܺ} = (݊) ߝࣨ 

is a non-commutative domain which we call the non-commutative ߝ-

neighborhood of 0 in ℂ৯. 

The non-commutative set ࣯ is bounded if there is a  ℂ߳ ℝ  such that 

  ℂ2-∑݆ܺܺ*݆ > 0 (2) 

for every ݊ and ܺ ߳ ࣯(݊). Equivalently, for some λ ϵ ℝ, we have ࣯ ⊆ ࣨλ. 

Note that this condition is stronger than asking that each (݊) is bounded. 

Let ℂ⟨ݔ ,..., 1ݔ৯⟩ denote the ℂ-algebra freely generated by ৯ non-

commuting letters ݔ = (ݔ‚...,₁ݔ৯). Its elements are linear combinations of 

words in ݔ and are called polynomials. Given an ݎ  matrix-valued ݎ ×

polynomial  p ∈ ݎܯ(ℂ) ⊗ ℂ⟨1ݔ,...,g⟩ with ܲ(0) = 0,let ࣞ(݊) denote the 

connected component of 

 {g  : 1+ܲ(ܺ)+ܲ(ܺ)* > 0(ℂ) ∋ ݔ}

containing the origin. The sequence ࣞ = ((݊)) is a non-commutative 

domain which is semi algebraic in nature. Note that ࣞ contains an 0 < ߝ 

neighborhood of 0, and that the choice gives ࣞ = ࣨߝ. Further examples of 

natural non-commutative domains can be generated by considering 
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non-commutative polynomials in both the variables ݔ = (ݔ,...,₁ݔg) and their 

formal adjoints,  ݔ* = (ݔ ,...,*₁ݔg*). 

The case of domains determined by linear matrix inequalities appears.  

Let ࣯ denote a non-commutative subset of (ℂ)g  and let g̃  be a 

positive integer. A free map ݂ from ࣯ into ܯ(ℂ)g̃  is a sequence  of 

function ݂[݊] : ࣯(݊) → ݊ܯ(ℂ)g̰ ̃which respects intertwining maps; i.e.,  if ܺ 

 ℂ݉ → ℂ݊ , and :߁  ,(݉)࣯ ߳ ܻ  ,(݊)࣯ ߳

 ,ܻ߁ = (gܻ߁ ,...,₁ܻ߁) = (߁g , ... ,߁₁ܺ) =߁ܺ

then ݂[݊](ܺ)(߁) = (߁)݂[݉](ܻ).  Note for (݊) it is natural to write simply 

(ܺ) instead of the more cumbersome [݊](ܺ) and likewise ݂: ࣯ → ܯ(ℂ)g͂ 

In a similar fashion, we will often write (ܺ) = ݂߁(ܻ). 
Remark (1.1.1)[1]: Each [݊] can be represented as 

݂[݊]=ቆ
௙[௡]భ

...
௙[௡]௚͂

ቇ 

where ݂[݊]݆ : ࣯(݊) → ݊ܯ(ℂ). (Of course, for each ݆, the sequence ([݊]) is a 

free map  : ࣯ → (ℂ) with ݂݆[݊] = ݂[݊]݆. In particular, if  : ࣯ → ܯ(ℂ)g͂,  and ݒ 

= ∑ℯ݆⊗݆ݒ , Then 

 .݆ݒ*(ܺ)݆݂∑ = ݒ*(ܺ)݂

Let ࣯ be a given non-commutative subset of (ℂ)g and suppose ݂ = (݂[݊]) 

is a sequence of functions ݂[݊] : ࣯(݊) → ݊ܯ(ℂ)g͂ . The sequence ݂ respects 

direct sums if, for each ݊, ݉ and (݊) and (݉), 

݂(ܺ ⨂ ܻ) = ݂(ܺ) ⨂ ݂(ܻ). 

similarly, ݂ respects similarity if for each ݊ and ܺ,ܻ ߳ ࣯(݊) and invertible 

݊×݊  matrix ܵ such that ܺܵ = ܵܺ, 
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݂(ܺ)ܵ = ݂ܵ(ܺ). 

The following proposition gives an alternate characterization of free maps. 

Proposition (1.1.2)[1]: Suppose ࣯ is a non-commutative subset of (ℂ)g . A 

sequence ݂ = (݂[n]) functions ݂[n] : (݊) → ܯ(ℂ)g͂ is a free map if and only 

if it respects direct sums and similarity. 

Proof: Observe (ܺ)݂߁ = ߁(Y) if and only if 

 ቀ ௙(௑)    ଁ
    ଁ      ௙(௒)  ቁ ൫ூ    ௰

 ଁ   ூ൯ = ൫ூ   ௰
ଁ    ூ൯ ቀ௙(௑)    ଁ

ଁ     ௙(௒)ቁ. 

Thus if ݂ respects direct sums and similarity, then ݂ respects intertwining. 

the other hand, if ݂ respects intertwining then, by choosing ߁ to be an 

appropriate projection, it is easily seen that ݂respects direct sums too.  

Remark (1.1.3)[1]: Let ࣯ be a non-commutative domain in (ℂ)g  and 

suppose ݂ : ࣯ → ܯ(ℂ)g͂ ͂

is a free map. If ܺ ߳ ࣯ is similar to ܻ with ܻ = ܵ-1ܺܵ, then we can define  

(ܻ) = ܵ-1ܺܵ. In this way ݂ naturally extends to a free map on ℋ(࣯) ⊆ 

 g  defined by(ℂ)ܯ

ℋ(࣯)(݊) = {ܻ߳ ݊ܯ(ℂ)g : there is an ܺ߳ ࣯(݊) such that ܻ is similar to ܺ}. 

Thus if ࣯ is a domain of holomorphy, then ℋ(࣯) = ࣯. 

On the other hand, because our results on proper analytic free maps to 

come depend strongly upon the non-commutative set ࣯ itself, the 

distinction between non-commutative sets and fully matricial sets are 

important. 

Proposition (1.1.4)[1]: If ࣯ is a non-commutative subset of (ℂ)g  and ݂ : 

g(ℂ)ܯ → ࣯ ͂  is a free map,then the range of ݂ , equal to the sequence 

݂(࣯) = (݂(࣯)(݊))), is itself a non-commutative subset of ܯ(ℂ)g ͂. 

Let ࣯ ⊆ (ℂ)g be a non-commutative set. A free map  : ࣯ → ܯ(ℂ)g ͂ 

is continuous if each ݂ : ࣯(݊) → ݊ܯ(ℂ)g ͂ is continuous. Likewise, if ࣯ is a 

non-commutative domain, then ݂ is called analytic if each ݂ [݊] is 
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analytic. This implies the existence of directional derivatives for all 

directions at each point in the domain. 

Lemma (1.1.5)[1]:  Suppose ࣯ ⊆ (ℂ)g  is a non-commutative set and ݂ : 

g(ℂ)ܯ → ࣯ ͂  is a free map. 

Suppose ܺ ϵ (݊), ܻϵ (݉), and ߁ is an ݊ ×  matrix. Let 

‒ ߁݆ܺ = ݆ܥ  ቀ௑௝   ஼௝ = ݆ܼ ,݆ܻ߁  
଴    ௒௝ ቁ.    (3)    

 then ,(݉+݊)࣯ ߳ (g,...,1ܼ) = ܼ ݂ܫ

 ݂݆(ܼ) = ቀ௙௝(௑)    ௙௝(௑)௰ԟ௰௙௝(௒)
଴                    ௙௝(௒) ቁ.   (4)    

This formula generalizes to larger block matrices. 

Proof:  With 

 ܵ = ൫ଵ   ଵ`
଴   ଵ ൯ 

we have 

 ෨ܼ௝ = ቀ ௑௝    ଴
଴       ௒௝ቁ = ܼ݆ܵܵ⁻1. 

Thus, writing ݂= (݂1,...,g͂)ܶ and using the fact that ݂ respects intertwining 

maps, for each ݆, 

(ܼ) = (ܼ͂͠) ܵ-1= ቀ௙௝(௑)   ௙௝(௑)௰ି௰௙௝(௒)
଴           ௙௝(௒)          ቁ.    (5)     

Proposition (1.1.6)[1]: Suppose ࣯  is a non-commutative domain in (ℂ)g. 

(і) A continuous free map  : ࣯ → ܯℂ)g ͂ is analytic. 

(іі) ݂ܫ ܺ ∈ (݊), and ߅ ߳ (ℂ)g has sufficiently small norm, then 

݂൫ଡ଼  ୿
ଁ  ଡ଼൯ = ቀ)୤(ଡ଼)  ୤(ଡ଼[୿]

ଁ     ୤(ଡ଼) ቁ. 

Proof :  Fix ݊ and   ߳ (݊). Because (2݊) is open and ܺ ⨁ (2݊), for every ߅ 

߳ (ℂ)g  of sufficiently small norm the tuple with ݆-th entry 

                                ቀ௑௝   ௴௝
଴   ௑௝ ቁ.                     (6)     

is in ࣯(2݊). Hence, for ऊ ߳ ℂ of small modulus, the tuple (ऊ) with ݆-th entry 

                 ܼ(ऊ)=ቀ௑௝ାऊ௴௝    ௴௝
     ଴            ௑௝  ቁ                  (7) 

is in ࣯(2݊). Note that the choice (when ऊ≠0) of (ऊ) = 1/ऊ, ܺ = ܺ +   and   
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= ܺ in  Lemma(1.1.7) gives this ܼ(ऊ).Hence, by Lemma (1.1.7), 

݂(ܼ(ऊ)) = ൬௙(௑ାऊ௴)     ೑(೉శऊಹ)ష೑(೉)
ऊ

଴                            ௙(௑)
൰. 

Since (ऊ) converges as ऊ tends to 0 and [2݊] is assumed continuous, the 

limit 

lim
ऊ→଴

݂(ܺ + ऊܪ) − ݂(ܺ)
ऊ

 

exists. This proves that ݂ is analytic at ܺ. It also establishes the moreover 

portion of the proposition. 

For perspective we mention power series. an analytic free map ݂ has a 

formal power series expansion  in the non-commuting variables, which 

indeed is a powerful way to think of analytic free maps. 

Voiculescu also gives elegant formulas for the coefficients of the power 

series expansion of ݂ in terms of clever evaluations of ݂. Convergence 

properties for bounded analytic free maps are studied for a bad unbounded 

example.  

Given non-commutative domains ࣯ and ࣰ in (ℂ)g and ܯ(ℂ) ͂g 

respectively, a free map  : ࣯ → ࣰ is proper if each [݊] : ࣯(݊) → ࣰ(݊) is 

proper in the sense that if ܭ ⊆ ࣰ(݊) is compact, then ݂-1(ܭ) is compact. In 

particular, for all ݊, if (ऊ݆) is a sequence in (݊) and ऊ݆ → (݊), then (ऊ݆) → 

߲(݊). In the case ৯ = ৯͂  and both ݂ and ݂-1 are (proper) analytic free maps 

we say ݂ is a bi analytic free map.  

Corollary (1.1.7)[1]:  Suppose ࣯ and ࣰ are non-commutative domains 

in (ℂ)g . If ݂: ࣯→ࣰ is a free map and if each [݊] is bianalytic , then ݂ is a 

bianalytic free map. Before proving Theorem (1.1.5) we establish the 

following preliminary result which is of independent interest and whose 

proof uses the full strength of Lemma (1.1.5). 

Proposition (1.1.8)[1]: Let ࣯ ⊆ (ℂ)  be a non-commutative domain and 

suppose ݂ : ࣯ → ܯ(ℂ)৯͂ is a free map. Suppose further that ܺ ∈ (݊),  ∈ 

 is an ݊×݉ matrix, and ߁ ,(݉)࣯
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 .(ܻ)݂߁=߁(ܺ)݂

if ݂-1 ({݂(ܺ)⊕݂(ܻ)}) has compact closure in ࣯, then ܻܺ߁ =߁. 

Proof:  As in Lemma (1.1.5), let ߁݆ܺ = ݆ܥ-  . For 0 < ݐ sufficiently small, 

 Where ,(݉+݊) ∋ (ݐ)

ቀ௑௝    ௧஼௝ = (ݐ)݆ܼ                        
଴     ௒௝ ቁ.                          (8) 

if ݂(ܺ)݂߁ =߁(ܻ), then, by Lemma (1.1.5), 

ቀ௙௝(௑)    ௧(௙௝(௑)௰ି௰௙௝(௒)) = ((ݐ)ܼ)݂   
଴                         ௙௝(௒) ቁ                    (9) 

                                                       = ቀ௙௝(௑)     ଴
଴     ௙௝(௒)ቁ 

Thus, ((ݐ)) = (ܼ(0)).  In particular, 

 .࣯⋂ {ℂ  ߳ ݐ : (ݐ)} ⊆ ({((0))})1-݂

Since this set has, by assumption, compact closure in ࣯ it follows that ܥ = 

0;  i.e., ܻܺ߁ = ߁. 
We are now ready to prove that a proper free map is one-to-one and even a 

bi analytic free map if continuous and mapping between domains of the 

same dimension. 

Theorem (1.1.9)[1]: Let ࣯ and ࣰ be non-commutative domains 

containing 0 in (ℂ)g and ܯ(ℂ) ͂g , respectively and suppose ݂ : ࣯ → ࣰ is a 

free map. 

(і) If ݂ is proper, then it is one-to-one,  and  ݂-1 : ݂(࣯) → ࣯ is a free map. 

(іі) If, for each ݊ and ܼ ߳ (ℂ) ͂৯ , the set  ݂[݊] -1({ܼ}) has compact closure 

in ࣯ then ݂ is one-to-one and moreover,  ݂-1 : ݂(࣯) → ࣯ is a free map. 

(ііі) If= ৯͂  and  ݂ : ࣯ → ࣰ is proper and continuous, then ݂ is bianalytic. 

Proof : If ݂ is proper, then ݂-1({ܼ}) has compact closure in ࣯ for every ܼ ∈ 

(ℂ)g . 

Hence (і)is a consequence of (іі). For (іі), invoke Proposition (1.1.9) with 

 to conclude that ݂ is injective. Thus  : ࣯ → (࣯) is abijection from ߇ߛ =߁

one non-commutative set to another. Given ܹ,(࣯) there exists ܺ,ܻ߳ ࣯ such 

that ݂(ܺ) = ܹ and ݂(ܻ)= ܼ If moreover, ܹܼ߁ =߁, then ݂(ܺ)݂߁ =߁(ܻ) 



8 
 

and Proposition (1.1.9) implies ܺߛ߁ =߁ i.e., ݂-1(ܹ)1-݂߁ =߁(ܼ). Hence ݂ is 

itself a free map. 

Let us now consider (ііі). Using the continuity hypothesis and Proposition 

(1.1.6), for each ݊ the map [݊] : ࣯(݊) → ࣰ(݊) is analytic. By hypothesis 

each [݊] is also proper and hence its range is (݊) . 

Now [݊] : (݊) → ࣰ(݊) is one-to-one, onto and analytic, so its inverse is 

analytic. Further, by the already proved part of the theorem ݂-1 is an 

analytic free map. For both completeness and later use we record the 

following companion to Lemma (1.1.5). 

Proposition(1.1.10)[1]: Let ࣯ ⊆ M(ℂ) and ࣰ ⊆ (ℂ) ͂ be non-commutative 

domains. If ݂: ࣯→ࣰ is a proper analytic free  map and if ܺ ߳ ࣯(݊), then 

 (ܺ)′݂ ৯͂  is one-to-one іn particular, if ৯ = ৯͂, then(ℂ)݊ܯ → ৯(ℂ)݊ܯ :(ܺ)′݂

 is a vector space isomorphism. 

Proof: Suppose ݂′(ܺ)[ܪ] = 0. We scale ܪ so that ൫௑    ு
଴    ௑൯ ߳ ࣯. From 

Proposition (1.1.8) 

            ݂൫௑    ு
଴   ௑ ൯ = ቀ௙(௑)     ௙ᇱ(௑)[ு]

଴            ௙(௑) ቁ = ቀ௙(௑)       ଴
଴      ௙(௑) ቁ = ݂൫௑    ு

଴   ௑ ൯.     (10) 

By the injectivity of ݂ established in Theorem (1.1.11), 0=ܪ. 

Key to the proof of Theorem (1.1.9) is testing ݂ on the special class 

of matrices of the form (1.1.9). One naturally asks if the hypotheses of the 

theorem in fact yield stronger conclusions, say by plugging in richer classes 

of test matrices. The answer to this question is no: suppose ݂ is any analytic 

free map from ৯ to ৯ variables defined on a neighborhood  (݊) of 0 with 

݂(0)=0 and [1]′(0) invertible. Under mild additional assumptions (e.g. the 

lowest eigenvalue of  ′(ܺ) or the norm    ⃦݂′(ܺ)    ⃦ is bounded away from 0 

for ܺ߳ࣨߝ(݊) independently of the size ݊) then there are non-commutative 

domains ࣯ and ࣰ with ݂:࣯→ࣰ meeting the hypotheses of the theorem. 

Indeed, consider (for fixed ݊) the analytic function [݊] on (݊). Its 

derivative at 0 is invertible; in fact, [݊]′(0) is unitarily equivalent to ݊ܫ ⨂ 
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݂[1]′(0), cf. Lemma (1.2.2) below. By the implicit function theorem, there 

is a small ߜ-neighborhood of 0 on which [݊]-1 is defined and analytic. 

By our assumptions and the bounds on the size of this neighborhood given 

in [ ], 0<ߜ may be chosen to be independent of ݊.This gives rise to a non-

commutative domain ࣰ and the analytic free map ݂-1: ࣯ → ࣰ, where           

࣯ = ݂-1(ࣰ). Note ࣯ is open (and hence a non commutative domain) since 

݂-1(݊) is analytic and one-to-one. It is now clear that   : ࣯ → ࣰ satisfies the 

hypotheses of Theorem (1.1.10). 

We just saw that absent more conditions on the non-commutative 

domains ࣞ and ࣞ͂, nothing beyond bianalytic free can be concluded about  

Section (1.2):  Maps in One Variable and Examples 

In this section analytic free map analogs of classical several complex 

variable theorems are obtained by combining the corresponding classical 

theorem and Theorem (1.1.10).Indeed, hypotheses for these analytic free 

map results are weaker than their classical analogs would suggest. 

The commutative Caratheodory-Cartan-Kaup-Wu (CCKW) Theorem 

(1.1.10) say that if ݂ is an analytic self-map of a bounded domain in ܥ৯ 

which fixes a point ܲ, then the eigenvalues of ݂′(ܲ) have modulus at most 

one. Conversely, if the eigenvalues all have modulus one, then ݂ is in fact 

an automorphism; and further if  ′(ܲ) = 1, then ݂ is the identity. 

The CCKW theorem together with Corollary (1.1.8) yields Corollary 

(1.2.1)  below . We note that Theorem can also be thought of as a non-

commutative CCKW theorem in that it concludes, like the CCKW theorem 

does, that a map ݂ is bianalytic, but under the (rather different) assumption 

that ݂ is proper. Then one works with the formal power series 

representation for a free analytic function. 

Lemma (1.2.1)[1]:  keep the notation and hypothesis of Corollary 

(1.2.2) If ݊ is a positive integer and ߶ denotes the mapping  [݊] : ࣞ(݊) 
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→ ࣞ(݊), then (0)′ߔ is unitarily equivalent to (0)′߶ ⨂ ݊ܫ. 

Proof:  Let ݅ܧ, denote the matrix units for (ℂ). Fix  ℎ ߳ ℂ৯.  Arguing as in the 

proof of Proposition (1.1.10) gives. for ݇≠ℓ and ऊ ߳ ℂ of small modulus, 

݇,݇ܧ))ߔ  .(ऊℎ)⊗(ℓ,݇ܧ+ ݇,݇ܧ)=(ℓ)⊗ऊℎ,݇ܧ+ 

It follows that 

 .[ℎ](0)′߶(ℓ,݇ܧ+݇,݇ܧ)=[ℎ⊗(ℓ,݇ܧ +݇,݇ܧ)](0)′ߔ

On the other hand , 

݇,݇ܧ=[ℎ⊗ ݇,݇ܧ](0)′ߔ ⊗߶′(0)[ℎ]. 

By linearity of (0)′ߔ, it follows that 

 .ℓ⊗߶′(0)[ℎ],݇ܧ=[ℓ⊗ℎ,݇ܧ](0)′ߔ

Thus,′(0) is unitarily equivalent to (0)߶⊗݊ܫ. 

Corollary (1.2.2)[1]: 

 Let ࣞ be a given bounded non-commutative domain which contains 0. 

Suppose  : ࣞ → ࣞ is an analytic free map. Let ߶ denote the mapping  [1] 

: ࣞ(1) → ࣞ(1) and assume   (0) = 0. 

(і) If all the eigenvalues of  ′(0)  have modulus one, then ݂ is a bi 

analytic free map 

(іі) If ߶′(0) =1, then ݂ is the identity. 

 The proof uses the following lemma(1.2.1), whose proof is trivial if it is 

assumed that ݂ is continuous (and hence analytic) and then one works with 

the formal power series representation for a free analytic function. 

Proof : The hypothesis that ߶′(0) has eigenvalues of modulus one, implies, 

by Lemma (1.2.1),that, for each ݊, the eigenvalues of ݂[݊]′(0) all have 

modulus one. Thus, by the CCKW theorem, each [݊] is an automorphism. 

Now Corollary (1.1.8) implies ݂ is a bianalytic free map. 

Similarly, if ߶′(0) = ܫ৯ , then ݂[݊]′(0) = ݊ܫ৯ for each ݊. Hence, by the 

CCKW theorem, [݊]  is the identity for every ݊ and therefore ݂ is itself the 

identity.  

Note a classical bianalytic function ݂ is completely determined by its 
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value and differential at a point. Much the same is true for analytic free 

maps and for the same reason. 

Proposition (1.2.3)[1]: Suppose ࣯, ࣰ ⊆ (ℂ) are non-commutative 

domains, ࣯ is bounded, both contain 0, and ݂ ,৯  : ࣯ → ࣰ are proper 

analytic free maps. If (0) = (0) and ݂′(0) = ৯′(0), then ݂ = ৯. 

Proof:  By Theorem (1.1.10) both ݂and ৯ are bianalytic free maps. Thus 

ℎ=݂ߧ৯-1:࣯→࣯ is a bianalytic free map fixing 0 with ℎ[1]′(0) = ܫ. Thus, by 

Corollary (1.2.2), ℎ is the identity consequently ݂ = ৯. 

A subset ܵ of a complex vector space is circular if exp(it)ݏ ߳ ܵ 

whenever ܵ߳ݏ and ߳ݐℝ. A non-commutative domain ࣯ is circular if each 

(݊) is circular. Compare the following theorem to its commutative 

counterpart where the domains ࣯ and ࣰ are the same. 

Corollary (1.2.4)[1]: Let ࣯ and ࣰ be bounded non-commutative 

domains in (ℂ)g both of which contain 0. 

Suppose  : ࣯ → ࣰ is a proper analytic free map If both ࣯ and ࣰ are 

circular and if one is convex, then so is the other. 
This corollary is an immediate consequence of Theorem (1.2.5) and 

the fact (see Theorem  ((1.1.9) (ііі)) that ݂ is onto ࣰ. 

We admit the hypothesis that the range ℛ = ݂ (࣯) of ݂ in Theorem (1.2.5) 

is circular seems pretty contrived when the domains ࣯ and ࣰ have a 

different number of variables. On the other hand if they have the same 

number of variables it is the same as ࣰ being circular since by Theorem 

(1.1.9), ݂ is onto. 

Theorem (1.2.5)[1]: Let ࣯ and ࣰ be bounded non-commutative 

domains in (ℂ)and ܯ(ℂ)৯͂, respectively, both of which contain 0.  

Suppose  : ࣯ → ࣰ is a proper analytic free map with ݂(0) = 0. 

If ࣯ and the range ℛ := (࣯) of ݂ are circular, then ݂ is linear. The 

domain ࣯ = ( (݊)) is convex if each ࣯(݊) is a convex set.  

Proof : Because ݂ is a proper free map it is injective and its inverse 
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(defined on ℛ) is a free map by Theorem (1.1.10) Moreover, using the 

analyticity of ݂ ,its derivative is point-wise injective by Proposition 

(1.1.11) It follows that each ݂[݊] : ࣯(݊) → ݊ܯ(ℂ)৯͂ is an embedding. Thus, 

each [݊] is a homeomorphism onto its range and its inverse [݊]-1=݂-1[݊] is 

continuous. Define  : ࣯ → ࣯ by 

 (11)          .((ݔ ߠℯ݅) ߠℯ݅)1-݂ =: (ݔ)                    

  This function respects direct sums and similarities, since it is the 

composition of maps which do. Moreover, it is continuous by the 

discussion above. Thus ܨ is an analytic free map. Using the relation ℯ݅ߠ 

 ,Since ݂′(0) is injective  .(0)′݂ = (0)′ܨ((0)ܨ)′݂ߠwe find  ℯ݅ (ߠℯ݅) = ((ݔ))

 ℯ݅1= (0)′ܨ ߠ It follows from Corollary (1.2.2)(іі) that  (ݔ)ܨ = ℯ݅ݔߠ  and 

thus, by (1.2.2),  ݂(ℯ݅ݔߠ) = ℯ݅(ݔ)݂ߠ.  Since this holds for every ߠ, it follows 

that ݂ is linear.  if ݂ is not assumed to map 0 to 0 (but instead fixes some 

other point), then a proper self-map need not be linear.  

This section contains two examples. The first shows that the circled 

hypothesis is needed in Theorem (1.2.5) Our second example concerns ࣞ, a 

non-commutative domain in one variable containing the origin, and  : ࣞ → 

ࣞ a proper analytic free map with ܾ(0) = 0. It follows that ܾ is bianalytic 

and hence [1]′(0) has modulus one. Our second example shows that this 

setting can force further restrictions on [1]′(0). The non-commutative 

domains of both examples are LMI domains; i.e., they are the non-

commutative solution set of a linear matrix inequality (LMI). Such domains 

are convex, and play a major role in the important area of semidefinite 

programming . 

A special case of the non-commutative domains are those described 

by a linear matrix inequality. Given a positive integer ݀ and ܣ ,...,1ܣ৯ ∈ 

 the linear matrix-valued polynomial ,(ℂ)݀ܯ

 ⟨৯ݔ,...,1ݔ⟩d(ℂ) ⨂ ℂܯ ∋ ݆ݔ ݆ܣ ∑ = (ݔ)

is a truly linear pencil. Its adjoint is, by definition, (ݔ)* = ∑ݔ݆*ܣ*݆. Let 
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ℒ(ݔ) = (ݔ)ܮ + (ݔ)ܮ + ݀ܫ* . 

If  (ℂ)৯ ,then ℒ(ܺ) is defined by the canonical substitution, 

ℒ(ܺ) = ܣ∑ + ݆ܺ⨂݆ܣ∑ +݊ܫ ⨂ ݀ܫ*݆ ⨂ ܺ*݆, 

and yields a symmetric ݀݊⨉݀݊ matrix. The inequality ℒ(ܺ) > 0 for tuples ܺ 

 ৯ is a linear matrix inequality (LMI). The sequence of solution sets(ℂ)ߊ ߳

ࣞℒ defined by 

ࣞℒ(݊) = {ܺ ߳ ݊ߊ(ℂ)৯ : ℒ(ܺ) > 0} 

is a non-commutative domain which contains a neighborhood of 0. It is 

called a non-commutative (NC) LMI domain. 

It is surprisingly difficulty to find proper self-maps on LMI domains 

which are not linear. 

This section contains the only such example, up to trivial 

modification, of which we are aware.By Theorem (1.2.5) the underlying 

domain cannot be circular. 

In this example the domain is a one-variable LMI domain. Let 

= ܣ  ൬
1    1
0   0 ൰ 

and let ℒ denote the univariate 2⨉2 linear pencil, 

                      ℒ(ݔ) ≔ ݔ*ܣ+ݔܣ+ܫ*=൫ଵା௫ା௫∗     ௫
௫∗              ଵ ൯

 
.          (12)  

Then 

ࣞℒ = {ܺ |    ⃦ܺ-1   ⃦ < √2}. 

To see this note ℒ(ܺ) > 0 if and only if 1+ܺ+ܺ*-ܺܺ*>0, which is in turn 

equivalent to (1-ܺ)(1-ܺ)*< 2. 

Proposition (1.2.6)[1]:  For real ߠ, consider 

௘೔ഇ௫ ≕ (ݔ) ߠ݂
ଵା௫ି௘೔ഇ௫

. 

(і)  : ࣞℒ→ࣞℒ  is a proper analytic free map, ݂0 = (0)ߠ,  and ݂′(0)ߠ = 

exp(݅ߠ). 

(іі) Every proper analytic free map ݂: ࣞℒ→ ࣞℒ fixing the origin equals 
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one of the ݂ߠ. 

Proof: Item (і) follows from a straightforward computation: 

(1-(ܺ))(1-(ܺ))* < 2 

⇔  ቀ1 − ௘೔ഇ௑
ଵା ௑ି௘೔ഇ௑

ቁ ቀ1 − ௘೔ഇ௑
ଵା௑ି௘೔ഇ௑

ቁ* < 2  

⇔  ቀଵା௑ିଶ௘೔ഇ௑
ଵା௑ି௘೔ഇ௑

ቁ ቀଵା௑ିଶ௘೔ഇ௑
ଵା௑ି௘೔ഇ௑

ቁ* < 2 

⇔  (1+ܺ-2݁௜ఏܺ)(1+ܺ-2݁௜ఏܺ)* < 2(1+ܺ-݁௜ఏܺ)(1+ܺ-݁௜ఏܺ)* 

⇔  1+ܺ+ܺ*-ܺܺ* >0 

⇔  (1-ܺ)(1-ܺ)* < 2. 

Statement (іі) follows from the uniqueness of a bianalytic map carrying 0 

to 0 with a prescribed derivative. 

Recall that a bianalytic ݂ with (0)=0 is completely determined by its 

differential at a point. Clearly, when ݂′(0) = 1, then ݂(ݔ) = ݔ . Does a 

proper analytic free self-map exist for each ݂′(0) of modulus one? In the 

previous example this was the case. For the domain in the example in this 

subsection, again in one variable, there is no proper analytic free self-map 

whose derivative at the origin is ݅. 

The domain will be a “non-commutative ellipse” described as ࣞℒ 

with ℒ(ݔ) ≔ ݔ*ܣ+ݔܣ+ܫ* for ܣ of the form 

ቀ஼₁    ஼₂ ≕ ܣ
଴ ି஼₁ ቁ 

where ₂ܥ ,₁ܥ ߳ ℝ . There is a choice of parameters in ℒ such that there is no 

proper analytic free self-map ܾ on ࣞℒ with (0) = 0, and ܾ′(0) = ݅.  

Suppose  : ࣞℒ → ࣞℒ is a proper analytic free self-map with b(0) = 0,  and 

ܾ′(0) = ݅. By Theorem  (1.1.10), ܾ is bianalytic. In particular, b[1] : ࣞℒ(1) 

→ ࣞℒ(1) is bianalytic. By the Riemann mapping   theorem there is a 

conformal map ݂ of the unit disk onto ࣞℒ(1) satisfying ݂(0) = 0. Then 

                     b[1](ऊ) = ݂(݂݅-1(ऊ)).                           (13) 

 (Note that b[1] ߧ b[1][1]ܾ ߧ[1]ܾ ߧ is the identity.) 

To give an explicit example, we recall some special functions involving 
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elliptic integrals. Let (ऊ, ݐ) and (ݐ) be the normal and complete elliptic 

integrals of the first kind, respectively, that is, 

(ऊ, ݐ) = ∫ ௗ௫
ඥ(ଵି௫²)(ଵି௧²௫²)

ऊ
଴  .(ݐ ,1) = (ݐ)       , 

Furthermore, let 

గ=(ݐ)ߤ
ଶ

௄(ඥ(ଵି௧²)
௄(௧)

 . 

Choose the axis for the non-commutative ellipse as follows: 

a = cosh ቀభ
మμ൫మ

య൯ቁ,     ܾ = sinh ቀభ
మߤ൫మ

య൯ቁ. 

 Then 

భ=₁ܥ
మට భ

ೌ²ି భ
భ=₂ܥ     , ²್

್ . 

 

The desired conformal mapping is  

݂(ऊ) = sin ൮ గ
ଶ௄ቀమ

యቁ
ܭ ቌ ऊ

ටమ
య

, ଶ
ଷ
ቍ൲. 

Hence [1] in (1.2.6) can be explicitly computed has a power series 

expansion 

       b[1](ऊ) = ݅ऊ- భ
మళ݅ ൬9 −

ହଶ௄ቀర
వቁ²

గ²
൰ऊ³+݅

൫ଽగ²ିହଶ௄൫ర
వ൯²൯

ସ଼଺గ⁴
ऊ⁵+ܱ(ऊ⁷) 

                      ≈ ݅(1 + 0.30572ऊ³ + 0.140197ऊ⁵).                                  

This power series expansion has a radius of convergence ≥ 0< ߝ and thus 

induces an analytic free mapping ࣨߝ → (ℂ). By analytic continuation, this 

function coincides with ܾ.This enables us to evaluate (ऊܰ) for a nilpotent 

ܰ. 

 Let ܰ be an order 3 nilpotent, 

ܰ=൭
଴  ଵ  ଴  ଴
଴  ଴  ଵ  ଴
଴  ଴  ଴  ଵ
଴  ଴  ଴  ଴

൱. 

Then ݎ ߳ ℝ  satisfies ܰݎ ߳ ࣞℒ if and only if  -1.00033≤ ₀ݎ ≔ 1.00033≥ ݎ. 
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This has been computed symbolically in the exact arithmetic using 

Mathematica, and the bounds given here are just approximations. However, 

 ℒ\߲ࣞℒ  contradicting the properness. This was established by(₀ܰݎ)

computing the 8⨉8 matrix ℒ ((₀ܰݎ) ) symbolically thus ensuring it is 

exact. Then we apply a numerical eigenvalue solver to see that it is positive 

definite with smallest eigenvalue 0.0114903. . . . We conclude that the 

proper analytic free self-map ܾ does not exist. 

 


