الايم

بسو الله الرحمن الرحيو

الله مُلْك السَّم الواتِم والأون وم الخبيس وموع لم، عُلَ شَبي فَر حدق الله العظيم

(المائدة:120)

DeDication

To my faTher soul,

To my moTher,

To my HUSBOND,

To my broThers,

To my distinguished colleagues and,

To my friends

Acknowledgment

I thank God a lot for the given blessing, and I would like to express my sincere gratitude to my supervisor Prof. Dr. NafieAlmuslet for his continuous support, patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I would like to express my special appreciation and thanks to the staff of laser institute for their support. I would also like to thank Dr. Sad Aldien, Dr. YounisAbuAsha and all the staff of the department of mechanical engineering at Sudan University of Science and Technology for their help and technical support.

Abstract

This work aimed to fabricate multilayers thin films by liquiddeposition and to determin their optical properties.Three dyes were used for this aim; Phenexazon, Rohadamine and Coumarin.

Five samples were made from these dyes. The thickness of the thin film was deduced from the interference fringes made by He - Ne laser incident on the film during deposition.

Sample one was made of three layers, thefirst one was Phenexazon and the second wasRohadamine and the third wasCoumarin. The thickness of each layer was equal to half the wavelength of He-Ne laser.

Sample two was made of three layers; the first one was Phenexazon, the second was Rohadamine, they have same thickness equal to half the wavelength of Helium-Neon laser, while the third layer wasCoumarin with thickness equal to the wavelength of He-Ne laser.

Sample three was made of three layers, the first was phenexazonwiththickness equal half the wavelength of He-Ne laser, the second was Rohdamine with thickness equal the wavelength of He-Ne laser, and the last layer was Coumarin, with thickness equal half the wavelength of He-Ne laser.

Sample four was made of three layers; the first wasPhenexazonwith thickness equal the wavelength of He-Ne laser and the secondwas Rohdamine, while the third one was Coumarin. The thickness of each layer was equal half the wavelength of He-Ne laser.

Sample five was made of threelayers; the first one was Phenexazon, the second was Rohdamine, the third was Coumarin. The thickness of each layerwas equal to the wavelength of He-Ne laser.

IV

The optical properties of the fabricated thin films were deduced from the transmission spectrum recorded using different lasers with many wavelengths in the range between 500 - 950 nm.

The transmission spectrum for each thin film was recorded, and then the absorption coefficient, the refractive index, the transmission and the reflectivity for each fabricated thin film were determined and compared with the other thin films.

The results of the optical properties showed that some of the fabricated thin films can be used as reflectors or filtersin certain spectral range. At the end of this some recommendations were presented as future work.

المستخلص

الهدف من هذا العملهو تحضير أغشية رقيقة من عدة طبقات بإستخدام تقنية ترسيب السوائل حيث استخدمت ثلاث صبغات محلولة بواسطة الايثانول وهي (Coumarin-Rhodamine -Phenexazon) بتركبز محدد لتحضير هذه اللأغشية. تم ترسيب الصبغات و السيطرة على سماكة الاغشية الرقيقة وذلك من خلال أهداب التداخل التي يكونها ليزر الهيليوم نيون عند سقوطه على الغشاء اثناء التحضين بعد ذلكتم تسجيلاطياف النفاذية لكل غشاء ومن ثم تم حساب الانعكاسية ومعامل الامتصاص و معامل الإنكسار تم تحضير خمسة أغشية رقيقة من الصبغاتCoumarin– Rhodamine -Phenexazon بعدة طبقات. كالاتى :-العينة الأولى من ثلاثة طبقات: الطبقة الأولى من (Phenexazon) والثانية من (Rohadamin) والأخيرة من (Coumarin) وكل طبقة كانت ذات سمك يساوي نصف الطول الموجى للبزر الهليوم نيون. العينة الثانية مكونة من ثلاث طبقات: الطبقة الاولى من ("Phenexazon) والثانية من (Rohadamin) والثالثة من (Coumarin)الطبقة الاولى والثانية كان سمك كل منهما يساوى نصف الطول الموجى لليزير الهليوم نيون والطبقة الاخيرة سمكها يساوى الطول الموجي لليزي الهليوم نيون . العينة الثالثة مكونة من ثلاثة طبقات: الطبقة الاولي كانت من (Phenexazon)بسمك نصف الطول الموجى لليزر الهليوم نيون اما الطبقة الثانية فكانت من (Rhodamine) ذات سمك يساوى الطول الموجى لليزر الهليوم نيون اما الطبقة الاخيرة من (Coumarin)فقد كان سمكها يساوي نصف الطول الموجى لليزر الهليوم نيون . العينة الرابعة مكونة من ثلاثة طبقات: الاولى من صبغة ال(Phenexazon)ذات سمك يساوى الطول الموجى لليزر الهليوم نيون والثانية من (Rhodamine) والثالثة من (Coumarin)لكل منهما سمك يساوي نصف الطول الموجى للبزر الهلبوم نيون.

العينة الخامسة من ثلاثة طبقات: الاولي من (Phenexazon), الثانية من (Rhodamine) اما الطبقة الاخيرة فقد كانت من (Coumarin)و سمك كل طبقة يساوي الطول الموجي لليزر الهليوم نيون. تم استخدام عدة ليزرات باطوال موجية تتراوح بين 915-532 نانوميترللحصول على اطياف النفاذية لهذه الاغشية وبالأستفادة من هذه الأطياف و من معرفة سماكات العينات الخمسة فقد تم حساب معامل الامتصاص ، و الإنعكاسية و معامل الإنكسار لكل عينة.

وقد اجريت مقارنة بين العينات الخمسة من حيث النفاذية ، الإنعكاسية ، معامل الأمتصاص و معامل الإنكسار .

من النتائج المتحصلة نستنتج أن بعض الأغشية المحضرة يمكن استخدامها كعواكس في حين أن أغشية أخرى يمكن استخدامها كمر شحات في مديات طيفية متعددة.

فى نهاية هذا العمل قدمت توصيات متعددة كمقترحات لأعمال مستقبلية.

Table of contains

Subject	Page
Ayah Karima(Arabic)	Ι
Dedication	II
Acknowledgement	III
Abstract	IV
المستخلص	VI
Table of contains	VIII
List of tables	XIII
List of figures	XV
Chapter one: Basic concepts	
1.1Introduction	1
1.2 The study objectives	4
1.3 Thesis structure	4
1.4 History of thin films	4
1.5 Applications of thin films	10
1.5.1 Data Storage	11
1.5.2 Flat Panel Displays	11
1.5.3 Optoelectronic Devices	12

1.5.4 Optical Coatings	12
1.5.5 Thin film lithium ion batteries	13
1.6 Types of Coating	14
1.7 Properties of thin films.	16
1.7.1 Physical Properties of thin films.	17
1.7.2 Magneto – transport (spin- polarized)properties	18
1.7. 3 Magnetic properties	19
1.7. 4 Electrical transport properties	19
1.7. 5 Mechanical properties	21
1.7. 6 Wetting phenomena	24
1.7.7 The optical properties	24
1.8 Technology of thin films deposition	25
Chapter two: Multilayers thin fi	lms coating
2. 1 Introduction	27
2. 2 Deposition techniques for thin films	27
2.2.1 Physical techniques	29
2.2.1.1 Physical VapourDeposition(PVD)	29
2.2.1.2 Evaporation technique	29
2.2.1.3 Sputtering technique	30

2.2.1.4 Ion plating technique	32
2.2.2Chemical and electrochemical techniques	33
2.3 Optical Coatings	34
	34
2.4 General Theory of Filters	
2.5 Transmission and Reflection of Coatings	36
on a Substrate	
	37
2.6 Transmission Filters in Series and Parallel	
	40
2.7 Reflection Filters in Series	
2.8 Antireflection Coatings	41
2.9 Literature review	42
Chapter three: The experimental part	
3-1 Introduction	44
3-2 The experimental setup	44
3-2-1The vacuum chamber	44
3-2-2 The vacuum pump	45
3-2-3 The vacuum gauge	46
3-2-4. The photodetector	47
3-2-5 The Burrete	48

3-2-6 The digital oscilloscope (CRO)	48
3-2-7 The digital multimeter	48
3-2-8The UV-1800 spectrophotometer	48
3-3The laser sources	49
3-3-1 He-Ne laser	50
3-3-2 Diode laser	50
3-3-3The diode laser (532 nm)	51
3-3-4 The red diode laser (671 nm)	51
3-4 The materials	51
3-4-1Rhodamine 6G	51
3-4-2Phenexazon	52
3-4-3 Coumarin 500	52
3-5 The Experiment Procedure	54
3-5-1 The procedure of sample one	54
3-5-2 The procedure of sample two	56
3-5-3 The procedure of sample three	57
3-5-4 The procedure of sample four	59
3-5-5 The procedure of sample five	60
Chapter four: Results and Discussion	
4-1 Introduction	62
4-2 The samples results	63

4-2-1 Sample one (S_1)	63
4-2-2 Sample two (S_2)	66
4-2-3 Sample three (S ₃)	69
4-2-4 Sample four (S_4)	72
4-2-5 Sample five (S_5)	75
4-3.Comparison between the optical properties of the five samples	78
4-3-1: The transmission of the five samples	78
4-3-2. Thereflectivity of the five samples	79
4-3-3 Therefractive indices of the five samples	79
4-3-4 The absorption coefficients of five samples	80
4.4 The discussion	80
4.5 Conclusions	83
4.6 Recommendations	84
References	85

List of tables

The table	Page
Table(3-1): The specifications of the vacuum pump	45
Table (3-2): The specifications of the vacuum gauge.	46
Table (4-1): The components and the thickness of the samples	63
layers	
Table (4-2):The incident, transmitted intensity, the transmission	64
and thereflectivity of sample S ₁	
Table (4-3): Therefractive index and the absorption coefficient of	65
sample S ₁	
Table (4-4):Theincident, transmitted intensity, thetransmission and	67
reflectivity of sampleS ₂	
Table (4-5): The refractive index and the absorption coefficient of	68
sample S ₂	
Table (4-6):The incident, transmitted intensity, the transmission	70
and reflectivity of sample S_3	
Table (4-7): The refractive index and the absorption coefficient of	71
sample S ₃	
Table (4-8): The incident, transmitted intensity, the transmission	73
and reflectivity of sample S_4	
Table (4-9):Therefractive index and the absorption coefficient of	74
sample S ₄	
Table (4-10):The incident, transmitted intensity, the transmission	76
and reflectivity of sample S_5	

Table (4-11): The refractive index and the absorption coefficient of	77
sample S ₅	
Table (4-12): The transmission of the fivesamples.	79
Table (4-13): The reflectivity of the five samples	79
Table(4-14): The refractive indexof the five samples	80
Table (4-15): The absorption coefficients of the five samples	80

List of Figures

Figure	Page
Figure (1-1) :Transmission, reflectance of thin film	3
Figure (1-2) History of TFT and IC development	9
Figures (1-3):(a) Si:H TFT structure and (b) transfer characteristics.	10
Fig(1-4). Schematic representation of thin film lithium ion batteries	14
Figure (2-1) : The sputtering system.	32
Figure (2-2):Specular transmissionand reflection of light by a plane-	35
parallel plate.	
Figure (2-3): Transmission filters arranged in series and in parallel.	38
The filters can be air-spaced (a) and (c) or cemented (b).	
Figure (2-4): Various arrangements for multiple reflection filters.	40
Figure (3-1):Schematic diagram of the experiment setup.	44
Figure (3-2): A photograph of the vacuum pump.	46
Figure (3-3): A photograph of the vacuum gauge.	47
Figure (3-4): A photograph of the detector.	48
Figure (3-5): A photograph of the spectrometer (UV-1800).	49
Figure (3-6): A photograph of the screen of the spectrometer (UV-1800).	49
Figure (3-7):A photograph of He – Ne laser.	50
Figure (3-8):A photograph of omega laser xp system.	51
Fig (3-9):The chemical formula of Rhodamine 6G.	52
Fig (3-10):The chemical formula of Phenexazon.	52
Fig (3-11): The chemical formula of Coumarin 500.	53
Figure (3-12): A photograph of the experimental setup.	53
Fig(4-1): The transmission spectrum of sample S_1	64

Fig (4-2): The refractive index of sample S_1 versus wavelength.	65
Figure (4-3): The absorption coefficient at different wavelengths	66
for sample one.	
Fig(4-4): The transmission spectrum of sample two.	67
Fig (4-5):TheRefractive index of sample S ₂ versus wavelength	68
Fig (4-6): The absorption coefficient of sampleS ₂ versus lasers	69
wavelengths.	
Fig(4-7)The transmission spectrum of sample S_3	70
Fig (4-8): The refractive index of sample S_3 versus laser wavelength	71
Fig (4-9): The absorption coefficient of sample S_3 versus lasers	72
wavelengths.	
Fig (4-10): Thetransmission spectrum of sample S ₄ .	73
Fig (4-11): The refractive index of sample S_4 versus laser	74
wavelength.	
Fig (4-12): The absorption coefficient of sample S_4 versus laser	75
wavelength.	
Fig (4-13): The transmission spectrum of sample S_5 .	76
Fig (4-14): Therefractive index for sample S_5 versus lasers	77
wavelengths.	
Fig (4-15): The absorption coefficients of sample S_5 versus laser	78
wavelengths.	