Dedication

I dedicate my dissertation work to my family and many friends. A special

Feeling of gratitude to my loving parents, for their encouragement and push for tenacity ring in my ears. My sisters have never left my side and are very special.

I also dedicate this dissertation to all friends who supported me throughout the process.

I dedicate this work and give special thanks to my best bother Adris Musa.

Thanks for everything.

ACKNOWLEDGEMENT

First of all, praise is due to almighty ALLAH on whom ultimately we depend for sustenance and guidance. Second, my sincere appreciation goes to my supervisor Dr. Elsadig Elmahdi Ahmed for his invaluable advice and supervision at the initial stages of thisstudy. He also supported me in my interest in this topic and providedme with many helpful and technical discussions in design development.

I also deeply thank my brother Adris Musa and friends. Finally I want to thank all the staff of Agricultural Engineering Department at the College of Agricultural studies, who were directly or indirectly involved in this study.

ملخص الدراسة

هذه الدراسة أجريت في قسم الهندسة الزراعية- كلية الدراسات الزراعية – جامعة السودان العلوم وتكنولوجيا في عام 2015 -2016 الهدف الأساسي للدراسة هو تصميم وتنفيذ واختبار نموذج لمنقيه درامية واستخدامها في تنقية الطمي في مياه النيل الأزرق . تم تصميم الجهاز من مواد متوفرة محليا. لم تتعدي تكلفتها 2610 جنيه سوداني .

قطر الأنبوب الداخلي والخارجي 2 بوصة. سعة التصرف للأنموذج 5900 لتر/ الساعة. أوضحت النتائج المتحصل عليها في اللانموذج إن الأداء مرضي ومتفق مع مواصفات مياه الري التي نصت عليها منظمة الزراعية العالمية FAO. تم عمل تجربتين تمثليتين لتنقية الطمي المحمول بتركيز 6.9 جرام/لترو 8.6 جرام/لتر.النتائج المتحصل عليها قريبة من النتائج المتحصل عليها في تنقية مياه النيل الأزرق.

الاختلافات البسيطة تعزي لوجود طين زائد علي الطمي المتحصل عليه مع الطمي في تجربة التماثل. تمت مقارنة مستوي العكاره قبل وبعد التنقية لمياه النيل الأزرق . النتائج المتحصل عليها

اقل من المستوى المسموح به في مواصفات United Stated Environmental اقل من المستوى المسموح به في مواصفات Orotection Agency(EAp) و هذا ما أدت إليه التجربتان التماثليتان. والتكلفة الكلية لتصميم و تنفيذ الجهاز 2610 جنيه بينما تكلفة المستورد 3499 جنيه . النتائج النهائية تدل علي أن تبني هذا الجهاز يضمن أداء فني مرضى و بتكلفة اقل .

Abstract

This study conducted at the Department of Agricultural Engineering, College of Agricultural Studies, Sudan University of Sciences and Technology 2015 – 2016. The main objective of this study is to design, construct and test a model for a hydro cyclone irrigation water filter to be used in filtration of Blue Nile water for modern pressurized s irrigation systems. The hydro cyclone was constructed from locally available materials. The local cost did not exceed 2610 SDG . The inlet and outlet pipes diameter were two inches. The discharge capacity of the model was 5900 l/h. The results obtained from the model were very satisfactory since it was complying with irrigation water silt load standards adopted by FAO (2 gm/l). Two filtration simulations were carried out for silt loads of 6.8gm/l and 8.6gm/l. The results were very close to the Blue Nile filtration results. The slight difference seem to be attributed to extra clay conduct that was achieved to the river silt used in the simulation process. Turbidity levels before and after filtration for Blue Nile water was compared. The results were below the allowable level specified by United Stated Environmental Protection Agency (EAp). This is also true for the two simulation levels. The total cost of the designed and constructed model 2610 SDG which the cost of the imported similar size model filter is 3499 SDG. The final results revealed that the adoption of such a model is quite satisfactory for it well satisfactory technical performance and lower cost.

TABLE OF CONTENTS

ITEM	PAGE NO.	
Dedication	i	
Acknowledgment	ii	
ملخص الدراسة	iii	
Abstract	vi	
CHAPTER ONE (INTRODUCTION)		
Introduction.	1	
Research problem	2	
Objectives	2	
CHAPTER TWO (LITERATURE REVIEW)		
Water Quality	3	
Water Quality Guidelines	3	
Water Quality Criteria for Irrigation	5	
Turbidity	6	
The Meaning of the Rankings	7	
The rankings are described as follows	7	
Background information on the Blue Nile River Basin	7	
What is a filter	10	
Reasons for Filtration	10	
Need for a filter	11	
Filtration Methods	11	
Factors considered when selecting the filtration methods	11	
Following are the major types of irrigation filters used in the	13	
micro – irrigation system		
Specification of Screen Filter	15	
Maintenance of Hydro cyclone	19	

Clogging Factors	19
Methods of cleaning filters	19
Various methods for cleaning flow	20
Irrigation	20
Irrigation methods	21
CHAPTER THREE (MATERIALS AND METHO	DS)
Study Area	32
Principles Design	32
Materials	33
Equipments and tools	34
Proportional dimension	35
Specification dimensions of data design	35
Determination Silt Load of Nile Water before and after Hydro	36
cyclone Filtration	
Determination of Blue Nile Water Turbidity on16/9/2015.	36
Equipment and tools used	36
Experiment Measurement	36
Determination of the filtration level of the hydro cyclone.	36
Determination of the hydro cyclone Filtration System Discharge	36
Equipment and tools	36
(a) Experiment steps	37
(b) Experiment steps	37
Silt Collection Cylinder Cleaning Interval	38
Determination of the filtration Rate of the hydro cyclone using	38
simulated one kilo gram (kg) silt load water	
Determination of the filtration level of the hydro cyclone	38

Determination of the filtration capacity of the hydro cyclone	38
using simulated silt load water kilo and half (1.5 kg)	
Determination of the filtration level of the hydro cyclone for the	38
simulated silt load	
SPSS for Windows	38
CHAPTER FOUR (RESULTS AND DISCUSSION)	
Results and Discussion	39 - 46
Results and Discussion Chapter Five (Conclusion And Recommendation	39 - 46 s)
Results and Discussion Chapter Five (Conclusion And Recommendation Conclusion	39 - 46 s) 47
Results and Discussion Chapter Five (Conclusion And Recommendation Conclusion Recommendations	39 - 46 s) 47 47

Fig No	Figurer Name	Page No
2.1	Nile River Basin	8
2.2	Total annual sediment load (million tons)	9
2.3	Types of filtration methods	13
2.4	Showing screen filter diagram	16
2.5	Showing disc filter diagram	17
2.6	Showing Sand Media Filter diagram	17
2.7	Centrifugal Filter (Hydro cyclone)	19
2.8	The various irrigation techniques	21
2.9	Surface Irrigation diagram	21
2.10	Pressure Compensating Emitters diagram	23
2.11	Non Pressure Compensating Emitters diagram	23
2.12	Diagram components of drip irrigation system	26
2.13	Diagram components of Set – Move system	26
2.14	Diagram components of a solid – set sprinkler irrigation system.	27
2.15	Diagram components of a centre- pivot sprinkler irrigation system	28
2.16	Lindsay Center Pivot with End Gun	28
2.17	Diagram Traveling gun type sprinkler systems	29
2.18	Diagram Traveling Boom type sprinkler systems	30
2.19	D showing linear – move system	31

TABLE OF FIGURES

3.1	Diagram hydro cyclone filter	33
3.2	Diagram hydro cyclone filter	34
3.3	Filtration device diagram	37
4.1	Comparison allowable silt concentration in irrigation water as	39
	published in FAO	
4.2	Comparison allowable silt load in irrigation water (simulation	41
	one)	
4.3	Comparison allowable silt concentration in irrigation water	42
	(simulation two)	
4.4	Compression between water turbidity level in Blue Nile water	43
	after hydro cyclone filtration and United Stated Environmental	
	Protection Agency Standard(EAP)	
4.5	Protection Agency Standard(EAP) Comparison between water turbidity level (simulation one)	45
4.5	Protection Agency Standard(EAP) Comparison between water turbidity level (simulation one) after hydro cyclone filtration and United Stated Environmental	45
4.5	Protection Agency Standard(EAP) Comparison between water turbidity level (simulation one) after hydro cyclone filtration and United Stated Environmental Protection Agency Standard(EAP)	45
4.5 4.6	Protection Agency Standard(EAP)Comparison between water turbidity level (simulation one)after hydro cyclone filtration and United Stated EnvironmentalProtection Agency Standard(EAP)Comparison between water turbidity level simulation(two)	45 46
4.5 4.6	Protection Agency Standard(EAP)Comparison between water turbidity level (simulation one)after hydro cyclone filtration and United Stated EnvironmentalProtection Agency Standard(EAP)Comparison between water turbidity level simulation(two)after hydro cyclone filtration and United Stated Environmental	45 46

TABLE OF CONTENTS

Table	Table Name	Page
No		No
2.1a	Classification of irrigation water	5
2.1b	Classification of irrigation quality	5
2.2	Suggested Filter Types Based on Water Sources	12
2.3	Particle Size in Relation to Mesh Equivalent and Micron	13

2.4	Representative Screen Mesh Number And The Corresponding	14
	Standard Opening Size Equivalents	
2.5	The minimum size of particle retained by a screen filter with certain	14
	mesh can be determined as follows	
2.6	Specification of Screen Filter	15
2.7	_Flow rate in gallons per minute	16
2.8	Potential risk of Blockage in Drip Irrigation Systems	24
2.9	Different Sprinkler Types ,wetted Radius (m) and Flow (m ³ /h)	18
3.6	Specification dimensions of data design	26
4.1	Percent Silt Removed from Nile water after hydro cyclone filtration	39
4.2	The statistical analysis (t-test) result of the silt concentration in Blue	40
	Nile Water before and after Hydro cyclone Filtration	
4.3	Percent remove simulated silt load(simulation one and simulation	40
	two)	
4.4	The statistical analysis pair (t-test) of the simulated silt load before	41
	and after Hydro cyclone Filtration	
4.5	The statistical analysis (t-test) of the simulated silt load before and	42
	after Hydro cyclone Filtration	
4.6	Level of turbidity before and after filtration for Blue Nile Water	43
4.7	The statistical analysis (t-test) of the water turbidity before and after	44
	Hydro cyclone Filtration	
4.8	Turbidity Level in simulated silt load (one and two)before and after	44
	hydro cyclone filtration	
4.9	Statistitical analysis using pair t-test reveals highly significant	45
	differences between water turbidity before and after filtration	
4.10	The statistical analysis (t-test) of the water turbidity simulated silt	46
	load(two) before and after Hydro cyclone Filtration	

Appendices		
1	The statistical analysis (t-test) of the Silt Concentration in Blue Nile	50
	Water between before and after Hydro cyclone Filtration	
2	The statistical analysis (t-test) of the simulated silt load (one)	50
	betweenbefore and after Hydro cyclone Filtration	
3	The statistical analysis (t-test) of the simulated silt load (two) before	50
	and after Hydro cyclone Filtration	
4	The statistical analysis (t-test) of the Blue Nile water turbidity before	51
	and after Hydro cyclone Filtration	
5	The statistical analysis (t-test) of the water turbidity(one)before and	51
	after Hydro cyclone Filtration.	
6	The statistical analysis (t-test) of the water turbidity(two)before and	51
	after Hydro cyclone Filtration	

Abbreviations

WHO	The world health organization.
FAO	Food Agricultural Organization.
USDA	United States Department of Agriculture.
APHAA	American Paint Horse Association.
ECw	Water Electrical Conductivity.
TSS	Total Suspended Solids.
SAR	Sodium Absorption Ratio.
BCM	Billion Cubic Meter.
MoRD	Ministry of Rural Development.
NCPAH	National Committee On Plasticulture Application Horticulture
SPSS	Statistical Package for Social Sciences.
LAT	Latitude.
Alt	Altitude.
Ν	Northern.
Е	Eastern.
Q	Discharge(m ³ /h).
NTU	Nephelometric Turbidity Unit.
EAP	United Stated Environmental Protection Agency.