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Abstract 

In this research we treat the problem of integrability of Hamiltonian systems 
. There have been several methods for treating this problem depending on different 
situations. These methods include the first integral method obtained via the 
Poission bracket and generalized in the context of Lie bracket . The latter 
generalization is based on Hamiltonian mechanics and symplectic structure. The 
method that we emphasized in this research is the Cartan  method of moving 
frame. We have utilized this method of moving frame where the killing tensor is 
major entity that is involved in the treatment .In particular, we have used the 
intrinsic geometry provided by the Guass and main curvature to extract the 
separable   system of coordinates  by employing the method of moving frame. 
Then the corresponding Killing tensor , the potential function and the first integrals 
are recovered .We have applied this procedure of separation of variables to 
surfaces of rotation and surface of constants curvature .   

 

 

 

 

 

 

 

 

 

 

 

 

 



IV 
 

 المستخلص

فى ھذا البحث عالجنا مشكلة التكامل للنظم الھاملتونیھ، حیث تطرقنا لعدة طرق مختلفة. ووجدنا من 
على المشاكل المختلفة. وتعتبر  خلال ھذه الرسالة أن المعالجة الھندسیة أفضت إلى حلول واضحة إعتماداً 

إن ممتدة كلینق    حیث  الصیاغة المستخدمة صیاغھ ھندسیھ حیث أستعملنا طریقة كارتان للاطار المتحرك
  ھو المعامل الرئیسى المستخدم فى معالجة المسألة .  

تم تعمیمھ في  ان الطرق المختلفة في ھذه الرسالة تشمل طریقة التكاملي الاول من خلال قوس بوسون والذي
قوس لي . ھذا التعمیم الاخیر مؤسس على المیكانیكا الھاملتونیة والتركیب السمبلكتیكي . ان الطریقة التي 

  اكدنا علیھا في ھذه الرسالة ھي طریقة كارتان للاطار المتحرك.

على وجھ الخصوص استخدمنا الھندسة الذاتیة المعطاة بانحناء جاوس والانحناء المتوسط من اجل استخلاص 
فصل المتغیرات وذلك بالاستعانة بطریقة كارتان للاطار المتحرك . وبذا امكن استرجاع ممتد كلینق ودوال 

المتغیرات على سطوح الدوران  الطاقة الكامنة وكذلك التكاملیات الاولى . وطبقنا ھذه الاجراءات لفصل
  وسطوح ذات الانحناء الثابت .
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Introduction 

The problem of the itegrability of Hamiltonian system is a long standing 
problem. Several trials has been achieved to approach a complete solution. In fact 
there has been roughly three main approaches. The first approach is the classical 
approach where one seeks first integrals of the Hamiltonian system and then the 
solution is written via these integrals. A first integral F satisfies: 

డி
డ௧

+ {ܪ,ܨ} = 0 ,    where {, } is the Poisson bracket and H is the  Hamiltonian 
function . In this approach one uses Calculus as an analytical tool. However one 
can also utilize Lie bracket instead of Poisson bracket. The Lie bracket is 
considered as a geometrical approach, where we involve vector fields, called 
Hamiltonian vector fields, corresponding to Hamiltonian functions. The next stage 
in the development of integrability of Hamiltonian system is due to Eisenhart and 
Cartan approach. Eiserhart used the frame field and Cartan used  the coframe field 
and thus exterior Calculus is to be the geometrical tool for a free coordinates 
description of Hamiltonian system and Hamilton’s equation. In this late approach 
prove existance and uniqueness of solutions of the system , which is problem of  
integrability . Of particular interest to us as a technique to solve Hamiltonian 
system is the method of separation of variables . The key idea behind this method 
is to seek a k-set of special coordinates : ݍ = ,ଵݍ) … ,  ) in which correspondingݍ
Hamilton- Jacobi partial differential equation admits a complete integral of the 
form  

(ܥ,ݍ)ݓ = (ܥ,ଵݍ)ଵݓ + ⋯+ ݍ)ݓ  .(ܥ,

 This method of separability has been considered by several mathematician 
such as Dall’ Acqua, Eisenhart, Levi-Civita , Riai , Stackel and others. In this 
research we develop the method of separability and use it in the same cases.  

 Lastly we want to mention that these is another  third approach to the 
problem of integrability of Hamiltonian system. This approach is purely 
geometrical .  

 Indeed here mathematicians construct the solutions as submanifolds of some 
ambient manifold . The first integrals of the system or their corresponding vector 
fields are interpreted as generators of the flows and provide the symmetries of the 
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system .The reduction of order of the Hamiltonian equations is achieved in such a 
way that for each symmetry the order is reduced by two . 

So the geometrical properties of the symplectic  form and the corresponding 
Lie symmetries that come from first integrals are utilized to construct the 
submanifolds of solutions.      
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Chapter One 

Differentiable Manifolds and Lie Groups 

1.1Manifold 

1. the definition of differentiable manifolds: 

(1.1.1)Definition: 

If ܷ ⊂ ℜm is open and ܸ ⊂ ℜm is open, ߰:ܷ → ܸ is said to be differomorphism if ߰ is 
infinitely differentiable map with infinitely differentiable inverse, and the objects defined on ܷ 
will counter parts on ܸ. 

(1.1.2)Definition: 

An m-dimensional manifold is a set M, together with a countable collection of subsets for 
ܷఈ ⊂ called coordinate charts, and one-to-one functions ߮: ܷఈ ,ܯ → ఈܸ onto connected open 
subset ఈܸof ℜm, where ఈܸ ⊂ ℜmcalled local coordinate maps which satisfy:- 

1. The coordinate charts cover M. 
2. On the overlap of any pair of coordinate charts ܷఈ ∩ ఉܷcomposite map 

߮ఉ°߮ఈିଵ:߮ఈ(ܷఈ ∩ ఉܷ) → ߮ఉ(ܷఈ ∩ ఉܷ) 
is smooth (or infinitely differentiable) function. 

3. W of ߮ఈ(ݔ) in ఈܸ and ෙܹ  of ߮ఉ(̅ݔ) in ఉܸ  such that  
߮ఈିଵ(ݓ) ∩ ߮ఉ(ݓഥ) = Ø 

 

Figure 1.1 

Coordinate Charts on manifold 

Example(1): 

The sample n-dimensional manifold is just Euclid’s space ℜitself. There is a single 
coordinate chart ܷ = ℜ with local coordinate map given byܺ = ℜ:ܫ → ℜ, more generally 
any open subset ܷ ⊂ ℜ is an n-dimensional manifold with a single coordinate chart given 
ܷitself, with local coordinate map the identity again. Conversely, if M is any manifold with a 
single global coordinate chart  
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ܯ:ܺ → ܸ ⊂ ℜ 
We can identify ܯ with image ܸ, an open subset of ℜ. 

Example(2): 

The unit sphere 

ܵଶ = ,ݕ,ݔ)} ଶݔ:(ݖ + ଶݕ  + ଶݖ  = 1} 

Is an example of non-trivial two-dimensional manifold realized as  a surface in ℜଷ  let ܷ1= ܵଶ \ 
{(0,0)} , ܷ2 =ܵଶ\ {(0,0,1)}be the subset obtain by deleting the north and south poles respectively 
let  

߮ఈ:ܷఈ  →  ℜଶ ≈ ,ݔ)} ,ݕ ߙ, {(0 = 1,2 

be stereographic projection from respective poles, 

߮ଵ(ݔ, ,ݕ (ݖ = (  ௫
ଵି௭ 

, ௬
ଵି௭

) 

߮ଶ(ݔ, ,ݕ (ݖ = (  ௫
ଵା௭ 

, ௬
ଵା௭

) 

It can be easily checked that on the overlap ܷ1∩ ܷ2 . 

The Hausdorff separation property follows easily from that of  ℜଷ, so S2 is a smooth, 
indeed two-dimensional manifold. The unit sphere is particular case of the general concept of 
surface in ℜଷ, which historically provided the principle motivating of the general theory of 
manifolds. 

(1.1.3) Definition 

The set ܷ ⊂ ݔ∀  is open if and only if ܯ ∈ ܷ there is a neighborhood of ݔ contained in  ܷ so ݔ ∈
߮ିଵ(߱), ∋ ݔ ߮ఈିଵ(߱) ⊂ ܷఈwhere ߮ఈ:ܷఈ → ఈܸis coordinate chart containing ݔ, and ߱ is open 
subset of  ఈܸ     . 

 The degree of differentiability of the overlap functions ߮ఉ° ߮ఈିଵdetermines the degree 
of smoothness of the manifold  ܯ. 

2. Map between manifolds: 

(1.1.4)Definition:  

If ܯ and ܰ are smooth manifolds, a map  ݂:ܯ →  said to be smooth if its local ݏ݅ ܰ 
coordinate expression is a smooth map in every coordinate chart. 

In other words, for every coordinate chart ߮ఈ:ܷఈ → ఈܸ ⊂ ℜ on ܯ and every chart  ߮ఉ : ෩ܷఉ  →
෨ܸఉ ⊂ ℜ  .ܰ ݊ 
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The composite map  

߮ఉ  °  ݂  ° ߮ఈିଵ:ℜ → ℜ                                                                                     (1.1) 

is a smooth map. In other words, a smooth map is of the form y= ݂(ݔ), where ݂ is a smooth 
function on the open subsets given local coordinates ݔ on ܯ and y on N. 

 

 

Figure 1.2 

Map between manifolds 

3. The maximal rank condition: 

(1.1.5)  Definition: 

Let ݂: ܯ →N be a smooth maping from an m-dimensional manifold ܯ to an n-
dimensional manifold N. the rank of ݂ at a point ݔ ∈  is the rank of the ݊ ×݉ Jacobin matrix ܯ 
(߲݂/ ߲ݔ) at ݔ, where y= ݂(ݔ) is expressed in any convenient local coordinates near ݔ. The 
mapping ݂ is of maximal rank on a subset ܵ⊂M if for each ݔ ∈ ܵ  the rank of ݂ is large as 
possible (i.e. minimum of m and n). 

4.Submainfold: 

(1.1.6)  Definition: 

Let ܯ be a smooth manifold. A submanifold of ܯ is a manifold ܰ ⊂  together with a ,ܯ
smooth, one-to-one map ∅: ෩ܰ → ܰ ⊂  ,satisfying the maximal rank condition everywhere ܯ
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where the parameter ෩ܰ is some other manifold and ܰ = ∅( ෩ܰ) is the image of ∅. In particular, 
the dimension of ܰ is the same as that of ෩ܰ, and does not exceed the dimension of ܯ.  

Example (3): 

In all these examples of submanifolds, the parameter space ෩ܰ = ℜ is the real line, 
with  ∅:ℜ → ܰ parametrizinga one-dimensional submanifold ܯ = ∅(ℜ) of some manifold M 

a) Let ܯ= ℜଷ. Then 
(ݐ)∅ = (cos t , sin t , t) 

defines a circular helix spiralling up the z-axis. 

Here ∅ is clearly one to one and ∅෩ = ,ݐ݊݅ݏ−) ,ݐݏܿ 1) never vanishes, so the maximal rank 
condition holds. 

b) Let ܯ =ℜଶ and  
∅(t) =((1 + ݁ି௧) cost, (1+݁ି௧)sin ଶݔ then as t →∞, ܰ spirals into the unit circle (ݐ +
ଶݕ = 1. Similarly, ߶෨(t) = (݁ି௧ ,ݐݏܿ  ݁ି௧ ݐ݊݅ݏ) defines a logarithmic spiral at origin. 

(1.1.7)Definition: 

A subset ܰ of a ܥஶ- manifold ܯ is said to have n-submanifold property if each ܲ߳ܰ has 
a coordinate neighborhood (ܷ,߶) onܯ with local coordinates ݔଵ, … ,    such thatݔ

(i) ߶()  =  (0,0, … ,0) 
(ii) ߶(ݑ)  =  (0)ܥ 
(iii) ߶ (ݑ ∩ ାଵݔ |(0)ܥ߳ݔ} = (ܰ = ⋯ = ݔ = 0 } 

If N has this property, coordinate neighborhood of this type are called preferred coordinater 
(relative to ܰ) 

(1.1.8) Definition: 

A regular submanifold ܰ of a manifold ܯ is a submanifold parametrized by ߶: ෩ܰ →  ܯ
with the property that for each ݔ in ܰ there exist arbitrarily small open neighbourhoods ܷ of ݔ in 
ܷ]such that) ߶ିଵ ܯ ∩ ܰ] is a connected open subset of ෩ܰ. 

(1.1.9)Definition: 

A differentiable mapping ܯ:ܨ → ܰ is called an immersion if rank ܨ =  at all ܯ  ݉݅݀
point of ܯ. Thus every regular mapping from one manifold to another define an immersion 
provided ݀݅݉ܯ ≤ ݀݅݉ ܰ. 

(1.1.10)Definition: 
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A subset ܰ ⊂  ܯ with a differentiable structure is called an immersed submanifold of) ܯ
if the  inclusion map ܫ: ܰ →  .is an immersion ܯ

(1.1.11)Definition: 

Let ܯ:ܨ → ܰ be one-to-one immersion such that ܯ is homeomorphic to its image ܯ෩ =
 is called an imbedding ܨ ෪receives as subspace of ܰ, then ܯ with respect to topology which(ܯ)ܨ
and ܯ෩ is called an imbedded submanifold. 

 

 

(1.1.12)Definition: 

 A subspace ܯ of a C∞- manifold ܰ having the submanifold property is called a regular 
submanifold of ܰ if the differentiable structure induced is one which is determined by preferred 
coordinate neighborhood of ܰ (relative to ܯ). 

1.2 Lie Groups 

1. Lie Groups: 

A Lie group appears to be a somewhat unnatural marriage between on the one hand the 
algebraic concept of a group, and on the other hand the differential - geometric notion of a 
manifold. 

 (1.2.1) Definition: 

 A group G which is also a manifold is Lie group provided that mapping of ܩ × → ܩ  ܩ 
defined by (ݕ,ݔ)  → → ܩ and the mapping of ݕݔ  → ݔ defined ܩ   .ஶmappingܥ ଵ are bothିݔ

(1.2.2) Definition: 

An r-parameter Lie group ܩ, is a Lie group which also carries the structure of an r-
dimensional manifold in such a way that both the group operation. 

× ܩ:݉ → ܩ  ܩ 

             ݉(݃, ℎ)  =  ݃.ℎ,   ݃, ℎ߳ܩ 

and the inversion 

ܩ:݅ → (݃)݅ ,ܩ   =  ݃ିଵ,݃߳ܩ 

are Smooth maps between manifolds. 



6 
 

Example (4): 

 GL(n, ℜ) the set of non singular n × ݊  matrices, is as we have seen, an open submanifold 
of ߤ(ℜ), the set of ݊ × ݊ real matrices identified with ℜమ moreover GL(n, ℜ) is a group with 
respect to matrix multiplication. 

 In fact an  ݊ × ݊  matrix A is nonsingular if and only if det ( ܣ) ≠ 0, but ݀݁(ܤܣ) ݐ =
ܣ ݐ݁݀ are non singular, that ܤ and ܣ so if ,ܤ ݐ݁݀.ܣݐ݁݀ ≠ 0 if an only if ܣ has a multiplicative 
inverse, thus GL (n, ℜ) is a group. Both the map (ܤ,ܣ)  → ܣ ݀݊ܽ ܤܣ →  ଵ are C∞ - theିܣ
product has entries which are polynomials in the entries of ܣ and ܤ and these entries are exactly 
the expression in local coordinates of the product map which is thus C∞ here C-

∞ the inverse of 
ܣ = (ܽ) may written as  ିܣଵ = )(ܣݐ݁݀/1) തܽ) where the തܽ are cofactor of ܣ (thus 
polynomials in theses entries which does not vanish on GL(n, ℜ). It follows that the entries of 
 ଵare rational function on GL (n, ℜ) with non-vanishing denominators, hence C∞, there for GLିܣ
(n, ℜ) is Lie group. 

2. Local Lie groups 

(1.2.3) Definition:  

 An r-parameter local Lie group consists of connected open subsets ܸ ⊂ ܸ ⊂ ℜ 
containing the origin 0, and smooth maps. 

݉: ܸ ×  ܸ →  ℜ                                            (1.2) 

defining the group operation, and  

݅ ∶  ܸ → ܸ, 

defining the group inversion, with the following properties  

a) Associativity if  ݔ, ,ݕ ∋ ݖ  ܸ and also ݉(ݔ, ,ݕ)݉ and (ݕ  are in ܸ, then (ݖ
,ݕ)݉,ݔ)݉                        ((ݖ  = ,(ݕ,ݔ)݉)݉   .(ݖ

b) Identity element, for all ݔ ݅݊  ܸ ,)݉, (ݔ  = ݔ = ,ݔ)݉ 0). 
c) Inverses, for each ݔ ݅݊  ܸ ,ݔ)݉, ((ݔ)݅  = 0 =  .(ݔ,(ݔ)݅)݉

Example (5): 

Here we present a nontrivial example of a local about not global, one-parameter Lie 
group. Let ܸ = :ݔ} |ݔ| < 1} ⊂ ℜ with group multiplication. 

,ݔ)݉ (ݕ =  
ݕݔ2 − ݔ − ݕ
ݕݔ − 1 , ,ݔ ݕ ∈ ܸ 
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A straight forward computation verifies the associativity and identify laws for ݉. The 

inverse map is ݅(ݔ)  = ݔ2)/ݔ − 1), defined for ݔ ∈ ைܸ = ቄݔ: |ݔ| < ଵ
ଶ
ቅ. Thus ݉ defines a local 

one-parameter Lie group. 

3. Local transformation groups: 

(1.2.4) Definition: 

Let ܯ be a smooth manifold. A local group of transformations acting on ܯ is given by a 
local Lie group G, an open subset ߟ, with 

{݁} × ܯ ⊂ ߟ ⊂ ܩ ×  ܯ

which is the domain of definition of the group action, and smooth map ߰ = ߟ →  with the ܯ
following properties. 

a) If  (ℎ,ݔ) ∈ ,ߟ ൫݃,߰(ℎ, ൯(ݔ ∈ .݃) and also ߟ  ℎ, (ݔ ∈  then ߟ
߰൫݃,߰(ℎ, ൯(ݔ = ߰(݃.ℎ,ݔ) 

b) For all ݔ ∈  ܯ
߰(݁, (ݔ  =  ݔ 

c) If  (݃,ݔ) ∈ ൯(ݔ,݃)߰,then ൫݃ିଵ,ߟ ∈   and ߟ 
                           ߰(݃ିଵ,߰(݃, ((ݔ  =  ݔ

4. Orbits 

(1.2.5) Definition: 

An orbit of a local transformation group is a minimal nonempty group invariant subset of 
the manifold ܯ. In other words, ܱ ⊂  .is an orbit provided it satisfies the conditions ܯ

a) If ݔ ∈ ܱ,݃ ∈ ݔ.݃ is defined, then ݔ.݃ andܩ ∈ ܱ 
b) If ෘܱ ⊂ ܱ, and ෘܱ  satisfied part (a) then either ෘܱ = ܱ or is empty. 
In the case of a global transformation group, for each ݔ ∈  has the ݔ  the orbit through ܯ

explicit definition ௫ܱ = ݃:ݔ.݃} ∈  For local transformation group, we must look at products.{ܩ
of group elements acting on ݔ 

௫ܱ = {݃ଵ ∙ ݃ଶ ∙ …݃ ∙ ݇:ݔ ≥ 1,݃ ∈ ଵ݃, ܩ ∙ ݃ଶ ∙ … ∙ ݃ ∙  .{ ݂݀݁݊݅݁݀ ݏ݅ ݔ

As we will see, the orbits of a Lie group of transformations are in fact submanifolds of 
 .but they may be of varying dimensions, or may not be regular ,ܯ

(1.2.6) Definition: 

 Let G be a local group of transformations acting on ܯ. 
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(a) The group ܩ acts semi-regularly if all the orbits ܱ are of the same dimension as submanifolds 
of ܯ. 

 (b) The group ܩ acts regularly if the action is semi-regular, and in addition, for each point ݔ ∈
 ܩ with the property that each orbit of ݔ there exist arbitrarily small neighbourhoods ܷ of ܯ
intersects ܷ in a pathwise connected subset. 

Example (6): 

Examples of transformation groups- 

(a) The group of translations in ℜ: ܽ ݐ݈݁ ≠ 0 be a fixed vector in  ℜ, and let ܩ =  ℜ. Define 

Ψ(ߝ, (ݔ = ݔ + ݔ   ,ܽߝ ∈ ℜ , ߝ ∈ ℜ.                               (1.3) 

This is readily seen to give a global group action. The orbit are straight lines parallel to a, so 
the action is regular with one-dimensional orbits. 

(b) Groups of scale transformations : Let ܩ = ℜାbe the multiplication group. Fix real numbers 
,ଶߙ,ଵߙ  not all zero. Then ℜା acts on ℜ by the scaling transformationsߙ, …

Ψ(ݔ,ߣ) = ,ଵݔఈభߣ) … , ߣ    ,(ݔఈߣ ∈ ℜା,   ݔ = ,ଵݔ) … (ݔ, ∈ ℜ .   

The orbit of this action are all one- dimensional regular submanifold of ℜ, except for the 
singular orbit consisting of just the origin {0} for instance, in the special case of ℜଶ 
with  Ψ൫ߣ, ൯(ݕ,ݔ) = ,ݔߣ) ݕ the orbits are halves of the parabolas (ݕଶߣ =  ଶ (corresponding toݔ݇
either ݔ > 0 or ݔ < 0) the positive and negative y-axis, and the origin. In general, this scaling 
group action is regular on the open subset ℜ\{0}. 

5. The Action of a Lie Group on manifold 

(1.2.7) Definition: 

Let ܩ be a group and ܺ a set, then ܩ is said to act on ܺ (on the left) if there is a mapping  

ߠ = × ܩ  Χ →  Χ                                     (1.4) 

Satisfying two conditions: 

1) If ݁ the identity element of ܩ, then 
,݁)ߠ (ݔ = ݔ ݈݈ܽ ݎ݂  ݔ ∈ ܺ 

2) If  ݃ଵ,݃ଶ ∈  then  ܩ
,൫݃ଵߠ ൯(ݔ,ଶ݃)ߠ = ݔ ݈݈ܽ ݎ݂  (ݔ,ଵ݃ଶ݃)ߠ ∈ ܺ                 (1.5) 
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 When ܩ is a topological group  ܺ is a topological space and θ is continuous, then the 
action is called continuous. 

 When ܩ is Lie group, X is a C∞
- manifold and θ is C∞, then the action is called ܥஶ action.  

 We define right action 
,ݔ)ߠ  (1) ݁)  =  ݔ 
(ଶ݃.(ଵ݃,ݔ)ߠ)ߠ (2)  =  (ଵ݃ଶ݃,ݔ)ߠ 

(1.2.8) Definition: 

If ܩ acts on set ܺ, then the map ݃ →  ,Conversely .(ݔ)ܵ into ܩ   is a homomorphism of ߠ
any such homomorphism determines an action ߠ(݃, (ݔ =  .(ݔ)ߠ

(1.2.9) Definition: 

Let a group ܩ act on a set ܯ and suppose that ܣ ⊂  denotes the set ܣܩ is subset, then ܯ
{݃ܽ:݃ ∈ ܽ ݀݊ܽ ܩ ∈ ݔ The orbit of .{ܣ ∈  and ,ܩ is fixed point of ݔ then ݔ=௫ܩ ௫, ifܩ is the set ܯ
if ܩ௫ = ௫ܩ In this case .ܯ is said to be transitive on ܩ then ,ݔ for some ܯ =  .ݔ for all ܯ

(1.2.10) Definition: 

Let ܩ be a group acting on set ܺ and, let ݔ ∈  ܺ, the stability isotropy group of ݔ denoted 
by ܩ௫ is the subgroup of all element of ܩ leaving ܺ a fixed ܩ௫={g∈G | g. ݔ = ݔ}. 

(1.2.11) Definition: 

 If  ܩ, ܺ be as in previous definition then ܩ is said to act freely on ܺ if  ݃ݔ =   ݔ
implies ݃ = ݁ the identity is the only element of ܩ having a fixed point.  

1.3 Vector Fields 

1. The tangent space at a point of a manifold: 

(1.3.1) Definition: 

We define a differentiable curve (ߙ) on manifold ܯ  as follows: 

ܫ :ߙ ⊂ ℜ →  ஶdifferentiable means differentiable infinity manyܥ) is differentiable function ܯ
times) where ܫ is an interval in ℜ i.e. (ݐ)ߙ = ൫ߙଵ(ݐ),ߙଶ(ݐ), … ൯(ݐ)ߙ, =  .ܯ a point in (ݐ)ܲ

(1.3.2) Definition: 

Suppose ܥ is a smooth curve on a manifold  ܯ, parameterized by ߶: ܫ →  is a ܫ where ,ܯ
subinterval of ℜ. In local coordinates  ݔ = ,ଵݔ) … ,  is given by ݉ smooth functions ܥ ,(ݔ
(ߝ)߶ = (߶ଵ( ߝ), … ,߶(ߝ)) of the real variable ߝ. At each point ݔ =  the curve has a ܥ of (ߝ)߶
tangent vector, namely the derivative ߶.(ߝ) = = ߝ߲/߶߲  (߶.ଵ(ߝ), … ,߶ .(ߝ)). In order to 
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distinguish between tangent vectors and local coordinate expressions for points on the manifold, 
we adopt the notation. 

ܸ|௫ =  ϕ.(ߝ) = ∅.ଵ(ߝ) డ
డ௫భ

+ ∅.ଶ డ
డ௫మ

+ ⋯+ ∅.(ߝ) డ
డ௫

                (1.6) 

for the tangent vector to ܥ at ݔ =  .then ܸ|௫ is called the tangent vector ,(ߝ)∅

Example (7): 

The helix 

(ߝ)∅ = ,ߝݏܿ) ,ߝ݊݅ݏ  (ߝ

In ℜଷ, with coordinates (ݔ, ,ݕ  has tangent vector (ݖ

ϕ.(ߝ) = ߝ݊݅ݏ−
߲
ݔ߲ + ߝݏܿ

߲
ݕ߲ +  

߲
ݖ߲ = ݕ−

߲
ݔ߲ + ݔ

߲
ݕ߲ +  

߲
 ݖ߲

At the point (ݔ, ,ݕ (ߝ)∅ = (ݖ = ,ߝݏܿ) ,ߝ݊݅ݏ  .(ߝ

 (1.3.3)Remark:  

Two curves ܥ = ሚܥ ݀݊ܽ {(ߝ)∅} = {∅෩(ߠ)} passing through the same point. 

ݔ = (∗ߝ)∅ =  ∅෩(ߠ∗)                                                (1.7) 

For some ߠ ,∗ߝ∗ have the same tangent vector if and only if their derivatives agree at the point. 

ௗ∅
ௗఌ

(∗ߝ) = ௗ∅∗

ௗఏ
 (1.8)                                                    (∗ߠ)

This concept is independent of local coordinate system used near ݔ . If ݔ = (ߝ)∅ =
(∅ଵ (ߝ), … ,  ∅ ଵݔ is the local coordinate expression in terms of ((ߝ)  = ,ଵݔ) … ݕ ) andݔ, =
ψ(x) is any diffeomorphism, then ݕ = ψ൫∅(ߝ)൯ in the local coordinate formula for the curve in 
terms of the y-coordinates. The tangent vector ܸ .|௫=∅.(ε), which has the formula (1.6) is the x-
coordinates, takes the form. 

ܸ .|௬ = (ݔ)߰  = ∑ ௗ
ௗఌ

  
ୀଵ ߰൫∅(ߝ)൯ డ

డ௬ೕ
= ∑ ∑ డటೕ

డ௫ೖ

ୀଵ


ୀଵ ൫∅(ߝ)൯ డ∅

ೖ

డఌ
డ
డ௬ೕ

 (1.9) 

In the y-coordinates the Jacobin matrix డట
ೕ

డ௫ೖ
 is invertible at each point (1.8) holds if and only if  

ௗ
ௗఌ
߰൫∅(ߝ∗)൯ = ௗ

ௗఏ
߰ቀ∅෩(ߠ∗)ቁ                                      (1.10) 

The (1.9) tells how a tangent (1.6) behaves under the given change of coordinates ݕ =
 .(ݔ)߰ 
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(1.3.4) Definition: 

The collection of all tangent vectors to all possible curves passing through a given point ݔ 
in ܯ is called the tangent space to ܯ at ݔ, and is denoted by ܶܯ|௫. If ܯ is an m-dimensional 

manifold, then ܶܯ|௫ is an m-dimensional vector space, with { డ
డ௫

, … , డ
డ௫

} providing a basis for 
 .௫in the given local coordinate|ܯܶ

(1.3.5) Definition: 

The tangent bundle of ܯ is the collection of all tangent spaces corresponding to all points 
 denoted by ܯ in ݔ

ܯܶ =  ⋃ ௫|ܯܶ                                        ௫∈ெ (1.11) 

2. A vector field: 

(1.3.6) Definition: 

A vector field ܸ on ܯ assigns a tangent vector ܸ|௫  ∈ ݔ ௫to each point|ܯܶ ∈  with ܸ|௫ ,ܯ
varying smoothly from point. In local coordinates (ݔଵ, … ,  ), a vector field has formݔ

ܸ|௫ = ߦ
ଵ

(ݔ) డ
డ௫భ

+ (ݔ)ଶߦ డ
డ௫మ

+ ⋯… … … + ߦ 


(ݔ) డ
డ௫

             (1.12) 

Where each ߦ

 .ݔ  is a smooth function of (ݔ)

1.4 Flows 

(1.4.1) Definition: 

If ܸ is a vector field, we denote the parameterized maximal integral curve passing 
through ݔ in ܯ by ψ(ε, ݔ) and call ψ the flow generated by ܸ. The flow of a vector field has the 
basic properties: 

1) ψ(δ, ψ(ε, ݔ)) = ψ (δ+ε, ݔ), ݔ ∈  (1.13)                                                       ܯ
for all δ, ε ∈ ℜ such that both sides of the equation are defined. 

2)ψ(0,ݔ)  =  (1.14)                                                                                         .ݔ 

3) ௗ
ௗఌ
ψ(ε, ݔ)= V|ந(க,௫)                                                                             (1.15) 

This mean that ܸ is tangent to the curve ψ(ε, ݔ) for fixed point ݔ. 

The flow generated by a vector field is same as local a group action of Lie group ℜ on manifold  
 often called one parameter group of transformation. The vector field is called the ,ܯ
infinitesimal generator of the action since by Taylaor’s theorem, in local coordinate 
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ψ(ε, (ݔ = ݔ + ε ؏ (ݔ) + O(εଶ) 

where ξ = (ߦ
ଵ
ߦ , … ,


) are the coefficients of ܸ . the orbits of the one-parameter group action are 

the maximal integral curves of the vector field ܸ.  

 Conversely if ψ (ε, ݔ) is any one-parameter group of transformations acting on ܯ, then it 
is infinitesimal generator is obtained by specializing (1.15) at ε=0  

ܸ|௫ =  ୢ
ୢக

|கୀψ(ε,  (1.16)                                                 (ݔ

Uniqueness of solutions to ௗ௫


ௗఌ
= ߦ


,(ݔ) ݅ = 1,2, … ,݉ guarantees that the flow generated 

by ܸ coincides with the given local action of ℜ on ܯ the common domain of definition. 

Thus, there is one -to-one correspondence between local one - parameter groups of 
transformation and their infinitesimal generators. 

The computation of the flow or one - parameter group generated by a given vector field ܸ 
(in other words, solving the system of ordinary differential equations) is often referred to as 
exponentiation of the vector field. The suggestive notation 

ݔ (ݒߝ)ݔ݁ ≡ ,ߝ) ߰   (ݔ

In terms of this exponential notation, the above three properties can be restated as  

ߜ)]ݔ݁ + ݔ[ݒ(ߝ =  (1.17)                                      ݔ(ݒߝ)ݔ݁ (ݒߜ)ݔ݁

Whenever defined 

= ݔ (ݒ0)ݔ݁  (1.18)                                                ݔ 

And  

ௗ
ௗఌ

[ݔ(ݒߝ) ݔ݁] =  V|௫(ఌ௩)௫for all  ݔ ∈  (1.19)                                                   ܯ

Example(8): 

Examples of vector field and flows. 

a) Let ܯ= ℜ with coordinate ݔ, and consider the vector field     ݒ =  డ
డ௫
≡ ߲௫ 

(In the squad, we will often use the notation ߲௫ for డ
డ௫

  to save space) 

Then  

ݔ (ݒߝ)ݔ݁ = = ݔ (௫߲ߝ) ݔ݁ ݔ  +  ߝ
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which is globally defined for the vector field ߲ݔ௫ we recover the usual exponential  

= ݔ(௫߲ݔߝ)ݔ݁ ݁ఌݔ, 

Since it must be the solution to the ordinary differential equatioṅݔ = ߝ at ݔ with initial value ݔ =
0.  

b) In the case of ℜ ,  a constant vector field 

ܸ = ܽ
߲
 ݔ߲

ܽ =  (ܽଵ, … , ܽ) exponentiates to the group of translations  

ߝ)ݔ݁ ܸ)ݔ = ݔ + ,  ܽߝ ݔ ∈ ℜ  , 

in direction a. similarly, a linear vector field 

ܸ =  ቌܽݔ


ୀଵ

ቍ
߲
ݔ߲



ୀଵ

 

where ܣ = (ܽ) is an ݉ ×݉ matrix of constants, has flow  

ߝ)ݔ݁ ܸ) ݔ =  ݁ఌݔ, 

where ݁ఌ  = 1 + ܣߝ + భ
మߝ
ଶܣଶ + ⋯  is the usual matrix exponential 

c) Consider the group of rotations in the plane 
,ߝ)ߖ ((ݕ,ݔ)  = ߝݏܿݔ)  − ߝ݊݅ݏ ݔ,ߝ݊݅ݏݕ +  (ߝݏܿ ݕ

Its infinitesimal generator is a vector field. 

ܸ = ,ݔ)ߦ ௫߲(ݕ  + ,ݔ)ߟ   , ௬߲(ݕ

Where according to (1.16) 

(ݕ,ݔ)ߦ =  
݀
ߝ݀ |ఌୀ(ߝݏܿ ݔ − (ߝ݊݅ݏ ݕ =  ݕ−

,ݔ)ߟ  (ݕ =  
݀
ߝ݀ |ఌୀ(ߝ݊݅ݏ ݔ + (ߝݏܿ ݕ =  ݔ

 

Thus  

ܸ = ௫߲ ݕ−   +  ௬߲ ݔ 
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is the infinitesimal generator , and indeed, the above group transformations agree with the 
solution to the system of ordinary differential equations 

ݔ݀
ߝ݀ = ,ݕ−

ݕ݀
ߝ݀ =  ݔ

d)finally, consider the local group action 

ψ(ߝ, ((ݕ,ݔ) = ( 
ݔ

1− ݔߝ  ,
ݕ

1 −  (ݔߝ

Differentiating as before, we find the infinitesimal generator to be  

ܸ = ଶ߲௫ݔ  +  ௬߲ݕݔ 

This demonstrates that a smooth vector field may still generate only a local group action. 

1. Action of functions: 

(1.4.2) Definition: 

Let ܸ be a vector field on ܯ and ݂:ܯ → ℜ a smooth function we are interested in seeing 
how ݂ changes under the flow generated by  ܸ, meaning we look at ݂(݁ݔ(ݒߝ)ݔ) as ε varies in 
local coordinates, if ܸ = ∑ (ݔ)ߦ డ

డ௫

ୀଵ     then using  the chain rule and (1.19) we find 

ௗ
ௗఌ
(ݒߝ)ݔ݁)݂ (ݔ = ߦ(݁(ݒߝ)ݔ (ݔ



ୀଵ

߲݂
ݔ߲

(ݒߝ)ݔ݁) (ݔ = (ݒߝ)ݔ݁](݂)ܸ  [ݔ

In particular at  


ഄ|ఌୀ݂(݁(ݒߝ)ݔ (ݔ = ∑ (ݔ)ߦ

ୀଵ
డ
డ௫

(ݔ) =  (1.20)             (ݔ)(݂)ܸ

Now the reason underlying our notation for vector fields becomes apparent, the vector 
field ܸ acts as first order partial differential operator on real valued functions   ݂(ݔ) ܯ ݊. 
Furthermore,   by Taylor’s theorem. 

(ݒߝ)ݔ݁)݂ (ݔ = (ݔ)݂ + (ݔ)(݂)ݒߝ +  ,(ଶߝ) 

So, ݒ(݂) gives the infinitesimal change in the function ݂ under the flow generated by  ݒ. We can 
continue the process of differentiation and substitution into the Taylor series, obtaining 

(ݒߝ)ݔ݁)݂ (ݔ = (ݔ)݂ + (ݔ)(݂)ݒߝ  +
ଶߝ

2! ݒ
ଶ(݂)(ݔ) + ⋯+

ߝ

݇! ݒ
(݂)(ݔ) +  (ାଵߝ)ܱ 
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Where ݒଶ(݂)  = (݂)ଷݒ,(݂ݒ)ݒ  =  etc .If we assume convergence of the entire Taylor ,((݂)ଶݒ)ݒ
series in ε, then we obtain the Lie Series, 

(ݒߝ)ݔ݁)݂ (ݔ =  ∑ ఌೖ

!
ஶݒ

ୀ  (1.21)                              (ݔ)(݂)

for the action of the flow on ݂ .The same result holds for vector - valued functions ܯ:ܨ →
ℜ (ݔ)ܨ, = (ݔ)ଵܨ) … ܨ act component-wise on ݒ where we let ((ݔ)ܨ, = (ܨ)ݒ =
(ଵܨ)ݒ) … ,  be the coordinate functions ܺ, we obtain (again ܨ in particular , If we let ((ܨ)ݒ
under assumptions of convergence) a Lie series for the flow itself , given by : 

(ݒߝ)ݔ݁ ݔ = ݔ + (ݔ)ߦߝ + ఌమ

ଶ!
(ݔ)(ߦ)ݒ + ⋯ = ∑ ఌೖ

!

ஶ
ୀ  (1.22)                ,(ݔ)ݒ

Where ߦ = ,ଵߦ) … , ,(ߦ (ߦ)ݒ = ൫ݒ(ߦଵ), … , ,൯(ߦ)ݒ  Providing even further .ܿݐ݁

justification for our exponential notation .According to our new interpretation of the symbols డ
డ௫

 
, each tangent vector ݒ|௫ at a point ݔ defines a derivation on the space of smooth real valued 
functions ݂ defined near ݔ in ܯ. 

2. Differentials: 

( 1.4.3) Definition:  

      Let ܯ and ܰ be smooth manifolds and ݂:ܯ → ܰ a smooth map between them. Each 
parameterized curve ܿ = :(ߝ)∅} ߝ ∈ ̌ܿ to a parametrized curve ܨ is mapped by ܯ on {ܫ = (ܿ)ܨ =
൛∅ෙ(ߝ) = :൯(ߝ)∅൫ܨ ߝ ∈  .ܰ  ൟ  onܫ

Thus ܨ induces a map from the tangent vector ݀∅/݀ߝ  to ܥ at ݔ =  to the corresponding (ߝ)∅
tangent vector ݀∅ෙ ⁄ߝ݀  to ܥሙ at the image point   (ݔ)ܨ = ൯(ߝ)∅൫ܨ = ∅ෙ(ߝ). This induced map is 
called the differential of  , and denoted by : 

൯(ߝ)∙∅൫ܨ݀ = ௗ
ௗఌ
൛ܨ൫∅(ߝ)൯ൟ                          (1.23) 

As every tangent vector ݒ|௫ ∈  the differential ,ݔ  is tangent to some curve passing through ܯܶ
maps the tangent space to ܯ at ݔ to the tangent space to ܰ at (ݔ)ܨ 

௫|ܯܶ:ܨ݀ → ܶܰ|ி(௫) 

The local coordinate formula for the differential is found using the chain rule in same manner as 
the change of variables formula (1.9). If 

௫|ݒ = ߦ
߲
ݔ߲



ୀଵ
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is a tangent vector at ݔ ∈  then  ܯ

(௫|ݒ)ܨ݀ = ∑ ቀ∑ ߦ డி
ೕ

డ௫

ୀଵ ቁ(ݔ) డ

డ௬ೕ

ୀଵ = ∑ ൯(ݔ)ܨ൫ݒ డ

డ௬ೕ

ୀଵ      (1.24) 

Note that the differential ݂݀|௫is linear map from  ܶܯ|௫  ி(௫), whose matrix|ܰܶ  ݐ 
expression in local coordinates is just the jacobian matrix of ܨ at ݔ. 

If we prefer to think of tangent vectors as derivations on the space of smooth function 
defined near a point  ݔ, then the differential ݀ܨ has the alternative definition  

(ݕ)݂(௫|ݒ)ܨ݀ = ݂)ݒ ∘ ,(ݔ)(ܨ  ݕ =  (1.25)                (ݔ)ܨ

For all  ݒ|௫ ∈ ܰ:݂ ௫ and all smoothܯܶ → ℜ, the equivalence of (1.23) and(1.25) is easily 
verified using local coordinates . 

Example (9): 

Let  ܯ = ℜଶ, with coordinates (ݕ,ݔ) and ܰ = ℜ with coordinates s, and let ݂ = ℜଶ  →
ℜ   be any map  ݏ =  Given .(ݕ,ݔ)ܨ

ܸ|(௫,௬) = ܽ ೣ   + b 
 

Then , by (1.24)                                   

 

൛ܽ ങಷ= ((௫,௬)|ܸ) ܨ݀
ങೣ        (௫,௬)ା  ങಷങ (ݕ,ݔ)ൟ ೞ|ி(௫,௬) 

For example, if  ݔ)ܨ, ݔߙ=(ݕ +  is linear projection ,then  ݕߚ

൫ܸ|(௫,௬)൯ܨ݀ = ߙܽ) + (ߚܾ డ
డ௦

|௦ୀఈ௫ାఉ௬ 

3.Lie Brackets  

The most important operation on vector field is their Lie bracket or commutator. 

(1.4.4)Definition:  

If ܸ and ܹ are vector fields on  ܯ, then their Lie bracket [ܸ,ܹ] is the unique vector 
field satisfying  

[ ܸ,ܹ](݂) =  ܸ൫ܹ (݂)൯–ܹ൫ܸ(݂)൯                            (1.26) 

For all smooth functions ݂:ܯ → ℜ. It is easy to verify that  [ ܸ,ܹ] is indeed a vector 
field .in local coordinates if   
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ܸ = ߦ


ୀଵ

డ (ݔ)
డ௫

   ,ܹ = ߟ(ݔ) డ
డ௫



ୀଵ

 

then: 

∑=[ݓ,ݒ] ߟ)ݒ ߦ
ୀଵ ) ങ

ങೣ − ൯ߦ൫ݓ  ങ
ങೣ

 =  ∑ ∑ ቄߦ డఎ


డ௫ೕ
− ߟ డ

డ௫
ቅ డక



డ௫

ୀଵ


ୀଵ          (1.27) 

Note that in (1.26) the terms involving second order derivatives of ݂ cancel . 

 

Example (10): 

ݒ = y
߲
ݔ߲ ,     W = ଶݔ

߲
ݔ߲ + yݔ

߲
߲y 

then 

[ܸ,ܹ] = డ (ଶݔ)ܸ 
డ௫

+ (ݕݔ)ܸ డ
డ௬
(ݕ)ܹ− డ

డ௫
= ݕݔ డ

డ௫
+ ଶݕ డ

డ௬
 

(1.4.5)Definition : 

Let ݒଵ, …  An integral submanifold of .ܯ  be vector field on a smooth manifoldݒ,
,ଵݒ} … ܰ } in a submanifoldݒ, ⊂ whose tangent space ܶܰ|௬ ܯ  is spanned by the vector 
൛ݒଵ|௬, … , ݕ |௬ൟ for eachݒ ∈ ܰ. The  system of vector fields {ݒଵ, …  } is integrable if throughݒ,
every point ݔ∘ ∈  .there passes an integral submanifold ܯ

(1.4.6)Definition: 

A system of vector field {ݒଵ, … ,  - is in involution if there exist smooth real ܯ } onݒ
valued functions ܥ(ݔ),ݔ ∈ ,ܯ ݅, ݆, ݇ = 1, … ,  ,such that for each i, j= 1,…,r ,ݎ

,ݒൣ ൧ݒ = ∑ ܥ
ୀଵ  ⋅                                         (1.28)ݒ 

4. Lie algebras 

If ܩ is a Lie group, then there are certain distinguished vector field on ܩ characterized by 
their invariance (in sense to be defined shortly) under the group multiplication .As we see, these 
invariant vector fields from a finite  dimensional vector space, called the Lie algebra of ܩ, which 
is in a precise sense the “infinitesimal generator” of ܩ. 

(1.4.7) Definition : 
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The Lie algebra of a Lie group ܩ, traditionally denoted by the corresponding lower case 
German letter ݃ is the vector space of all right – invariant vector field on ܩ. 

Note that any right-invariant vector field is uniquely determined by its value at the 
identity because 

|ݒ = ܴ݀(ݒ|),                                                                     (1.29) 

Since ܴ(݁) = ݃. Conversely, any tangent vector to ܩ at e uniquely determines a right - 
invariant vector field on ܩ by formula (1.29). Indeed, 

ܴ݀(ݒ|) = ܴ݀൫ܴ݀(ݒ|)൯ = ݀൫ܴ ∘ ܴ൯(ݒ|) = ܴ݀(ݒ|) =  |ݒ

Proving the right-invariance of ݒ. Therefore we can identify the Lie algebra ݃ of ܩ with the 
tangent space to ܩ at the indentify element. 

݃ ≃                                           (1.30)|ܩܶ

(1.4.8) Definition : 

A Lie algebra is a vector space ݃ together with bilinear operation  

[. , . ] =  ݃ ×  ݃ → ݃. 

called the Lie bracket for ݃, satisfying the axioms. 

(a) Bilinearity 

ݒܿ] + ܿᇱݒᇱ [ݓ, = [ݓ,ݒ]ܿ + ܿᇱ[ݒᇱ,ݓ], 

,ݒ] ݓܿ + ܿᇱݓᇱ] = [ݓ,ݒ]ܿ + ܿᇱ[ݓ,ݒᇱ],  for the constants ܿ, ܿᇱ ∈ ℜ 

(b)  skew-symmetry  

[ݓ,ݒ] = ,ݓ]−  [ݒ

(c) Jacoi Identity 

,ݑൣ ൧[ݓ,ݒ] + ,ݓൣ ,ݑ] ൧[ݒ + ,ݒൣ ൧[ݑ,ݓ] = 0 

 

for all ݑ, ,ݒ ᇱݒ  ݃ ᇱ inݓ,ݓ,

Example (11): 
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If ܩ = ℜ, then there is, up to constant multiple a single right- invariant vector field , 
namely  

߲௫ = ݕ, ݔ In fact given .ݔ߲/߲ ∈ ℜ 

ℜ௬(ݔ) = ݔ +    ݕ

hence 

݀ℜ௬(߲௫) = ߲௫ 

Similarly , if ܩ = ℜା,then, the single independent right - invariant vector field is ߲ݔ௫ , 
finally ,for So(2) the vector field ߲ఏ  is again the unique independent right -invariant one .Note 
that the Lie algebras of ℜ.ℜା and So(2) Are all the same, being one- dimensional vector space 
with trivial Lie brackets ([ݓ,ݒ] =  . (ݓ,ݒ ݈݈ܽ ݎ݂ 0

Example (12): 

Here we compute of the Lie algebra of the general linear group ܮܩ(݊).  Note that since 
is ݊ଶ - dimensional we can indentify the Lie algebra ݃|() (݊)ܮܩ ≃ ℜమ with the space of all 
݊ × ݊ matrices .Indeed, coordinates on ܮܩ(݊) are provided by the matrix entries  ݔ , ݅, ݆ =
1, … , ݊  , so the tangent space to ܮܩ(݊) at the identity is the set of all vector fields 

|ݒ = ܽ
߲
ݔ߲

|
 ,

 

Where   ܣ = (ܽ) is an arbitrary  ݊ × ݊  matrix. Now given  (ݕ) ∈  the matrix , (݊)ܮܩ
ℜ௬ (ܺ) = ܺ௬  has entries  

ݔ ݕ



ୀଵ

 

Therefore , according to (1.29  ) we find  

|ݒ = ݀ℜ(ݒ|ூ) 

                                         =∑ ∑ ܽ ങ
ങೣೕ,, (∑ ( ݕ ݔ ങ

ങೣ  

                                                          =∑ ܽݕ,,
ങ

ങೣ
   , 

or, in terms of ܺ ∈   ,(݊)ܮܩ

|௫ݒ = ∑ (∑ ܽ ݔ)
డ

డ௫ೕ,                                             (1.31) 
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To compute Lie bracket: 

[ݒ,ݒ] =  ቂܽ ݔ 
డ

డ௫
൫ ܾݔ൯ − ܾ ݔ

డ
డ௫

(ܽ ݔ)ቃ
,,,
,,

߲
ݔ߲

 

                       =∑ [∑ ( ܾܽ − ܽ  ܾ) ],, ݔ 
ങ

ങೣೕ
 

where  [ܤ,ܣ] = ܣܤ −  is the matrix commulator. Therefore, the Lie algebra ݃|(݊) of the ܤܣ
general linear group ܮܩ(݊) is the space of all ݊ × ݊ matrices with the Lie bracket being the 
matrix commulator.  

5. One - parameter subgroup of a Lie group  

One parameter subgroups of Lie group ܩ are one - to - one correspondence with element 
of ܶ(ܩ). 

We shall use this to help determine all one parameter subgroups of various matrix groups 
we first consider ܩ = ≥, 1ݔ  the matrix entries ,(ℜ,݊)ܮܩ ݅, ݆ ≤ ݊ for any ݔ = (ݔ) ∈  (ℜ,݊)ܮܩ
are coordinates on a single neighborhood covering the group which is an open subset of 
,(ℜ)ߤ ݊ ℎ݁ݐ × ݊  matrices over ℜ. Therefore   ങ

ങೣೕ
 , 1≤ ݅, ݆ ≤ ݊  is a field of frames on ܩ and 

relative to these frames as a basis at e there is an isomorphism of ߤ(ℜ), as a vector space on to 
ܶ(ܩ) given by 

ܣ = (ܽ) → ∑ ܽ(,
ങ

ങೣೕ
)  [when  ܩ = ,(ℜ,݊)ܮܩ ݁ is the ݊ × ݊ identity matrix I ]. 

6. Sub algebra  

(1.4.9) Definition : 

In general a sub algebra ߟ of Lie algebra ܮ is a vector space which is closed under the Lie 
bracket so [ݓ,ݒ] ∈ ∋ ݓ,ݒ whenever  ߟ  any right ,ܩ is a Lie subgroup of a Lie group ܪ if. ߟ
invariant vector field ݒ on ܪ can be extended to a right- invariant vector field on ܩ .(Just set 
|ݒ  = ݀ ℜ (ݒ|),݃ ∈  .ܩ

In this way the Lie algebra ߟ of ܪ is realized as sub algebra of the Lie algebra ܮ of  ܩ. 
Correspondence between one - parameter sub group of a Lie group ܩ and one - dimensional sub 
spaces ߟ (sub algebras ) of its Lie algebra ܮ generalized to provide a complete one - to - one 
correspondence between Lie sub groups or ܩ and sub algebra of ܮ. 

7.  Lie algebra of local lie groups  
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Turning to local version we consider a local Lie group ܸ ⊂  ℜwith 
multiplication  ݉(ݔ, ܸ:the corresponding right multiplication map ℜ௬ .(ݕ → ℜ (ݔ)ℜ  ݏ݅  =
  is right invariant if and only if ܸ ݊ ݒ A vector field.(ݕ,ݔ)݉

݀ℜ = (௫|ݒ) = ℜ(௫)|ݒ = ܸ|(௫,௬) 

whenever  ݔ,  are in ܸ . As in the case of global Lie groups, any right invariant (ݕ.ݔ)݉ ݀݊ܽ ݕ
vector field is determined uniquely by its value at the origin (identity element), ݒ|௫ = ݀ℜ௫(ݒ|) 
and hence the Lie algebra ݃ for the local Lie group ܸ,determined as the space of right invariant 
vector field on ܸ, is on r-dimensional vector space . 

8. Infinitesimal group actions 

      Suppose ܩ is a local group of transformations  acting on manifold ܯ, ݃. ݔ =
߰(݃, (ݔ,݃) ݎ݂ (ݔ ∈ ߟ ⊂ ܩ ×  there is a corresponding “infinitesimal  action” of the Lieܯ
algebraܮ of  ܩ on ܯ. Namely, if ݒ ∈  whose flow ܯ to be the vector field on, (ݒ)߰ we define ܮ
coincides with the action of the one parameter sub group ݁ܯ ݊ ܩ ݂ (ݒߝ)ݔthis means that for 
ݔ ∈  ܯ

௫|(ݒ)߰ ≡
݀
ߝ݀ |ఌୀ ߰(݁ݔ,(ݒߝ)ݔ) = ݀߰௫(ݒ|), 

Where          ߰௫(݃) =   ݁ܿ݊݅ݏ ݐℎܽݐ ݎℎ݁ݐݎݑ݂ ݁ݐܰ.(ݔ,݃)߰

߰௫  ∘  ℜ(ℎ) = ߰(ℎ.݃, (ݔ = ߰(ℎ,݃. (ݔ = ߰௫(ℎ) 

 

 

Where ever defined, we have  

݀߰(ݒ|) = ݀߰௫(ݒ|) =  ௫|(ݒ)߰

for any ݃߳ܩ௫.It follows from the property  ݂݀([ݓ,ݒ]) =   of the [(ݓ)݂݀,(ݒ)݂݀]

Lie bracket that ߰ is a Lie algebra homomorphism from ܮ to the Lie algebra of vector fields on 
 ܯ

[(ݓ)߰,(ݒ) ߰] =  ܮ ߳ ݓ,ݒ       ,([ݓ,ݒ])߰

Therefore the set of all vector field ߰(ݒ) corrosponding to ݃߳ݒ forms a Lie algebra of vector 
field on  ܯ.  

Conversely, given a finite- dimensional Lie algebra of vector field on ܯ, there is always 
a local group of transformation whose infinitesimal action is generated by the given  algebra . 
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(1.4.10) Definition): 

Let ܯ be a manifold of dimension ݉ = ݊ + ݇ and assume that to each  ∈  is assignedܯ
an n-dimensional subspace ∆ of  ܶ(ܯ). Suppose moreover that in a neighborhood 
 ℎܿܽ݁ ݂ ܷ ∈ There are n-linearly independent ∁ஶ .ܯ − ,fields ଵܺ ݎݐܿ݁ݒ  … ,ܺwhich form a 
basis of ∆ݍ for every ݍ ∈  ܷ then we shall say that ∆ ݅ݏ ܿஶn-plane distribution of dimension݊ on 
,ଵݔ and ܯ … ,   is local basis of ∆ , we shall say that the distribution"∆"  is  involutive if thereݔ
exists a local basis ݔଵ. , … , .ݔ  in a neighborhood of each point such that  

൧ݔ,ݔൣ = ܿ 


ୀଵ

; ݔ  1 ≤ ݅, ݆ ≤ ݊ 

(the ܿwill not in general be constant ,but will be ܿஶfunction on aneighborhood)  

Finally, if ∆ ݅ݏ ܽ ∁ஶ distribution of ܯ and ܰ is a connected ∁ஶ submanifold of ܯ such 
that for each ݍ ∈ ܰ we have ܶ(݊) ⊂  ∆, then we shall say that ܰisan integral manifold of 
∆. Note that an integral manifold may be of lower dimension than ∆, and need not be a regular 
submanifold . 

Let ∆ ܾ݁ ܽ ∁ஶ distribution on ܯ of dimension ݊, the dimension of ܯ being ݉ = ݊ +
݇.We shall say that is ∆ completely integral if each point  ∈  has a cubical coordinate ܯ
neighborhood ݑ .߶ such that if ݔଵ, … ܧ denotethe local coordinate, then the ݊ vectorsݔ, =

߶∗ିଵ ቀ ങ
ങೣ
ቁ , ݅ = 1, … ,݊ are local basis on ܷ for ∆ . Note that in this case there is an n-dimensional 

integral manifold ܰ through each point ݍ of ܷ such that ܶ(ܰ) = ܰ dim ݏ݅ ݐℎܽݐ ݍ∆ =  ݊ in fact 
,if  (ܽଵ, … ,ܽ)  denote the coordinates of ݍ, then an integral manifold through ݍ is the n-slice 
defined by  

ܺାଵ = ܽାଵ, … ,ܺ= ܽ 

That is  

ܰ = ߶ିଵൣ݊ ∈ ܺ(ݑ)߶ = ܽ ,   ݆ = ݊ + 1, … ,݉൧ 

a slice of ܷ of course  in this case the distribution is in volutive for  

ܧൣ ൧ܧ, = ߶∗ିଵ 
డ
డ௫

, డ
డ௫ೕ
൨ = 0 , 1 ≤ ݅, ݆ ≤ ݊ 

We shall call ܷ,߶ flat with respect to ∆. Thus complete integrability is equivalent to every point 
having a flat coordinate neighborhood . 

 Thus any completely integrable distribution is invlutive . However most distributions are 
involutive . 
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(1.4.11) Proposition: 

      Suppose ݒ  is a vector field not vanishing at a point  ݔ ∈ ௫బ|ݒ :ܯ ≠ 0. Then there is a local 
coordinate chart  ݕ = ,ଵݕ) … ݒ  ,  such that in terms of these coordinatesݔ ) atݕ, =  . ூݕ߲/߲

Proof: 

      First linearly change coordinates so that ݔ = 0  and  ݒ|௫బ =  ூ. By the continuity theݔ߲/߲
coefficient ߦூ(ݔ)  of ߲/߲ݔூ  is positive in  a neighbourhood  of ݔ.  Since ߦூ(ݔ) > 0,  the integral 
curves of ݒ cross the hyper plane {(0,ݔଶ, … ,   )} transversally, and hence in a neighbourhoodݔ
of  ݔ = 0, each point ݔ = ,ଵݔ) … ,)  can be defined uniquely as the flow of some point (0ݔ,
,ଶݕ …   )  on this hyper plane. Consequentlyݕ,

ݔ = exp(ݕଵݒ) ,ଶݕ,0) … ,  ,(ݕ

for ݕଵ  near 0, gives a diffeomorphism form (ݔଵ, … ,ଵݕ  ) ) toݔ, … , -)   which defines the yݕ
coordinates. (Geometrically,  we have “straightened out” the integral curves passing through the 
hyper plane perpendicular to the ݔଵ-axis.) In terms of the y-coordinates, we have by (1.17), for 
small ߝ,  

exp(ݒߝ) ,ଵݕ  ) … (ݕ, = ଵݕ  ) + ,ߝ ,ଶݕ … ,  ,(ݕ

so the flow is just translation in the ݕଵ-direction. Thus every nonvanishing  vector field is locally 
equivalent to the infinitesimal generator of a group of translations. (course, the global picture can 
be very complicated, as the  irrational flow on the torus makes clear.)           

 

1.5 Riemannian Manifolds 

1- Riemannian Metrics 

 (1.5.1) Definition:  

 Given differentiable manifold, define a Riemannian metric ݃ on ܯ, to be a mapping that 
associates with each  ∈ ܯ:݃ an inner product ܯ × ܯ → ℜ satisfying the following 
differentiability property : If ܷ is any open set in ܯ and ܺ,ܻ  are differentiable vector fields on 
ܷ then the function ݃(ܺ,ܻ):ܷ → ℜ given  by 

()(ܻ,ܺ)݃ = ݃(ܺ, ܻ) 

݃ is differentiable on ܷ. 
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 By a Riemannian manifold we mean a differentiable manifold with given Riemannian 
metric . 

( 1.5.2) Definition: 

  Let ܯ,ܰ be differentiable manifolds, ℎ a Riemannian metric on ܰ,߮:ܯ → ܰ 
differentiable, and ܯఖ = } ∈ ܯ ∶ ߮∗    ݅݁݊ ݐ ݁݊  ݏ }. Of course  ܯఖ is possibly empty, open 
submanifold of  ܯ. The pull back ߮∗ℎ of ℎ is defined to be Riemannian metric on ܯఖ given by  

(߮∗ℎ)(ߦ, (ߟ = ℎ(߮∗ߟ∗߮,ߦ)                                    (1.32) 

,ߦ  ݁ݎℎ݁ݓ ߟ ∈ ,ܯ ∈  .ఖܯ

If ∈  ఖ , but the form is onlyܯ ఖ , then (1.32) defines a symmetric bilinear form onܯ\ܯ
nonnegative. 

(1.5.3) Definition:  

Let ܯ be a Riemannian manifold with Riemannian metric  ݃, then we say that ߮ is a 
local isometry  of ܯఖ into ܰ if ݃ = ߮∗ℎ on ܯఖ. If ܯ is connected, then ݃ = ߮∗ℎ also implies 
that ܯఖ= ܯ, that, ߮ is a Riemannian immersion if ߮ is an imbedding satisfying ݃ = ߮∗ℎ then we 
call an isometry of ܯ into ܰ. 

 An isometry of ܯ is diffeomorphism of ܯ onto itself that is an isometry.  
2. The metric space structure 

 Let ܯ,ܰ be differentiable manifold and ܣ an arbitrary set in ܯ. Recall that a map 
ܣ:߮ → ܰ is ܥ on   ܣ, ݇ ≥ 1, if there exist an open set ܷ such that ܣ ⊆ ܷ ⊆  and a ܯ
map ො߮:ܷ → ܰ ∈ ܥ  satisfying  ො߮|ܣ = ߮. 

 (1.5.4) Definition: 

 For a given differentiable manifold   ܯ, ݇ = 1, … ,∞,    we let ܦ  denote the 
collection of all maps, ߱ form closed intervals of ℜ into ܯ that are continuous and 
piecewise ܥ, that is, ߱ is given by ߱: [ߚ,ߙ] → ܯ ⊂ ߙ and there exist ∘ܥ = °ݐ < ଵݐ <
⋯ < ݐ = ,ିଵݐൣ|߱ such ߚ ൧ݐ ∈ ݆  forܥ = 1, … , ݈ . 

Let ܯ be a Riemannian manifold. For any  ܯܶ߳ߦ, define the length of ߦ by  

|ߦ| = ,ߦ〉 〈ߦ
భ
మ 

For any path ߱: [ߚ,ߙ] → M ∈ Dଵ define the length of  ߱, ݈(߱) by 

݈(߱) = න ݐ݀|(ݐ)߱|
ఉ

ఈ
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For ܯ connected (our usual assumption), ,  ,ݍ  and   define the distance between ܯ߳ݍ
 by (ݍ,)݀

,)݀ (ݍ = ݂݈݅݊(߱) 

Where ߱ range over all ߱: [ߚ,ߙ] → M ∈ D ୍satisfying  ߱(ߙ) = , (ߚ)߱ =  .ݍ

Example (13): 

 We want to show  ݈ௗ(߱) = ∫ |߱ᇱ|
 dt 

For any D୍ path ߱: [ܽ,ܾ] → M. one easily form the definition of  ݈ௗ that  

݈ௗ(߱) ≤ ∫ |߱ᇱ|
 dt  

so the real issue is the opposite inequality . the argument is as follow: 

One proves that given any compact k in ܯ and any real  ߣ > 1, there exists a finite cover 
of  k,  { ݑଵ, … , :ݔ  } with chartsݑ ܷ → ℜsuch that  

ଵିߣ ≤
|ߦ|

ℜ|ߦ|
<  ߣ

(where  |ߦ|ℜ denotes the standard norm on ℜ) for all ߦ ∈ ܶ ܷ , ݆ = 1, … ,݇   and  

ଵିߣ ≤
,)݀ (ݍ

หݔ()− ห(ݍ)ݔ
<  ߣ

For all  , ݍ ∈ ܷ ,     ݆ = 1, … ,݇  form this  

݈ௗ(߱) ≥ ଶିߣ ∫ |߱ᇱ|
 dt  for all  ߣ > 1 
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Chapter Two  

Exterior Differential Forms and Geometric Calculus 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter Two 

Exterior Differential Forms and Geometric Calculus 

                Differential forms play a fundamental role in the topological aspect of differential 
geometry. 

2.1 Differential Forms 

(2.1.1)Definition: 

A smooth 1-form ߶on ℜ is a real- valued function on the set of all tangent vectors to 
ℜ, i.e… 

                                              ߶  =Tℜ → ℜ                                           (2.1) 
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with the properties that  

1. ߶is linear on the tangent space ௫ܶℜ for each ߳ݔℜ 
2. For any smooth vector field ܸ = the function ϕ(v):ℜ (ݔ)ݒ → ℜ is smooth. 

Given a 1-form ߶, for each ߳ݔℜ the map  

߶௫  = ௫ܶℜ  →  ℜ                                    (2.2) 

is an element of the dual space ( ௫ܶℜ), when we extend this notion to all of ℜ, we see that the 
space of 1-forms on ℜ is dual to the space of vector fields on ℜ 

In particular, the 1-form ݀ݔ, … ݔ݀, = ݒ defined by the property that for any vector ݁ݎܽ 
,ଵݒ)  … , (ݒ ∈ ௫ܶℜ,  

(ݒ)ݔ݀ = ݒ                                               (2.3) 

The ݀ݔᇱݏ form a basis for the 1-forms on ℜ, so any other 1-form ϕ may be expressed in the 
form 

߶ = ∑ ݂

ୀଵ                                                         (2.4)ݔ݀(ݔ)

If a vector field ݒ on ℜ,  has the form 

(ݔ)ݒ                                 =  ൫ݒଵ(ݔ), …  ,൯(ݔ)ݒ,

then at any point ߳ݔℜ 

߶௫(ݒ) = ∑ ݂

ୀଵ   (2.5)                                                      ݔݒ(ݔ)

 (2.1.2)Definition: 

Let M be a smooth manifold and ܶܯ|௫ its tangent space at  ݔ. The space ∧  ௫of|ܯ∗ܶ
differential k-form at ݔ is set of all k-linear alternating functions  

௫|ܯܶ:ݓ  ×, … ,× ௫|ܯܶ   → ℜ                                (2.6)  

Specifically, if we denote the evaluation of ݓ on the tangent vectors ݒଵ, … , .ݒ ,∈  ௫|ܯܶ
by〈ݓ; ,ଵݒ …  ݔ 〉, then the basic requirements are that for all tangent vectors atݒ,

;ݓ) , ଵݒܿ … , ݒܿ + ܿᇱݒ, … , ܿᇱݒ) = ;ݓ)ܿ ,ଵݒ … , ,ݒ … , (ݒ + ܿᇱ(ݓ; ,ଵݒ … ᇱݒ, , …  (ݒ,

for ܿ, ܿᇱ ∈ ℜ, 1 ≤ ݅ ≤ ݇, 

;ݓ) , గݒ  … (గݒ, = (−1)గ(ݒ;ݓଵ, … ,  )                (2.7)ݒ

for every permutation π of the integers {1, … , ݇} with (−1)గ denoting the sign of π. The space 
Λܶ∗ܯ|௫is, in fact, a vector space under the obvious operations of addition and scalar 
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multiplication, A 0-form at ݔ is, convention just a real number, while the 
space ܶ∗ܯ|௫=∧  the space of linear ,ݔ at ܯ ௫of one forms, called the cotangent space to|ܯ∗ܶ
functions on ܶܯ|௫i.e. the dual vector space to the tangent at ݔ. A smooth differential k- form ݓ 
on ܯ (or k-form for short) is a collection. 

Smoothly varying alternating ݇-linear maps ݓ|௫ ∈∧ ݔ ௫for each|ܯ∗ܶ ∈  where we require ,ܯ
that for all smooth vector fields ݒଵ, … , ݒ  

;ݓ〉                     , ଵݒ  … (ݔ)〈ݒ, = ;௫|ݓ〉 ଵ|௫ݒ  , … ,  |௫〉              (2.8)ݒ

is a smooth, real-valued function of ݔ.In particular, a 0-form is just a smooth real-valued function 
ܯ:݂ → ℜ 

(2.1.3)Definition: 

Let (ݔଵ, … , ,ଵݔ߲/߲} ௫ has basis|ܯܶ ) are local coordinates, thenݔ … ,  }.The dualݔ߲/߲
cotangent space has a dual basis, which is traditionally denoted {݀ݔଵ, … , /߲;ݔ݀〉 }; Thusݔ݀
〈ݔ߲ = ,݅  for allߜ ݆ where ߜ is ܫ for ݅ = ݆ and 0 otherwise.  

(2.1.4)Definition: 

A differential one-form ݓ thereby has the local coordinate expression 

ݓ = ℎଵ(ݔ)݀ݔଵ + ⋯+ ℎ(ݔ)݀ݔ ,                       (2.9) 

where each coefficient function ℎ(ݔ) is smooth. Note that for any vector field ݒ =
   ,ݔ߲/߲(ݔ)ߦ∑

〈ݒ;ݓ〉 = ℎ



ୀଵ

 (ݔ)ߦ(ݔ)

is a smooth function. Of particular importance are the one- forms given by the differentials of 
real-valued functions. 

݂݀ = ∑ డ
డ௫


ୀଵ 〈ݒ;݂݀〉  ℎݐ݅ݓ     ,ݔ݀  =   (2.10)          (݂)ݒ

(2.1.5)Definition: 

       To proceed to higher differential forms, we note that given a collection of differential one-
forms ݓଵ, … ݓ, , we can form a differential k-form,ݓଵ ∧, … ,∧  , ,called the wedge productݓ
using the determinately formula  

ଵݓ〉 ∧ , … ,∧ ;ݓ ,ଵݒ … 〈ݒ, = det൫〈ݓ; 〉൯ݒ        (2.11)  
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the right-hand side being the determinant of a ݇ × ݇ matrix with indicated (݅, ݆) entry. Note that 
the wedge product itself is both multi-linear and alternating 

ଵݓ ∧ …∧ ݓܿ) + ܿᇱݓ
ᇱ) ∧ …∧ ݓ   = ଵݓ)ܿ ∧ …∧ ݓ ∧ …∧ (ݓ + ܿᇱ(ݓଵ ∧ …∧ ݓ

ᇱ ∧  ,(ݓ…

గଵݓ ∧ …∧ గݓ = (−1)గݓଵ ∧ …∧                                                    (2.12)ݓ

In local coordinates, ∧  :௫ is spanned by the dasis k-forms|ܯ∗ܶ

ூݔ݀ ≡ భݔ݀ ∧ …∧ ೖݔ݀                                     (2.13) 

where ܫ ranges over all strictly increasing multi-indices 1 ≤ ݅ଵ < ݅ଶ < ⋯ < ݅ ≤ ݉ . 
Thus∧ ௫ has dimension ቀ݉݇|ܯ∗ܶ ቁ ; in particular, ∧ ݇ ௫ ≃ {0} If|ܯ∗ܶ > ݉. 

 Any smooth differential k-form on ܯ has the local coordinate expression. 

ݓ = ∑ ூூݔ݀ (ݔ)ூߙ                                            (2.14)  

Where, for each strictly increasing multi-index ܫ, the coefficient ܽூ is a smooth real-valued 
function.  

Example (1): 

A two-form in ℜ3 takes the form 

ݓ = ,ݕ,ݔ)ߙ ݕ݀(ݖ ∧ + ݖ݀  ,ݕ,ݔ)ߚ  ∧ ݖ݀(ݖ ,ݕ,ݔ) ߛ  ݔ݀  ∧ ݔ݀(ݖ  (1.15) ݕ݀ 

using the basis ݀ݕ ∧ , ݖ݀ ݖ݀ ∧ = ݔ݀ ݔ݀−  ∧ ݔ݀ and , ݖ݀ ∧  attuned to the notation for ,ݕ݀
surface integrals we have  

〈߱; ݔ߲ߦ + ݕ߲ߞ + ,ݖ߲ߟ ݔመ߲ߦ + ݕመ߲ߞ + 〈ݖ߲ߟ̂ = ߟ̂ߞ൫ߙ − ൯ߟመߞ + መߦߟ൫ߚ − ൯ߦߟ̂ + መߞߦ൫ߛ −  .൯ߞመߦ

If 

߱ = ߱ଵ ∧ …∧ ߱   ,ߠ = ଵߠ ∧ …∧   ߠ

are decomposable forms, their wedge product is the form 

߱ ∧ ߠ = ߱ଵ ∧ …∧ ߱ ∧ ଵߠ ∧ …∧  ,  ߠ

with the definition extending bilinearly to more general types of forms: 

(ܿ߱ + ܿᇱ߱ᇱ) ∧ ߠ = ܿ(߱ + (ߠ + ܿᇱ(߱ᇱ +  ,(ߠ

߱ ∧ ߠܿ) + ܿᇱߠᇱ) = ܿ(߱ ∧ (ߠ + ܿᇱ(߱ ∧  ;(ᇱߠ

for ܿ ,ܿᇱϵℜ this wedge product is associative: 
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߱ ∧ ߠ) ∧ (ߦ = (߱ ∧ (ߠ ∧  (2.16)                          , ߦ

And anti-commutative, 

߱ ∧ ߠ = (−1)ଵߠ ∧ ߱                          (2.17) 

for ߱ a k-form and θ an I-form. For example the wedge product of (1.15)  with a one-form ߠ =
ݔ݀ߣ + ݕ݀ߤ +  .is the three - form ݖ݀ߛ

߱ ∧ = ߠ ߣߙ)  + ߤߚ + ݔ݀(ߛߪ ∧ ݕ݀ ∧  (2.18)              ݖ݀

2.2 Pull Back and change of coordinates  

(2.2.1)Definition:  

If ܯ :ܨ →  ܰ is a smooth map between manifolds its differential ݀ܨ maps tangent vectors 
-called the pull-back or co ,∗ܨ to tangent vectors on ܰ. There is thus an induced linear map ܯ
differential of ܨ, which takes differential k-forms on N back to differential k-forms on ܯ, 

∗ܨ : ∧ ܶ∗ܰ|ி(௫)  → ∧ ௫|ܯ∗ܶ                          (2.19) 

It is defined so that if ߱ ߳ ∧ ܶ∗ܰ|ி(௫), 

,ଵݒ;(߱)∗ܨ〉 … 〈ݒ, = 〈߱; ,(ଵݒ)ܨ݀ … ,  (2.20)          〈(ݒ)ܨ݀

For any set of tangent vectors ݒଵ, … ,  ௫. In contrast to the differential, the pull-back does|ܯ߳ܶݒ
take smooth differential forms on ܰ back to smooth differential forms on ܯ. if ݔ = ,ଵݔ) …  (ݔ,
are local coordinates on ܯ and ݕ = ,ଵݕ) … … ,  ) coordinates on ܰ, thenݕ

൯ݕ൫݀∗ܨ =  ∑ డ௬

డ௫ೕ

ୀଵ                                    (2.21)ݔ߲.  

Where ݕ =   on the basis one-forms. We conclude that in general ∗ܨ gives the action of ;(ݔ)ܨ

∑)∗ܨ ூூݕ݀(ݕ)ூߙ ) = ∑ ൯(ݔ)ܨூ൫ߙ డ௬


డ௫
ூݔ݀ , ,                  (2.22)  

Where డ௬


డ௫
  stands for the Jacobian determinant det (డ௬

ೖ

డ௫ೕೡ
) corresponding to the increasing multi-

indices ܫ = (݅ଵ, … , ݅), ܬ =  (݆ଵ, … … ,  ݆). In particular, if ݕ =  determines a change of (ݔ)ܨ
coordinates on ܯ, then (2.22) provides the corresponding change of coordinates for differential 
k-form on ܯ. Note also the pull-back preserves the algebraic operation of wedge product. 

߱)∗ܨ ∧ (ߠ = (߱)∗ܨ ∧  (2.23)                             (ߠ)∗ܨ

1- Closed and Exact form 

(2.2.2)Definition: 
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        A k-form ߱ is called  closed if ݀߱ = 0 ,closed forms are the kernel of ݀. 

(2.2.3) Definition: 

 ߱is called exact if ߱ = exact forms are the image of ݀ because ݀ଶ ߙ for (k-1)-form ߙ݀ =
0 every exact form is closed. 

(2.2.4)Definition: 

       A differential 1- form ߱ defined on a domain Ω is a map that to each point  ∈ Ω assigns 
 given by ∗(ℜ)߳()߱

()߱ = ܽଵ()݀ݔଵ + ⋯+ ܽ()݀ݔ                     (2.24) 

Such that each ܽ:Ω ⊂ ℜ → ℜ is smooth function. 

Example (2): 

      The 1-form 

߱ = −
ݕ

ଶݔ + ଶݕ ݔ݀ +
ݔ

ଶݔ + ଶݕ  ݕ݀

Defined on Ω = ℜଶ − (0,0) 

(2.2.5)Definition: 

      A differential 1- form ߱ defined on a domain Ω is said to be  closed if 

߲ܽ
ݔ߲

() =
߲ ܽ

ݔ߲
,݅ ∀,() ݔ ݀݊ܽ ݆ ∈ Ω 

we say that a differential 1- form ߱ is exact if there exists a smooth function ݂:Ω → ℜ  such that 

߱ = ݂݀                                                        (2.25) 

Example (3): 

   Let us consider the differential 1-form  

߱ =
ݕ

ଶݔ + ଶݕ ݔ݀ +
ݔ

ଶݔ + ଶݕ  ݕ݀

We claim that ߱  is closed but not exact  1-form .In fact let ߛ be closed curve such 
that ߛ: [ߨ0,2] → ℜଶ ,    ߠ → (cosߠ , sin  (ߠ

Computing the line integral  
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න ߱ = න
ݕ

ଶݔ + ଶݕ ݔ݀ +
ݔ

ଶݔ + ଶݕ                                                     ݕ݀
ఊఊ

 

                            = න
sinߠ

sinଶ ߠ + cosଶ ߠ
(− sinݐ݀(ߠ  

cosߠ
sinଶ ߠ + cosଶ ߠ (cosߠ)݀ݐ

ଶగ


 

= න ݐ݀
ଶగ



 

Since ∫ ߱ ≠ 0ఊ  , ߱ is not exact . 

On odor hand it we compute ݀߱  we have 

݀߱ = ܣ݀ ∧ ݔ݀ + ܤ݀ ∧  ݕ݀

A = ି௬
௫మା௬మ

ܤ,  = ௫
௫మା௬మ

 

Where 

݀߱ = ቀడ
డ௫
ݔ݀ + డ

డ௬
ቁݕ݀ ∧ ݔ݀ + (డ

డ௫
ݔ݀ + డ

డ௬
(ݕ݀ ∧  ݕ݀

= డ
డ௬
ݕ݀ ∧ ݔ݀ + డ

డ௫
ݔ݀ ∧                                ݕ݀

= −డ
డ௬
ݔ݀ ∧ ݕ݀ + డ

డ௫
ݔ݀ ∧                         ݕ݀

= ቀ−డ
డ௬

+ డ
డ௫
ቁ ∧                                   ݕ݀ݔ݀

= 0                                                                     

Thus ߱ is a closed  1-fom but not  exact. 

2-Interior Products 

(2.2.6)Definition: 

If ߱ is a differential k-form and v a smooth vector field, then we can form a (k-1)- form 
  called the interior product of v with ߱, defined so that ߱ ⏌ݒ

,ଵݒ;߱⏌ݒ〉 … 〈ିଵݒ, = 〈߱; ,ݒ ,ଵݒ …  ିଵ〉                                          (2.26)ݒ,

for every set of vector fields ݒଵ, … ,  ିଵ. The is bilinear in both its arguments, so it suffices toݒ
determine it for basis elements: 
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߲
⏌ݔ߲

൫߲ݔభ ∧, … ,∧ ೖ൯ݔ߲ = ൜ (−1)ିଵ
0   , ݅ ≠ ݆  

భݔ݀ ∧, … ,∧ ೖషభݔ݀ ∧ ೖశభݔ݀ ∧, ೖݔ݀… , ݅ = ݆  

Example (4): 

       ߲௫⏌݀ݔ ∧ ݕ݀ = ݖ݀⏌௫߲     , ݔ݀ ∧ ݔ݀ = , ݔ݀ ߲௫⏌݀ݔ ∧ ݖ݀ = 0 so that if ߱ is as in (1.15) 

൫߲ߦ௫ + ௬߲ߞ + ߱⏌௭൯߲ߟ = ߚߟ) − ݔ݀(ߛߞ + ߛߦ) − ݕ߲(ߙߟ + ߙߞ) +  ݖ߲(ߚߦ

      Note that the interior product acts as an anti-derivation on forms, meaning that  

߱)⏌ݒ ∧ (ߠ = ൫ݒ⏌߱൯ ∧ ߠ + (−1)߱ ∧  (2.27)                              (ߠ⏌ݒ)

whenever ߱ is ak-form, θ an 1-form  

3-The Differential Exterior derivative  

         The exterior derivative of differential form of degree ݇ is a differential form of degree ݇ +
1.  

          IF ݂ is a smooth function (a 0-form) then the exterior derivative of ݂  is the deferential of 
that ݂݀ is the unique 1-form such that for every smooth vector field ܺ, (ݔ)݂݀ = ݀௫݂ where is the 
direction of ܺ 

(2.2.7)Definition: 

      In local coordinate , if ߱ =   is a smooth differential k-form on a manifold M  itsݔ݀(ݔ)ߙ∑
differential or exterior derivative is the (k+1)-form  

݀߱ = ߙ݀∑ ∧ ݔ݀ = ∑ങഀ
ങೣೕ
ݔ݀ ∧                      (2.28)ݔ݀

The differential or the exterior derivative d , taking k- form to (k+1)-form has the following 
properties :  

1- Linearity 
                    ݀(ܿ߱ ∧ cᇱωᇱ) =ܿ݀߱ + ܿᇱ݀߱ᇱ for ܿ , ܿᇱ constants. 

2- Anti-derivation 
     ݀(߱ ∧ (ߠ = ݀(߱) ∧ ߠ + (−1)߱݀ߠ, for ߱ a k-form , ߠ an 1-from  

3- Closure 
d(d ߱) =0 

4- Commuttion with Pull-Back  
                     ݂∗(݀߱) = ݀(݂∗߱)for ݂:ܯ → ܰ smooth , ߱ a k-form on N. 
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Example (5): 

             If ܯ = ℜଷ, then the differential of one –form , 

ݔ݀ߣ)݀ + ݕ݀ߤ + (ݖ݀ߛ  = ൫ߛ௬ − ݕ௭൯݀ߤ ∧ ݖ݀ + ௭ߣ) − ݔΛ݀ݖ݀(௫ߛ + ௫ߤ) − ݔ݀(௬ߣ ∧dy, 

can be indentified with curl of its coefficients : 

∇ × ߣ ≡ ∇× ,ߤ,ߣ)  Similarly the differential of a two-form .(ߛ

d(ݕ݀ߙ ∧ ݖ݀ + ݖ݀ߚ ∧ ݔ݀ + ݔ݀ݕ ∧ =(ݕ݀ ൫ߙ௫ + ௬ߚ + ݔ௭൯݀ߛ ∧ ݕ݀ ∧  ߚݖ݀

can be identified ∇.ߙ ≡ ∇. (α,β, γ). The closure property therefore translates into the familiar 
vector  calculus identities 

∇ × (∇݂) = 0   ,                 ∇(∇ × (ߣ = 0 

2.3 Lie Derivatives 

         Let ߪ be a differential form or vector field defined over  . Given a point ܯ ߳ ݔ, after “time” 
ε it has moved to ݁ݔ(ݒߝ)ݔ and the goal is to compare the value of ߪ at ݁ݔ (ݒߝ)ݔ with original 
value at ݔ. However, ߪ|௫(ఌ௩)௫ and ߪ|௫  as they stand are strictly speaking incomparable as they 
belong to different vector space e.g. ܶܯ|௫(ఌ௩)௫ and ܶܯ|௫ in the case of vector field. To effect 
any comparison, we need to “transport”ߪ|௫(ఌ௩)௫ back to ݔ in some natural way, and then make 
our comparison. For vector field, this natural transport is the inverse differential. 

߶ఌ∗  ≡ ௫(ఌ௩)௫|ܯܶ :(ݒߝ−)ݔ݁ ݀ → ௫|ܯܶ ,                (2.29) 

whereas for differential forms we use pull back map  

߶ఌ∗  = ∗(ݒߝ)ݔ݁  ∶ ∧ ௫(ఌ௩)௫|ܯ∗ܶ  → ௫|ܯ∗ܶ ,               (2.30) 

This allows to make the general definition of a Lie derivative 

(2.3.1)Definition: 

        Let ܸ be a vector field on ܯ and σ a vector field or differential form defined on ܯ. The Lie 
derivative of σ with respect to ܸ is the object whose value at ܯ ߳ ݔis : 

௫|(ߪ)ܸ = lim
ఌ→

∅ఌ∗൫ߪ|௫(ఌ௩)௫൯ − ௫|ߪ
ߝ =

߲
ߝ߲

|ఌୀ∅ఌ∗(ߪ|ୣ୶୮(ఌ௩)௫       (2.31) 

(Note that ܸ(ߪ) is an object of the same type as σ.) 

(2.3.2)Proposition:  
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        Let ܸ and ݓ be smooth vector fields on ܯ. The Lie derivative of ݓ with respect toܸ 
coincides with the Lie bracket of ܸand ݓ. 

 (2.32)                                           [ݓ ,ܸ] = (ݓ)ܸ

Proof: 

     Let (ݔଵ, …   ) be local coordinates, withݔ,

ܸ ≡ߦ(ݔ)߲/߲ݔ,  ߱ = ߱|ୣ୶୮(ఌ௩)௫ 

                                     = ൣߟ(ݔ) + ൯ߟ൫ܸߝ + ൧(ଶߝ)ܱ


ୀଵ

߲
 ,ݔ߲

Hence, using (1. 24) and (1. 22) 

݀ exp(−ݒߝ) ൣ߱|ୣ୶୮(ఌ௩)௫൧ = ൛ߟ(ݔ) + ൯ߟ൫ܸൣߝ − ߱൫ߦ൯൧ + ൟ(ଶߝ)ܱ


ୀଵ

߲
 ݔ߲

Substituting into the definition (2.31). We deduce (2.32) from (1. 28). 

Turning to differential forms, we find that the derivative can be most easily reconstructed form 
its basic properties. 

a) Linearly  
ܸ(ܿ߱ + ܿᇱ߱ᇱ) =  ܸܿ(߱) + ܿᇱܸ(߱ᇱ), ܿ, ܿᇱ ܿ(2.33)     ݐ݊ܽݐݏ݊ 

b) Derivation 
ܸ(߱ ∧ (ߠ = ܸ(߱)  ∧ + ߠ ߱ ∧   (2.34)                       (ߠ)ܸ

c) Communication with the differential  
ܸ(݀߱)  = ܸ݀(߱)                                      (2.35) 

Thus we have the use full formula 

ܸ൫ܹ⏌߱൯ =  [ܸ,ܹ]⏌߱ + ܹ⏌ ܸ(߱),                    (2.36)  

For vector fields V and W and ߱ a differential form. 

In local coordinates, the Lie derivative of differential form determined as follows. If  

ܸ = ߦ(ݔ)
߲
ݔ߲



ୀଵ

 

Then  
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ܸ൫݀ݔ൯ =  ܸ݀൫ݔ൯ = ߦ݀  =  
ߦ߲

ݔ߲



ୀଵ

 ݔ߲  .   

Therefore, we have the general formula  

 ܸ൫∑ ݔ݀(ݔ)ߙ ൯ = ∑ ൛ܸ(ߙ)݀ݔ + ∑ భݔ݀ߙ ∧ …∧ భߦ݀ ∧ …∧ ೖݔ݀
ୀଵ ൟ   (2.37) 

*Note, the three properties (2.31), (2.33) along with its action on smooth functions sever to 
define the Lie derivative operation uniquely. 

Example (6): 

Let ܯ = ℜଶ and  

ܸ = ,ݔ)ߦ ݔ߲(ݕ +  ݕ߲ (ݕ,ݔ) ߟ 

Then the Lie derivative of a two form is 

(ݕ݀߉ݔ݀(ݕ,ݔ)ߛ)ܸ = ݕ݀߉ݔ݀(ߛ)ܸ  + ݕ݀߉ߦ݀ߛ + ߟ݀߉ݔ݀ߛ = ൛ߛߦ௫ + ௬ߛߟ +   .ݕ݀߉ݔ௫ൟ݀ߦߛ

 

(2.3.3) Proposition: 

A differential k-form on M is invariant under the flow of a vector field ܸ: 

߱|௫(ఌ௩)௫  =  ,(ݔ/ߝ)∗(ݒߝ−)ݔ݁

if and only if ݒ(߱) = 0 (A similar result holds for vector fields). 

Proof: 

Applying ߶ఌ∗  =  to (2.30) and using the basic group property of the flow, we find  ∗(ݒߝ)ݔ݁

௫(ఌ௩)௫൯|(߱)ݒ൫∗(ݒߝ)ݔ݁ =
݀
ߝ݀
൛݁(ݒߝ)ݔ∗൫߱|௫(ఌ௩)௫൯ൟ(2.38) 

For all ε where defined: 

(2.3.4) Proposition: 

Let ߱ be a differential form and ܸ be vector field on ܯ. then 

ܸ(߱) = ݀൫ܸ⏌߱൯ + ܸ⏌(݀߱)                               (2.37) 

Proof: 
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Define the operator ℊ௩(߱) by the right hand side of (2.37). Since the Lie derivative is uniquely 
determined by its action on function and the properties (2.31), (2.33) it suffice to check that 
ℊ௩enjoy  the same properties. 

First: 

ℊ௩(݂) = ݂݀⏌ݒ = 〈ݒ;݂݀〉 =  ,(݂)ݒ

So the action function is the same. Linearly of ℊ௩ is clear while the closure property of d 
immediately proves the communication property: 

ℊ௩(݀߱) = ݀൫ݒ⏌݀߱൯. 

Finally, if ߱ is a k-form and θ an 1-form, we use (1.52) (1.54) to prove that 

ℊ௩(߱ ∧ (ߠ = ݀ൣ൫ݒ⏌߱൯ ∧ ߠ + (−1)߱ ∧ ൫ߠ⏌ݒ൯൧ + (߱݀)]⏌ݒ ∧ ߱(1−)ߠ ∧ [(ߠ݀)
= ݀൫ݒ⏌߱൯ ∧ ൯߱⏌ݒିଵ൫(1−)ߠ ∧ ߠ݀ + (−1)(݀߱) ∧ ൫ߠ⏌ݒ൯ + (−1)ଶ߱
∧ ݀൫ߠ⏌ݒ൯ + ൫ݒ⏌݀߱൯ ∧ ߠ + (−1)ାଵ݀(߱) ∧ ൫ߠ⏌ݒ൯ + (−1)൫ݒ⏌߱൯ ∧ ߠ݀
+ (−1)ଶ߱ ∧ ൫ߠ݀⏌ݒ൯ 

= ℊ௩(߱) ∧ ߠ + ߱ ∧ ℊ௩(ߠ),                                      

The remaining terms cancelling.  
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Chapter Three  

The Lie - Poisson Structure 
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Chapter Three 

The Lie - Poisson Structure 

The guiding concept of a Hamiltonian system of differential equations forms the basis of 
much of more advanced work in classical mechanics, including   motion of rigid bodies, celestial 
mechanics, quantization theory. 

(3.1) Poisson Brackets   

On a smooth manifold ܯ, a Poisson bracket assigns to each pair of smooth , real - valued 
functions ܯ:ܪ,ܨ → ܴ another smooth real-valued function, which are denote by {ܪ,ܨ}. there 
are certain basic properties that such a bracket operation must satisfy in order to qualify as a 
Poisson bracket . 

(3.1.1) Definition: 

A Poisson bracket on smooth manifold ܯ is an operation that assigns a smooth real - 
valued function {ܪ,ܨ} ܯ ݊ to each pair ܪ,ܨ of smooth, real valued functions, with the basic 
properties : 

a) Bilinearity: 

ܨܿ} + ܿᇱܲ,ܪ} = {ܪ,ܨ}ܿ + ܿᇱ{ܲ,ܪ}, 

,ܨ} ܪܿ + ܿᇱܲ} = {ܪ,ܨ}ܿ + ܿᇱ{ܨ,ܲ}, for constants ܿ, ܿᇱ ∈ ℜ 

b)Skew - symmetry : 

{ܪ,ܨ} =  {ܨ,ܪ}−

c)Jacobi Identity:  

൛{ܪ,ܨ},ܲൟ + ൛{ܲ,ܨ},ܪൟ + ൛{ܪ,ܲ},ܨൟ = 0 

d)Leibniz’s Rule : 

{ܲ.ܪ,ܨ} = ܲ.{ܪ,ܨ} + .ܪ  {ܲ,ܨ}

(here. Denotes the ordinary multiplication of real- valued functions) in all these equations 
 .ܯ and ܲ are arbitrary smooth real-valued functions on ܪ,ܨ

A manifold ܯ with a Poisson bracket is called a Poisson manifold, the bracket defining a 
Poisson structure on ܯ. 
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The notion of a Poisson manifold is slightly more general then that of a symplectic 
manifold, or manifold, or manifold with Hamiltonian structure; in particular, the underlying 
manifold ܯ need not be even - dimensional.  

Example (1):  

Let ܯ be the even - dimensional Euclidean space ℜଶ with coordinates (ݍ,) =
,ଵ) … , , ,ଵݍ … ,  positions of the ݏ’ݍ represent momenta and ݏ’ ). (in physical theݍ
mechanical objects.) if )ܨ, ,)ܪ and (ݍ  are smooth functions, we define their Poisson (ݍ
bracket to be the function  

{ܪ,ܨ}  = ∑ ቄ డி
డ

డு
డ

− డி
డ

డு
డ
ቅ                                                                  

ୀଵ  (3.1) 

This bracket is clearly satisfying the basic properties of the Poisson bracket. We  note that 
the particular identities  

               ൛, ൟ = 0,    ൛ݍ,ݍൟ = 0,    ൛ݍ,ൟ =                                        (3.2)ߜ

In which ݅ and ݆ run from 1 to n and ߜ is the kroneck symbol, which is 1 if ݅ =  ݆ and 0 
otherwise.  

More general, we can determine a Poisson bracket on any Euclidan space ℜ . Just let 
,) ,ݍ (ݖ = ,ଵ) … , ,ଵݍ, … ݍ, , ,ଵݖ …  ) be the coordinates so 2n+L= m and define the Poissonݖ
bracket between two functions ݍ,)ܨ, ,ݍ,)ܪ,(ݖ  by the formula (3.1). In particular, if the (ݖ
function (ݖ)ܨ depends on the z’s only, then {ܪ,ܨ} = 0 for all functions ܪ. Such functions in 
particular the ݖ′ݏ  themselves, are known as distinguished functions, or cassimere functions and 
are characterized by the property that their Poisson bracket with any other function is always 
zero. We suplement the basic coordinate bracket ( 3.2) by the additional relations 

                        ൛, ൟݖ = ൛ݍ, ൟݖ = ൛ݖ , ൟݖ = 0,                                            (3.3) 

For all  ݅ =  1, … , ݊, and  ݆,݇ = 1, … , ݈. 

(3.1.2) Definition: 

 Let ܯ be a Poisson manifold. A smooth, real-valued function  ܯ:ܥ → ℜ is called a 
distinguished if the Poisson bracket of ܥ with any other real valued function vanishes identically, 
i.e {ܪ,ܥ} = 0 for ܯ:ܪ → ℜ. 

    In the case of canonical Poisson bracket (3.1) on  ℜଶ, the only distinguished functions are the 
constants, which always satisfy the requirements of the definition. At the other extreme if the 
Poisson bracket is completely trivial i.e .{ܪ,ܨ} = 0 for every  ܪ,ܨ then every function is 
distinguished. 
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(3.2) Hamiltonian Vector Field 

(3.2.1) Definition:  

Suppose that (ݍ,)ܪ is a smooth function of its arguments for p and ݍ ∈ ℜ.Then the 
dynamical system  

ప̇                                                 = డு
డ

                                                               (3.4) 

ప̇ݍ                                                 = − డு
డ

                                                           (3.5) 

where ( ݅ =  1, 2, … , ݊) is called a Hamiltonian system and ܪ is the Hamiltonian function ( or 
just the Hamiltonian) of the system. Equation (3.4) are called Hamilton’s equations. 

(3.2.2) Definition: 

     Let ܯ be a Poisson manifold and ܯ:ܪ → ℜ a smooth function. The Hamiltonian vector field 
associated with ܪ is the unique smooth vector field ܸு  satisfying ܯ ݊ 

                                       ܸு(ܨ) = {ܪ,ܨ} =  (3.6)                                                    {ܨ,ܪ}−

for every smooth function ܯ:ܨ → ℜ the equations governing the flow of  ܸு(ܨ) are referred to 
as Hamilton’s equation for the “Hamiltonian” function ܪ. 

Example (2): 

   In the case of the canonical Poisson bracket (3.1) on ℜ ,݉ = 2݊ + 1, the Hamiltonian vector 
field corresponding to )ܪ, ,ݍ   is clearly (ݖ

               ܸு = ∑ ቄడு
డ

డ
డ

− డு
డ

డ
డ
ቅ                                                                      

ୀଵ (3.7) 

The corresponding flow is obtained by integrating the system of ordinary differential equations 

                       ௗ


ௗ௧
= డு

డ
  , డ



ௗ௧
= − డு

డ
     ݅ = 1, … , ݊                                       (3.8) 

                               ௗ௭
ೕ

ௗ௧
= 0,     ݆ = 1, … , ݈,                                                                  (3.9) 

which are Hamilton’s equations in this case. In the nondegenerate case ݉ =  2݊ we have just 
(3.8), which is the canonical form Hamilton’s equations in classical mechanics. More generally 
(3.9) just add in the constancy of the distinguished coordinates ݖ  under the flow. In particular, 
if ܪ depends only on the distinguished coordinates ݖ, its Hamiltonian flow is completely trivial. 
This remark hold in general: A function ܥ on a Poisson manifold is distinguished if and only if 
its Hamiltonian vector field ܸ = 0 vanishes everywhere     
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(3.2.3) Proposition: 

Let M be a Poisson manifold, let ܯ:ܪ,ܨ → ℜ be smooth function with corresponding 
Hamiltonian vector field ܸி  , ܸு  . The Hamiltonian vector field associated with the Poisson 
bracket of ܨ and ܪ is, up to sign, the Lie bracket of two Hamiltonian vector fields: 

ܸ{ி,ு} = −ൣ ܸி , ܸு൧ = ൣ ܸு , ܸி൧.                                                (3.10) 

Proof 

 Let ܲ:ܯ → ℜ be any other smooth function. Using the commutator definition of the Lie 
bracket, we find 

ൣ ܸு , ܸி൧ܲ = ܸு ∙ ܸி(ܲ)− ܸி ⋅ ܸு(ܲ) 

                                          =   ܸு{ܲ,ܨ} − ܸி{ܲ,ܪ} 

                                           =  ൛{ܲ,ܨ},ܪൟ − ൛{ܲ,ܪ},ܨൟ 

                                            = ൛ܲ,  ൟ{ܪ,ܨ}

                                             = ܸ{ி,ு}(ܲ), 

Where we have made use of the Jacobi identity, the skew- symmetry of the Poisson 
bracket , and the definition (3.2.2) of a Hamiltonian vector field . since P is arbitrary.  

Example (3): 

 Let ܯ = ℜଶ with coordinates (, {ܪ,ܨ} and canonical Poisson bracket (ݍ = ܪܨ −
the corresponding Hamiltonian vector field is ܸு (ݍ,)ܪ  . For a functionܪܨ = ߲ܪ −  .߲ܪ
Thus for ܪ = ଵ

ଶ
ଶ) + ଶ) we have ܸுݍ = ߲ − ܨ , whereas for߲ݍ = ܸி     ,ݍ = ߲ݍ −  . the߲

Poisson bracket of ܨ and ܪ is {ܪ,ܨ} = ଶ − ଶ, which has Hamiltonian vector field ܸ{ி,ு}ݍ =
߲2 − ൣ .  this agrees with the commutator߲ݍ2 ܸு , ܸி൧. 

1. The structure functions\ 

(3.2.4)Definition: 

The general local coordinate picture for a Poisson manifold, at the Hamiltonian vector 
fields. Let ݔ = ,ଵݔ) …  a real - valued function. The (ݔ)ܪ and ܯ ) be local coordinates onݔ,

associated Hamiltonian vector field will be of the general form ܸு = ∑ (ݔ)ߦ
ୀଵ

డ
డ௫

 , where the 

coefficient function ߦ(ݔ) which depend on ܪ are to be determined. Let (ݔ)ܨ be a second 
smooth function. Using (3.6) we find  
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{ܪ,ܨ} = ܸு(ܨ) = ߦ(ݔ)


ୀଵ

ܨ߲
 ݔ߲

But, by (3.6)  

(ݔ)ߦ = ܸு(ݔ) = ൛ݔ,ܪൟ, 

So this formula becomes 

{ܪ,ܨ}                                   = ∑ ൛ݔ,ܪൟ
ୀଵ

డி 
డ௫

                                                  (3.11) 

Using the skew - symmetry of the Poisson bracket, we can compute the letter set of 
Poisson bracket in term of the particular Hamiltonian vector fields ܸ = ܸ

௫ associated with the 
local coordinate functions ݔ, n- amely 

൛ݔ,ܪൟ = −൛ܪ, ൟݔ = − ܸ(ܪ) = −∑ ൛ݔ, ൟݔ
ୀଵ

డு 
డ௫ೕ

 , 

The last equality following form a second application of (3.11),with ܪ replacing ܨ and ݔ 
replacing ܪ. thus we obtain the basic formula  

{ܪ,ܨ} = ∑   ∑ ൛ݔ, ൟݔ
ୀଵ

డி 
డ௫

డு
௫ೕ

                                      
ୀଵ (3.12) 

For the Poisson bracket. In other words, to compute the Poisson bracket of any pair of 
functions in some given set of local coordinates it suffices to know the Poisson brackets between 
the coordinate function themselves. These basic brackets 

ܬ                                  = ൛ݔ, ,݅   ,ൟݔ ݆ = 1, …݉                                            (3.13) 

Are called the structure functions of the Poisson manifold ܯ relative to the given local 
coordinates, for convenience, we assemble the structure functions in to a skew-symmetric ݉ ×
݉ matrix (ݔ)ܬ, called the structure matrix of ܯ. Using ∇ܪ to denote the ‘’column’’ gradient 
vector for ܪ, the local coordinate from (3.12) for the Poisson bracket takes the form : 

{ܪ,ܨ} = ܨ∇ ∙  (3.14)                                                 ܪ∇ܬ

Example (4): 

In the case of the canonical bracket (3.1) on ℜ = 2݊ + 1 the structure matrix has the 
simple form 

ܬ = ൭
0 −1 0
1 0 0
0 0 0

൱ 
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relative to the (ݍ,, ݊ is the ܫ coordinates. Where – (ݖ × ݊ identity matrix. The Hamiltonian 
vector field associated with (ݔ)ܪ has the form 

                    ܸு = ∑ ቀ∑ (ݔ)ܬ డு
డ௫ೕ

డ
௫


ୀଵ ቁ

ୀଵ ,                                              (3.15) 

or in matrix notation ܸு(ܪ∇ܬ) ∙ ߲௫ , ߲௫ being the “vector” with entries ߲/߲ݔ. Therefore in the 
given coordinate chart, Hamilton’s equations take the form 

                             ௗ௫
ௗ௧

=  (3.16)                                                   (ݔ)ܪ∇(ݔ)ܬ

Alternatively, using (3.11), we could write this in the “ bracket form”  

ݔ݀
ݐ݀ =  {ܪ,ݔ}

The i-th component of the right-hand side being ൛ݔ,ܪൟ.  

Any system of the first order ordinary differential equations is said to be a Hamiltonian system if 
there is a Hamiltonian function (ݔ)ܪ and a matrix of functions (ݔ)ܬ determining a Poisson 
bracket (3.15) whereby the system takes the form (3.16). of course, we need to know which 
matrices (ݔ)ܬ are the structure matrices for Poisson brackets. 

(3.2.5)Proposition: 

 Let (ݔ)ܬ = ቀܬ(ݔ)ቁ be an ݉ × ݉ matrix of functions of ݔ = ,ݔ) … ,  ) defined over anݔ

open subset ܯ ∈ ℜ. Then  (ݔ)ܬ is the structure matrix for a Poisson bracket  {ܪ,ܨ} = ܨ∇ ∙ ∇Jܪ  
over ܯ if and only if it has the properties of : 

a) Skew- symmetry  
(ݔ)ܬ                      = ,݅    (ݔ)ܬ− ݆ = 1, … ,݉ 

b) Jacobi identity: 
      ∑ ൛ܬ߲ܬ + ܬ߲ܬ + ൟܬ߲ܬ

ୀଵ = 0,   ݅, ݆, 1, … ,݉                  (3.17) 

For all ݔ ∈ Here, as usual   ߲ூ) .ܯ = డ
డ௫

. ) 

Proof 

In its basic form (3.14) the Poisson bracket is automatically bilinear and satisfies Leibniz’s rule. 
The skew-symmetry of the structure matrix is clearly equivalent to the skew- symmetry of the 
bracket. Thus we need only verify the equivalence of (3.17) with Jacobi identity. That by (3.12) 
and (3.13)  
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 ቄ൛ݔ, ,ൟݔ ቅݔ = ∑ (ݔ)ܬ߲(ݔ)ܬ
ୀଵ , 

So (3.17) is equivalent to the Jacobi identity for the coordinate functions  ݔ,ݔ and ݔ. More 
generally, for ܯ:ܲ,ܪ,ܨ → ℜ, 

 ൛{ܪ,ܨ},ܲൟ = ∑ ܬ డ
డ௫

ቄ∑ ܬ డி
డ௫

డு
௫ೕ


,ୀଵ ቅ

,ୀଵ
డ
డ௫ೖ

= ∑ {
,,ୀଵ ܬ డೕ

డ௫
డி
డ௫

∙ డு
డ௫ೕ

డ
డ௫ೖ

+ ܬ )ܬ  డమி
డ௫௫

∙
డு
డ௫ೕ

డ
డ௫ೖ

+ డி
డ௫ೕ

. డమு
డ௫௫ೕ

డ
డ௫ೖ

)} 

           Summing cyclically on ܪ,ܨ,ܲ we find that the first set of terms vanishes by virtue of 
(3.17), while the remaining term can conform to skew- symmetry of structure matrix. 

(3.3) The Lie –Poisson Structure   

(3.3.1) Definition:  

 Let ݃ be r - dimensional Lie algebra, and  ܥ ,   ݅, ݆,݇ = 1, … ,   be the structure constants ,ݎ
of ݃ relative to a basis{ݒଵ, …   } ,let ܸ be another r - dimensional vector space, with coordinatesݒ,
ݔ = ,ଵݔ) … , ,ଵݓ} ) determined by a basisݔ …  }. We define the Lie- Poisson bracket betweenݓ,
two functions  ܪ,ܨ:ܸ → ℜ , 

{ܪ,ܨ}                           = ∑ ܥ ݔ  డி
డ௫

డு
௫ೕ


,,ୀଵ                                        (3.18) 

This takes the form (3.12) with linear structure functions ܬ(ݔ) = ∑ ݔܥ
ୀଵ  

(3.3.2) Definition: 

 Let ܸ be any vector space and  ܨ:ܸ → ℜ smooth, real - valued function, then the gradient 
ݔ at any point (ݔ)ܨ∇ ∈ ܸ is naturally an element of the dual vector space ܸ∗ consisting of all 
(continuous) linear functions on ܸ defined by  

〈ݕ;(ݔ)ܨ∇〉 = lim
ఌ→

ݔ)ܨ + −(ݕߝ (ݔ)ܨ
ߝ ݕ  ݕ݊ܽ ݎ݂    ∈ ܸ  

Where 〈; 〉 is the natural pairing between ܸ and its dual  ܸ∗, we identify the vector space ܸ used 
in our initial construction of the Lie Poisson bracket with dual  space ݃∗ to the Lie algebra 
݃, ,ଵݓ} … } } begin the dual basis toݓ, ଵܸ, … , ܸ}.   If   ܨ:݃∗ → ℜ is any smooth function, then its 
gradient ∇(ݔ)ܨ is an element of (݃∗)∗ ≃ ݃ (since ݃ is finite dimensional). Then the Lie Poisson 
bracket has the coordinate free form  

(ݔ){ܪ,ܨ}              = ;ݔ〉 ݔ   ,〈[(ݔ)ܪ∇,(ݔ)ܨ∇] ∈ ݃∗                                 (3.19) 
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Where [, ] is the ordinary Lie bracket on the Lie algebra ݃ if ܪ:݃ → ℜ is any function, the 
associated system of Hamilton’s equation take the form  

                                  ௗ௫


ௗ௧
= ∑ ݔܥ

డு
డ௫ೕ


,ୀଵ    ݅ = 1, … ,  ,ݎ

In which the coordinates  ݔ  themselves appear explicitly. 

Example (5): 

   Consider the 3 - dimensional Lie algebra So(3) of the rotation group So(3). Using the basis 
ଵܸ = ௭߲ݕ − ,௬߲ݖ ଶܸ = ௫߲ݖ − ௭߲ݔ , ଷܸ = ௬߲ݔ − ௫߲ݕ  of infinitesimal rotation around the ݕ ,ݔ and ݖ 

axes of ℜଷ (or their matrix counter parts ), we have the commutation relations [ ଵܸ, ଶܸ] =
− ଷܸ , [ ଷܸ, ଵܸ] = − ଶܸ, [ ଶܸ, ଷܸ] = − ଵܸ  let ݓଵ,ݓଶ,ݓଷ  be a dual basis for ܵ(3)∗ ≃ ℜଷ and ݑ =
ଵݓଵݑ + + ଶݓଶݑ  ∗(3)ܵ:ܨ  ଷ  at typical point therein. Ifݓଷݑ → ℜ,   then the gradient is the 
vector  

ܨ∇ =
ܨ߲
ଵݑ߲ ଵܸ +

ܨ߲
ଶݑ߲ ଶܸ +

ܨ߲
ଷݑ߲ ଷܸ ∈  (3)ܵ

Thus from (3.19) we find the Lie - Poisson bracket on ܵ(3)∗ to be    

{ܪ,ܨ}  = ଵݑ ቀ డி
డ௨య

డு
డ௨మ

− డி
డ௨మ

డு
డ௨య

ቁ + ଶݑ ቀ డி
డ௨భ

డு
డ௨య

− డி
డ௨య

డு
డ௨భ

ቁ + ଷݑ ቀ డி
డ௨మ

డு
డ௨భ

− డி
డ௨భ

డு
డ௨మ

ቁ   = ܨ∇ݑ− ×

 ,ܪ∇

using the standard cross product on ℜଷ. Thus the structure matrix is  

(ݑ)ܬ      = ൭
0 ଷݑ− ଶݑ
ଷݑ 0 ଵݑ−
ଶݑ− ଵݑ 0

൱ ݑ    , ∈  ∗(3)ܵ

Hamilton’s equations corresponding to Hamiltonian function (ݑ)ܪ are therefore 

ݑ݀
ݐ݀ = ݑ ×  (ݔ)ܪ∇

1. The correspondence Between one forms and vector fields: 

       A Poisson structure on a manifold ܯ sets up a correspondence between smooth function 
ܯ:ܪ → ℜ and their associated Hamiltonian vector field  ܸு  In local coordinates this .ܯ ݊ 
correspondence is determined by multiplication of the gradient ∇ܨ by the structure matrix  (ݔ)ܬ 
determined by the Poisson bracket. This can given a more intrinsic formulation if we recall that 
the coordinate - free version of the gradient of real - valued function ܪ is its differential ݀ܪ. 
Thus the Poisson structure determines a correspondence between differential one - forms 
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and their associated Hamiltonian vector fields ܸு ܯ ݊ ܪ݀  which in fact extends to general one - 
forms. 

2. Rank of a Poisson structure: 
 
 
 

(3.3.3) Definition:  

       Let ܯ be a Poisson manifold and ݔ ∈  is the rank of the linear map ݔ at ܯ The rank of . ܯ
௫: T∗M|௫|ܤ → TM|௫  .  

      In local coordinates ܤ|௫ is the same as multiplication by the structure matrix (ݔ)ܬ, so the rank 
of ܯ at ݔ equals the rank of (ݔ)ܬ, independent of the choice of coordinates. 

3. Symplectic Manifolds: 

(3.3.4)Definition: 

      Poisson manifold ܯ of dimension m is symplectic if it Poisson structure has maximal rank m 
everywhere. 

4. Maps between Poisson Manifolds:  

(3.3.5) Definition : 

     If ܯ and ܰ are Poisson Manifold map is a smooth map ߶:ܯ → ܰ preserving the Poisson 
brackets: 

ܨ} ∘ ܪ,߶ ∘ ߶}ெ = ே{ܪ,ܨ} ∘ ߶  for all ܪ,ܨ:ܰ → ℜ. 

 In the case of symplectic manifolds these are canonical maps of classical mechanics . 

(3.3.6) Proposition: 

      Let ܯ be a Poisson manifold and ܸு  a Hamiltonian vector field . For each t , the flow 
ݐ൫ݔ݁ ܸு൯ ܯ: →  . to itself ܯ determines a (local) Poisson map from ܯ

Proof 

     Let ܨ and ܲ be real - valued functions, and let ߶௧ = ݐ൫ݔ݁ ܸு൯. If we differentiate the Poisson 
condition {ܨ ∘ ߶௧,ܲ ∘ ߶௧} = {ܲ,ܨ} ∘ ߶ with respect to ݐ we find the infinitesimal version 
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൛ ܸு(ܨ),ܲൟ + ൛ܨ, ܸு(ܲ)ൟ = ܸு({ܨ,ܲ}) 

at the point ߶௧(ݔ).  By (3.6) this is the same as the Jacobi identity . At ݐ = 0,     ߶ఖ   is the 
identity, and trivially Poisson, so a simple integration proves the Poisson condition for general ݐ. 

Example (6): 

       If ܯ = ℜଶ with canonical coordinates (ݍ,), then the function                     ܪ = ଵ
ଶ

ଶ) −  (ଶݍ

generates the group of rotations in the plane, determined by ܸு = ߲ −   . Thus each rotation߲ݍ
in ℜଶ is a canonical map . Since any Hamiltonian flow preserves the Poisson bracket on  , in 
particular it preserves its rank. 

(3.3.7) Corollary: 

       If ܸு  is a Hamiltonian vector field on a Poisson manifold ܯ, then the rank of ܯ at 
ݐ൫ݔ݁ ܸு൯ ݐ for any ݔ at ܯ is the same as the rank of  ݔ ∈ ℜ. 

 For instance, the origin in ܵ(3)∗, being the only point of rank 0 ,is a fixed point of any 
Hamiltonian system with the given Lie - Poisson structure. In fact, any point of rank 0 on a 
Poisson manifold is fixed point for any Hamiltonian system there.  

5. Poisson submanifolds: 

(3.3.8) Definition: 

      A submanifold ܰ ⊂ :߶ is a Poisson submanifold if its defining immersion ܯ ܰ →  is a ܯ
Poisson map. 

 An equivalent way of stating this definition is that for any pair of  ܯ:ܪ,ܨ → ℜ which 
restrict to functions ܨ ܰ:ܪ, → ℜ on ܰ, their Poisson bracket {ܪ,ܨ}ெ  naturally restricts to a 
Poisson bracket ൛ܨ  . ൟேܪ,

(3.3.9) Proposition: 

      A submanifold ܰ of a Poisson manifold ܯ is a Poisson submanifold if and only if ܶܰ|௬ ⊃
ݕ ௬for all|ܪ ∈ ܰ, meaning every Hamiltonian vector field on ܯ is everywhere tangent to ܰ. 

      In particular, if  ܶܰ|௬ = ݕ ௬  for all|ܪ ∈ ܰ is a symplectic submanifold of ܯ. 

Proof 
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      Since a Poisson bracket is determined by its local character , we can without loss of 
generality assume that ܰ is a regular submanifold of ܯ and use flat local coordinates 

(ݓ,ݕ) = ,ଵݕ) … ݕ, ,ଵݓ, … ܰ ି) withݓ, = :(ݓ,ݕ)} = ݓ = 0}. First suppose that ܰ is a 
Poisson submanifold , and let ܪ:ܰ → ℜ be any smooth function. Then we can extend ܪ to a 
smooth function ܯ:ܪ → ℜ defined in a neighbourhood of ܰ, with ܪ =  In our local .ܰ\ܪ
coordinates, ܪ = ,ݕ)ܪ is any function so that (ݓ,ݕ)ܪ ݀݊ܽ(ݕ)ܪ 0) = .(ݕ)ܪ ܰ:ܨ ݂݅ → ℜ has a 
similar extension ܨ, then by definition the Poisson bracket between ܨ   on ܰ is obtained byܪ ݀݊ܽ 
restricting that of ܨ and ܪ to ܰ. 

൛ܨ ൟேܪ, =  .ܰ/{ܪ,ܨ}

        In particular, for any choice of ܨ  cannot depend on the particular ܰ/{ܪ,ܨ}  , the bracketܪ,
extensions ܨ and ܪ which are selected. Clearly, this is possible if and only if {ܪ,ܨ}/ܰ contains 
on partial derivatives of either ܨ or ܪ with respect to the normal coordinates ݓ, so 

ܰ|{ܪ,ܨ} = ∑ ,ݕ)ܬ 0) డி
డ௬

డு
డ௬ೕ , ≡ ∑ (ݕ)መܬ డி

డ௬
డு

డ௬ೕ,     ,                 (3.20) 

but then the Hamiltonian vector field ܸு, restricted to ܰ, takes the form 

                              ܸு |ܰ = ∑ (ݕ)መܬ డு
డ௬ೕ

డ
డ௬,  ,                                                (3.21) 

and is thus tangent to ܰ everywhere. 

      Conversely, if the tangency condition ܪ|௬ ⊂ ܶܰ|௬  hold for all ݕ ∈ ܰ, any Hamiltonian 
vector field, when restricted to ܰ must be combination of the tangential basis vectors ߲/߲ݕ 
only, and hence of the form (3.21) if (ݓ)ܨ depends on ݓ alone, then {ܪ,ܨ} = ܸு(ܨ) must 
therefore vanish when restricted to ܰ. 

In particular , 

൛ݕ,ݓൟ = ൛ݓ,ݓൟ = 0      on  ܰ for all ݅, ݆, ݇, 

And hence the Poisson bracket on ܰ takes the form (3.2) in which               ܬመ(ݕ ) ,ݕ)ܬ = 0) =
൛ݕ,  ܰ of the induced Poisson bracket on ( ݕ)መܬ ൟ|ܰ . The fact that the structure functionݕ
satisfy the Jacobi identity easily follows (3.17) since on restriction on  . All w-terms vanish. Thus 
ܰ is a Poisson submanifold. 

       Note that the rank of the Poisson structure on ܰ at ݕ ∈ ܰ equals the rank of the Poisson 
structure on ܯ at the same point. 
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Example (7): 

      For the Lie - Poisson structure on So(3)∗, the subspace ݑ|ܪ at ݑ ∈ So(3)∗ is spanned by the 
elementary Hamiltonian vectors ܸଵ = ଷ߲ଶݑ − ,ଶ߲ଷݑ ܸଶ = ଵ߲ଷݑ − ଷ߲ଵ,   ܸଷݑ = ଶ߲ଵݑ  −
,ଵ߲ଶݑ (߲ = ݑ ଷ respectively. Ifݑ,ଶݑ,ଵݑ  , corresponding to coordinate functionsݑ߲\߲ ≠ 0, there 
vectors span a two-dimensional subspace of ܶSo(3)∗|௨ which coincides with the tangent space to 
the sphere ఘܵ

ଶ = :ݑ} |ݑ| = ݑ passing through {ߩ = ௨|ܪ = ܶ ఘܵ
ଶ|௨ |ݑ|   , =  Proposition (3.3.8) .ߩ

therefore implies that each such sphere is a symplectic submanifold of So(3)∗. In terme of 
spherical coordinates ݑଵ = ߩ cosߠ sin߮ , ଶݑ = ߩ sin ߠ sin߮ ଷݑ, = ߩ cos߮ ݊ ఘܵ

ଶ , the Poisson 
bracket between ܨ(ߠ,߮)ܽ݊݀ ܪ(ߠ,߮) computed by extending them to a neighbourhood of ఘܵ

ଶ, set 
,ߩ)ܨ (߮,ߠ = ,(߮,ߠ)ܨ ,ߩ)ܪ (߮,ߠ =  and {ܪ,ܨ} computing the Lie- Poisson bracket ,(߮,ߠ)ܪ
then restricting to ఘܵ

ଶ. However, according to (3.12) , ൛ܨ ൟܪ, = ఝܪఏܨ൫{߮,ߠ} −  ఏ൯ so we onlyܪఝܨ
really need compute the Lie-Poisson bracket between the spherical angles ߠ,߮ 

{߮,ߠ}                                        = .ݑ− (∇௨ߠ × ∇௨߮) = ିଵ
ఘ ୱ୧୬ ఝ

. 

Thus  

 ൛ܨ ൟܪ, = ିଵ
(ఘ ୱ୧୬ ఝ)

  ቀడி


డఏ
డு

డఝ
− డி

డఝ
డு

డఏ
ቁ 

is the induced Poisson bracket on ఘܵ
ଶ ⊂ So(3)∗ 

 Thus if ܰ ⊂ is a Poisson submanifold , any Hamiltonian vector field ܸு ܯ  is ܯ ݊ 
everywhere tangent to ܰ and thereby naturally restricts to Hamiltonian vector field ܸு  ,ܰ ݊ 
where ܪ =  to ܰ and we are using the induced Poisson structure ܪ is the restriction of ܰ|ܪ
on ܰ to compute ܸு  . 

      If we are only interested in solution to the Hamiltonian system corresponding to ܪ on ܯ with 
initial conditions ݊ °ݔ ܰ we can restrict ݐ° the Hamiltonian system corresponding to ܪ ݊ ܰ 
without loss of information, thereby reducing the order of the system. 

    In particular as far as finding particular solutions of the Hamiltonian system goes, we may as 
all restrict to the minimal Poisson submanifolds of ܯ, these are always symplectic submanifolds 
so every Hamiltonian system can be reduced to one in which the Poisson bracket is symplectic  . 

(3.3.10)Theorem:  

         Let ܯ be an m - dimensional Poisson manifold of constant rank 2݊ ≤ ݉ everywhere. At 
each ݔ° ∈ ,)          there exist canonical local coordinates  ܯ ,ݍ (ݖ =
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,ଵ) … ,  , ,ଵݍ … , ݍ ,ଵݖ, … , ), 2݊ݖ + ܮ =  ݉, in terms of which the Poisson bracket takes the 
form  

 {F, H} = ∑ ቀ ப
ப୯

பୌ
ப୮

− ப
ப୮

பୌ
ப୯
ቁ୬

୧ୀଵ  

The leaves of the symplectic foliation intersect the coordinate chart in the slices {ݖଵ =
ܿଵ, … , ݖ = ܿ} determined by the distinguished coordinate  . 

Poof: 

    If the rank of the Poisson structure is 0 everywhere there is nothing to prove. Indeed, the 
Poisson bracket is trivial : {ܪ,ܨ} = 0 for all ܪ,ܨ, and any set of local coordinates ݖ =
,ଵݖ) … , ,(ݖ ݈ = ݉ satisfies the condition of the theorem. Otherwise, we proceed by induction on 
the “half  - rank” n . since the rank at ݔ° is non zero, we can find real - valued functions ܨ and ܲ 
on ܯ whose Poisson bracket does not vanish at ݔ° : 

{F, P}(ݔ°) = V(F)(ݔ°) ≠ 0. 

  In particulare, ܸ|௫° ≠ 0,  so proposition (1.4.11) to straighten out ܸ in a neighbourhood ܷ of 
  satisfying (ݔ)ܳ and thereby find a function °ݔ

ܸ(ܳ) = {ܳ,ܲ} = 1      for all     ݔ ∈ ܷ    

(In notation of proposition (1.4.11), Q would be the coordinate ݕ ), since {ܳ,ܲ} is constant, 
(3.10) and (3.15) imply that   

ൣ ܸ , ܸொ൧ = ܸ{ொ,} = 0 

For all ݔ ∈ ܷ. on the other hand ܸொ(ܳ) = {ܳ,ܳ} = 0, so ܸ and ܸொ form a commuting, linearly 
independent pair of vector fields defined on ܷ. If we set  = ݍ,(ݔ)ܲ =  then allows us to  ,(ݔ)ܳ
complete , ,) to form a system of local coordinates ݍ ,ݍ ,ଷݕ … ,  ) on possibly smallerݕ
neighborhood  ෩ܷ ⊂ ܷ  of  ݔ∘ with ܸ = ߲ , ܸ = −߲ therefore the bracket relations {, {ݍ =
1, ൛p, y୧ൟ = 0 = ൛q, y୧ൟ,    i = 3, … , m  imply that the structure matrix takes the form  

,)ܬ ,ݍ (ݕ = ൭
0 1 0
−1 0 0
0 0 ,)ሚܬ ,ݍ (ݕ

൱ 

Where ܬሚ has entries ܬሚ = ൛ݕ, ,ൟݕ ݅, ݆ = 3, … ,݉ finally we prove that ܬሚ is actually independent 
of  and ݍ, and hence form the structure matrix of a Poisson bracket in the ݕ variable of rank two 
less than that of ܬ, from which the induction  step is clear. To prove the claim, we just use the 
Jacobi identity and the above bracket relations, for instance  
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ܬ߲

ݍ߲ = ൛ܬሚ ,ܲൟ = ቄ൛ݕ ൟ,ܲቅݕ, = 0    

and similarly for ܲ. 

6. The coadjoint representation: 

(3.3.11)Definition:  

      Let ܩ be a Lie group with Lie algebra ݃. The co-adjoint action of a group element ݃ ∈  is ܩ
the linear map ݀ܣ∗݃:݃∗ → ݃∗ on the dual space satisfying  

〈ݓ;(߱)݃∗݀ܣ〉 =  (3.22)                                〈(ݓ)ଵି݃݀ܣ;߱〉

for all ߱ ∈ ݓ,∗݃ ∈ ݃   . Here 〈 ; 〉 is the natural pairing between ݃ and ݃∗, and ݃݀ܣ  the adjoint 
action of ܩ on  . 

 If we identity the tangent space ܶ݃∗|ఠ , with ݃∗ itself and similarly for ݃, then the 
infinitesimal generators of the co-adjoint action are determined by differentiating (3.22): 

〈ݓ;ఠ|ݒ∗݀ܽ〉 = 〈௪|ݒ݀ܽ;߱〉− = 〈߱;  (3.23)                    ,〈[ݓ,ݒ]

For ݓ,ݒ ∈ ݃,߱ ∈ ݃∗ 

(3.3.12)Theorem:  

         Let ܩ be connected Lie group with co-adjoint representation ݊ ܩ ∗݀ܣ ݃∗. Then the orbits 
of ܩ∗݀ܣ are precisely the leaves of the symplectic foliation induced by the Lie Poisson bracket 
on ݃∗. Moreover, for each ݃ ∈  is Poisson mapping on ݃∗݀ܣ the co- adjoint map ,ܩ
݃∗  preserving the leaves of the foliation. 

Proof 

      Let ݒ ∈ ݃    and consider the linear function ܪ(߱) = (߱)௩ܪ = 〈߱,  Note that for     . ∗݃ ݊  〈ݒ
߱ ∈ ݃∗, the gradient ∇ܪ(߱), considered as an element of      ܶ ݃∗|ఠ ≃ ݃,  is just ݒ, itself. Using 
the intrinsic definition of the Lie Poisson bracket , we find  

ܸு(ܨ)(߱) = (߱){ܪ,ܨ} = 〈߱;  〈[(߱)ܪ∇,(߱)ܨ∇]

                                         = 〈߱; ,(߱)ܨ∇] 〈[ݒ = 〈߱,  〈൯(߱)ܨ∇൫ݒ݀ܽ

                                         =   〈(߱)ܨ∇;(߱)ݒ∗݀ܽ〉−

for any ܨ:݃∗ → ℜ on the other hand,  
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ܸு(ܨ)(߱) = 〈 ܸு|ఠ;∇ܨ(߱)〉 

is uniquely determined by its action on all such functions. We conclude that Hamiltonian vector 
field determined by linear function  ܪ =  ௩  coincides, up to sign, with the infinitesimalܪ
generator of the co-adjoint action determined by ݒ ∈ ݃: ܸு =  Thus the corresponding one .ݒ݀ܽ−
– parameter groups satisfy  

ݐ൫ݔ݁ ܸு൯ =  .[(ݒݐ−)ݔ݁]∗݀ܣ

proposition (3.3.6) and the usual connectivity arguments show that ݀ܣ∗݃ is a Poisson mapping 
for each ݃ ∈   .ܩ

             Moreover, the subspace ℋ|ఠ,߱ ∈ ݃∗, is spanned by the Hamiltonian vector 
fields ܸு  corresponding to all such linear functions ܪ = ݒ  ,௩ܪ ∈ ݃  , hence ℋ|ఠ =
ܽ݀∗|ఠcoincides with the space spanned by the corresponding infinitesimal generators ܽ݀∗ܸ|ఠ  
.Since ܽ݀∗݃|ఠ  precisely the tangent space to the co-adjoint orbit of ܩ through ߱, which is 
connected, we immediately conclude that this co-adjoint orbit is the corresponding integral 
submanifold of ℋ. 

(3.3.13) Corollary:  

     The orbits of the co-adjoint representation of ܩ are even - dimensional submanifolds of  ݃∗. 

7. Hamiltonian Transformation Groups: 

(3.3.14)Definition: 

            Let ܯ be a Poisson manifold. Let ܩ  be Lie group with structure constants ܥ , ݅, ݆, ݇ =
1, … , ,relative to some basis of its Lie algebra ݃. The functions ଵܲ ,ݎ … , ܲ:ܯ → ℜ, generate a 
Hamiltonian action of ܩ on ܯ provided their Poisson bracket satisfy the relations. 

       ൛ ܲ, ܲൟ = −∑ ܥ ܲ

ୀଵ ,       ݅, ݆ = 1, … ,  ݎ

Note  that by (3.10), the corresponding  Hamiltonian  vector field ܸ =  ܸsatisfy the same 
commutation relation (up to sign) 

                               [ ܸ , ܸ]= ∑ ܿݒ ,

ୀଵ  

And therefore generate a local action of ܩ on ܯ by theorem (1.4.11). Given a Hamiltonian 
system on ܯ, will say that ܩ is Hamiltonian  symmetry  group if each generate functions ܲis 
first integral { ܲ,,0= {ܪ, i= 1,…,r , 
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Which implies  that each ܸ generates a one-parameter symmetry group. Any first order system 
of differential equations on a manifold ܯ which  admits a regular symmetry group ܩ reduces to  
a first  order system on the quotient manifold  ܯ ⁄ܩ  ( of  course, if ܩ is not solvable, we will  not 
be able to reconstruct the solutions  to the original system from those of the reduced  system  by  
quadrature , but we ignore this point at the moment.) In the case ܯ is a Poisson manifold and, ܩ 
a Hamiltonian group of transformations, the quotient manifold  naturally inherits a Poisson 
structure, relative to which the  reduced system is a Hamiltonian. Moreover, the degree of 
degeneracy of the Poisson bracket on  ܯ ⁄ܩ    will determine how much further  we can reduce 
the system using any distinguished functions on the quotient space. 

(3.3.15) Theorem:  

       let ܩ  be a Hamiltonian group of transformation  acting regularly on the Poisson manifold M. 
then the quotient manifold ܯ ⁄ܩ  inherits a Poisson structure so that  whenever ܨ.෩ ܯ : ෩ܪ  ⁄ ܩ →
 ℝ  correspond  to the  G-invariant function  ܪ,ܨ ∶ → ܯ  ℝ, their Poisson bracket {ܨ෨ ෩}ெܪ, ீ⁄  
correspond  to the  G-invariant function {ܪ,ܨ}ெ  Moreover, if ܩ is Hamiltonian symmetry  
group for Hamiltonian  system  on  M, then there is a reduced  Hamiltonian  system  on  ܯ ⁄ܩ    
whose solutions are just the projections of the solution  system  on M.  

PROOF: 

       First note that  the  fact that the Poisson bracket {ܪ,ܨ} of two G-invariant function remains  
G-invariant is a simple  consequence of the Jacobi identity  and the connectivity  of G; we find, 
for i = 1,…,r, 

ܸ({ܪ,ܨ}) = ൛{ܪ,ܨ}, ܲ ൟ = ൛{ܨ, ܲ},ܪൟ +  ൛ܨ, ,ܪ} ܲ}ൟ = 0 

Since F and H and  invariant, verifying the infinitesimal invariance condition . thus the Poisson 
bracket well defined on ܯ ⁄ܩ ; the verification  that it satisfy the properties  of definition(3.1.1) is 
trivial . 

Now if ܪ ∶ → ܯ  ℝ  has G as Hamiltonian symmetry group, then ܪ is automatically a ܩ-
invariant function: ܸ(ܪ) = ,ܪ} ܲ} = 0 since  each ܲ is  by assumption,  first integral. Let 
෩ܪ ܯ : ⁄ܩ → ℝ be  the corresponding  function on the quotient manifold . to prove  the 
corresponding  Hamiltonian  vector  field are related , dߨ൫ܨ෨൯ ܯ:ߨ ,   = → ܯ ⁄ܩ  the natural 
Projection, it suffices to note that by  (1.25) 

݀గ൫ ܸு൯൫ܨ෨൯° ߨ =  ܸு[ܨ෨ [ߨ °  = ெ{ܪ,ߨ °  }  

For any ܨ ෩ ܯ :  ⁄ ܩ →  ℝ but this equals 
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෨ܨ} ෩}ெܪ, ீ⁄ ° గ = ܸு෩(ܨ෨)°ߨ 

By the definition of Poisson bracket on  ܯ ⁄, ܩ  and hence proves  correspondence. 

Example(8) 

 consider the Euclidean space ℝ  with canonical coordinates (p, q) = (ଵ,ଶ,ଷ, ,ଶݍ,ଵݍ  ଷ). Theݍ
functions  

= ଵ ଷଶݍ − ,ଶ ଷݍ = ଶ        ଵଷݍ − ଷ   ,ଷଵݍ   = ଶଵݍ −  ଵଶݍ

Satisfy the bracket relations 

{ ଶ, ଵ} = { ଷ, ଶ}              ,ଷ = , ଷ}           ,ଵ { ଵ =  ଶ

And hence generate a Hamiltonian action  of the rotation group SO (3)  on ℝ , which is , in fact, 
given by (p, q) → ൫ܴ ,ܴ൯, ܴ ∈ ܱܵ(3).this action  is regular on the open subset ܯ =
, :(ݍ,) }    are linearly independent}, with three dimensional  orbits and global invariants ݍ

,)ߦ (ݍ =   ଵ
ଶ

(ݍ,)ߟ               ଶ||  = . (ݍ,)ߞ             ,ݍ =  ଵ
ଶ 

  ଶ|ݍ|

We can thus identify the quotient manifold with the subset ܯ ⁄ܩ  ⋍ ,ݔ)}  ,ݕ ݔ:(ݖ > 0, ݖ > ଶݕ 0 <
ݔ of ℝଷ, where { ݖݔ4 = , ߦ  y = η, z =   .are the new coordinates ߞ

How do we compute the reduced Poisson bracket  on ܯ ⁄ܩ ? According to (3.12), we need only 
compute the  basic Poisson brackets between  the corresponding  invariants  ߦ, ,ߟ ….using  the 
Poisson bracket on ܯ itself, and re-expressing  them  in  terms of the invariants themselves. For 
instance, since  

∑ = {ߟ,ߦ}                              ቀ డక
డ

డఎ
డ

− డక
డ

డఎ
డ
ቁଷ

ୀଵ = −∑ ଶଷ()
ୀଵ =  ,ߦ2

We have {ݔ, ெ{ݕ ீ⁄ = ,ߦ} Similarly the bracket relations ݔ2− {ߞ = ,ߟ− ,ߟ} {ߞ =  lead ܯ on  ߞ2  
to the structure functions {ݔ, {ݕ ୋ⁄ = ܯ On  ݖ2− ⁄. ܩ  the structure matrix on ܯ ⁄ ܩ is thus  

ܬ                                             G⁄   = ൭
0 ݔ2− ݕ−

ݔ2 0 ݖ2−
ݕ ݖ2 0

൱ 

With Poisson bracket  

෨ܨ}             ௬ܪ௫ܨ)ݔ෩}= −2ܪ, − ௭ܪ௫ܨ) ݕ − ( ௫ܪ௬ܨ − – ( ௫ܪ௭ܨ ௭ܪ௬ܨ)ݖ2  −  (௬ܪ௭ܨ
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Any Hamiltonian system on ܯ admitting  angular momenta   ܲ as  first integrals will reduce to a 
Hamiltonian system  on ܯ ⁄ ܩ  For example, the general kepler problem of a mass moving  in a 
central force field with potential v(ݎ) is  such a candidate. Here the Hamiltonian function is the 
energy (ݍ,)ܪ =  ଵ

ଶ
+ ଶ|| ܯ  The reduced system  on .(|ݍ|)ܸ  ⁄ ܩ   is obtained by rewriting ܪ in 

terms of the invariants and then using the given Poisson  bracket  to reconstruct the Hamiltonian 
vector field.  We find reduced Hamiltonian ܪ෩(ݔ, ,ݕ (ݖ = ݔ +… where ݒ(ݖ)= v(√2ݖ), and 
reduced  system 

௧ݔ                        = ௧ݕ   (ݖ)ݒ ݕ− = ݔ2 − ௧ݖ   .(ݖ)ݒݖ2 =   (3.24)                          .ݕ

 (The  reader many enjoy deriving this directly from Hamilton's equations on ܯ.) 

Now ܯ ⁄ ܩ  is three-dimensional, so there is at least one distinguished function. This is easily 
seen to be ݔ)ܥ, ,ݕ (ݖ = − ݖݔ4  ܯ  ଶ, which is an invariant  of any  Hamiltonian systemݕ ⁄ ܩ  (In 
the original variables, ܥ = | × . ଶ|ݍ )The hyperboloids 4ݖݔ − ଶݕ  =  ݇ଶ, being the level sets of 
 are the leaves of the symplectic foliation, and hence  we can restrict (3.24)  to any such leaf ,ܥ
Using (x, y)  as coordinates , we find the fully reduced system  

ݔ                       = − ݖݔ4√−  ݇ଶ ෨ܸ(ݖ),              ݖ = − ݖݔ4√−  ݇ଶ ,                (3.25) 

Which is Hamiltonian relative to induced Poisson bracket {ܨ෨ {෩ܪ,  = − ݖݔ4√−   ݇ଶ (ܨ෨௫ܪ෩௭ −
 ෩௫)on the hyperboloid. This final two-dimensional system  can be solved  by  method ofܪ෨௭ܨ
Proposition (4.2.12).  so can solve the reduced system (3.24) by quadrature.  however, at this 
stage we cannot use the solution to integrate the original  central force problem because SO(3) is 
not a solvable group. But, as we will soon see, this difficulty  can  be circumvented  by an 
alternative approach to the reduction  procedure . 

8.The Momentum Map  

The above approach to the reduction problem, while geometrically appealing, leaves something 
to be desired form a computational standpoint. The problem is that we are concentrating initially 
on the more complicated  aspect  of  Hamiltonian symmetry group, namely the group 
transformations and ignoring  the first integrals, which are also present, until after the symmetry 
reduction has been effected, at  which point they manifest their  presence as distinguish 
functions. A more logical  approach  would  be  to use the first integrals at the outset , restricted 
they system  to common  level set thereof , and then completing the reduction by using any 
residual symmetry Properties of the resulting system . this  turns   out to be  equivalent to the 
above  procedure, but now we stand  a better chance  of being  able  to reconstruct the  solution 
to the  original system  by quadratures   alone. 
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     The first step here is to organize the first integrals furnished by a Hamiltonian group of 
symmetries  in more natural framework. It is here that the dual to the lie algebra of symmetry 
group and, subsequently, the co-adjoint action makes its appearance.  

(3.3.16) Definition: 

        let G be a Hamiltonian group of transformation acting on the Poisson manifold M, 
generated by the real-valued functions ଵܲ, … , ܲ . The momentum map for G is the smooth map 
P: M → g∗ given by 

(ݔ)ܲ =  ଵ(ݔ)߱,


ୀଵ

 

In which {߱ଵ, … ,߱  }are the dual basis to ݃∗for the basis { ܸଵ, … , ܸ} of g relative to which the 
structure constants ܿ  were computed. 

Explains why we allowed it to take values in ݃∗, is its invariance ( or more correctly, " 
equivariance ") with respect to the co-adjoint representation  of G on ݃∗. 

(3.3.17) Proposition: 

          let ܲ ∶ → ܯ  ݃∗ be the momentum map determined by a Hamiltonian group  action of G 
on M. Then 

                                 p(g. x)= Ad* g (p(x))                                         (3.26) 

for all  ݔ ∈   .g∈ G ,ܯ

PROOF . 

 As usual, it suffices to prove the infinitesimal form of this identity which is  

                                 dP(ݒො|௫) =ad* ݒො|(௫),                ݔ ∈  (3.27)                  ܯ

For any generator ܸ ∈ ݃,       ݆ = 1, … ,   of G. if we identify T݃∗|(௫) with   ݃∗  itself, Then ݎ

            dP(ݒො|௫) = ∑ ܸ
ୀଵ ( ܲ)߱  = ∑ { ܲ, ܲ}(ݔ)߱


ୀଵ =  −ܿ ܲ߱ 

Cf. (1.25), (3.6). by (3.23) this expression is the same  as the right-hand  
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To  prove (3.26), we note that if g= exp (ݒߝො) and we differentiate with respect to ߝ ,then we 
recover (3.27) at ݔ = exp (ݒߝො)ݔ since  this holds at all ݔ the usual connectivity arguments prove 
that (3.26) holds in general. 

Example (9):  

    consider the Hamiltonian  action of SO (3) on ℝ

presented in Example (8). The momentum 

map is  

,)ܲ (ݍ = ଷଶݍ) − ଶ)߱ଵ ଷݍ + ଵଷݍ) − ଷ)߱ଶଵݍ   + ଶଵݍ) −  , ଵ)߱ଷଶݍ

Where {߱ଵ,߱ଶ,߱ଷ} are the basis of so (3)∗ of Example (5). note that if we identify so(3)∗ with 
ℝଷ, ܲ(, (ݍ = ݍ ×  is the same as the cross product  of  vector in ℝଷ. In this case. SO(3) acts on 
so (3)∗ by rotations, and the equivariance of the momentum map is just a restatement of the 
rotational invariance of the cross product: ܴ(ݍ, ( = × (ݍ)ܴ  . for  R ∈ SO(3) ()ܴ

Now , as remarket earlier, any Hamiltonian system with ܩ as a Hamiltonian   symmetry group 
naturally restricts to system of ordinary  differential  equations on the common level set { 
ܲ(ݔ) =  ܿ} of the given   first integrals.  

Note that these common level sets of momentum map, denoted ߮ఈ = (ݔ)ܲ:ݔ } = ߙ where {ߙ =
 ∑ܿ߱ ∈ ݃∗. Moreover, the reduced system will automatically remain invariant under the 
residual symmetry group  

∝ܩ                                ≡ {g ∈ g.߮ఈ:ܩ ⊂ ߮ఈ} 

Of group elements leaving the chosen level set invariant, there is any  easy characterization of 
this residual  group. 

(3.3.18)Proposition:  

              let ܲ:  ܯ →  ݃∗ be the momentum map associated with a Hamiltonian group action. 
Then the residual symmetry group  of  a level set  ߮ఈ = (ݔ)ܲ:ݔ } =   is the isotropy  subgroup  {ߙ
of element ∝∈ ݃∗:  

 .{ ߙ = (ߙ)g ∈G: Ad* g}= ∝ܩ                                   

Moreover if  g∈ G∝ has the property that it takes one point ݔ ∈  ߮∝to point g. ݔ ∈  ߮∝  , then 
property  for all ݔ ∈  ߮∝ 

Proof . By definition, g∈ G∝  if and only if  P(g. x)= ߙ  whenever   P(x) ߙ. But, by the 
equivariance of P, 
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ߙ                      = P(g. x)= Ad* g(ܲ(ݔ)) = Ad* g(ߙ),  

So g is in the isotropy subgroup of ߙ. The second statement easily  follows  from this identity. 

Not that the residual Lie algebra corresponding to ܩ∝  is the isotropy  subgroup ݃∝ ≡ {ܸ ∈
݃:ad*ܸ |ఈ =0}, which is readily computable. In particular, the dimension of  ܩ∝can be computed 
as the dimension of its Lie algebra ݃∝ . For instance, if ܩ∝ is an abelian Lie group, its co-adjoint 
representation is trivial, Ad* g(ߙ) =  ߙ for all g∈ ,ܩ ߙ ∈ ݃∗, hence ܩఈ =  .ߙ For every   ܩ 
Therefore any Hamiltonian  system admitting an Aeolian  Hamiltonian symmetry group remains 
invariant under the full group , even on  restriction to a common level set ߮∝ This will imply  
that we can always reduce such a system in order by 2ݎ, twice the dimension. on the group. As a 
second example, consider the two-parameter solvable group of Example 6.40. Here there 
momentum map is 

,)ܲ ,ݍ , (ݍ = ଵ߱  + ݍ)  +   ,)߱ଶ

Where {߱ଵ,߱ଶ} are a basis of ݃∗dual to the basis  {v, w} of ݃. The co-adjoint representation of  
g = exp(ߝଵ ܸ +   is found to be (ݓଶߝ 

Ad* g(ܿଵ߱ଵ +  ܿଶ߱ଶ =  ݁ିఌమ  ܿଵ߱ଵ + ଶିଵ(݁ିఌమߝଵߝ)  − 1)ܿଵ +  ܿଶ)߱ଶ 

(with appropriate limiting values if ߝଶ = 0). Thus the isotropy subgroup of  ∝ = ܿଵ߱ଵ + ܿଶ߱ଶ  
is just {e} unless ܿଵ = 0 , in which case it is all of G. Thus  we expect that the restriction of 
Hamiltonian system with symmetry group G  to a level set ߮∝ = { =  ܿଵ ,ݍ +  = ܿଶ } will 
retain no residual symmetry group unless  ܿଵ = 0 , in which case the entire group G  will remain 
. This  is precisely  what we observed. 

              Once  we have  restricted the Hamiltonian system  to the level  set ߮the idea is then to 
utilize the  methods of Section5 in chapter2 to reduce further using  the residual symmetry group 
⁄ ∝ܩ ∝Under certain regularity assumptions on the group action, the quotient manifold߮ .∝ܩ , on 
which the fully reduced system will live, has a natural  identification  as a Poisson submanifold 
of ܯ ⁄ܩ . Thus the fully  reduced  system  inherits  a Hamiltonian   structure itself .  

              In particular , if the  residual group ܩ∝   is solvable (rather than  G  itself being solvable) 
we can reconstruct  the solution to the original system  on ߮∝ ⁄∝ܩ  the general result follows: 

(3.3.19) Theorem : 

      let ܯ be a Poisson manifold and G  a regular  Hamiltonian group of transformations. Let ∝∈
݃∗.  Assume  that the momentum map ܲ:ܯ → ݃∗ is  of maximal rank everywhere on the level 
set ߮∝ =  ܲିଵ{ߙ}, and that the residual symmetry group ܩఈ acts regularly on the submanifold 
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߮∝. Then there is a natural immersion  ∅  making ߮ఈ ⁄ఈܩ   into  Poisson submanifold of ܯ ⁄ܩ   IS 
such a way that the diagram 

                                                             i            ߨ        ܯ                                                                                                                                                                                    

ܯ                                  ∝߮                                                       ⁄ܩ      

ఈ߮         ∝ߨ                                                          ⁄∝ܩ      ∅ 

(6.39) 

 

 Commutes  (Here ߨ ݀݊ܽ ߨఈ are the natural projection  and  ݅ the  immersion realizing  ߮∝ as 
submanifold of ܯ.) Moreover, any  Hamiltonian  system  on ܯ which admits ܩ as a Hamiltonian  
symmetry group  naturally restricts to systems on the other  space in (6.39), which are 
Hamiltonian  on ܯ ⁄ܩ  and߮∝ ⁄∝ܩ , and  which are related by the appropriate maps. In particular, 
we obtain a Hamiltonian  system  on ߮∝ ⁄∝ܩ   by first restricting to ߮∝ and 

 Then projecting  using  ߨఈ. 

Proof :  

               Assume  G is a global group  of transformations, although the proof  is easily modified 
to  incorporate  the local case. According  to the  diagram if ݖ = (ݔ) ∝ߨ  ∈  ߮∝ ⁄∝ܩ  then  we 
should define ∅ (ݖ) = (ݔ) ߨ  ∈ ܯ  ⁄ܩ . Note that ߨఈ(ݔ) =    forݔ  . if and only if x= g  (ݔ)ఈߨ
some g ∈ (ݔ)ߨ but  this means ,∝ܩ  = -and hence ∅ is well defined. Similarly, ∅ is one-to (ݔ)ߨ
one since if  ݔ,ݔ  ∈  ߮∝ and  (ݔ)ߨ = ݔ then ,(ݔ) ߨ  = g . ݔ for some g ∈ ܩ; according to 
Proposition (3.3.18), g ∈ (ݔ)ఈߨ and  hence ,∝ܩ  =  Finally, ∅ is an immersion,  meaning .(ݔ)ఈߨ 
݀∅ has maximal rank everywhere, since  ݀∅  °  ݀ߨఈ =  and by Proposition (3.3.18)  ,݅݀ ° ߨ݀

Ker ݀ߨఈ =  ݃ఈ = ݃ ∩ ܶ߮∝ =ker( ݀ߨ ° ݀݅). 

  Let ܪ෩ ∶ ܯ  ⁄ܩ  →  ℝ correspond to the G-invariant function ܪ ∶ ܯ →  ℝ, so by theorem (3.3.14) 
the corresponding  Hamiltonian  systems are related : ෨ܸு෩ = ൫ߨ݀ ෨ܸு൯. We also  know that ෨ܸு  is 
everywhere tangent to the level  set ߮∝ And hence there is a reduced vector field ෘܸ    on ߮∝  with 
෨ܸு = ݀݅( ෨ܸ)  there Moreover,  as  ෨ܸு   has ܩ as  a symmetry  group …. Retain ܩ∝ as a residual 
symmetry group and there is thus a well-defined  vector  field  ܸ∗= ݀ߨఈ(ܸ∗)on the quotient 
manifold ߮∝ ⁄∝ܩ   furthermore , this vector field agrees with the restriction of  ݒு෩   to submanifold 
∅ (߮∝ ⁄∝ܩ ) since 

)݅݀ ° ߨ݀ = (ܸ)∝ߨ݀ ° ߶݀ =(∗ܸ)߶݀                               ෨ܸ )ߨ݀ = ( ܸு෩)= ܸு෩    



61 
 

there. 

This last argument proves that every  Hamiltonian  vector field on  

ܯ  ⁄ܩ  is everywhere tangent to ߶(߮∝ ⁄∝ܩ ). Proposition (3.3.9)then implies  that ߶ makes ߮∝ ⁄∝ܩ  
into a  Poisson submanifold of ܯ ⁄ܩ  and, moreover,  the restriction of Hamiltonian vector field 
ܸு෩ on ܯ ⁄ܩ  to߮∝ ⁄∝ܩ (i.e. ܸ∗ ) is  with Hamiltonian respect to the  induced  Poisson   restriction. 
This completes the proof of the theorem  and hence the reduction procedure. 

         If M  is symplectic, then it is not true that ܯ ⁄ܩ   is necessarily symplectic However, it is 
possible to show  that  the submanifolds ߮ ⁄∝ܩ form the leaves of the  symplectic  foliation  of 
ܯ ⁄ܩ . 

Example (9).  

 consider the abelian  Hamiltonian  symmetry group ܩ acting  on ℜ, with canonical coordinates 
,) (ݍ = ,ଵ) ,ଵݍ,ଷ,ଶ ܲ ଷ), generated by the  functionsݍ,ଶݍ = ܳ  ଷ = ଶଵݍ −  ଵ .Theଶݍ
corresponding Hamiltonian  vector fields  

                ଵܸ    = డ
డయ

     and      ݒଶ  = ଵ డ
డమ  − ଶ డ 

డభ + ଵ డݍ 
డమ − ଶ డݍ

డభ  

Generate  a two-parameter abelian group of  transformation. Any Hamiltonian function of the 
form ߩ)ܪ, ,ߪ ,ߛ ,ߦ ߬), where ߩ =  ඥ(ݍଵ)ଶ + ߪ        ଶ(ଶݍ)  =   ඥ(ଵ)ଶ + ߛ   ଶ(ଶ)  = ଶଵݍ −
ߦ       ଵଶݍ = ܪ ଷ, has  G    as a symmetry group; In particular  =  ଵ

ଶ
ଶ|| +  a cylindrically ,(ߩ)ܸ 

energy  potential is such  a function.  

The method of proposition  (3.3.19) will  allow us to reduce the order  of such a Hamiltonian 
system  by four.(and ܪ  does not depend on ߬ , we can integrate the entire system by quadratures 
.) First we restrict to  the level set ߮ = {ܲ = ܳ    ,ߦ = , ߦ for { ߛ   constant. If we use the  ߛ =
cos߰ ߪ) , ߪ sin߰ ,   for q and p, then   ,(ߦ

ߛ = ߪߩ  sin(߰ − (ߠ = ߪߩ sin߶,  

Where ߶ =  ߰ − ,ߩ  In term  of  the variables .ߠ  ,߶,ߠ  the Hamiltonian system , when ,ݖ
restricted to ߮, takes the from  

ఛߩ                         =  cos߶ . Hఙ           ϕଵ =  sin߶൫ିߪଵܪఘ −  ఙ൯                (3.28a)ܪଵିߩ

ఛߠ                        = ଵିߩ sin߶ܪఙ + ఛݖ          ఊܪ =  Ηక                                         (3.28b) 
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The subscripts on  ܪ denote partial derivatives.  These are also designed so ߮ ,ܸ1 = ∂௭,  ܸ2  =߲ఏ  
Theorem (3.3.19) guarantees that (3.28a), (3.28b) is invariant under the reduced symmetry group 
of ߮ Which owing abelian character of G, is all of G itself. This is reflected in the fact that 
neither  ݖ  nor ߠ appears explicitly on the right-hand sides of (3.28a). Thus  once we have  
determined (ݐ)ߩ and ߶(ݐ) to solve the first two equations, (ݐ)ߠ and (ݐ)ݖ are determined by 
quadrature. 

Moreover, Theorem (3.3.19) says that (3.28a) forms a Hamiltonian  system in its own right. 
Fixing ߛ and ξ, let  

,߶,ߩ)ܪ                                    (ݐ = ,ߩ)ܪ ߛ ߩ) sin߶),⁄ ,ߛ ,ߦ   (ݐ

be the reduced Hamiltonian . Note that  

{߶,ߩ}                                   = ଶିߪଵିߩߛ−  =  .߶sin2 ߩଵିߛ−

An easy computation using the chain rule shows  that (3.28a)is the same as  

௧ߩ                                 = ሗథܪ߶ଵρ sin2ିߛ− ,                    ߶௧ = ሗథܪ߶ଵρ sin2ିߛ ,                    (3.29) 

Which is indeed Hamiltonian. In particular, if ܪ(and hence ܪ) is independent  of ݐ we can, in 
principle, integrate (3.29) by quadrature and hence  solve the original system. (In practice,  
however, even  for simple functions ܪ, the intervening algebraic  manipulations  may prove to be 
overly complex.) 

             In general, if a Hamiltonian system  is  invariant under an ݎ-parameter  
abelian Hamiltonian  symmetry group, one can reduce the order by 2ݎ. This is 
because  the residual  symmetry group is always  the  entire  abelian group itself 
owing to the triviality  of the co-adjoint  action. A 2݊ –th order Hamiltonian  
system with  an n-parameter abelian Hamiltonian symmetry group, or, equivalently 
possessing ݊  first integrals ଵܲ(ݔ), … , ܲ(ݔ) which are in involution   

                                             { ܲ , ܲ } = 0  for  all   ݅, ݆,   

         Is called a completely  integrable Hamiltonian system since, in principle, it’s 
solutions can be determined by quadrature alone. Actually, much more can be said 
about such completely integrable  system and the topic forms a significant chapter 
in classical theory of Hamiltonian mechanics.  
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Chapter Four  
Integrability of Hamiltonian Systems 

 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter Four 

Integrability of Hamiltonian Systems 

(4.1) Introduction : 
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In this chapter we consider the notion of complete integrability of 

Hamiltonian system . In spite of the recent development of the methods and 

technique of complete inegrability that have been invented in the last three decades 

(i.e the method of Lax pairs, the bi-Hamiltonian method etc -) the classical 19th 

century approach to complete integrability via the Hamilton - Jacobi method of 

separation of variables is being revived. 

One of the main impetuses for the renewed interest in this method was 

Cartan’s discovery that geodesic equation in Kerr black holes space-time can be 

integrated by separation of variables .Remarkably , in the course of the last ten 

years ,this classical method has been effectively linked with the method of the lax 

representation and the bi-Hamiltonian method , thus leading to new theories in the 

area of integrable Hamiltonian system. 

The key idea behind the method of separation of variables is to see k - set of 

special coordinates q ≔ (qଵ, … , q୬) in which the corresponding Hamilton Jacobi 

partial differential equation  

భ
మ g

୧୨ ∂୧w ∂୨w + V = E                                                     (4.1) 

admits a complete integral of the form 

w(q, c) = wଵ(qଵ, c) + ⋯+ w୬(q୬, c)                                                                  (4.2) 

The above Hamilton-Jacobi equation (4.1) in fact corresponds to the Hamiltonian 

H = భ
మ g

୧୨(q)p୧ p୨ + V(q), i, j = 1, … , n                                          (4.3) 

where c = (cଵ, … c୬) are the constants of integration . These constants   are the n 

first integrals in involution with respect to ω∘ = ∑ dp୧ ∧ dq୧୬
୧ୀଵ  (ω∘is canonical 

symplectic structure) or p∘ = ∑ ∂୧ ∧ ∂୧୬
୧ୀଵ  (p∘ is Poisson bi-vector) that guarantee 
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the complete integrability  of (4.3).A complete integral w can be interpreted as an 

n-dimensional Lagrangian submanifold on M lying on the level surface H=const. 

The coordinates (qଵ, … , q୬) in (4.2) are called separable coordinates. Moreover, if 

the metric g of (4.3) is diagonal in these coordinates, they are also said to be 

orthogonal and the system defined by the Hamiltonian (4.3) is said to be 

orthogonally separable. In what follows , we concentrate our attention on this type 

of separable Hamiltonian system. We note that the orthogonal case has been 

extensively studied in the past in numerous articles by such famous scholars as 

Dall’Acqua, Eisenhart, Levi-Civita, Ricci, Stackel and others. Major advances in 

the area have been achieved in recent years by Bbenenti, Klnins and Miller 

Shapovalov , as well as many others.  

 The main objective of this chapter is to combine the theory of orthogonally 

separable Hamiltonian system and the method of moving frames .The method has 

been extensively studies and successfully applied under different names (for 

instance, “the method of quasi-coordinates’’, ‘’ … non-coordinate 

basis’’,”…orthogonal enuples’’) in such areas of mathematics and physics as 

differential geometry, general relativity and theory of Lie groups. Introduced by 

Darboux and developed by Cartan , the method has been chiefly used in two cases: 

As an alternative method to the classical tensor calculus to avoid ,in Cartan’s , the 

“debauch d’indices” and as an effective tool to study geometrical invariants of 

submanifolds under the action of transformation Lie groups . In the present work, 

we are mainly concerned with the former case, when the application of the moving 

frames method can significantly alleviate the complications of dealing with 

tensorial geometrical quantities, in this chapter defined in a Riemannian manifold 

൫M෩ , g൯. We note that an equivalent version of the method of  moving frames based 
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on the frame of vectors, unlike Cartan’s approach via co-vectors, was effectively 

used by Eisenhart . 

(4.2) Hamiltonian Systems  

(4.2.1) Definition: 

       Let H(ݔ, p) and L(ݔ, p) be differentiable functions of their arguments for ݔ 

and p ∈ ℜ୬ the Poisson bracket of  H with L,  

                                           {H, L} = ∑ ቀಢౄ
ಢ౦

 ಢై
ಢೣ
− ಢౄ

ಢೣ
 ಢై
ಢ౦
ቁ୬

୧ୀଵ    

A quantity ܮ is called a first integral of Hamiltonian system if it’s a constant of 

motion ( i.e if i=0 under the flow implied by Hamilton’s equation ). 

(4.2.2) Corollary: 

      The quantity ܮ is a first integral of Hamiltonian system with Hamiltonian ܪ if 

{H, L} = 0 . 

(4.2.3) Definition:  

A Hamiltonian system is said to be completely integrable if it has n first 

integrals (including the Hamiltonian itself), where n is the number of degrees of 

freedom . 

 (4.2.4) Proposition: 

 A function ܲ(ݔ, t) is first integral for the Hamiltonian system if and only if  

ಢౌ
ಢ౪ + {P, H} = 0                                                      (4.4) 
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for all ݔ , t. Particular, a time - independent function P(ݔ) is a first integral if and 

only if {P, H} = 0 every where. 

Proof 

 Let Vୌ be the Hamiltonian vector field , then if ݔ(t) is any solution to 

Hamitlon’s equation,  

ୢ
ୢ୲

{P(ݔ(t), t)} = ப
ப୲

,(t)ݔ) t) + Vୌ(P)(ݔ(t), t), 

   Thus ౚౌౚ౪ = 0 along solution if and only if (4.4) hold everywhere. 

(4.2.5) Corollary: 

 If  ݔప̇ = J∇H is any Hamiltonian system with time - independent Hamiltonian 

function H(ݔ) ,then H(ݔ) itself is automatically a first integral. 

(4.2.6) Corollary: 

If ݔప̇ = J∇H is a Hamiltonian system , then any distinguished function C(ݔ) 

for the Poisson bracket determined by J automatically a first integral . 

1. Hamiltonian symmetry groups: 

(4.2.7) Definition: 

     The first integral arise from variational symmetry groups; For Hamiltonian 

systems this role is played by the one - parameter Hamiltonian symmetry groups 

whose infinitesimal generators (in evolutionary form) are Hamiltonian vector fields 

.Any first integral leads to such a symmetry group. 

(4.2.8) Proposition: 
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 Let p(ݔ, t) be a first integral of a Hamiltonian system. Then the Ham-

iltonian vector field V determined by ܲ generates a one parameter symmetry 

group of the system. 

Proof  

Note first that since the structure matrix  J(ݔ) does not depend on ݐ the 

Hamiltonian vector field associated with ப
ப୲

 is just t-derivative பౌ
ப୲

 of that 

associated with ܲ. Thus the Hamiltonian vector field associated with the 

combination ப
ப୲

+ {P, H} occurring in (4.4) using (3.8) in chapter 3  

பౌ
ப୲

+ ൛Vୌ, Vൟ . 

If ܲ is a first integral, this last vector field vanishes, which is just condition 
ப్
ப୲

+ ൛V, V୕ൟ = 0 that V generate a symmetry group. 

In particular ,if H(ݔ) is time - independent, the associated symmetry group is 

generated by Vୌ which is equivalent to the generator ∂୲ of the symmetry group of 

time translations reflecting the autonomy of the Hamiltonian system .A 

distinguished function C(ݔ), the corresponding symmetry is trivial : Vୡ ≡ 0  

Example (1): 

Consider the equation of a harmonic oscillator p୲ = −q, q୲ = p which form 

a Hamiltonian system on M = ℜଶ  relative to the canonical Poisson bracket. The 

Hamiltonian function H(q, p) = భ
మ
(pଶ + qଶ) is thus a first integral, reflecting the 

fact that the solution move on the circles pଶ + qଶ = constant. 

(4.2.9) Corollary: 
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Every Hamiltonian symmetry group corresponds directly to first integral.  

(4.2.10) Theorem: 

A vector ݓ generates a Hamiltonian symmetry group of a Hamiltonian 

system of ordinary differential equations if and only if there exist a first integral 

P(ݔ, t) so that w = V୮  is the corresponding Hamiltonian vector field. A second 

function P෩(ݔ, t) determines the same Hamiltonian symmetry if and only if          

P෩ = P + C  for some time - dependent distinguished function C෨(ݔ, t). 

Proof: 

The second statement follows immediately from definition (3.2.4) in  

chapter 3 of a distinguished function applied to the difference P − P෩ .To prove the 

first part, let w = V෩ for some function P෩(ݔ, t). The symmetry condition says  that ( 
ಢ్
ಢ౪ + ൛V, V୕ൟ = 0) implies that the Hamiltonian vector field associated with the 

function ಢ෩ౌಢ౪ + ൛P෩, Hൟ vanishes everywhere, and hence this combination must be a 

time - dependent distinguished function C෨(ݔ, t) : 

ୢ෩
ୢ୲ = ப෩

ப୲ + ൛P෩, Hൟ = C.෩  

 Set C(ݔ, t) = ∫ C෨(ݔ, τ)dτ୲
  , so that ܥ is also distinguished. Moreover for 

solution ݔ(t) of the Hamiltonian system , 

ୢେ
ୢ୲ = பେ

ப୲ + {C, H} = C෨ . 

The modified function P = P෩ − C has the same Hamiltonian vector field , 

V෩ = w ,and provides a first integral ౚౌౚ౪ = 0 on solution. 

2. Reduction of order in Hamiltonian systems: 
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(4.2.11) Theorem: 

Suppose  V ≠ 0 generates a Hamiltonian symmetry group of the 

Hamiltonian system  ݔ ⋅ = J∇H corresponding to time - independent first integral  

P(ݔ). Then there is reduced Hamiltonian system involving two fewer variables 

with the property that every solution of the original system can be determined 

using one quadrature from those of reduced system . 

Proof: 

Let  p = P(ݔ), q = Q(ݔ) , y = (yଵ, … , y୫ିଵ) = Y(ݔ) which straighten out 

the symmetry , so  V = ∂q in the (p, q, y) - coordinates . In terms of these coor-

dinates the structure matrix has the form  

,)ܬ ,ݍ (ݕ = 
0 1 0
−1 0 ܽ
0 −்ܽ ሚܬ

൩ 

Where  (p, q, y) is a row vector of length m-2 and Jሚ(p, y) is an  (m-2)                 

×(m-2) skew - symmetric matrix , which is independent of ݍ, and for each fixed 

value of  is the structure matrix for a Poisson bracket in the ݕ variables.                             

(if = ,ଵݕ … ,  ିଶ ) are chosen as flat coordinates as in the proof of Darbouxݕ

theorem then a = 0 and Jሚ(y) is independent of  also ,as we saw earlier . However, 

to effect the reduction procedure this is not necessary, and indeed may be 

impractical to achieve, the proofs of the above statements on the form of the 

structure matrix follow as in the “flat” case. 

The reduced system will be Hamiltonian with respect to the reduced 

structure matrix Jሚ(p, y) for any fixed value of the first integral P = P(ݔ) . Note that 

in terms of the (p, q, y) coordinates. 
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0 = {P, H} = −V෩୮(H) = −∂H ∂q⁄  , 

Hence JሚH = H(p, y) also only depends on  and ݕ. Therefore Hamilton’s equations 

takes the form 

ୢ୮
ୢ୲

= 0                                                                                             (4.5) 

ୢ୯
ୢ୲

= − பୌ
ப୮

+ ∑ a୨(p, y) பୌ
ப୷ౠ

୫ିଶ
୨ୀଵ      ,                                                                    (4.6) 

ୢ୷

ୢ୲
= ∑ Jሚ୧୨(p, y) பୌ

ப୷ౠ
୫ିଶ
୨ୀଵ  , i = 1, . . . , m − 2                                                (4.7) 

The first equation says that  is constant (as should be). Fixing a value of , 

we see that the (m-2) equations (4.7) form a Hamiltonian system relative to 

reduced structure matrix ȷ(̃p, y) and the Hamiltonian function )ܪ,  this is the ;(ݕ

reduced system referred to in the statement of the theorem. Finally (4.6), which 

governs the time evolution of the remaining coordinate ݍ, can be integrated by a 

single quadrature once we know the solution to the reduced system (4.7) since the 

right- hand side does not depend on ݍ. 

Example (2): 

       Let M = ℜସ with canonical Poisson bracket and consider a Hamiltonian 

function of the form  

H(pଵ, pଶ, qଵ, qଶ) = భ
మ
(pଵଶ + pଶଶ) + V(qଵ, qଶ). 

 

The corresponding Hamiltonian system  

ୢ୯భ
ୢ୲

= pଵ ,   ୢ୯మ
ୢ୲

= pଶ, ୢ୮భ
ୢ୲

= Vଵ(qଵ, qଶ), ୢ୮మ
ୢ୲

= Vଵ(qଵ, qଶ)                  (4.8) 
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 Determines the motion of two particles of unit mass on a line whose 

interaction comes from a potential V(r) depending on their relative displacements 

.This system admits an obvious translational invariance V = ∂qଵ + ∂qଶ; the 

corresponding first integral is the linear momentum pଵ, pଶ. According to the 

theorem above we can reduce the order of the system by two if we introduce new 

coordinates.  

p = pଵ + pଶ,   q = qଵ,   y = pଵ, r = qଵ − qଶ, 

Which straighten out V = ∂q. In these variables, the Hamiltonian function is 

H(p, y, r) = yଶ − py + భ
మp
ଶ + V(r),                                              (4.9) 

and the Poisson bracket is 

{F, H} =
∂F
∂q

∂H
∂y

+
∂F
∂r
∂H
∂y

+
∂F
∂q

∂H
∂p

−
∂F
∂y
∂H
∂q

−
∂F
∂y
∂H
∂r

−
∂F
∂p

∂H
∂q

 

Further, the Hamiltonian system splits into 

ୢ୮
ୢ୲

= − பୌ
ப୯

= 0, ୢ୯
ୢ୲

= பୌ
ப୮

+ பୌ
ப୷

= −y, 

and 

ୢ୷
ୢ୲

= − பୌ
ப୯
− பୌ

ப୰
= −Vଵ(r), ୢ୰

ୢ୲
= பୌ

ப୷
= 2y − p                                     (4.10) 

The solution to the first pair 

p = a, q = ∫ y(t)dt + b, 

(ܽ , ܾ are constant) can be determined from the solutions to the second pair (4.10). 

These form a reduced Hamiltonian system relative to the reduced Poisson bracket 

൛F෨ , H෩ൟ = F෨୰H෩୷ − F෨୷H෩୰  for function of ݕ and ݎ, with the energy (4.9) obtained by 
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fixing  = ܽ. presently, we will see how the two-dimensional system (4.10) can be 

explicitly integrated ,thereby solving the original two-particle system (4.8). 

(4.2.12) Proposition: 

              Let ̇ݔ =  does not  (ݔ)ܪ be a Hamiltonian system in which  ܪ∇ܬ

depend on  t. Then there is a reduced, time –dependent  Hamiltonian system  in 

two fewer variables,  from whose solutions those of the original system can be 

found by quadrature. 

Proof : 

          The reduction in order by two per se  is easy. First, since ܪ  is constant, 

we can restrict to a level set (ݔ)ܪ = ܿ,  reducing  the order by one.  

Furthermore, the resulting system remains autonomous and so can be 

reduced in order once more using the method in example (2.67) the 

problem is that unless we choose our coordinates more astutely, the 

system resulting from this reduction will not be of Hamiltonian form in 

any obvious way. The easiest way to proceed is to first introduce the 

coordinates (ݍ,,  relative to which the original system takes the form ,(ݕ

݀
ݐ݀

= −
ܪ߲
ݍ߲

,       
ݍ݀
ݐ݀

=
ܪ߲
߲

,      
ݕ݀

ݐ݀
=  (ݕ)ሚܬ

ିଶ

ୀଵ

ܪ߲
ݕ߲

,     ݅ = 1, … ,݉− 2. 

Assume that ߲߲/ܪ ≠ 0,  so that we can solve the equation ݓ = ,ݍ,)ܪ   (ݕ

locally for   = ,ݓ)ܭ ,ݍ ߲/ܪ߲  If) .(ݕ = 0 everywhere, q is a first integral and we 

can use the previous reduction procedure ). We take t, w and y to be the new 
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dependent variables and q the new independent variable, in terms of which the 

system takes the form  

ௗ௧
ௗ

= ଵ
డு/డ

= డ
డ௪

,           ௗ௪
ௗ

= 0,                              (4.11) 

ௗ௬

ௗ௧
= ∑ ିଶ(ݕ)ሚܬ

ୀଵ
డு/డ௬

డ௬/డ
= ∑ ିଶ(ݕ)ሚܬ

ୀଵ
డ
డ௬

          (4.12)                                     

The system (4.11) is Hamiltonian using the reduced Poisson bracket corresponding 

value of w, once we have solved (4.12) we can determine  the remaining variable 

t(q) from (12) by a single quadrature. This completes the procedure. 

Example(3):  

          In case of an autonomous   Hamiltonian  system   

ݍ̇ = பୌ
ப୮

̇           , = − డு
డ

,  

in the plane, we can use this method to explicitly integrate it. We first 

solve  ݓ = ,)ܪ  for one of the coordinates, say p, in terms of q and  (ݍ

w, which is constant. The first equation, then, leaves an autonomous  

equation for q, which we can solve by quadrature. For example, in the 

case of a single pendulum )ܪ, (ݍ = ଵ
ଶ
ଶ + (1− cosݍ), so on the level 

curve ܪ = ߱ +    ,1 = ඥ2(߱ + cosݍ).  The remaining equation  

ݍ݀
ݐ݀

=  = ඥ2(߱ + cosݍ) 

Can be solved in terms of Jacobi elliptic functions 
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(ݐ)ݍ = 2 sinିଵ{sn (݇ିଵ(ݐ +  ,{(݇,(ߜ

where sn has  modulus ݇ = ඥ2/(߱ + 1).   

     Similarly, in the case of the two-particle system on the line from 

example (2), setting ݕ)ܪ, (ݎ = ߱ + ଵ
ସ
  ଶ,  we find

ݕ =
1
2
 ± ඥ߱ −  .(ݎ)ܸ

Thus we recover the solution just by integrating 

ݎ݀
ݐ݀

= ݕ2 −  = ±2ඥ߱ −  .(ݎ)ܸ

Example(4): 

           Consider the equations of rigid body motion (4.20a), which were realized as 

a Hamiltonian system on (3)ݏ∗. The distinguished function (ݑ)ܥ =  ଶ naturally|ݑ|

reduces the order  by one by restriction  to a level set or co-adjoint  orbit. Provided 

the moments of  inertia  ܫଵ, ,ଶܫ  ଷ  are not all equal, the Hamiltonian itself  providesܫ

a second  independent first integral. We conclude that the integral curves of this the 

Hamiltonian vector field are determined by the intersection  of a sphere {(ݑ)ܥ =

ଶ|ݑ| = ܿ}  and an ellipsoid  {(ݑ)ܪ = ߱} forming the common level set of these 

two first integrals.  The explicit solutions can be determined by eliminating two of 

the variables, say  ݑଶ  and  ݑଷ, from the pair of equations (ݑ)ܥ = (ݑ)ܪ,ܿ = ߱. 

Proposition (2.4.12)  then guarantees that the one remaining  equation for  ݑଵ =    ݕ

is autonomous, and hence can be integrated. It turns out to be of the form  
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ݕ݀
ݐ݀

= ඥߚ)ߙଶ − ଶߛ)(ଶݕ −  ,(ݕ

and hence the solutions can be written in terms of elliptic functions.  

(4.3) The geometrical machinery: 

         This section will be devoted to the geometrical setup needed for the rest of 

the  chapter.  Mainly we shall develop the theory of moving frame due to Cartan. 

The essence of the method of moving frames can be briefly described as follows .  

In a given n-dimensional pseudo-Riemannian manifold (M෩ , g) at each point 

p ∈ M෩  we replace for the natural basis of the cotangent space 

TM෩୮∗ : (dqଵ, … , dq୬)arising from a coordinate system (qଵ, … , q୬)by a basis of n 

pointwise linearly independent one-forms (co-vector ) Eଵ, … , E୬ ∈ TM෩ ୮∗ , that can 

be adapted to the geometric situation. In the considerations that follow the natural 

choice is that in which the metric tensor g takes itis algebraic canonical form. In 

other words, with respect to the basis Eୟ, a = 1, … , n, we have . 

gୟୠ = diag(1, … ,1,−1, … ,−1)                               (4.13) 

The co-frame of one-frames Eଵ, … , E୬ is said to be rigid in this case. One 

can new proceed to study the relations between the one-forms Eୟ ∈ TM෩ ୮∗  their 

exterior derivatives dEୟand the dual basis (Eଵ, … , E୬) of the tangent space TM෩ ୮ 

independently of local coordinates. Thus, we can consider an open set A ∋ p and 

(orthonormal) moving co-frame Eଵ, … , E୬ of one-forms defined in ܣ for which the 

metric tensor g takes the form (4.13). We note that the elements of the moving co-

frame Eୟ and their counterparts Eୟ are connected with the natural basis associated 

to local coordinates (qଵ, … , q୬) about p ∈ A as follows 
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Eୟ = h୧ୟdq୧,   Eୟ = h୧ୟ
ಢ
ಢ౧

,                           (4.14) 

The structure functions Cୟୠ
ୡ  are defined by  

[Eୟ, Eୠ] = Cୟୠ
ୡ Eୡ  or dEୟ = −భ

మCୠୡ
ୟ Eୠ ∧ Eୡ              (4.15) 

 Now by (4.14) Cୟୠ
ୡ = h୧ୡ൫hୟౠhୠ,୨ − hୠౠhୟ,୨൯, a, b, c, i, j = 1, … , n. Here and 

below, we denote the usual partial derivative with respect to the coordinate. We 

introduce the connection coefficients Γ  corresponding to the Levi-Civita 

connection ∇ associated to ݃ as follows: 

∇ౙEୠ = Γୟୠ
ୡ Eୡ,   ∇ిEୠ = −Γୡୢ

ୠ Eୢ 

 The vanishing of the torsion tensor of ∇ is expressed by 

Γୠୡ
ୟ − Γୡୠ

ୟ − Cୠୡ
ୟ = 0                                                 (4.16) 

while the curvature tensor of ∇ is given by   

Rୠୡୢ
ୟ = EୡΓୢ ୠ

ୟ + Γୢ ୠ
ୣ Γୡୣୟ − EୢΓୡୠ

ୟ −Γୡୠ
ୣ Γୢ ୣ

ୟ − Cୡୢ
ୣ Γୣ ୠ

ୟ                           (4.17) 

 We now define a one - form valued matrix ωୠ
ୟ   called the connection one - 

form by 

ωୠ
ୟ ≔ Γୡୠ

ୟ Eୡ.                                                     (4.18) 

Further, we define 

ωୟୠ ≔ gୟୡωୠ
ୡ  . 

 On account of the above connection one-forms, ωୟୠ are obviously skew –

symmetric . The condition (4.16) and the definition (4.17)may be expressed in the 

language of differential forms as  
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dEୟ + ωୠ
ୟ ∧ Eୠ = 0                                                        (4.19) 

and 

dωୠ
ୟ + ωୡ

ୟ ∧ ωୠ
ୡ = Θୠ

ୟ ,                                                    (4.20) 

Where ∧ is exterior multiplication, ݀ the exterior derivative an Θୠ
ୟ ≔ భ

మRୠୡୢ
ୟ Eୡ ∧ Eୢ 

the curvature two-form. Taking the exterior derivative of (4.19) and (4.20) yields 

the first and  second Bianchi identities , respectively 

Θୠ
ୟ ∧ Eୠ = 0                                                                 (4.21) 

and 

dΘୠ
ୟ + ωୡ

ୟ ∧ Θୠ
ୡ − Θୡୟ ∧ ωୠ

ୡ = 0                                                   (4.22) 

 Finally, the equations satisfied by a valence two, symmetric, covariant 

killing tensor ܭ can be written in frame components as 

K(ୟୠ;ୡ) = 0                                                         (4.23) 

Where ; denotes the covariant derivative defined by 

Kୟୠ;ୡ ≔ EୡKୟୠ − KୢୠΓୡୟୢ − KୟୢΓୡୠ
ୢ                                                              (4.24) 

 This is all the geometric machinery that we need in the forthcoming sections 

to study integrability of Hamiltonian systems by the method of separation of 

variables. 

 

(4.4) Orthogonal Separation 

 The orthogonal separability of Hamiltonian systems (4.3) has a long history. 
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 It was Stackel who first found the necessary and sufficient conditions for the 

system (4.3) to be orthogonally separable. In spite of their complicated form these 

fundamental conditions are still being used today by many mathematicians to study 

orthogonal separability. 

    Levi-Civita established (local) criterion of separability (not necessarily 

orthogonal) of the Hamilton - Jacobi equation associated with a general 

Hamiltonian system defined by (4.3) in local coordinates (qଵ, … , q୬, pଵ, … , p୬) 

consisting of the 1/2n(n − 1) equations 

∂୧ ∂୨H∂୧H ∂୨H − ∂୧ ∂୨H ∂୧H ∂୨H + ∂୧ ∂୨H ∂୧H∂୨H − ∂୧ ∂୨H∂୧H ∂୨H = 0    (4.25) 

   The next breakthrough was by Eisenhart who presented in turn necessary and 

sufficient conditions for a Hamiltonian system defined by the geodesic 

Hamiltonian. 

H = భ
మg
୧୨p୧p୨                                                        (4.26) 

 To be of the Stackel type and thus orthogonally integrable. The result was 

based on the fact that the n first integrals involution (including the Hamiltonian) 

are necessarily quadratic in momenta, when the system defined by (4.26) is 

considered in natural position - momenta coordinates. Moreover, the involution of 

any of these n-1 first integrals Fଵ, … , F୬ିଵ ∶  

F୰ ≔
ଵ
ଶK୰

୧୨p୧p୨,   r = 1, … , n − 1 

 

with the Hamiltonian (4.24) 

൛H, F୰ൟ = 0, r = 1, … , n − 1 
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entails the killing tensor equation  

[g, K୰] = 0,   r = 1, … , n − 1 

which is equivalent to  

K୰(ୟୠ;ୡ) = 0,   r = 1, … n − 1, 

where the indices of Kଵ, … , K୬ିଵ have been lowered. Hence, the first integrals 

Fଵ, … , F୬ିଵ are defined by the n-1 valence two killing tensors Kଵ, … , K୬ିଵ that 

share, in view of Eisenhart’s result, certain geometrical properties. In particular, 

they must possess the same eigenvectors and these eigenvectors are normal which 

means that each eigenvector is normal to an (n-1) - dimensional hypersurface .  

    Kalnins and Miller have further improved the results of Eisenhart. In 

particular, they have studied the n-dimensional Abelian Lie algebra of killing 

tensors of order 2, K෩ଵ, … , K෩୬ ,  where K෩ଵ = g, … , K෩୬ = K୬ିଵ in the notation above. 

Indeed, we note that the Schouten bracket satisfies the Jacobi identity in the space 

of two - contravant tensors (symmetric or otherwise). Moreover, they concluded 

that every killing tensor K෩ ୧ , i = 2, … , n that is linearly independent of g = K෩ଵ and  

defines (locally) a separable coordinate system for the Hamilton-Jacobi equation 

(4.1) on (M෩ ,g), and conversely, every separable coordinate system arises in this 

way. 

   We note, however, that the complications arising from dealing with the n killing 

tensors (including the metric) connected via certain algebraic and differential 

conditions makes this result difficult to apply. 

   Finally generalized the result above and obtained a characterization of orthogonal 

separability in terms of a single killing tensor. The result is the following theorem. 
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(4.4.1) Theorem: 

  A Hamiltonian system defined by (4.3) is orthogonally separable if and only if 

there exists a valence two killing tensor ܭ with pointwise simple and real 

eigenvalues, orthogonally integrable eigenvectors and such thatd൫K෩dV൯ = 0, 

where the linear operator K෩ is given by K෩ ≔ Kg (or in the index forK෩ ୨୧ ≔ K୧୪g୪୨) .  

(4.4.2) Remark: 

 We note that starting with one ܭ that satisfies the conditions of theorem (4.4.1) 

one can reconstruct the n-dimensional Abelian Lie algebra of killing tensors 

(including the metric ) by either finding the sets of separable coordinates or using 

the intrinsic iterative process described in which does not require having separable 

coordinates. Conversely, having the n-dimensional Abelien Lie algebra , we can 

easily obtain the killing tensor K෩ of theorem (4.4.1) by considering the total sum of 

elements. Another way to see this is the following :The killing equation (4.41) for 

K෩  is equivalent to a system of n linear partial differential equation , the general 

solution of which naturally depends on n constants of integration, where in turn 

can be viewed as the dimension of the corresponding Abelian Lie algebra of killing 

tensors. Further, the killing tensor ܭ does not define a single set of separable 

coordinates, for example, by varying its eigenvalues (i.e, intrinsic invariants) or 

otherwise, we can extract all the sets of orthogonally separable coordinates for a 

given Hamiltonian system defined by (4.3). 

 

(4.4.3)Remark: 
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   The statement of theorem (4.4.1) implies that there exists an additional first 

integral quadratic in momenta (say): 

F(q, p) = భ
మK

୧୨(q)p୧p୨ + U(q),                                              (4.27) 

where the matrix K୧୨ is that of ܭ the involutiveness {H, F} = 0 yields the killing 

equation [g, K] = 0, and the condition d൫K෩dV൯ = 0(which entails locally that dU =

K෩dV). 

   Theorem (4.4.1) offers the advantage of working with a single geometrical 

quantity instead of n such quantities. However, in general it is still very difficult to 

check whether or not a given killing tensor ܭ has normal eigenvector .This is 

rather non-trivial task even in three-dimensional pseudo-Riemannian 

manifolds ൫M෩ , g൯. The main difficulty is the computational effect required by the 

straightforward approach. To solve the killing equation in this case in given 

position momenta coordinates yields six functions(i.e.,Kଵଵ, Kଶଶ, Kଷଷ, Kଵଶ, Kଵଷ, Kଶଷ) 

depending upon 20 constants of integration that represent the dimension of the  

space of (2,0) killing tensor in ℜ୬. Conceivably, for n=4,where n=dimM෩  the 

problem of finding the normal eigenvectors of ܭ is practically insurmountable 

without employing computer algebra. 

     Therefore, in this chapter , we propose the use of the moving frame approach 

where the frame vectors are chosen to be a set of suitably normalized eigenvectors 

of ܭ. it appears that the method not only results in a significant algebraic 

simplification, but also allows one to consider the problem in much more general 

setting, namely without any restrictions at all on the curvature of the pseudo-

Riemannian manifold ൫M෩ , g൯.  
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    To demonstrate how the method works and give a flavor of its applications, we 

begin by proving the following criterion for orthogonal separability in cartesian 

coordinates. 

(4.4.4) theorem: 

     The Hamiltonian system (4.3) is orthogonally separable with respect to 

cartesian coordinates if the associated pseudo-Riemannian manifold ൫M෩ , g൯ admits 

a valence two covariant killing tensor ܭ with pointwise simple eigenvalues and 

vanishing Nijenhuis tensor N෩  . 

Proof 

    Consider a Cஶpseudo-Riemannian manifold ൫M෩ , g൯ associated to the 

Hamiltonian (4.3) which possesses a symmetric Cஶtensor field ܭ of type (0,2). 

The eigenvalue equation  

K୧୨E୨ = λg୧୨E୨                                                            (4.28) 

admits n pointwise simple eigenvalues λଵ, … , λ୬. We note that since ൫M෩ , g൯ 

is the Riemannian eigenvalues are necessarily real. Let Eଵ, … , E୬be a set of 

eigenvectors of ܭ corresponding to the eigenvalues  λଵ, … , λ୬. It can be shown that 

the eigenvectors are real, mutually orthogonal and that none of them is a null 

vector. Thus, the eigenvectors can be normalized such that  

g(Eୟ, Eୟ) = 1                                                               (4.29) 

The above set of eigenvalues is uniquely determined up to sign.  

      Since g and ܭ are Cஶ tensor fields, and the operations of solving for the 

eigenvalues and eigenvectors and normalizing the eigenvectors are rational 
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operations it follows that the eigenvectors Eଵ, … , E୬ define a set of  Cஶ pointwise 

linearly independent vector fields on some open set A ⊂ M෩  . hence, we may choose 

these vectors as a rigid moving frame on A with respect to which the components 

of g and ܭ are given by  

gୟୠ = diag(1, … ,1)                                                (4.30) 

and 

Kୟୠ = diag(λଵ, … , λ୬)                                             (4.31) 

it follows that the metric tensor has the form 

dsଶ = (dݔଵ)ଶ + ⋯+ (dݔ୬)ଶ                                                                            (4.32) 

A rigid co-frame can thus be chosen as follows:  

Eଵ = dݔଵ, … , E୬ = dݔ୬ 

with corresponding dual frame being  

Eଵ = ∂୧, … ,∂୬                                                        (4.33) 

       It is obvious that the frame vector fields are orthogonally integrable. Consider 

now the (0,2) tensor ܭ, the components of which in the above co-frame are given 

by                 

Kୟୠ = diag(λଵ, … , λ୬) 

with λୟ are constants satisfying λୟ ≠ λୠ for all a,b =1,…,n, a≠b. it is clear that Eୟ 

is an eigenvector corresponding to the eigenvalue  λୟ for each a=1,…,n. Since the 

connection coefficients for frame (4.33) are zero, E୯ (4.24) has the form 

Kୟୠ;ୡ = ∂ୡKୟୠ . 
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It thus easy to verify that the tensor (4.31) satisfies the killing equation (4.23) we 

conclude that the tensor defined by (4.31) is the killing tensor, the existence of 

which is guaranteed by theorem (4.4.1). it follows from (4.30) and (4.31)that  

K෩ = diag(λଵ, … , λ୬)                                                    (4.34) 

and that K෩ has a trivially vanishing Nijenhuis tensor .this fact may be established 

from the following expression of N୩෩  in local coordinates:     

N୩෩୨୩
୧ = ∂୪B୩

୧ B୨୪ − ∂୪B୨୧B୩
୪ + ∂୩B୨୪B୪

୧ − ∂୨B୩
୪ B୪

୧ = 0                                      (4.35) 

where i ,j, k=1,…,n. note that N୩෩୨୩
୧ = −N෩୩୨

୧  

let ܭ be a (0,2) killing tensor with pointwise simple and real eigenvalues and 

vanishing Nijenhuis tensor. In the rigid moving frame of eigenvectors Eଵ, … , E୬ of 

 the condition (4.33) reads ܭ

N୩෩(Eୟ, Eୠ) = ൫K෩ − λୟ൯൫K෩ − λୠ൯Cୟୠୡ Eୡ + (λୟ − λୠ)(Eୟ(λୠ)Eୠ + Eୠ(λୟ)Eୟ) = 0        (4.36) 

and taking into account (4.34) can be decomposed into the following system of 

equations : 

Cୟୠ
ୡ = 0,   a, b, c are distinct.                                              (4.37) 

Eୟ(λୠ)(λୟ − λୠ) = 0   a, b are distinct.                         (4.38) 

Concurrently, the killing equation(4.23) for K with lower indices decomposes as 

follows: 

K(ୟୟ;ୟ) = 0 ⟺ EୟKୟୟ = 0   n equations,                             (4.39) 

K(ୟୟ;ୠ) = 0 ⟺ Eୠ(λୟ) = 2Γୟୟୠ(λୠ − λୟ)  2 ቀn
2ቁ equations,                     (4.40) 
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K(ୟୠ;ୡ) = 0 ቀn
3ቁ  equations                                                    (4.41) 

where a, b and c are distinct. Therefore, since λଵ − λ୬ are distinct, the connection 

coefficients Γୠୡ
ୟ  vanish. Hence, the Riemannian space ൫M෩ , g൯ is flat and the 

eigenvalues of ܭ are constants. This implies that the Hamiltonian system defined 

by (4.3) is separable only with respect to Cartesian coordinates.  

 (4.4.5) Remark : 

       It is instructive to contrast the above result with an analogous result for 

Poisson - Nijenhuis manifolds. Recall that in the case of two compatible Poisson 

bi-vectors Pଵ and Pଶ, the linear operator A ∶= PଶPଵିଵ with the components                  

A୨
୧ = Pଶ୧୫Pଵ୫୨ିଵ  (if Pଵ is non-degenerate) has a vanishing Nijenhuis tensor N = 0 

we observe that the killing tensor equation [g, ܭ] = 0 satisfied by the two killing 

tensors g and ܭ resembles the condition [Pଵ,Pଶ]=0 of Compatibility of the two 

Poisson bi-vectors in the theory of bi - Hamiltonian systems. However, as may be 

seen from the proof of theorem (4.4.4) the killing tensor equation is not equivalent 

to the vanishing of the Nijenhuis tensor of the corresponding linear operator K෩ ≔

Kg. Moreover, as we have just seen, the vanishing of the tensor N෩  appears to be a 

very restrictive additional condition on K෩ . 

(4.5) Moving Frame in a Surface and Separability 

         We start our considerations in arbitrary Riemannian manifold (M෩ , g),     

dimM෩ =2 defined by (4.3) making a priori no assumptions on its curvature. Using 

the techniques presented in the previous two sections, we introduce a rigid moving 

frame of co-vectors Eଵ, Eଶ with respect to which the metric g and killing tensor                  

k of theorem (4.4.1) take the following forms:    
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gୟୠ = δୟୠEୟ ⊙ Eୠ                                               (4.42) 

kୟୠ = λୟδୟୠEୟ⊙ Eୠ,                                          (4.43) 

where ⊙ is the symmetric tensor product and  ܽ, ܾ = 1,2 and λଵ,λଶ along with the 

dual vectors Eଵ, Eଶ are the eigenvalues and eigenvectors of ܭ respectively. In this 

case we have two independent connection coefficients Γଵଵଶ and Γଶଵଶ and one  

component  of the Riemann curvature tensor Rଵଶଵଶ . For convenience we write 

α ≔ Γଵଵଶ and β ≔ Γଶଵଶ then the formulas (4.15),(4.17) and (4.24) become 

[Eଵ, Eଶ] = αEଵ − βEଶ                                                    (4.44) 

dEଵ = αEଵ ∧ Eଶ,    dEଶ = βEଵ ∧ Eଶ,                                   (4.45) 

Rଵଶଵଶ = −Eଵβ + Eଶα − αଶ − βଶ,                                    (4.46) 

Eଵλଵ = 0,   Eଶλଵ = 2α(λଶ − λଵ),   Eଵλଶ = 2β(λଶ − λଵ), Eଶλଶ = 0            (4.47) 

where (4.14) has been used. Our next observation is that in a two-dimensional 

Riemannian manifold the conditions of orthogonal intergrability for Eଵand Eଶ, 

Eୟ ∧ dEୟ = 0 , a = 1,2 are automatically satisfied. Hence, by Frobenius’ theorem, 

there exist functions ݂, g,   such that ݒ and ݑ

Eଵ = ݂dݑ,    Eଶ = gd(4.48)                                                   .ݒ 

we choose (ݑ ,  as coordinates, while the functions ݂ and g remain to be (ݒ

determined by the condition of problem. Clearly with respect to (ݑ,  we have (ݒ

α = α(ݑ , β,(ݒ = β(ݒ, ݑ) and the eigenvectors Eଵ, Eଶ  of ܭ are given by  

Eଵ = (݂)ିଵ ∂௨,      Eଶ = (g)ିଵ ∂௩.                                  (4.49) 

substituting (4.48) into (4.45), yields 
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α = −(݂g)ିଵ ∂୳݂,      β = (݂g)ିଵ ∂௩g.                                              (4.50) 

Consider again the Hamiltonian function (4.3) in natural ( position- momenta, say) 

coordinates : 

H = ଵ
ଶg୧୨p୧p୨ +  ݒ

in a rigid moving frame in view of the above, we have  

H = భ
మg
ୟୠpୟpୠ + V                                            (4.51) 

where gୟୠ = g୧୨h୧ୟh୨ୠ  and pୟ = hୟ୩p୩, where hୟ୧  is defined in (4.14) and V is a 

function of ݑ and ݒ. next we apply the vector field [Eଵ, Eଶ] to λଵ and λଶ  to obtain 

the following integrability conditions : 

Eଵα = −3αβ,                                                    (4.52) 

Eଶβ = 3αβ,                                                  (4.53) 

     Now it is natural to analyze the following three cases defined with respect to 

α and β. 

     C1  α = β = 0 ⇔ λଵ and λଶ constant, 

     C11  α = 0, β ≠ 0(α ≠ 0, β = 0) ⇔ λଵ constant ( λଶ constant),  

   C111  αβ ≠ 0 ⇔ λଵ and λଶ  both non − constant.  

This classification is intrinsic since the rigid moving frame we are using is defined 

up to a sign. The general forms of the separable metric 

dsଶ = (Eଵ)ଶ + (Eଶ)ଶ,                                         (4.54) 
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and the corresponding killing tensor (4.43) ܭ will be derived in each case. Having 

found the killing tensor, we shall derive the form of the most general separable 

potential ܸ(ݑ,  admitted by original Hamiltonian (4.3). To accomplish this, we (ݒ

take into consideration the condition ݀(ܸ݀ܤ) = 0 of theorem (4.4.1) which may 

be written in terms of the moving frame as  

EଵEଶV + 3βEଶV − 2αEଵV = 0                                         (4.55) 

Once the potential V is found, we derive the second first integral of the Hamilonian 

system defined by (4.3) given by F = Kୟୠpୟpୠ + U or  

F(ݑ, ,ݒ pଵ, pଶ) = λଵpଵଶ + λଶpଶଶ + U(ݑ,  (4.56)                                        (ݒ

In the moving frame, by solving the equation dU = 2BdV. writing this condition in 

the moving frame, we immediately obtain the following system  

EଵU = 2λଵEଵV,                                     (4.57) 

EଶU = 2λଶEଶV,                                   (4.58) 

Case 1: α = β = 0 

It follows immediately form (4.48) that ݂ =           ,therefore (ݒ)and g =g(ݑ)݂

Eଵ = ,ݑd(ݑ)݂ Eଶ = g(ݒ)dݒ, and the metric takes the form   

dsଶ = ݂ଶ(ݑ)dݑଶ + gଶ(ݒ)dݒଶ 

We observe that there exist coordinate transformations (ݑ, (ݒ → ݑ) ,   ) ,such thatݒ

Eଵ = ݑd(ݑ)݂ = dݑ ,     Eଶ = g(v)dݒ = dݒ                       (4.59) 
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Where 

ݑ = න f(ݑ)dݒ   ,ݑ = න g(ݒ)dݒ. 

The remaining coordinate freedom is  

ݑ = ݑ + ݒ    ,ݑ = ݒ +  .ݒ

Thus, for C1 we have  

Eଵ = dݑ,     Eଶ = d(4.60)                                            ݒ 

Where the tilders have been dropped. Thus, the metric (4.54) has the form 

dsଶ = dݑଶ + dݒଶ                                              (4.61) 

We conclude that the separable coordinates in this case are Cartesian. We also 

observe, by (4.46), that Rଵଶଵଶ = 0, in C1, which means that the case when both 

eigenvalues of K are constant is compatible with only a flat two-dimensional 

Riemannian space. Now taking into account the above facts along with the killing 

equation, we easily recover that λଵ = cଵ and λଶ = cଶ where cଵand cଶ are co- 

nstants .hence  

K = diag(cଵ, cଶ)                                                             (4.62) 

And in view of (4.53), we have  

V(u, v) = Vଵ(u) + Vଶ(v)                                                       (4.63) 

Similarly, by making use of (4.57) and (4.58), we find the corresponding U to be 

U(u, v) = 2kVଵ(u) + 2lVଶ(v)                                              (4.64) 
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We conclude that a second first integral F that is functionally independent of the 

Hamiltonian H is 

F(u, v, p୳, p୴) = p୴ଶ + 2Vଶ(v)                                             (4.65) 

We note that the class of Hamiltonian systems just described has the properties of 

being bi-Hamiltonian in the separable coordinates (ݑ,  with respect to the (ݒ

constant Poisson bi-vectors Pand Pଵ: 

P = ∂୳ ∧ ∂୮౫ + ∂୴ ∧ ∂୮౬ ,     Pଵ = ∂୳ ∧ ∂୮౫ − ∂୴ ∧ ∂୮౬ ,                           (4.66) 

and having a Lax representation defined by matrices L and M of the form 

L = ൬Lଵ 0
0 Lଶ

൰ ,                 M = ൬Mଵ 0
0 Mଶ

൰ ,                                  (4.67) 

where  

L୧ = ቌ

ଵ
√ଶ

p୨ 2ω୨

ቀಡౠቁ

ಡౠ
− ଵ
√ଶ

p୨
ቍ ,         M୧ =

1
2ω୨

൭
0 0

d
dt
൬

p୨
√2
൰ −2p୨

൱ ,                  (4.68) 

here i , j = 1,2, i ≠ j,ωଵ = u,ωଶ = v and fଵ, fଶ ∈ Cଵ(ℝ)  

are arbitrary functions. We note that the separable coordinates (ݑ,  in this case are(ݒ

simply the Darboux – Nijenhuis coordinates, defining bi-Hamiltonian structure 

(4.66). 

Case 11:  α = 0 ,β ≠ 0(α ≠ 0 ,β = 0) 

The condition α = 0  in (4.50) immediately yields f = f(u) and by an appropr-  iate 

coordinate transformation, we may set f = 1 .similarly, we use (4.53) to 

conclude β = β(u), which entails in turn after solving (4.53) that ݃ =  ,(ݒ)ܦ(ݑ)ܥ
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where (ݑ)ܥ and (ݒ)ܦ are arbitrary functions. We may absorb (ݒ)ܦ by a further 

coordinate transformation to obtain ݃ =  Hence, the metric in this case is .(ݑ)݃

given by  

dsଶ = duଶ + gଶ(u)dvଶ                                                 (4.69) 

Where ݃(ݑ) is an arbitrary function. To solve the killing equation and find the 

corresponding K, we observe that in view of the above β = ∂୳g/g .now (4.47) 

transform into the following system of partial differential equations  

∂୳λଵ = ∂୴λଵ = ∂୴λଶ = 0,     ∂୳λଶ = ∂୳ggିଵ(λଶ − λଵ),               (4.70) 

 Solving for λଵ and λଶ we find λଵ = k, λଶ = lgଶ(u) + k, where l, k are arbitr- 

ary constants. Hence, the killing tensor in this case takes the form:  

K = diag(k, lgଶ(u) + k) = kg + lKଵ,                                  (4.71) 

where Kଵ = diag൫0, gଶ(u)൯ and g, Kଵ,      span two dimensional Abelian Lie algebra 

of killing tensors. We note that, since the variable v is ignorable, the killing tensor 

Kଵis simply the square of the corresponding killing vector corresponding to the 

first integral linear in the momenta. 

(4.5.1) Remark 

 This observation illustrates the fact that Beneti’s approach is in fact equivalent 

to the approach due to Eisenhart and Kanlnins and miller. In the most general case 

the killing tensor K of theorem (4.4.1) is simply a linear combination of the n 

killing tensor (including the metric) g, … , K୬ିଵ       

 Next, taking into account that α = 0 and f = 1, we solve equation (4.55) for ܸ 

to obtain  
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V(u, v) = Vଵ(u) +
Vଶ(v)
gଶ(u)

,                                           (4.72) 

where  Vଵand Vଶ are arbitrary functions. it follows by (4.55) that 

U(u, v) = 2kVଵ(u) + 2lVଶ(v) +
2kVଶ(v)

gଶ(u)
,                          (4.73) 

Finally, substituting (4.72) and (4.73) in (4.56) and removing the expression for the 

Hamiltonian we find a second first integral ܨ for this family of separable               

Hamiltonian systems just described, namely  

F(u , v, pଵ, pଶ) = kgଶ(u)pଶଶ +  lVଵ(u) + 2lVଶ(v) +  
kVଶ(v)
gଶ(u) ,               (4.74) 

or, in terms of the separable coordinates: 

F(u , v, p୳, p୴) = cଶ(u)p୴ଶ +  cଵVଵ(u) + 2cଶVଶ(v) +  
cଵVଶ(v)
gଶ(u) ,                 (4.75) 

We note that (4.46) in this case becomes  

Rଵଶଵଶ = −∂୳ ൬
∂୳g

g
൰ − ൬

∂୳g
g
൰
ଶ

= −
g"

g
,                            (4.76) 

or, simply 

g" + ag = 0,                                                     (4.77) 

where a(u) = Rଵଶଵଶ(u). The case α ≠ 0, β = 0 corresponds to metric             

dsଶ = f ଶ(v)duଶ + dvଶ, which can be obtained from (4.69) in an obvious way. 

Case 111: αβ ≠ 0 
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We begin by proving first that in this case the functions f and g may be assume 

equal. equation (4.52) and (4.53) imply that  

Eଵα = −Eଶβ, 

Which, on account of (4.50), may be written as 

∂୳ ∂୴ ൬ln ൬
f
g
൰൰ = 0. 

It follows ln(f/g) = G(u) + H(v), where ܩ and ܪ are arbitrary functions, from 

which we obtain  

f = g(u, v)C(u)D(v)                                                      (4.78) 

Where C(u) = eୋ(୳) and D(v) = eୌ(୴). After appropriate coordinate transfor-

ations applied to the metric, we get  

f(u, v) = g(u, v),                                                           (4.79) 

We now proceed to determine the general form of metric. In view of (4.79), either 

of (4.52) and (4.53), yields 

∂୳ ∂୴f ଶ(u, v) = 0. 

Therefore, 

f ଶ(u, v) = A(u) + B(v)                                         (4.80) 

where A and B are arbitrary functions. It follows that the metric has the form 

dsଶ = ൫A(u) + B(v)൯(duଶ + dvଶ)                                       (4.81) 
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 (4.5.2) Remark: 

     We note immediately that the metric (4.81) is that of the well-known Liouville 

surface. Hence, in this case the dynamics of (4.3) can be viewed as the motion of a 

liouville surface under the action of a conservative force with potential energy 

,ݑ)ܸ  .(ݒ

 We proceed to find the corresponding killing tensor ܭ. substituting (4.50) 

along with (4.80) in to (4.47) leads to the following system of partial differential 

equations with respect to λଵ and λଶ: 

∂୳λଵ(u, v) = ∂୴λଶ(u, v) = 0, ∂୴λଵ(u, v) =
Bᇱ(v)

A(u) + B(v) (λଵ(u, v) − λଵ(u, v) 

∂୳λଶ(u, v) = ᇲ(୳)
(୳)ା(୴)

൫λଶ(u, v) − λଵ(u, v)൯                               (4.82) 

 Solving (4.80), we obtain λଵ = KB(v) + L and λଶ = KA(u) + L, where ܭ and 

  are arbitrary constants. Thus ܮ

K = diag(kB(v) + L,−kA(u) + L) = Lg + kKଵ                            (4.83) 

where Kଵ = diag(B(v) − A(u)) (remark (4.5.1)). Equation (4.55) for ܸ(ݑ,  .(ݒ

may be written as 

∂୳ ∂୴ൣ൫A(u) + B(v)൯V(u, v)൧ = 0 

which has the solution  

V(u, v) =
Vଵ(u, v) + Vଶ(u, v)

A(u) + B(v)
,                                          (4.84) 
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where Vଵ and Vଶ are arbitrary functions. It follows that (4.57) and (4.58) may be 

solved to obtain 

U(u, v) = 2lV(u, v) + 2k
B(v)Vଵ(u, v) − A(u)Vଶ(u, v)

A(u) + B(v)
                      (4.85) 

We conclude that the second first integral independent of H has the form  

F(u, v, p୳, p୴) = B(v)pଵଶ − A(u)pଶଶ + 2 ൬
Vଵ(u, v) + Vଶ(u, v)

A(u) + B(v)
൰ ,                 (4.86) 

Noting that hଵଵ = fିଵ, hଶଶ = fିଵ, hଵଶ = hଶଵ = 0, we may rewrite (4.84) in terms of 

the coordinates as  

F(u, v, p୳, p୴) =
B(v)൫p୳ଶ + 2Vଵ(u)൯ − A(u)(p୴ଶ + 2Vଶ(v))

A(u) + B(v)
                 (4.87) 

We note that the form of the Hamiltonian H (4.3) in the coordinates (u, v) becomes  

H(u, v, p୳, p୴) =
p୳ଶ − p୴ଶ

2(A(u) + B(v))
+

Vଵ(u) + Vଶ( v)
A(u) + B(v)

 ,                       (4.88)    

 The forms (4.87) and (4.88) demonstrate that the Hamiltonian system under 

consideration is a Liouville system in the separable coordinates (u, v). Conversely, 

it is easy to see that the Hamilton-Jacobi equation corresponding to(4.88) separates 

in the coordinates (u, v). Indeed in this case (4.1) takes the following form: 

1
2൫A(u) + B(v)൯

ቀ(∂୳W)ଶ + (∂୴W)ଶ + 2൫Vଵ(u) + Vଶ(v)൯ቁ = E. 

Now, putting W(u, v) = Wଵ(u) + W(v), we find the complete integral ܹ to be  

W(u, v) = නඥβ − 2Vଵ(u) + EA(u) du + නඥ−β − 2Vଶ(v) + EB(v) dv. 
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Differentiating W with respect to β and ܧ, we can find the solutions for specific 

choices of A(u), B(v), Vଵ(u), and Vଶ(v). Hence, without imposing any restriction 

on the curvature of the corresponding pseudo-Riemannian manifold we have 

proven the following criterion of separability. 

 (4.5.3) Theorem 

 The following conditions are equivalent. 

1- The Riemannian manifold (M෩ , g) defined by (4.3) admits a valence two 

killing tensor K with distinct eigenvalues; 

2- There exist coordinates (u, v)  with respect to which the metric takes the 

form (4.81); 

3- The Hamiltonian system defined by the Hamiltonian 

H = ଵ
ଶ

g୧୨(q)p୧p୨ + V(q),   i, j = 1,2                                 (4.89)  

in the Riemannian manifold ൫M෩ , g൯ of an arbitrary curvature can be integrated 

by separation of variables. 

 Having derived the explicit formula (4.87) for the second first integral ܨ, we 

can now investigate whether or not the Liouville system (4.88) admits a bi-

Hamiltonian representation with respect to the coordinates (u, v). Recall that 

the bi-Hamiltonian property is a combination of algebraic and differential 

conditions, which can be quite restrictive for low-dimensional Hamiltonian 

systems. Indeed, it is easy to see that the symplectic ωଵ corresponding to 

F: iଡ଼ౄωଵ = −dF is given by  

ωଵ = 2B(v)du ∧ dp୳ − 2A(u)dv ∧ dp୴,                             (4.90) 
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Clearly, (4.91) satisfies the differential conditions dωଵ = 0 and Lଡ଼ౄ(ωଵ) = 0 iff 

A(u) = B(v) = cont. in this case ωଵ is equivalent to Pଵin (4.66). we answer the 

question of whether there exists a second Hamiltonian representation with respect 

to F by the following result. 

(4.5.4) Proposition 

 The Liouville system defined by (4.88) admits a bi-Hamiltonian representa-

tion in the separable coordinates (u, v) iff the coordinates are Cartesian. 

Finally, we note that the formula (4.46) assumes in this case the following form 

Rଵଶଵଶ = − ଵ

ቂ∂୳ ቀ

ப౫
మ
ቁ + ∂୴ ቀ

ப౬
మ
ቁቃ − ቀப౫

మ
ቁ
ଶ
− ቀப౬

మ
ቁ
ଶ

,                    (4.91)  

Where f ଶ(u, v) = A(u) + B(v). 
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Chapter Five   
Hamiltonian Systems on Some Surfaces 
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Chapter Five  

Hamiltonian Systems on Some Surfaces 

(5.1) Surface Theory: 

 We shall review surface theory in this section. 

 We first introduce parameterized surface in Euclidean three- dimensional 
space. Then we study the shape operator that we shall utilize to introduce the 
normal curvature, Gauss curvature and mean curvature. 

 A surface ܯ in ܧଷ (Euclidean three dimensional space). 

        May be parameterized by a differentiable ܺ(ݑ,  we. ݒ and ݑ of two variable(ݒ
wired a point  in ܯ as : 

(ݒ,ݑ)ܺ = ൫x(ݒ,ݑ), ,ݑ)ݕ ,(ݒ ൯(ݒ,ݑ)ݖ =  

1- Carton Method of the moving frame:  

(5.1.1) Definition: 

     A smooth 1-from ∅ on ℜ is a real - valued Function on the set or all tangent 
vectors to ℜ , ie 

߮:ℜ → ℜ                                                       (5.1) 

with the properties that : 

1- ∅ is linear on the tangent space  ௫ܶℜ for each x ∈ ℜ 
2-  For any smooth vector field ܸ =    the function (ݔ)ܸ

ℜ: = (ݔ)ܸ∅ → ℜ 
 Given a 1-from ∅ , for each  ݔ ∈ ℜ  the map  

∅௫ : ௫ܶ∅ ℜ → ℜ                                            (5.2) 
Is an element for the dual space  ( ௫ܶ∅ℜ), wgen we entend the nation all of  ℜ 
.we see that the space of 1-from on ℜ is dual to the space or vector field on ℜ .  
In particular, the 1-form ݀ݔଵ, …,݀ݔ   are denied by the property that for any 
vector.  
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ܸ = (ܸଵ, … ,ܸ  )  ∈ ௫ܶℜ ,݀ݔ(ݒ)  = ݒ                          (5.3)                                          
The  ݀ݔ,௦ from a basis for 1-from on ℜ , so any other 1-from ∅  may be 
enpressed in the from  

∅ =  ∑ ݂

ୀଵ                                         (5.4)ݔ݀ (ݔ)

If a vector field von  ℜ has the from  
(ݔ)ܸ = ( ܸ(ݔ) , … ,ܸ(ݔ) ) 

Then at any point ݔ ∈ ℜ 
∅ = ∑ ݂


ୀଵ  (5.5)                                    (ݔ)ܸ (ݔ)

(5.1.2) Definition: 

      A definition 1-from ∅ defined on a domain ℜ is said to be closed if  

ௗ
ௗ௫ೕ

() =  
ௗೕ
ௗ௫

, ݅ ∀    () ݔ ݀݊ܽ ݆ ∈ ℜ                      (5.5) 

 We say that a differential 1-from ∅ is enat it there enist a smooth function  ܨ ≈ ℜ                
such that  

∅ =  (5.6)                                                        ܨ݀

(5.1.3) Definition:   

     A smooth a differential ݔ from won ܯ is collection of smoothly varying  
alternating  k-linear maps  

ݓ  ⁄ݔ ∈ ݔ ௫ for each ܫ∗ܶܣ ∈  where we require that for all smooth vector field ,ܯ
ଵܸ, … , ܸ. 

,ݓ〉 ଵܸ, … , ܸ〉(n) = 〈wܫ, ଵܸܫ௫, … , ܸܫ௫〉 is a smooth read-valued function of ܺ. 

 We reviewing cartons formulation of local differential geometry in terms of 
moving frames.  

Let ܵ ⊂ ℜଷ be a surface and let the dot product of ℜଷ. Be given 〈. , . 〉 let a local 
chart for S be given by the map ܺ:ܸ → ℜଶ where ܷ,ܸ an open set in a 
neighborhood of a point we choose a local orthonormal frame, smooth vector fields 
{݁ଵ, ݁ଶ, ݁ଷ} such that 

〈݁ , ݁〉 = ߜ  = 1, 2, 3                                            (5.7)  
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   We choose the from a dappled in such a way that ݁ଷ is the unit normal vector and 
݁ଵ and ݁ଶ span the tangent space  ܶܵ. The corresponding coframe field of one 
forms {ܹ} is defined by the differential  

dx =  w ଵeଵ  +  wଶeଶ                                             (5.8) 

 In local coordinates (uଵ, uଶ) ∈ U the one forms are linear functional of the form. 

.)ݓ   ) = ଵܲ(ݑ ଵ,ݑ ଶ)݀ݑ ଵ+ ଶܲ(ݑ ଵ,ݑ ଶ)݀ݑ ଶ                     (5.9) 

Where ܲ is asmooth function in ܷ, ݀ݑଵare the differentials for the coordinate 
functions ݑ  = ܷ → ℜ which from a basis for the linear functional on the vector 
spaces  T (ݑ ଵ,   ଶ). The vectors in local coordinals have the expression ݑ

= ݒ (ଶ ݑ,ଵ ݑ) ଵ ݒ  
݀
ଵݑ݀

 + (ଶ ݑ,ଵ ݑ) ଶ ݒ  
݀
ଶݑ݀

 

The one form (5.3) acts by 

(ݒ)ݓ = (ଶ ݑ ,ଵ ݑ)ଵ ݒ ଵܲ(ݑ ଵ, (ଶ ݑ ,ଵ ݑ)ଶ ݒ  + (ଶ ݑ ଶܲ(ݑ ଵ,ݑ ଶ) 

 The usual identifications between  ܺ: ܷ →  ܺ(ܷ) or  = ,ଵ ݑ) ܶ  → ܷ(ଶ ݑ  ܶݏ , the 
one forms can be interpreed as linear functional on ܶs  as well . for example if 
choose vector fields ܧ in U such that  ݀ݔ(ܧ) = ݁ then we may set   

(݁)ݓ =  .(ܧ)ݓ

In particular ݓ(݁)= ߜ. it also means that metric takes the form ݀ݏଶ = ଶ(ଵݓ) +

 =(݁)ݓ    is aciform and the vector  fields  ݁  determined by dualityݓ ଶ)ଶ  thenݓ
 .  . are corresponding orthonormal frameߜ

One form can be integrated on curves in the usual way. 

If ∝∶ ,} {ܮ → ܷ is a piecewise smooth curve where ∝   then ( ݐଶݑ) ,(ݐଵݑ) = (ݐ)

{,})∝ݓ∫ ≔ ∫ ∝)ݓ ݔ݀(ݐ)
  = ∫ ∝ ,}) +భୢ௨ భ{ܮ ଶܲdݑଶ 

Is the usual line integral. Two one forms may be multiplied (wedged) to give a 
Two form, which is askew symmetric bilinear from on the tangent space. For 
example if ߠ and where one forms then vector field  ܺ,ܻ  we have the form 
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(ܻ)߱(ܺ)ߠ = : (ܻ,ܺ) (Λ߱ߠ) −  (ܺ)߱(ܻ)ߠ

in local coordinates this gives  

(ଶ ݑଶ݀ݍ+ଵ ݑଵ݀ݍ)∧ (ଶ ݑଶ݀+ଵ ݑଵ݀) ∶= ଵݑ݀(ଶݍଶ+ଵݍଵ) ∧  ଶݑ݀

Because there vectors are dependent there are no skew symmetric three forms in 
ℜଶ and the most general two forms is  

ߚ = ଵݑ) ܣ ଵݑ݀(ଶݑ, ∧  ଶݑ݀

 When evaluated on the vectors  

ܸ = (ଶ ݑ ,ଵ ݑ)ଵ ݒ ௗ
ௗ௨ భ

,ଵ ݑ) (ଶ ݑ ,ଵ ݑ)ଶ ݒ  + (ଶ ݑ ௗ
ௗ௨ మ

 , (ଶ ݑ,ଵ ݑ)

ܼ = (ଶ ݑ ,ଵ ݑ)ଵ ݖ ௗ
ௗ௨ భ

(ଶ ݑ ,ଵ ݑ)ଶ ݖ  + (ଶ ݑ,ଵ ݑ) ௗ
ௗ௨ మ

,ଵ ݑ)  (ଶ ݑ

The two forms gives  

(ܼ,ܸ )ߚ = ,ଵݑ)ଶݖ (ଶݑ,ଵݑ)ଵݒ (ଶݑ,ଵݑ)ܣ  (ଶݑ,ଵݑ)ଵݖ (ଶݑ,ଵݑ) ଶݒ- (ଶݑ

A two from say, may be integrated over a region ℜ ⊂ ܸ  by the: 

∫ℜߚ=∫ℜ A(ݑ ଵ,  ଶ ݑ ଵdݑଶ) d ݑ

Where ݀ݑଵ݀ݑଶ denotes lebesgue measure on ܷ  

   The first fundamental form the metric, has expression form  

ଶݏ݀                                                       = 〈݀ܺ,݀ܺ〉 

= ଵ݁ଵݓ〉 + ଵ݁ଵݓ,ଶ݁ଶݓ +        (∗)                〈 ଶ݁ଶݓ

                                                             =   ଶ(ଶݓ)+ ଶ(ଵݓ)

     The area from is ݓ ଵ ∧  ଶ. That is because by using (5.8) to write in terms of ݓ 
the ݁ଵ basis, the  area of the parallelogram spanned by ݀ݔ(݀ ⁄(ݑ݀  and ݀ݔ(݀ ⁄(ݒ݀  is  

ଵݓ ቀ ௗ
ௗ௨ 
ቁݓଶ ቀ ௗ

ௗ௩ 
ቁ − )ଵݓ ௗ

ௗ௩ 
ଶݓ( ቀ ௗ

ௗ௨ 
ቁ = ଵݓ ∧ )ଶݓ ௗ

ௗ௨ 
, ௗ
ௗ௩ 

) 
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The Weingarten equations express the rotation of the frame when moored along 
the surfaces  

݀݁ = ݓ∫


݁                                                           (5.10) 

this equation derived  the 3 × 3 matrix of one forms ܹ
   which is called the 

matrix of connect ion forms or ܧଷ . the fact that the frame is or thonormal  implies 
that when  ߜ  = 〈݁ , ݁〉 is different tiated using (5.10) 

 ߜ݀ = 0

          = ݀〈݁  , ݁〉 

                            = 〈݀݁ , ݁〉 + 〈݁  ,݀ ݁〉 

                                            = ݓ∑〉 ݁ , ఉ݁〉 + 〈݁ ݓ∑, ݁ 〉 

                                                              = ݓ
+ݓ                                                (5.11) 

      This equation says that the matrix of connection forms is skew so there are 
only three distinct ݓ

. Geometrically it says that the motion of the vectors is 
already determined in large part by the motion or the vectors in the frame. 

The forms ݓଷ  determine the motion or the normal vector and hence define second 
fundamental form is given using (5.9), (5.10) and (5.11) 

.)ܮܫ                                                 , . ) = 〈݀݁ଷ, dx〉                                

                                                            =  (ଶ݁ଶݓ+ଵ݁ଵݓ , ଷଶ݁ଶݓ+ଷଵ݁ଵݓ)

                                 = ଵݓ⊗ଷଵݓ−                                         ଶݓ⨂ଷଶݓ->≠

    =  ଶ                        (5.12) ݓ⊗ଶଷݓ+ଵ ݓ⊗ଵଷݓ

We may express the connection forms using the basis  

ଷଵݓ = ℎଵଵݓ ଵ+ℎଵଶݓ ଶ                                             (5.13) 

ଶଷݓ = ℎଶଵݓ ଵ+ℎଶଶݓ ଶ 

Thus Inserting into (5.12) 
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II (., .) = ∑ℎ  ݓ (x) ݓ

In particular, if one searches through all unit tangent vectors  

ܸ : = cos (Φ)݁ଵ + sin (Φ)݁ଶ 

for which II ( ܸ , ܸ) is maximum and minimum, one finds that the extreme occur 
as Eigen vector ℎ୧୨ and the principle curvatures ݇୧ are the corresponding Eigen 
values. The Gaub and mean curvatures are   

݊ = ݇ଵ݇ଶ = det (ℎ୧୨) = ℎଵଵమమ- ℎଵଶమభ                       (5.14) 

ܫܫ                             = ଵ
ଶ

(݇ଵ+݇ଶ) = ଵ
ଶ

(ℎଵଵ)+( ℎଵଵ+ℎଶଶ)   

2- Covariant differentiation: 

     Of a vector field y in the direction or anther vector field  ܸ = ݒ∑  ௗ
ௗ௨

 on ܷ is a 
vector field denoted ∇௩.  It is determined by orthogonal projection to the tangent .ݕ
space ∇௩ݕ =  . Hence , in the local frame ,((ݒ)ݕ݀) ݆ݎ

∇௩e ൫݀e(ܸ)൯ ݆ݎ ≕ = ݓ∑
 (v)e , 

Covariant differentiation extends to all smooth vectors fields ݓ,ݒ on  ܷ, and ݕ,  ݖ
on ܵ and smooth functions  Φ, ߮ by the formulas  

1) ∇Φv + ݖݓ߮ = Φ∇ݖݒ+߮∇௪ݖ           (Linearity)  
2) ∇௩(Φy + =(ݖ߮  ܺ(Φ)y + Φݕݔ + ܺ(߮)z+ ߮∇௩ݖ      (Leibnitz) 
,ݕ〉ݒ (3 〈ݖ = 〈∇௩ݕ, 〈ݖ +  .(Metric compatibility)             〈ݖ ௩∇,ݕ〉

With these formulas one can deduce ∇௩ (∑ ݕ e). As 

3- Gauss equation and intrinsic geometry: 

     We will have to differentiate (5.2) and (5.6) once more. The exterior derivative  
݀ is the differential on functions. The exterior derivative of a one from (5.3) is a 
two form given by  

ݓ݀ = ௗ୮భ
ௗ௨భ

ௗ୮భ) - (ଶݑ, ଵݑ)
ௗ௨మ

, ଵݑ)  (ଶݑ

Thus ݀ଶ = 0 because, for functions f,  
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(݂݀)ܦ = ݀ ௗ
ௗ௨భ

, ଵݑ) ଶ) ݀ଵݑ ௗ
ௗ௨మ

 ଶݑ݀ (ଶݑ, ଵݑ) 

                                     = ௗమ
ௗ௨భௗ௨మ

ଶ) - ௗమݑ, ଵݑ
ௗ௨మௗ௨భ

, ଵݑ ଵݑ݀  (ଶݑ  ∧  ଶ = 0ݑ݀

The formula implies that if f (ݑଵ,ݑଶ) is a function and w a one form then  

(ݓ݀)ܦ = ݂݀ ∧ ݓ + (ݓ݂)݀ but ,ݓ݂݀ = ݂ݓ݀ − ݓ ∧ ݂݀  

Greens formula becomes particular hyelegant: 

∫ℜݓ  = ∫ௗℜ ଵ݀ݑ
ଵ+ଶ݀ݑଶ = ∫ℜ(ௗ୮మ

ௗ௨భ
 −  (ௗ୮భ

ௗ௨మ
 ݓℜ݀∫=(ଶݑ, ଵݑ)

Differentiating (5.8) and (5.10) 

0 = ݀ଶݓ∑)݀ = ݔ ݁୧)= ∑ݓ ݁୧- ∑ݓ ∧݀݁୧ 

ݓ∑ =                                    ݁୧+∑ݓ ∧ ݓ ݁ 

  0 = ݀ଶ݁୨= ݀(∑ݓ ݁୩)  = ∑ݓ ݁୩ - ∑ݓ ݀݁୩ 

ݓ∑ =                                   ݁୩ – ∑ݓ ∧  ݁ݓ

Now collect coefficients for the basis vectors ݁ 

   0 = d ݓ - ∑ݓ ⋀ ݓ 

ݓ = 0 − ݓ∑  ∧                                             (5.15)ݓ

Now are called the first and second structure equations: by taking also the ݁ଷ 
coefficient of  ݀ଶݔ 

ݓ∑ = 0 ∧  ݓ

so follow that ℎ୧୨= ℎ୨୧ is a symmetric matrix. In the tent, we saw this when we 
proved the shape operator. ݀eଷ  was self a djoint 

The Second structure equation enables to complete Gauss curates form the 
connection matrix indeed b by (5.13) 

ଵݓ∑ = ଵଶݓ݀                              ∧ ଵଷݓ = ଶݓ ∧ ଵଷݓ = ଷଶݓ ∧  ଶଷݓ
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=  −(ℎଵଵℎଶଶ- ℎଵଶଶ ଵݓ (  ∧ ଵݓ ଶ = - kݓ ∧  ଶ                 (5.16)ݓ

The remarkable thing is that the conditions (5.11) and (5.8) 

dݓ = ∑ݓ ∧  ݓ 

  = 0                                                           (5.17)ݓ  + ݓ  

determine  ݓଵଶ unequal. Since ݓ is known once the metric is known by (*) this 
says that   ݓଵଶ  and thus k can be determined form the metric alone. 

 Computation of curvature from the matrix. 

 Let us compute the curvature of a metric in orthogonal coordinates, for simplicity 
sake, I take coefficients to squares. Thus we are given the metric  

d ݏଶ =ܧଶ dݑଶ +ܩଶdv 

Where ݑ)ܧ, ,ݑ)ܩ,(ݒ (ݒ >   are smooth functions in U. It is natural to guess that 

ଵݓ = ,ݑ݀ܧ ଶݓ =  ݒ݀ܩ

୴ܧ = ଵݓ                          ∧ ଶݓ = ݑ݀ݒ݀ ∧ ா௩ ݒ݀ܩ = ଶଵݓ 
ீ

 dݑଵ 

୳ܧ = ଶݓ                         ∧ ଵݓ = ݒ݀ݑ݀ ∧ ݑ݀ܧ = ଵଶݓ  ீ௨
ா
 ݒ݀

 Thus we may take  

ଶଵ = ீ௨ݓ  - = ଵଶݓ 
ா
ா௩ - ݒ݀

ீ
 .ݑ݀

Hence by differentiating a gain  

ଵݓ݇ ∧ ݑ݀ܩܧ݇− = ଶݓ ∧ ) = ଵଶݓ ݀ = ݒ݀ ௗ
ௗ௨

(ீ௨
ா

) + ௗ
ௗ௩

(ா௩
ீ

ݑ݀ ( ∧  ݒ݀
form which it following that  

ܭ = ( ୢ
ୢ୳

(ୋ୳


) + ୢ
ୢ୴

(୴
ୋ

). 
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 (5.2) On The Gaussian and Mean Curvature of Certain Surfaces 

The Gaussian and mean curvatures of surfaces are real valued functions of 

two real variables. We apply our software for differential geometry to represent the 

Gaussian and mean curvatures of various types of surfaces.  

1. Introduction and notations:  

       Throughout this chapter we assume that ܦ ⊂ ℜଶ is a domain and surfaces are 

given by a parametric representation  

൯ݑଵ൫ݔ⃗ = ൫ݔଵ(ݑଵ ,(ଶݑ, ,ଵݑ)ଶݔ ,(ଶݑ ,ଵݑ)ଷݔ ଵݑ)ଶ)൯൫ݑ (ଶݑ, ∈  ൯        (5.18)ܦ

where the component functions ݔ: D → ℜ (݆ =  1,2,3) have continuous partial 

derivatives of order r ≥ 1, denoted as usual by ⃗ݔ ∈ ݔ⃗ and the vectors ,(ܦ)ܥ =

ݑ߲/ݔ߲⃗  (k = 1,2) satisfy ⃗ݔଵ × ଶݔ⃗ ≠ 0. If we denote the surface normal vectors, the 

first and second fundamental coefficients of a surface S given by (5.18) by  

ሬܰሬ⃗ ൫ݑ൯ =
൯ݑଵ൫ݔ⃗ × ൯ݑଶ൫ݔ⃗
(ݑ)ଵݔ⃗‖ × ‖(ݑ)ଶݔ⃗

,݃൫ݑ൯ = ൯ݑ൫ݔ⃗ •  ݀݊ܽ       ൯ݑ൫ݔ⃗

൯ݑ൫ܮ = ሬܰሬ⃗ ൫ݑ൯ • ൯ݑ൫ݔ⃗  ݁ݎℎ݁ݓ   ݔ⃗ =
߲ଶ⃗ݔ

ݑ߲ݑ߲
݇,݆ ݎ݂   = 1,2, 

respectively, then the functions K : D → ℜ and H : D → ℜ with  

ܭ =
ܮ
݃

ܪ ݀݊ܽ  =
1

2݃
ଵଵ݃ଵଶ݃ଵଶܮ) +  ,(ଶଶ݃ଵଵܮ

Where ݃ = ݀݁ݐ(݃) and ܮ =  are the Gaussian curvature· and the mean ,(ܮ)ݐ݁݀ 

curvature of S. We use our software to give a graphical representation of the 

Gaussian and mean curvatures of some interesting surfaces.  
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2. Pseudo-Spheres: 

Pseudo-spheres are surfaces of revolution with constant Gaussian curvature. 

Let 1 be a curve with parametric representation xሬ⃗  (s) = (r(s), 0, h(s)) and r(s) > 0 

ݏ) ∈ ܫ ⊂ ℜ), where s is the arc length along ߛ and ܴܵ be the surface of revolution 

generated by the rotation of ߛ about the x3-axis. Putting ݑl = s and writing 2ݑ for the 

angle of rotation, we obtain the following parametric representation for ܴܵ on D = 

I ×  (ߨ0,2)

൯ݑ൫ݔ⃗ = ൫ݎ(ݑଵ) cos ,ଶݑ (ଵݑ)ݎ sin ଶݑ , ℎ(ݑଵ)൯൫(ݑଵ (ଶݑ, ∈  ൯            (5.19)ܦ

Omitting the argument ݑଵ, we find that the fundamental coefficients of ܴܵ are 

given by ݃ଵଵ= (r')2+(h')2=  1, since ݑl is the arc length along ߛ,݃ଵଶ= 0, ݃ଶଶ = r2, 

L11= r' h"−r" h', L12= 0 and L22= rh'. So the Gaussian curvature of RS is given by K 

 = ଵ(r'h" −r"h'). Since (r')2+ (h')2= 1 implies r'r" + h'h" = 0, we obtain Kିݎ =

  ଵ((r')2 + (h')2)r" = −r"/r and consequentlyିݎ− = ଵ(r'h"h' −r"(h')2)ିݎ

(ଵݑ)ᇱᇱݎ + (ଵݑ)ݎ(ଵݑ)ܭ = 0.                                          (5.20) 

first, we assume K = 0. Then r = c1u1 + c2 with the constants ܿଵ and ܿଶ. If we 

choose ܿଵ = 0 then h' = ±1 implies h = ± ul + d with some constant d, and we obtain 

a circular cylinder. If ܿଵ ≠ 0  then (r')2 + (h')2= 1 implies |ܿଵ| ≤ 1. For |ܿଵ| = 1, we 

have h' ≡ 0, hence h ≡const, and we obtain a plane. For 0<|ܿଵ|< 1 and a suitable 

choice of the coordinate system, we have r = ܿଵݑଵ and h = d1ul for some constant dl 

with ܿଵଶ + ݀ଵଶ = 1, and we obtain a circular cone.  

Let K ≠ 0. Then we may assume K = ±1.  
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Let K = 1. Then the general solution of (5.20) is given by r(ul) = C . cos (u1 + ݑଵ). 

By a suitable choice of the arc length, we may assume that ܥ >  0 and ݑଵ= 0. Now 

(r')2+ (h')2= 1 implies  

ℎ(ݑଵ) = ∫ඥ1 − ଶܥ sinଶ(ݑଵ)݀ݑଵ.                                        (5.21) 

      The choice ܥ =  1 yields the unit sphere. For ܥ ≠  1, the integral in (5.21) is 

elliptic. It exists on (−2/ߨ ,2/ߨ) if ܥ <  1, on (−ܽܿݎ sin(I/C), ܽܿݎ sin(I/C) if 

< ܥ 1.  

finally, let K = −1. Then the general solution of (5.21) is given by r( u1) C1 

cosh ଵ + C2 sinhݑ   ଵ. In the special case C1 = 1/2 = −C2, we obtainݑ

(ଵݑ)ݎ = ݁ି௨భܽ݊݀ ℎ(ݑଵ) = නඥ1 − ݁ିଶ௨భ ଵݑ ݎ݂ ଵݑ݀ > 0. 

 

Figure 5.1: Pseudo-spheres  

K = 1, C = 0.75; K = 1, C = 1.5; and K = −1,C1 = 1/2 = −C2. 

 

3. Exponential Cones: 



112 
 

Let ℎ: ℂ → ℂ be an analytic function and ݂ =  |ℎ| : ℜଶ → ℜ . We write             

ݖ = ଵݑ  +  ଶ. Then the function ℎ generates an explicit surface with theݑ.݅ 

parametric representation  

൯ݑ൫ݔ⃗ = ൫ݑଵ, ,ଶݑ ,ଵݑ)݂ ,ଵݑ)ଶ)൯൫ݑ (ଶݑ ∈ ℜଶ൯                          (5.22) 

              in a very natural way, and represents the modulus of ℎ. A classification of 

surfaces of this kind with Gaussian curvature ܭ of constant sign. The surfaces 

generated by the function ℎ defined by ℎ(ݖ)  =  andߙ ఈା.ఉ for real constantsݖ 

ߙ are called exponential cones. Here the casesߚ ≥ 1 and a < 1 correspond to K > 0 

and K < 0, respectively. Using the representation of complex numbers by polar 

coordinates z = ݁ߩథfor 0 <ߩ and ߶ ∈  ఈ݁ିఉథ. We putߩ =(ݖ)݂ we obtain ,(ߨ0,2)

u1=   are given by(ߨ0,2)× and u2= ߶. Then exponential cones on D = (0,∞) ߩ

൯ݑ൫ݔ⃗ = ൫ݑଵ cos ,ଶݑ ଵݑ sin ,ଶݑ ଵݑ)ఈ݁ିఉ௨మ൯൫(ଵݑ) (ଶݑ, ∈  ;൯ܦ

are special cases of screw surfaces given by  

൯ݑ൫ݔ⃗ = ଵݑ) cosݑଶ ଵݑ, sin ,ଶݑ ,ଵݑ)݂  ଶ)).                      (5.23)ݑ

since the first and second fundamental coefficients of exponential cones are  

   ݃ଵଵ = 1 + ଶఈିଶఉ௨మ(ଵݑ)ଶߙ ,   ݃ଵଶ = ଶఈିଶఉ௨మ(ଵݑ)ߚߙ− , 

                                               ݃ଶଶ = ݑଶ൫(ଵݑ) +  ,ଶఈିଶ݁ିଶఉ௨మ൯(ଶݑ)ଶߚ

                                                 ݃ = ଶ൫1(ଵݑ) + ଶߙ) +  ଶఈିଶ݁ିଶఉ௨మ൯(ଵݑ)ଶ)ଶߚ

Lଵଵ =
1

ඥg
α(α − 1)(uଵ)ିଵeିஒ୳మ ,      
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 Lଵଶ =
1

ඥg
(1 − α)β(uଵ)ିଵeିஒ୳మ , 

Lଶଶ =
1

ඥg
(α + βଶ)(uଵ)ାଵeିஒ୳మ , 

we obtain, putting ߜ = ଶߙ + ߛ  ݀݊ܽ  ଶߚ = ߙ) −  ,ߜ(1

൯ݑ൫ܭ = ߙ) − ߜ(1
ଶఈ݁ିଶఉ௨మ(ଵݑ)

݃ଶ
= ߛ

ଶఈିସ݁ିଶఉ௨మ(ଵݑ)

൫1 + ଶఈିଶ݁ିଶఉ௨మ൯(ଵݑ)ߜ
ଶ 

and similarly  

൯ݑ൫ܪ = ߜ
ఈିଶ݁ିఉ௨మ൫1(ଵݑ) + ଶఈିଶ݁ିଶఉ௨మ൯(ଵݑ)ߙ

2൫1 + ଶఈିଶ݁ିଶఉ௨మ൯(ଵݑ)ߜ
ଷ/ଶ . 

 

Figure 5.2: Exponential cone, 

 .and its Gaussian and mean curvature 0.1− = ߚ ,1- =ߙ
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Figure 5.3: Exponential cone, 

 .and its Gaussian and mean curvature 0.05− = ߚ ,0.5 =ߙ

 

Figure 5.4: Exponential cone, 

ߙ  =  .and its Gaussian and mean curvatureߚ,2

 

4. Minimal surfaces : 
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Surfaces with identically vanishing mean curvature are called minimal 

surfaces. It is well known (cf. e. g. that if S is a surface the boundary of which is a 

closed curve such that the surface area of S is less than or equal to the surface area 

of any other "neighboring" surface with the same boundary then S has identically. 

vanishing mean curvature.  

The mean curvature of surfaces of revolution with parametric representation 

(5.19) is given by H = (r2(r'h"−r"h')+rh')/(2r2). Now H = 0 is equivalent with    

r(r' h" −r" h') + h'= 0. If h'= 0, we obtain a plane. If h''= 0 then, multiplying by h' 

and using h"h'= −r'r" and (r')2+(h')2= 1, we obtain r"r = (h')2. This yields (r2)" = 2, 

since r"r = 1/2(r2)"−(r')2 and (r')2+ h')2= 1. By a suitable choice of the parameter 

u1
, we obtain r(u1) = ඥ(ݑଵ)ଶ + ܿଶ(u1∈ ℝ) where c is a constant. Ifc ≠ 0, then r'(u1) 

= u1 since r(u1) ≥ 0, and then h'(u1) = 0, and we obtain a plane. If c ≠0, then r'(u1) 

= u1((u1)2+ c2)-1/2, and (r/)2 + (h')2= 1 yields (h')2= c2((u1)2 + c2)-1, hence h'(u1) = 

|ܿ|/ඥ(ݑଵ)ଶ + ܿଶ. Therefore h( u1) = C. arcsinh(1ݑ/ܿ) for a suitable choice of the 

coordinate system. Putting u*1 = h(u1) and u*2= u2, we obtain  

൯∗ݑ൫ݔ⃗ = (|ܿ| cosh ଵ∗ݑ cosݑ∗ଶ, |ܿ| cosh ଵ∗ݑ sin ଶݑ  (ଵ∗ݑ,

൫(ݑ∗ଵ, (ଶ∗ݑ ∈ ℜ ×  .൯(ߨ0.2)

Thus the minimal surfaces of revolution are planes and catenoids.  

Another minimal surface is Scherk's surface, given by a parametric representation 

൯ݑ൫ݔ⃗ = ቆݑଵ, ,ଶݑ logቆ
cosݑଶ

cos ଵݑ
ቇቇ ቀ(ݑଵ (ଶݑ, ∈ ℜቁ 

where, for k, j∈ ℤ 7L, with k + j∈ 2· ℤ 
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ℜ= ܫ × ܫ = ൬ቀ݇ − ଵ
ଶ
ቁ ,ߨ ቀ݇ + ଵ

ଶ
ቁ ൰ߨ × ൬ቀ݆ − ଵ

ଶ
ቁ ,ߨ ቀ݆ + ଵ

ଶ
ቁ  .൰ߨ

It is easy to see that the Gaussian curvature of Scherk's minimal surface is given by 

K( u1, u2) = - cos2u1 cos2u2(1− sin2u1sin2u2)-2. 

 

Figure 5.5: Scherk's minimal surface and its Gaussian curvature. 

5. Surfaces generated by the modulus of analytic functions: 

The Gaussian and mean curvatures of surfaces with parametric representa-

tion (5), where f = |h| and h is an analytic function, are given by  

ܭ =
|ℎᇱᇱ|ଶ

݃ଶ
ቆܴ݁ ቆ

(ℎᇱ)ଶ

ℎᇱᇱℎ
ቇ − 1ቇ ݃  ݁ݎℎ݁ݓ   = 1 + |ℎᇱ|ଶ    ܽ݊݀ 

ܪ =
2

݃
ଷ
ଶ

|ℎ| ൭ቤ
ℎᇱଶ

ℎ
ቤ ݃ − |ℎᇱᇱ|ଶܴ݁ ቆ

(ℎᇱ)ଶ

ℎᇱᇱℎ
ቇ൱. 

we consider the function h defined by h(z) = 1/sin ߨz (z ∈ ℤ), and put w = w(z) = 

cos 2ݖߨ and ߰(ݖ)= (h'(z))2(h''(z)h(z))-1. Since 2cos21 = ݖߨ + cos 21 =ݖߨ + wand 2 

sin21 = ݖߨ - cos 21 =ݖߨ - w, we obtain  
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ℎᇱ(ݖ) = ߨ−
cosݖߨ
sinଶ ݖߨ

, 

ℎᇱᇱ(ݖ) = ଶߨ
sinଶ ݖߨ + 2 cosଶ ݖߨ

sinଷ ݖߨ
=
ଶߨ

2
ݓ + 3

sinଷ ݖߨ
 ݏ ݀݊ܽ        ,

߰ =
ଶߨ2 cosଶ ݖߨ
ݓ)ଶߨ + 3)

=
ݓ + 1
ݓ + 3

. 

Therefore  

ℜ݁൫߰(ݓ)൯ − 1 = ℜ݁(߰(ݓ) − 1) = ℜ݁ ൬
ݓ + 1
ݓ + 3

− 1൰ = −2ℜ݁ ൬
1

ݓ + 3
൰ 

= −൬
1

ݓ + 3
+

1
ݓ + 1

൰ = −2
1
2 ഥݓ) + (ݓ + 3

ݓ| + 3|ଶ = −
2൫3 + ℜ݁(ݓ)൯

ݓ| + 3|ଶ . 

Furthermore  

|ℎᇱᇱ|ଶ =
ସߨ

4
ݓ| + 3|ଶ

| sinଶ ଶ|ݖߨ
(ݓ)߶ ℎݐ݅ݓ ݀݊ܽ, = ݓ| − 1|ଶ + ݓ|ߨ2 + 1| 

݃ = 1 + |ℎᇱ|ଶ = 1 +
ଶߨ

2
|1 + ଶ|ݓ

|sinଶ  ଶ|ݖߨ

=
1

4|sinଶ ଶ|ݖߨ
(|2 sinଶ ଶ|ݖߨ + ݓ|ଶߨ2 + 1|) =

1
4|sinଶ ߶ଶ|ݖߨ

 ,(ݓ)

and so  

ܭ =
|ℎᇱᇱ|ଶ

݃ଶ
ℜ݁(߰(ݓ) − 1) =

ݓ|ߨ4 − 1|൫3 + ℜ݁(ݓ)൯
߶ଶ(ݓ)

. 

Finally putting  
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൯ݑଵ൫ݓ = ℜ݁(ݓ) = cosh ଶݑߨ2 cos  ,ଵݑߨ2

൯ݑଶ൫ݓ = ݓ| − 1| =
1
√2

(cosh ଶݑߨ4 + cos ଵݑߨ4 + ൯ݑଵ൫ݓ4 + 2)
ଵ
ଶ, 

൯ݑଷ൫ݓ = ݓ| + 1| =
1
√2

(cosh ଶݑߨ4 + cos ଵݑߨ4 + ൯ݑଵ൫ݓ4 + 2)
ଵ
ଶ 

       and ݓସ൫ݑ൯ = (ݓ)߶ = ቀݓଶ൫ݑ൯ቁ
ଶ

+  ݁ݒℎܽ ݁ݓ    ,൯ݑଷ൫ݓଶߨ2

൯ݑ൫ܭ = −
ସగమ௪మ൫௨൯ቀଷା௪భ൫௨൯ቁ

ቀ௪ర൫௨൯ቁ
మ                                                                   (5.24) 

similarly, putting  

൯ݑହ൫ݓ = ቀݓଷ൫ݑ൯ቁ
ଶ

൯ݑ൫ݓ, = ൯ݑସ൫ݓ൯ݑଷଶ൫ݓ −  ݀݊ܽ   ൯ݑହ൫ݓଶߨ2

݂൫ݑ൯ = |ℎ(ݖ)| = √ଶ
√ୡ୭ୱ୦ଶగ௨మିୡ୭ୱଶగ௨భ

,                            (5.25) 

    We represent the Gaussian and mean curvatures of exponential cones and ex-

plicit surfaces as screw surfaces and explicit surfaces by putting f = K and f = H in 

(5.23) and (5.22), respectively.  
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Figure 5.6: Lines of constant Gaussian and lines of constant mean curvature. 

 

Figure 5.7: Gaussian curvature given by (5.24). 
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Figure 5. 8: Mean curvature given by (5.25). 

(5.3) Applications to Hamiltonian Systems 

We now apply the classifications of the previous section to Hamiltonian systems 

defined in particular Riemannian spaces. 

1. Two-dimensional Euclidean space E2:  

In this case R1212 = 0, which entails 

ߙଶܧ − ߚଵܧ = ଶߙ +  .ଶߚ

Consider now the following three separable cases (SC), defined with respect to the 

functions α and β. 

ߙ:ܫܥܵ = ߚ = 0. 
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in this case the separable coordinates are obviously Cartesian and R1212 = 0, is 

automatically satisfied. 

Solving Eq. (4.75) we obtain that the metric can be written as follows: 

dݏଶ + dݑଶ +  ଶ,                                    (5.26)ݒଶdݑ

which we immediately recognize as the Euclidean metric in polar 

coordinates.ܵߚߙ:ܫܫܫܥ ≠ 0. 

Employing (4.44.) (αβ ≠ 0,R1212 = 0)to find the functions A(u) and B(v) defining 

the formula for the metric of a Liouville surface, we arrive at the following 

equation.  

(ݑ)ܣ) + (ݑ)ᇱᇱܣ)((ݒ)ܤ + (ݒ)ᇱᇱܤ = ൫ܣᇱ(ݑ)൯
ଶ

+ ൫ܤᇱ(ݒ)൯
ଶ

, 

which after taking partial derivatives reduces to 

ᇱᇱᇱ
ᇱ(௨)

+ ᇱᇱᇱ(௩)
ᇱ(௩)

= ݇ଶ                                (5.27) 

for some constant k ≥ 0. Solving (5.27) separately for k = 0 and k ≠ 0 yields the 

metrics 

ଶݏ݀ = ଶݑ) + ଶݑ݀)(ଶݒ +  ଶ),                             (5.28)ݒ݀

and 

ଶݏ݀ = ܽଶ(coshଶ(ݑ) − cosଶ(ݒ))(݀ݑଶ +  ଶ),                  (5.29)ݒ݀

Respectively, where a is a scaling parameter. We note that the expressions (5.28) 

and (5.29) represent the Euclidean metric in parabolic and elliptic–hyperbolic 

coordinates, where a represents half the distance between the foci. Hence, we have 
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extracted the four separable systems of coordinates in the Euclidean space by 

employing the method of moving frames. 

The corresponding Killing tensors, second first integrals and potential functions 

can be recovered by making use of the formulas derived in Section (4.5). 

2. Surfaces of rotation: 

A surface of rotation is the surface generated by the rotation of a plane curve C 

around an axis in its plane. If C is parameterized by the equations ρ = ρ(u) and z = 

z(u), the position vector of the surface of rotation is r = {ρ(u) cos v, ρ(u) sin v, 

z(u)}, where u is the parameter of the curve C, ρ is the distance between a point on 

the surface and the axis z of rotation and v is the angle of rotation, which is the 

ignorable (cyclic) coordinate. The metric of the surface of rotation is  

ଶݏ݀ = ଶ(ᇱߩ)) + ଶݑ݀(ଶ(ᇱݖ) +  ଶ.                            (5.30)ݒଶ݀ߩ

Clearly, the metric (5.30) can be reduced to the form (4.67) by an appropriate 

coordinate transformation. Once the curvature ℜ 1212(u) is known, the function(s) 

g(u) and the corresponding 

metric(s) may be recovered from (4.75) and vice versa. Consider an example. The 

metric 

ଶݏ݀ = ܽଶ݀ݑଶ +\ℓଶ ቀ1 + 
ℓ

cos ቁݑ
ଶ
 ଶ                          (5.31)ݒ݀

defines the surface of a two-dimensional torus T 2, where a and ℓ  are the radii of 

the rotating and axial circles, respectively. We note that in this paper we do not 

consider global properties of two-dimensional pseudo-Riemannian manifolds; 

hence here T 2 is not a topological torus. Locally, the metric (5.31) yields one 

system of separable coordinates with g(u) = ℓ(1 + (a/ℓ) cos(u/a),                        
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ℜ1212 = cos(u/a)/(aℓ+ a cos(u/a)) and the other quantities as in Case II of 

Section(4.3) corresponding to the given g(u). 

3. Surfaces of constant curvature: 

In this section, we assume the curvature R1212 = ߳ܽଶ, where ߳= ±1 and a >0 

is constant. Let us consider again the two cases: α = 0, β ≠ 0 and αβ ≠ 0. 

Case I: α = 0, β ≠ 0. In this case the coordinate v is ignorable (cyclic). Solving 

(4.75) for a(v) = const, yields:  

(ݑ)݃ = ܿଵ cos ݑܽ + ܿଶ sin ݑܽ = ܿ̃ଵ cosܽݑ + ܿ̃ଶ
1
ܽ

sinݑ,  ߳ = 1, 

(ݑ)݃ = ܿଷ݁௨ + ܿସ݁௨ = ܿ̃ଷ coshܽݑ + ܿ̃ସ
1
ܽ

sinh ,ݑܽ  ߳ = −1. 

Now varying the constants of integration we recover four distinct solutions for g(u) 

corresponding to the following metrics.  

ଶݏ݀ = ଵ


ଶݑ݀) + sin ݑܽ ߳        ,(ଶݒ݀ = 1,                         (5.32) 

ଶݏ݀ = ଶݑ݀ + coshଶ ݑܽ ߳      ,ଶݒ݀ = −1,                         (5.33) 

ଶݏ݀ = ଶݑ݀ + ቀୱ୧୬୦௨


ቁ
ଶ
 ଶ,                                          (5.34)ݒ݀

ଶݏ݀ = ଶݑ݀ + ݁ିଶ௨݀ݒଶ.                                                 (5.35) 

using the explicit expression for the function g(u) above and the formulas (4.69), 

(4.70) and (4..72) we can write down in each case the corresponding potentials, 

Killing tensors and second first integrals.  

Case II: αβ ≠ 0. Again, assume ℜ 1212 = ߳ܽଶ. Then (4.89) reads 
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ܣ) + ᇱᇱܣ)(ܤ + (ᇱᇱܤ − ଶ(ᇱܣ) − ଶ(ᇱܤ) = −2߳ܽଶ(ܣ +  ଷ,         (5.36)(ܤ

where A = A(u) and B = B(v). Eq. (5.36) can be separated as follows: 

′′′ܣ
′ܣ

+ 12߳ܽଶܣ = −
ᇱᇱᇱܤ

ᇱܤ
− 12߳ܽଶܤ =  .ߣ

Hence, we arrive at the following two equations for A and B, respectively, 

ᇱᇱᇱܣ + 12߳ܽଶܣܣᇱ = ᇱᇱᇱܤ     ,ᇱܣߣ + 12߳ܽଶܤܤᇱ =  ᇱ.         (5.37)ܤߣ−

Assuming λ ≠ 0 and solving (5.37) with respect to u and v, we get 

ݑ݀± = ௗ

(ିସఢమయାఒమାଶℓାଶ)
భ
మ
,                         (5.38) 

ݒ݀± = ௗ

൫ିସఢమయିఒమାଶℓ෨ାଶ൯
భ
మ
,                       (5.39) 

where p3(x) = x3 + px + q with arbitrary coefficients p and q. Note that we have 

derived the metric (5.40) without solving (5.38) and (5.39) for A and B, 

respectively. Comparing the metrics (4.79) and (5.40) we see that the latter metric 

is not in the Liouville form and so we cannot complete the analysis by deriving the 

corresponding first integrals, potentials and Killing tensors. However, since the 

functions A and B and their derivatives in (5.38) and (5.39) essentially parametrize 

appropriate elliptic curves, clearly it can be done by expressing A and B in terms of 

the Weierstrass function ℘. Indeed, by appropriate linear transformations Eqs. 

(5.38) and (5.39) can be transformed into the corresponding form of the 

Weierstrass differential equation 

ቀௗ℘
ௗ௭
ቁ
ଶ

= 4℘ଷ − ݃ଶ℘− ݃ଷ,                                   (5.40) 
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thus leading to the following solutions for the functions A(u) and B(v), 

respectively: 

(ݑ)ܣ = ℘൫ܽ√−߳ݑ + ܿଵ;߱ଵ,߱ଶ൯ −  (5.41)                      ,ߣ

(ݒ)ܤ = ℘൫ܽ√−߳ݒ + ܿଶ;߱ଵ,−߱ଶ൯ +  (5.42)                   ,ߣ

where c1, c2, λ are arbitrary functions and ω1, ω2 define the periods of the 

meromorphic, doubly periodic function ℘. Now we can use the expressions (5.41) 

and (5.42) and the analysis of Section 3 to derive in each case the corresponding 

separable potential (formula (4.82)), Killing tensor (formula (4.81)), as well as the 

second first integral (formula (4.84)).  

Let x1, x2 and x3 be the roots of p3: p3(x) = (x −x1)(x −x2)(x −x3).Without loss of 

generality we impose the condition A > B. To extract all the metrics depending on 

different choices of x1, x2 and x3, we impose the condition that the right-hand side 

of (5.40) must be positive definite. When ߳= 1 there is only one possibility for A 

and B for which (5.40) is positive definite, while ߳= −1 leads to six different 

possibilities:  

ଵݔ < ܤ < ଶݔ < ܣ < ߳      ,ଷݔ = 1,                                          (5.43) 

ଵݔ < ଶݔ < ܤ < ଷݔ < ߳      ,ܣ = −1,                                      (5.44) 

ܤ < ଵݔ < ଶݔ < ଷݔ <  (5.45)                                                            ,ܣ

ܤ < ଷݔ < ଵݔ      ,ܣ =  ଶ,                                                           (5.46)ݔ̅

ଵݔ = ଶݔ < ܤ < ଷݔ <  (5.47)                                                           ,ܣ

ܤ < ଵݔ = ଶݔ < ଷݔ <  (5.48)                                                      ,ܣ

ܤ < ଵݔ = ଶݔ = ଷݔ <  (5.49)                                                            .ܣ
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we observe that these separable cases were first derived by Olevsky, while 

studying separability of Laplace–Beltrami’s operator in the spaces of constant 

curvature. He used Eisenhart’s (coordinate) approach to the problem. The moving 

frame method applied to two-dimensional separable Hamiltonian systems yields 

the same results without considering initially a particular system of coordinates. 

We note that the separable coordinates (A,B) are essentially the eigenvalues of the 

Killing tensor K1 in (4.81).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



127 
 

References 
[1] Abraham, R. and Marsden, J.E. 1978 Foundations of mechanics, Second edition,Westview Press. 

[2] Agrachev, A., Barilari, D. and Boscain, U. 2013 Introduction to Riemannian  

and Sub-Riemannian geometry (from Hamiltonian viewpoint), Preprint SISSA 09/2012/M. 

[3] Arnold, V.I. 1978 Mathematical methods of classical mechanics, Graduate Texts in Mathematics. 

[4] Berkshire, F. 1989 Lecture notes on Dynamics, Imperial College Mathematics Department. 

[5] Bluman , G.W , kumei .” SC1989, Symmetries and Differential Equations”. New York: Springer 

Verlag. 

[6] Boothby, W, M, “An Introduction to Differentiable Manifold and Riemannian Geometry” , Second 

Edition , Academic Press ( 1975). 

[7] Chorin, A.J. and Marsden, J.E. 1990 A mathematical introducton to uid mechanics, Third edition, 
Springer{Verlag, New York. 

[8] Daneri, S. and Figalli, A. 2012 Variational models for the incompresible Euler equation. 

[9] Evans, L.C. 1998 Partial di_erential equations Graduate Studies in Mathemati - cs, Volume 19, 
American Mathematical Society 

[10] Hydon , P. , J, “Application of Lie group to Differential Equations”, Cambridge University Press , 

2000 , U.S.A. 

[11] Ibragimov , N.H (ed) (1994) . CRC, “Handbook of Lie Group Analysis and Differential Equations”, 

Vol.1: Symmetries , Exact Solutions and Conservation , Law . Boca Raton : CRC Press. 

[12] Ibragimov , N.H (ed) (1995) . CRC, “Handbook of Lie Group Analysis and Differential Equations “, 

Vol.2: Symmetries , Exact Solutions and Conservation , Science . Boca Raton : CRC Press. 

[13]. Jost, J. 2008 Riemannian geometry and geometric analysis, Universitext, Fifth Edition, Springer. 

 

[14] Keener, J.P. 2000 Principles of applied mathematics: transformation and approximation, Perseus 
Books. 



128 
 

[15] Krantz, S.G. 1999 How to teach mathematics, Second Edition, American Mathematical Society. 

[16] Kibble, T.W.B. and Berkshire, F.H. 1996 Classical mechanics, Fourth Edition 

[17] Lee , J . , M , “Introduction to Smooth Manifolds”, Springer – Verlag New York, Lnc . , 2003 U.S.A.  

[18] Malham, S.J.A. 2014 Introductory uid mechanics, 

http://www.macs.hw.ac.uk/_simonm/fluidsnotes.pdf 

[19] McCallum, W.G. et. al. 1997 Multivariable calculus, Wiley. 

[20] Marsden, J.E. and Ratiu, T.S. 1999 Introduction to mechanics and symmetry, Second 

edition, Springer. 

[21]. Montgomery, R. 2002 A tour of subRiemannian geometries, their geodesics and appli- 

[22] cations, Mathematical Surveys and Monographs, Volume 91, American Mathematical 

Society. 

[23] Olver , P. , J . , “Application of Lie Group to Differential Equations” , Second Edition , Springer 

Verlag , 1993 , U.S.A. 

[24] E.K. Sklyanin, “Separation of variables”, New trends, Prog. Theor. Phys. Suppl. 118 (1995) 35–60. 

[25] L.P. Eisenhart, “Riemannian Geometry”, Princeton University Press, Princeton, NJ, 1926. 

[26] P.J. Olver, “Moving frames and joint differential invariants”, Regular Chaotic Mech. 4 (1999) 3–18. 

[27] E. Cartan, “Leçons sur la Géométrie des Espaces de Riemann”, Gauthier-Villars, Paris, 1951. 

[28] T. Levi-Civita, “Sulla integrazione della equazione di Hamilton–Jacobi per separazione di variabili”, 
Math. Ann. 59 (1904) 383–397. 

[29] L.P. Eisenhart, “Separable systems of Stäckel”, Ann. Math. 35 (1934) 284–305. 

[30] E.G. Kalnins, W. Miller Jr., “Killing tensors and variable separation for Hamilton–Jacobi and 
Helmholtz equations” , SIAM J. Math. Anal. 11 (1980) 1011–1026. 

 

[31] S. Benenti, “Orthogonal separable dynamical systems, in: Differential Geometry and its 
Applications”, Proceedings of the Fifth International Conference on Differential Geometry and its 
Applications, Opava, 1993, pp. 163–184. 



129 
 

[32] S. Benenti, “Inertia tensors and Stäckel systems in the Euclidean spaces”, Rend. Sem. Mat. Univ. 
Politec. Torino 5 (1992) 315–341. 

[33] A. Nijenhuis, “Xn−1-forming sets of eigenvectors”, Indag. Math. 13 (1951) 200–212. 

[34] I.M. Gel’fand, I.Ya. Dorfman, “Hamiltonian operators and algebraic structures related to them”, 
Funct. Anal. Appl. 13 (1979) 248–262. 

[35] “Notes on Cartan's Method of Moving Frames” (paper). 

[36] “A geometrical approach to the problem of integrability of Hamiltonian systems by separation of 
variables “(paper). 

[37] Mnahil M. Bashier and, Prof. Dr. Mohammed A. Bashier “On Integrability of 
Hamiltonian Systems”, Indian journal of Applied Research,May2016  

[38] Geometrical Formulation of Hamiltonian Mechanics 

by Mnahil M. Bashier and Prof. Dr. Mohammed A. Bashier(paper) 

      

                             

 

 


