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Abstract 
 

 

Throughout this research we have dealt with submanifolds of Euclidean space and 

with forms defined in open subsets of Euclidean space. 

This  approach has the advantage  of conceptual  simplicity ,one tends to be more 

comfortable dealing with supspaces of Rn than with arbitrary metric spaces. 

         Also we discussed some important ideas that are sometimes obscured by the 

familiar surroundings  
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  ملخصال
  
  

وتعریفات إقلیدس لفضاء   (Submanifolds)في ھذا البحث تعاملنا مع الفضاءات الجزئیة 

في البسیطة  یغ للمجموعات المفتوحة في ھذا الفضاء وھذا یقودنا للمییزات والمفاھیم بعض الص

 .والفضاء المتري  Rnالفضاء 

   ةالمألوف حوالأیضا تمت مناقشة بعض الأفكار المھمة التي قد لا تظھر في الأ
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Introduction 

 
In this research  we deal with submanifolds of  Euclidean space and with forms   

defines in Euclidean Space and it is orgenized as follows: 

Firestlly ,we present the k-dimensional analogues of curves and surfaces ,Also ,we 

discuss the notation of  K-dimensional volume of several objects.we study the 

integral of scalar functions over  a K- manifold with respect to a k-volume with 

some applications. 

In chapter  2  ,we introduced a product operation into the set of all tensors on 

Linear spaces,and we derive some properities of the alternative tensors. Also we 

define  the concept of permutations and the product operation  in the set of 

alternative tensors. 

  In chapter  3 ,we study tensors algebra in Rn, and introduce  the concept of tensor 

field  and differential forms,with some applications. 

  Finally ,we discuss additional conditions  for the K-form to be exact ,and we 

illustrated  that condition for  a K-form  W to be exact is the codition that W be 

closed is not in general sufficient. 

  Also we discuss differentiability of maps between differentiable manifolds with 

some applications. 
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Chapter (1) 
Introduction to manifold 

Section (1-1):- the Volume of aparallelopiped and parametrized  manifold  
 In the following  we will discuss  the ݇ −dimensional analogues of curves and 
surfaces; they are called ݇-manifolds in nR . And also we define a noti- 
on of ݇-dimensional volume for such objects.   
 Lemma (1-1-1):- Let W be a linear subspace of nR of dimension k .Then there is 
an orthonormal basis for nR whose first k   elements form a basis for W . 
                                              Proof    
  there is a basis naa ...1 for nR whose first k elements form  abasis for  W .There 
is a standard procedure for  forming from these vectors an orthogonal set of vectors 
ܾଵ … ܾ  such that for each i  ,the  vectors ibb ,...,1   span the same space as the   

vectors   iaa ...1 . It is called  the Gram-Schmidt process .  
we recall it here 
 Given  naa ...1 , we set  

11 ab     ,                          12122 bab                         and for general i   

11,2211 ...  iiiiiii bbbab                                            (  1 - 1  ) 

where the ji   are scalars yet to be specified. No matter what these scalars are, 
however , we note that for each j  the vector  aj equals a linear combination of the 

vectors jbb ,...,1 . Furthermore, for each j the vector ܾcan be written  as a linear 
combination of the vectors  ܽଵ … ܽ. These two facts imply that, for  each i ,

iaa ,...,1 and   ibb ,...,1 ; span the same subspace of nR . It also follows that the 

vectors nbb ,...,1  are   independent, for there are ݊ of them, and they span nR   as 
we have just noted. In particular, none of the ܾ can equal  0. 
 
Theorem (1-1-2) :- Let ܹ be a  k - dimensional linear subspace of nR   There is 

an orthogonal transformation ℎ : 
nR  →  nR  that carries  W onto  the subspace   

0kR     of nR  .  
                                             Proof 
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Choose an orthonormal basis nbb ,...,1 for nR such that the  first k basis elements 

kbb ,...,1 form a basis for W  Let    ݃: nR → nR   be the linear transformation 

(ݔ)݃   =  ℬ · where ℬ is the matrix with successive columns  nbb , ߵ ,...,1   · Then 
݃ is an orthogonal transformation, and   ݃(݁) = ܾ ; for all ݅. In particular,  ݃ 
carries   ܴ 0 ݔ , which has basis kee ,...,1    onto w  .  
 Theorem ( 1 – 1 -3):- There is au nique  function ܸ that assigns, to each 

k − ଵݔ  ݈݁ݑݐ …  of elements of nRݔ , a non-negative number such that: 

(1)      If    ℎ : 
nR   → nR    is an orthogonal transformation, then 

),...,())(),...,(( 11 kk xxVxhxhV                                                    (  1 - 2  ) 

   (2) If  kyy ...1   belong to the subspace ܴk x 0 , of n , so that                                      
ݕ = ൣ௭

 ൧                           for    ݖi   ∈   ܴk, then                      (  1 - 3  ) 
],...,[det[)...,( 11 kk zzyyV                                                                 (  1 - 4 )   

The function ܸ vanishes if and only if the vectors ݔଵ …    are dependent. Itݔ
satisfies the equation 

2/1
1 )].[det(),...( XXxxV tr

k                                                (  1 - 5  ) 

where ܺ is the ݊ by  k   matrix   ܺ =   [ kxx ...1 ] .We often denote   

 V( kxx ...1 )simply by V(X ) . 
                                                 Proof            
Given   ܺ = ]...[ 1 kxx , define                      ݐ݁݀ = (ܺ)ܨ(ܺt r · ܺ).  (  1 - 6  ) 

Step1. If nn RRh : is an orthogonal transformation, given by the equation 
xAxh .:)(  where ܣ is an orthogonal matrix, then  

· ܣ)ܨ  . ܣ)) ݐ݁݀ = (ܺ  ܺ)t r . (ܣ . = (ܺ · t rܺ)ݐ݁݀ = ((ܺ  (  7 - 1  )    .(ܺ)ܨ 
Furthermore, if ܼ ݅ݏ ܽ k k ݕܾ  ,ݔ݅ݎݐܽ݉  k ݕܾ ݊ ℎ݁ݐ ݏ݅ ܻ ݂݅ ݀݊ܽ  .ݔ݅ݎݐܽ݉ 

                              









0
z

yi                        

zzzzzF trtr 2det).det()
0

].0det([)( 



                   (  1 - 8 ) 

 Step 2:- It follows that ܨ is non-negative. For given kxx ...1  in
nR          
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let  W  be a k -dimensional subspace of nR containing them  Let ℎ(ݔ)  = · ܣ  ܺ    
be an orthogonal transformation  of nR  carrying W onto the subspace ܴ 0 ݔ. 
Then    ܣ ·  ܺ    has the form 

.ܣ                  ܺ = ൫௭
൯                                                               (  1 - 9 ) 

so that  .0det).()( 2  ZXAFXF  Note that ܨ(ܺ)  =  0 if and only  if 
the columns of Z  are dependent, and this occurs if and only if the vectors 

kxx ...,1    are dependent.  
Step 3. Now we define  ܸ(ݔ) =  ଵ/ଶ It follows from the computations   of((ݔ)ܨ)
Step 1  that ܸ satisfies conditions (1) and (2). And it follows from the computation 
of Step 2 that ܸ is uniquely characterized by these two conditions.   

Definition.(1 -1 -4):- If kxx ...1 are independent vectors in  nR    , we define the  

݇-dimensional volume of the parallelopiped ܲ = ܲ( kxx ...1 ) to be the  number ܸ(

kxx ...1 ), which is positive. 
EXAMPLE(1-1-5) :-  Consider two independent vectors ܽ and ܾ in  ℛଷ; let ܺ be 
the matrix ܺ =  [ܽ ܾ]. Then ܸ(ܺ) is the area of the parallelogram with  edges ܽ 
and ܾ. Let  ߠ be the angle between a and b, defined by the equation  then

 2222222 sin)cos1().det())(( babaXXXV tr 
 

(1 - 10  )            

Definition(1 -1 – 6):- Let kxx ...1  be vectors in nR  with ݇ ≤  ݊. Let ܺ be   the      

matrix    X = [ kxx ...1 ] · If I = (݅ଵ … ݅) is a ݇ −tuple of integers such that  1 ≤ i1 < 
i2 < · · · < ik  ≤ n, we call ܫ an ascending k-tuple from the set { 1 , . . . , ݊ } , and we 
denote by   

ଵ݅)ܺ      ݕܾ ݎ ଵ  orݔ … ݅) 
the ݇ by ݇ submatrix of ܺ consisting of rows  ݅ଵ … ݅  of ܺ .   
 Theorem (1  - 1  -7):- Let ܺ be an ݊ by ݇ matrix with ݇ ≤  ݊ . Then 

 

(ݔ)ܸ =  [ଵݔ ଶݐ݁݀ 
[]

ଵ/ଶ
 

(  1 - 11  ) 
where the symbol [ܫ] indicates that the summation extends over all ascending ݇-
tuples from the set { 1 , . . . , ݊ } . This theorem may be thought of as a Pythagorean 
theorem for ݇ −volume. It states that the square of the volume of a ݇-
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parallelopiped ܲ in nR  is equal to the sum of the squares of the volumes of the ݇-
parallelopipeds obtained by projecting ܲ onto the various coordinate ݇-planes of

nR .                                                                     
                                                   Proof 
Let ܺ have size ݊ by ݇.     Let  

           and       (ܺ · t r ܺ)ݐ݁݀ = (ܺ)ܨ
 

1
2det)( xxG

i
            (  1 - 12  ) 

Proving the theorem is equivalent to showing that ܨ(ܺ)  =   . ܺ for all (ܺ)ܩ 
 Step 1. The theorem holds when ݇ = = ݇ ݎ 1   ݊ . = ݇ ݂ܫ  1 , then ܺ is a  

column matrix with entries n ,...1   , say. Then         
= ଶ(ఐߣ)∑  = (ܺ)ܨ   (  13 - 1  )                                                              (ݔ)ܩ
If ݇ =  ݊ , the summation in the definition of ܩ has only one term, and                 
(ܺ)ܨ  = = ଶܺ ݐ݁݀   Step 2. If (  14 - 1  )                                                        .(ܺ)ܩ 

]...[: 1 kxxX   and the xi are orthogonal, then  
22

2
2

1 ...)( kxxxXF                                                             (  1 - 15  ) 
Step 3. Consider the following two elementary column operations, where   j≠ℓ:                                        
  
                 (1) Exchange columns j and ℓ. 
                 (2) Replace column ݆ by itself plus ܿ times column ℓ. 
We show that applying either of these operations to ܺ does not change the values 
of ܨ or ܩ. 
Given an elementary row operation , with corresponding elementary matrix ܧ , 
then ܧ ·  ܺ equals the matrix obtained by applying this elementary  row operation 
to ܺ . One can compute the effect of applying the corresponding  elementary 
column operation to ܺ by transposing ܺ , premultiplying   by ܧ , and then 
transposing back. Thus the matrix obtained by applying an  elementary column 
operation to ܺ is the matrix 

. ܧ )  ௧ݔ  )௧   =  ܺ . ௧ܧ                                                                  (  1 −  16 ) 
      It follows that these two operations do not change the value of ܨ . For 

.ݔ)ܨ (௧ܧ = det(ܧ. ௧ݔ . .ݔ (௧ܧ = (detE)(det(x௧ . x))(detE௧) = 
F(x)                                                                                            (  1 - 17  ) 

since det ܧ = ±1 for these two elementary operations.  
    Nor do these operations change the value of ܩ. Note that if one applies one of 
these elementary column operations to ܺ and then deletes all rows but kii ...1 the 
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result is the same as if one had first deleted all rows but kii ...1 and then applied the 
elementary column operation. This means that 
.ݔ)  ௧)ܧ = . ݔ    ௧ܧ
We then compute 
.ܺ )ܩ (௧ܧ =  ∑ . ݔ )ଶݐ݁݀ ௧) []ܧ =  ∑ ݔ )ଶݐ݁݀  . ௧) []ܧ =   18-1)(ݔ)ܩ
Step 4:-   In order to prove the theorem for all matrices of a given size, we show 
that it suffices to prove it in the special case where all the entries of  the bottom 
row are zero except possibly for the last entry, and the columns  form an 
orthogonal set. 

                Given ܺ , if the last row of ܺ has a non-zero entry, we may by 
elementary operations of the specified types bring the matrix to the form     











0...0
*

D                                                                               (  1 - 19  ) 

where λ≠ 0. If the last row of ܺ has no non-zero entry, it is already of  this form, 
with ߣ =  0. One now applies the Gram-Schmidt process to the  columns of this 
matrix. The first column is left as is. At the general step, the  ݆௧  column is 
replaced by itself minus scalar multiples of the earlier columns. The Gram-Schmidt 
process thus involves only elementary column operations  of type (2). And the 
zeros in the last row remain unchanged during the  process. At the end of the 
process, the columns are orthogonal, and the  matrix still has the form of ܦ. 
Step 5:-    by induction on ݊ . If ݊ =  1 , then ݇ =  1 and Step 1 applies. If 
݊ =  2, then ݇ =  1 or ݇ =  2, and Step 1 applies. Now suppose the theorem 
holds for matrices having fewer  than ݊ rows. We prove it for matrices of size n by 
݇. In view of Step 1 , we need only consider the case 1 <  ݇ <  ݊ . In view of 
Step 4, we may assume  that all entries in the bottom row of ܺ , except possibly for 
the last, are zero,  and that the columns of ܺ are orthogonal. Then ܺ has the form  









 

0...0
... 11 kk bbbX                                                   (  1 - 20  ) 

the vectors bi of ܴn-I are orthogonal because the columns of ܺ are orthogonal  
vectors in nR . For convenience in notation, let ܤ and ܥ denote the  matrices  

]...,[ 1 kbbB             and               ]...,[ 11  kbbC              (  1 - 21  ) 
We compute ܨ(ܺ) in terms of ܤ and ܥ as follows: 

)(...)( 222
1

2
1   kk bbbXF                                        

 by step (2) )()( 2 CFBF                                                              (  1 - 21  ) 
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 To compute ܩ(ܺ), we break the sum mation in the definition of ܩ(ܺ) into two 

parts, according  to the   value of   ki   . We have 

  



nini kk

XXXG 1
2

1
2 detdet)(                             (  1 - 22  ) 

Now if    )...( 1 kiii   is an ascending ݇-tuple with ݅  <  ݊, then ଵܺ =  ଵ.  Henceܤ 
the first summation in (1 - 22  ) equals (ܤ)ܩ. On the other hand, if ݅ =  ݊ , one 
computes    

    ),...,(det),,....,((det 111 1 
 kiiCniiX

k
                         

It follows that the second summation in (1-22) equals . ߣଶ(ܥ)ܩ. Then 
(ܺ)ܩ = (ܤ)ܩ  +  (  23 - 1  )                                              . (ܥ)ܩ ଶߣ  

The induction hypothesis tells us that (ܤ)ܨ  = (ܥ)ܨ and (ܤ)ܩ   =     It . (ܥ)ܩ 
follows that                  ܨ(ܺ)  =    .(ܺ)ܩ 

Definition:- (1 -1 - 8):- Let ݇ ≤ ݊. Let ܣ be open in ℛk , and let  
nRA:   

be a map of class ܥr(1 ≤ ݎ ) . The set ܻ = ∝  ,∝ together with the map ,(ܣ)
constitute what is called parametrized-manifold, of dimension ݇. We denote  this 
parametrized-manifold by ∝ܻ; and we define the (݇-dimensional) volume of ܻ∝ by 
the equation 

 ),()( 
A

DVv                                                                  (  1 - 24  ) 

  provided the integral exists. 
                        Let us give aplausibility argument to justify this definition of 
volume. Suppose ܣ is the interior of a rectangle ܳ in ܴ , and suppose 

nRA:  can be extended to be of class ∁r in a neighborhood of ܳ . Let 
ܻ = ∝  .(ܣ ) 
             Let ܲ be apartition of ܳ. Consider one of the subrectangles                           

],[,...,],[ 111 kkk haahaaR                                              (  1 - 25  ) 
determined by ܲ. Now ܴ is mapped by ∝ onto a "curved rectangle" contained  in ܻ. 
The edge of ܴ having endpoints ܽ and ܽ +  ℎ݁ is mapped by ∝ into acurve in ܴ 
; the vector joining the initial point of this curve to the final point  is the vector           

)(( aeha ii                                                                    
Afirst-order approximation to this vector is, as we know,thevector

iiiii hxehaDv )./().(                                              (  1 - 26  ) 
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    figure (1-1)            
 It is plausible therefore to consider the ݇-dimensional parallelopiped ܲ whose  
edges are the vectors ܸ to be in some sense afirst-order approximation to the 
"curved rectangle" ∝ (ܴ). See Figure (  1-1)  . The  
k-dimensional volume of ܲ is the number      

)().(()...).(/),...,/(),...( 111 RvaDVhhxxVvvV kkk    
                                                                                                    (  1 - 27  ) 

When we sum this expression over all subrectangles ℛ, we obtain a number which 
lies between the lower and upper sums for the function ܸ(ܦ∝) relative to the 
partition ܲ. Hence this sum is an approximation to the integral  

),(
A

DV   

the approximation may be made as close as we wish by choosing an appropriate 
partition ܲ. 

 Definition(1 -1 - 9):- Let ܣ be open in ℛk ; let
nRA:   be of class ∁r ; 

letY =  ∝ (A). Let ݂ be a real-valued continuous function defined at each point of 
Y. We define the integral of ݂ over Y∝ , with respect to volume, by  the equation 

    )()( 






A

DVffdv                                                   (  1 - 28  ) 

 provided this integral exists. 
Here we are reverting to "calculus notation" in using the meaningless symbol dV  
to denote the "integral with respect to volume." Note that in this notation , 

  





 dVv )(                                                                            (  1 - 29  ) 

We show that this integral is "invariant under reparametrization." 
Theorem (1 -1 - 10):-    Let BAg :    be a diffeomorphism of open sets  in 

ℛk . Let   
nRB :  be a map of class ∁r; let )(B    Let g   
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then
nRA:  and Y = ∝( A ) . If ݂ : Y → ܴ is a continuous function, then ݂ is 

integrable over    Yα  if and only if it is integrable over   ; in this  case    

 





dvfdvf                                             (  1 - 30 ) 

In particular,     )()(   vv                                                  
 

figuer(1-2)             
                                      Proof 
 We must show that 

)(()()()(  DVfDVfB
A

  

                                         
(  1 - 31  ) 

 where one integral exists if the other does . See Figure   (1-2 ).The change of 
variables theorem tells us that   

)det)()()(()()( DggDVgfDVf
A

 

            (1 - 32  ) 

We show that      )()det)((  DVDggDV                                             (  1 - 33 ) 

EXAMPLE (1 -1 - 11):- Let ܣ be an open interval in ܴ1 , and let 
nRA:

be a map of class ∁r. Let ܻ = ∝  Then ܻ∝ is called a parametrized-curve in ℛn .(ܣ)
and its 
1 - dimensional volume is often called its length. This length is given by the 
formula 

                         (  1 - 34 ) 
since D∝ is the column matrix whose entries are the functions ݀ߙ ⁄ݐ݀     
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 Theorem(1 -1 - 12):- Let ܳ be a rectangle in ℛ 2 and let   
nRA:   be a 

map of class ∁defined in an open set containing   ܳ  . Given ߝ >  there is a , 
< ߜ  0 such that for every partition ܲ of ܳ of mesh less  than ߜ, 

  
Q

DVpA )()(
                                                             

 
                        figure  ( 1-3) 

 
 
 
 

Proof 

(a) Given points  61...xx     of Q, let 

   

















)()(
)()(
)()(

)...(

632331

522221

412111

61

xDxD
xDxD
xDxD

xxD





                 (  1 - 35 ) 

Then ܦ∝  is just the matrix ܦ∝ with its entries evaluated at different points of ܳ. 

Show that if ℛ is a subrectangle determined by ܲ, then there are points 61...xx of 
ℛ such that 

)())....((
2
1)(( 611 RvxxDVRv                                      (  1 - 36 )  
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(b) Given ε > 0, show one can choose δ > 0 so that if ܺi, ݕi ε  ܳ  with 
6,...,1 iforyx ii     then 

  ))....(())....(( 6161 yyDVxxDV  
Definition (1 -1 - 13) :-Let   ߢ > Ο. Suppose that ܯ is a subspace of n .   
having the following property: For each ߝΜ , there is a set ܸ containing  that is 
open in ܯ , a set ܷ that is open in n .  and a continuous map ∝: ܷ → ܸ  carrying 
ܷ onto ܸ in a one-to-one fashion, such that: 
                                           ( 1) a is of class  ∁ . 
ଵିߙ      (2)                                            ∶ ܷ →  .is continuous ߥ
 .ܷ ߳  ݔ has rank ݇ for each (ݔ)ܽܦ (3)                                          
Then ܯ is called a ݇-manifold without boundary in n .   , of class ∁. The map ∝
 is called a coordinate patch on ܯ about . 
EXAMPLE (1 -1 - 14):-Consider the case ݇ = 1 . If ∝ is a coordinate patch 
on ܯ, the condition that ܦ∝ have rank 1 means merely that D∝≠Ο . This condition 
rules out the possibility that ܯ could have "cusps" and "corners." For example, let 
ܴ:ߙ → ܴ ଶ   be given by the equation      ∝(t) = ( ݐଷ,  be the  image ܯ ଶ), and letݐ
set of  ∝. Then ܯ has ܽ cusp at the origin. (See Figure (1-4) Here ∝ is of classܥஶ 
and  ∝ିଵ is continuous, but ܦ∝ does not have rank 1 at ݐ =  . 
 

 
                                                                                              Figure(1-4 ) 
Similarly, let  ߚ: ܴ → ܴଶ be given by (ݐ)ߚ = ,   ଷݐ)  ଷ|), and let ܰ be the image ݐ|
set of ߚ. Then ܰ has a corner at the origin. (See Figure (1-5  ) Here    

   
                                                                                                 Figure(1-5) 
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 does not have ߚܦ ଵ is continuous , butିߚ  and (as you can check) 2ܥ is of class ߚ
rank  1 at  ݐ =  .ߧ 
Definition(1 -1 - 15):-  Let ܵ be a subset of ܴk ; let ݂: ܵ → ܴn. We say that ݂ is  
of class ܥr on ܵ if ݂ may be extended to a function ݃ : ܷ  →  n .  that is of class 
 .ܵ r  on an open set ܷ of ܴk containingܥ

Lemma (1 -1 - 16):-Let ܵ be asubset of ܴk; let ݂ ∶  ܵ →  nR If for each ݔ ߳ ܵ, 

there is a neighborhood  ௫ܷ  of ݔ and a function ݃௫ ∶ ௫ܷ   → nR . of class ܥr that 
agrees with݂ on ௫ܷ  ∩  ܵ, then݂ is of class ܥ on ܵ. 
                                       Proof 
 Cover ܵ by the neighborhoods ܷx ; let ܣ be the union of these neighborhoods ; let 
{ ∅ } be a partition of unity on ܣ of class ܥr dominated by  the collection {ܷx} · 
For each ݅, choose one of the neighborhoods ܷx containing the support of ∅;, and 
let ݃  denote the ܥr function݃௫: ௫ܷ → ܴ. The ܥr function   ∅ ݃: ௫ܷ → ܴ 
vanishes outside a closed subset of ܷx; we extend it to a ܥr function  ℎ; on all of ܣ 
by letting it vanish outside ܷx. Then we define     

(ݔ)݃  =  ℎ

ஶ

ୀଵ

 (ݔ)

(  1 - 37 ) 
 for each ܣ ߳ ݔ. Each point of ܣ has a neighborhood on which ݃ equals afinite sum 
of functions ℎ; thus ݃ is of class ܥr on this neighborhood and  hence on all of ܣ. 
Furthermore, if ݔ ߳ ܵ, then 
            ℎ(ݔ) =  ∅ (ݔ)  ݃ (௫) = ∅݂(ݔ) ݂(ݔ)                         (  38 - 1 ) 
for each i for which  ∅୧(x)≠ ο. Hence if x ϵ S, 

(ݔ)݃ =   ߶(ݔ)
ஶ

ୀଵ

(ݔ)݂ =  (ݔ)݂

(  1 - 39 ) 
 Definition(1 -1 - 17):-                 Let Hk denote upper half-space in Rk , 
consisting of those ݔ ߳ ܴ for which ݔk>o . Let ܪ

ା denote the open upper half-
space,consisting of those ݔ for which ܺ >  We   shall be particularly interested  ߧ
in functions defined on sets that are open in  ܪ  but not open in ܴ . In this 
situation , we have the following useful result: 
Lemma (1 -1 - 18):-Let ܷ be open in  ܪ but not in  ܴ ;  ߙ: ܷ → ܴ be of class 
→ ′ܷ :ߚ  r . Letܥ ܴ be a ܥr extension of a defined on an open set ܷ′ of ܴk . Then 
for ݔ ߳ ܷ , the derivative (ݔ)ߚܦ depends only  on the function  ∝ and is 
independent of the extension  ߚ. It follows that  we may denote this derivative by 
ܦ ∝  .without ambiguity (ݔ)
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                                                  Proof  
Note that to calculate the partial derivative   ఋఉ

ఋ௫ೕ
 at ݔ, we form the difference 

quotient     ൣߚ൫ݔ + ℎ൯ −  ൧/ℎ  and take the limit as ℎ approaches 0. For(ݔ)ߚ 
calculation purposes, it suffices to let ℎ approach 0 through positive values. In that 
case, if ݔ is in  ܪ then so is ݔ +  ℎ ݁  . Since the functions ߚand ∝ agree at points 
of ܪ , the value of (ݔ)ߚܦ depends only on a. See   Figure ( 1-6 )  

    
                                                                                            Figure (1-6)  
Definition(1 -1 - 19):-                   Let ݇ > ܱ . A ݇-manifold in ܴ of class ܥr is 
a subspace ܯ of ܴ having the following property: For each ܯ ߳  , there is an 
open set ܸ of ܯ containing , ܽ set ܷ that is open in either ܴk or ܪk , and a 
continuous map  ߙ: ܷ → ܸ carrying ܷ onto ܸ in a one-to-one fashion, such that: 
                         (1)∝   is of class ܥr . 
                        (2)    ∝ିଵ: ܸ → ܷ is continuous. 
ܦ (3)                         ∝  .ܷ ߳ ݔ has rank ݇ for each (ݔ)
The map ܽ is called a coordinate patch on  ݐݑܾܽ ܯ. We extend the definition to 
the case ݇ = by declaring a discrete collection of points in nR     to be a o-
manifold in nR    .Note that a manifold without boundary is simply the special case 

of amanifold where all the coordinate patches have domains that are open in kR  
.Figure ( 1-7) illustrates a 2-manifold in 3R . Indicated are two coordinate patches 
on ܯ , one whose domain is open in 2R  and the other whose domain is open in 2ܪ 
but not in nR   
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                                                                                       Figure (1-7)  
It seems clear from this figure that in a ݇-manifold , there are two kinds of points, 
those that have neighborhoods that look like ݊݁ ݇ −balls, and those that do not 
but instead have neighborhoods that look like open half-balls of dimension ݇. The 
latter points constitute what we shall call the boundary of ܯ. Making this 
definition precise, however, requires a certain amount of  effort. We shall deal with 
this question in the next section      
 Lemma(1 -1 - 20):-              Let ܯ be a manifold in nR   , and let  ߙ: ܷ → ܸ  be 
acoordinate patch on ܯ. If ܷ0 is a subset of ܷ that is open in ܷ, then the restriction 
of a to ܷo is also a coordinate patch on ܯ. 
                                                 Proof 
 The fact that ܷ0 is open in ܷ and ܽିଵ  is continuous implies that the set ܸ0 = ߙ( ܷo 
) is open in ܸ. Then ܷ is open in ܴk or ܪk (according  as ܷ is open in ܴk or ܪk), 
and ܸ0 is open in ܯ . Then the map  ߙ ܷ⁄      is a  coordinate patch on ܯ : it carries 
ܷo onto ܸ0 in a one-to-one fashion; it is of  class ܥr because a is; its inverse is 
continuous being simply a restriction of ିߙଵ  ; and its derivative has rank ݇ 
becauseܦఈ does.  
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Section (1-2):- The  Manifold with boundary and lntegrating 
 
In the following we make precise what we mean by the boundary of a manif- 
old;and also we prove a theorem that is useful in practice for constructing 
manifolds. 
 Theorem (1 -2 - 21):-             Let ܯ be a ݇-manifold in nR of class ܥ . Let 
∝: ܷ → ܸ  and ∝ଵ: ଵܷ → ଵܸ  be coordinate patches on ܯ, with ܹ = ܸ ∩ ଵܸ  
non-empty. Let Wi =  ∝

ିଵ (ܹ) . Then the map  
∝ଵ

ିଵ ∘∝∶ ܹ → ଵܹ  is of class ܥr ' and its derivative is non-singular. 
Typical cases are pictured in Figure (1 -8). We often  call   ∝ଵ

ିଵ∘∝ the transition 
function between the coordinate patches ∝0 and ∝1 
  
               

 
                                                                                          Figure (1-8). 
                                            
                                                              Proof 
 It suffices to show that if ∝: ܷ → ܸ is a coordinate patch on ܯ ,then ∝ିଵ: ܸ → ܴ 
is of class ܥr , as a map of the subset ܸ of nR       into ܴ For  then it follows that, 
since ∝0 and ∝ଵ

ିଵ are of class ܥ , so is their composite ∝ଵ  ∘
ିଵ   ∝. The same 

argument applies to show ∝ 
ିଵ Ο ∝  is of class ܥr; then the chain rule implies that 

both these transition functions have non-singular  derivatives. 
                  To prove that ∝ିଵ  is of class ∁ , it suffices (by Lemma (1-1-16) to 
show that  it is locally of class ∁. Let ܲ be a point of ܸ; let  ∝ିଵ ( )   =
  in ℛn 0  . We show  ∝ିଵextends to a ∁function defined in a neighborhood ofݔ  

.Let us first consider the case where ܷ is open in ܪk but not in ܴk . By  assumption 
, we can extend a to a ∁ map ߚ of an open set U' of ܴ into ℛn Now ߙܦ(ݔ) has 
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rank ݇, so some ݇ rows of this matrix are independent; assume for convenience the 

first ݇ rows are independent. Let  : ℛ୬ →  ܴ  project nR  onto its first ݇ 
coordinates. Then the map ݃ = ߚߧߨ maps ܷ′ into ܴk , and ݃ܦ(ݔ) is non-singular. 
By the inverse function theorem, ݃ is a ∁diffeomorphism of an open set ܹ of ܴk 
about ݔwith an open set in ܴk . See Figure (1-9)  
 

  
                                                                                          Figure (1-9) 

We show that the map ℎ =  ݃ିଵߨ   ,which is of class ܥr , is the desired extension 
of ∝ିଵto a neighborhood ܣ of 0. To begin, note that the set U0 = ܹ ∩  ܷ is open 
in ܷ, so that the set ܸ0 = ∝ (ܷo) is open in ܸ; this means there is an open set ܣ of 

nR such that ܣ ∩  ܸ = Vo . We can choose ܣ so it is contained in the domain of ℎ 
(by intersecting with ିߨଵ(݃(ܹ))if necessary). Then  ℎ ∶ ܣ  → ܴ is of class ܥr ; 
and if ܣ ߳  ∩  ܸ =  ܸ, then we let  
ଵି∝ = ݔ  and compute ()

ℎ() =  ℎ ൫∝ ൯(ݔ) =  (݃ିଵ(ߨ(∝ (((ݔ)  = ݃ିଵ (݃(ݔ))  = = ݔ    ܽିଵ (),                                                              
(  1 - 40) 

Definition(1 -2 - 22):-        Let ܯ be a k-manifold in nR ; let ܯ ߳  . If there is 
acoordinate patch ∝:    ܷ → ܸ    on ܯ about p such that ܷ is open in ܴk , we 
say  is an interior point of ܯ . Otherwise , we say  is a boundary point of ܯ . We 
denote the set of boundary points of ܯ by ܯ , and call this set  the boundary of ܯ . 
 Lemma (1 -2 - 23):-             Let ܯ be a k-manifold in nR  ; let  ∝: ܷ → ܸ be 
acoordinate patch about the point  of ܯ . 
 (a) If ܷ is open in ܴ , then  is an interior point of ܯ. 
(b) If ܷ is open in ܪ and if  = ∝ ାܪ ߳ ݔ for (ݔ)

, then  is an interior point 
of ܯ.  
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(c) If ܷ is open in ܪ  and  = ∝ ܴ߳ିଵݔ for ((ݔ) × 0 , then  is  boundary 
point of ܯ. 
                                               Proof 
 (a) is immediate from the definition. (b) is almost as easy. Given∝: ܷ → ܸ as in 
(b), let ܷ =  ܷ ∩ ܷା

 and let ܸ = ∝ ( ܷ). Then ∝/ ܷ mapping ܷ onto ܸ , is a 
coordinate patch about , with ܷ open in ℛk. 
  (c). Let  ߙ: ܷ → ܸ     be a coordinate patch about  , with ܷ open in ܪ and  
=  ݔ ݎ݂ (ݔ)ߙ   ∈  ܴିଵ ×  0. We assume there is ܽ coordinate patch 
ଵߙ ∶  ଵܷ → ଵܸ about  with ଵܷ open in ℛk . and derive a contradiction . 
Since ܸ and ଵܸ are open in ܯ, the set ܹ =  ܸ  ∩  ଵܸ is also open in ܯ.Let ܹ = 
ߙ

ିଵ (ܹ) for ݅ = 0 , 1 ; then ܹ is open in ܪ and contains ݔ , and ଵܹ is open in 
ℛk . The preceding theorem tells us that the transition function    

011
1

0 : WW                                                                         
 is a map of class ܥ carrying ଵܹ onto ܹ in a one-to-one fashion, with non-
singular derivative. But ܹ is contained in ܪ and contains the point ݔ of    

01 kR   , so it is not open in ℛk! See Figure ( 1-10 ) 

 
                                                                                              Figure (1-10) 
Theorem (1 -2 - 24):-Let ܯ ܾ݁ ܽ ݇ − nR ݊݅ ݈݂݀݅݊ܽ݉ , of class ܥ. If ߲ܯ is 
non-empty, then ߲ܯ is ܽ ݇-1 manifold without boundary in nR of class ܥ. 
                                         Proof  
Let    ∈ .ܯ ߲  ߙ ݐ݁ܮ ∶  ܷ →  ܸ be a coordinate patch on ܯ about . Then ܷ is 
open in ܪ ܽ݊݀  = ݔ for some (ݔ)ߙ   ∈   . By the preceding lemma, eachܪ߲ 
point of ܷ ∩ ାܪ

 is mapped by   to an interior point of ܯ, and each point of 
ܷ ∩ is mapped to a point of  ( (ܪ߲) . Thus the restriction of   to ܷ ∩
carries this set in a one-to-one fashion onto the open set ܸ (ܪ߲) =  ܸ ∩  of ܯ߲ 
  Let ܷ be the open set of ܴିଵ such that . ܯ߲
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ܷ × 0 = ܷ ∩ ; ܪ߲  ∋ ݔ ݂݅   ܷ , define )()( 0 xx   .Thenߙ: ܷ  →  ܸ is a 

coordinate patch on ߲ܯ. It is of class ܥ because   is, and its derivative 
has rank ݇ − 1  because ߙܦ(ݔ) consists simply of the first ݇ −  1 columns of the 
matrix ݔ)ߙܦ, 0). The inverse ߙ

ିଵ is continuous because it equals the restriction to 
ܸ of the continuous function ିߙଵ, followed by projection of ܴ ×l: onto its first 

݇ −1 coordinates.  
Theorem (1 -2 - 25):-Let  be open in ܴ ; ݈݁ݐ ݂ ∶    →  ܴ be of class ܥLet 

(ݔ)݂ for which ݔ be the set of points ܯ = 0     let ܰ be the set of pointsfor which 
(ݔ)݂  ≥  0. Suppose ܯ is non-empty and (ݔ)݂ ܦ has rank 1 at each point of ܯ. 
Then ܰ is an ݊ − = ߲ܰ in ܴ and ݈݂݀݅݊ܽ݉  .ܯ 
                                          Proof 
 Suppose first that  is a point of ܰ such that ݂ () > 0. Let ܷ be the open set in 
ܴ consisting of all points ݔ for which  ݂(ݔ)  >  0; let ߙ ∶  ܷ →  ܷ be the identity 
map. Then a is (trivially) a coordinate patch on ܰ about  whose domain is open in 
ܴ. 
        Now suppose that ݂()  =  0. Since ()݂ܦ is non-zero, at least one of the 
partial derivatives ܦ݂() is non-zero. Suppose ܦ݂()  ≠ ݂ 0. Define ܨ ∶   →
 ܴ by the equation (ݔ)ܨ  = , ଵݔ)  . . . , ,ିଵݔ  Then . ((ݔ)݂

ܨܦ =  
ିଵܫ 0

∗   ݂൨                                                               (  1 - 41)ܦ

so that ()ܨܦ is non-singular. It follows that ܨ is a diffeomorphism of a 
neighborhood ܣ of  in ܴ with an open set ܤ of ܴ. Furthermore, ܨ carries the 
open set ܣ ∩  ܰ of N onto the open ܤ ݐ݁ݏ ∩ ܪ ݂ ܪ  , since ݔ ∈  ܰ if and only 
if ݂(ݔ)  ≥  0. It also carries ܣ ∩ ∩ ܤ onto ܯ  ܪ߲  , since ݔ ∈  if and only if ܯ 
(ݔ)݂  =  0. Then ିܨଵ ∶ ܤ  ∩ ܪ   → ∩ ܣ  ܰ is the required coordinate patch on ܰ. 
See Figure (1-11) 
 
Definition(1 -2 - 26):-          Let ܤ(ܽ) consist of all points ݂ ݔ ܴfor which 
‖ݔ‖ ≤ ܽ,and let ܵିଵ(ܽ) consist of all ݔ for which ‖ݔ‖ = ܽ . We call them the 
݊ − ܾ݈݈ܽ   and the ݊ − 1 sphere, respectively, of radius ܽ. 
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Figure(1-11 ) 

Corollary (1 -2 - 27):-                  The ݊ −  (ܽ) is an n-manifold in ܴ ofܤ ݈݈ܾܽ
class ܥஶ , ܽ݊݀ ܵିଵ (ܽ)  =  .(ܽ) ܤ߲ 
                                             Proof 
 We apply the preceding theorem to the function ݂(ݔ)  =  ܽଶ −   ଶ  Then‖ݔ‖
(ݔ)݂ܦ  = ( ଵݔ2−)]   · · ·  ( 1 - 42  )                                        ,[( ݔ2−) 
which is non-zero at each point of ܵିଵ(ܽ).  
               Now we will discuss to define what we mean by the integral of a 
continuous scalar function ݂ over a manifold ܯ in ܴ. For simplicity, we shall 
restrict ourselves to the case where ܯ is compact. The extension to the general 
case can be carried out by methods analogous to those used in §16 in treating the 
extended integral.First we define the integral in the case where the support of ݂ can 
be covered by a single coordinate patch. 
Definition(1 -2 - 28):-            Let ܯ be a compact ݇ −manifold in ܴ, of class 
:݂  . Letܥ → ܯ  ܴ be a continuous function. Let ܥ = Support ݂; then ܥ is 
compact. Suppose there is a coordinate patch ߙ ∶  ܷ →  ܸ on ܯ such thatܥ ⊂  ܸ. 
Now ିߙଵ(ܥ) is compact. Therefore, by replacing ܷ by a smaller open set if 
necessary, we can assume that ܷ is bounded. We define the integral of ݂ over ܯ by 
the equation 
∫ ݂ܸ݀ = ∫ (ߙܦ)ܸ(  ߙߧ݂)

ூ௧ 


ெ                                                  (  1 - 43) 
Here Int ܷ =  ܷ ݂݅ ܷ is open in ܴ , and Int ܷ =  ܷ ∩ ାܪ 

 ܷ is open in ܪ but 
not in ܴ . 
             It is easy to see this integral exists as an ordinary integral, and hence as an 
extended integral : The function ܨ =  is continuous on ܷ and (ߙܦ)ܸ(ߙ  ݂) 
vanishes outside the compact set a-1(ܥ); hence ܨ is bounded. If ܷ is open in ܴ , 
then ܨ vanishes near each point 0ݔ of Bd ܷ.  ܨ is not open in ܴ , then ܷ ݂ܫ



19 
 

vanishes near each point of ݀ܤ ܷ not in ߲ܪ , a set that has measure zero in ܴ . 
In either case, ܨ is integrable over ܷ and hence over Int ܷ. See Figure  (1-12 ). 
 

 
                                    figure   (1-12 ) 

Lemma (1 -2 - 29):-If the support of ݂ can be covered by a single coordinate 
patch, the integral ∫ ݂

ெ  ܸ݀ is well-defined, independent of the choice of coordinate 
patch. 
                                              Proof 
 We prove a preliminary result. Let ߙ ∶  ܷ → ܸ be a coordinate patch containing 
the support of ݂. Let W be an open set in ܷ such that ߙ(ܹ) also contains the 
support of ݂. Then 

 
UW

DVfDVf
intint

)())()(                                         (  1 - 44 ) 

the (ordinary) integrals over ܹ and ܸ are equal because the integrand vanishes 
outside ܹ 
ߙ ݐ݁ܮ             ∶  ܷ  →  ܸ = ݅ ݎ݂   0, 1 be coordinate patches on ܯ such that both 

ܸ and ଵܸ contain the support of ݂. We wish to show that 
∫ ( ߙܦ) ܸ(ߙ ߧ݂) = 

ூ௧ బ
∫  ( ଵߙܦ) ܸ( ଵߙ ߧ݂)

ூ௧ భ
                 (  1 - 45) 

Let ܹ =  ܸ  ∩ ଵܸ and let ܹ  = ߙ 
ିଵ(ܹ). In view of the result of the preceding 

paragraph, it suffices to show that this equation holds with ܷ replaced by 
ܹ  , = ݅ ݎ݂  0, 1 . Since ߙ

ିଵ ߙ  ∶ ܹ ݐ݊ܫ   →  ଵܹ is a diffeomorphism, this ݐ݊ܫ 

result follows  at once from Theorem (1-1-10)To define   
M

fdV   in general, we 

use a partition of unity on ܯ . 
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Lemma (1 -2 - 30):-         Let ܯ be a compact ݇-manifold in ܴ, of class 
  by coordinate patches, there exists a finite collection of ܯ .Given a covering ofܥ

C   functions ∅ଵ , . . . , ∅ mapping ܴ into ܴ such that: 
          ( 1 ) ∅(ݔ)  ≥                                                 .ݔ ݈݈ܽ ݎ݂     0 
          (2) Given ݅, the support of ∅ is compact and there is ܽ coordinate 
patch ߙ ∶  ܷ →  ܸ belonging to the given covering such that   ((ܵݐݎݑ ∅)  ∩
(ܯ   ⊂  ܸ . 
(3)  ∑ ∅(ݔ) = ∋ ݔ ݎ݂              1   .ܯ 
We call { ∅ଵ , . .  , ∅} a partition of unity on ܯ dominated by the given collection of 
coordinate patches. 
                                              Proof  
For each coordinate patch ߙ ∶  ܷ →  ܸ belonging to the given collection , choose 
an open set ܣ  ݂ ܴ such that ܣ  ∩  . ܣ be the union of the sets ܣ Let .ܸ = ܯ 
Choose a partition of unity on ܣ that is dominated by this open covering of ܣ . 
Local finiteness guarantees that all but finitely many of the functions in the 
partition of unity vanish identically on ܯ. Let { ∅ଵ , . .  , ∅} be those that do not. 
Definition(1 -2 - 31):-             Let ܯ be a compact ݇-manifold in ܴ, of class 
݂ . Letܥ ∶ → ܯ   ܴ be a continuous function. Choose a partition of unity 
∅ଵ , . .  , ∅on ܯ that is dominated by the collection of all coordinate patches on ܯ. 
We define the integral of ݂ over ܯ by the equation 

න f dV =  ቈන (∅୧ 




f ) dv

ℓ

୧ୀଵ



ெ
. 

(  1 - 46) 
Then we define the (݇-dimensional) volume of ܯ by the equation 
(ܯ)ݒ                                      = ∫ ܸ݀ܫ

ெ                                               (  1 - 47) 
    If the support of ݂ happens to lie in a single coordinate patch ߙ ∶  ܷ →  ܸ, this 
definition agrees with the preceding definition. For in that case, letting  ܣ = Int ܷ, 
we have 
∑ ቂ∫ (∅݂

ெ )ܸ݀ቃℓ
ୀଵ = ∑ ቂ∫ (

 ∅ܦ(ߙߧ ݂ )(ߙߧ(∝)ቃℓ
ୀଵ  by definition, 

=∫ ൣ∑ (ℓ
ୀଵ ∅(ߙܦ)ܸ(ߙߧ ݂ )(ߙߧ൧

  by linearity, 

∫ (ߙܦ)ܸ(ߙߧ ݂ )
   because  ∑ (ℓ

ୀଵ ∅ߙߧ) =  ,ܣ    ݊ 1
= ∫ . ݊݅ݐݐ݂݅݊݅݁݀ ݕܾ  ܸ݀ ݂

ெ                                                                 (1-48 ) 
     We note also that this definition is independent of the choice of the partition of 
unity. Let  ߰ଵ , … … , ߰ be another choice for the partition of unity.Because the 
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support of ߰ ݂ lies in a single coordinate patch, we can apply the computation just 
given (replacing ݂ by ߰ ݂) to conclude that 

  න(


ெ

∅߰ ݂) ܸ݀
ℓ

ୀଵ

=  න ൫߰ ݂൯ܸ݀.


ெ
 

(  1 - 49 ) 
 
Summing over ݆, we have 

   න(


ெ

∅߰ ݂) ܸ݀
ℓ

ୀଵ

=   ቈන ൫߰ ݂൯ܸ݀.


ெ




ୀଵ



ୀଵ

 

(  1 - 50 ) 
Symmetry shows that this double summation also equals 

  න(


ெ

∅  ݂) ܸ݀
ℓ

ୀଵ

 

(  1 - 51 ) 
 
 

Theorem (1 -2 - 32):-Let   ܯ be acompact ݇ −   Letܥ in ܴ,of class ݈݂݀݅݊ܽ݉
݂, ݃ ∶ ܯ  →  ܴ be continuous. Then 

∫ (݂ܽ + ܾ݃)ܸ݀ = ܽ ∫ ݂ܸ݀ + ܾ ∫ ݃ ܸ݀.
ெ


ெ


ெ                    (  1 - 52 ) 

This definition of the integral  ∫ f dV 
ெ  is satisfactory for theoretical purposes, but 

not for practical purposes. If one wishes actually to integrate a function over the 
݊ −  1 sphere ܵିଵ, for example, what one does is to break ܵିଵ into suitable 
"pieces," integrate over each piece separately, and add the results together. We 
now prove a theorem that makes this procedure more precise. 
Definition(1 -2 - 33):-           Let ܯ be a compact ݇-manifold in ܴ, of class ܥ . 
 if it can be covered by ܯ is said to have measure zero in ܯ of ܦ subset  ܣ
countably many coordinate patches ߙ ∶  ܷ  →  ܸ such that the set 

ܦ  = ∩ ܦ) ଵିߙ   ܸ)                                             (  1 - 53 ) 
has measure zero in ܴ for each ݅. 
 
         An equivalent definition is to require that for any coordinate patch 
ߙ ∶  ܷ → ∩ ܦ) ଵିߙ the set , ܯ ݊ ܸ   ܸ) have measure zero in  ܴ. To verify this 
fact, it suffices to show that ିߙଵ(ܦ ∩ ܸ)has measure zero for each ݅. And this 
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follows from the fact that the set ߙ
ିଵ(ܦ ∩  ܸ ∩  ܸ)has measure zero because it is 

a subset of ܦ and that ିߙଵߙߧ is of class ܥ . 
Theorem (1 -1 - 34):-Let ܯ be a compact ݇-manifold in ܴ, of class ܥ . Let 
݂ ∶ ܯ  →  ܴ be a continuous function. Suppose that ߙ ∶ ܣ   → = ݅ ݎ݂ , ܯ
 1 , . . . , ܰ , is a coordinate patch on ܯ, such that ܣ is open in ܴ and ܯ is the 
disjoint union of the open sets ܯଵ , . . . ,  .ܯ and ܽset ݇ of measure zero in ܯ ݂ ேܯ
Then 

න ݂ܸ݀ =   ቈන  (ߙܦ) ܸ(ߙߧ݂)



 .

ே

ୀଵ



ெ

                                   

(  1 - 54 ) 
This theorem says that   ∫ f dV 

ெ  can be evaluated by breaking ܯ up into pieces 
that are parametrized-manifolds and integrating ݂ over each piece separately. 
                                              Proof.  
Since both sides of (1-54) are linear in ݂, it suffices to prove the theorem in the 
case where the set ܥ = Support ݂ is covered by a single coordinate patch ߙ ∶  ܷ →
 ܸ. We can assume that ܷ is bounded. Then 
∫ ݂ܸ݀ =  ∫ ,(ߙܦ) ܸ(ߙߧ݂)

ூ௧ 


ெ                                         ( 1-54a) 
by definition. 
 Step 1. Let ܹ  = ܯ)ଵିߙ  ∩ ܸ) and let ܮ = ܭ) ଵିߙ  ∩ ܸ). Then ܹ; is open in 
ܴ  , and ܮ has measure zero in ܴ ; and ܷ is the disjoint union of ܮ and the sets 

ܹ . See Figures (1-13a) and (1-13b) We show first that 

න ݂ܸ݀ =   ቈන  (ߙܦ) ܸ(ߙߧ݂)


ௐ

 .
ே





ெ

 

(  1 - 55 ) 
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 Figure(1-13 ) 

Note that these integrals over ܹ  exist as ordinary integrals . For the function 
= ܨ ܦ)ܸ(ߙ  ݂)  ∝) is bounded , and ܨ vanishes near each point of   ܹ ݀ܤ   not 
in ܮ. Then we note that 

  න ܨ


ௐ

 = න ,ݕݐ݅ݒ݅ݐ݅݀݀ܽ ݕܾ   ܨ


(ூ௧  )ି

= 

   (  1 - 56 ) 
                       ∫ ,ݎ݁ݖ ݁ݎݑݏܽ݁݉ ݏℎܽ ܮ ݁ܿ݊݅ݏ      ܨ

ூ௧  ∫  ݕݐ݅ݒ݅ݐ݅݀݀ܽ ݕܾ     ܸ݀  ܨ
ெ  

Step 2. We complete the proof  by showing that 
∫ =  ܨ   ∫ , ܨ




 
ௐ                                                                       (  1 - 57 ) 

where ܨ ,  =  See Figure (1-14) .( ߙܦ)ܸ( ߙ  ݂) 
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                                     Figure (1-14) 

The map ߙ
ିଵߙ  is a diffeomorphism carrying ܹ onto the open set                 ܤ =

ߙ 
ିଵ (ܯ ∩ ܸ)                                                                        (  1 - 58 ) 

of ܴ . It follows from the change of variables theorem that 
∫ =  ܨ   ∫                                                                , ܨ




                                        
ௐ (  1 - 59 ) 

just as in Theorem (1-1-10 ) To complete the proof, we show that 
∫ ܨ   =   ∫ , ܨ




 
                                                                           (  1 - 60 ) 

These integrals may not be ordinary integrals, so some care is required .Since 
= ܥ ߙ  the set ,ܯ is closed in ݂ ݐݎݑܵ 

ିଵ (ܥ) is closed in ܣ  and its 
complement 
ܦ  = ܣ   − ߙ 

ିଵ (ܥ)                                                                     (  61 - 1 ) 
is open in ܣ and thus in ܴ . The function ܨ   vanishes on ܦ  . We apply additivity 
of the extended integral to conclude that 
∫ ܨ   =   ∫   ܨ




+ ∫ −  ܨ ∫   ܨ


 ∩





                                          (  1 - 62 ) 

The last two integrals vanish.  
Example (1 -2 - 35):-       Consider the 2 −sphere ܵଶ(ܽ) of radius a in ܴଷ . We 
computed the area of its open upper hemisphere as 2ܽߨଶ (See Example (1 -2- 
36) :-Since the reflection map ( ݔ, ,ݕ (ݖ  → ,ݔ )   z)   is an isometry of ܴଷ , the- ,ݕ
open lower hemisphere constitute all of the sphere except for a set of measure 
zero in the sphere, it follows that ܵ2(a) has area  4 πa2              
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Example (1 -2 - 37):-              Here is an alternate method for computing the 
area of the 2-sphere; it involves no improper integrals. 
           Given ݖ  ∈ |ݖ| ℎݐ݅ݓ ܴ  <  ܽ, the intersection of ܵଶ(ܽ)  with the plane 
= ݖ  ܼ is the circle 

= ݖ ; ݖ  = ଶݕ+ଶݔ          ܽଶ −  ଶ                                       (  1 - 63 )(ݖ) 
This fact suggests that we parametrize ܵଶ(ܽ) by the function ߙ ∶ ܣ  →  ܴଷ  given 
by the equation 

),sin)(,cos)((),( 2/1222/122 ztzatzazt                   (  1 - 64 ) 
          where ܣ is the set of all ( ݐ , > for which 0 (ݖ > ݐ   a. It is > |ݖ|  and ߨ2 
easy to check that ߙ is a coordinate patch that covers all of ܵଶ(ܽ) except for 
agreat-circle arc, which h as measure zero in the sphere. See Figure  
(1-15) By the preceding theorem, we may use this coordinate patch to compute the 
area of ܵଶ(ܽ). We have 

ߙܦ =  
−( ܽଶ − ଶ )ଵ/ଶݖ sin ݐ ଶܽ )/( ݐ ݏܿݖ−) − ଶ )ଵ/ଶݖ

( ܽଶ − ଶ )ଵ/ଶݖ cos ݐ ଶܽ )/( ݐ݊݅ݏݖ−) − ଶ )ଵ/ଶݖ

0 1
            (  1 - 65 ) 

 
whence ܸ(ܦ∝)  =  ܽ, as you can check. Then ݒ(ܵଶ(ܽ)) =∫ ܽ = ଶܽߨ4

   

  
 

                                        Figure(1-15 ) 
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Chapter (2) 

  Tensors and wedge product 

Section(2  -  1):-                  Multiliner   Algebra  

Definition :-( 2- 1-1):-            Let ܸ be a vector space. Let ܸk = ܸ × · · · ×  ܸ 
denote the  set of all ݇-tuples (ݒଵ , . . . , . ) of vectors of Vݒ A function  ݂ ∶  ܸ  →
 ܴ is  said to be linear in the ݅௧ variable if, given fixed vectors ݒ ≠  ݆   ݎ݂    ݅, the  
function ܶ ∶  ܸ →  ܴ defined by  
(ݒ)ܶ = ଵݒ) ݂ … . . , ,    ିଵݒ ,ݒ … . , ାଵݒ … . , ݒ                                 (2-1) 
is linear. The function ݂ is said to be multilinear if it is linear in the ݅௧   variable for 
each ݅. Such a function ݂ is also called a ݇-tensor, or atensor of order ݇, on ܸ . We 
denote the set of all ݇-tensors on ܸ by the symbol   ℒ  (ܸ). If ݇ =  1, then ℒଵ (ܸ) 
is just the set of all linear transformations   ݂ ∶  ܸ →    ܴ. It is sometimes called the 
dual space of ܸ and denoted by ܸ∗ . 
Theorem:-(2-1-2):-             The set of all k-tensors on ܸ constitutes a vector space 
if we define  

       (݂ + , ଵݒ)(݃  . . . , ( ݒ  = , ଵݒ)݂  . . . , ( ݒ  + , ଵݒ)݃  . . . ,  ,( ݒ
, ଵݒ)(݂ܿ)                      . . . , ( ݒ      = , ଵݒ)݂)ܿ     . . . ,   ).                   (2-2)ݒ
 Lemma ( 2- 1 -3):-  Letܽଵ , … . . , a୬   ܾ݁ ܽ ܾܽݎ݂ ݏ݅ݏ  ܸ. ,f ݂ܫ g :ܸ → ݇  ݁ݎܽ ܴ −
,ܸ ݊ ݏݎݏ݊݁ݐ ܽ݊݀ ݂݅  

݂(ܽభ , , . . . , ܽ)  =  ݃( ܽଵ, , . . . , ܽ )                                         (2-3) 
݇ ݕݎ݁ݒ݁ ݎ݂ − ܫ  ݈ݑݐ =  (݅ଵ , . . . , ݅) ݐ ݉ݎ݂ ݏݎ݁݃݁ݐ݊݅ ݂ℎ݁ ݐ݁ݏ  
   { 1, . . . , = ݂ ℎ݁݊ݐ   ,{݊  ݃. 
                                                 Proof   
Given an arbitrary݇ − , ଵݒ) ݈݁ݑݐ  . . . , ,ܸ ݂ ݏݎݐܿ݁ݒ ݂ ( ݒ  ݏݑ ݐ݈݁
express each ݒ   in terms of the given basis, writing 
 

ݒ =  ܿ ܽ 



ୀଵ

 

( 2-4) 
 

                                            
ܶℎ݁݊ ݁ݓ compute  

, ଵݒ )݂ … . , (ݒ =  ܿଵభ



భୀଵ

 ݂( ܽభ  , ଶݒ … ,  (ݒ
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==   ∑ ∑ ܿଵభܿଶమ݂( ܽభ  , ܽమ ,ଶݒ  ଷݒ … , )ݒ
మୀଵ


భ  

  (2-5)  
and so on. Eventually we obtain the equation                     

, ଵݒ)݂  … . ∑  =(ݒ (ܿଵభܿଶଶ … . ܿೖ݂( ܽభ  , , … . , ܽೖ )
ଵஸభ..,ೖஸ                (2-6)   

         The same computation holds for ݃ . It follows that ݂ and ݃ agree on all ݇-
tuples of vectors if they agree on all ݇-tuples of basis elements. Just as a linear 
transformation from ܸ ݐ ܹ can be defined by specifying its values arbitrarily on 
݇-tuples of    basis elements  .  
Theorem   ( 2 – 1 – 4 )  :-     Let V be a vector space with basis ܽଵ, . . . , . ܽ  ܫ ݐ݁ܮ =
 (݅ଵ, . . . , ݅) be a ݇-tuple of integers from the set { 1 , . . . , ݊} . There is a unique 
݇ − ,ݐℎܽݐ ℎܿݑݏ  ܸ  ݊ଵ∅ ݎݏ݊݁ݐ ݇ ݕݎ݁ݒ݁ ݎ݂ − , ଵ݆) ܬ ݈݁ݑݐ . . . , ݆)  

,1 } ݐ݁ݏ ℎ݁ݐ ݉ݎ݂ . . . , ݊}, = ∅ଵ  ቀ ܽଵ , … . , ܽ
 ቁ = ൜

0 ݂݅ ܫ ≠ ,ܬ
1 ݂݅ ܫ = ,ܬ

�         (2-7) 

   The tensors ߶ଵ are called the elementary ݇ −tensors on ܸ corresponding  to the 
basis a1 , . . . , an for ܸ. Since they form a basis for . ℒஂ (V) and since there are nk 

distinct ݇-tuples from the set { 1 , . . . , ݊}, the space . ℒஂ (V) must  have dimension 
݊k . When   ݇ =  1 , the basis for ܸ* formed by the elementary tensors ∅ଵ , . . . , ∅ 
is called the basis for ܸ∗ dual to the given basis for ܸ. 
                                           Proof 
  First, consider the case ݇ =  1. We know that we can determine a linear 
transformation ∅ ∶  ܸ → ܴ by specifying its values  arbitrarily on basis elements. 
So we can define ∅ by the equation 

(*)         ߶( ܽ )  = ൜
0    ݂݅   ݅ ≠   ݆
1    ݂݅   ݅  =   ݆

�                                        (2-8) 

These then are the desired 1-tensors. In the case ݇ >  1, we define ∅ூ  by the 
equation 

∅ூ , ூݒ )  … . , (ݒ =  ൣ∅భ( ݒଵ)൧. ൣ∅మ
൧(ଶݒ ) … . ൣ∅ೖ( ݒ)൧             (2-9)                     

It follows, from the facts that (1) each ∅ is linear and (2) multiplication is 
distributive, that ∅ଵ is multilinear. One checks readily that it has the required value 
on( ܽଵ

 , · · · ,  ܽ
 ). 

              We show that the tensors ∅ଵ form a basis for ℒஂ(V). Given a k-tensor 
 we show that it can be written uniquely as a linear combination of the ,ܸ ݊  ݂
tensors ∅ூ  . For each ݇-tuple  ܫ =  (݅ଵ , . . . , ݅), let d1 be the scalar defined by the 
equation   

   ݀ଵ  =  ݂(ܽଵ, , . . . , ܽ ) .                                                    (2-10) 
Then consider the ݇ −tensor                              ℊ =   ∑ ݀ ∅,                 (2-11) 
where the summation extends over all k-tuples J of integers from the 
set{1,...,n}.The value of g on the ݇ − ൫ܽభ ݈݁ݑݐ , . . . , ܽ ೖ൯ 



28 
 

equals ݀1  , by (2-7),and the value of ݂ on this ݇-tuple equals the same thing by 
definition. Then the preceding lemma implies that 
 ݂ =  ݃. Uniqueness of this representation  of ݂ follows from the preceding 
lemma.  
Example (2-1-5)  :- Consider the case ܸ =  ܴ. , ଵ݁ ݐ݁ܮ . . . , ݁ be the usual basis 

for ܴ; let  ∅ଵ … , ∅   be the dual basis for ℒଵ(ܸ) Then if  ݔ has components    
,ଵݔ … ,   we haveݔ

∅(ݔ) = . +ଵ ݁ଵݔ)∅  . + ⋯ + (  ݁ݔ =                    (2-12)ݔ
 Thus  ∅ ∶ ܴ → ܴ     equals projection onto the ݅th coordinate.More generally, 
given    ܫ = ( ݅ ଵ, … , ݅  ) the elementary tensor  ∅ூ     satisfies the equation 

∅ூ , ଵݔ )  … , ( ݔ =  ∅ଵ( ݔଵ) … ∅ ( ݔ ).                       (2-13) 
Let us write ܺ = ଵݔ]   · · ·  in row ݅ and ݔ  denote the entry ofݔ ], and letݔ 
column ݆. Then ݔ is the vector having components ݔଵ  , . . . , ݔ  · In this notation, 

∅ூ , ଵݔ )  . . (ݔ = ଵభݔ  ଶమݔ  … .  ೖ                                 ( 2- 14)ݔ
Thus ∅ூ  is just a monomial in the components of the vectors           ݔଵ , … . , ݔ . ; and  
the general ݇-tensor on ܴ is a linear combination of such monomials. 
               It follows that the general 1-tensor on ܴ is a function of the form 

(ݔ)݂ =  ݀ଵ ݔଵ  + · · ·  + ݀ݔ ,                                       (  2-15) 
for some scalars di  . The general 2-tensor on ܴ has the form 

,ݔ)݃ (ݕ  =   


,ୀଵ

 ݀ݔݕ  , 

 (2 -16) 
Now we will discuss and  introduce a product operation into the set of all tensors 
on ܸ.The product of a k-tensor and an ℓ -tensor will be a k + ℓ tensor  
Definition(   2-1-6  ):-              ݐ݁ܮ ݂ be a ݇ −tensor on ܸ and let g be an ℓ-tensor 
on ܸ.We define a݇ +  ℓ ݊ ݃ ⨂ ݂ ݎݏ݊݁ݐ ܸ by the equation 

(݂ ⊗ , ଵݒ)(݃ … , (   ାℓݒ = , ଵݒ )݂ . . , .( ݒ ,  ାଵݒ ) ݃ … ,  ାℓ )    (2-17)ݒ
It is easy to check that the function ݂ ⊗  ݃ is multilinear; it is called the tensor 
product of ݂ and ݃ . 
Theorem(2-1-7  )   :- 
,ܬ ݐ݁ܮ   ݃, ℎ ܾ݁ ݊ ݏݎݏ݊݁ݐ ܸ. ܶℎ݁݊ ݐℎ݁ ݂ݏ݁݅ݐݎ݁ݎ   ݃݊݅ݓ݈݈ ℎ݈݀:  
⊗ ݂           .(ݕݐ݅ݒ݅ݐܽ݅ܿݏݏܣ) (1)       (݃ ⊗  ℎ)  =  (݂ ⊗  ݃)  ⊗  ℎ. 
(݂ܿ)     .(ݕݐ݅݁݊݁݃݉ܪ) (2)       ⊗  ݃ =  ܿ(݂ ⊗  ݃)  =  ݂ ⊗  (ܿ݃) . 
.(ݕݐ݅ݒ݅ݐݑܾ݅ݎݐݏ݅ܦ (3)      .ݎ݁݀ݎ ݁݉ܽݏ ℎ݁ݐ ݁ݒℎܽ ݃ ݀݊ܽ ݂ ݁ݏݑܵ ܶℎ݁݊  

(݂ +  ݃)  ⊗  ℎ =  ݂ ⊗  ℎ +  ݃ ⊗  ℎ, 
ℎ ⊗  (݂ +  ݃)  =  ℎ ⊗  ݂ +  ℎ ⊗  ݃. 

, ଵܽ ݏ݅ݏܾܽ ܽ ݊݁ݒ݅ܩ (4 ) . . . , ܽ ݂ݎ ܸ,  ݕݎܽݐ݈݊݁݉݁݁ ݃݊݅݀݊ݏ݁ݎݎܿ ℎ݁ݐ
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ூ∅ ݏݎݏ݊݁ݐ   ݊݅ݐܽݑݍ݁ ℎ݁ݐ ݕ݂ݏ݅ݐܽݏ 

       kiii   ...
211 = ܫ ݁ݎℎ݁ݓ        (݅ଵ , . . . , ݅)              ( 2-18) 

   ݂ݎܲ
The proofs are straightforward. Associativity is proved, for instance , by noting 
that   ݂݅ ݂, ݃, ℎ ℎܽݏݎ݁݀ݎ ݁ݒ ݇, ℓ, ݉,  (ݕ݈݁ݒ݅ݐܿ݁ݏ݁ݎ
(݂ ⊗  (݃ ⊗  ℎ)) (ݒଵ , . . . , ܸାℒା) 
ݒ)݂=  , . . . , (ݒ  · , ାூݒ)݃  . . . , . ାℒାூݒ)ାℒ)ℎݒ . . ,  ାℓା)                    (2-19)ݒ
The value of (݂ ⊗  ݃) ⊗  ℎ on the given tuple is the same. 
Now we will discuss to examine how tensors behave with respect to linear 
transformation of the underlying vector spaces. 
Definition.(2-1-8 )  Let ܶ ∶  ܸ →  ܹ be a linear transformation. We define the 
dual transfor-Mation    ܶ∗ ∶  ℒ  (ܹ)ℒ  (ܸ), which goes in the opposite direction) 
as follows: If ݂ is in .ℒ(ܹ), and if    ݒଵ , . . . , ݒ      are vectors in ܸ, then 

ூݒ )(݂ ∗ܶ) , . . . , (ݒ  = ,(ூݒ)ܶ)݂  . . . ,  (2-20)                     . (( ݒ)ܶ
The transformation ܶ∗is the composite of the transformation ܶ ݔ · · ·  and theܶ ݔ 
transformation ݂, as indicated in the following diagram: 

figu(2-1  ) 
It is immediate from the definition that ܶ∗ ݂ is multilinear, since ܶ is linear and ݂ is 
multilinear.  
Theorem ( 2-1-9) :- 
ܶ ݐ݁ܮ ∶  ܸ →  ܹܾ݁ a linear transformation; let  ܶ∗ ∶  ℒ (ܹ) → ℒ  (ܸ) be the dual 
transformation. Then: 
                        .ݎ݈ܽ݁݊݅ ݏ݅ ∗ܶ (1)                        
                        (2) ܶ∗(݂ ⨂ ݃)  =  ܶ∗ ݂ ⨂ ܶ∗݃. 
ܵ ݂ܫ (3) ∶  ܹ → ܺ is a linear transformation, then (ܵ  ܶ)∗ ݂ = ܶ∗(ܵ∗ ݂).  
                                                 Proof  
 (ܶ∗ (݂ܽ + , ଵݒ) ((ܾ݃  . .  , (ݒ  =  (݂ܽ +  ((ݒ)ܶ , . . . ,( ଵݒ)ܶ) (ܾ݃ 
,(ଵݒ)ܶ) ݂ ܽ = . . . , ((ݒ)ܶ  + ,(ଵݒ)ܶ)ܾ݃  . . . ,  ((ݒ)ܶ

= , ଵݒ ) ݂ ∗ܶ ܽ  . . . , ( ݒ  + , ଵݒ )݃∗ܾܶ  . . . ,    )          (2-21)ݒ
Whence ܶ∗(݂ܽ +  ܾ݃)  =  ܽ ܶ∗ ݂ +  ܾ ܶ∗݃.  
The following diagrams illustrate property (3) 



30 
 

 
Figure( 2-2) 

Section(2-2)  :-                   Alternating tensors 
In the following we will introduce the particular kind of tensors with which we 
shall be concerned-the alternating tensors-and derive some of their properties.In 
order to do this, we need some basic facts about permutations. 
Definition( 2-2-1 ) :-        ݐ݁ܮ ݇ ≥  2 . a permutation of the set of integers 
{1, . . . , ݇}is a one-to-one function a mapping this set onto itself. We denote the set 
of all such permutations by ܵ . ߪ ݂ܫ and ܶ are elements of ܵ , so are  ߪ ܶ and 

1a  The set ܵ thus forms a group , called the symmetric group permutation on 
the set {1, . . . , ݇} . There are ݇! elements in this  group. 
Definition( 2-2-2 ):-             Given 1 ≤  ݅ <  ݇,  ; be the element of ܵ݁ ݐ݈݁
defined by ݃݊݅ݐݐ݁ݏ ݁(݆) = ≠ ݆     ݎ݂    ݆  ݅ + 1 and 

݁  (݅) =  ݅ +  1   ܽ݊݀  e୧(i +  1)  =  i 
We call ݁  an elementary permutation. Note that ݁   equals the identity݁ 
permutation, so that ݁ is its own inverse. 
Lemma ( 2-2-3):-  ߪ ݂ܫ ∈  ܵ , then ߪ equals a composite of elementary 
permutations.        ݂ܲݎ 
≥ 0 ݊݁ݒ݅ܩ        ݅ ≤  ݇, we say that ݏ݁ݔ݂݅ ߪ the first ݅ integers if ߪ(݆)  =
≥ 1 ݎ݂ ݆   ݆ ≤  ݅. = ݅ ݂ܫ  0, then ߪ need not fix any integers at all. ݂ܫ ݅ =  ݇, 
, 1 ݏݎ݁݃݁ݐ݊݅ ℎ݁ݐ ݈݈ܽ ݏ݁ݔ݂݅ ܽ ℎ݁݊ݐ . . . ,  is the identity permutation . In ߪ ݐℎܽݐ ݏ ,݇
this case the theorem holds , since the identity permutation 
  . ݆ ݕ݊ܽ ݎ݂ ݅݁  ݅݁ ݏ݈ܽݑݍ݁
We show that ݂݅ ߪ fixes the first ݅ − 1 integers  then ߪ can  be written as the 
composite ߪ =  ′ߪ is a composite of elementary permutations and ߨ where ,′ߪ  ߨ 
fixes the first ݅ integers . The theorem then follows by     induction. 
          The proof is easy. Since ߪ fixes the integers 1, . . . , ݅ − 1, and since ߪ is one-
to-one, the value of ߪ on ݅ must be a number different from 1 , . . . , ݅ −
1 . (݅) ߪ ݂ܫ =  ݅, ᇱߪ ݐ݁ݏ ݁ݓ ℎ݁݊ݐ =  , equlal to the identity permutation       ߨ   ݀݊ܽ ߪ
and our result holds. ߪ ݂ܫ( ݅)  =  ℓ >  ݅,   ݐ݁ݏ ݁ݓ

′ߪ =  ݁  · · ·  (2-22)                                       .ߪ  ఐିଵ݁  
Then ߪᇱ fixes the integers 1, . . . , ݅ –  fixes these integers and so do ߪ ݁ݏݑܾܽܿ݁    1 
݁  , . . . , ݁ℓ ିଵ  . And ߪᇱ also fixes ݅, ߪ  ݁ܿ݊݅ݏ( ݅)  =  ℓ and   
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  ݁( · · ·  ( ݁ିଵ ( ℓ))  · · ·)  =  ݅.                                      ( 2- 23) 
We can rewrite the equation defining ߪ′ in the form 

݁ℓ ିଵ  · · · ݁   = ′ߪ       (2-24)                                             ߪ 
Definition.( 2-2-4 ) :-          ߪ ݐ݁ܮ ߳ ܵ  . Consider the set of all pairs of integers ݅, ݆ 
from the set { 1 , . . . , ݇} for which ݅ < (݅)ߪ ݀݊ܽ ݆   >  Each such pair is .(݆)ߪ 
called an inversion in ߪ We define the sign of ߪ to be the number -1 if the number 
of inversions in ߪ is odd , and to be the number +1 if the number of inversions in ߪ 
is even .We call ߪ  an odd or an even permutation according as the sign of ߪ equals 
-1 or +1 , respectively. Denote the sign of ߪ by sgn    σ. 
Lemma (2-2-5)  :-                       ߪ ݐ݁ܮ, ܶ ߳ ܵ . 
(a) ߪ ݂ܫ equals a composite of ݉ elementary permutations, then sgn ߪ =  (− 1)  . 
(b) (߬  ߪ)݊݃ݏ  = (ߪ ݊݃ݏ)  ·  . (߬ ݊݃ݏ) 
(c) sgn ିߪଵ =  .ߪ ݊݃ݏ 
(d)  ݂ܫ ≠  ݀݊ܽ ݍ ݀݊ܽ  ݏℎܽ݊݃݁ܿݔ݁ ݐℎܽݐ ݊݅ݐܽݐݑ݉ݎ݁ ℎ݁ݐ ݏ݅ ࣮ ݂݅ ݀݊ܽ ,ݍ
,݀݁ݔ݂݅ ݏݎ݁݃݁ݐ݊݅ ݎℎ݁ݐ ݈݈ܽ ݏ݁ݒ݈ܽ݁ ࣮ ݊݃ݏ ℎ݁݊ݐ =  −1.  

 ݂ݎܲ
.1 ݁ݐܵ  ߪ ݕ݊ܽ ݎ݂ ݐℎܽݐ ݓℎݏ ܹ݁

(ఐ݁  ߪ)݊݃ݏ =  (2-25)                                          ߪ ݊݃ݏ−
Given ߪ let us write down the values of ߪ in order as follows: 
,( 1)ߪ)                      (*)   ,(2)ߪ . . . , , (݈)ߪ + ℓ)ߪ  1 ) , . . . ,          .((݇)ߪ
= ࣮ ݐ݁ܮ ݇ ఐ ; then the corresponding sequence for ࣮is the݁ߪ  −  of ݈݁ݑݐ
numbers (࣮( 1) , ࣮(2), . . . , ࣮(݈) , ࣮(ℓ +  1), . . . , ࣮(݇))  

,(1 )ߪ) = ,(2 )ߪ . . . , + ℓ )ߪ  1), ,(݈ )ߪ . . . ,  (26- 2)                  (**)  .((݇ )ߪ
The number of inversions in σ and ࣮, respectively, are the number of pairs of 
integers that appear in the sequences ( *) and ( ** ), respectively, in the reverse of 
their natural order. We compare inversions in these two sequences. Let  ≠  we ;ݍ 
compare the positions of ()ߪ and (ݍ)ߪ in these two sequences. If neither p nor q 
equals ℓ ݎ  ℓ +  1 , then ()ߪ and ()ߪappear in the same slots in both sequences, 
so they constitute an inversion in one sequence if and only if they constitute an 
inversion in the other. Now consider the case whereone, say , equals either 
+ ݈ ݎ ݈  1, and the other ݍ is different from both ݈ and ℓ +  1 . Then ()ߪappears 
in the same slot in both sequences, but ()ߪ appears in the two sequences in 
adjacent slots. Nevertheless, it is still true that ()ߪand (ݍ)ߪconstitute an inversion 
in one sequence if and only if they constitute an inversion in the other. So far the 
number of inversions in the two sequences are the same. But now we note that 
ℓ)ߪ ݀݊ܽ (ℓ )ߪ ݂݅ +  1 ) form an inversion in the first sequence, they do not form 
an inversion in the second ; and conversely. Hence sequence ( **) has either one 
more inversion , or one fewer inversion, than ( * ) . 
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 Step 2.We prove the theorem.The identity permutation has sign +1  ,and 
composing it successively with m elementary permutation changes its sign m 
times, by Step 1. Thus (a) holds. To prove (b), we write ߪ as the composite of m 
elementary permutations,and ߬ as the composite of n elementary permutations. 
Then ߪo τ is the composite of ݉ +  ݊ elementary permutations; and (b) follows 
from the equation (−1)ା= ( −1) ( −1) .  
To check (ܿ), we note that since ߪ ିଵߪ  equals the identity permutation ,  
(ߪ ݊݃ݏ)(ଵିߪ  ݊݃ݏ)  =  1 . 
      To prove (d), one simply counts inversions. Suppose that  <  We can write .ݍ 
the values of ߬ in order as 
(1, . . . , –   1, ,ݍ  + 1 , … ,  + ℓ − 1, ,  + ℓ + 1, … , ݇), 
where ݍ =   +  ℓ. Each of the pairs{ݍ,  +  1}, . . , ,ݍ} +   ℓ −  1} constitutes an 
inversion in this sequence, and so does each of the pairs { +  1, . { . .  , + }  ℓ - 
1,p}. Finally, {ݍ, − is an inversion as well. Thus τ has 2ℓ {  1 inversions, so it is 
odd .   
Definition( 2-2-6 ):-    ݐ݁ܮ ݂ be an arbitrary ݇-tensor on ܸ. If ߪis a permutation of 
{1, . . .  ݇}, we define ݂ఙ by the equation 

݂ఙ (ݒଵ , . . . , (ݒ  = . ఙ(ଵ)ݒ) ݂  . . , (ఙ()ݒ  ·                      ( 2- 27) 
Because ݂ is linear in each of its variables, so is  ݂ఙ  ; thus ݂ఙ is a ݇ −tensor on ܸ. 
The tensor ݂ is said to be symmetric if ݂ = ݂ for each elementary permutation e, 
and it is said to be alternating if ݂  =  −݂ for every elementary permutation 
݁.Said differently, ݂ is symmetric if 

,ଵݒ)݂ . . . , , ାଵݒ ;ݒ , . . . , (ݒ  = ,ଵݒ)݂  . . . , ݒ  , ;ାଵݒ , . . . ,  )              (2-28)ݒ
for all ݅; and ݂ is alternating if 

,ଵݒ)݂ . . . , , ାଵݒ ;ݒ , . . . , (ݒ  = ,ଵݒ)݂  . . . , , ݒ ;ାଵݒ , . . . ,  )              (2-29)ݒ
Definition.( 2-2-7  ):-        If ܸ is a vector space, we denote the set of alternating ݇ 
tensors on ܸ by ܣ (ܸ). It is easy to check that the sum of two alternating tensors 
is alternating, and that so is a scalar multiple of an alternating tensor. Then ܣ(ܸ).  
is a linear subspace of the space .ℒ(ܸ) of all ݇ −tensors on ܸ. The condition that 
a 1-tensor be alternating is vacuous. Therefore we make the convention that 
(ܸ) ூܣ  =  ℒ(ܸ). 
 EXAMPLE(2-2-8):-  The elementary tensors of order ݇ >  1 are not alternating, 
but certain linear combinations of them are alternating. For instance, the tensor 
 ݂ =  ∅ଵ  −  ∅ଵ  is alternating, as you can check. Indeed, ݂݅ ܸ =  ܴ and we 
use the usual basis for ܴ and corresponding dual basis ∅, the function ݂ satisfies 
the equation  

,ݔ)݂ (ݕ = ݕݔ − ݕݔ  = ቂ ݐ݁݀  
ݔ ݕ
ݔ ݕ

ቃ                                 (2- 30) 
 Here it is obvious that ݂(ݕ, (ݔ  = ,ݔ)݂−   Similarly, the function .(ݕ
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,ݔ)݃ ,ݕ (ݖ  = ݐ݁݀  
ݔ ݕ ݖ
ݔ ݕ ݖ
ݔ ݕ ݖ

൩                                                 (2-31) 

is an alternating 3-tensor on ܴ; one can also write ݃ in the form 
݃ =  ∅,,  +  ∅,, +  ∅,,  − ∅,, − ∅,, − ∅,,               (2-32) 

In the following we now study the space ܣ(ܸ); in particular, we find a basis for it 
Lemma (2-2-9):- ݐ݁ܮ ݂ ܾ݁ ܽ ݇ − ;ܸ ݊ ݎݏ݊݁ݐ ,ߪ ݐ݈݁  ߬ ∈  ܵ . 
(a) The transformation f → ݂ఙ is a linear transformation of .ℒ(ܸ)to . ℒ(ܸ). 
,ߪ ݈݈ܽ ݎ݂ ݐℎܽݐ ݕݐݎ݁ݎ ℎ݁ݐ ݏℎܽ ݐܫ ߬, 

(݂ఙ)ఛ  =  ݂ఛஇఙ. 
(b) ܶℎ݁ ݕ݈݊ ݀݊ܽ ݂݅ ݃݊݅ݐܽ݊ݎ݁ݐ݈ܽ ݏ݅ ݂ ݎݏ݊݁ݐ ݂݅ ݂ఙ =݃݊ ݎ݂ ݂(ߪ all ݂ܫ . ߪ ݂ is 
alternating and ݂݅ ܸ  =  ܸ ≠  ℎݐ݅ݓ  )݂ then ,ݍ  ଵܸ , . . . , ܸ) =  0. 

 .݂ݎܲ
(a)  The linearity property is straightforward; it states simply that 
(b) (݂ܽ +  ܾ݃)ఙ =  ݂ܽఙ  +  ܾ݃ఙ . To complete the proof of (a), we compute 

(݂ఙ )ఛ(ݒଵ , . . . (ݒ =  ݂ఙ൫ݒ)ఛ(ଵ), … =   ఛ() ൯ݒ  ݂൫ ఙܹ(ଵ), … , ఙܹ()൯  
=  ݂ ቀ ఛܸ൫ఙ(ଵ)൯, … , ఛܸ൫ఙ()൯ቁ 

                                        =  ݂ఛఙఙ(ݒଵ, … ,      )                                         ( 2-33)ݒ
(b) Given an arbitrary permutation ߪ, let us write it as the composite 

ߪ = ଶߪ ߧ ଵߪ) … .  )                                        (2-34)ߪߧ
Where each σ୧  is an elementary permutation. Then 
݂ఙ = ݂ఙభఖ…ఖఙ.  
=((… (݂ఙ) … )ఙమ  )ఙభ  , ݃݊݅ݐܽ݊ݎ݁ݐ݈ܽ ݏ݅ ݂ ݁ݏݑܾܽܿ݁ ݂(1−) =       ,(ܽ) ݕܾ 

                                   (35 -2 )                                                                                          .݂(ߪ݊݃ݏ)=
Now suppose ܸ  = ܸ ≠   ݎ݂  .ݍ     the permutation  that exchanges  ܾ݁ ߬ ݐ݁ܮ
and ݍ . Since ܸ = ܸ  

݂ఛ (ݒଵ , … , ( ݒ = , ଵݒ) ݂  … ,   ).                                                    ( 2- 36)ݒ
On the other hand, 

݂ఛ ( ݒଵ , … , ( ݒ = ,  ଵݒ ) ݂− … . , ܸ  ).                                                 ( 2- 37) 
Since sgn     ߬ = −1 . It follows that ݂ (ݒଵ , … , .( ݒ = 0      
Lemma:-  (2-2-10 ) :-      Let aଵ, . . . , a୬be a basis for V. If  f, g areternating݇ −
,ܸ ݊ ݏݎݏ݊݁ݐ ܽ݊݀ ݂݅   ݂(ܽଵ. . . , ܽ . )  =  ݃(ܽଵ. . . , ܽ . ) 
݇ ݃݊݅݀݊݁ܿݏܽ ݕݎ݁ݒ݁ ݎ݂ − .ଵ݅) =ܫ ݏݎ݁݃݁ݐ݊݅ ݂ ݈݁ݑݐ , . . . , ݅) 
, 1} ݐ݁ݏ ℎ݁ݐ ݉ݎ݂ . . . , ݊}, = ݂ ℎ݁݊ݐ  ݃. 
                                          Proof. 
    In view of Lemma (2-1-3), it suffices to prove that ݂ and ݃ have the same values 
on an arbitrary ݇ − , ଵܽ) ݈݁ݑݐ . . . , ܽ . ) of basis elements. Let ܬ =  (݆ଵ. , . . . , ݆)   
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      If two of the indices, say, ݆ and ݆ , are the same , then the values of ݂  and ݃ 
on this tuple are zero, by the preceding lemma. If all the indices are distinct, ݈݁ߪ ݐ 
be the permutation of { 1 , . . . , ݇} such that the ݇ − = ܫ ݈݁ݑݐ  (݆ఙ(ଵ) , . . . , ݆ఙ()) is 
ascending. Then 
 ݂ ( ܽଵ , … , ܽ ) = ݂ఙ ൫ ܽଵ , … ܽ ൯by definition  of  ݂ఙ ,  

݂ఙ= (ߪ ݊݃ݏ)݂൫ ܽଵ , … ܽ ൯                                  (2- 38) 
because ݂ is alternating. A similar equation holds for ݃. Since ݂ and ݃ agree on the 
݇ − , ൫ ܽଵ ݈݁ݑݐ … ܽ ൯they agree on the ݇ − , ൫ ܽଵ) ݈݁ݑݐ … ܽ ൯  
Theorem (2,2,11)    :-     
, ଵܽ ݏ݅ݏܾܽ ℎݐ݅ݓ ݁ܿܽݏ ݎݐܿ݁ݒ ܽ ܾ݁ ܸ ݐ݁ܮ  . . . , ܽ . ܫ ݐ݁ܮ =  (݅ଵ , . . . , ݅)be an 
ascending ݇ − , from the set { 1 ݈݁ݑݐ . . . , ݊}. ܶℎ݁݁ݎ is a unique alternating 
݇ −   such that for every ascending ݇-tuple ܸ ݊ ଵ߮ ݎݏ݊݁ݐ
= ܬ  (݆ଵ , . . . , ݆ ) from the set { 1 , . . . , ݊}, 

߰ூ ൫ ܽଵ , … , ܽ ൯ = ൜
0 ݂݅ ܫ ≠ ,ܬ
1 ݂݅ ܫ = ,ܬ

�                                           (2 – 39) 

The tensors߰ூ ݂ܣ ݎ݂ ݏ݅ݏܾܽ ܽ ݉ݎ (ܸ).The tensor ߰ூ in fact satisfies the 
formula        ߰ூ =  ∑ ଵఙ∅)(ߪ݊݃ݏ) )ఙ ,                                                  ( 2- 40) 

where the summation  extends over all ߪ ∈ ܵ . 
     The tensors ߰ூare called the elementary alternating ݇-tensors on ܸ 
corresponding to the basis ܽଵ , . . . , ݂ܽݎ  ܸ. 

                                                     Proof. 
(߰ூ)த  =  ∑ ఛ(ఙ( ଵ∅))(ߪ ݊݃ݏ)

ఙ  by linearity,   =∑ ఛఙఙ( ଵ∅))(ߪ ݊݃ݏ)
ఙ  

(߬ ݊݃ݏ) = ∑ ఛఖఙ( ଵ∅)((ߪο߬ )݊݃ݏ)
ఙ   

 ூ                                                                                     ( 2- 41)߰ (߬ ݊݃ݏ)=
 the last equation follows from the fact that ߬ ߪ  ranges over ܵ as ߪ does . We 
show ߮ூhas the desired values. Given ܬ, we have 

߰ூ൫ ܽଵ, . . . , ܽ ൯ =  ∑ ூ൫∅(ߪ ݊݃ݏ)  ܽఙ(ଵ) . . . , ܽఙ() ൯.ఙ                        ( 2- 42) 
Now at most one term of this summation can be non-zero, namely the term 
corresponding to the permutation ߪ for which ܫ =  (݆ఙ(ଵ) . . . , ݆ఙ())  Since both ܫ 
and ܬ are ascending, this occurs only if ܫ =  is the identity permutation , in ߪ and ܬ 
which case the value is 1. If ܫ ≠  ߰ then all terms vanish . Now we show the ,ܬ 
form a basis for ܣ(ܸ). ݇  be an alternating ݂ ݐ݁ܮ −  ݂ on ܸ. We show thatݎݏ݊݁ݐ
can be written uniquely as a linear combination of the tensors ߮ூ  . 
Given ݂ , for each ascending         ݇ − = ܫ ݈݁ݑݐ  (݅ଵ. , . . . , ݅)            from the set 
{1, . . . , ݊} , let ݀ூ be the scalar  

 ݀ூ  =  ݂(ܽଵ , . . . , ܽ).                                                    ( 2- 43) 
Then consider the alternating ݇ −  ݎݏ݊݁ݐ
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݃ =   ݀ ߰ 
[]

, 

   (2-44) 
 Where the notation [J] indicates that the summation extends over all ascending 
݇ − ,from {1 ݏ݈݁ݑݐ . . . , ݊}. If I is an ascending ݇ −  the the value of ݃ on ,݈݁ݑݐ
the ݇ − , ଵܽ) ݈݁ݑݐ . . . , ܽ  ) equals ݀ூ ; and the value of ݂ on this ݇ −  is the ݈݁ݑݐ
same. Hence ݂ =  ݃. Uniqueness of this representation of ݂ follows from the 
preceding lemma.  
      This theorem shows that once a basis ܽଵ, . . . , ܽ ݂ݎ ܸ has been chosen , an 
arbitrary alternating ݇ −   can be written uniquely in the form ݂ ݎݏ݊݁ݐ
                

݂ =    ݀ ߰
[]

 

  (2-45) 
 The numbers ݀ are called components of ݂ relative to the basis {߰ }. What is the 
dimension of the vector space ܣ (ܸ)? = ݇ ݂ܫ   1, then ܣଵ (ܸ)  has dimension n, 
of course. In general, given ݇ >  1 and given any subset of  {1, . . . , ݊} having ݇ 
elements, there is exactly one corresponding ascending ݇ −  and hence one ,݈݁ݑݐ
corresponding elementary alternating   ݇ −  Thus the number of basis .ݎݏ݊݁ݐ
elements for ܣ(ܸ) equals the number of combinations of n objects , taken ݇ at a 
time. This number is the binomial coefficient    

(
) =  !

!(ି)!
                                                            (2- 46) 

Theorem (2-2-12) :- ݐ݁ܮ ܶ ∶  ܸ ⟶  ܹ be a linear   transforMation 
 .ܸ ݊ ݎݏ݊݁ݐ then ܶ∗ ݂ is an alternating ,ܹ ݊ ݎݏ݊݁ݐ ݃݊݅ݐܽ݊ݎ݁ݐ݈ܽ ݊ܽ ݏ݅ ݂  ݂ܫ.
Definition(2-2-13 ):-        Let ݁ଵ , . . . , ݁ be the usual basis for ܴ; let 
∅ଵ, … , ∅    denote the dual basis for .ℒଵ (ܴ)The space ܣܴ of alternating  
݊ − ݊ on ܴ has dimension 1 ; the unique elementary alternating ݏݎݏ݊݁ݐ −
  on ܴ is the tensor ߰ଵ,….,  If ݎݏ݊݁ݐ
 ܺ = ଵݔ]  … .  ] is an n by n matrix, we define the determinant of ܺ by theݔ
equation     

= ܺ ݐ݁݀    ߰ଵ,….,  (ݔଵ … .  ) .                                   (2-47)ݔ
let us for the moment let ݃ denote the fun ction 

                     ݃(ܺ)  =  ߰ଵ  (ݔଵ … .  )  ,                                        ( 2- 48)ݔ
Where ܫ =  ( 1 , . . . , ݊). The function ݃ is multilinear and alternating as a function 
of the columns of ܺ, because ߮ଵ  is an alternating tensor. Therefore the function 
݂ defined by the equation ݂ (ܣ) =  is multilinear and alternating as a (௧ܣ ) ݃
function of the rows of the matrix A. Furthermore, 
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(ܫ) ݂ = (ܫ) ݃ = ߰ଵ ( ݁ଵ , . . ݁ ) = 1                         ( 2- 49)  
Hence the function ݂ satisfies the axioms for the determinant function. In 
particular, ݂(ܣ)  =  ݃ so that ,(ܣ)݃ = .௧(௧ܣ)݃ =  (௧ܣ)݂ = (ܣ)݂ Then .(௧ܣ)݂ 
also satisfies the axioms for the determinant function , as desired   
                      The formula for  ߰ଵ given in Theorem (2-2-11)  gives rise to a 
formula for the  determinant function. If ܫ =  ( 1 , . . . , ݊) , we have    ݀݁ݐ ܺ =
 ∑ ଵఙ∅(ߪ ݊݃ݏ) , ఙ(ଵ)ݔ)  . . ,   (ఙ()ݔ

= (ߪ ݊݃ݏ)ݔଵ,ఙ . ଶ,ఙ(ଶ)ݔ …   ,ఙ()ݔ
ఙ

 

  (2-50) 
as you can check. This formula is sometimes used as the definition of the  
determinant function. 
We can now obtain a formula for expressing ߰ଵ  directly as a function of ݇ −
 :of vectors of ܴ. It is the following ݏ݈݁ݑݐ
Theorem ( 2-2-14):- Let ߰ଵbe an elementary alternating tensor on ܴ 
corresponding to the usual basis for ܴ, ݓℎ݁ܫ ݁ݎ =  (݅ଵ, . . . , ݅) · 
Given   ݔ ݏݎݐܿ݁ݒଵ , . . . , ݔ   ݔ݅ݎݐܽ݉ ℎ݁ݐ ܾ݁ ܺ ݐ݈݁          ,ܴ ݂ 
ܺ = ଵݔ]  … [ݔ  ·  ܶℎ݁݊           ߰ଵ(ݔଵ , . . . , (ݔ  =  ,ଵܺ ݐ݁݀ 
where ଵܺ denotes the matrix whose successive rows are rows        ݅ଵ, . . . , ݅ ݂ ܺ. 
  .݂ݎܲ                                      
We compute ߰ଵ(ݔଵ , . . . , (ݔ =  ∑ , ఙ(ଵ)ݔ ) ଵ∅( ߪ ݊݃ݏ) … , ఙ() )ఙݔ   

=∑ , ଵ,ఙ(ଵ)ݔ ) ( ߪ ݊݃ݏ) … , ଶ,ఙ(ଶ)ݔ … ,ఙ()ఙݔ        ( 2 – 51 ) 
This is just the formula for det ଵܺ   
EXAMPLE (2-2-15):- Consider the space ܣଷ(ܴସ). The elementary alternating 
3- tensors on R4 , corresponding to the usual basis for ܴସ , are the functions 

߰,, ( ݔ, , ݕ (ݖ = det 
ݔ ݕ ݖ
ݔ ݕ ݖ
ݔ ݕ ݖ

൩                                             (2-52) 

Where( ݅ , ݆,  The general .(2,3,4) ݎ (3,4, 1 ) ݎ (2,4, 1 ) ݎ (2,3, 1) ݏ݈ܽݑݍ݁ (݇
elemen t of ܣଷ(ܴସ) is a linear combination of these four functions. 
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section (2-3):-             T H E  WEDG E  P R O D UCT 
 
In the following we seek to define a product operation in the set of lternating 
tensors .  
 Theorem (2-3-1 ):-  
∋ ݂ There is an operation that assigns, to each .݁ܿܽݏ ݎݐܿ݁ݒ ܽ ܾ݁ ܸ ݐ݁ܮ  (ܸ) ܣ 
and each ݃ ∈ ∋ ݃ ⋀ ݂  (ܸ), an elementܣ  ାܣ + ݈ (ܸ), such that the following 
properties hold: 
.(ݕݐ݅ݒ݅ݐܽ݅ܿݏݏܣ} (1) ݂ ∧  (݃ ∧  ℎ)  =  (݂ ∧  ݃)  ∧  ℎ . 

.(ݕݐ݅݁݊݁݃݉ܪ} (2) (݂ܿ)  ∧  ݃ =  ܿ(݂ ∧ ݃)  =  ݂ ∧  (ܿ݃) . 

.(ݕݐ݅ݒ݅ݐݑܾ݅ݎݐݏ݅ܦ) (3)  ,ݎ݁݀ݎ ݁݉ܽݏ ℎ݁ݐ ݁ݒℎܽ ݃ ݀݊ܽ ݂ ݂ܫ

(݂ +  ݃)  ∧  ℎ =  ݂ ∧  ℎ +  ݃ ∧  ℎ, 

ℎ ∧  (݂ +  ݃)  =  ℎ ∧  ݂ +  ℎ ∧  ݃. 

.(ݕݐ݅ݒ݅ݐܽݐݑ݉݉ܿ݅ݐ݊ܣ) ,ݕ݈݁ݒ݅ݐܿ݁ݏ݁ݎ݈ ݀݊ܽ ݇ ݏݎ݁݀ݎ ݁ݒℎܽ ݃ ݀݊ܽ ݂ ݂ܫ       ℎ݁݊ݐ

݃ ∧  ݂ =  (−1)݂ ∧  ݃ 

(5) Given a basis ܽଵ, . . . , ܽ ݂ݎ ܸ,  ଵ߰ ݐ݈݁  denote the dual basis for ܸ∗and∅ ݐ݈݁
denote the corresponding elementary alternating tensors. ܫ ݂ܫ =  (݅ଵ. , . . . , ݅) is an 
ascending ݇-tuple of integersfݐ ݉ݎℎ݁ 1} ݐ݁ݏ, . . . , ݊}, ℎ݁݊         ߰ூݐ =  ∅ଵ  ∩
  ∅ଶ … ∅                                                            
These five properties characterize the product ∧ uniquely for finitedimensional 
spaces ܸ. Furthermore, it has the following additional    property: 
ܶ ݂ܫ (6) ∶  ܸ →  ܹ is a linear transformation, and ݂݅ ݂ and ݃ are alternating 
tensors on ܹ, then    
 ܶ∗ (݂ ∩ ݃) = ܶ∗f ∩ T∗g                                          
The tensor ݂ ∧ ݃ is called the wedge product of ݂ and ݃. Note that property ( 4) 
implies that for an alternating tensor ݂ of odd order,  ݂ ∧  ݂ =  0 . 
                                                  Proof 
 Step 1. ܨ ݐ݁ܮ ܾ݁ ܽ ݇ −  For purposes of .(not necessarily alternating) ܹ ݊ ݎݏ݊݁ݐ
this proof, it is convenient to define a transformation  ܣ ∶  ℒ(ܸ)  ⟶ ℒ  (ܸ) by 
the formula 

ܨܣ =  (ߪ ݊݃ݏ)ܨఙ 
ఙ

 

  (2-53) 
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where the summation extends over all ߪ ∈  ܵ. (Sometimes a factor of 1/݇!  is 
included in this formula, but that is not necessary for our purposes.)note  that in 
this notation, the definition of the elementary alternating tensors can  be written as 

߰ூ =  ூ                                                                            (2-54)∅ܣ
The transformation ܣ has the following properties: 
                    (i) ݎ݈ܽ݁݊݅ ݏ݅ ܣ. 
                    (ii) ݎݏ݊݁ݐ ݃݊݅ݐܽ݊ݎ݁ݐ݈ܽ ݊ܽ ݏ݅ ܨܣ. 
    (iii) ݃݊݅ݐܽ݊ݎ݁ݐ݈ܽ ݕ݀ܽ݁ݎ݈ܽ ݏ݅ ܨ ݂ܫ, = ܨܣ ℎ݁݊ݐ  .ܨ(!݇) 
Let us check these properties. The fact that ܣ ݅s linear comes from the  fact that the 
map ܨ → ఙܨ  is linear. The fact that ܨ ܣ is alternating comes    from the 
computation 
ఛ(ܨܣ)  =  ∑ ఙ(ߪ ݊݃ݏ)    ,ݕݐ݅ݎ݈ܽ݁݊݅ ݕܾ        ఛ(ఙܨ)
=  ∑ ఛఖఙܨ(ߪ ݊݃ݏ)

ఙ   
= ∑  (߬ ݊݃ݏ)  ఛఖఙܨ(ߪߧ߬ ݊݃ݏ)

ఛ   
=  (55-2 )                                                                                        .ܨܣ(߬ ݊݃ݏ) 
Step 2.   If ݂ is an alternating ݇ − on V, and g is an alternating ℓ     ݎݏ݊݁ݐ −
 we define , ܸ ݊ ݎݏ݊݁ݐ

݂ ∧  ݃   = ଵ
! !

 (  56-2 )                                      .(݃ ⨂݂ ) ܣ 
Then ݂ ∩ ݃ is an alternating tensor of order ݇ +  ℓ.   It is not entirely clear why the 
coefficient 1/݇! ℓ! appears in this formula.Some such coefficient is in fact 
necessary if the wedge product is to be associative. One way of motivating the 
particular choice of the coefficient ଵ

!!
  is the following: Let us rewrite the 

definition of ݂ ∧  ݃ in the form                           
  (݂ ∧  ݃) ( ଵܸ , . . . , ܸା)  = 

1
݇! ݈!

 (ߪ ݊݃ݏ)݂( ఙܸ(ଵ) , … . ఙܸ()). ݃(
ఙ

 ఙܸ(ାଵ) , … . ఙܸ(ା)) 

    ( 2-57) 
Then let us consider a single term of the summation , say 

)݂(ߪ ݊݃ݏ) ఙܸ(ଵ) … . , ఙܸ())  · ݃( ఙܸ(ାଵ) … . , ఙܸ(ା))  ·           (  2-58) 
A number of other terms of the summation can be obtained from this one by 
permuting the vectors ఙܸ(ଵ), . . . , ఙܸ() among themselves , and permuting the 
vectors ఙܸ(ାଵ), . . . , ఙܸ(ା) among themselves . Of course, the factor (ߪ ݊݃ݏ) 
changes as we carry out these permutations, but because ݂ and ݃ are alternating, 
the values of ݂ and ݃ change by being multiplied by the same sign . Hence all 
these terms have precisely the same value. There are ݇! ݈! such terms, so it is 
reasonable to divide the sum by this number to eliminate the effect of this 
redundancy. 
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Step 3. Associativity is the most difficult of the properties to verify, so we 
postpone it for the moment. To check homogeneity, we compute            
(݂ܿ)⋀ ݃ = !݇/ (݃ ⨂ (݂ܿ)) ܣ  ݈!  
= ⊗ ݂)ܿ) ܣ   ݃)) /݇ ! ݈!   ,⊗ ݂ ݕݐ݅݁݊݁݃݉ℎ ݕܾ  
= ! ݇ /(݃ ⨂ ݂)ܣܿ  ݈!   ,ܣ ݂ ݕݐ݅ݎ݈ܽ݁݊݅ ݕܾ 

=  ܿ(݂ ∧ ݃) .                                                                          ( 2- 59) 
Asimilar computation verifies the other part of homogeneity. Distributivity follows 
similarly from distributivity of ⊗ and linearity of ܣ. 
Step 4. We verify anticommutativity. In fact, we prove something slightly more 
general: Let ܨ and ܩ be tensors of orders ݇ ܽ݊݀ ℓ, respectively(not necessarily 
alternating). We show that 

⊗ ܨ)ܣ (ܩ  =  (−1)ℓ ܩ)ܣ ⊗  (60-2 )                                  . (ܨ 
To begin , let ߨ be the permutation 1 ) ݂ , . . . , ݇ +  ℓ) such that 

൫ (1 )ߨ, . . . + ݇ )ߨ  ℓ)൯ =  ( ݇ +  1, ݇ + 2, … , ݇ + ℓ, 1,2, … , ݇).      (2-61) 
Then sgnߨ =  (−1)ℓ. (Count inversions!) It is easy to see that  (ܨ ® ܩ)గ  =
⊗ ܨ ,ܩ   ݁ܿ݊݅ݏ

⊗ ܩ) )గ(ܨ  ଵܸ , . . . , ܸାℓ)  = )ܩ  ܸାଵ , . . . , ܸାℓ)  · )ܨ  ଵܸ , . . . , ܸ ) ,(2-62) 
⊗ ܨ ) )(ܩ  ଵܸ , . . . , ܸାℓ )  = )ܨ  ଵܸ , . . . , ܸ  )  · )ܩ  ܸାଵ , . . . , ܸାℓ) ·(2-63) 

We then compute 
ܨ )ܣ ⊗ (ܩ = ∑ ܨ)(ߪ ݊݃ݏ) ⊗ ఙ(ܩ

ఙ   
                                                             = ∑ ܩ))(ߪ ݊݃ݏ) ⊗ గ)ఙ(ܨ

ఙ   
                                                      = ((ߨ ݊݃ݏ) = ∑ ܩ)(ߨߧߪ ݊݃ݏ) ⊗ ఙఖగ(ܨ

ఙ   
                                                     = ⊗ ܩ)ܣ((ߨ ݊݃ݏ)  (64-2)                     ,( ܨ

since ߨߧߪ  runs over all elements of ܵାℓ   ܽݏ݁݀ ߪ ݏ . 
Step 5. Now we verify associativity. The proof requires several steps , of which the 
first is this   
          Let F and G be tensors (not necessarily alternating) of orders ݇ and ℓ, 
respectively, such that         ܨܣ =  0. ܶℎ݁݊ ܨ)ܣ ⊗ (ܩ   =  0            ( 2-65 ) 
To prove that this result holds, let us consider one term of the expression for 
⊗ ܨ)ܣ  say the term ,(ܩ 

൫ ఙܸ(ଵ) ܨ( ߪ ݊݃ݏ) , … , ఙܸ()൯. ,൫ ఙܸ(ାଵ) ܩ … , ఙܸ(ାℓ)൯                  
Let us group together all the terms in the expression for ܨ)ܣ ⊗  that involve the (ܩ
same last factor as this one. These terms can be written in the form 

( ߪ ݊݃ݏ) (ܨ ߬ ݊݃ݏ
ఛ

൫ ఙܸ(ఛ(ଵ), … , ఙܸ(ఛ()൯൩ . ,൫ ఙܸ(ାଵ) ܩ … , ఙܸ(ା)൯ 

where ߬ ranges over all permutations of { 1 , . . . , ݇} . Now the expression in   
brackets is just 
)ܨܣ ఙܸ(ଵ) , . . . , ఙܸ())  
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which vanishes by hypothesis . Thus the terms in this group cancel one another.  
             The same argument applies to each group of terms that involve the same 
last factor. We conclude that ܨ)ܣ ⊗ (ܩ   =  0. 
Step 6   Let ܨ be an arbitrary tensor and let ℎ be an alternating tensor of order ݉ . 
We show that 

(ܨܣ)   ∧  ℎ =  ଵ
!

⊗ ܨ)ܣ   ℎ).                                     (2-66) 
Let ܨ have order ݇. Our desired equation can be written as 

 ଵ
!  !

(ܨܣ)) ܣ  ⊗  ℎ)  =  ଵ
 !

⊗ ܨ)ܣ  ℎ) .                       (2-67) 
 Linearity of ܣ and distributivity of ⊗ show this equation is equivalent to each of 
the equations 

⊗ (ܨܣ)}ܣ  ℎ − ⊗ ܨ(!݇)  ℎ}  =  0, 
− ܨܣ] } ܣ                                 (݇!). [ܨ  ⊗  ℎ}  =  0.                            ( 2-68) 

In view of Step 5, this equation holds if we can show that 
− ܨ ܣ] ܣ                              [ܨ(!݇)   =  0.                                             ( 2-69) 

But this follows immediately from property (iii) of the transformation A, since ܨܣ 
is an alternating tensor of order ݇. 
Step 7. Let ݂, ݃, ℎ be alternating tensors of orders ݇, ݈, ݉ respectively. We show 
that 

 (݂ ∧  ݃)  ∧  ℎ = ଵ
!!!

⊗ ݂))ܣ   ݃) ⊗  ℎ) .                    ( 2-70) 
= ܨ ݐ݁ܮ  ݂ ⊗  ݃, .݁ܿ݊݁݅݊݁ݒ݊ܿ ݎ݂ ܹ݁ ℎܽ݁ݒ  

݂ ∧  ݃ = ଵ
!!

 (71 -2)                                                              ܨ ܣ 
by definition, so that           
                                     (݂ ∧  ݃)  ∧  ℎ = ଵ

!!
∧ (ܨܣ)   ℎ 

1
݇! ݈! ݉!

⊗ ܨ) ܣ   ℎ) ܾ6 ݁ݐܵ   ݕ, 

                                       = ଵ
 !!!

⊗ ݂)) ܣ   ݃)  ⊗  ℎ) .                        (2-72) 
Step 8. Finally, we verify associativity. Let ݂, ݃, ℎ be as in Step 7.Then 

        (݇ ! ݈! ݉!)(݂ ∧ ݃) ∧  ℎ = ⊗ ݂)൫ܣ  ݃) ⊗  ℎ൯ܾ7 ݁ݐܵ ݕ,  

         = ݂) ܣ  ⊗  (݃ ⊗  ℎ))ܾ݂ ݕݐ݅ݒ݅ݐܽ݅ܿݏݏܽ ݕ ⨂ ,                 

         =  ( − 1)(ା) ܣ ((݃ ⊗  ℎ) ⊗  ,4 ݁ݐܵ ݕܾ (݂ 

         = (− 1) ( ା ) (݈! ݉! ݇ !)(݃ ∧ ℎ)  ∧  ,7 ݁ݐܵ ݕܾ ݂ 

         =  (݇! ݈! ݉!)݂ ∧  (݃ ∧  ℎ) ܾ(73-2  )                  .ݕݐ݅ݒ݅ݐܽݐݑ݉݉ܿ݅ݐ݊ܽ ݕ 
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Step 9. We verify property (5). In fact , we prove something slightly more general. 
We show that for any collection ݂ , . . . , ݂ of  1 − ଵ݂ )ܣ   ,ݏݎݏ݊݁ݐ  ⊗. . .⊗ ݂ ) =
         ଵ݂  ∧   … ∧ ݂ .                                              ( 2-74) 
Property (5) is an immediate consequence, since 

߰ଵ = ଵ߶ܣ   = ⊗,ଵ߶)ܣ  … ⊗  ߶  ) ·                                                   ( 2- 75) 
Formula ( *) is trivial for ݇ =  1. Supposing it true for ݇ −  1 , we prove it   
.݇ ݎ݂ = ܨ ݐ݁ܵ  ଵ݂ ⊗ … . .⊗  ݂ି ଵ  ·  ܶℎ݁݊  

ܨ)ܣ ⊗ ݂ ) = ⋀(ܨܣ)(!1 ) ݂  ܾ6 ݁ݐܵ ݕ = (݂ ∧ … ∧  ݂ିଵ) ∧ ݂         (2-76  )                      
by the induction hypothesis. 
Step 10. We verify uniqueness ; indeed , we show how one can calculate wedge 
products , in the case of a finite-dimensional space ܸ, using only properties  (1)-
(5). Let ∅ and ߰ଵ be as in property (5). Given alternating tensors ݂ and ݃, we can 
write them uniquely in terms of the elementary alternating  tensors as 

݂ =  ݀ଵ߰ଵ   ܽ݊݀  ݃ =   ܿ߰ 
[][ூ]

 

(Here I is an ascending ݇ − and J is an ascending ℓ ,݈݁ݑݐ −  from the ,݈݁ݑݐ
set{ 1 , . . . , ݊}. ) Distributivity and homogeneity imply that 

݂ ⋀ ݃ =    ܾଵ ܿ ߰ଵ ⋀ 
[][ூ]

߰. 

 ( 2- 77)  
 Therefore, to compute ݂ ∧  ݃ we need only know how to compute wedge products  
of the form 

߰ூ ∧  ߰ = (∅ଵ ⋀ … . . ⋀ ∅  ) ⋀ ൫ ∅ ଵ⋀ … ⋀∅  ൯        ( 2-78) 
For that, we use associativity and the simple rules 

∅ ∧  ∅ =  ∅⋀∅   ܽ݊݀  ∅ ∧  ∅ = 0                               ( 2- 79) 
which follow from anticommu tativity. It follows that the product ߰ூ ∧  ߰ equals 
zero if two indices are the same. Otherwise it equals (ߨ ݊݃ݏ) times theelementary 
alternating ݇ +  ℓ tensor ߰whose index is obtained by rearranging the indices in 
the ݇ +  ℓ tuple (ܫ,  is the permutation required to ߨ in ascending order, where (ܬ
carry out this rearrangement.  
Step 11.   ݐ݁ܮ ܶ ∶  ܸ →  ܹ be a linear transformation, and ܨ be an arbitrary tensor 
on ܹ (not necessarily alternating). It is easy to verify that  
( ఙܨ)∗ܶ  =  ఙ   ܵ݅݊ ܿ݁ ܶ∗ is linear, it then follows that(ܨ ∗ܶ) 
(ܨܣ)∗ܶ   =  Now let ݂ and ݃ be alternating tensors on ܹ of orders (ܨ ∗ܶ)ܣ 
݇ ܽ݊݀ ݈, respectively. We compute 
ܶ∗(݂ ⋀ ݃)  =  ଵ

!!
= ((݃ ⨂ ݂)ܣ) ∗ܶ   ଵ

!!
⊗ ݂)∗ܶ)ܣ   ݃))  

= ଵ
 !!

(݂∗ܶ))ܣ  ⊗                 ݉݁ݎℎ݁ܶ ݕܾ ((݃∗ܶ) 
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=  (ܶ∗ ݂)  ∧  (ܶ∗ ݃).                                                                             (2- 80) 
With this theorem, we complete our study of multilinear algebra.  
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Chapter(3):- 
Application on tangent vectors and scalar fields :- 

 
Section(3-1):-  tangent vectors and differential forms and operators 
           In the following we will studied tensor algebra in ܴ −tensor addition, 
alternating tensors, wedge products, and the like. Now we introduce the concept of 
a tensor field; more specifically, that of an alternating tensor field, which is called 
a "differential form." In the succeeding section, we shall  introduce a certain 
operator on differential forms, called the "differential operator"d, which is the 
analogue of the operators grad, curl, and div.  
 Definition.  (  3-1-1  ):-      Given ݔ ∈  ܴ , we define a tangent vector to ܴ at 
;ݔ) to be a pair ݔ ݒ where , (ݒ  ∈  ܴ . The set of all tangent vectors to ܴat ݔ 
forms a vector space if we define 

;ݔ)  ܸ)  + ; ݔ)  (ݓ   = ; ݔ)  + ݒ   ,(ݓ 
;ݔ)ܿ (ݒ   = ;ݔ)   (1-3)                                               . (ݒܿ 

It is called the tangent space to ܴ ܽݔ ݐ, and is denoted ௫ܶ(ܴ) . 
         Although both x and ݒ are elements of ܴ in this definition, they play 
different roles. We think of ݔ as a point of the metric space ܴ and picture it as a 
"dot." We think of ݒ as an element of the vector space ܴ and picture it as an 
"arrow." We picture ( ݔ ;  The set ௫ܶ (ܴ) .ݔ as an arrow with its initial point at (ݒ 
is pictured as the set of all arrows with their initial points at x ; it  is, of course, just 
the set ݔ x ܴ . 
                We do not attempt to form the sum (ݔ; (ݒ   + ;ݕ)  ≠ ݔ ݂݅ (ݓ   . ݕ 
Definition ( 3-1-2 )           Let (ܽ, ܾ) be an open interval in ܴ ; ߛ ݐ݈݁  ∶ (ܽ, ܾ) ⟶ ܴ 
be   a map of class ܥ. We define the velocity vector of ߛ , corresponding to the  
parameter value ݐ, to be the (ݐ)ߛ) ݎݐܿ݁ݒ;  . ((ݐ) ߛܦ 
         This vector is pictured as an arrow in ܴ with its initial point at the point 
=   See Figure (3-1) . This notion of a velocity vector is of course a . (ݐ)ߛ
reformulation of a familiar notion from calculus. If 

(ݐ)ߛ  = ଵ݁(ݐ)ݔ   + ଶ݁(ݐ)ݕ   +  ଷ                            (3-2)݁(ݐ)ݖ 
is a parametrized-curve in ܴଷ, then the velocity vector of ߛ is defined in calculus as 
the vector 

(ݐ) ߛܦ = ௗ௫
ௗ௧

݁ଵ +   ௗ௬
ௗ௧ 

 ݁ଶ +  ௗ௭
ௗ௧

 ݁ଷ                                   ( 3- 3) 
 
 
 

Figure(3-1) 
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 Definition(  3-1-3):-             Let ܣ be open in ܴ or ܪ ; let ܽ ∶ ܣ  →. ܴ be of 
class ܥ . Let ݔ ∈ ∝ =  and let ,ܣ    We define a linear transformation . (ݔ)

∗ߙ ∶ ௫ܶ (ܴ) →   ܶ (ܴ). 
by the equation  

;ݔ) ∗ߙ (ݒ   = ; )  (ݔ) ߙܦ   ·  (4 -3 )                    .(ݒ 
It is said to be the transformation induced by the differentiable map ∝ 
;ݔ) Given ߙ          ;ݔ) ∗ߙ the chain rule implies that the vector ,(ݒ   is in fact the (ݒ 
velocity vector of the curve (ݐ)ߛ  = + ݔ)ߙ   corresponding to the parameter ,(ݒݐ 
value ݐ =  0. See Figure (3-2 ). 
 

 
Figure (3-2 ). 

 
Lemma (3-1-4) :-             Let ܣ be open in ܴ or ܪ ; let ߙ → ܴ be of class  ܥ. 
Let B be an open set of ܴ ܪ ݎ containing  (ܣ )ߙ ; ܬ) ݐ݈݁  ∶ ܤ  → ܴ be of class 
crܥ . Then  (ߙ ߧߚ)∗ =  (3-5)                                           ∗ߙ ߧ∗ߚ 

 ݂ݎܲ
This formula is just the chain rule. Let ݕ =  We compute . (ݕ)ߚ = ݖ ݐ݈݁ ݀݊ܽ (ݔ)ߙ 
.(ߙ  ߚ) ;ݔ) (ݒ   = ; ((ݔ)ߙ)ߚ)  (ݔ)(ߙ  ߚ)ܦ   ·   (ݒ 
                              = ; (ݕ)ߚ)  (ݕ)ߚܦ   · (ݔ)ߙܦ   ·   (ݒ 

              = ;ݔ) ∗ߙ) ∗ߚ)   ( 6-3)                                                  . ((ݒ 
These maps and their induced transformations are indicated in the  fowlloing 

 
Figure (3-3 ). 

Definition(3-1-5):-     If ܣ is an open set in ܴ, a tangent vector field in A is a 
continuous function F ∶  A →  ܴ୬  × ܴ୬ such that (ݔ)ܨ  ∈  ௫ܶ (ܴ୬) , for each 
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∋ ݔ (ݔ)ܨ has the form ܨ Then .ܣ   = ;ݔ)  ݂ where ,((ݔ)݂  ∶ ܣ  →  ܴ୬ . If ܨ is of 
class ܥ,we say that it is a tangent vector field of class ܥ . 
Definition(  3-1-6 ):-          Let ܯ be ܽ ݇ −   in ܴn. Ifܥ of class ݈݂݀݅݊ܽ݉ ∈  , ܯ 
choose  a coordinate patch ߙ ∶  ܷ →  ܸ about , where ܷ is open in ܴ or ܪ. Let 
(ݔ)ߙ be the point of ܷ such that ݔ  =  The set of all vectors of the form . 
;ݔ) ∗ߙ  and is , at ܯ is a vector in ܴ , is called the tangent space to ݒ where , (ݒ 
denoted ܶ(ܯ). Said differently, 

ܶ(ܯ)  = ) ∗ߙ  ௫ܶ(ܴ )) .                                              (3-7  ) 
It is not hard to show that ܶ(ܯ) is a linear subspace of ܶ(ܴ)that is welldefined, 
independent of the choice of ߙ. Because ܴ is spanned by the vectors ݁ଵ , . . . , ݁: , 

the space ܶ(ܯ)  is spanned by the vectors           (; .(ݔ)ߙܦ ݁ = ൬  ; డఈ
డ௫ೕ

൰,                                                          

( 3- 8) 
 

 
(3-4) 

for ݆ =  1 , . . . , ݇. Since ߙܦ has rank ݇, these vectors are independent; hence they 
form a basis for ܶ(ܯ). Typical cases are ( 3-4) 
            We denote the union of the tangent spaces ܶ(ܯ), ∋  ݎ݂ ,ܯ   ; (ܯ)ܶ ݕܾ
and we call it the tangent bundle of ܯ.  is a continuous  ܯ tangent vector field to ܣ
function ܨ ∶ → ܯ  ()ܨ such that (ܯ)ܶ  ∈ ∋  for each (ܯ)ܶ    .ܯ 
Now  we will discuss tensor fields 
Definition   (   3-1-7 ):-      Let ܣ be an open set in ܴ . ݇ ܣ −  field in A is ݎݏ݊݁ݐ
afunction w ssigning, to each ݔ ∈   a k-tensor defined on the vector space ,ܣ 

௫ܶ (ܴ). That is,                    ߱(ݔ) ∈ ℒ( ௫ܶ ( ܴ ))                                                            
for each ݔ. Thus ߱(ݔ) is a function mapping ݇ −  of tangent vectors to ܴat ݏ݈݁ݑݐ
݇ into ܴ ; as such, its value on a given ݔ −  can be written in the form ݈݁ݑݐ

;ݔ) ) (ݔ )߱ , (ଵݒ … … , ;ݔ)                                  (( ݒ
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We require this function to be continuous as a function of (ݔ, , ଵݒ … . ,  ) if  it is ofݒ
class ܥ we say that w is a tensor field of class ܥ. If it happens that ߱(ݔ) is an 
alternating ݇ −  for each x, then ߱ is called a differential form (or simply, a ݎݏ݊݁ݐ
form) of order ݇, on ܣ 
          More generally, if ܯ is an m-manifold in ܴ , then we define a ݇ −
∋  to be a function w assigning to each ܯ field onݎݏ݊݁ݐ  an element of ܯ 
ℒ ( ܶ(ܯ)) . If in fact ߱() is alternating for each , then w is called a differential 
form on ܯ . 
  If ߱ is a tensor field defined on an open set of ܴ containing ܯ , then ߱ of course 
restricts to a tensor field defined on ܯ, since every tangent vector to M is also a 
tangent vector to ܴ . Conversely, any tensor field on M can be extended to a 
tensor field defined on an open set of ܴ containing ܯ; the proof, however, is 
decidedly non-trivial. For simplicity, we shall restrict ourselves in this book to 
tensor fields that are defined on open sets of ܴ . 
Definition.  ( 3-1-8 ):-      ݐ݁ܮ ݁ଵ, . . . , ݁be the usual basis for ܴ . Then ( ݔ; ݁ଵ,. . 
. , ;ݔ)  ݁) is called the usual basis for ௫ܶ (ܴ) . We define a 1 − ప෩∅ ݉ݎ݂   byܴ ݊ 
the equation 

∅ప෩ ;ݔ )(ݔ)  ݁ ) = ൜
0 ݂݅ ݅ ≠ ݆,
1 ݂݅ ݅ = ݆,

�                                    (3-9) 

The forms ∅ଵ෪, . . . , ∅෪  are called the elementary 1 −  on ܴ. Similarly, given ݏ݉ݎ݂
an as-cending ݇ − = ܫ ݈݁ݑݐ  (݅ଵ , . . . , ݅) from the set   {1, . . . , ݊}, we define a k-
form ߰ ଵby the equation 

߰ ଵේ (ݔ)  =  ߶పଵ෪ ⋀(ݔ) … . ⋀߶෨(ݔ)                                        (10-3) 
The forms ߰ ଵ are called the elementary ݇ −   . on ܴ ݏ݉ݎ݂
Note that for each ݔ, the 1-tensors ߶ଵ෪(ݔ), . . . , ߶෪  constitute the basis for  (ݔ)
ℒଵ ( ௫ܶ (ܴ )) dual to the usual basis for ௫ܶ (ܴ), and the ݇ − ଵ෪ ߰ ݎݏ݊݁ݐ  is (ݔ) 
the corresponding elementary alternating tensor on ௫ܶ (ܴ) . 
 The fact that ∅ప෩  and ߰ଵ are of class ܥஶ follows at once from the equations  
                              ∅ప෩ ; ݔ )(ݔ)  (ݒ =    , ݒ
                              ߰ଵ෪ (ݔ)൫(ݔ; ,(ଵݒ … . , ;ݔ) )൯ݒ = det ଵܺ ,                 ( 3- 11) 
where ܺ is the matrix ܺ = ଵݒ]  …  . [ݒ
        If ߱ is a ݇ − ݇ defined on an open set A of ܴ , then the ݉ݎ݂ −
 can be written uniquely in the form (ݔ)߱ ݎݏ݊݁ݐ

(ݔ)߱ =  ܾூ( ݔ)
[ூ]

߰ூ(ݔ), 

 (3- 12) 
for some scalar functions ܾூ( ݔ) . These functions are called the components of 
 relative to the standard elementary forms in ܴ ݓ
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 Lemma ( 3-1-9 ):-           ݐ݁ܮ ߱ ܾ݁ ܽ ݇ −  ߱ of ܴ . Then ܣ on the open set ݉ݎ݂
is of class ܥ if and only if its component functions ܾூ  are of class ܥ ܣ ݊ . 

Proof 
Given ω, let us express it in terms of elementary forms by the equation   

߱ =  ܾூ( ݔ)
[ூ]

෨߰ூ 

(3- 13)                                                
The functions ߰ூ are of class ܥஶ . Therefore, if the functions ܾூ  are of class ܥ , so 
is the function ߱. Conversely, if ߱ is of class ܥ as a function  of (ݔ, , 1ݒ . . . ,  ,( ݒ
then in particular, given an ascending ݇ −  ݈݁ݑݐ
ܬ  =  {݆ଵ , . . . , ݆) from the set { 1 , . . . , ݊ } , the function 

,ଵ൯݁  ;ݔ൫)(ݔ)߱ … , ൫ݔ; ݁൯)                                        (3- 14) 
is of class ܥ as a function of x. But this function equals ܾ(ݔ).  
In  the  following, we shall need to deal not only with tensor fields in ܴ , but  with 
scalar fields as well. It is convenient to treat scalar fields as differential  forms of 
order 0. 
 Definition. ( 3-1-10):-            If ܣ is open in ܴ, and if ݂ ∶ → ܣ   ܴ is a map of 
class ܥ then f is called a s calar field in ܣ . We also call f a differential form of  
order 0. 
            The sum of two such functions in another such, and so is the product by a 
scalar. We define the wedge product of two 0-forms ݂ and ݃ by the rule  ݂ ⋀ ݃ =
 ݂ ·  ݃, which is just the usual product of real-valued functions. More generally, we 
define the wedge product of the 0-form f and the ݇ −   by the rule ߱ ݉ݎ݂

(ݔ) (݂ ⋀߱)  = (ݔ) (߱⋀ ݂)   = (ݔ)݂   ·  (15 -3 )                  ; (ݔ)߱ 
this is just the usual product of the tensor ߱(ݔ) and the scalar ݂(ݔ) 
            Note that all the formal algebraic properties of the wedge product hold. 
Associativity, homogeneity, and distributivity are immediate; and 
anticommutativity holds because scalar fields are forms of order 0: 

݂  ⋀݃  =  (−1 ) ݃ ⋀ ݂  ܽ݊݀  ݂ ⋀ ߱ =  (−1)߱ ⋀  ݂             ( 3- 16) 
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section(3   -2) :-   scalar field and the action of differentiable maps 
 
 Now we will discuss the  introduce a certain operator ݀ on differential forms. In 
general, the operator ݀, when applied to a ݇ − ݇ gives a ,݉ݎ݂ +  1 form. We 
begin by defining ݀ for 0-forms. 
Definition( 3-2-1):-    Let ܣ be open in ܴ ; let ݂ ∶ → ܣ ܴ be a function of class ܥ 
. We define a 1-form ݂݀ on ܣ by the formula 

;ݔ)(ݔ)݂݀ (ݒ   = ;ݔ)′݂  (ݒ   = (ݔ)݂ ܦ   ·  .ݒ 
The 1-form ݂݀ is called the differential of ݂. It is of class ܥିଵ as a function of ݔ 
and ݒ. 
Theorem (3-2-2):-              The operator ݀ is linear on 0-forms. 

Proof. 
 Let f, g ∶  A →  R be of class C୰. Let    h =  a f +  bg. Then 

(ݔ)ℎܦ  = (ݔ)݂ܦ ܽ   +  ,(ݔ) ݃ܦ ܾ 
so that 

݀ℎ(ݔ)(ݔ; (ݒ   = ;ݔ)(ݔ)݂݀ ܽ  (ݒ   + ;ݔ)(ݔ )݃݀ ܾ   .(ݒ 
ܶℎݏݑ ݀ℎ =  ܽ(݂݀)  +  ܾ(݀݃) ,  .݀݁ݎ݅ݏ݁݀ ݏܽ
Using the- operator ݀, we can obtain a new way of expressing the elemen- tary 1-
forms  ∅ప෩   ݅݊ ܴ ∶ 
Lemma (3-2-3 ):-                 ݐ݁ܮ  ∅ଵ෪ , … . , ∅෪be the elementary1 -forms in ܴ 
ߨ ݐ݁ܮ ∶  ܴ →. ܴ be the ith projection function, defined by the equation     

,ଵݔ)ߨ                       . . . , (ݔ  = ݔ  .                                        (3- 17) 
Then   ݀గ  =        ∅ప෩     

Proof. 
Since π୧ is a Cஶ function, d୧ is a 1-form of class Cஶ . We   Compute          
݀గ (ݔ)(ݔ ; (ݒ  = .(ݔ) గܦ    ݒ

= [0 … .0 1 0 … 0] 
ଵݒ
. .

ݒ

൩ =                       (3- 18)ݒ 

ܶℎݏݑ ݀గ  = ∅ప෩  .                                                                                     (3- 19) 
 
             Now it is common in this subject to abuse notation slightly, denoting the  
݅௧ projection functionnot by ߨ but by ݔ . Then in this notation, ∅ is equal to ݀ݔ. 
We shall use this notation henceforth: 
Convention. ݔ ݂ܫ denotes the general point of ܴ , we denote the ݅௧ projection 
function mapping ܴ to ܴ by the symbol ݔ . Then ݀ݔ. equals 
       the elementary 1 − ప෩∅ ݉ݎ݂ ݅݊ ܴ . = ܫ ݂ܫ  (݅ଵ , . . . , ݅) is an ascending  
݇ − , from the set { 1 ݈݁ݑݐ  . . . , ݊} , then we introduce the notation          ݀ݔூ =
⋀ଵݔ݀  …                                                                        ( 3-20)ݔ݀⋀ …
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for the elementary ݇ − ݇ ூ݅݊ ܴ . The geneml߰  ݉ݎ݂ −  can then be written ݉ݎ݂
uniquely in the form 

߱ =   ܾூ ,ூݔ݀ 
[ூ]

 

                                                                ( 3- 21) 
ூܾ ݏ݊݅ݐܿ݊ݑ݂ ݎ݈ܽܽܿݏ ݁݉ݏ ݎ݂  . 
         The forms ݀ݔ    ூ are of course characterized by the equationsݔ݀ ݀݊ܽ 
;ݔ ) (ݔ )ݔ݀         (ݒ   =  ,ݒ 

, ( ଵݒ ;ݔ ) ) (ݔ ) ூݔ݀ . . . , ((ݒ ;ݔ )  = ூܺ ݐ݁݀    ,                              ( 2-22  ) 
where ܺ is the matrix ܺ = ଵݒ]  … .  . [ݒ
                  For convenience , we extend this notation to an arbitrary ݇ −  =ܬ ݈݁ݑݐ
(݆ଵ, . . . , ݆) from the set { 1 , . . . , ݊ } , setting 

ݔ݀ = …  ⋀ ଵݔ݀ .                                              (3- 23)ݔ݀⋀
Theorem (3-2-4):- 
; ܴ ݊݅ ݊݁ ܾ݁ ܣ ݐ݁ܮ                           → ܣ  ݂ ݐ݈݁    Thenܥ ݏݏ݈ܽܿ ݂ ܾ݁ ܴ   
                 ݂݀ = ଵݔ݀(ଵ݂ܦ)    + · · ·  . ݔ݀(݂ ܦ) + 
In particular, ݂݀ =  0 if ݂ is a constant function.  In Leibnitz's notation, this 
equation takes the form 

݂݀ =  డ
డ௫భ

ଵ ݔ݀   + · · ·  + డ
డ௫

                                (3- 24)ݔ݀ 
This formula sometimes appears in calculus books, but its meaning is not 
explained there. 

Proof. 
 We evaluate both sides of the equation on the tangent vector (ݔ;       We have .(ݒ
;ݔ)(ݔ)݂݀ (ݒ   = (ݔ)݂ ܦ   ·  (25 -3 )                                                   ݒ 
by definition, whereas 

 ;ܺ)(ݔ) ݔ݀(ݔ) ݂ ܦ ܸ) =   ݒ(ݔ)݂ܦ



ୀଵ



ୀଵ

 

  ( 3-26) 
Convention. Henceforth, we restrict ourselves to manifolds, maps,vector fields, 
and forms that are of class ܥஶ. 
        now We discuss to  define the differential operator d in general. It is in some 
sense a generalized directional derivative. A formula that makes this fact explicit 
appears in the exercises. Rather than using this formula to define ݀, we shall 
instead characterize ݀ by its formal properties, as given in the theorem that 
follows. 
Definition(3-2-5  ):-          If ܣ is an open set in ܴ , let Ω  denote the set of  (ܣ) 
all ݇ − ݇ The sum of two such .(.ஶܥ of class) on A ݏ݉ݎ݂ − -is another k ݏ݉ݎ݂
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form, and so is the product of a k-form by a scalar. It is easy to see that Ω (ܣ) 
satisfies the axioms for a vector space; we call it the linear space of ݇ −
 .ܣ ݊ ݏ݉ݎ݂
Theorem (3-2-6):-   Let ܣ be an open set in ܴ . There exists a unique linear 
transformation        ݀: Ω (ܣ) → Ωାଵ (ܣ), ≤ ݇ ݎ݂ ݂݀݁݊݅݁݀  0,  :ݐℎܽݐ ℎܿݑݏ
0 ܽ ݏ݅ ݂ ݂ܫ (1) − ,݉ݎ݂ ℎ݁ 1ݐ ݏ݅ ݂݀ ℎ݁݊ݐ −  ݉ݎ݂

;ݔ)(ݔ)݂݀ (ݒ   = (ݔ)݂ܦ   ·  .ݒ 
 ℓ, respectively, then ݀݊ܽ ݇ ݏݎ݁݀ݎ ݂ ݏ݉ݎ݂ ݁ݎܽ ߟ ݀݊ܽ ݓ ݂ܫ (2)

( ߟ ⋀߱)݀ = ߟ⋀ ߱݀ + (−1)߱ ⋀ ݀ߟ 
  ,߱ ݉ݎ݂ ݕݎ݁ݒ݁ ݎܨ (3)

݀(݀߱)  =  0. 
We call d the differential operator, and we call ݀߱ the differential  of ߱ . 

Proof. 
 Step 1. We verify uniqueness . First, we show that conditions (2) and (3) imply 
that for any forms ߱ଵ , . . , ߱ , we have                        ݀(݀߱ଵ⋀ … ⋀݀߱ ) = 0                                                           
( 3- 27) 
 If ݇ =  1 , this equation is a consequence of (3). Supposing it true for ݇ −  1, we 
set  ߟ =  (݀߱ଶ⋀ … ⋀݀߱) and use (2) to compute  
݀(݀߱ଵ ⋀ ߟ) = ݀ (݀߱ଵ )⋀ߟ ≠  ݀߱ଵ  ⋀ ݀(28 -3 )                                          ߟ 
The first term vanishes by (3) and the second vanishes by the induction hypothesis. 
         Now we show that for any ݇ −  the form ݀߱ is entirely determined ,߱ ݉ݎ݂
by the value of d on 0-forms, which is specified by   ( 1 ) . Since ݀ is linear, it  
suffices to consider the case ߱ =  ଵ · We computeݔ݀ ݂ 
݀߱ = (ଵݔ݀ ݂)݀   = (ଵݔ݀ ⋀݂)݀  =  ݂݀ ∧ ଵݔ݀  +  ݂ ∧ =     (2) ݕܾ (ଵݔ݀)݀   ݂݀ ∧
 ଵ ,                                                                                       ( 3- 29)ݔ݀ 
 by the result just proved. Thus ݀߱ is determined by the value of ݀ on the 
 0-form ݂. 
 Step 2. We now define ݀. Its value for 0-forms is specified by ( 1 ) . The 
computation just made tells us how to define it for forms of positive order: If ܣ is 
an open set in ܴ୬ and if w is a k-form on ܣ, we write w uniquely in   the form 

߱ =  ூ݂
[ூ]

ூݔ݀ , 

and define                 
݀߱ =    ݀ ூ݂⋀ ݀ݔூ 

[ூ]

· 

(3-29 ) 
We check that dw is of class ܥ . For this purpose, we first compute    
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݀߱ =   (ܦ ݂)݀ݔ) ⋀݀ݔூ



ୀଵ


[ூ]

 

( 3-30) 
To express ݀߱ as a linear combination of elementary ݇ +  1 forms, one proceeds 
as follows: First, delete all terms for which ݆ is the same as one of the indices in the 
݇ −  so the indices ;ݔ݀ I. Second , take the remaining terms and rearrange the ݈݁ݑݐ
are in ascending order. Third, collect like terms. One sees in this 
way that each component of ݀߱ is a linear combination of the functions D i f,so 
that it is of class ܥ . Thus dw is of class ܥ  (Note that if w were only of class ܥ 
then dw would be of class ܥିଵWe show d is linear on ݇ − < ݇ with ݏ݉ݎ݂  0. 
Let 

߱ =  ଵ݂ ݀ݔூ   ܽ݊݀  ߟ =   ݃ூ ூݔ݀ 
[ூ]

 
[ூ]

 

be ݇ −  Then .ݏ݉ݎ݂
݀(ܽ߱ + (ߟܾ   =  ݀   (ܽ ூ݂  +  ܾ݃ூ)݀ݔூ

[ூ]

 

=    ݀(ܽ ூ݂  +  ܾ݃ூ) ⋀ ݀ݔூ             ܾ݊݅ݐ݂݅݊݅݁݀ ݕ,
[ூ]

 

=  ( ܽ݀ ூ݂  +  ܾ݀݃ூ) ⋀ ݀ݔூ         since d is linear on 0 − forms,
[ூ]

 

             =  ܽ ݀߱ +  (3-31)                                                          .ߟ݀ ܾ 
Step 3. We now show that if ܬ is an arbitrary ݇ −  of integers from the set ݈݁ݑݐ
{ 1 , . . . , ݊} , then 

݀( ݂ ⋀ ݀)  = ݔ݀ ⋀ ݂݀ .                                                           (3-32) 
          Certainly this formula holds if two of the indices in ܬ are the same, 
since ݀ݔ =  0 in this case. So suppose the indices in ܬ are distinct. Let I be the 
݇ −  be the ߨ in ascending order; let ܬ e obtained by rearranging the indices in݈ݑݐ
permutation involved. Anticommutativity of the wedge product implies that 
= ݔ݀  , . Because ݀ is linear and the wedge product is homogeneousݔ݀(ߨ ݊݃ݏ) 
the formula ݀(݂⋀ ݀ݔூ)  = ூݔ݀ ⋀ ݂݀  , which holds by definition, implies that 

(ݔ݀ ⋀ ݂)݀ (ߨ ݊݃ݏ)  =   .                   (3-33)ݔ݀ ⋀ ݂݀ (ߨ ݊݃ݏ) 
Our desired result follows. 
Step 4. We verify property (2), in the case ݇ = 0  and ℓ = 0             we cmpute  

(݃ ܣ ݂)݀  =   · ݂)ܦ  ݔ݀(݃ 



ୀଵ
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= ൫ܦ ݂ ൯. ݔ݀݃ +  ݂  . (݃ ܦ)


ୀଵ



ୀଵ

 ݔ݀

                    = (݂݀)⋀݃ + ݂⋀ (݀݃)                                                (3-34) 
Step 5. We verify property (2) in general First, we consider the case  
where both forms have positive order. Since both sides of our desired equation are 
linear in w and in ߟ, it suffices to consider the case 

߱ = ߟ           ݀݊ܽ       ூݔ݂݀ =      ݔ݀݃
We compute 
(ߟ ⋀ ߱)݀        =   (ݔ݀ ⋀ ூݔ݀ ݃ ݂)݀ 
                       =  ,3 ݁ݐܵ ݕܾ            ݔ݀ ⋀ ூݔ݀ ⋀ (݂݃)݀ 
                       =  (݂݀ ⋀ ݃ +   ,4 ݁ݐܵ ݕܾ       ݔ݀ ⋀ ூݔ݀ ܣ(݃݀ ⋀ ݂ 
                       = (ݔ݀ ⋀ ݃) ܣ (ூݔ݀ ⋀ ݂݀)   +  (−1) (݂ ݔ݀ ܣூ) ⋀ (݀݃ ⋀ ݀ݔ)  

  = + ߟ ⋀  ߱݀   ( − 1)߱  ⋀ ݀(35 -3)                                              .ߟ 
The sign ( − 1 ) comes from the fact that ݀ݔூis a ݇ −form and ݀݃ is a 1-form. 
Finally, the proof in the case where one of ݇ or ℓis zero proceeds as in the 
argument just given. If ݇ =  0, the term ݀ݔூ is missing from the equations, while if 
ℓ =  0, the term ݀ݔ is missing. We leave the details to you. 
 Step 6. We show that if ݂ is a 0-form, then ݀( ݂݀) =  0. We have 

݀(݂݀)                          =  ݀  ݔ݀ ݂ܦ 



ୀଵ

 , 

            =   ∑ ݔ݀ ⋀ (݂ ܦ)݀

ୀଵ  ,݊݅ݐ݂݅݊݅݁݀ ݕܾ      

=     ݔ݀ ⋀ ݔ݂݀ ܦܦ



ୀଵ



ୀଵ

 

(3-36) 
To write this expression in standard form, we delete all terms for which ݅ =  ݆, and 
collect the remaining terms as follows: 

݀(݂݀)  =  ܦܦ)    ݂ − ݔ݀(݂ܦܦ  . ݔ݀ ⋀ 
ழ

 

  (3-37) 
The equality of the mixed partial derivatives implies that ݀(݂݀) =  0. 
Step 7. We show that if ω is a k − form with k >  0, then d(dω)  =  0. 
Since ݀ is linear, it suffices to consider the case ߱ =                                              ூ  · Thenݔ݂݀ 
݀(݀߱)  = =    (ூݔ݀ ⋀ ݂݀)݀  ூݔ݀ ⋀ (݂݀ )݀   −   ,(ூݔ݀ )݀ ⋀ ݂݀ 
by property (2). Now   ݀(݂݀)  =  and ,6 ݁ݐܵ ݕܾ 0 

(ூݔ݀ )݀              = ூݔ݀ ⋀ (1)݀   =  0                                    ( 3- 38) 
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by definition. Hence ݀( ݀߱)  =  0.  
Definition( 3-2-7):-Let A be an open set in nR  . A 0-form ݂ on A  is said to 

be exact on A if it is constant on A ; a k-form ݓ on ܣ with ݇ >  0 is said to be 
exact on A  if there is a k - 1 form   on A  such that w = d . A  k-form ݓ on  ܣ 
with k ≥ 0 is said to be closed if ݀0 = ݓ. 
Every exact form is closed; for if f is constant, then ݂݀ =  0, while if   w = d
then ݀ݓ =  ݀( d ) =  0. Conversely, every closed form on A is exact 

on A  if A  equals all of nR , or more generally, if A  is a "star-convex" subset    

of nR  . But the converse does not holds in general, as we  shall see. If every 
closed k-form on A  is exact on A  then we say that A  is homologically trivial in 
dimension ݇. We shall explore this notion further  in Chapter 4 
 EXAMPLE (   3-2-8):-    Let A  be the open set in ܴ2 consisting of all points 

,ݔ) for  which x≠0. Set    xxyxf (ݕ /),(    for (ݔ,  Then ݂ is of class .ܣ߳ (ݕ
C  on A ,and ݂݀ =  0 on A . But ݂ is not exact on A because ݂ is not constant 

on A . 
       Finally, it is time to show that what we have been doing with tensor fields and 
forms and the differential operator is a true generalization to nR  of familiar  facts 

about vector analysis in 3R .    We know that if A  is an open set in nR , then the 

set )(Ak  of k-forms on A is a linear space. It is also easy to check that the set 

of all 
C  vector fields on A  is a linear space. We define here a sequence of 

linear transformations  from scalar fields and vector fields to forms. These 
transformations act  as operators that "translate" theorems written in the language 
of scalar and  vector fields to theorems written in the language of forms, and 
conversely. 
 
 Definition(3-2-9):-   Let A  be open in nR . Let f A →R be a scalar field in A
.We define a corresponding vector field in A , called the gradient of ݂, by the 
equation 

nn exfDexfDxxfgrad )(...)(;))( 11                                        (3- 39) 
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If (ݔ)ܩ  = ;ݔ)  is a vector field in A ((ݔ)݃  , where g : A → nR  is given by the  
equation 

nn exgexgxg )(...)()( 11                                      (3-40 
then we define a corresponding scalar field in A called the divergence of ܩ, 
by the equation 

nn exDgexDgxdivG )(...)())( 11                      (3-41) 
These operators are of course familiar from calculus in the case ݊ =  3 . The 
following theorem shows how these operators correspond to the operator ݀: 
Theorem ( 3-2-10) :-    Let A be an open set in nR . There exist vector  space 

isomorphisms i ; and j as in the following diagram: 

              Scalar fields in A                        0
                    )(0 A     

                    grad                                                                          d  
              Vector fields in A                       1

                   )(1 A  
 

              Vector fields in                           1n
                A )(1 An  

                      div                                                                                 d  

             Scalar fields in A                         n
                   )(An       

 fig(3-5) 
such that 

            gradd  10                and                          divd n  11    
 
 
 

Proo f. 
 Let ݂ and ℎ be scalar fields in A ; let 

 ))(;()( ii exfxxF
            and                      ))(;()( ii exgxxG  

be vector fields in A . We define the transformations i  and j by the equations   

 ff 0  ,          




n

i
iidxfF

1
1
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n

n
nii

i
n dxdxdxgG

1
1

1
1 .......)1(                          

                                       nn dxhdxh  ...1                                 ( 3-  42  ) 

The fact   that each i and i is a linear isomorphism, and that the two equations 
hold , is left as an exercise. 
This theorem is all that can be said about applications to vector fields in general . 
However, in the case of R3, we have a "curl" operator, and something  more can be 
said . 
Definition :(  3-2-11 ) :-                            Let A  be open in 3R ; let 

);( iii edxfxF                                                              (3-43) 
be a vector field in A . We define another vector field in A , called the curl 
of  F, by the equation 

312212311312332 )()()(;())(( efDfDefDfDefDfDxxcurlF  (3-
44) 

A convenient trick for remembering the definition of the curl operator is to think of 
it as obtained by evaluation of the symbolic determinant 

















111

1

111

det
fff
DDD
eee

  
 

Theorem (3-2-12):-   Let A  be an open set in 3R • There exist vectorspace 

isomorphisms i ; and i as in the following diagram: 

          Scalar fields in A                        0
                             )(0 A     

                          grad                                                                        d  
          Vector fields in A                       1

                               )(2 A    
 

             curl                                                                               d       

         Vector fields in A                       2
                             A )(0 A  

                  div                                                                                      d  
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          Scalar fields in A                     3
                                 )(3 A        

fig( 3-6) 
such that 

gradd  10      and   curld  20    and   divd  13    
Proof. 

The maps i a; and i are those defined in the proof of the preceding theorem. 
Only the second equation needs checking; we leave it to 
you.  

Theorem (3-2-13 ):-Let A  be open in kR   let 
mRA: be a 

C map. Let 

B be open in mR  and contain )(A ; let 
nRB : be a 

C map. Let  C map

   be forms defined in an open set C of nR  containing   assume w 

and 'f/ have the same order. The transformations 
*  

and 
* have the following properties: 

( 1 ) 
*  (aw +  ) = ܽ(

* w) + ܾ(
*  )· 

(2) 
*  = (ߠ ∩ ݓ) 

*  A ݓ
*  (ߠ 

(3) )*()( * ww    
Proof. 

See Figure ( 3-5) . In the case of forms of positive order, properties 
(1) and (3) are merely restatements, in the language of forms, of Theorem 
 (   2-1-9 ) and (2) is a restatement of (6) of Theorem (2-3-1 ). 

 

 
(3-5) 
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This theorem shows that * preserves the vector space structure and the 
wedge product. We now show it preserves the operator ݀. For this purpose(and 
later purposes as well) , we obtain a formula for computing * . If A is  open 
in kR  and nRA: , we derive this formula in two cases-when ݓ is a 
1 − ݇ is a ݓ and when ݉ݎ݂ −    . This is all we shall need .݉ݎ݂

     Since * is linear and preserves wedge products, and since f*  equals   
f , it remains only to compute *  for elementary 1 −  and ݏ݉ݎ݂

elementary݇ −  Here is the required formula .ݏ݉ݎ݂
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Chapter (4) 
Application forms and manifolds:- 

Section(4-1)                          Closed Forms and Exact Forms:- 
in  the following we will discuss what additional conditions, either on ܣor on both 
 are needed in order to ensure that w is exact ,ݓ and ܣ

 Theorem (4-1-1)  :- ( Leibnitz's rule)  Let Q be a rectangle in nR ; Let 
  RbaQf  ,:  be a continuous function. Denote f  by ),( txf  for Qx  

and  bat , . Then the function : 





bt

at
txfxF ),()(

 
                                                                                                                         (4 –  1)                               

is continuous on Q . Furthermore, if jxf  /  is continuous on  baQ ,                 

then        


 




 bt

at
jj

tx
x
fx

x
F ),()(                                  

 (  4 –  2   )
                

This formula is called Leibnitz 's rule for differentiating under the integral sign. 
                                                  Proof.  
 Step 1. We show that F  is continuous. The rectangle  baQ , is compact; 

therefore f  is uniformly continuous on  baQ , . That is, given   > 0, there is 
a   > 0 such that 

),(),( 0011 txftxf  <   whenever     ),(),( 0011 txtx   It follows that.ߜ > 

when 01 , xx     ,ߜ >







bt

at
abtxftxfxFxF )(),(),()()( 0101  .     (4-3) 

Continuity of F follows. 
 
 Step 2. In calculating the integral and derivatives involved in Leibnitz's 
rule, only the variables jx  and t  are involved; all others are held constant 

.Therefore it suffices to prove the theorem in the case where  1n  and Q  is an 

interval  dc,  in R    .  

Let us set, for     dcx , ,           





bt

at
txfDxG ),()( 1

                  
(4-4) 
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 We wish to show that )(xF   exists and equals )(xG . For this purpose, we  apply 

(of all things) the Fubini theorem. We are given that fD1  is continuous on
   badc ,,  .Then 

                                     











0 0 ),()( 1

xx

cx

xx

cx

bt

at
txfDxG  

                                 =    








bt

at

xx

cx
txfD0 ),(1  

                                   =  





bt

at
tcftxf ),(),( 0  

            = )()( 0 cFxF                                                             (4-5) 
the second equation follows from the Fubini theorem, and the third from the 
fundamental theorem of calculus. Then for  dcx , ,    we have   

                                     
x

c
cFxFG )()(

                                                  
(4-6) 

 Since G  is continuous by Step 1, we may apply the fundamental theorem of   
calculus once more to conclude that  

)()( xFxG  .                                                       (4-7) 
We now obtain a criterion for determining when two closed forms differ by an 
exact form. This criterion involves the notion of a differentiable homo- 
topy. 
 

Definition(4-1-2):-  Let A  and B  be open sets in nR  and mR  , respectively; 

Let    BAhg :,  be C   maps. We say that g and h  are differentiable 

homotopic if there is a C   map BIAH :  such that 
)()0,( xgxH   and  )()1,( xhxH   

for Ax . The map H is called a differentiable homotopybetween g and h  

           For each t , the map ),( txHx is a C map of A into B ; if we think 
of t  as "time," then H gives us a way of "deforming" the map g into the  map h , 
as t  goes from   0  to 1. 
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 Theorem (4-1-3) :-             Let A and B  be open sets in nR and mR , 

respectively. Let BAhg :,  be C maps that are differentiably homotopic 
.Then there is a linear transformation  

)()(: 1 ABp kk  
, 

defined for 0k , such that for any form  ߟ of order k  > 0, 
   ghpddp ,                            (4-8) 

while for a form f of order 0 ,   
fgfhpdf   .                                        (4-9) 

This theorem implies that if  ߟ is a closed form of positive order, then h   and 

g differ by an exact form, since  dpgh  
 if ߟ is closed. On the other 

hand, if f  is a closed 0-form, then 0  fgfh . 
         Note that d  raises the order of a form by 1, and p lowers it by 1. Thus if  ߟ 
has order k > 0, all the forms in the first equation have order k ; and all  the forms 
in the second equation have order 0. Of course, pf is not defined if f is a 0 -
form. 
 
 

Proof.  

  Step 1. We consider first a very special case. Given an open   set A in nR , let 
U  be a neighborhood of IA in 1nR , and let      UA:,  , be the maps 
given by the equations 

)0,()( xx  . and )1,()( xx   

  (Then   and   are differentiable). We define, for any 1k form  defined in 
U , a k - form p  defined in A , such that 

(*)       pddp     if order  > 0,                                      

ffpdf                                    if order  0f  
(4-10) 

          To begin, let x denote the general point of nR , and let t  denote the general  

point of R . Then ndxdx ,....,1 , dt  are the elementary 1-forms in 1nR . If g is 
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any continuous scalar function in IA , we define a scalar function  Tg  on A  
by the formula 

                           





1

0
),())((

t

t
txgxIg                                              (4-11) 

Then we define P as follows: If 0k , the general 1k form ߟ in 1nR can  be 
written uniquely as 

  
  

1
11

J
JJ dtdxgdxf .                                   (4-12) 

 Here I denotes an ascending 1k  tuple, and J denotes an ascending k -tuple,   
from the set n,...,1 . We define P by the equation 

  
  

1
11 )()(

J
JJ dtdxgpdxfpp

                               
(4-13) 

where 

         0)( 11 dxfp and       JJ
k

JJ dxTgdtdxgp )()1()(            

Then p is a k -form defined on the subset A of nR . 
          Linearity of p follows at once from the uniqueness of the repressEntation of 
 and linearity of the integral operator I . 

        To show that p is of class  C , we need only show that the function   I g 

is of class C ; and this result follows at once from Leibnitz's rule, since g is of 

class C . 
Note that in the special case 0k , the form  is a 1-form and is written  As                    





n

i
ii gdtdxf

1


                                            
(4-14) 

 in this case, the tuple J is empty, and we have 

                            Iggdtpp  )(0                                              (4-15) 
Although the operator P  may seem rather artificial, it is in fact a rather natural 
one. Just as d  is in some sense a "differentiation operator," theoperator P is in 
some sense an "integration operator," one that "integrates   in the direction of the 
last coordinate. An alternate of P  . 
Step 2. We show that the formulas 
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0)( 1 fdxp  and J
k

J dxTgdtgdxp )()1()(                 (4-16) 

hold even when I is an arbitrary 1k  tuple, and J  is an arbitrary k -tuple,from 
the set  n,...,1 . The proof is easy. If the indices are not distinct, then these 

formulas hold trivially, since 0Idx and 0Jdx  in this case. If the indices are 
distinct and in ascending order, these formulas hold by definition. Then they hold 
for any sets of distinct indices, since rearranging the indices changes the values of 

Idx  and Jdx ; only by a sign. 
 
 Step 3 We verify formula (4-10) of Step 1 in the case 0k . We have 

)()()(
1

dt
t
fPdx

x
fPdfP

n

j
j

j 






 
                                    

 

                                           )()1(0 0

t
fI




 

                                           =  ff           

          ff                                                       (4-17) 
where the third equation follows from the fundamental theorem of calculus . 
Step 4 We verify formula (4-10) in the case k > 0. Note that because  is the map 

)0,()( xx  , then 

                     iii dxddx   )(              for     ni ,...,1 , 

      0)( 1  


nddt  .                                                       (4-18) 

A similar remark holds for 
  . 

Now because d and P and   ∗
and 

 are linear, it suffices to verify our formula 

for the forms Ifd and    dtgdxJ  . We first consider the case  Ifdx  . Let us 
compute both sides of the equation. The left side is 
                      )()0(  dPdPddP                           

                                        

)(])([
1

I

n

j
Ij

j

dxdt
t
fPdxdx

x
fP 








 


 



63 
 

                                     )()1(0 1 dtdx
t
fP I

k 



 
 

  By step 2                

                   
Idx

t
fI )(



 =         Idxff ][                          (4-19) 

The right side of our equation is 
)()()()( II dxfdxf    = Idxff ][   . 

(4-20) 
Thus our result holds in this case. 

We now consider the case when dtgdxJ  . Again, we compute both sides of 
the equation . We have 

(1)                               )])()1[()( J
k dxIgdPd   

     




n

j
Jjj

k dxdxIgD
1

)()1( .                     (4-21) 

On the other hand, 





n

j
JnJjj dtdxdtgDdtdxdxgDd

1
1 )()(

         
(4-22) 

so that by Step 2, 

(2)                    
Jjj

k dxdxgDIdP )()1()( 1
                      

(4-23) 

Adding (1) and (2) and applying Leibnitz's rule, we see that 

                                0)()(   dPPd                                                    (4-24) 
On the other hand, the right side of the equation is 

0)()(   dtgdxdtgdx JJ  ,                           (4-25) 

 Step 5. We now prove the theorem in general. We are given C  maps 
BAhg :, , and a differentiable homotopy BIAH :  between 

them. Let IAA :,  be the maps of Step 1 , and let P  be the    Linear 
transformation of forms whose properties are stated in Step 1. We then define our 

desired linear transformation )()(: 1 ABp Kk  
by the equation 
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)(   HPp                                                         (4-26) 

See Figure (4-1) Since H is a 1k form defined in a neighborhood of IA , 

then )( HP is a k -form defined in A . 
          Note that since H is a differentiable homotopy between g and h , 

gH   and hH  . 

 
Figure( 4-1)      

Then if k  > 0, we compute 
)()(  dHPHdPpddp    

                                )()(  ddHPHdP    

                               )()(    HH      by step 1, 

                                 gh                                                                 (4-27) 
as desired. An entirely similar computation applies if 0k  

Definition (4-1-4):-   Let A be an open set in nR . We say that A is star-convex 
with respect to the point p of A if for each Ax , the line segment joining x  
and p lies in A . 
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Figure (4-2 ) 

EXAMPLE ( 4-1-5) :-      In Figure (4-2), the set A is star-convex with respect to 
the point p , but not with respect to the point q . The set B is star-convex with 
respect to each of its points; that is, it is convex. The set C is not star-convex with 
respect to any of its points. 
Theorem (4-1-6)  (The Poincare lemma) :-    Let A be a star-convex open set 

in nR . If w is a closed k -form on A , then w is exact on A . 
Proof. 

We apply the preceding theorem. Let p be a point with respect to which A is star-

convex. Let AAh :  be the identity map and let AAg :  be the constant 
map carrying each point to the point P . Then g  and h are differentiably 
homotopic; indeed, the map 

)()1()(),( xgtxthtxH                                       (4-28) 
carries IA into A  and is the desired differentiable homotopy. (For each t , the 
point ),( txH lies on the line segment between xxh )( and pxg )( , so that 
it lies in A .) We call H the straight-line homotopy between g and h . 

            Let p be the transformation given by the preceding theorem. If f is a  0 -
form on A , we have 

gfhffgfhdfp   )( .                                     (4-29) 

Then if 0df , we have for all Ax , 
)()())(())((0 pfxfxgfxhf                                  (4-30) 
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 so that f is constant on A . 
If w is a k -form with k > 0, we have 

wgwhpdwdpw   .                                        (4-31) 

Now wwh  because h is the identity map, and 0wg because g is a 
constant map. Then if 0dw , we have 

wdpw                                                                (4-32) 
so that w is exact on A .  
Definition. (4-1-7):-                 If V is a vector space, and if W is a linear 
subspace of V ,we denote by WV / the set whose elements are the subsets of V
of the form 

 WwwvWv  .                                               (4-33) 
Each such set is called a coset of V , determined by W . One shows readily that if 

Wvv  21 , then the cosets Wv 1  and Wv 2 are equal , while if 
Wvv  21 , then they are disjoint. Thus WV / is a collection of disjo-  int 

subsets of V whose union is V . (Such a collection is called a partition of V .) We 
define vector space operations in WV / by the equations 

WvvWvWv  )()()( 2121                                                                                                 
WcvWvc  )()(                                                                           (4-34) 

With these operations, WV / becomes a vector space. It is called the quotient 
space of V by W . 
We must show these operations are well-defined. Suppose WvWv  11  and 

WvWv  22 . Then 11 vv  and 22 vv   are in W , so that their sum, which 

equals )()( 2121 vvvv  , is in W . Then 
WvvWvv  )()( 2121                              (4-35) 

Thus vector addition is well-defined. A similar proof shows that multipli- cation 
by a scalar is well-defined. The vector space properties are easy to check; we leave 
the details to you. 
         Now if V is finite-dimensional, then so is WV / ; we shall not however need 
this result. On the other hand, WV / may be finite-dimensional even in cases 
where V and W are not. 
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Definition( 4-1-8):-         Suppose V and V  are vector spaces, and suppose W
and W  are linear subspaces of V and V  , respectively. If VVT : is a linear 
transformation that carries W into W  , then there is a linear transformation 

WVWVT  //:~
 

defined by the equation WvTWvT  )()(~
; it is said to be induced 

by T . One checks readily that T
~

is well-defined and linear. 

 Definition(4-1-9):-        Let A be an open set in nR . The set )(Ak of all k -

forms on A is a vector space. The set )(AC k
of closed k -forms on A and the set 

)(AE k
of exact k -forms on A are linear subspaces of )(Ak . Since every exact 

form is closed, )(AE k
 is contained in )(AC k

. We define the deRham group of 
A in dimension k to be the quotient vector space 

)(/)()( AEACAH kkk                                                (4-36) 

If w is a closed k -form on A  (i.e., an element of )(AC k
), we often denote its 

coset )(AEw k simply by }{w  . 

        It is immediate that )(AH k
is the trivial vector space, consisting of the zero 

vector alone, if and only if A is homologically trivial in dimension k . 

      Now if A and B are open sets in nR and mR , respectively, and if 
BAg :  is a C  map, then g induces a linear transformation 

)()(: ABg kk 
 of forms, for all k . Because 

g  commutes with d , it 

carries closed forms to closed forms and exact forms to exact forms; thus 
g  

induces a linear transformation 
)()(: AHBHg kk 

 
of deRham groups. (For convenience, we denote this induced transformation also 

by 
g  , rather than by 

g~ .) 
Studying closed forms and exact forms on a given set A now reduces to 
calculating the deRham groups of A . There are several tools that are used in 
computing these groups. We consider two of then here. One involves the notion of  
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homotopy equivalence. The other is a special case of a general theorem called the 
Mayer- Vietoris theorem. Both are standard tools in algebraic topology. 
 Theorem (4-1-10) (Homotopy equivalence theorem):- Let A  and B be 

open sets in nR and mR , respectively. Let BAg : and ABh : be C  

maps. If BBhg : is differe ntiably homotopic to the identity map Bi  of B , 

and if AAgh :  is differentiably homotopic to the identity map Ai  of A , 

then 
g  and h  are linear isomorphisms of the deRham groups. 

          If hg  equals Bi  and gh  equals Ai  , then of course g  and h are 
diffeomorphisms. If g and h satisfy the hypotheses of this theorem , then they are 
called (differentiable) homotopy equivalences. 
 
 

Proof 
 If  is a closed k -form on A , for 0k , then Theorem (4-1-3 ) implies that                                      

   )()( Aigh                                               
is exact. Then the induced maps of the deRham groups satisfy the equation 

}{})({(   hg                                                   (4-37) 

so that 
 hg   is the identity map of )(AH k

 with itself. A similar argu -ment 

shows that 
 gh  is the identity map of )(BH k

. The first fact implies that 
g

maps )(BH k
 onto )(AH k

, since given   in )(AH k
, it equals }){(  hg . 

           The second fact implies that 
g  is one-to-one, since the equation 

0}{  wg  implies that 0}){(  wgh , whence 0}{ w . 

By symmetry, h  is also a linear isomorphism.  

 Lemma (4-1-11):-       Let U and V be open sets in nR  ; let VU  ; and 

suppose VUA  is non-empty. Then there exists a C  function
]1,0[: X  such that   is identically 0 in a neighborhood of AU   

and   is identically 1 in a neighborhood of AV  . 
Proof 
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 See Figure (4-3) Let }{ i  be a partition of unity on X dominated by the open 

covering },{ VU . Let iS = Support i ; for each i . Divide the index set of the 

collection }{ i  into two disjoint subsets J and K , so that for every Ji , the 

set iS  is contained in U , and for every Ki , the set iS ; is contained in V . 

(For example, one could let J consist of all i such that USi  , and let K  ( 
consist of the remaining i  . ) Then let 





Ki

i xx )()( 
                                              

(4-38) 

 
 Figure (4-3 ) 

The local finiteness condition guarantees that   is of class C on X , since each 

Xx has a neighborhood on which   equals a finite sum of C  functions. 

          Let AUa  ; we show   is identically 0 in a neighborhood of a . First, 

we choose a neighborhood W of a  that intersects only finitely many sets iS ; 

From among these sets iS , take those whose indices belong to K  , and let D  be 
their union. Then D  is closed, and D  does not contain the point a . The set 

DW   is thus a neighborhood of a , and for each Ki , the function 1  

vanishes on DW  . It follows that 0)( x for DWx  .   Since 





ji

i xx )()(1  ,                                             (4-39) 

symmetry implies that the function 1  is identically 0 in a neighborhood of 
AV  .  
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Theorem ( 4-1-12)  (Mayer-Vietoris-special case)  :-Let U and V be open 

sets in nR with U and V  homologically trivial in all dimensions.Let 

VUX  ; suppose VUA  is non-empty. Then )(0 XH  is trivial, and for 

0k , the space )(1 XH k
is linearly isomorphic to the space )(AH k

. 
Proof. 

 We introduce some notation that will be convenient. If B , C are open sets of nR  
with CB  , and if   is a k -form on C , we denote by B\  the restriction of 

  to B . That is,   jB\ /, where j is the inclusion map CBj : . Since 
j commutes with d , it follows that the restriction of a closed or exact form is 

closed or exact, respectively. It also follows that if CBA  , then 
AAB \\)\(   . 

Step 1. We first show that )(0 XH is trivial. Let f  be a closed 0-form on X . 

Then Uf \ and Vf \ are closed forms on U and V , respectively. 
Because U and V are homologically trivial in dimension 0, there are constant 
functions 1c an d 2c  such that 1\ cUf  and 2\ cVf  . Since VU  is non-

empty, 21 cc  ; thus f is constant on X . 

Step 2. Let ]1,0[: X  be a C  function such that   vanishes in a 

neighborhood U   of AU  and 1  vanishes in a neighborhood V   of AV   
. For 0k , we define 

)()(: 1 XA kk   
by the equation  













VUon

Aonwd
w

0
)(




                (4-40) 

Since 0d on the set VU  , the form )(w  is well-defined; since A and 

VU  are open and their union is X  , it is of class C  on X . The map   is 
clearly linear. It commutes with the differential operator d , up to sign, since 
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)(
0

)1(
))(( dw

VUon
Aonwd

wd 


 











 .      (4-41) 

Then   carries closed forms to closed forms, and exact forms to exact forms, so it 
induces a linear transformation 

)()( 1 XHAH kk 


 

We show that 


 is an isomorphism. 

Step 3. We first show that 


 is one-to-one. For this purpose, it suffices to show 
that if w  is a closed k -form in A such that )(w  is exact, then w  is itself exact. 

So suppose  dw )( for some k -form   on X . We define k -forms 1w  and 

2w  on U  and V , respectively, by the equations 
























VOn
Awon

andw
Uon

Aondw
w

0
)1(

0 21


    (4-42) 

Then 1w  and 2w  are well-defined and of class C  . See Figure (4-4 )                     
We compute on , 













Uon

Aonwd
dw

0
0

1


                                    ( 4-43)           

 

 
Figure (4-4) 

the first equation follows from the fact that 01 dw . Then 
UdUwdw \\)(1                                    ( 4-44)          

It follows that Uw \1  is a closed k -form on U . An entirely similar proof 

shows that          Vddw \2                                                     ( 4-45)         so 

that Vw \2  , is a closed k -form on V . 
       Now U and V are homologically trivial in all dimensions. If k > 0, this 
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implies that there are 1k  forms 1  and 2  on U  and V  , respectively, such 

that   11 \  dUw   and 22 \  dVw  ·Restricting to A and adding, we 
have 

AdAdAwAw \\ 2121  
                                  ( 4-46)          

which implies that  
)()1( 21 AAdww  

                                     ( 4-47)          

Thus w  is exact on A . 
If 0k , then there are constants 1c  and 2c  such that 

11 \ cUw    and 22 \ cVw   

Then 2121)1( ccAwAwww  
                                     ( 4-48)         

Step 4. We show 


 maps )(AH K
 onto )(1 XH K

. For this purpose, it 
suffices to show that if   is a closed 1k form in X , then there is a closed k -

form w  in A  such that )(w  is exact. 

  
Figure ( 4-5) 

Given  , the forms U\  and V\  are closed; hence there are k -forms 1  

and 2  on U  and V respectively, such that 
Ud \1              and         Vd \2    

Let w  be the k -form on A  defined by the equation 

AAw 21   ;                                            ( 4-49)          

then w  is closed because 021  AAAdAddw  . We define a k
-form   on X  by the equation 
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Von
Uon

Aon

2

1

21)1(







                            

( 4-50)          

Then   is well-defined and of class C  . See Figure (4-5) We show that 
 dw  )( ;                                                   ( 4-51)          

We compute d  on A  and U   and V   separately. Restricting to A , we 
have 

)]|()([)[1[()]([\ 221 AdAdAdAd    

 ]||[|)1(| 12 AAdAA    
)(| wdA    

AwA |)(|   .                                                                           ( 4-52) 
Restricting to U   and to V  , we compute 

                UwUUUdUd  \)(\\\\ 1  , 
VwVVVdVd  \)(\\\\ 2                  ( 4-53) 

since 0)( Uw and 0\)( Vw  by definition. It follows that 
)(wd   ,                                                         ( 4-54)     

  Now we can calculate the deRham groups of punctured euclidean space. 
 

Theorem (4-1-13):-                       Let 1n . Then 













11

10
)0(dim

nkfor
nkfor

RH nk
            ( 4-55) 

Proof. 

Step 1. We prove the theorem for 1n . Let 01  RA ;write 10 AAA  , 

where 0A  consists of the negative reals and 1A consists of the positive reals. If w  

is a closed k -form in A , with k  > 0, then 0\ Aw  and 1\ Aw  are closed. Since 

0A  and 1A  are star-convex, there are 1k forms 0  and 1  on 0A  and 1A  , 
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respectively, such that ii Awd \  for 1,0i . Define 0   on 0A  and 

1   on 1A  . Then 1  is well-defined and of class C  , and wd  . 

Now let 0f  be the 0 -form in A  defined by setting 0)(0 xf  for 0Ax  

and 1)(0 xf  for 1Ax  . Then 0f  is a closed form, and 0f  is not exact. 

We show the coset { 0f } forms a basis for )(0 AH . Given a closed 0 -form f  on 

A  , the forms 0| Af and 1| Af  are closed and thus exact. Then there are 

constants 0c  and 1c  such that 00| cAf   and 11| cAf  . It follows that 

001 )()( cxfcxf                                                   ( 4-56) 

for Ax . Then }{}{ 01 fcf  ,   

Step 2 If B  is open in nR , then RB  is open in 1nR  We show that   for all k , 
)(dim)(dim RBHBH kk                                                         ( 4-57) 

We use the homotopy equivalence theorem. Define RBBg :  by 

the equation )0,()( xxg  , and define BRBh :  by the equation 
xsxh ),( . Then gh equals the identity map of B  with itself. On the other 

hand, hg  is differentiably  homotopic to the identity map of RB  with itself; 
the straight-line homotopy will suffice. It is given by the equation 

),()0,)(1(),()),,(( stxxtsxttsxH                                  ( 4-58) 
Step 3. Let 1n . We assume the theorem true for nand prove it for 1n . 

                   Let U and V be the open sets in 1nR defined by the equations 

                 }0|),0,....,0{(1   ttRU n
, 

}0|),0,....,0{(1   ttRV n
                                              ( 4-59) 

Thus U consists of all of 1nR  except for points on the half-line 10 H , and V  

consists of all of 1nR  except for points on the half-line 10 L  . Figure (4-6) 
illustrates the case 3n . The set VUA  is non-empty; indeed, A  consists 

of all points of RRR nn 1 not on the line R0 ; that is, 
RRA n  )0(                                                 ( 4-60) 
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Figure ( 4-6 ) 
If we set VUX  , then 

01  nRX                                                        ( 4-61) 

The set U is star-convex relative to the point )1,0,....,0( p  of 1nR , and the 

set V  is star-convex relative to the point )1,0,....,0(q , as you can readily 

check. It follows from the preceding theorem that )(0 XH is trivial, and that 

)(dim)(dim 1 AHXH kk 
.for  0k                             ( 4-62) 

Now Step 2 tells us that )(AH k
 has the same dimension as )0( nk RH , and 

the induction hypothesis implies that the latter has dimension 0 if 1 nk , and 
dimension 1 if 1 nk . The theorem follows.   

Theorem (4-1-10):-              Let 0 nRA , with 1n . 
(a) If 1 nk , then every closed k-form on A is exact on A .(b) There is a 
closed 1n form 0  on A  that is not exact. If   is any closed 1n  form on A
, then there is a unique scalar c such that 0 c  is exact.  

           This theorem guarantees the existence of a closed 1n form in 0nR that 
is not exact, but it does not give us a formula for such a form. In the  exercises of 
the last chapter, however, we obtained such a formula. If 0  is the 1n  form in 

0nR given by the equation 

  
nii

i dxxddxf ......)1( 1
1

0




                           
( 4-63) 

where 
n

ii Xxf /()  , then it is easy to show by direct computation that 0  is 

closed, and only somewhat more difficult to show that the integral of 0  over 
1nS is non-zero, so that by Stokes' theorem it cannot be exact. Using this result, 
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we now derive the following criterion for a closed 1n  form in 0nR  to be 
exact: 

Theorem (4-1-11):-  . Let 0 nRA , with n  > 1 . If 0  is a closed 1n

form in A , then 0 is exact in A if and only if  


1
0

nS
 . ( 4-63)                          

Proof 

If   is exact, then its integral over 1nS is 0, by Stokes' theorem.On the other 

hand, suppose this integral is zero. Let 0  be the form just defined. The preceding 

theorem tells us that there is a unique scalar c  such that 0  is exact. Then 
                             (3-64)                                       

by Stokes' theorem. Since the integral of 0  over 1nS is not 0, we must have 
0c . Thus   is exact.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  


1 1 0n nS S
c 
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Section( 4-2)          Differentiable   and  Riemnnian   manifolds 
 
 In the following  we will describe briefly how this can be accomplished, and  
indicate how mathematicians really look at manifolds and forms. 
Dfinition.( 4-2-1) :-        Let M be a metric space. Suppose there is a collection of 
homeomorphisms iii VU : , where iU ; is open in kH  or kR  , and iV ; is 

open  in M , such that the sets iV ; cover M. (To say that a; is a  homeomorphism is 

to say that a; carries iU ; onto iV ; in a one-to-one fashion , and that both i and 
1

i  are continuous.) Suppose that the maps i overlap with class C This means 

that the transition function 
1

i o j  is of class ooC  whenever ji VV   is 

nonempty. The maps i are called coordinate patches on M , and so is any other 

homeomorphism VU : , where U is open in kH or kR , and V is open in 

M , that overlaps the i with class ooC . The metric space M , together with 
this collection of coordinate patches on M , is called a differentiable  k -manifold 

(of class ooC ) . 
            In the case 1k , we make the special convention that the domains of the 
coordinate patches may be open sets in 1L   as well as 1R  or 1H  ,  just as we did 
before . 
          If there is a coordinate patch VU :  about the point p of M such 

that U is open in kR  , then p is called an interior point of M . Otherwise, p is 

called a boundary point of M . The set of boundary points of M is denoted M
 .If VU : is a coordinate patch on M about p , then p belongs to M  if 

and only if U is open in kH  and )(xp  for some 0
1xRx k . 

In the following will denote a differentiable k manifold. 
 
Definition( 4-2-2) :-       Given coordinate patches 10 ,   on M , we say 

they overlap positively if det )( 0
1

1  D > 0. If M can be covered by 
coordinate patches that overlap positively, then M is said to be orientable. An 
orientation of M consists of such a covering of M , along with all other 
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coordinate patches that overlap these positively. An oriented manifold consists of a 
manifold M together with an orientation of M . 
      Given an orientation { i  } of M , the collection { ri  }, where 

kk RRr : is the reftec tion map , gives a different orientation of M ; it is 
called the orientation opposite to the given one.  
               Suppose M is a differentiable k -manifold with non-empty boundary. 
Then M  is a differentiable 1k  manifold without boundary. The maps b , 

where is a coordinate patch on M about Mp  and kk RRb 1: is the 
map 

)0,,...,(),...,( 1111   kk xxxxb ,                                (4  - 1 ) 

            If the patches 0  and 1  on M overlap positively, so do the coordinate 

patches 0  o b  and 1  o b  on M ; the proof is that of prceeding Theorem 

Thus if M is oriented and M  is nonempty, then M  can be oriented simply 
by taking coordinate patches on M belonging to the orientation of M about 
points of M  , and composing them with the map b . If k  is even, the 

orientation of M  obtained in this way is called the induced orientation of M ; 
if k  is odd, the opposite of this orientation is so called. 
Definition(4-2-3):-        Let M and N be differentiable manifolds of 
dimensions k and n, respectively. Suppose A is a subset of M ; and suppose 

NAf : . We say that f is of class ooC  if for each Ax , there is a 
coordinate patch VU : on M about x , and a coordinate patch 

YW : on N  about )(xfy  , such that the composite  f1
 is of 

class ooC  , as a map of a subset of kR  into nR . Because the transition functions 

are of class ooC ,this condition is independent of the choice of the coordinate 
patches. See Figure (4-7 ) 
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Figure (4-7 ) 

Of course, if M or N equals euclidean space, this definition simplifies, since one 
can take one of the coordinate patches to be the identity map of that euclidean 
space. 
one-to-one map NMf ܣ         : carrying M  onto N is called a 

diffeomorphism if both f  and 
1f are of class ooC . 

         Now we define what we mean by a tangent vector to M . Since we have 
here no surrounding euclidean space to work with, it is not obvious what a tangent 
vector should be. 
         Our usual picture of a tangent vector to a manifold M in nR  at p point p

of M is that it is the velocity vector of a ooC  curve   Mba ,:  that passes 

through p . This vector is just the pair ))(;( 0tDp  where )( 0tp  and D  
is the derivative of  · 
Let us try to generalize this notion. If M is an arbitrary differentiable manifold, 

and   is a ooC  curve in M , what does one mean by the "derivative" of the 
function  ? Certainly one cannot speak of derivatives in the ordinary sense, since 
M does not lie in euclidean space. However, if VU : is a coordinate patch 

in M about the point p , then the composite function  1
is a map from a 

subset of 1R  into kR  , so we can speak of its derivative. We 
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Figure ( 4-8) 

can thus think of the "derivative" of   at to as the function v that assigns, to each 
coordinate patch a about the point p , the matrix 

v ( ) = D ( 1  o  )( 0t )                                         (4  - 2 ) 

where )( 0tp  .  

Of course, the matrix D ( 1 o ) depends on the particular coordinate patch 

chosen; if 0  and 1  are two coordinate patches about p , the chain rule implies 
that these matrices are related by the equation 

v ( 1 ) = Dग़ ( 0x ) · v ( 0 ),                                       (4  - 3 ) 

where ग़ 0
1

1    is the transition function ग़ = 
1

1
 o 0 , and )(1

00 px  .   
See Figure ( 4-8 ) 
.       The pattern of this example suggests to us how to define a tangent vector to 
M in general. 
 
 
Definition(4-2-4) :-    Given p ∈ Μ, a tangent vector to Μ at p is a function v
that assigns, to each coordinate patch VU :  in M about p , a column matrix 

of size k  by 1 which we denote v ( ). If 0  and 1  are two coordinate patches 
about p , we require that 

v ( 1 ) = Dग़ ( 0x ) · v ( 0 )                                              (4  - 4 ) 
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 where 
1g   o 0  is the transition function and )(1

00 px  . The entries 
of the matrix v ( ) are called the components of v with respect to the coordinate 
patch  . 
           It follows from (4-4) that a tangent vector v to M at p is entirely 
determined once its components are given with respect to a single coordinate 
system. It also follows from (*) that if v and w  are tangent vectors to M at p , 
then we can define bwav  unambiguously by setting  

)()())((  bwavbwav                                        (4  - 5 ) 
for each  . That is, we add tangent vectors by adding their components in the 
usual way in each coordinate patch. And we multiply a vector v by a scalar 
similarly. 

         The set of tangent vectors M at p is denoted )(MTp ; it is called the 

tangent space to M at p . It is easy to see that it is a k -dimensional space; 

indeed, if   is a coordinate patch about p with px )( , one checks readily 

that the map ))(;( vxv , which carries )(MTp  onto )( k
x RT , is a linear 

isomorphism. The inverse of this map is denoted by 
)()(: MTRT p

k
x   It satisfies the equation vvx  ))(;(  . 

          Given a ooC  curve   Mba ,:  in M , with pt )( 0 , we define 

the velocity vector v of this curve corresponding to the parameter value 0t by the 
equation  

);)(()( 0
1 tDv                                           (4  - 6) 

then v is a tangent vector to M at p . One readily shows that every tangent 
vector to M at p  is the velocity vector of some such curve. 
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 Figure ( 4-9) 

See Figure (4-9) Note that this derivative depends only on f  and the velocity 
vector v , not on the particular curve  · 

This formula leads us to define the operator vX  as follows: 

        If v is a tangent vector to M at p , and if f is a C  real-valued function 
defined near p , choose a coordinate patch VU : about p  with 

px )( , and define the derivative of f  with respect to v by the equation 
)().)(()(  vxfDfX v  .                                (4  - 7 )            

One checks readily that this number is independent of the choice of a. One checks 
also that wvwv XXfX  )( and vcv cXX  . Thus the sum of vectors 
corresponds to the sum of the corresponding operations, and similarly for a scalar 
multiple of a vector. 

     Note that if kRM  , then the operator vX  is just the directional derivative of 
f  with respect to the vector v .  

The operator vX satisfies the following properties, which are easy to check: 

(1) (Locality). If f and g agree in a neighborhood ofp, then )()( gXfX vv  . 

(2) (Linearity). )()()( gbXfaXbgafX vvv  . 

(3) (Product rule). )()()()().( gXpfpgfXgfX vvv  . 

These properties in fact characterize the operator vX  . One has the following 

Theorem: Let X be an operator that assigns to each C  real-valued function f
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defined near p a number denoted )( fX , such that X satisfies conditions (1)-(3). 

Then there is a unique tangent vector v to M at p such that vXX  .   
          This theorem suggests an alternative approach to defining tangent vectors. 
One could define a tangent vector to M at p to be simply an operator X
satisfying conditions (1 )-(3). The set of these operators is a linear space if we add 
operators in the usual way and multiply by scalars in thusual way, and thus it can 
be identified with the tangent space to M at p  
         Many authors prefer to use this definition of tangent vector. It has the appeal 
that it is "intrinsic"; that is, it does not involve coordinate patches explicitly. 
Now we  will define  the forms on M . 
Definition( 4-2-5) :-          An  -form on M is a function w assigning to each 

Mp ,an alternating  -tensor on the vector space )(MTp . That is, 

))(()( MTApw p


                                 for each Mp . 

We require w to be of class ooC  in the following sense: If VU : is a 
coordinate patch on M about p , with px )( , one has the linear 
transformation  

)()(: MTRTT p
k

x                                        (4  - 8 ) 
and the dual transformation 

))(()((: k
xp RTAMTAT  

 

If w is an  -form on M , then the  -form w is defined as usual by setting     
))(())(( pwTxw                                                           (4  - 9 )              

We say that w is of class ooC  near p if w is of class ooC  near x  in the usual 
sense . This condition is independent of the choice of coordinate patch. 

Thus w is of class ooC  if for every coordinate patch  on M , the form w is 

of class ooC  in the sense defined earlier. 

                           Henceforth, we assume all our our forms are of class ooC  . 

                          Let )(M denote the space of  -forms on M . Note that there 
are no elementary forms on M that would enable us to write w in canonical form, 

as there were in nR  . However, one can write w in canonical form as  
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i
dxfw 11

                                                    
(4  - 10 ) 

where the 1xd  are the elementary forms in kR . We call the functions 1f  the 
components of wwith respect to the coordinate patch  . They are of course of 

class ooC . 
Definition( 4-2-6):-   If w is an  -form on M , we define the differential of 
w  as follows: Given Mp , and given tangent vectors 11 ,....., tvv  to M at p
,choose a coordinate patch VU : on M about p with px )( . Then 
define 

)))(;()),...,(;)(()((),...,)(( 1111  


  tt vxvxxwdvvpdw  (4-11)  That is, 
we define dw  by choosing a coordinate patch   , pulling wback to a form 

w in kR  , pulling 11,..., vv back to tangent vectors in kR , and then applying 

the operator d  in kR  . One checks that this definition is independent of the 

choice of the patch  . Then dw is of class ooC  . 
We can rewrite this equation as follows: Let )(ii va  . The preceding equation 
can be written in the form 

));(),...,;)(()(());(),...,;()(( 1111 


  tt axaxxwdaxaxpdw   
 (4  - 12 ) 

This equation says simply that )()( wddw    . Thus one has an alternate 
version of the preceding definition: 
Definition(4-2-7) :-  If w  is an  -form on M , then dw  is defined to be the 
unique 1 form on M such that for every coordinate patch a on M , 

)()( wddw                                                   (4  - 13 ) 
Here the " d " on the right side of the equation is the usual differential operator d
in kR , and the " d " on the left is our new differential operator in M . 
          Now we define the integral of  a-form over M  . We need first to discuss 
partitions of unity. Because we assume M  is compact, matters are especially 
simple. 
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Theorem (4-2-8);-    Let M be a compact differentiable manifold. Given a 

covering of M by coordinate patches, there exist functions RMi : of class 
ooC  , for ,.....,1i , such that: 

( 1) 0)( pi for each Mp . 

(2) For each i , the set Support i ; is covered by one of the given coordinate 
patches. 

(3)  1)( pi for each Mp . 
Proof. 

Given Mp , choose a coord inate patch VU : about p .Let px )( ; 

choose a non-negative ooC  function VUf : whose support.  is compact and 

is contained in U , such that f is positive at the point x . Define RMp :  
by setting 







 




.0
))((

)(
1

otherwise
Vyifyf

yp




                    

(4 - 14) 

Because ))((( 1 yf  vanishes outside a compact subset of V , the function p is 

of class ooC  on M . 
            Now p is positive on an open set pU  about p . Cover M by finitely 

many of the open sets pU , say for ppp ,.......,1 · Then set 





t

j
pj

1
 and pii  )/1(

                                        (  4-15)         

Definition( 4-2-9) :-Let M  be a compact, oriented differentiable  k -
manifold.Let w  be a k -form on M . If the support of w lies in a single 
coordinate patch VU :  belonging to the orientation of M , define 

 
utM

ww
ln


                                                  

(4  - 16 )
                     

In general, choose  ,......,1 in the prece ding theorem and define 
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t

i
M iM

ww 
                                          

(4  - 17 ) 

Theorem ( 4-2-10):- (Stokes' theorem):- Let M  be a compact, oriented  
differentiable k -manifold. Let wbe 1ka form on M . If M is nonempty, 

give M  the induced orientation; then 

 


MM
wdw .                                   (4  - 18 )            

If ∂M is empty, then 0M
dw .    

Proof. 
The proof given earlier goes through verbatim. Since all the computations were 
carried out by working within coordinate patches, no changes are necessary. The 
special conventions involved when 1k and M  is a 0 -manifold are handled 
exactly as before. 
      Not only does Stokes' theorem generalize to abstract differentiable manifolds, 
but the results in Chapter 8 concerning closed forms and exact forms generalize as 

well. Given M , one defines the deRham group )(MH k
 of M in dimension k  

to be the quotient of the space of closed k-forms on M  by the space of exact   k -
forms. One has various methods for computing the dimensions of these spaces, 
including a general Mayer- Vietoris theorem. If M is written as the union of the 
two open sets U and V in M , it gives relations between the deRham groups of 
M and U and V and VU  . These topics are explored in [ TB  ] . 

The vector space )(MH k
is obviously a diffeomorphism invariant of M . It is 

an unexpected and striking fact that it is also a topological invariant of M . This 
means that if there is a homeomorphism of M with N , then the vector spaces 

)(MH k
and )(NH k

are linearly isomorphic. This fact is a consequence of a 
celebrated theorem called deRham 's theorem, which states that the algebra of 
closed forms on M modulo exact forms is isomorphic to a certain algebra, defined 
in algebraic topology for an arbitrary topological space, called the "cohomology 
algebra of M  with real coefficients. 
        In the following  We  will have indicated how Stokes' theorem and the 
deRham groups generalize to abstract differentiable manifolds. Now we consider 
some of the other topics we have treated. Surprisingly, many of these do not 
generalize as readily. 
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                Consider for instance the notions of the volume of a manifold M , and 

of the integral dVf
M of a scalar function over M  with respect to 

volume.These notions do not generalize to abstract differentiable manifolds. 
Why should this be so ? One way of answering this question is to note that,   one 
can define the volume of a compact oriented k -manifold M  in nR  by the 
formula 

 M vwMv )(  ,                                                 (4  - 19 ) 

where vw  is a "volume form" for M  , that is, vw  is a k -form whose value is 1 

on any orthonormal basis for )(MTp belonging to the natural orientation of this 

tangent space. In this case, )(MTp is a linear subspace of 
nn

p RpRT )( , so 

)(MTp  has a natural inner product derived from the dot product in nR . This 
notion of a volume form cannot be generalized to an arbitrary differentiable 
manifold M  because we have no inner product on )(MTp  in general, so we do 
not know what it means for a set of vectors to be orthonormal. 
          In order to generalize our definition of volume to a differentiable manifold 
M , we need to have an inner product on each tangent space )(MTp  
Definition( 4-2-11) :-   Let M be a differentiable k-manifold . A Riemannian  

metric on M is an inner product ),( wv defined on each tangent space )(MTp ;it 

is required to be of class ooC  as a 2-tensor field on M . A Riemannian manifold 
consists of a differentiable manifold M along with a Riemannian metric on M . 
      Now it is true that for any differentiable manifold M , there exists a 
Rie-mannian metric on M . The proof is not particularly difficult; one uses a 
partition of unity. But the Riemannian metric is certainly not unique. 
Given a Riemannian metric on M , one has a corresponding volume function  

),...,( 1 kvvV defined for k -tuples of vectors of )(MTp . Then one can define the 
integral of a scalar function just as before. 
 
Definition( 4-2-12 ):-    Let M be acompact Riemannian manifold of 
dimension k .Let RMf :  be a continuous function. If the support of  
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f  is covered by a single coordinate patch VU : , we define the integral of 
f  over M by the equation 

));(),....,;(()( 1ln ktM
exexVfdVf   

            
(4  - 20 ) 

The integral of f over M is defined in general by using a partition of unity, as in 

The volume of M is defined by the equation                  M
dVMv )(

                                                                                  
(4  - 21 ) 
If M is a compact oriented Riemannian manifold , one can interpret the integral 

M
w  of a k -form over M as the integral M

dV of a certain scalar function 

,  just as we did before, where )( p is the value of )( pw  on an orthonormal k -
tuple of tangent vectors to M at p  that belongs to the natural orientation of 

)(MTp  (derived from the orientation of M ). If )( p  is identically 1 , then w  

is called the volume form of the Riemannian manifold M , and is denoted by vw . 
Then  

.)(  M vwMv
                                                                     

(4  - 22 ) 

For a Riemannian manifold M , a host of interesting questions arise  .For 
instance, one can define what one means by the length of a smooth parametrized 
curve   Mba ,: ; it is just the integral 




 

bt

at
et .);( 1

                                                                  
(4  - 23 ) 

The integrand is the norm of the velocity vector of the curve  , defined of course 

by using the inner product on )(MTp ,. Then one can discuss "geo-desics," which 

are "curves of minimal length" joining two points of M . One goes on to discuss 
such matters as "curvature." All this is dealt with in a subject called Riemannian 
geometry, which I hope you are tempted to investigate! 

  


