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Abstract

Throughout this research we have dealt with submanifolds of Euclidean space and
with forms defined in open subsets of Euclidean space.
This approach has the advantage of conceptual simplicity ,one tends to be more
comfortable dealing with supspaces of R" than with arbitrary metric spaces.

Also we discussed some important ideas that are sometimes obscured by the

familiar surroundings
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Introduction

In this research we deal with submanifolds of Euclidean space and with forms
defines in Euclidean Space and it is orgenized as follows:

Firestlly ,we present the k-dimensional analogues of curves and surfaces ,Also ,we
discuss the notation of K-dimensional volume of several objects.we study the
integral of scalar functions over a K- manifold with respect to a k-volume with
some applications.

In chapter 2 ,we introduced a product operation into the set of all tensors on
Linear spaces,and we derive some properities of the alternative tensors. Also we
define the concept of permutations and the product operation in the set of
alternative tensors.

In chapter 3 ,we study tensors algebra in R", and introduce the concept of tensor
field and differential forms,with some applications.

Finally ,we discuss additional conditions for the K-form to be exact ,and we
illustrated that condition for a K-form W to be exact is the codition that W be
closed is not in general sufficient.

Also we discuss differentiability of maps between differentiable manifolds with

some applications.
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Chapter (1)
Introduction to manifold
Section (1-1):- the Volume of aparallelopiped and parametrized manifold
In the following we will discuss the k —dimensional analogues of curves and

surfaces; they are called k-manifolds in R" . And also we define a noti-
on of k-dimensional volume for such objects.

Lemma (1-1-1):- Let # be a linear subspace of R" of dimension A .Then there is

an orthonormal basis for R” whose first & elements form a basis for W .
Proof

there is a basis @;.--@, for R" whose first k elements form abasis for W .There
is a standard procedure for forming from these vectors an orthogonal set of vectors

by ... b, such that for each [ ,the vectors bl,---,bi span the same space as the

vectors d;...d4; It is called the Gram-Schmidt process .
we recall it here

Given 4,...4,  we set

b =a, |, b, =a, —2,.b, and for general [

b, =a; — A,b, — A,b, — “’/li,i—lbi—l (1-1)

where the 4, ; are scalars yet to be specified. No matter what these scalars are,
however , we note that for each J the vector a; equals a linear combination of the
vectors Dy 5., D . Furthermore, for each J the vector bjcan be written as a linear
combination of the vectors a; ...a;. These two facts imply that, for each I,
ap,...,d;and bla---ab,'; span the same subspace of R” . It also follows that the

vectors b1 ,---,bn are independent, for there are n of them, and they span R" as
we have just noted. In particular, none of the b; can equal 0.

Theorem (1-1-2) :- Let W be a Kk - dimensional linear subspace of R” There is

an orthogonal transformation h : R" — R" that carries W onto the subspace
R*x0 of R".
Proof



Choose an orthonormal basis bp---,bn for R" such that the first k basis elements
D,,...,D, form a basis for W Let g: R" - R" be the linear transformation

g(x) = B -x,where B is the matrix with successive columns bl,---,bn - Then
g 1s an orthogonal transformation, and g(e;) = b;; for all i. In particular, g

carries R¥ x 0, which has basis €)5---,€;, onto W .
Theorem ( 1 — 1 -3):- There is au nique function V that assigns, to each

k — tuple X1 ...xj of elements of R" , a non-negative number such that:

(1) If h:R" - R" isan orthogonal transformation, then

V(h(x))s.., h(x,)) =V (x50 X)) (1-2)
2)If Vi---V; belong to the subspace R*x 0, ofR", so that
y; = [Zoi] for z; € R then (1-3)
V(yl"°>yk): [det[zlr-':zk] ( 1—4)

The function V vanishes if and only if the vectors x; ...x;, are dependent. It
satisfies the equation

V(x,..x,)=[det(X". X)]"* (1-5)
where X is the n by k& matrix X = [X;...X;].We often denote
V(X;--- X )simply by V(X)) .
Proof
Given X = [X;...X; ], define F(X)=det(X'""-X). (1-6)
Stepl. If h:R" — R"is an orthogonal transformation, given by the equation

h(x): AX where Ais an orthogonal matrix, then
F(A-X)=det(A.X)'"".(A.X))=det(X'""-X)= F(X). (1-7)
Furthermore,if Z is a k by k matrix,and if Y is the n by k matrix.

-

F(Y)=det([z" O][%} y=det(z". z)=det’ z (1-8)

Step 2:- It follows that F is non-negative. For given X;.--X; in R"



let W bea k -dimensional subspace of R" containing them Let h(x) = A - X

be an orthogonal transformation of R’ carrying W onto the subspace R x 0 .
Then A - X has the form

AXx=(}) (1-9)
so that F(X)=F(A4.X)=det>Z>0. Note that F(X) = 0 if and only if
the columns of Z are dependent, and this occurs if and only if the vectors

X..-» X, are dependent.

Step 3. Now we define V(x) = (F(x))'/? It follows from the computations of
Step | that V satisfies conditions (1) and (2). And it follows from the computation
of Step 2 that V is uniquely characterized by these two conditions.

Definition.(1 -1 -4):- If X;...X; are independent vectors in R" | we define the
k-dimensional volume of the parallelopiped P = P(X;---X; ) to be the number V(

X1---X ), which is positive.

EXAMPLE(1-1-5) :- Consider two independent vectors a and b in R3; let X be
the matrix X = [a b]. Then V(X) is the area of the parallelogram with edges a
and b. Let 6 be the angle between a and b, defined by the equation then

V(X)) =det(X". X)=|a| [B] (1-cos® @) = |a|[p] sin* &
(1-10)
Definition(1 -1 — 6):- Let X;---X; be vectors in R" with k < n. Let X be the

matrix X =[X;.--X; |- If1=(iy ... Q) is a k —tuple of integers such that 1 < i; <
ip <--:-<iy <n,we call I an ascending k-tuple from the set {1,...,n}, and we
denote by

xq oror by  X(ij ..ix)
the k by k submatrix of X consisting of rows iy ...i;, of X .
Theorem (1 -1 -7):- Let X be an n by k matrix with k < n . Then

1/2

V(x) = z det? x;]
(1]

(1-11)
where the symbol [I] indicates that the summation extends over all ascending k-
tuples from the set { 1,...,n } . This theorem may be thought of as a Pythagorean
theorem for k —volume. It states that the square of the volume of a k-
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parallelopiped P in R" is equal to the sum of the squares of the volumes of the k-
parallelopipeds obtained by projecting P onto the various coordinate k-planes of

Rl’l
Proof
Let X have size n by k.  Let
_ 2
F(X)=det(X'"-X) and G(x) = %:det *1 (1-12)
Proving the theorem is equivalent to showing that F(X) = G(X) forall X .
Step 1. The theorem holds when k = lork = n.Ifk = 1, then X is a

column matrix with entries }q ,---ln , say. Then

F(X)= 2(1)* = G(x) (1-13)
If Kk = n , the summation in the definition of G has only one term, and
F(X) = det?X = G(X). ( 1-14 ) Step 2. If
X :[x,..x,] and the x; are orthogonal, then
2 2 2
FQO=x [ Tre | (1-15)

Step 3. Consider the following two elementary column operations, where j#¢:

(1) Exchange columns j and 4.
(2) Replace column j by itself plus ¢ times column #.
We show that applying either of these operations to X does not change the values
of F or G.
Given an elementary row operation , with corresponding elementary matrix E ,
then E - X equals the matrix obtained by applying this elementary row operation
to X . One can compute the effect of applying the corresponding elementary
column operation to X by transposing X , premultiplying by E , and then
transposing back. Thus the matrix obtained by applying an elementary column
operation to X is the matrix
(E.x")" = X.E" (1-16)
It follows that these two operations do not change the value of F . For
F(x.E') = det(E.x"".x. E'") = (detE) (det(x"".x))(detE!") =
F(x) (1-17)
since det E = *1 for these two elementary operations.
Nor do these operations change the value of G. Note that if one applies one of

these elementary column operations to X and then deletes all rows but ...l the



result 1s the same as if one had first deleted all rows but il---ik and then applied the

elementary column operation. This means that
(x.Etr)I = X .Etr
We then compute
G(X.E'") = Yydet?(x.E™); = Ypdet?(x; .E™); = G(x)(1-18
Step 4:- In order to prove the theorem for all matrices of a given size, we show
that it suffices to prove it in the special case where all the entries of the bottom
row are zero except possibly for the last entry, and the columns form an
orthogonal set.
Given X , if the last row of X has a non-zero entry, we may by
elementary operations of the specified types bring the matrix to the form

%
D{o...oz} (1-19)

where A+ 0. If the last row of X has no non-zero entry, it is already of this form,
with A = 0. One now applies the Gram-Schmidt process to the columns of this
matrix. The first column is left as is. At the general step, the j* column is
replaced by itself minus scalar multiples of the earlier columns. The Gram-Schmidt
process thus involves only elementary column operations of type (2). And the
zeros in the last row remain unchanged during the process. At the end of the
process, the columns are orthogonal, and the matrix still has the form of D.

Step 5:- by induction on n. If n = 1 , then k = 1 and Step 1 applies. If
n = 2,then k = lor k = 2, and Step 1 applies. Now suppose the theorem
holds for matrices having fewer than n rows. We prove it for matrices of size n by
k. In view of Step 1 , we need only consider the case 1 < k < n . In view of
Step 4, we may assume that all entries in the bottom row of X , except possibly for
the last, are zero, and that the columns of X are orthogonal. Then X has the form

[b... b, b,
X{ 0.. 0 A (1-20)

the vectors b; of R™ are orthogonal because the columns of X are orthogonal

vectors in R” . For convenience in notation, let B and C denote the matrices
B=1[b,....b,] and C=1[b,....,b, ] (1-21)
We compute F(X) in terms of B and C as follows:

FOO =[] Ape| (] + 4
by step 2) F(B)+ 2’ F(C) (1-21)



To compute G (X), we break the sum mation in the definition of G(X) into two

parts, according to the value of ik . We have

G(X) =) det’X; + > det’ X,

ik<n ik =n

(1-22)

Now if [ = (il---ik) is an ascending k-tuple with i;, < n, then X; = B;. Hence
the first summation in (1 - 22 ) equals G(B). On the other hand, if i, = n, one
computes

et X ((isenvnsi 1) = +AdetC(iyennsiy )
It follows that the second summation in (1-22) equals . 12G (C). Then

GX)= GB)+ 22G(0). (1-23)
The induction hypothesis tells us that F(B) = G(B) and F(C) = G(C) . It
follows that F(X) = G(X).

Definition:- (1 -1 - 8):- Let k < n. Let A be open in R*, and let ¢ :A4 —> R"
be a map of class C'(r = 1) . The set Y =« (A), together with the map ,
constitute what is called parametrized-manifold, of dimension k. We denote this
parametrized-manifold by Y,; and we define the (k-dimensional) volume of Y« by
the equation

V(Ya):_[V(Da)D (1-24)

provided the integral exists.
Let us give aplausibility argument to justify this definition of
volume. Suppose A is the interior of a rectangle Q in R¥, and suppose

a:A—>R" can be extended to be of class C" in a neighborhood of Q . Let
Y =x (A).
Let P be apartition of Q. Consider one of the subrectangles
R=[a,,a,+h]x..Xa,,a, +h,] (1-25)
determined by P. Now R is mapped by « onto a "curved rectangle" contained inY.

The edge of R having endpoints a and a + h;e; is mapped by o« into acurve in R™
; the vector joining the initial point of this curve to the final point is the vector

ala+he —a(a)
Afirst-order approximation to this vector is, as we know,thevector

v, =D _(a).he =(0a/ox,).h, (1-26)
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figure (1-1)

It is plausible therefore to consider the k-dimensional parallelopiped P whose
edges are the vectors V; to be in some sense afirst-order approximation to the
"curved rectangle" o (R). See Figure ( 1-1) . The

k-dimensional volume of P is the number

V(v,..v,)=V(a/0ox,),..,00/0x,).(h,..h, )=V (D, (a)v(R)

(1-27)
When we sum this expression over all subrectangles R, we obtain a number which
lies between the lower and upper sums for the function V(Dy) relative to the
partition P. Hence this sum is an approximation to the integral

[ro,),

the approximation may be made as close as we wish by choosing an appropriate
partition P.

Definition(l -1 - 9):- Let 4 be open in R* ; let@ : A—> R" be of class " ;
letY = o« (A). Let f be a real-valued continuous function defined at each point of
Y. We define the integral of f over Y« , with respect to volume, by the equation

[sv=[(feaD,) (1.28)

provided this integral exists.

Here we are reverting to "calculus notation" in using the meaningless symbol dV’
to denote the "integral with respect to volume." Note that in this notation ,

W(Y,)=[av

a

(1-29)

We show that this integral is "invariant under reparametrization."
Theorem (1 -1 - 10):- Let &:A—>B  be a diffeomorphism of open sets in

R* . Let ﬂ:B—)R” beamapofclassCr;letYzﬂ(B) Leta=ﬂ°g



then@ :A—>R" and Y = x(A).Iff:Y — R is a continuous function, then f is

integrable over Yﬁ Y« if and only if it is integrable over Y, :inthis case
jfdv=jfdv (1-30)
Y, Y,

In particular, wY,)= V(Yﬁ)

e o
A 3
&L 5
B
figuer(1-2)
Proof

We must show that

BJ(fBV(DP)=[(fea)V(D,) (1-31)

where one integral exists if the other does . See Figure (1-2).The change of
variables theorem tells us that

[(fepW (DB =[((foB)o)W(DP)ogldetDe]) | 5, ),
B 4

We show that  (V(Dp)e gldet Dg))=V(D,) (1-33)

EXAMPLE (1 -1 - 11):- Let A be an open interval in R' andlet @ :4— R

be a map of class C'. Let Y = « (A). Then Y« is called a parametrized-curve in R"
and its

1 - dimensional volume is often called its length. This length is given by the

formula
: day \” daa
um):fv[ﬂn):f (?) Fa— (E) ]
4 ! : (1-34)

since D« is the column matrix whose entries are the functions da;/dt

1f2
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Theorem(1 -1 - 12):- Let Q be a rectangle in R * and let

OlA—)R" be a

map of class ("defined in an open set containing Q . Given € > o, there is a
6 > 0 such that for every partition P of Q of mesh less than §,

A(p)-[V(D,) <&
0

[

(a,b+ DI h,b+ k)

a, b) (a+ h,b)

R i

Proof

(a) Given points Xj---Xg of Q, let

Do(x,...x;) =

| Do (x,) D,a,(x,)
Da,(x,) D,a, (XS)

_D1a3 (x3) D,a;(xg)

figure (1-3)

(1-35)

Then D, 1is just the matrix D, with its entries evaluated at different points of Q.

Show that if R is a subrectangle determined by P, then there are points Xj..-X¢of

R such that

WA, (R)= %V(Da(xl...)%)).v(R)

(1-36)



(b) Given € > 0, show one can choose & > 0 so that if X;, y; € Q@ with

X, —y,|<0 fori=1,...6 then

V(Do(x,...xg)).—V(Do(y,...s))- < 8‘

Definition (1 -1 - 13) :-Let & > O. Suppose that M is a subspace of R".
having the following property: For each peM , there is a set V containing p that is
open in M , a set U that is open in R". and a continuous map «: U — V' carrying
U onto V 1n a one-to-one fashion, such that:

(1)aisofclass C".

(2) a~!:U - vis continuous.

(3) Da(x) has rank k for each x € U.
Then M is called a k-manifold without boundary in R". , of class C". The map
is called a coordinate patch on M about p.
EXAMPLE (1 -1 - 14):-Consider the case k = 1. If o is a coordinate patch
on M, the condition that D« have rank 1 means merely that D«#0 . This condition
rules out the possibility that M could have "cusps" and "corners." For example, let
a:R > R ? be given by the equation  «(t) = ( t3, t?), and let M be the image
set of o¢. Then M has a cusp at the origin. (See Figure (1-4) Here « is of classC®
and «~! is continuous, but D« does not have rank 1 att = o.

M
o
Y

Figure(1-4 )
Similarly, let B:R — R? be given by B(t) = (t3 , |t 3|), and let N be the image
set of §. Then N has a corner at the origin. (See Figure (1-5 ) Here

N

|

Figure(1-5)

10



B is of class C* (as you can check) and B~ is continuous , but DB does not have
rank lat t = o.

Definition(1 -1 - 15):- Let S be a subset of R* ; let f: S — R". We say that f is
of class C' on S if f may be extended to a function g : U — R". that is of class
C" on an open set U of R* containing S.

Lemma (1 -1 - 16):-Let S be asubset of R*; let f : § —» R"If for each x € S,

there is a neighborhood U, of x and a function g, : U, — R".of class C" that
agrees withf on U, N §, thenf is of class C" on S.
Proof

Cover S by the neighborhoods Uy ; let A be the union of these neighborhoods ; let
{ @; } be a partition of unity on A of class C' dominated by the collection {U,} -
For each i, choose one of the neighborhoods U, containing the support of @;;, and
let g; denote the C' functiong,:U, - R™. The C' function @;g;: U, > R"
vanishes outside a closed subset of U,; we extend it to a C' function h;; on all of A
by letting it vanish outside Ux. Then we define

gx) = ihi (x)

(1-37)
for each x € A. Each point of A has a neighborhood on which g equals afinite sum
of functions h;; thus g is of class C' on this neighborhood and hence on all of A.
Furthermore, if x € S, then

hi(x) = @; (X)gi ) = if (%) f(x) (1-38)

for each i for which @;(x)# o. Hence if x € S,

96 = ) $i@) f() = f(0)

(1-39)
Definition(1 -1 - 17):- Let H* denote upper half-space in R*,
consisting of those x € R* for which x,>0 . Let H;} denote the open upper half-
space,consisting of those x for which X, > o We shall be particularly interested
in functions defined on sets that are open in H¥ but not open in R¥ . In this
situation , we have the following useful result:
Lemma (1 -1 - 18):-Let U be open in H* but notin R* ; a:U — R™ be of class
C".Let B: U’ — R™ be a C" extension of a defined on an open set U’ of R* . Then
for xe U , the derivative Df(x) depends only on the function < and is
independent of the extension f. It follows that we may denote this derivative by
D « (x) without ambiguity.

11



Proof
8B

Note that to calculate the partial derivative 5. at x, we form the difference
J

quotient [,8 (x + h, j) - B (x)] /h and take the limit as h approaches 0. For

calculation purposes, it suffices to let h approach 0 through positive values. In that

case, if x is in H* then so is x + he; . Since the functions fand « agree at points

of H* | the value of DB (x) depends only on a. See Figure ( 1-6)

Figure (1-6)

Definition(1 -1 - 19):- Letk > O.A k-manifold in R™ of class C" is
a subspace M of R™ having the following property: For each p € M, there is an
open setV of M containing p,a set U that is open in either R* or H* , and a
continuous map «a:U — V carrying U onto V in a one-to-one fashion, such that:

(1) is of class C".

(2) « 1.V - U is continuous.

(3) D o (x) has rank k for each x € U.
The map a is called a coordinate patch on M about p. We extend the definition to

the case k = o by declaring a discrete collection of points in R" to be a o-
manifold in R" .Note that a manifold without boundary is simply the special case
of amanifold where all the coordinate patches have domains that are open in R"
.Figure ( 1-7) illustrates a 2-manifold in R’ . Indicated are two coordinate patches
on M , one whose domain is open in R’ and the other whose domain is open in H*
but not in R”

12



Figure (1-7)
It seems clear from this figure that in a k-manifold , there are two kinds of points,
those that have neighborhoods that look like open k —balls, and those that do not
but instead have neighborhoods that look like open half-balls of dimension k. The
latter points constitute what we shall call the boundary of M. Making this
definition precise, however, requires a certain amount of effort. We shall deal with
this question in the next section

Lemma(l -1 - 20):- Let M be a manifold in R" ,and let a:U - V be
acoordinate patch on M. If U is a subset of U that is open in U, then the restriction
ofato U, is also a coordinate patch on M.

Proof

The fact that Uy is open in U and a™ " is continuous implies that the set Vo= a( U,
) is open in V. Then U, is open in R* or H (according as U is open in R* or H),
and V is open in M . Then the map a/U, isa coordinate patch on M : it carries
U, onto V, in a one-to-one fashion; it is of class C' because a is; its inverse is
continuous being simply a restriction of a”! ; and its derivative has rank k
becauseD,, does.

1

13



Section (1-2):- The Manifold with boundary and Integrating

In the following we make precise what we mean by the boundary of a manif-
old;and also we prove a theorem that is useful in practice for constructing
manifolds.

Theorem (1 -2 - 21):- Let M be a k-manifold in R" of class C” . Let
Xg:Uy > Vy and o¢;:U; = V; be coordinate patches on M, with W =V, nV;
non-empty. Let W; = «;* (W) . Then the map

1oy Wy = W, is of class C" ' and its derivative is non-singular.

Typical cases are pictured in Figure (1 -8). We often call o tooc, the transition
function between the coordinate patches o, and o,

Figure (1-8).

Proof
It suffices to show that if oc: U — V is a coordinate patch on M ,then x~1:V — R¥

is of class C", as a map of the subset V of R”  into R* For then it follows that,
since oo and o7l are of class C" , so is their composite «;1 o¢,. The same
argument applies to show <z O o, is of class C'; then the chain rule implies that
both these transition functions have non-singular derivatives.
To prove that <1 is of class " , it suffices (by Lemma (1-1-16) to
show that it is locally of class C". Let P, be a point of V; let 1 (py) =
xo . We show o« lextends to a (" function defined in a neighborhood of py in R"
Let us first consider the case where U is open in H* but not in R* . By assumption
, we can extend a to a (" map B of an open set U' of R¥ into R" Now Da(x,) has

14



rank k, so some k rows of this matrix are independent; assume for convenience the

first k rows are independent. Let [I:R™ —» RX project R" onto its first k
coordinates. Then the map g = mof maps U’ into R, and Dg(x,) is non-singular.
By the inverse function theorem, g is a C"diffeomorphism of an open set W of R*
about x,with an open set in R* . See Figure (1-9)

e

~— \\\/
o
/@Q(W)
=
Figure (1-9)

We show that the map h = g~ o m ,which is of class C", is the desired extension
of oc~1to a neighborhood A of py. To begin, note that the set Uy=W n U is open
in U, so that the set V= « (U,) 1s open in V; this means there is an open set A of

R"suchthat A N V =V, . We can choose 4 so it is contained in the domain of h
(by intersecting with m~1(g(W))if necessary). Then h: A — R¥ is of class C" ;
andifpe A NV = V,, then we let
x =« (p)and compute

h() = h(x ()= (g7 (@(x () =g7" (g(x) = x = a™* (),

( 1-40)

Definition(1 -2 - 22):- Let M be a k-manifold in R"; let p e M . If there is
acoordinate patchoc: U = V' on M about p such that U is open in R* , we
say p is an interior point of M . Otherwise , we say p is a boundary point of M . We
denote the set of boundary points of M by M , and call this set the boundary of M .

Lemma (1 -2 - 23):- Let M be a k-manifold in R" ;let o: U — V be
acoordinate patch about the point p of M .

(a) If U is open in R* , then p is an interior point of M.

(b) If U is open in H* and if p = o (x,) for xo € HX, then p is an interior point
of M.
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(c) If U is open in H* and p = « (x,)) for x,eR¥™1 x 0 , then p is boundary
point of M.
Proof

(a) 1s immediate from the definition. (b) is almost as easy. Givenx: U — V as in
(b), let Uy = U N U¥and let Vy = « (Uy). Then oc/U, mapping U, onto V,, is a
coordinate patch about p, with U, open in R".

(c). Let a: Uy =V, be a coordinate patch about p , with U, open in H* and
p = ao(x,) for x, € R¥"1x 0. We assume there is a coordinate patch
a, : U; = V; about p with U; open in R* . and derive a contradiction .

Since V; and V; are open in M, the set W = V, N V; is also open in M.Let W; =

a;t (W) fori=0,1;then W, is open in H* and contains x, , and W, is open in
R . The preceding theorem tells us that the transition function
a, oa, : W, > W,

is a map of class C" carrying W; onto W, in a one-to-one fashion, with non-
singular derivative. But W, is contained in H* and contains the point x, of

R %0 | s0itis not open in R*! See Figure ( 1-10)

Figure (1-10)
Theorem (1 -2 - 24):-Let M be a k — manifold in R", of class C". If M is
non-empty, then OM is a k-1 manifold without boundary in R" of class C”.
Proof

Let p € 0M.Leta: U — V be a coordinate patch on M about p. Then U is
open in H* and p = a(x,) for some x, € dH* . By the preceding lemma, each

point of U N HY is mapped by @ to an interior point of M, and each point of

Un (0H*) ) is mapped to a point of OM . Thus the restriction of ¢ to U N

(0H¥) carries this set in a one-to-one fashion onto the open set V, = V N dM of
dM . Let U, be the open set of R*~1 such that
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UyX0=Un 0H*; if x € Uy , define @(x)=ty(X) Thenay:U, - V, is a

coordinate patch on dM. It is of class C" because & is, and its derivative

has rank k — 1 because Day(x) consists simply of the first k — 1 columns of the
matrix Da(x,0). The inverse g is continuous because it equals the restriction to
V, of the continuous function a~?, followed by projection of R¥ X1I: onto its first
k —1 coordinates.

Theorem (1 -2 - 25):-Let @ be open in R™ ;let f : @ — R be of class C"Let

M be the set of points x for which f(x) = 0 let N be the set of pointsfor which
f(x) = 0. Suppose M is non-empty and D f(x) has rank 1 at each point of M.
Then N is an n — manifold in R™ and N = M.
Proof

Suppose first that p is a point of N such that f (p) > 0. Let U be the open set in
R™ consisting of all points x for which f(x) > 0;let @ : U — U be the identity
map. Then a is (trivially) a coordinate patch on N about p whose domain is open in
R™.

Now suppose that f(p) = 0. Since Df (p) is non-zero, at least one of the
partial derivatives D;f (p) is non-zero. Suppose D, f (p) # f 0. Define F : @ —

R™ by the equation F(x) = (xq,...,%n_1, f(x)) . Then

I,.4 O
pr = [ 0]
so that DF(p) is non-singular. It follows that F is a diffeomorphism of a
neighborhood A of p in R™ with an open set B of R™. Furthermore, F carries the
open set A N N of N onto the open set B N H™ of H", since x € N if and only
if f(x) = 0. It also carries A N M onto B N dH", since x € M if and only if
f(x) = 0.Then F~': Bn H™ - A N N is the required coordinate patch on N.
See Figure (1-11)

(1-41)

Definition(1 -2 - 26):- Let B™(a) consist of all points x of R™for which
llx|| < a,and let S™ 1(a) consist of all x for which ||x|| = a . We call them the
n — ball and the n — 1 sphere, respectively, of radius a.
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Figure(1-11)
Corollary (1 -2 - 27):- The n — ball B™(a) is an n-manifold in R™ of
class C* ,and S™ ! (a) = 0B™ (a).
Proof
We apply the preceding theorem to the function f(x) = a? — ||x||> Then
Df(x) = [(=2x1) -+ (=2x,)], (1-42)

which is non-zero at each point of S™*(a).

Now we will discuss to define what we mean by the integral of a

continuous scalar function f over a manifold M in R™. For simplicity, we shall
restrict ourselves to the case where M is compact. The extension to the general
case can be carried out by methods analogous to those used in §16 in treating the
extended integral.First we define the integral in the case where the support of f can
be covered by a single coordinate patch.
Definition(1 -2 - 28):- Let M be a compact k —manifold in R™, of class
C" . Let f:M — R™ be a continuous function. Let C = Support f; then C is
compact. Suppose there is a coordinate patch « : U — V on M such thatC c V.
Now a~1(C) is compact. Therefore, by replacing U by a smaller open set if
necessary, we can assume that U is bounded. We define the integral of f over M by
the equation

J,fav=[_. (foa )V(Da) ( 1-43)
Here Int U = U if U is open in R* | and Int U = U n H¥ U is open in H* but
not in R¥ .

It 1s easy to see this integral exists as an ordinary integral, and hence as an
extended integral : The function F = (f o @)V (Da) is continuous on U and
vanishes outside the compact set a”(C); hence F is bounded. If U is open in R¥ ,
then F vanishes near each point xo of Bd U.If U is not open in R* | then F
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vanishes near each point of Bd U not in dH* , a set that has measure zero in R¥ .
In either case, F is integrable over U and hence over Int U. See Figure (1-12).

figure (1-12)
Lemma (1 -2 - 29):-If the support of f can be covered by a single coordinate
patch, the integral [ w [ dV is well-defined, independent of the choice of coordinate
patch.

Proof

We prove a preliminary result. Let « : U — V be a coordinate patch containing
the support of f. Let W be an open set in U such that (W) also contains the
support of f. Then

[ (foay (Da) = [ foa)v (Da) (1-44)
intl intlU
the (ordinary) integrals over W and V are equal because the integrand vanishes
outside W
Leta;: U; = V;fori = 0,1 be coordinate patches on M such that both
Vo and V; contain the support of f. We wish to show that

Jint v, (fo @)V (Dag ) = Jins v, (foa )V (Day) ( 1-45)
Let W = V, NV, and let W; = a; *(W). In view of the result of the preceding

paragraph, it suffices to show that this equation holds with U; replaced by
W;,fori = 0,1.Since a;*oay: Int W, — Int W, is a diffeomorphism, this

result follows at once from Theorem (1-1-10)To define _.- fav in general, we

M
use a partition of unity on M .
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Lemma (1 -2 - 30):- Let M be a compact k-manifold in R™, of class
C".Given a covering of M by coordinate patches, there exists a finite collection of

C” functions @1,...,0; mapping R™ into R such that:

(1)0;(x) = 0 forallx.

(2) Given i, the support of @; is compact and there is a coordinate
patch «; : U; = V; belonging to the given covering such that ((Support @;) N
M) (@ Vi'
3) Yo, x)=1 forx € M.
Wecall { @, ,.. ,0;} a partition of unity on M dominated by the given collection of
coordinate patches.

Proof

For each coordinate patch a : U — V belonging to the given collection , choose
an open set Ay of R™ such that Ay N M =V. Let A be the union of the sets Ay .
Choose a partition of unity on A that is dominated by this open covering of 4 .
Local finiteness guarantees that all but finitely many of the functions in the
partition of unity vanish identically on M. Let { @, ,.. , @;} be those that do not.
Definition(1 -2 - 31):- Let M be a compact k-manifold in R™, of class
C". Letf: M - R be a continuous function. Choose a partition of unity
@1 ,.. ,0;0on M that is dominated by the collection of all coordinate patches on M.
We define the integral of f over M by the equation

jMde=iUM(®i f)dv].

Then we define the (k-dimensional) volume of M by the equation
v(M) = fMIdV (1-47)
If the support of f happens to lie in a single coordinate patch ¢ : U — V, this

definition agrees with the preceding definition. For in that case, letting A = Int U,
we have

1 [u@)av| = L1 [f, (Bi0@)(f 0a)D ()| by definition, )
:fA [Zf:l( @;0a)( f Oa)V(Da)] by linearity,
J,(f o)V (Da) because ¢ (@;0a)=1on A,

= [, f dV by definittion . )(1-48)
We note also that this definition is independent of the choice of the partition of
unity. Let ¢4, ...... , ¥, be another choice for the partition of unity.Because the

( 1-46)
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support of ; f lies in a single coordinate patch, we can apply the computation just
given (replacing f by y; f) to conclude that

£
[owpav|= | v
i=1|Mm M

(1-49)
Summing over j, we have
m 4 m
>3 | fownar|=3" I winw)
j=1i=1|m J=11m
(1-50)
Symmetry shows that this double summation also equals
¢
> [ c@nav
i=1|Mm
(1-51)

Theorem (1 -2 - 32):-Let M be acompact k — manifold in R™,of class C" Let
f,g: M — R be continuous. Then

J,(af +bg)dV =a [ fdV+b [ gav. (1-52)
This definition of the integral |, y [ dV is satisfactory for theoretical purposes, but
not for practical purposes. If one wishes actually to integrate a function over the
n — 1 sphere S™ 1, for example, what one does is to break S™! into suitable
"pieces," integrate over each piece separately, and add the results together. We
now prove a theorem that makes this procedure more precise.
Definition(1 -2 - 33):- Let M be a compact k-manifold in R™, of class CT .
A subset D of M is said to have measure zero in M if it can be covered by
countably many coordinate patches a; : U; — V; such that the set

Di=a’_1(DﬂVi) (1-53)

has measure zero in R¥ for each i.

An equivalent definition is to require that for any coordinate patch

a: U > VonM,theseta ! (D n V;) have measure zero in R¥. To verify this
fact, it suffices to show that a~1(D N V;)has measure zero for each i. And this
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follows from the fact that the set @; (D N V N V;)has measure zero because it is
a subset of D; and that @ loa; is of class CT .

Theorem (1 -1 - 34):-Let M be a compact k-manifold in R™, of class C" . Let
f: M- R be a continuous function. Suppose that a;: A; = M;, fori =
1,...,N , is a coordinate patch on M, such that A;is open in R* and M is the
disjoint union of the open sets M, ,..., My of M and aset k of measure zero in M.

Then
N
j fdv = Z[ j (foa)V (Dai)].
K - (1-54)

This theorem says that fo dV can be evaluated by breaking M up into pieces

that are parametrized-manifolds and integrating f over each piece separately.
Proof.

Since both sides of (1-54) are linear in f, it suffices to prove the theorem in the

case where the set C = Support f is covered by a single coordinate patcha : U —

V. We can assume that U is bounded. Then

|, fav = [ (foa)V (Da), ( 1-54a)

by definition.

Step 1. Let W; = a”*(M;nV) and let L = a~! (K nV). Then W;; is open in
R* , and L has measure zero in R¥ ; and U is the disjoint union of L and the sets
W; . See Figures (1-13a) and (1-13b) We show first that

Alde = Z UWi(fooc)V (Da) ]

(1-55)
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Note that these integrals over W; exist as ordinary integrals . For the function

F = (f o)V(D x) is bounded , and F vanishes near each point of W; Bd not
in L. Then we note that

z jF = j F by additivity, =
iolw;

(Int U )-L
(1-56)
flnt y F since L has measure zero, fM F dV by additivity
Step 2. We complete the proof by showing that
Jw, o= Ju R, (1-57)
where F; = (f o a;)V(Da;). See Figure (1-14)
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Figure (1-14)
The map a; ‘o « is a diffeomorphism carrying W; onto the open set B; =
a;t (M;nV) (1-58)
of R* . It follows from the change of variables theorem that

fWiF = fBiFi' (1-59)
just as in Theorem (1-1-10 ) To complete the proof, we show that

g Fi =, F, (1-60)

These integrals may not be ordinary integrals, so some care is required .Since
C = Support f is closed in M, the set a;* (C) is closed in A; and its
complement

D, = A — ait (C) (1-61)

is open in A; and thus in R¥ . The function F; vanishes on D; . We apply additivity
of the extended integral to conclude that

fAi F; = fBiFi +fDl.Fi _fBinDiFi (1-62)
The last two integrals vanish.
Example (1 -2 - 35):-  Consider the 2 —sphere S%(a) of radius a in R® . We

computed the area of its open upper hemisphere as 2ma® (See Example (1 -2-
36) :-Since the reflection map ( x,y,z) — (x,y,-z) is an isometry of R , the
open lower hemisphere constitute all of the sphere except for a set of measure

zero in the sphere, it follows that $*(a) has area 4 ma’
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Example (1 -2 - 37):- Here is an alternate method for computing the
area of the 2-sphere; it involves no improper integrals.
Given z, € R with |zy| < a, the intersection of S%?(a) with the plane
z = Z, is the circle
zZ = 2, x*+y? = a® — (2)* (1-63)
This fact suggests that we parametrize S?(a) by the function @ : A - R3® given
by the equation
a(t,z)=((a> —z*)"*cost,(a* —z*)"? sint, z) (1-64)
where A is the set of all (t,z) for which 0 < t < 2m and |z| < a. It is
easy to check that a is a coordinate patch that covers all of S%(a) except for
agreat-circle arc, which h as measure zero in the sphere. See Figure

(1-15) By the preceding theorem, we may use this coordinate patch to compute the
area of S%(a). We have

—(a?—-2z?)2sint (—zcost)/(a? — z%)/?
Da= | (aq?—-2z%2)%2cost (—zsint)/(a®—z*)1/? (1-65)
0 1

whence V(Dy) = a, as you can check. Then v(§%(a)) =[, a = 4ma?

=z

== U S E
o /27:;— t
°% ==

Figure(1-15)
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Chapter (2)
Tensors and wedge product
Section(2 - 1):- Multiliner Algebra

Definition :-( 2- 1-1):- Let V be a vector space. Let VK=V X ---x V
denote the set of all k-tuples (vy,..., v, ) of vectors of V. A function f: V¥ —
R is said to be linear in the i*" variable if, given fixed vectors vj for j # i,the
function T : V — R defined by

TW)=f (V1 e, Vimg Uy e, Vg eene, Vg (2-1)

is linear. The function f is said to be multilinear if it is linear in the i*" variable for
each i. Such a function f is also called a k-tensor, or atensor of order k, on V . We
denote the set of all k-tensors on V by the symbol L¥ (V). If k = 1, then L (V)
is just the set of all linear transformations f : V' — R. It is sometimes called the
dual space of V and denoted by V" .

Theorem:-(2-1-2):- The set of all k-tensors on V constitutes a vector space
if we define

f +PWr,v) = f0r,.0v) + gwr,.,vp),

(cHwi,...,vg) = c(f(vy,...,v)- (2-2)
Lemma ( 2- 1 -3):-- Leta,,....,a, bea basis for V.If f,g :V¥ > Rare k —
tensors onV,and if
f(ailu""aik) = 9( a1, Qg ) (2-3)

foreveryk —tupl I = (iy,...,ix) of integers from the set
{1,...,n}, thenf = g.
Proof
Given an arbitraryk — tuple (v,..., v ) of vectors of V,let us
express each v; in terms of the given basis, writing

n

vi=2cijaj

j=1
(2-4)
Then we compute
n
f(vy, e, vp) = z c1j, f(aj , vz ., V)
J1=1
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- 271 272:1 C1j, Czjzf( aj, »4j, V2, V3 «e, 29)

(2-5)

and so on. Eventually we obtain the equation
f1, e vi)= Xlej,jen(C1),C2j2 - Ciejy S (A, oy s @) (2-6)
The same computation holds for g . It follows that f and g agree on all k-
tuples of vectors if they agree on all k-tuples of basis elements. Just as a linear
transformation from V to W can be defined by specifying its values arbitrarily on

k-tuples of Dbasis elements .

Theorem (2—-1-4) :- LetV be a vector space with basis a4,...,.a, Let] =
(i1,.--,1ix) be a k-tuple of integers from the set { 1,...,n} . There is a unique
k — tensor @ion V such that, for every k — tuple | (j1,---,jx)

0 if I+],
fromthe set{1,...,n},= 0, (ajl,....,ajk) = {1 if I=J,
The tensors ¢, are called the elementary k —tensors on V corresponding to the
basis a , . . ., a, for V. Since they form a basis for . £X (V) and since there are n*
distinct k-tuples from the set { 1,...,n}, the space . LX (V) must have dimension
n*. When k = 1, the basis for V* formed by the elementary tensors @ , ..., @,
is called the basis for V* dual to the given basis for V.
Proof
First, consider the case k = 1. We know that we can determine a linear
transformation @; : V — R by specifying its values arbitrarily on basis elements.
So we can define @; by the equation

(2-7)

0 if i #j
% . . =
I C R A
These then are the desired 1-tensors. In the case k > 1, we define @; by the
equation

(2-8)

Br (V) V) = [Q)il( 171)]- [Q)iz( vz)] T [Q)ik( vk)] (2-9)
It follows, from the facts that (1) each @; is linear and (2) multiplication is
distributive, that @, is multilinear. One checks readily that it has the required value
on(ajl,---, ajk).
We show that the tensors @; form a basis for LX(V). Given a k-tensor
f onV, we show that it can be written uniquely as a linear combination of the
tensors @; . For each k-tuple I = (iy,...,i;), let d, be the scalar defined by the
equation
dl = f(ail,,...,aik). (2-10)
Then consider the k —tensor g= %;d0;, (2-11)
where the summation extends over all k-tuples J of integers from the
set{l,...,n}.The value of g on the k — tuple (ail, @y

27



equals d; , by (2-7),and the value of f on this k-tuple equals the same thing by
definition. Then the preceding lemma implies that

f = g. Uniqueness of this representation of f follows from the preceding
lemma.

Example (2-1-5) :- Consider the case V = R™. Lete,,..., e, be the usual basis

for R™; let @, ..,®, be the dual basis for L(V) Then if x has components
X1, -, Xy W€ have

0;(x) = 0(x; e+ ..+ +x,e,) =x; (2-12)
Thus @; : R® > R equals projection onto the i"™ coordinate.More generally,
given [ = (iq,..,I; ) the elementary tensor @; satisfies the equation

O (%1, %) = By (x1) o By, Cx ) (2-13)
Let us write X = [x; --- xx], and let x;; denote the entry of x in row i and
column j. Then x; is the vector having components xy; , ..., x,; - In this notation,

Q)I (xl,..xk) = Xj11 X;p2 ....xikk (2- 14)
Thus @; is just a monomial in the components of the vectors X1, -, Xg-; and

the general k-tensor on R™ is a linear combination of such monomials.
It follows that the general 1-tensor on R™ is a function of the form
fx)=dyx; +--- +dpx,, ( 2-15)
for some scalars d; . The general 2-tensor on R™ has the form

n
geey) = ) dyxy;,
ij=1
(2 -16)
Now we will discuss and introduce a product operation into the set of all tensors
on V.The product of a k-tensor and an ¢ -tensor will be a k + £ tensor
Definition( 2-1-6 ):- Let f be a k —tensor on V and let g be an ¢-tensor
on V.We define ak + ¥ tensor f ® g onV by the equation
(f ® g)(vl v Uy ) = f( V1,4 Vk )g (vk+1 ’ "'Jvk+€) (2'17)
It is easy to check that the function f & g is multilinear; it is called the tensor
product of f and g .
Theorem(2-1-7 ) :-
Let ], g, h be tensors on V.Then the following properties hold:
(1) (ssociativity). f® (g ® h) = (f ® g) ® h.
(2) (Homogeneity). (cf) ® g = c(f ® g) = f & (cg).
(3) Distributivity).Suppose f and g have the same order.Then
F+QOh=f@h+g®h
h® f+9) =h®f+h®g

(4) Given a basis ay,...,ay, for V,the corresponding elementary
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tensors @, satisfy the equation
¢, = ¢i1 ®¢i2 ®¢ik wherel = (iy,..., i) (2-18)
Proof

The proofs are straightforward. Associativity is proved, for instance , by noting
that if f, g, h have orders k,¥€, m,respectively)

f ® (g ® 1) Wi, Vieram)

=f Wi Vi) GWrar s Ve DWWk pog -0 Vi o4m) (2-19)

The value of (f ® g) &® h on the given tuple is the same.

Now we will discuss to examine how tensors behave with respect to linear

transformation of the underlying vector spaces.

Definition.(2-1-8 ) LetT: V — W be a linear transformation. We define the
dual transfor-Mation ~ T*: Lk (W)L (V), which goes in the opposite direction)

as follows: If f is in .L¥(W), and if wv;,...,v, are vectors in V, then
T Hvpe.v) = fFT@),..., T )) - (2-20)
The transformation T*is the composite of the transformation T x - -- x Tand the
transformation f, as indicated in the following diagram:
Tx . --xT
Yk wk

f
T f I
R figu(2-1 )
It is immediate from the definition that T* f is multilinear, since T is linear and f is
multilinear.
Theorem ( 2-1-9) :-
Let T : V — Whe a linear transformation; let T* : £X (W) — £¥ (V) be the dual
transformation. Then:
(1) T* is linear.
QT (f®g) =T fOT"g.
(3)IfS: W — X is a linear transformation, then (So T)* f =T*(S" f).
Proof
(T* (af + bg)) (1,.. ,vx) = (af + bg) (T(v1),...,T(vy))
=af (TW),....,T(vg)) + bg(T(v1),...,T(vy))
=aT " f(vy,...,v) + bT*g(vy,..., V%) (2-21)
Whence T*(af + bg) = aT*f + bT"g.
The following diagrams illustrate property (3)
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Section(2-2) :- Alternating tensors

In the following we will introduce the particular kind of tensors with which we
shall be concerned-the alternating tensors-and derive some of their properties.In
order to do this, we need some basic facts about permutations.

Definition( 2-2-1 ) :- Letk > 2 . a permutation of the set of integers
{1,..., k}is a one-to-one function a mapping this set onto itself. We denote the set
of all such permutations by Sj . If ¢ and T are elements of S;, , so are 0 o T and

Figure( 2-2)

a”' The set Sy thus forms a group , called the symmetric group permutation on
the set {1,..., k} . There are k! elements in this group.
Definition( 2-2-2 ):- Given 1 < i < k,let e;; be the element of S
defined by setting e;(j) = j for j #i+1and
eg()=1+1 and (i + 1) =

We call e; an elementary permutation. Note that e; oe; equals the identity
permutation, so that e; is its own inverse.
Lemma ( 2-2-3):- If o € S;,then o equals a composite of elementary
permutations. Proof

Given0 < i < k, we say that o fixes the first [ integers if o(j) =
jforl < j < i.Ifi = 0, then ¢ need not fix any integers at all. If i = k,
then a fixes all the integers 1,...,k, so that o is the identity permutation . In
this case the theorem holds , since the identity permutation
equalseioei foranyj.
We show that if o fixes the first i — 1 integers then o can be written as the
composite ¢ = 1o ¢, where 7 is a composite of elementary permutations and ¢’
fixes the first i integers . The theorem then follows by  induction.

The proof is easy. Since o fixes the integers 1,...,i — 1, and since o is one-
to-one, the value of o on i must be a number different from 1,...,i —
1.If o (i) = i,thenwe setd' =g and m  equlal to the identity permutation ,
and our result holds. If a(i) = € > i,we set

o'=e;0----0e_j00. (2-22)
Then o' fixes the integers 1,...,i - 1 because o fixes these integers and so do
e ,...,ep_1 . And ¢’ also fixes i, since o(i) = ¢ and
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ei(-- (e () -+) = 1. (2-23)
We can rewrite the equation defining ¢’ in the form

€p_10 0600 =0 (2-24)
Definition.( 2-2-4 ) :- Let o € S}, . Consider the set of all pairs of integers i, j
from the set {1,...,k} for which i < jand a(i) > o(j). Each such pair is
called an inversion in 0 We define the sign of o to be the number -1 if the number
of inversions in o is odd , and to be the number +1 if the number of inversions in o
is even .We call 0 an odd or an even permutation according as the sign of o equals
-1 or +1 , respectively. Denote the sign of o by sgn o©.
Lemma (2-2-5) :- Let o,T € Sy, .
(a) If o equals a composite of m elementary permutations, then sgn ¢ = (- 1)™.
(b)sgn(cot) = (sgno)- (sgnt).

(c)sgno~! = sgno.
(d) If p #q,and if T is the permutation that exchanges p and q and
leaves all other integers fixed,then sgn T = —1.
Proof
Step 1.We show that for any o
sgn(coe,) = —sgnao (2-25)
Given o let us write down the values of ¢ in order as follows:
(*) (c(1),0(2),...,.0(),a(® + 1),...,0(k)).

Let T = cgoe,; then the corresponding sequence for Tis the k — tuple of
numbers (7(1),7(2),...,T7(),T# + 1),...,T(k))

=(d(1),0(2),...,0(€ + 1),0(D),...,0(k)). (**) (2 -26)
The number of inversions in o and T, respectively, are the number of pairs of
integers that appear in the sequences ( *) and ( ** ), respectively, in the reverse of
their natural order. We compare inversions in these two sequences. Let p # q; we
compare the positions of o(p) and g(q) in these two sequences. If neither p nor q
equals £ or £+ 1, then o(p) and o(p)appear in the same slots in both sequences,
so they constitute an inversion in one sequence if and only if they constitute an
inversion in the other. Now consider the case whereone, say p, equals either
lorl + 1, and the other g is different from both [ and £ + 1 . Then o(p)appears
in the same slot in both sequences, but o(p) appears in the two sequences in
adjacent slots. Nevertheless, it is still true that o(p)and o(q)constitute an inversion
in one sequence if and only if they constitute an inversion in the other. So far the
number of inversions in the two sequences are the same. But now we note that
if o(¥)and o(f + 1) form an inversion in the first sequence, they do not form
an inversion in the second ; and conversely. Hence sequence ( **) has either one
more inversion , or one fewer inversion, than ( *) .
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Step 2.We prove the theorem.The identity permutation has sign +1 ,and
composing it successively with m elementary permutation changes its sign m
times, by Step 1. Thus (a) holds. To prove (b), we write o as the composite of m
elementary permutations,and 7 as the composite of n elementary permutations.
Then oo T is the composite of m + n elementary permutations; and (b) follows
from the equation (—1)™*"= (—-1)™ (—-1)".
To check (c), we note that since ¢ "lo o equals the identity permutation ,
(sgn 0 YH(sgno) = 1.

To prove (d), one simply counts inversions. Suppose that p < q. We can write
the values of 7 in order as
1,...,p-1Lqp+1,..,p+f—-1Lpp+L+1,..,k),
where g = p + £. Each of the pairs{q,p + 1},..,{q,p + £ — 1} constitutes an
inversion in this sequence, and so does each of the pairs {p + 1,p}... ,{p + £ -
1,p}. Finally, {q, p} is an inversion as well. Thus t has 2¢ — 1 inversions, so it is
odd .
Definition( 2-2-6 ):- Let f be an arbitrary k-tensor on V. If gis a permutation of
{1,... k}, we define ¢ by the equation

fOWi,ve) = f Woy - Vo) - (2-27)

Because f is linear in each of its variables, so is f¢ ;thus f“ is a k —tensor on V.
The tensor f is said to be symmetric if f¢ = f for each elementary permutation e,

and it is said to be alternating if f¢ = —f for every elementary permutation
e.Said differently, f is symmetric if

fi, 0, Vig1,Vis,-- V) = (V.. Vi, Vig15, -+ Vi) (2-28)
for all i; and f is alternating if

fWi, o 0, Vig1, Vi, V%) = f(V1,-. 0, V,Vig15, -+, Vi) (2-29)
Definition.( 2-2-7 ):- If V is a vector space, we denote the set of alternating k

tensors on V by A (V). It is easy to check that the sum of two alternating tensors
is alternating, and that so is a scalar multiple of an alternating tensor. Then A% (V).
is a linear subspace of the space .L¥ (V) of all k —tensors on V. The condition that
a l-tensor be alternating is vacuous. Therefore we make the convention that
At vy = LkW).

EXAMPLE(2-2-8):- The elementary tensors of order k > 1 are not alternating,
but certain linear combinations of them are alternating. For instance, the tensor

f = @i1j — @jq; is alternating, as you can check. Indeed, if V = R™ and we
use the usual basis for R™ and corresponding dual basis @; the function f satisfies
the equation

Xi Vi
fG,y) =xy; — xjy; = det [xj )’j] (2- 30)
Here it is obvious that f(y,x) = —f(x,y). Similarly, the function
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Xi Vi Z
g(x,y,z) = det|% Vi 7 (2-31)
Xk Yk Zk
is an alternating 3-tensor on R™; one can also write g in the form
9 = Pijr + Djrit Prij — Pjik — Dikj — Dr,ji (2-32)

In the following we now study the space A*(V); in particular, we find a basis for it
Lemma (2-2-9):- Let f be a k — tensor onV; leto,7 € S .
(a) The transformation f — f¢ is a linear transformation of .L¥(V)to . LX(V).
It has the property that for all o,,
(fd)‘c — f‘L’OO‘I
(b) The tensor f is alternating if and only if f° =gn o)f for all o . If f is
alternating and if V, = V, withp # q, then f(Vy,..., V) = 0.
Proof.
(a) The linearity property is straightforward; it states simply that

(b) (af + bg)? = af® + bg? . To complete the proof of (a), we compute
Fo)Y W1, 1) = Oy ety ) = FWoays o Wog)
= f (V‘c(o'(l))' ""V‘L'(O'(k)))

= [T vy, o, Vi) (2-33)
(b) Given an arbitrary permutation g, let us write it as the composite
o = (0,00, ...00,) (2-34)
Where each o; is an elementary permutation. Then
fo' — fo'lo...oam.
=((..(f™) ..)%2 )% by (a), =(—1)"f because f is alternating ,
=(sgno)f. (2-35)

Now suppose V ,,

=V, forp # q.Lettbe the permutation that exchanges p
and q . Since I, =V,

f‘c(vli""vk)zf(vli"'ivk)' (2'36)
On the other hand,
fr(vy,w,v)=—f (v, Vi) (2-37)
Since sgn T = —1. It follows that f (v;,... ,v, ). =0
Lemma:- (2-2-10 ) :- Leta,,...,a,be a basis for V. If f, g areternatingk —
tensorsonV,and if f(aji---,0ik-) = g(ai1---,Qix-)
for every ascending k — tuple of integers I= (i1 er i)
fromtheset {1,...,n},thenf = g.
Proof.
In view of Lemma (2-1-3), it suffices to prove that f and g have the same values
on an arbitrary k — tuple (a;; , ..., aj.) of basis elements. Let ] = (j.,...,jk)
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If two of the indices, say, j, and j, , are the same , then the values of f and g
on this tuple are zero, by the preceding lemma. If all the indices are distinct, let o
be the permutation of { 1,...,k} such that the k — tuple I = (jo(1) .-+ Jok)) 18
ascending. Then
f(apg, - ay)=f°(aj,..aj )by definition of f7,

fo=(sgno)f( ajl,...ajk) (2- 38)

because f is alternating. A similar equation holds for g. Since f and g agree on the
k — tuple ( aj1 , - Qg )they agree on the k — tuple (( Aj1 - Aj )
Theorem (2,2,11) -
Let V be a vector space with basis a,,...,a, .Let I = (iy,...,i;)be an
ascending k — tuple from the set {1,...,n}.There is a unique alternating

k — tensor @, on V such that for every ascending k-tuple
J = (1,---,Jx ) fromtheset{1,...,n},

0 if I+#],
lp[(ajli'--;ajk)z{l lf I=], (2_39)
The tensorsy; form a basis for A* (V).The tensor ), in fact satisfies the
formula  Y; = Y,(sgno)(9,)°, (2-40)

where the summation extends over all o € S, .
The tensors are called the elementary alternating k-tensors on V
corresponding to the basis a4 ,...,a,for V.
Proof.
W)" = T,(sgn 0)((B1)7)7 by linearity, =Y,(sgn o)((@; )**°
= (sgn 1) Lo(sgn(700)) (@)™
~(sgn 1) ¥, (2-41)

the last equation follows from the fact that 7 0 o ranges over S, as o does . We
show ¢@;has the desired values. Given J, we have

lp,(ajl, o g )= 3, (sgn a)@,(ajd(l) o Qg (k) ). (2-42)
Now at most one term of this summation can be non-zero, namely the term
corresponding to the permutation ¢ for which I = (js(q)...,jgk)) Since both I
and J are ascending, this occurs only if I = ] and o is the identity permutation , in
which case the value 1s 1. If I # ], then all terms vanish . Now we show the Y
form a basis for AX(V).Let f be an alternating k — tensoron V. We show that f
can be written uniquely as a linear combination of the tensors ¢; .

Given f , for each ascending k —tuplel = (iy.,..., 1) from the set
{1,...,n}, let d; be the scalar
di = f(ai,-.., ). (2-43)

Then consider the alternating k — tensor

34



9= 4
7]
(2-44)

Where the notation [J] indicates that the summation extends over all ascending
k — tuples from {1,...,n}. If | is an ascending k — tuple, the the value of g on
the k — tuple (a;1 ,-..,a;; ) equals d; ; and the value of f on this k — tuple is the
same. Hence f = g. Uniqueness of this representation of f follows from the
preceding lemma.

This theorem shows that once a basis a4,...,a, for V has been chosen , an
arbitrary alternating k — tensor f can be written uniquely in the form

f= z d; ¥,
]

(2-45)
The numbers d; are called components of f relative to the basis {1; }. What is the
dimension of the vector space A® (V)? If k = 1, then A* (V) has dimension n,
of course. In general, given k > 1 and given any subset of {1,...,n} having k
elements, there is exactly one corresponding ascending k — tuple, and hence one
corresponding elementary alternating k — tensor. Thus the number of basis
elements for A¥(V) equals the number of combinations of n objects , taken k at a

time. This number 1s the binomial coefficient
n!

() = oo (2- 46)
Theorem (2-2-12) :- Let T : V. — W be a linear transforMation
Af fis an alternating tensor on W, then T™ f is an alternating tensor on V.
Definition(2-2-13 ):- Let e;,...,e, be the usual basis for R™; let
@4, ..., 0, denote the dual basis for .L! (R™)The space A™R™ of alternating
n — tensors on R™ has dimension 1 ; the unique elementary alternating n —
tensor on R™ is the tensor 1, If
X = [%Xq...x,] 1s an n by n matrix, we define the determinant of X by the
equation

det X = ¥y n (X1 .. %) (2-47)
let us for the moment let g denote the fun ction

gX) = P1 (1 ... %) , (2-48)
Where I = (1,...,n). The function g is multilinear and alternating as a function

of the columns of X, because ¢, is an alternating tensor. Therefore the function
f defined by the equation f (4) = g (A') is multilinear and alternating as a
function of the rows of the matrix A. Furthermore,
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fUR) =g U) =¢1(e;,..ep) =1 (2-49)

Hence the function f satisfies the axioms for the determinant function. In

particular, f(4) = f(A™). Then f(A) = f(A™) = g(A"™)!". = g(A), so that g
also satisfies the axioms for the determinant function , as desired

The formula for 1, given in Theorem (2-2-11) gives rise to a

formula for the determinant function. If I = (1,...,n), we have detX =

Yo(sgn o)y (Xge1ys-+» Xo(n))

= Z(Sgn U)xl,o' -xz,o'(Z) xn,o‘(n)
g
(2-50)
as you can check. This formula is sometimes used as the definition of the
determinant function.
We can now obtain a formula for expressing 1, directly as a function of k —
tuples of vectors of R™. It is the following:

Theorem ( 2-2-14):- Let y;be an elementary alternating tensor on R™

corresponding to the usual basis for R™, wherel = (iy,...,0)"

Given wvectors xq,...,x; of R", let X be the matrix

X = [x1..x;] - Then PYi(x1,...,x) = det X;,

where X; denotes the matrix whose successive rows are rows i1,--, i of X.
Proof.

We compute 1 (xq ,..., %) = Xs(sgn o)B1 (Xg(1) s - Xo@) )

=Xo(sgn o) (Xi1601) s s Xiz6(2) = Xikok)y  (2-51)
This is just the formula for det X
EXAMPLE (2-2-15):- Consider the space A3(R*). The elementary alternating
3- tensors on R*, corresponding to the usual basis for R* , are the functions

Xi Yi Zj
Yijr(x,y,z) =det|X Vi % (2-52)
Xk Yk Zg

Where(i,j, k) equals (1,2,3)or (1,2,4) or (1,3,4) or (2,3,4). The general
elemen t of A3(R*) is a linear combination of these four functions.
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section (2-3):- THE WEDGE PR ODUCT

In the following we seek to define a product operation in the set of lternating
tensors .

Theorem (2-3-1 ):-
Let V be a vector space. There is an operation that assigns, to each f € A* (V)
and each g € A' (V), an element f A g € A*¥*! + [ (V), such that the following
properties hold:
(1) {Associativity).f A (g AN h) = (f A g) A h.
(2) {Homogeneity).(cf) A g = c(f Ag) = f A (cg).
(3) (Distributivity).If f and g have the same order,
f+9 ANh=fANh+ gAh,
hAN(f+g) =hANf+hAg.
(Anticommutativity).lf f and g have orders k and lrespectively, then
grnf=CED" ag
(5) Given a basis a4,...,a, forV,let @; denote the dual basis for V*and let Y,

denote the corresponding elementary alternating tensors. If [ = (iy.,...,i) is an
ascending k-tuple of integersfrom the set {1,...,n}, then Y= Qi1 N
Diz - Dik

These five properties characterize the product A uniquely for finitedimensional
spaces V. Furthermore, it has the following additional property:
(6) IfT:V - W is a linear transformation, and if f and g are alternating
tensors on W, then
T*"(fng) =T fNT'g
The tensor f A gis called the wedge product of f and g. Note that property ( 4)
implies that for an alternating tensor f of odd order, f A f = 0.

Proof
Step 1. Let F be a k — tensor on W (not necessarily alternating). For purposes of
this proof, it is convenient to define a transformation A: L¥(V) — L* (V) by
the formula

AF = Z(sgn o)F°
’ (2-53)
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where the summation extends over all o0 € S;. (Sometimes a factor of 1/k! is
included in this formula, but that is not necessary for our purposes.)note that in
this notation, the definition of the elementary alternating tensors can be written as
Y = AQ, (2-54)

The transformation A has the following properties:

(1) A is linear.

(ii) AF is an alternating tensor.

(iii) If F is already alternating, then AF = (k!)F.

Let us check these properties. The fact that A is linear comes from the fact that the
map F — F? is linear. The fact that A F is alternating comes from the
computation
(AF)* = Y, (sgno) (F°)* by linearity,
= Y,(sgn o)F™°
= (sgnt) Y.(sgntoo)F*°
= (sgn1)AF. (2-55)
Step 2. If fis an alternating k — tensor on V, and g is an alternating £ —
tensor on V , we define

1

frg =gpAUf@g). (256 )
Then f N g is an alternating tensor of order k + £. It is not entirely clear why the
coefficient 1/k!®! appears in this formula.Some such coefficient is in fact

necessary if the wedge product is to be associative. One way of motivating the
. . : 1. : :
particular choice of the coefficient o s the following: Let us rewrite the

definition of f A g in the form
AP Vi Vir) =

1
k!l 2(59” ) f Vo) s Vo) 9( Vot » - Vok+1)
o

(2-57)

Then let us consider a single term of the summation , say

(sgn o) f Vo) Vo) - 9Worrr) = Voern) - ( 2-58)
A number of other terms of the summation can be obtained from this one by
permuting the vectors Vg(q),...,Vsk) among themselves , and permuting the
vectors Vg(k41),---» Vo+r) among themselves . Of course, the factor (sgn o)
changes as we carry out these permutations, but because f and g are alternating,
the values of f and g change by being multiplied by the same sign . Hence all
these terms have precisely the same value. There are k!l! such terms, so it is
reasonable to divide the sum by this number to eliminate the effect of this
redundancy.
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Step 3. Associativity is the most difficult of the properties to verify, so we
postpone it for the moment. To check homogeneity, we compute
(cfHNg = A((cf) ® g) /k!I!
= A(c(f ® g)) /k'l! by homogeneity of &,
= cA(f ® g)/ k'l! by linearity of A,
=c(f rg). (2-59)
Asimilar computation verifies the other part of homogeneity. Distributivity follows
similarly from distributivity of & and linearity of A.
Step 4. We verify anticommutativity. In fact, we prove something slightly more
general: Let F and G be tensors of orders k and ¢, respectively(not necessarily
alternating). We show that
AF ®G) = (-D¥AG ® F). ( 2-60)
To begin, let m be the permutation of (1,...,k + £) such that
(r(D),..nt(k + &)= (k + Lk+2,...,k+412,..,k). (2-61)
Then sgnr = (—1)*. (Count inversions!) It is easy to see that (G ® F)" =
F ® G,since
6 ® FY* (Voo Virs) = GViwrreeisViws) + F(Vi oo, Vi) J(2-62)
(F X G)(Vl ""'Vk+f) = F(Vl ;---;Vk) ) G(Vk+1 ;---;Vk+€) (2'63)
We then compute
A(F®G) =Y (sgno)(F ® G)°
= Lo(sgn a)((G ® F)™)?
= (sgnm)) = Xs(sgn oom) (G ® F)7°"
= (sgnm)AG ®F), (2-64)
since gom runs over all elements of Sy, as g does .
Step 5. Now we verify associativity. The proof requires several steps , of which the
first is this
Let F and G be tensors (not necessarily alternating) of orders k and ¥,
respectively, such that AF = 0.ThenA(F ® G) = 0 (2-65)
To prove that this result holds, let us consider one term of the expression for
A(F ® @), say the term
(sgn 0 )F (Vo(1)s Vo) G (Votka1)s -r Vogers)
Let us group together all the terms in the expression for A(F & ) that involve the
same last factor as this one. These terms can be written in the form

(sgno) [z (sgn T F (Vo) -+ Vorto) | -G (Vatkarys = Vo)
T

where T ranges over all permutations of {1,...,k} . Now the expression in
brackets is just

AF (Vo) - Vo))
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which vanishes by hypothesis . Thus the terms in this group cancel one another.
The same argument applies to each group of terms that involve the same

last factor. We conclude that A(F ® G) = 0.

Step 6 Let F be an arbitrary tensor and let h be an alternating tensor of order m .

We show that

(AF) A h = % A(F ® h). (2-66)
Let F have order k. Our desired equation can be written as
1 1
— A((AF)® h) = — A(F ®h). (2-67)

Linearity of A and distributivity of & show this equation is equivalent to each of
the equations

A{(AF) ® h — (kDF @ h} = 0,

A{[AF — (k").F] ® h} = 0. (2-68)
In view of Step 5, this equation holds if we can show that
A[AF — (k))F] = 0. (2-69)

But this follows immediately from property (ii1) of the transformation A, since AF
is an alternating tensor of order k.
Step 7. Let f, g, h be alternating tensors of orders k, [, m respectively. We show

that
1

FApAh=—"A( ® g) ® h). (2-70)
Let F = f @ g, for convenience. We have
fAg=-AF (2-71)

by definition, so that
1
(f/\g)/\h=m(AF)/\h

Tl A(F ® h) by Step6,
1

= A(f ® 9) ® h). (2-72)

k!l!'m!

Step 8. Finally, we verify associativity. Let f, g, h be as in Step 7.Then
k'!mD)(f Ag)AN h = A((f ®g9) ® h)by Step 7,

= A(f® (g ® h))by associativity of ®,

= (-D""™WA((g ® H® f) by Step 4,
=(— D™ (1imlk (g Ah) A f by Step 7,
= (K'l!!mY)f A (g A h) by anticommutativity. ( 2-73)

J
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Step 9. We verify property (5). In fact , we prove something slightly more general.
We show that for any collection f,..., f;, of 1 —tensors, A(f; ®...Q fi,) =

AN A S (2-74)
Property (5) is an immediate consequence, since
Y1 = Ay = A(9i1,® .. Q i ) - (2-75)

Formula ( *) is trivial for k = 1. Supposing it true for k — 1 , we prove it

fork.SetF = fi1® .....Q fr_1 - Then

A(F® f i) = (IDWAF)Afy by Step6 = (f A A fre) A fie  (2-76)
by the induction hypothesis.
Step 10. We verify uniqueness ; indeed , we show how one can calculate wedge
products , in the case of a finite-dimensional space V, using only properties (1)-
(5). Let @; and 1), be as in property (5). Given alternating tensors f and g, we can
write them uniquely in terms of the elementary alternating tensors as

f=zd11/)1 and g = zcﬂ/)]
[1]

/]
(Here I is an ascending k — tuple, and J is an ascending ¢ — tuple, from the

set{ 1,...,n}.) Distributivity and homogeneity imply that

FAG =) ) b Ay

[l Ul
(2-77)

Therefore, to compute f A g we need only know how to compute wedge products
of the form

Y A l/)]=(®i1/\...../\®ik)/\(®j1/\ /\@jl) (2-78)
For that, we use associativity and the simple rules

Q)i/\ Q)]: Q)]/\Q)l and Q)l/\ Q)l:O (2-79)
which follow from anticommu tativity. It follows that the product ¥; A ¥, equals
zero if two indices are the same. Otherwise it equals (sgn ) times theelementary
alternating k + ¢ tensor Y, whose index is obtained by rearranging the indices in
the k + € tuple (/,]) in ascending order, where 7 is the permutation required to
carry out this rearrangement.
Step 11. LetT : V — W be a linear transformation, and F be an arbitrary tensor
on W (not necessarily alternating). It is easy to verify that
T*(F°) = (T* F)° Since T" is linear, it then follows that
T*(AF) = A(T*F) Now let f and g be alternating tensors on W of orders
k and [, respectively. We compute

T'(fAg) = =T (A ®9) = — AT (f ® 9))

= — A((T"f) ® (T"g)) by Theorem
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= (T ) A (T 9. (2- 80)
With this theorem, we complete our study of multilinear algebra.
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Chapter(3):-
Application on tangent vectors and scalar fields :-

Section(3-1):- tangent vectors and differential forms and operators

In the following we will studied tensor algebra in R™ —tensor addition,
alternating tensors, wedge products, and the like. Now we introduce the concept of
a tensor field; more specifically, that of an alternating tensor field, which is called
a "differential form." In the succeeding section, we shall introduce a certain
operator on differential forms, called the "differential operator'd, which is the
analogue of the operators grad, curl, and div.

Definition. ( 3-1-1 ):- Givenx € R™, we define a tangent vector to R™ at
x to be a pair (x; v) , where v € R™ . The set of all tangent vectors to R™at x
forms a vector space if we define

V) + (x;w) = (x; v+ w),
c(x; v) = (x; cv). (3-1)
It is called the tangent space to R™ at x, and is denoted T, (R™) .

Although both x and v are elements of R™ in this definition, they play
different roles. We think of x as a point of the metric space R™ and picture it as a
"dot." We think of v as an element of the vector space R™ and picture it as an
"arrow." We picture ( x ; v) as an arrow with its initial point at x. The set T, (R™)
is pictured as the set of all arrows with their initial points at x ; it 1s, of course, just
the set x x R™ .

We do not attempt to form the sum (x; v) + (y; w)if x # y.
Definition ( 3-1-2 ) Let (a,b) be an open interval in R ; let y : (a,b) — R"
be a map of class C.” We define the velocity vector of y , corresponding to the
parameter value t, to be the vector (y(t); Dy (t)) .

This vector is pictured as an arrow in R™ with its initial point at the point
p =y(t) . See Figure (3-1) . This notion of a velocity vector is of course a
reformulation of a familiar notion from calculus. If

y(®) = x(e; + y()e; + z(t)es (3-2)
is a parametrized-curve in R3, then the velocity vector of y is defined in calculus as

the vector
_dx, Ay Lz i
Dy(t)—dte1+ ” e2+dteg (3-3)

/L___/é__/

Figure(3-1)
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Definition( 3-1-3):- Let A be open in R¥ or H* ; leta : A —>.R™ be of
class C" . Letx € A, andletp = o« (x) . We define a linear transformation
a,: Ty (RY) - T, (R™.
by the equation
a, (x; v) = (p; Da (x) - v). (3-4)

It 1s said to be the transformation induced by the differentiable map «

a Given (x; v), the chain rule implies that the vector a, (x; v) is in fact the
velocity vector of the curve y(t) = a(x + tv), corresponding to the parameter
value t = 0. See Figure (3-2).

[l = 1
[r——

" Ry

Figure (3-2).

Lemma (3-1-4) :- Let A be open in R¥ or H* ; let @ » R™ be of class C”.
Let B be an open set of R™ or H™ containing a( A) ; let (J : B = R™ be of class
crC” . Then (Bo a), = B.o a, (3-5)

Proof

This formula is just the chain rule. Let y = a(x) and let z = [(y) . We compute
Boa).(x; v) = (Bla(x)); D(Boa)(x) - v)
= (BW); DEY) - Da(x) - v)

= (B. (a. (x; v)). (3-6)
These maps and their induced transformations are indicated in the fowlloing
Boa (B oa)
A - R*  T(R%) T(R")
B T, (R™)

Figure (3-3 ).
Definition(3-1-5):- If A is an open set in R™, a tangent vector field in A is a
continuous function F: A - R™ X R"™ such that F(x) € T, (R") , for each
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x € A. Then F has the form F(x) = (x; f(x)), where f: A— R" . If F is of
class C",we say that it is a tangent vector field of class C" .
Definition( 3-1-6 ):- Let M be a k — manifold of class C" inR". Ifp € M ,
choose a coordinate patch & : U — V about p, where U is open in R™ or H*. Let
x be the point of U such that a(x) = p. The set of all vectors of the form
a, (x; v) , where v is a vector in R¥ | is called the tangent space to M at p, and is
denoted T,,(M). Said differently,

T,(M) = a. (T(R¥)). (3-7)
It is not hard to show that T),(M) is a linear subspace of T,,(R™)that is welldefined,
independent of the choice of a. Because R* is spanned by the vectors ey ,...,ex: ,

the space T,,(M) is spanned by the vectors (p; Da(x).ej = (P ;_:: ,)'
J

(3-4)
forj = 1,...,k. Since Da has rank k, these vectors are independent; hence they
form a basis for T,,(M). Typical cases are pictured in Figure (1 3-4)

We denote the union of the tangent spaces T,,(M), forp € M,by T(M) ;
and we call it the tangent bundle of M. A tangent vector field to M is a continuous
function F : M — T(M) such that F(p) € Tp(M) foreachp € M.

Now we will discuss tensor fields

Definition ( 3-1-7 ):- Let A be an open set in R™ . A k — tensor field in A is
afunction w ssigning, to each x € A, a k-tensor defined on the vector space
T, (R™). That is, w(x) € L¥(T, (R™))

for each x. Thus w(x) is a function mapping k — tuples of tangent vectors to R™at
x into R ; as such, its value on a given k — tuple can be written in the form

(‘)(x) ((xr 171); """ ,(X;Uk))

45



We require this function to be continuous as a function of (x, vy, ...., vy ) if it is of
class C" we say that w is a tensor field of class C". If it happens that w(x) is an
alternating k — tensor for each x, then w is called a differential form (or simply, a
form) of order k, on A

More generally, if M is an m-manifold in R™ , then we define a k —
tensortield on M to be a function w assigning to each p € M an element of
Lk (T,(M)) . If in fact w(p) is alternating for each p, then w is called a differential
formon M .

If w is a tensor field defined on an open set of R™ containing M , then w of course
restricts to a tensor field defined on M, since every tangent vector to M is also a
tangent vector to R™ . Conversely, any tensor field on M can be extended to a
tensor field defined on an open set of R™ containing M; the proof, however, is
decidedly non-trivial. For simplicity, we shall restrict ourselves in this book to
tensor fields that are defined on open sets of R™ .

Definition. (3-1-8):-  Let eq,...,e,be the usual basis for R™ . Then ( x; e,..

., (x; ey) is called the usual basis for T, (R™) . We define a 1 — form @, on R™ by
the equation
0 if i#]

B)(xe) =, [ L% (3-9)

The forms @;,..., D, are called the elementary 1 — forms on R™. Similarly, given

an as-cending k — tuple I = (iy,...,i;) from the set {1,...,n}, we define a k-
form 1 by the equation

1 () = ¢IN .. Ay (x) (3-10)

The forms i ; are called the elementary k — forms on R™ .
Note that for each x, the l-tensors ¢;(x),...,¢,(x) constitute the basis for
LY (T, (R™)) dual to the usual basis for T, (R™), and the k — tensor ¥ ; (x) is
the corresponding elementary alternating tensor on T, (R™) .
The fact that @, and 1, are of class C* follows at once from the equations
0, ()(x;v)=vy,
U, (x)((x; V1), ., (X5 vk)) = detX;, (3-11)
where X is the matrix X = [vq ...v].
If w is a k— form defined on an open set A of R"™ , then the k —
tensor w(x) can be written uniquely in the form

0@ = ) HI ),

]
(3- 12)

for some scalar functions b;( x) . These functions are called the components of
w relative to the standard elementary forms in R™
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Lemma ( 3-1-9 ):- Let w be a k — form on the open set A of R™ . Then w
is of class C" if and only if its component functions b; are of class C" on A .
Proof
Given w, let us express it in terms of elementary forms by the equation

w = z b (x) Y,
[1]
(3-13)

The functions ; are of class C* . Therefore, if the functions b; are of class C” , so
is the function w. Conversely, if w is of class C” as a function of (x,v1,...,vy ),
then in particular, given an ascending k — tuple
J= {i,.-..Jx) fromtheset { 1,...,n}, the function

a)(x)((x; ejl),...,(x; ejk)) (3- 14)
is of class C" as a function of x. But this function equals b;(x).
In the following, we shall need to deal not only with tensor fields in R™ , but with
scalar fields as well. It is convenient to treat scalar fields as differential forms of
order 0.
Definition. ( 3-1-10):- If Ais openin R™, and if f : A — R is a map of
class C" then f is called a s calar field in A . We also call f a differential form of
order 0.

The sum of two such functions in another such, and so is the product by a
scalar. We define the wedge product of two O-forms f and g by therule fAg =
f - g, which is just the usual product of real-valued functions. More generally, we
define the wedge product of the O-form f and the k — form w by the rule

(WAf) (x) = (fAw) (x) = f(x) - w(x); (3-15)
this is just the usual product of the tensor w(x) and the scalar f(x)

Note that all the formal algebraic properties of the wedge product hold.
Associativity, homogeneity, and distributivity are immediate; and
anticommutativity holds because scalar fields are forms of order 0:

fANg = (1)0gAfand fAw = (-1D)°0A f (3-16)
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section(3 -2):- scalar field and the action of differentiable maps

Now we will discuss the introduce a certain operator d on differential forms. In
general, the operator d, when applied to a k — form, gives a k + 1 form. We
begin by defining d for 0-forms.
Definition( 3-2-1):- Let A be openin R™ ;let f : A — R be a function of class C"
. We define a 1-form df on A by the formula

df )(x; v) = f'(x; v) = D f(x) - v.
The 1-form df is called the differential of f. It is of class C"~! as a function of x
and v.
Theorem (3-2-2):- The operator d is linear on 0-forms.

Proof.
Letf,g: A - Rbeofclass C".Let h = af + bg. Then
Dh(x) = aDf(x) + bDg (x),
so that
dh(x)(x; v) = adf(x)(x; v) + bdg(x)(x; v).

Thus dh = a(df) + b(dg),as desired.
Using the- operator d, we can obtain a new way of expressing the elemen- tary 1-
forms @, in R™:

Lemma (3-2-3 ):- Let @, ....,D,be the elementaryl -forms in R™
Let ; : R™ —.R be the i" projection function, defined by the equation
N (X1, Xp) = Xj. (3-17)
Then d,; = @,
Proof.

Since ; is a C™ function, d; is a 1-form of class C* . We Compute
dpi (X)(x; v) = Dy (x).v

%1
=[o....o1o...0][..]=vi (3- 18)
vn
Thusd,; =@, . (3- 19)

Now it is common in this subject to abuse notation slightly, denoting the
it" projection functionnot by r; but by x; . Then in this notation, @; is equal to dx;.
We shall use this notation henceforth:
Convention. If x denotes the general point of R"™ , we denote the i*" projection
function mapping R™ to R by the symbol x; . Then dx;. equals

the elementary 1 — form @,in R™.If I = (i ,...,ix) is an ascending
k — tuple fromtheset{1,...,n}, then we introduce the notation dx; =
dxii/\ ... ... Ndx;y, (3-20)
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for the elementary k — form ,in R™ . The geneml k — form can then be written

uniquely in the form
w = z b[ de’
[1]

(3-21)
for some scalar functions b; .
The forms dx; and dx; are of course characterized by the equations
dx;(x) (x; v) = v,
dx; (x)((x; v1),...,(x; V) = det%,, (2-22)

where X is the matrix X = [v; ....v,] .
For convenience , we extend this notation to an arbitrary k — tuple J=
(Ji,---,Ji) fromtheset{1,...,n}, setting
dx; =dxj; A ... Adxjy (3-23)
Theorem (3-2-4):-
Let Abe openinR™; let f A - R beof class C" Then
df = (D1f)dx; +--+ + (Dp fldxy .
In particular, df = 0 if f is a constant function. In Leibnitz's notation, this
equation takes the form
df = Lax, + - +2L ax (3- 24)
0x4 0xp n
This formula sometimes appears in calculus books, but its meaning is not
explained there.
Proof.
We evaluate both sides of the equation on the tangent vector (x; v). We have
df () (x; v) = D f(x) - v (3-25)

by definition, whereas

Y Dif Wdx GV = Y Dif o,

(3-26)
Convention. Henceforth, we restrict ourselves to manifolds, maps,vector fields,
and forms that are of class C.
now We discuss to define the differential operator d in general. It is in some
sense a generalized directional derivative. A formula that makes this fact explicit
appears in the exercises. Rather than using this formula to define d, we shall
instead characterize d by its formal properties, as given in the theorem that
follows.
Definition(3-2-5 ):- If A is an open set in R™ , let Q% (4) denote the set of
all k — forms on A (of class C®.). The sum of two such k — forms is another k-
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form, and so is the product of a k-form by a scalar. It is easy to see that O (A)
satisfies the axioms for a vector space; we call it the linear space of k —
forms on A.
Theorem (3-2-6):- Let A be an open set in R™ . There exists a unique linear
transformation  d: Q¥ (4) » Q%*1 (4),defined for k > 0,such that:
() If fisa0— form,then df isthe 1 — form
df (x)(x; v) = Df(x) - v.

(2)If wand n are forms of orders k and ¢, respectively, then

d(wAn) =dwAnp+ (—D*w Adn
(3) For every form w,

d(dw) = 0.
We call d the differential operator, and we call dw the differential of w .
Proof.
Step 1. We verify uniqueness . First, we show that conditions (2) and (3) imply
that for any forms w, ,.., Wy , we have d(dwi\...Ndw, ) =0

(3-27)

If k = 1, this equation is a consequence of (3). Supposing it true for k — 1, we

set n = (dw, A\ ... \dwy) and use (2) to compute

d(dw; An) =d (dw, )A\n # dw,; Ndn (3-28)

The first term vanishes by (3) and the second vanishes by the induction hypothesis.
Now we show that for any k — form w, the form dw is entirely determined

by the value of d on 0-forms, which is specified by (1) . Since d is linear, it

suffices to consider the case w = f dx; - We compute

dw = d(f dx;) = d(fAdxy) = df ANdx; + f A d(dxy) by (2) = df A

dxy, (3-29)

by the result just proved. Thus dw is determined by the value of d on the

0-form f.

Step 2. We now define d. Its value for 0-forms is specified by ( 1 ) . The

computation just made tells us how to define it for forms of positive order: If A is

an open set in R™ and if w is a k-form on A, we write w uniquely in the form

w = z £ dx,,
0

do = z df A dx; -
0

and define

(3-29)
We check that dw is of class C” . For this purpose, we first compute
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n
do = Y | > pax) Adx,
[l |j=1

(3-30)
To express dw as a linear combination of elementary k + 1 forms, one proceeds
as follows: First, delete all terms for which j is the same as one of the indices in the
k — tuple 1. Second , take the remaining terms and rearrange the dx; so the indices
are in ascending order. Third, collect like terms. One sees in this
way that each component of dw is a linear combination of the functions D 1 f;so
that it is of class C” . Thus dw is of class C" (Note that if w were only of class C"
then dw would be of class C""*We show d is linear on k — forms with k > 0.

Let
w=Zf1dx, and n = Zg,dx,
[1] [1]

be k — forms. Then
d(aw + by) = d z @f; + bg)dx
[1]
= z d(af; + bg;) N\ dx; by definition,
[1]
= Z( adf; + bdg;) N\ dx; since d is linear on 0 — forms,

[1]

= adw + bdn. (3-31)
Step 3. We now show that if | is an arbitrary k — tuple of integers from the set

{1,...,n},then
d(fAdj) =df Ndx;. (3-32)
Certainly this formula holds if two of the indices in Jare the same,
since dx; = 0 in this case. So suppose the indices in J are distinct. Let I be the
k — tuple obtained by rearranging the indices in J in ascending order; let = be the
permutation involved. Anticommutativity of the wedge product implies that
dx = (sgnm)dx; . Because d is linear and the wedge product is homogeneous,

the formula d(fA dx;) = df A dx;, which holds by definition, implies that

(sgnm)d(f Ndx;) = (sgnm)df Ndx; . (3-33)
Our desired result follows.
Step 4. We verity property (2), inthe case k =0 and € =0 we cmpute
n

d(fAg) = ) Di(f - 9)ix,
j=1

51



Z(D £ ). gdx; +Zf (D, 9) dx,

= (df)/\g +fA (dg) (3-34)
Step 5. We verify property (2) in general First, we consider the case
where both forms have positive order. Since both sides of our desired equation are
linear in w and in 7, it suffices to consider the case
w=fdx; and n = gdx,
We compute
d(wAn) = d(f g dx; \ dx))
= d(fg) Ndx; \dx; by Step 3,
= (df Ng + fANdg)Adx; Ndx; by Step 4,
= (df Ndx;) A(g Ndx;) + (—D* (f Adx) A (dg A dx;)
= dw An + (- D*w Adn. (3- 35)
The sign (— 1)* comes from the fact that dx;is a k —form and dg is a 1-form.
Finally, the proof in the case where one of k or fis zero proceeds as in the
argument just given. If k = 0, the term dx; is missing from the equations, while if
¢ = 0, the term dx; is missing. We leave the details to you.
Step 6. We show that if f is a O-form, then d( df) = 0. We have
n

d(df) = d Z D,f dx;,

= Z 1 (D f)Ndx;  bydefinition,
n

ZZDD fdx; A dx;

j=1i=1
(3-36)
To write this expression in standard form, we delete all terms for which i = j, and
collect the remaining terms as follows:

d(df) = z (D:D; f — D;D;f)dx; A dx; .
i<j
(3-37)

The equality of the mixed partial derivatives implies that d(df) = 0.
Step 7. We show that if w is a k — form with k > 0, then d(dw) =
Since d is linear, it suffices to consider the case w = fdx; - Then
d(dw) = d(df Ndx;) = d(df)ANdx; — df Nd(dx;),
by property (2). Now d(df) = 0 by Step 6, and

d(dx;)) = d(1)Adx; = 0 (3-3%)
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by definition. Hence d( dw) = 0.
Definition( 3-2-7):-Let 4 be an open setin R" . A 0-form f on A is said to

be exact on A if it is constant on A ; a k-form won A with k > 0 is said to be
exact on A if there is a k - 1 form g on A such that w = ﬁ . A k-form w on A
with k > 0 is said to be closed if dw = 0.

Every exact form is closed; for if f is constant, then df = 0, while if w = do

thendw = d( dO ) = 0. Conversely, every closed form on A 1s exact
on A if A equals all of R_" , or more generally, if A 1s a "star-convex" subset

of R_n . But the converse does not holds in general, as we shall see. If every

closed k-form on A 1s exact on A then we say that A is homologically trivial in
dimension k. We shall explore this notion further in Chapter 4
EXAMPLE ( 3-2-8):- Let A be the open set in R* consisting of all points

(x,y) for which x#0. Set f(x,y)= x/‘x‘ for (x,y) €A. Then f is of class

C” on A ,and df = 0 on A . But f is not exact on A because f is not constant
on 4.
Finally, it is time to show that what we have been doing with tensor fields and

forms and the differential operator is a true generalization to R" of familiar facts

. 3 : : .
about vector analysis in R*. We know that if A is an open set in R", then the

k
set ' (4) of k-forms on A is a linear space. It is also easy to check that the set

of all C” vector fields on A i1s a linear space. We define here a sequence of

linear transformations from scalar fields and vector fields to forms. These
transformations act as operators that "translate" theorems written in the language
of scalar and vector fields to theorems written in the language of forms, and
conversely.

Definition(3-2-9):- Let A be openin R". Let f A R be a scalar field in 4

We define a corresponding vector field in A, called the gradient of f, by the
equation

grad [)(x)=x;D, f(x)e+...+ D, f(x)e, (3-39)
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If G(x) = (x; g(x)) is a vector field in 4, where g : A— R" is given by the
equation

g(x)=g,(x)e +...+g,(x)e, (3-40

then we define a corresponding scalar field in 4 called the divergence of G,
by the equation

divG)(x)=Dg,/(x)e, +...+ Dg (x)e,

(3-41)
These operators are of course familiar from calculus in the case n = 3. The
following theorem shows how these operators correspond to the operator d:
Theorem ( 3-2-10) :- Let A be an open set in R". There exist vector space
isomorphisms & ; and B J as in the following diagram:
0
Scalar fields in 4 e Q' (4)
\ grad 3d
1
Vector fields in 4 e Q'(4)
Vector fields in R A Q7'(4)
\ div Vd
Scalar fields in 4 b Q"(A4)
fig(3-5)
such that
doa,=aqa,ograd dof ,=p odiv
and n
Proo f.

Let f and h be scalar fields in 4 ; let

F=®Y.f(xe) G(x)=(x: Y g (x)e)
be vector fields in 4 . We define the transformations % and B J by the equations

o F = dx.
aof:f, : ;fl l
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B._G= Z:(—l)"_lgidx1 N...ndx, (...dx,
n=1
B.h=hdx, N...Ndx, (3- 42 )

The fact that each % and B i 1s a linear isomorphism, and that the two equations
hold , is left as an exercise.

This theorem is all that can be said about applications to vector fields in general .
However, in the case of R’, we have a "curl" operator, and something more can be
said .

Definition :( 3-2-11) :- Let A beopenin R ; let
F=(x;)_ fidxe) (3-43)

be a vector field in A . We define another vector field in A , called the curl
of F, by the equation

(curlF)(x) = (x;(D, f; = Ds f,)e, +(Ds f =D, f3)e, + (D, f, = D, f))e; (3-

44)
A convenient trick for remembering the definition of the curl operator is to think of
it as obtained by evaluation of the symbolic determinant

€ ¢ ¢
det D, D D
Hoh N

Theorem (3-2-12):- Let A be an open set in R*+ There exist vectorspace

isomorphisms & ; and B i as in the following diagram:

Scalar fields in 4 e Q"(4)
\ grad 3d
Vector fields in 4 e Q*(4)
d curl Ld
Vector fields in 4 2, 4 Q°(4)
L div bd
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3
Scalar fields in A4 SVEEEN Q°(A)

fig( 3-6)
such that

doa,=a,ograd doa,=f,ocurl ond dof, =a,odiv

Proof.

and

The maps & a; and B i are those defined in the proof of the preceding theorem.
Only the second equation needs checking; we leave it to
you.

Theorem (3-2-13 ):-Let A be open in R* 1t @: 4> R"be a C” map. Let
B be open in R” and contain a(A); let B:B—>R bea C” map. Let C” map
@ 1N O beforms defined in an open set C of R” containing assume w

*

and 't/ have the same order. The transformations &
and p * have the following properties:
() P @vrnr=alP w+bh gy
B wney=B wa B o
o) (B caw=a'(B*w)
Proof.

See Figure ( 3-5) . In the case of forms of positive order, properties
(1) and (3) are merely restatements, in the language of forms, of Theorem

( 2-1-9) and (2) is a restatement of (6) of Theorem (2-3-1).

w, 17%.

A B C

R* R™ R™
(3-5)
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This theorem shows that ¢ preserves the vector space structure and the
wedge product. We now show it preserves the operator d. For this purpose(and

later purposes as well) , we obtain a formula for computing a®. IfA is open

in R* and a¢: A— R" , we derive this formula in two cases-when w is a
1 — form and when w is a k — form. This is all we shall need .

ES *
Since & is linear and preserves wedge products, and since & S/ equals

Soa, it remains only to compute & for elementary 1 — forms and
elementaryk — forms. Here is the required formula



Chapter (4)
Application forms and manifolds:-
Section(4-1) Closed Forms and Exact Forms:-
in the following we will discuss what additional conditions, either on Aor on both
A and w, are needed in order to ensure that w is exact

Theorem (4-1-1) :- ( Leibnitz's rule) Let Q be a rectangle in Rn; Let
S :Ox [a, b] —> R be a continuous function. Denote f by f (X,t) for X € Q

t=b
and fe[a,b].Thenthe function : £ (x) = Lza f(x,t)
4-1

1S continuous on Q . Furthermore, if 5f / 8)6 ;1S continuous on Q X [a, b]

G e
(4-2)

This formula is called Lelbmtz s rule for dlfferentlatmg under the integral sign.
Proof.

Step 1. We show that F is continuous. The rectangle Qx[a,b]is compact;

therefore f is uniformly continuous on Q X [a, b]. That is, given € > 0, there is

a O >0 such that

‘f(xlatl) — f (%51, )‘ < & whenever ‘(xlatl) = (x5, )‘ < §.1It follows that

xl’x0‘<69

FG) = Fa)| < [ £ 0= f ) e (b-a). @3

Continuity of F' follows.

when

Step 2. In calculating the integral and derivatives involved in Leibnitz's

rule, only the variables X; and ! are involved; all others are held constant

.Therefore it suffices to prove the theorem in the case where 7 =1 and O is an

interval [C, d ] in R
t=b
Let us set, for X € [C, d], G(x) = L:a le(X,f) (4-4)
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We wish to show that £ ,(X) exists and equals G(x) . For this purpose, we apply

(of all things) the Fubini theorem. We are given that D, f is continuous on

[C’ d]x [aa b] .Then
[ "6 =[""[ "D s
S NYE0

[ G- fen)
=F(xy) = F(c) ) (4-5)

the second equation follows from the Fubini theorem, and the third from the

~

fundamental theorem of calculus. Then for X € [C ,d ] , we have
[ [6=Fx)-F() (4-6)

Since G is continuous by Step 1, we may apply the fundamental theorem of
calculus once more to conclude that

G(x)=F'(x). (4-7)

We now obtain a criterion for determining when two closed forms differ by an
exact form. This criterion involves the notion of a differentiable homo-

topy.

Definition(4-1-2):- Let 4 and B be opensets in R and R™ | respectively;
Let g Jh:A—>B pe C° maps. We say that €and / are differentiable

homotopic if there is a Cc” map H : AXI — B such that
H(x,0)=g(x) and H(x,1) =h(x)
for X € A. The map H is called a differentiable homotopybetween € and /
For each #, the map X —> H(X,1)is a C° map of Ainto B ; if we think
of ¢ as "time," then [ gives us a way of "deforming" the map ginto the map 7,

as t goes from O to 1.
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Theorem (4-1-3) :- Let Aand B be open sets in R"and Rm,

respectively. Let & Jh:A—>B pe C” maps that are differentiably homotopic
.Then there is a linear transformation

p: Q" (B) > Q" (4),
defined for & = 0, such that for any form 7 of order k >0,
dpm+pdn=h'n-gn, (4-8)
while for a form f of order O,

padf =h"f-g'f . (4-9)

This theorem implies that if 7 is a closed form of positive order, then h*TY and
g *77 differ by an exact form, since h*n -8 *77 =dpn if 7 is closed. On the other

hand, if f 1s a closed O-form, then h*f - g*f =0,
Note that d raises the order of a form by 1, and P lowers it by 1. Thus if 7
has order k> 0, all the forms in the first equation have order X ; and all the forms

in the second equation have order 0. Of course, pf 1s not defined if f isa O-
form.

Proof.
Step 1. We consider first a very special case. Given an open set 4 in R" let

U be a neighborhood of A X [ in R , and let 05,,3 :A->U , be the maps
given by the equations

a(x) =(x,0) . and B(x) =(x,1)
(Then & and ,B are differentiable). We define, for any Kk + 1 form 77 defined in
U . ak-form PN defined in A, such that

*) dpn+pdn=pn—-a'n iforder 7>0,
pdf:ﬂ*fa*f iforder f =0

(4-10)
To begin, let X denote the general point of R" , and let 7 denote the general
point of R . Then dxl ,----,dxn , dt are the elementary 1-forms in R’Hl. If is
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any continuous scalar function in 4 X [ | we define a scalar function Tg on A
by the formula

(Ug)@) =] g @-11)

Then we define P as follows: If £ >0, the general kK +1form 7 in R™ can be
written uniquely as

n= . Srdx, +%ngxJ Adt (4-12)
1 J

Here I denotes an ascending k+1 tuple, and J denotes an ascending k -tuple,
from the set 1,---»71 . We define P by the equation

pn :%p(fldxl)+%p(gjd)@ Adr) (4-13)
I J

where
p(fidx)=0and  p(g,dx, ndt)=(-1)"(Tg,)dx,

Then PTlisa k _form defined on the subset A of R".
Linearity of P follows at once from the uniqueness of the repressEntation of

17 and linearity of the integral operator / .
To show that PMis of class C”, we need only show that the function Ig
is of class C”° ; and this result follows at once from Leibnitz's rule, since & is of

class C ©0 )

Note that in the special case k= 0, the form 7]is a 1-form and is written As
i=1

in this case, the tuple Jis empty, and we have
pn =0+ p(gdt)=1Ig (4-15)
Although the operator P may seem rather artificial, it is in fact a rather natural

one. Just as @ is in some sense a "differentiation operator," theoperator P is in
some sense an "integration operator," one that "integrates 7] in the direction of the

last coordinate. An alternate of P .
Step 2. We show that the formulas
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p(fdx) =0 and p(gdx, ndt)=(-1)" (Tg)dx, (4-16)
hold even when [/ is an arbitrary k+1 tuple, and J is an arbitrary k -tuple,from
the set {1,---,1’1}. The proof is easy. If the indices are not distinct, then these

formulas hold trivially, since dx ;= Oand dx J = 0 in this case. If the indices are

distinct and in ascending order, these formulas hold by definition. Then they hold
for any sets of distinct indices, since rearranging the indices changes the values of

dx, and de ; only by a sign.

Step 3 We verify formula (4-10) of Step 1 in the case k=0.We have

P(df) :P(i%dxj)w% dr) )

~o+0' 1)

= fof— foa
=B f-a'f J (4-17)

where the third equation follows from the fundamental theorem of calculus .
Step 4 We verify formula (4-10) in the case k> 0. Note that because (! is the map
a(x) = (x,0) , then
a’(dx,)=da, = dx, for [=1...,n
a’(dt)y=da,, =0. (4-18)

A similar remark holds for ﬁ )

* *
Now because @and Pand @ and B are linear, it suffices to verify our formula

for the forms fd 7and gdx 7 Adt  We first consider the case n= fdx1 . Let us
compute both sides of the equation. The left side is

dPn + Pdn = d(0)+ P(dn)

~p g
_[;P(ﬁxj dx; Adx[)]+P(6t dt Adx,)
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=0+(-1)"" P(% dx; ndt)
By step 2
o
=12 - [fop~ foaldy, (*19)

The right side of our equation is

Bn—an=(foP)f (dx,)—(foa)a(dx,)=[fof — foaldx,.

Thus our result holds in this case.

(4-20)

We now consider the case when 17 = gdx, Adt | Again, we compute both sides of
the equation . We have

(1) d(Pn)=d[(-1)* (Ig)dx,)]
= (—l)kZ;Dj (Ig)dx, ndx, (4-21)
=
On the other hand,

dn = ;(D ,8)dx, ndx; ndt+(D, + g)dt ndx, ndt )

so that by Step 2,
) P(dn)=(-1)"" Y I(D,g)dx, ndx, (423)
Adding (1) and (2) and applying Leibnitz's rule, we see that
d(Pn)+P(dn)=0 (4-24)
On the other hand, the right side of the equation is
B (gdx, ndt)—a (gdx, ndt)=0 (4-25)

Step 5. We now prove the theorem in general. We are given Cc” maps
g,h: A—> B  and a differentiable homotopy H : Ax I —> B between

them. Let &, B :A—> AXI be the maps of Step 1 , and let P be the Linear
transformation of forms whose properties are stated in Step 1. We then define our

desired linear transformation P - o (B) > Q* (A4) by the equation
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pn=P(Hn) (4-26)
See Figure (4-1) Since 11 *77 isa k41 form defined in a neighborhood of AX [
then P(H*TY) is a k -form defined in 4.

Note that since 1 is a differentiable homotopy between & and /1,
Hoo=g and Ho=h.

B
Figure( 4-1)

Then if £ >0, we compute
dpn+ pdn =dP(H n)+ P(H"dn)
=dP(Hn)+ P(dH"dn)
=B (H'n)—a (H'n) by step 1,
=h'n-g'n (4-27)
as desired. An entirely similar computation applies if k£ =0

Definition (4-1-4):- Let Abe anopensetin R". We say that 4 is star-convex
with respect to the point P of A if for each X € A, the line segment joining X

and P liesin A.
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Figure (4-2)
EXAMPLE ( 4-1-5) :- In Figure (4-2), the set A is star-convex with respect to
the point P, but not with respect to the point g . The set B is star-convex with

respect to each of its points; that is, it is convex. The set C is not star-convex with
respect to any of its points.

Theorem (4-1-6) (The Poincare lemma) :- Let A be a star-convex open set

in R” . If Wis a closed k -form on A , then w 1s exact on A.
Proof.

We apply the preceding theorem. Let P be a point with respect to which A is star-
convex. Let #1: A—> A be the identity map and let &4 —> A be the constant

map carrying each point to the point P. Then & and /are differentiably
homotopic; indeed, the map

H(x,t) =th(x) +(1-1)g(x) (4-28)
carries AX 1 into A and is the desired differentiable homotopy. (For each , the
point H (x,7) lies on the line segment between h(x)=Xxand g(x)=p , SO that
it lies in A4 .) We call H the straight-line homotopy between £ and /.

Let P be the transformation given by the preceding theorem. If f isa O-

formon A4 , we have

pldf)=h"f-g [ = foh- fog. (4-29)
Then if @f =0, we have forall x€ 4,

0= f(h(x))~f(g(x)=f(x)~f(p) (4-30)
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so that f is constant on A .
If Wis a k -form with k> 0, we have
dpw+ pdw=h"w—g"w, (4-31)
Now /" W= Whecause % is the identity map, and £ “w =0 because gisa
constant map. Then if dw =0, we have
dpw=w (4-32)
so that Wis exact on A .

Definition. (4-1-7):- If V' is a vector space, and if W is a linear

subspace of V' ,we denote by V' /W the set whose elements are the subsets of V'
of the form

v+W={v+w‘weW}. (4-33)
Each such set is called a coset of V', determined by W . One shows readily that if
V, =V, €W | then the cosets V, W and V, + W are equal , while if
V=V, & /4 , then they are disjoint. Thus V /W is a collection of disjo- int

subsets of ¥ whose union is ¥ . (Such a collection is called a partition of V" .) We
define vector space operations in V' /W by the equations

VW) + (v, + W)=, +v,)+W
cv+W)=(cv)+W (4-34)
With these operations, V /W becomes a vector space. It is called the quotient
space of V by W' .
We must show these operations are well-defined. Suppose V; + W= Vl’ +W and
V, + W= V; +W . Then vV, — Vl’ and V, — V; are in W, so that their sum, which
equals (V; +v,)—(V{ +V5),isin W . Then

Vi +v)+ W = (v +v)+ W (4-35)

Thus vector addition is well-defined. A similar proof shows that multipli- cation
by a scalar is well-defined. The vector space properties are easy to check; we leave
the details to you.

Now if V is finite-dimensional, then so is ¥ /W ; we shall not however need
this result. On the other hand, V' /W may be finite-dimensional even in cases
where V' and W are not.
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Definition( 4-1-8):- Suppose V and V' are vector spaces, and suppose W
and W' are linear subspaces of ¥ and V', respectively. If T : V" — V"is a linear
transformation that carries W into W' , then there is a linear transformation

T VIW >V IW
defined by the equation T (V+W)=T(¥)+W', itis said to be induced
by 7' . One checks readily that T is well-defined and linear.
Definition(4-1-9):- Let Abe anopen setin R . The set Q" (A)ofall k-
forms on A is a vector space. The set C* (A) of closed k -forms on A and the set
E* (A) of exact k -forms on A are linear subspaces of QF (A). Since every exact
form is closed, £ ¢ (A) is contained in o (A) . We define the deRham group of

A in dimension £ to be the quotient vector space
H"(4)=C"(4)/E"(4) (4-36)
If Wis aclosed k -formon A (i.e., an element of C* (A4) ), we often denote its
coset W+ E* (A) simply by w}
It is immediate that ¢ (A) is the trivial vector space, consisting of the zero
vector alone, if and only if A is homologically trivial in dimension & .
Now if Aand Bare open sets in R"and R" , respectively, and if

g:A—>B i 2 C” map, then &induces a linear transformation
* k k *
g Q" (B) > Q" (A) of forms, for all k. Because & commutes with d , it

*
carries closed forms to closed forms and exact forms to exact forms; thus &
induces a linear transformation

g H"(B)—> H"(4)
of deRham groups. (For convenience, we denote this induced transformation also
by & " , rather than by § " )
Studying closed forms and exact forms on a given set 4 now reduces to

calculating the deRham groups of A . There are several tools that are used in
computing these groups. We consider two of then here. One involves the notion of
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homotopy equivalence. The other is a special case of a general theorem called the
Mayer- Vietoris theorem. Both are standard tools in algebraic topology.

Theorem (4-1-10) (Homotopy equivalence theorem):- Let 4 and Bbe
open sets in R"and R™, respectively. Let &:A—>Band h: B —> Ave C”
maps. If & oh:B — Bis differe ntiably homotopic to the identity map Iz of B,
and if hog:A— A is differentiably homotopic to the identity map I, of A,
then & “and A" are linear isomorphisms of the deRham groups.

If & oh equals Iz and hOg equals I, , then of course & and / are
diffeomorphisms. If & and h satisfy the hypotheses of this theorem , then they are
called (differentiable) homotopy equivalences.

Proof
If Nis a closed k -formon A, for kK >0, then Theorem (4-1-3 ) implies that

(hog)'n—(i,)'n
is exact. Then the induced maps of the deRham groups satisfy the equation
g (h"({n})=1{n} (4-37)

so that § 0N s the identity map of H* (A) with itself. A similar argu -ment
shows that /10 g "is the identity map of H* (B) . The first fact implies that & "
maps H* (B) onto H* (4) , since given 7] in H* (4) , it equals g*(h* n).

The second fact implies that & " s one-to-one, since the equation
g* wp=0 implies that h (g* {w}) =0 whence {wj =0
By symmetry, h” is also a linear isomorphism.
Lemma (4-1-11):- Let U and V be open sets in R" ;let U UV ; and

suppose A=U NVis non-empty. Then there exists a C°° function
y
¢ : X —[0,1] such that @ is identically 0 in a neighborhood of U — 4

and @ is identically 1 in a neighborhood of ¥V — 4 .
Proof

68



See Figure (4-3) Let ‘{¢,} be a partition of unity on X dominated by the open
covering {U ) V}. Let S i = Support ¢,~; for each 7. Divide the index set of the
collection {¢,} into two disjoint subsets J and K | so that for every [ €J , the
set S; is contained in U , and for every i € K , the set 3, ; is contained in V.

(For example, one could let J consist of all Zsuch that S, cU , and let K (

consist of the remaining  .) Then let

p(x) =D ¢,(x)

ieK

Figure (4-3)

The local finiteness condition guarantees that @ is ofclass C”on X , since each
X € X has a neighborhood on which ¢ equals a finite sum of C °° functions.

Let a €U — A4 ; we show ¢ is identically O in a neighborhood of & . First,
we choose a neighborhood W of @ that intersects only finitely many sets \) .

From among these sets S, , take those whose indices belong to K , and let D be
their union. Then D is closed, and D does not contain the point @. The set
W —D s thus a neighborhood of @, and for each [ € K, the function @
vanishes on W — D . 1t follows that (X) =0for x e W —D . Since

1=¢(x)= 245 (x). (4-39)

symmetry implies that the function 1- ¢ is identically 0 in a neighborhood of
V—4.
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Theorem ( 4-1-12) (Mayer-Vietoris-special case) :-Let U and V be open
sets in R'with Uand V homologically trivial in all dimensions.Let
X =U UV ;suppose A=U NV is non-empty. Then H “(X) is trivial, and for

k+1 k
k>0, the space " (X)is linearly isomorphic to the space " (A) .
Proof.

We introduce some notation that will be convenient. If B, C are open sets of R"
with B < C, and if 1] is a k-form on C, we denote by 7] \ B the restriction of
1M to B. Thatis, I \B = j*77 /, where J is the inclusion map j:B —C  Since

oK
J commutes with d , it follows that the restriction of a closed or exact form is
closed or exact, respectively. It also follows that if A Bc C, then

M\B)\Ad=n\A4.
Step 1. We first show that H’ (X) s trivial. Let f be a closed 0-form on X .

Then f \U and f \V are closed forms on U and V , respectively.
Because U and V are homologically trivial in dimension 0, there are constant

functions €;and C, such that f\U =C and f\V:C’z. Since U NV is non-
empty, €, =C;; thus f is constant on X .
Step 2. Let @: X —>[0,1] be a C°° function such that @ vanishes in a

neighborhood U’ of U — Aand 1= vanishes in a neighborhood V' of ¥V — A4
. For k>0, we define

5: 0" (4) - Q' X)
by the equation

5() = do Aw on A

on U UV (4-40)

Since A9 =00n the set U' UV, the form O(W) is well-defined; since A and

U' UV are open and their union is X , it is of class C°° on X . The map & is
clearly linear. It commutes with the differential operator d, up to sign, since
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SN (=Ddo nw ond |
(6(w)= 0 on ULV ==0(@dw) (4

Then O carries closed forms to closed forms, and exact forms to exact forms, so it
induces a linear transformation

OH" (4) - H"' (X)
We show that ) 1s an isomorphism.

Step 3. We first show that O is one-to-one. For this purpose, it suffices to show
that if W is a closed k -form in A such that o (W) 1s exact, then W is itself exact.

So suppose 5(W) =d0 for some k-form O on X . We define k -forms W, and

W, on U and V', respectively, by the equations

dw on A J (1-¢won A
w, = andw, =
"o on U v 00n V' (4-42)

Then W, and W, are well-defined and of class C %’ See Figure (4-4)
We compute on ,

dg Aw+0 on A
dw, = ,
0 on U

Figure (4-4)

the first equation follows from the fact that dW1 =0. Then

dw, =o(w)\U =dO0\U ( 4-44)
It follows that W, =0 \U is a closed k -formon U . An entirely similar proof
shows that dw, =—dO\V (4-45) SO

that W, +O\V is aclosed k-formon V .

Now U and V are homologically trivial in all dimensions. If k> 0, this
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implies that there are k—1 forms 7y and 7, on U and V |, respectively, such

that W, —O0\U=dn, and w, +0\V =dn, Restricting to A4 and adding, we
have

WI‘A-I-Wz‘A:dUI\A-I-dUz\A (4-46)
which implies that
pw+(1-Pw=d(n|A+n,|4) (4-47)
Thus W is exact on 4.
If k£ =0, then there are constants C; and C, such that
w,—0\U=¢, gnpq W, +0\V =c,

Then MW +(1—@w=w|d+w,|A=c, +c, (4-48)

s K K+l
Step 4. We show o maps H” (A4) onto H " (X) . For this purpose, it
suffices to show that if 7] is a closed k +1form in X, then there is a closed £ -
form W in A4 such that 1] _5(W) is exact.

Figure ( 4-5)
Given 1], the forms 77\U and 1 \V are closed; hence there are k -forms 0,

and 0, on U and V respectively, such that
do, =n\U and do, =n\V
Let W be the k-formon A defined by the equation
w=64-06,|4. (449)

then W is closed because AW= dgl‘A_dgz‘A = U‘A_U‘A =0. we define a k
-form 6 on X by the equation
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(1-9)6, + 96, on A
0=-6, on U’

(4-50)
0, onV’

Then 0 is well-defined and of class C*° . See Figure (4-5) We show that
n—-ow)=do. (4-51)

We compute d60 on A and U "and V' separately. Restricting to A, we
have

dO\ A=[—dp A6 A)]+[(1—P)[+Hd A (6, A) +§(db, | A)])
=gn| A+(-gm | A+dp A[0,] A-06, | A]
=n|A+dp n(-w)

=n|Ad-o(w)| 4. (4-52)

Restricting to U and to V', we compute J

dO\U' =db, \U’=77\U'=77\U'—5(W)\U',%

dONV' =dO\V' =n\V' =\ V' = S(w)\ (4-53)
since O(W)U' =0and S(W)\V'=0 by definition. It follows that
dO =n-o(w), (4-54)

Now we can calculate the deRham groups of punctured euclidean space.

Theorem (4-1-13):- Let n=>1. Then
. 0 fork+n-—1
dimH*(R" -0)= 455
1 for k=n-1 (4-33)
Proof.

Step 1. We prove the theorem for 7 =1. Let A=R' —0;write A= Ao UAl,
where Ao consists of the negative reals and A, consists of the positive reals. If W
is a closed k-form in A, with k > 0, then W Ao and W\ A1 are closed. Since

Ao and A1 are star-convex, there are kK —1forms 7y and 7; on Ao and A1 ,
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respectively, such that d n, = W Ai for 1=0,1. Define 7= Ny on Ao and

N =1, on A1 . Then 1]; is well-defined and of class c* , and d77 =W,

Now let f o be the O -formin A defined by setting f 0 (x) =0 for x€ Ao

and fo(x) =1 for x € A1 . Then f o 1s a closed form, and f o 1S not exact.

We show the coset { /e o } forms a basis for H’ (A) . Given a closed 0 -form f on

A , the forms f | Ao and f ‘ A1 are closed and thus exact. Then there are

constants €y and C; such that f | Ao =C, and f \ A1 =¢y. It follows that

Jx)=¢fo(x)+¢ (4-56)

for x€ A. Then 1/} =< 1/y},

Step 2 If B is open in R’ ,then BX R is open in R™ We show that forall &,
dimH*(B) =dimH"(BxR) (4-57)

We use the homotopy equivalence theorem. Define & - B—>BxR by

the equation & (x) =(x,0), and define #: BxR — B by the equation

h(X,S) =X Then ho g equals the identity map of B with itself. On the other

hand, &0 h s differentiably homotopic to the identity map of BX R with itself;
the straight-line homotopy will suffice. It is given by the equation

H(x,8),8) = 1(5,5) + (1 - £)(.0) = (5,57 (a5
Step 3. Let 7 =>1. We assume the theorem true for #and prove it for n+1.
Let U and V be the open sets in R™ defined by the equations
U=R""-{0,...0,t)|t >0}
V=R" —{0,....0,6)|t <0 } (4-59)
Thus U consists of all of R™ except for points on the half-line OxH' ,and V

consists of all of R™ except for points on the half-line OxL . Figure (4-6)
illustrates the case 7 =3 . The set A =U MV is non-empty; indeed, 4 consists

of all points of RnJrl = R” X Rnot on the line 0 x R ; that 1s,
AZ(R" —O)XR (4-60)
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Figure ( 4-6 )
Ifweset X =U UV | then

X=R""-0 (4-61)
The set U is star-convex relative to the point P = (Or"'pa_l) of R™ , and the

set V' is star-convex relative to the point § = (Or . --’Oal) , as you can readily

check. It follows from the preceding theorem that H’ (X)is trivial, and that
dimH " (X)=dimH"(A4) for k>0 (4-62)

k k n
Now Step 2 tells us that H" (A) has the same dimension as H" (R" —0) , and

the induction hypothesis implies that the latter has dimension 0 if £ # 7 —1, and
dimension 1 if kK =1 —1. The theorem follows.

Theorem (4-1-10):- Let A=R" -0, with n>1.
(a) If k #n—1, then every closed k-form on Ais exact on A .(b) There is a

closed 7 —1form 1, on A that is not exact. If 1] is any closed 7 —1 formon A4
, then there is a unique scalar Csuch that 7] —C1], is exact.

This theorem guarantees the existence of a closed # — 1form in R" =0 that
is not exact, but it does not give us a formula for such a form. In the exercises of

the last chapter, however, we obtained such a formula. If 7], is the #n —1 form in
R" -0 given by the equation

Ny = ()" fidx, Acondx, A.ndx, (4-63)

n

, then it is easy to show by direct computation that 7], is

where f;() =X, /

closed, and only somewhat more difficult to show that the integral of 7]y over

D¢

-1. . . .
S"" is non-zero, so that by Stokes' theorem it cannot be exact. Using this result,
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we now derive the following criterion for a closed 7 —1 form in R" =0 to be
exact:

Theorem (4-1-11):- . Let A=R" =0, with # > 1 .1f 1, is a closed n—1

form in A , then My is exactin A if and only if .[v”l n=0 (4-63)

Proof
If 7 is exact, then its integral over s is 0, by Stokes' theorem.On the other
hand, suppose this integral is zero. Let 7]y be the form just defined. The preceding

theorem tells us that there is a unique scalar C such that 77 —7]yis exact. Then

(3-64)

n=cy..Mo

Snfl Snfl

. . -1.
by Stokes' theorem. Since the integral of 7]y over S""is not 0, we must have
¢=0.Thus 7] is exact.
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Section( 4-2) Differentiable and Riemnnian manifolds

In the following we will describe briefly how this can be accomplished, and
indicate how mathematicians really look at manifolds and forms.
Dfinition.( 4-2-1) :- Let M be a metric space. Suppose there is a collection of

. . : . k k :
homeomorphisms @; :U; =V, where U, ;isopenin H" or R ,and V. ; is
open in M, such that the sets V. cover M. (To say that a; is a homeomorphism is

to say that a; carries U ; ; onto V,—; in a one-to-one fashion , and that both &; and

&;  are continuous.) Suppose that the maps &; overlap with class C~ This means

-1
that the transition function @&; o @; is of class C° wheneverV; NV is

nonempty. The maps &; are called coordinate patches on M | and so is any other
homeomorphism ¢ :U —> V , where U is open in H“or R*, and V is open in
M | that overlaps the &;with class C® . The metric space M | together with
this collection of coordinate patches on M | is called a differentiable K -manifold

(of class c” ).
In the case & =1, we make the special convention that the domains of the

. .7l 1 1 .
coordinate patches may be open sets in L' aswellas R or H , just as we did
before .

If there is a coordinate patch ¢ :U — V' about the point P of M such
that U is open in R* , then P is called an interior point of M . Otherwise, P is
called a boundary point of M . The set of boundary points of M is denoted oM
If @ :U —> V is a coordinate patch on M about P, then P belongs to OM if
and only if U is open in H* and p =0a(X)for some X € Rk_lxo.

In the following will denote a differentiable & manifold.

Definition( 4-2-2) :- Given coordinate patches @y » & on M , we say

they overlap positively if det D(aflo Qy)> 0. If M can be covered by

coordinate patches that overlap positively, then M is said to be orientable. An
orientation of M consists of such a covering of M , along with all other
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coordinate patches that overlap these positively. An oriented manifold consists of a
manifold M together with an orientation of M .

Given an orientation { &; } of M | the collection {&; O I'} where

. pk k. . . . . . ..
r:R" — R" is the reftec tion map , gives a different orientation of M ; it is
called the orientation opposite to the given one.

Suppose M is a differentiable K -manifold with non-empty boundary.
Then OM is a differentiable k£ —1 manifold without boundary. The maps & ob,

where & is a coordinate patch on M about P € OM and b: R 5 R* is the
map

D(x,yeeesx, ) = (X)X, ,0) 4 -1)
If the patches &y and & on M overlap positively, so do the coordinate
patches &y 0 b and @; o b on oM ; the proof is that of prceeding Theorem

Thus if M is oriented and OM is nonempty, then OM can be oriented simply
by taking coordinate patches on M belonging to the orientation of M about
points of oM , and composing them with the map b . If k is even, the
orientation of O M obtained in this way is called the induced orientation of oM ;

if k is odd, the opposite of this orientation is so called.
Definition(4-2-3):- Let M and N be differentiable manifolds of
dimensions k and n, respectively. Suppose A4 is a subset of M ; and suppose

S :1A—> N we say that [fis of class C” if for each x € A, there is a
coordinate patch o :U —Von M about X, and a coordinate patch

. . -1 .
B:W —>Yon N about ¥ = f(X), such that the composite S~ 0 f 0 is of
class C” , as a map of a subset of R* into R” . Because the transition functions

are of class C” ,this condition is independent of the choice of the coordinate
patches. See Figure (4-7 )
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Figure (4-7)
Of course, if M or N equals euclidean space, this definition simplifies, since one

can take one of the coordinate patches to be the identity map of that euclidean
space.

A oneto-one map J:M —>Ncarrying M  onto Nis called a

diffeomorphism if both f and f - are of class C”°.

Now we define what we mean by a tangent vector to M . Since we have
here no surrounding euclidean space to work with, it is not obvious what a tangent
vector should be.

Our usual picture of a tangent vector to a manifold M in R" at p point p
of M is that it is the velocity vector of a C” curve v [a, b] —> M that passes

through p . This vector is just the pair (p;Dy(ty)) where p=y(t;)and Dy
1s the derivative of ¥ -
Let us try to generalize this notion. If M is an arbitrary differentiable manifold,

and 7 isa C” curve in M , what does one mean by the "derivative" of the
function ¥ ? Certainly one cannot speak of derivatives in the ordinary sense, since

M does not lie in euclidean space. However, if & :U —> V is a coordinate patch
. . . . -1 .
in M about the point P, then the composite function & OY is a map from a

1. k . o
subset of R into R" , so we can speak of its derivative. We
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Figure ( 4-8)
can thus think of the "derivative" of 7 at to as the function V that assigns, to each
coordinate patch a about the point P , the matrix

-1

V(@)= D@ o¥)k) 4-2)
where P = a(t,) .
Of course, the matrix D(Ol_loJ/) depends on the particular coordinate patch

chosen; if &, and &, are two coordinate patches about P , the chain rule implies
that these matrices are related by the equation
V(&)=Dg (X))  V(&), 4-3)
-1 . . : -1 _ oy

where g= @1 O Q& is the transition function g= &; o &, and X, = &, (p).
See Figure ( 4-8 )

The pattern of this example suggests to us how to define a tangent vector to
M in general.

Definition(4-2-4) :- Given P € M, a tangent vector to M at p is a function V

that assigns, to each coordinate patch & :U — V' in M about P , a column matrix

of size k by 1 which we denote V(). If @ and &, are two coordinate patches
about P , we require that

V(&)=Dg (%) V(%) “4-4)
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-1 . .. . _ -1 .
where 8= o & is the transition function and Xg = & (P) . The entries

of the matrix V() are called the components of V with respect to the coordinate
patch X .

It follows from (4-4) that a tangent vector Vto M at Pis entirely
determined once its components are given with respect to a single coordinate

system. It also follows from (*) that if Vand W are tangent vectors to M at P,
then we can define @V + bw unambiguously by setting

(av+bw)(a) =av(a)+bw(a) 4 -5)
for each . That is, we add tangent vectors by adding their components in the

usual way in each coordinate patch. And we multiply a vector Vby a scalar
similarly.

The set of tangent vectors M at P is denoted T ) (M ); it is called the
tangent space to M at P . It is easy to see that it is a k -dimensional space;
indeed, if & is a coordinate patch about P with a(x) = P, one checks readily
that the map V — (x;v(@)) , which carries T » (M) onto T X (Rk) , is a linear
isomorphism. The inverse of this map is denoted by
a,:T, (Rk) -7, (M) 1t satisfies the equation o, (xX;v(at)) =V

Given a C” curve 7 : [a,b] —> M in M, with y(ty) = P, we define

the velocity vector V of this curve corresponding to the parameter value Zg by the
equation
-1 .
v(ar)=D(a oy)(t,), 4 -6)
then Vis a tangent vector to M at P . One readily shows that every tangent

vector to M at P is the velocity vector of some such curve.
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See Figure (4-9) Note that this derivative depends only on S and the velocity
vector V, not on the particular curve } -

This formula leads us to define the operator X, as follows:

If Vis a tangent vector to M at P, and if Sisa C real-valued function
defined near P, choose a coordinate patch o :U — Vabout p with
a(X) = P, and define the derivative of ./ with respect to V by the equation

X, (f)=D(foa)(x)v(a). @ -7)
One checks readily that this number is independent of the choice of a. One checks

also that X w (f ) =X , T X wand X P cX v. Thus the sum of vectors

corresponds to the sum of the corresponding operations, and similarly for a scalar
multiple of a vector.

Note that if M = R" , then the operator X, is just the directional derivative of
f with respect to the vector V.
The operator X, satisfies the following properties, which are easy to check:
(1) (Locality). If f and g agree in a neighborhood ofp, then X, (f)= X,(g).
(2) (Linearity). X, (af +bg)=aX (f)+DX (g).
(3) (Product rule). X,(f.g) =X, (f)g(p)+f(p)X,(g)

These properties in fact characterize the operator X, . One has the following

Theorem: Let X be an operator that assigns to each C“° real-valued function f

82



defined near p a number denoted X (f ) , such that X satisfies conditions (1)-(3).

Then there is a unique tangent vector Vto M at P such that X=X v
This theorem suggests an alternative approach to defining tangent vectors.

One could define a tangent vector to M at Pto be simply an operator X

satisfying conditions (1 )-(3). The set of these operators is a linear space if we add
operators in the usual way and multiply by scalars in thusual way, and thus it can

be identified with the tangent space to M at P

Many authors prefer to use this definition of tangent vector. It has the appeal
that it is "intrinsic"; that is, it does not involve coordinate patches explicitly.

Now we will define the forms on M .
Definition( 4-2-5) :- An { -form on M is a function w assigning to each

peM ,an alternating ? -tensor on the vector space T » (M) . That 1s,
¢
w(p)e A (TP(M)) foreach P EM

We require Wto be of class C” in the following sense: If a:U = Vis a

coordinate patch on M about P, with a(x) = P, one has the linear
transformation

T=a,:T(R*)>T,(M) 4 -8)
and the dual transformation

T 4 (T, (M)~ 4'(T,(R"))

If Wis an £ -form on M | then the ¢ -form Q" Wis defined as usual by setting
(@' w)(x) =T"(W(p)) 4-9)

ES
We say that w is of class C? near p if & Wis of class C® near X in the usual
sense . This condition is independent of the choice of coordinate patch.

3
Thus Wis of class C* if for every coordinate patch & on M | the form Q Wis
of class C” in the sense defined earlier.
Henceforth, we assume all our our forms are of class c” .

Let Q' (M) denote the space of ¥ -forms on M . Note that there

are no elementary forms on M that would enable us to write Win canonical form,

as there were in R~ . However, one can write & Win canonical form as
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a*w:%“fldxl @ -10)

. k .
where the @ X; are the elementary forms in R . We call the functions Ji the
components of Wwith respect to the coordinate patch & . They are of course of

class C* .

Definition( 4-2-6):- If Wis an { -formon , , we define the differential of
W as follows: Given P eM , and given tangent vectors Vis-----sV;,; to M at p
,choose a coordinate patch & :U —> V on M about p with a(X)=p. Then

define

AW(P)(Vyses Vi) = d (@ WYX, (@), (X311 (@) (4-11) That is,
we define dw by choosing a coordinate patch @ , pulling Whback to a form
a win R" , pulling Vy,-..-,V,,; back to tangent vectors in R g , and then applying
the operator d in R* . One checks that this definition is independent of the
choice of the patch O . Then dW is of class Cc” .

We can rewrite this equation as follows: Let 4; =V; (05 ) . The preceding equation
can be written in the form
aw(p)(a,(x;a,),...a,(x;a,,)) =d(@ w)(x)(x;a,),....(x;a,,))
4 -12)

This equation says simply that a*(dw) =d (OC*W). Thus one has an alternate
version of the preceding definition:
Definition(4-2-7) :- If W is an ¢ -form on M , then dw is defined to be the
unique ¢ +1form on M such that for every coordinate patcha on M |

o’ (dw)=d(a’w) @ -13)
Here the " d " on the right side of the equation is the usual differential operator d
in R" ,and the " d " on the left is our new differential operator in M .

Now we define the integral of a-form over M . We need first to discuss

partitions of unity. Because we assume M is compact, matters are especially
simple.
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Theorem (4-2-8);- Let M be a compact differentiable manifold. Given a
covering of M by coordinate patches, there exist functions ¢,~ : M — R of class
c” , for = 1, ----- ,f , such that:
(D ¢,(p) =0 foreach peEM

(2) For each I, the set Support ¢,~; is covered by one of the given coordinate
patches.

3) Z¢, (p)=lforeach peM
Proof.
Given P € M , choose a coord inate patch & : U — V about p .Leta(x) =p;

choose a non-negative C” function f :U =V whose support. is compact and

is contained in U , such that [ is positive at the point X . Define ¥, M — R
by setting

f@™(») if er}

0 otherwise.

t//p(y)={

(4 - 14)

-1 . . .
Because f (@™ ((¥)) vanishes outside a compact subset of V", the function ¥ , is

ofclass C*" on M |
Now V¥ , is positive on an open set U » about p . Cover M by finitely

many of the open sets Up ,say for P = Pjseeeeeen » Py - Then set

;ij and ¢, = ( /’l)l//pz ( 4-15)

Definition( 4-2-9) :-Let M be a compact, oriented differentiable X -
manifold.Let W be a k _form on M . If the support of Wlies in a single

coordinate patch @ : U —> V' belonging to the orientation of M , define
Juw=l,, @ (4 -16)

In general, choose ¢1 geeenes 9¢/@ in the prece ding theorem and define
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J, W:ZUM ¢fW} 4 -17)

Theorem ( 4-2-10):- (Stokes' theorem):- Let M be a compact, oriented
differentiable K -manifold. Let Wbe @ kK —lform on M . 1f OM is nonempty,

give OM the induced orientation; then
[ aw=[ w @ -18)

If M is empty, then _[M dw=0

Proof.
The proof given earlier goes through verbatim. Since all the computations were
carried out by working within coordinate patches, no changes are necessary. The
special conventions involved when kK =1and OM is a 0 -manifold are handled

exactly as before.
Not only does Stokes' theorem generalize to abstract differentiable manifolds,
but the results in Chapter 8 concerning closed forms and exact forms generalize as

well. Given M , one defines the deRham group H “(M) of M in dimension k
to be the quotient of the space of closed k-forms on M by the space of exact £ -
forms. One has various methods for computing the dimensions of these spaces,
including a general Mayer- Vietoris theorem. If M is written as the union of the
two open sets U and V' in M | it gives relations between the deRham groups of
M and U and V and U NV . These topics are explored in [ B—T ] .

k . . .. : .

The vector space £ (M) is obviously a diffeomorphism invariant of M . It is
an unexpected and striking fact that it is also a topological invariant of M . This
means that if there is a homeomorphism of M with NV, then the vector spaces

H k(M )and H k(N ) are linearly isomorphic. This fact is a consequence of a
celebrated theorem called deRham 's theorem, which states that the algebra of
closed forms on M modulo exact forms is isomorphic to a certain algebra, defined
in algebraic topology for an arbitrary topological space, called the "cohomology
algebra of M with real coefficients.

In the following We will have indicated how Stokes' theorem and the
deRham groups generalize to abstract differentiable manifolds. Now we consider
some of the other topics we have treated. Surprisingly, many of these do not
generalize as readily.
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Consider for instance the notions of the volume of a manifold M , and

of the integral _[M fd Viof a scalar function over M  with respect to

volume.These notions do not generalize to abstract differentiable manifolds.
Why should this be so ? One way of answering this question is to note that, one

can define the volume of a compact oriented A -manifold M in R" by the
formula

V(M)ZJMWV, @ -19)

where W, is a "volume form" for M |, thatis, W, is a k -form whose value is 1

on any orthonormal basis for T » (M) belonging to the natural orientation of this

tangent space. In this case, T » (M)is a linear subspace of T P (Rn) =pX R" , SO

T » (M) has a natural inner product derived from the dot product in R". This
notion of a volume form cannot be generalized to an arbitrary differentiable

manifold M because we have no inner product on T » (M) in general, so we do

not know what it means for a set of vectors to be orthonormal.
In order to generalize our definition of volume to a differentiable manifold

M | we need to have an inner product on each tangent space T » (M)

Definition( 4-2-11) :- Let M be a differentiable k-manifold . A Riemannian
metric on M is an inner product (V> W) defined on each tangent space T » (M) it

1s required to be of class C” as a 2-tensor field on M . A Riemannian manifold
consists of a differentiable manifold M along with a Riemannian metric on M .
Now it is true that for any differentiable manifold M , there exists a

Rie-mannian metric on M . The proof is not particularly difficult; one uses a
partition of unity. But the Riemannian metric is certainly not unique.

Given a Riemannian metric on M , one has a corresponding volume function

V(V1 seees Vi ) defined for k -tuples of vectors of T » (M ) . Then one can define the
integral of a scalar function just as before.

Definition( 4-2-12 ):- Let M be acompact Riemannian manifold of
dimension & .Let f : M — R be a continuous function. If the support of
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S is covered by a single coordinate patch @ : U —> V', we define the integral of
S over M by the equation

[ rav=] (foa)V(a.(x;e),.a.(x;e)) @& .20)

The integral of f over M is defined in general by using a partition of unity, as in

The volume of M is defined by the equation V(M) = _[M av

4 -21)

If M is a compact oriented Riemannian manifold , one can interpret the integral

_[M W ofa k -form over M as the integral _[M A dV ot a certain scalar function
, just as we did before, where ﬂ«( p) is the value of W( p) on an orthonormal X -

tuple of tangent vectors to M at P that belongs to the natural orientation of

T » (M) (derived from the orientation of M ). If ﬂ«( p) is identically 1 , then W

is called the volume form of the Riemannian manifold M , and is denoted by W, .
Then

v = w,. (4 -22)

For a Riemannian manifold M | a host of interesting questions arise .For
instance, one can define what one means by the length of a smooth parametrized

curve 7 : [a, b] —> M :itis just the integral

t=b
r,e)|
La FAGEN 4 -23)
The integrand is the norm of the velocity vector of the curve ), defined of course

by using the inner product on T » (M) ,- Then one can discuss "geo-desics," which

are "curves of minimal length" joining two points of M . One goes on to discuss
such matters as "curvature." All this is dealt with in a subject called Riemannian
geometry, which I hope you are tempted to investigate!
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