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  الخلاصة

  
ھذه الرسالة تختص بدراسة التحلیل الوظیفي شبة الموضعي وكثافة الھجین لمستویات  

انتقال الشحنات للعیوب الاصلیة في ھیكل كل من فلورید الباریوم وفلورید الكالسیوم. 

حسبت مستویات الانتقال من طاقات التكوین المقابلة لمستوى ذرتین ذواتي عیوب وھما 

الكالسیوم.عولجت الاخطاء الناشئة عن تأثیرات حجم خلیة صغیرة فلورید الباریوم وفلورید 

من خلال استقراء طاقات التكوین لحدود لانھائیة لحجم الخلیة. استخدم عامل ماكوف باین 

وعامل المحاذاة للتحقق من موثوقیة طریقة الاستقراء.استخدمت الامكانات الكاملة لطریقة 

یقة الجھد التبادلي المعدل لبیك جونسون للتحقق من الموجات المستویة الممتدة خطیا مع طر

حسب مستوى الانتقال اللازم لشحنة سالبة . صحة حجم نطاق الفجوة في حسابات الھجین

الكترون فولت تحت مستوى نطاق  2.77لتنتقل من مكان الى اخرووجد انھ یساوي

متصاص الضوئي التوصیل وھذه النتیجة متوافقة تماما مع القیمة التجریبیة لنطاق الا

الكترون فولت فوق نطاق التوصیل. وجد ان اكثر الذرات  3.3لفلورید الكالسیوم وھي 

ذات العیوب الاصلیة استقرارا  ھي شحنة الباریوم الموجبة والتي طاقة تكوینھا تساوي 

الكترون فولت .وجد ان درجات استقرارالشحنات ذات العیوب متوافقة  تماما مع  -9.82

لحدیثة القائمة على  المبدأ الاولي  للحساب .وجد ان استقراریة الشحنات ذات التقاربر ا

العیوب في كل من فلورید الباریوم وفلورید الكالسیوم متطابقة ودقیقة وصالحة للمقارنة 

  المباشرة مع قیم التجارب. 

 كل الحسابات والنمذجة في ھذه الرسالة تمت بواسطة برنامج  الكوانتم اسبریسو.
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ABSTRACT 

 

This Thesis study semi local and hybrid density functional analysis of charge 

transition levels of native defects in BaF2 and CaF2 structures. The transition 

levels was calculated from the formation energies corresponding to two defect 

charge states. The errors arising from the small super cell size effects have been 

relieved through extrapolating the formation energies to the limit of infinite 

super cell size. The reliability of the extrapolation method has been verified 

through the application of two correction factors: the Makov-Payine factor to 

correct for the unwanted interaction between image charges in periodic super 

cell simulations, and the potential-alignment factor to align the valence band 

edges in defective and bulk super cells. The common error in the band gap 

inherited to semi local density functional has been accounted for by 

incorporating the hybrid density functional method, leading to a correct 

placement of the transition levels within the band gap. The band gap size from 

hybrid calculation is validated using the full potential, Lineralized Augmented 

Plane wave method with the Modified-Becke-Johnson exchange potential. The 

calculated transition level for the anion vacancy was (2.77 eV) below the 

conduction band, agreeing well with the experimental optical absorption band 

of (3.3eV) associated with the electron transition from the ground state F-center 

to the conduction band in CaF2. The most stable native defect was the charged 

cation in BaF2 with formation energy( -9.82 eV). The order of defect stabilities 
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in our calculation was compatible with recent first-principle report, however, 

our formation energies are more accurate. Interestingly the cation and anion 

defect stability order in BaF2 matches that of CaF2. Our results are sufficiently 

accurate and, thus, significant for direct comparison with experiments. 

All the calculations and simulations in this thesis were done using Quantum 

Espresso Simulations Package. 
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CHAPTER ONE 

BARIUM FLOURIDE (BaF2) AND CALCIUM FLO- 

URIDE (CaF2) ALKALINE-EARTH MATERIAL: 

STRUCTURE AND PROPERTIES 

1.1. Introduction 

 
Barium fluoride and calcium fluoride have a wide band gap (experimentally ~ 

10 eV and~ 12 eV respectively [1]) material with interesting intrinsic optical 

properties. Additionally it has essential properties as an effective member of 

Alkaline Earth fluorides with important applications in semiconductors physics 

and other dynamic fields. 

In 1983 Barium fluoride (BaF2) was discovered to be a fast inorganic scintillator 

[2, 3].Recently BaF2  and  CaF2 has been the target for many theoretical studies 

and experimental applications [3, 4], [5, 6]. BaF2 has attracted considerable 

attention in the field of nuclear physics, high energy physics, and nuclear 

medicine. This is due to its property as a high density luminescent material 

which is luminescent at 220nm and 195 nm with a very short decay time, 

leading to wide range of applications in elementary particle and gamma ray 

detection. For example BaF2 has super ionic conductivity so it makes it a 

candidate material for high-temperature batteries, fuel cells, chemical filters and 

sensors [7]. BaF2 is commonly used in manufacturing optical windows, lenses, 

and prism. This is due to its range from ultraviolet(UV) to infrared (IR)[8]. 

Additionally a report by Laurite Laboratory group[9]showed that the quality 

requirements to the barium fluoride (BaF2) crystals can be determined for 

purpose of constructing a high precision electromagnetic calorimeter. CaF2 is an 

important material for the manufacture of lenses used in the photolithography 
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process involved in microelectronics technology [10]. Also, CaF2 can be used as 

a  material for radiation detection [11].  

 

1.2 Importance of the study 

Further developments in technology require materials with new properties. 

Measurements of the properties of materials provide a wide variety of 

information about the fundamental of matter, hence besides their implication in 

technology and several applications, BaF2 and CaF2 has also been investigated 

numerically. However until currently the first principle calculations in BaF2 is 

lacking[4]. Obviously the calculation of defect transition levels in BaF2 and 

CaF2 takes central part in the numerical investigation due to its direct impact on 

the optical application. This is one of our motivations for the present work 

which deals with the quantitative calculation, using density functional method 

(DFT)[12] of charge transition levels of native defects in BaF2 and  CaF2 . For 

most of their applications, knowledge about the defect formation energies and 

transition levels in BaF2 and CaF2 plays an important role. 

 In the reminder of this subsection we briefly survey some of the first principle 

calculations in BaF2 and caF2 and the related fluoride structure. In this survey 

we postpone the detailed definition and explanation of the terminologies 

entailed in the calculation (e.g. GGA, hybrid calculations etc …) to Chapter 2. 

1.3 previous work 

Detailed DFT investigations of the structure and diffusion of intrinsic defects , 

adsorbed hydrogen, and water molecules in alkali-earth fluorides, including 

BaF2, have been carried out by Foster et al[13] Similar investigation was 

performed by Shi et al[14], They were used  ab initio calculations to investigate 

the defect Structures and optical properties of alkaline-earth fluorides, such as 

CaF2 and  BaF2. 
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The electronic structures of perfect crystals and slabs, F centers, centers, oxygen 

and hydrogen impurities, and H centers were calculated. In order to obtain a good 

theoretical method for further calculations on defective systems, the bulk and 

electronic properties of CaF2 and BaF2 crystals have been calculated by seven 

different methods. The comparison of these seven types of Hamiltonians shows 

that the best agreement with the experimental results for the lattice constant, bulk 

modulus, as well as the band structure, is obtained by the hybrid technique 

(B3PW).Their calculations on perfect slabs show that the direct optical band gaps 

for CaF2 and BaF2 bulks are narrowed for the (111), (110) and (100) surfaces. The 

(111) surface energy is the smallest one among these three terminations, 

indicating that the (111) surface is the most stable one, in good agreement with the 

available experimental result. The relaxation of F atoms in the upper sublayer of 

the top surface layer is inwards and is comparable with the experimental results. 

The data obtained in F-center DFT-B3PW calculations show that an un-paired 

electron is well localized inside the vacancy (VF); the relaxation of atoms 

surrounding the F center is small; the creation of a neutral VF in CaF2 and BaF2 

results in a new F-center defect band located at the  point 6.75 eV and 7.01 eV, 

respectively, above the valence band top.  

Recentlythe GW method[15], which is computationally demanding but known for 

its high accuracy, has been used in combination with DFT to study the one- and 

two-particle effects in the electronic and optical spectra of BaF2 and CaF2. In 

contrast we used hybrid DFT and TB-mBj correction to GGA for the purpose of 

correcting the BaF2 ,CaF2 band gaps. These methods have accuracy comparable 

with GW but are less computationally expensive .                                                                

The most relevant work to ours, but still lacking accurate determination of the 

charge transition levels, has been performed by Nywere et al [4]. 

They have performed ab-initio calculation so the formation and migration 

energie so intrinsic defects (interstitials, vacancies and Frenkel defects) in 

barium fluoride. The calculations were performed within density-functional 
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theory and the generalized-gradient approximation, employing pseudopotentials 

and a plane-wave basis set. There results agree reasonably well with available 

experimental data. They are also compatible with calculations and experimental 

data on  calcium fluoride. They found that Frenkel pairs are composed of pairs 

of charged defects and that their formation energies are 3.44eVand1.88eV for 

cation and anion,respectively.The lowest barrier for defect migration was found 

to correspond to the migration of the anion vacancy along the 〈100〉 direction 

(energy barrier of 0.53eV),which compares well with the experimental value of 

0.59eV.Cation vacancy migration was instead found to require an energy of at 

least 2.22eV along the easiest migration path, 〈100〉.  Here the formation and 

immigration energies of intrinsic defects in BaF2 have been determined for the 

purpose of identifying the most stable defect types at moderate doping levels. 

The same group[16] has recently also used the first-principles calculations to 

study the elastic constants of the cubic, orthorhombic and hexagonal phases of 

BaF2. 

 

1.4 Objectives of the study 

 

 As we mentioned before that Shi et al  has calculated the properties of the 

bulk BaF2 and CaF2 and their F center defects using hybrid DFT[17] 

calculations. However they did not determine the defect transition levels. In our 

present work we used hybrid DFT and the generalized gradient approximation 

GGA DFT[18] to quantitatively calculate the defect formation energies and 

charge transition levels of native defects in BaF2 and  CaF2. Our method follows 

Alkauskas et al[19] who used the combination of GGA and hybrid DFT to align 

the underestimated band gap in GGA calculation with the corrected band gap in 

the hybrid calculation, leading to a corrected placement of the charge transition 

levels in the corrected band gap. 
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1.5 Basic structure of bulk MF2(M refer to Ba or Ca) 
As pointed out in the previous section, the structure of MF2 has been studied in 

details by Nywere et al[4] . In our present calculation, we used the 12 atoms cell 

for MF2 shown in figure 1.1.which belongs to the fluorite solid phase with cubic 

structure (Fm-3m space group). As shown in figure 1.1. Twelve atomic 

positions are generated by translating the base atoms, M at (0.0, 0.0, 0.0), and F 

at (0.25a, 0.25 a, 0.25 a), with the primitive vectors (0.5 a, 0.5 a, 0.0) , (0.0, 0.5 

a, 0.5 a) and (0.5 a, 0.0, 0.5 a) where a is the lattice constant. For defective 

structure, the interstitial defect prefers the octahedral site (0.5a, 0.5a, 0.5a) as 

mentioned in [4]. 

 

 

Figure 1.1: The unit cell structure for MF2 with 12 atoms (4 M and 8 F) used 
for generating the super cells. The atoms indicated by the arrows form the 
primitive cell used for obtaining the data. 
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1.6 Scope of the thesis 

 
This thesis consists of five chapters presented as follows: 

Chapter one: concerned with introductions, importance of the study, objectives 

of the study, and the basic structure of the bulk for Barium fluoride and calcium 

fluoride. Finally a brief short of the scope of the thesis was been illustrated.  

In chapter two: a brief overview is given on the DFT calculations (the 

theoretical method used throughout this thesis) ,beside  brief details about the 

software  uses in this thesis . 

Chapter three: contains an introduction on different kinds of defects and 

Impurities in semiconductors, and defects in alkaline- earth fluorides.  

Chapter four: concerned with results and discussions  

Chapter five:  Conclusions of the work carried out together with 

recommendations for future work is given finally. 
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CHAPTER TWO 
 

DENSITY FUNCTIONAL THEORY 
 
 

2.1. Introduction 

 

It has lengthy been well identified  that many materials properties are governed 
through their electronic structure, not too long ago  it has turn out to be very 
convenient to simulate this habits with predictive accuracy. Develops in 
electronic structure conception, refined software, and development in computer 
power give an accurate material modeling constitution with suitable prediction 
of  substances properties. Density functional theory (DFT) has become very 
popular in recent year as a research tool in condensed matter physics, chemistry, 
material science, and nano science. The Hohenberg-Kohn theorem lays the basis 
of  DFT, it's one procedure that transforms the many -body Schrödinger 
equation into a much more tractable one–electron equation for numerical 
solution.  

On this chapter, one of  the theoretical frameworks which might be used 
recently for electronic structure calculations within the field of condensed 
matter is inserted. The major of the Density functional theory (DFT), a quantum 
mechanical approach for ground state calculations, are defined.DFT is used in 
this thesis to calculate electronic structure of defects in BaF2. 

 

2.2 The time-independent Schrödinger equation 

 
The time-independent Schrödinger equation for a crystal that illustrate atomic 

systems can be written as: 
ଵݎ)ߖܪ , ,ଶݎ …ܴଵ,ܴଶ, … ) = ,ଵݎ)ߖܧ  ଶݎ , …ܴଵ,ܴଶ, … )                                                                    ( 2.1) 

where H, E, and Ψ are the Hamiltonian, the electronic energy, and the many-

body wave function of the system, and r୧ and R୧are the positions ofthe electrons 
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and ions respectively . The Hamiltonian of the system consisting of nuclei and 

electrons can is given by: 

ܪ = −∑ ћమ∇೔
మ

ଶ௠೐
௜ − ∑ ћమ∇಺

మ

ଶெ಺
ூ + ଵ

ଶ
∑ ௘మ

ห௥೔ି௥ೕห
+ ଵ

ଶ
∑ ௓಺௓಻௘మ

หோ಺ିோ಻ ห
–∑ ௓಺௘మ

|௥೔ିோ಺|௜ ,ூூஷ௃௜ஷ௝                                    (2.2) 

Where ܯூand ܼூare the atomic mass and charge of the nucleus, and e is the 

electron charge. The first terms is the kinetic energy of the electrons ( ௘ܶ).And 

the second term is kinetic energy of nuclei ( ேܶ). The third and forth terms isthe 

potential energy of Coulomb interaction between electrons (internal 

potential ௜ܸ௡௧) and nuclei ( ூܸூ), respectively, and the last term is the electrons-

nuclei Coulomb interactions (external potential ௘ܸ௫௧ ). For curtailment the 

fundamental Hamiltonian can be written as 

ܪ  = ௘ܶ+ ேܶ + ௜ܸ௡௧ + ூܸூ + ௘ܸ௫௧                                                                                          (2.3) 

On the following discussions we will expose briefly different approximations to 

solve quantum many-body problem.  

 

2.3 The Born-Oppenheimer approximation 

 

The Born-Oppenheimer approximation is based on the observation that 

electrons move much faster and weigh much less than the nuclei. It assumes the 

electronic motion and nuclear motion can be decoupled and that the electrons 

are in equilibrium with nuclei. This approximation is typically made although 

not all the methods employ it. In the Born Oppenheimer approximation, the 

electronic wave function depends on only the nuclear position so the kinetic 

energy of the nuclei can be neglect in the Hamiltonian. Therefore, electrons has 

a constant potential energy (V୍୍), and the total electronic Hamiltonian becomes 

H୲୭୲ = Tୣ + V୧୬୲ + V୍ ୍ + Vୣ ୶୲                                                                                               (2.4) 

In this approximation, the nuclear position is a functional of the electronic wave 

function, so the electronic Hamiltonian becomes: 



25 
 

Hୣ୪ୣୡ = Tୣ + V୧୬୲ + Vୣ୶୲                                                                                                       (2.5) 

and  the corresponding Schrödinger equation are: 

,ଵݎ)௘௟௘௖ߖ௘௟௘௖ܪ ଶݎ , … ) = ,ଵݎ)௘௟௘௖ߖ௘௟௘௖ܧ  ଶݎ , … )                                                                               (2.6) 

We omit explicitly the parametric dependence of ߖ௘௟௘௖ on  ܴூ. The totalenergy 

௘௟௘௖ܧ ௧௢௧  is then the sum ofܧ  and the constant nuclear repulsion term ܧ௡௨௖which 

comes from the constant potential energy ூܸூ 

௧௢௧ܧ = ௘௟௘௖ܧ + ௡௨௖ܧ                                                                                                               (2.7) 

 

2.4 The Hartree approximation  

 

The HF theory provides approximate solution of the non-relativistic electronic 

Schrödinger equation. In this approximation the full wave function is assumed 

to be a product of one electron orbital, 

ଵݎ)௘௟௘௖ߖ , ,ଶݎ … (௡ݎ, =  ɸଵ(ݎଵ)ɸଶ(ݎଶ) …ɸ௡(ݎ௡)                                                                    (2.8) 

so each electron moves independently and sees the average potential generated 

by all the other electrons. From now on ߖ௘௟௘௖will be denoted as 

Ψ.Thevariational principle in quantum mechanics states that if ܧ଴ is the ground 

state energy solution of the Schrödinger equation, for any wave function  

଴ܧ ≤
ൻหܪหൿ
ൻหൿ

                                                                                                                    (2.9) 

Now the Hartree wave function can be used with equation (2.6) and the 

variational principle to obtain the Hartree equation: 

ቂ− ∇మ

ଶ
−∑ ௓಺

|௥೔ିோ಺|
+ +∑ ௝௝ݎ݀∫ ௝

∗൫ݎ௝൯
ଵ

|௥೔ିோ಺ |
ɸ௝൫ݎ௝൯ூ ቃ௜(ݎ௜)= Ԑ௜௜

     (2.10)                            (௜ݎ)∗ 

where each independent electron i feels an effective potential of all electrons by 

an integration over their densities. Therefore the main many-body equation is 
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divided into n simpler one-electron equations, and since for each wave function 

the potential depends on all wave functions, it has to be solved self consistently. 

 

2.5 The Hartree-Fock approximation 

 

The Hartree wave function in equation (2.8) neglects an important property of 

electrons. It neglects the fact that electrons are Fermi particles, and their wave 

functions must be anti symmetric with respect to interchanging any pair of 

particles 

,ଵݎ)ߖ … , ௞ݎ … ௠ݎ , … (௡ݎ = ଵݎ)ߖ− , … , ௠ݎ … ௞ݎ , …  ௡)                                                           (2.11)ݎ

The Hartree wave function can be corrected by considering a linear combination 

of products, and the expression for Fermions can be written as a determinant. 

For an n-electron system, the Slater determinant is defined as in Ref [17] : 

 

,ଵݎ)ߖ ,ଶݎ … , ௡) = ଵݎ
√௡!

ተ

ɸଵ(ݎଵ) ɸଵ(ݎଶ) … ɸଵ(ݎ௡)
ɸଶ(ݎଵ) ɸଶ(ݎଶ)  … ɸଶ(ݎ௡)
⋮

ɸ௡(ݎଵ)
⋮

ɸ௡(ݎଶ) …
⋮

ɸ௡(ݎ௡)

ተ                                                        (2.12)  

each line of the determinant corresponds to a certain one-electron state, and 

each column to a certain position in space. The wave function changes sign 

when two particles (here two rows or columns of the determinant) interchange. 

Furthermore, if two rows or columns are identical then the determinant equals 

zero, which means that such a situation (two identical particles occupying the 

same spatial coordinates) is not physically possible. 

Using the Slater determinant with equation (2.6) and the variational principle, 

the Hartree Fock equation can be derived as: 
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ቂ− ∇మ

ଶ
−∑ ௓಺

|௥೔ିோ಺|
+ +∑ ௝௝ݎ݀∫  ௝∗൫ݎ௝൯

ଵ
|௥೔ିோ಺ |

௝൫ݎ௝൯ூ ቃ௜(ݎ௜)−

 ∑ ൤∫݀ݎ௝ ௝∗൫ݎ௝൯
ଵ

ห௥೔ି௥ೕห
௜൫ݎ௝൯൨௝ ௝(ݎ௜) = Ԑ௜௜

 (2.13)                                                           (௜ݎ)∗ 

This equation has an extra term compared to the Hartree equation. This term is 
called the exchange potential, since it comes from considering a constraint 
related to the exchange of particles. The exchange term also cancels an 
unphysical self-interaction of electrons in the Hartree equation. 

 

2.6 The Hohenberg-Kohn theorems 

 

Density functional theory is based on the two Hohenberg-Kohn (HK) theorems 

[18] , as follow: 

Theorem I :The ground state particle density ݊௢(ݎ)of a many-body system 

Uniquely determines the external potential ௘ܸ௫௧up to a constant. 

Theorem II : The energy functional E[n] can be defined, for any external 

potential ௘ܸ௫௧(ݎ) .The global minimum of this functional is the ground state 

energy, and the density that minimizes the functional is the exact ground state 

density ݊௢(ݎ). 

It is assumed that there exist two external potentials ௘ܸ௫௧ (ݎ) and ௘ܸ௫௧
ᇱ  which(ݎ)

differ by more than just a trivial constant. Furthermore, the assumption is made, 

that both potentials give rise to the same electron density ݊௢(ݎ). Clearly, arising 

from the nature of  ௘ܸ௫௧
ᇱ  in that case there has to be two different Hamiltonians ݎ)

H and H′. Furthermore Ψ and Ψ′, have to be different, since they fulfill different 

Schrödinger equations. Finally also the energies ܧ௢ and  ܧ௢ᇱ .  Associated with 

the particular wave function differ. Now the two wave functions Ψ and Ψ′ are 

used as trial functions assuming the other wave function is the ground state 

wave function. Then the expressions: 

௢ܧ < ⟨Ψ′ |ܪ|Ψ′ ⟩ =  ⟨Ψ′ |H′|Ψ′ ⟩ + ⟨Ψ′ |ܪ − H′|Ψ′ ⟩                                                               (2.14) 
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௢ܧ < ைᇱܧ + ∫ ݊௢(ݎ)[ ௘ܸ௫௧ (ݎ)  − ௘ܸ௫௧
ᇱ  dr                                                                        (2.15)[(ݎ)

Similarly 

ைᇱܧ < ⟨Ψ |H′|Ψ ⟩ =  ⟨Ψ |ܪ|Ψ ⟩ + ⟨Ψ |H′ −  Ψ ⟩                                                             (2.16)|ܪ

ைᇱܧ < ௢ܧ + ∫ ݊௢(ݎ)[ ௘ܸ௫௧
ᇱ (ݎ) −  ௘ܸ௫௧   dr                                                                     (2.17)[(ݎ) 

By summation of  (2.15) and (2.17) leads to the obviously contradictory 
statement 

௢ܧ + ைᇱܧ < ைᇱܧ  ௢                                                                                                           (2.18)ܧ +

Hence, no two different external potentials  ௘ܸ௫௧  can give rise to the same (ݎ) 
ground state density݊௢(ݎ). 

The total energy can be written as 

[݊]ு௄ܧ = ௘ܶ[݊] + [݊]௜௡௧ܧ + [݊]௘௫௧ܧ = [݊]ு௄ܨ +  dr                              (2.19)(ݎ) ௘ܸ௫௧ (ݎ)݊∫ 

[݊]ு௄ܧ = ௘ܶ[݊] +  ௜௡௧[݊]                                                                                                  (2.20)ܧ

Where is ܨு௄ the Hohenberg-Kohn functional which is implicates the energies 

of the electron system. One of the great achievements of Hohenberg-Kohn 

theorems that it is reformulate the many body problems in terms of density 

functional. 

 

2.7 The Kohn-Sham equations 

 

In 1965, Kohn and Sham (KS) provide the idea to replace the original many 

body system of Hohenberg-Kohan with an auxiliary independent particle 

system [19]. The auxiliary system is to be chosen in a way that the two systems 

have exactly the same ground state density.Kohan-Sham considered original 

interacting system with an external potential  ௘ܸ௫௧    replaced by non- interacting 

system with an effective potential  ௄ܸௌ . For the auxiliary independent-particle 

system, the auxiliary Hamiltonian is: 
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= ௄ௌܪ  −
1
2∇

ଶ +  ௄ܸௌ (ݎ)                                                                                                              (2.21) 

For a system with N independent electrons, the ground state is obtained by 

solving the N one-electron Schrödinger equations 

൤−
1
2∇

ଶ +  ௄ܸௌ (ݎ)൨ ɸ௜(ݎ) = Ԑ௜ɸ௜(ݎ)                                                                                         ( 2.22) 

Where there is one electron in each of the N  of non-interacting orbitals ɸ௜(ݎ) 

with the lowest eigen values Ԑ௜. The density of the auxiliary system is 

constructed from: 

݊௄ௌ(ݎ) = ∑ |ɸ௜(ݎ)|ଶ =ே
௜ n(r)                                                                           (2.23) 

which is subject to the conservation condition: 

ܰ = ∫ dr௏(ݎ)݊                                                                                                                    (2.24)  

The non-interacting independent-particle kinetic energy ௄ܶௌ is given by, 

௄ܶௌ = - ଵ
ଶ
∑ ⟨ɸ௜|∇ଶ|ɸ௜⟩ே
௜                                                                                                        (2.25) 

Obliviously course, ௄ܶௌ is not equal to the true kinetic energy of the system.  

Kohn and Sham introducing the following separation of the functional ܨ௄ௌ[݊] 

[݊]௄ௌܨ = ௄ܶௌ[݊] + [݊]ுܧ + ௑஼ܧ [݊]                                                                                  (2.26) 

where ܧ௑஼[݊] , the so-called exchange-correlation energy is defined through Eq. 
(2.26) as:  

[݊]௑஼ܧ = ( ௘ܶ[݊] − ௄ܶௌ[݊]) + [݊]௜௡௧ܧ) −  ு[݊])                                                             (2.27)ܧ

The exchange and correlation energy EXC is the functional that contains 

everything that is unknown. So from Eq(2.22 )  ௄ܸௌ  is the effective KS potential 

in which the electrons move, and is given by 

 ௄ܸௌ (ݎ) = ௘ܸ௫௧ + ுܸ + ௑ܸ஼ =  −∑ ௓಺
|௥ିோ಺|

+ ∫ ௡൫௥ᇲ൯ௗ௥ᇲ

|௥ି௥ᇲ|
+ ఋா೉಴[௡(௥)]

ఋ[௡(௥)]ூ                                   (2.28) 

We now apply the variational principle and ask: what condition must the orbital 

ɸ௜(ݎ)fulfil in order to minimize this energy expression .The resulting equations 

are the Kohn- Sham equations 
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ቀ− ଵ
ଶ
∇ଶ + ௘ܸ௫௧ + ுܸ + ఋா೉಴[௡(௥)]

ఋ[௡(௥)]
ቁɸ௜(ݎ) = Ԑ௜ɸ௜(ݎ)                                                         (2.29) 

The Kohn-Sham equations are solved self-consistently as shown in figure2.1. 

and the wave functionsɸ௜(ݎ) give the electron density through 

(ݎ)݊  = ∑ |ɸ௜(ݎ)|ଶ௢௖௖௨௣௜௘ௗ
௜ୀଵ                                                                                                  (2.30) 

 
2.8 Geometry Optimization 

  
A theorem derived independently by Hellman and Feynman shows that the 

force on a nucleus can be specified entirely in terms of its interaction with the 

surrounding charge density [20]. It can be shown that this force theorem also 

holds in density functional calculations. Once the self-consistent total energy is 

evaluated, the forces on the nuclei can be computed from the derivative of the 

total energy with respect to nuclear coordinates [21].The equilibrium or 

Optimized geometry is thus the set of nuclear positions that minimize these 

forces. In practice, a force may be computed once a self-consistent total energy 

is obtained, and this force can then be used to update the nuclear positions, 

which in turn yields a new KS self-consistency problem to be solved iteratively. 

Thus geometry optimization can be considered as an “outer loop” to the self-

consistent solution of the KS equations. 

 

2.9 The DFT Self-consistency Loop 
 
 
The KS equations discussed in section 2.7are solved subject to the condition of 

consistency between the KS potential  ௄ܸௌ (ݎ) (equation (2.28)) and electron 

density (equation (2.28)). The iterative solution to the KS equations, as well as 

the outer geometry optimization loop, is shown schematically in figure 2.1. An 

initial approximation to the charge density initializes the loop; this consists of a 
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linear combination of atomic orbital (LCAO) approximating the KS orbital 

which yields an electronic charge density. This is then used to calculate a new 

KS potential. The KS potential is inserted into a KS Hamiltonian which yields a 

Schrodinger-like KS equation. Matrix diagonalization in the LCAO basis then 

leads to the solution of the KS equation, yielding a new set of KS orbital which 

can be used to construct a new charge density. The input and output densities 

are “mixed” through a linear combination which assists in convergence, and this 

generates a new input charge density[22,23] for the next iteration. This process 

is iterated until the input and output densities of a given iteration differ by less 

than a user-specified threshold, at which point the system is considered self 

consistent. The total energy can be calculated at self-consistency and hence the 

ionic forces can be determined, which again can be compared to a force 

threshold. After calculating the force, the ionic coordinates are updated, 

typically using variants of the steepest descent method [24]. Once the force is 

minimized below the specified threshold, desired quantities such as the band 

structure and density of states can be obtained at the relaxed geometry. 
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Figure 2.1: Kohn-Sham sow chart. Self-consistency implies either the change 

in the charge density or the change in the total energy. 

 

2.10 The exchange-correlation functional 

 

The exchange-correlation functional in the Kohn-Sham approach is a priori an 

unknown functional. However, finding a good, yet simple approximation for the 

complex exchange-correlation functional is crucial for the correct description of 

the electronic properties. The success of  K-S approach is based on the fact that 
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the effect of this unknown functional can be approximated very accurately with 

simple models. 

 

2.10.1 The local density approximation 

 

The approximate exchange-correlation functional originally proposed by Kohn 

and Sham is the local density approximation (LDA); this is still one of the 

simplest and effective approximations have been used to date. The LDA 

assumes that the contribution to the exchange-correlation energy from each 

point in space is equal to what it would be for a homogeneous electron gas with 

the same density throughout the whole system as is found at that point; 

therefore, the functional is local since it only depends on the density at each 

point independently of the rest of the system. The energy functional is defined 

as: 

(݊)௑஼௅஽஺ܧ =  (2.31)                                                                                   ݎ݀((ݎ)݊)Ԑ௑஼(ݎ)݊∫

Where Ԑ௑஼(݊(ݎ))is the exchange-correlation energy per particle of a uniform 

electron gas of density ݊(ݎ).The quantity Ԑ௑஼൫݊(ݎ)൯can be further split in to 

exchange and correlation contributions 

Ԑ௑஼൫݊(ݎ)൯ = Ԑ௑൫݊(ݎ)൯ + Ԑ஼൫݊(ݎ)൯                                                                                  (2.32) 

Ԑ௑஼ can be derived exactly, whereas Ԑ஼has been found by fitting to quantum 

Monte-Carlo simulations[25]. 

The exchange part Ԑ௑, represents the exchange energy of an electronin a 

uniform electron gas of a particular density, was originally derived by Bloch 

and Dirac in the late 1920's and it is given by [26].  

Ԑ௑ = − ଷ
ସ
ቀଷ௡(௥)

గ
ቁ
ଵ
ଷൗ                                                                                                              (2.33) 
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The LDA is very simple; corrections to the exchange-correlation energy due to 

the in homogeneities in the electronic density are ignored. However it is 

surprisingly successful and even works reasonably well in systems where the 

electron density is rapidly varying.  

 

2.10.2 The generalized gradient approximation 

 

The improvements in local density approximation (LDA) by introducing a 

dependence on the gradient of the electron density(∇n(r)) leads to the 

generalized gradient approximation (GGAs) for the exchange-correlation which 

include density gradient corrections and higher spatial derivatives of the 

electron density and give better results than LDA in many cases. So the XC 

energy is written as follows 

(݊)௑஼ீீ஺ܧ =  (2.34)                                                                                        ݎ݀((ݎ)n∇,(ݎ)݊)Ԑ௑஼(ݎ)݊∫

A large number of good expressions forܧ௑஼ீீ஺(݊)have been proposed and are 

used within quantum chemistry, materials physics and other areas today. Three 

most widely used GGAs are the forms proposed by Becke [27], Perdew et 

al.[28], and Perdew, Burke and Enzerhof [29](PBE). 

 

2.11The band gap problem 

 

If one electron in some state is removed from the system with energy E(N)  

Where N is number of electron . If one electron is added to the system in the 

state, the difference between the largest addition energy and the smallest 

removal energy defines the energy band gap as: 

I(N) = E(N − 1) − E(N) ; A(N) = E(N) − E(N + 1)                                                (2.35) 
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In solids this is the onset of the continuum of optical transitions, if the gap is 

direct (if the lowest empty state and the highest filled state have the same k 

vector). From atomic and molecular physics, the highest occupied and lowest 

unoccupied states are respectively called HOMO (Highest Occupied Molecular 

Orbital) and LUMO (Lowest Unoccupied MO), while addition and removal 

energy are respectively called electron affinity A, and ionization potential I. So  

The fundamental band gap can be defined as the difference between the 

ionization energy I and the electron affinity A[30] . 

 ௚௔௕= I − A                                                                                                                         (2.36)ܧ

In HF the one-electron energies have the meaning of removal (or addition) 

energies for extended systems (Koopmans’s theorem). If the world were 

described by single Slater determinants, the difference between the LUMO and 

HOMO one-electron HF energies would yield the real energy gaps in solids 

(neglecting polarization effects, i.e. the change in the one-electron states upon 

addition or removal of an electron). As a matter of facts, experience shows that 

HF (with the true exchange potential) seriously overestimates the band gap in 

solid. In DFT, the one-electron energies have acquired a rather bad reputation, 

mostly due to the failure of KS band gaps (that is: calculated as the difference 

between LUMO and HOMO KS energies) to reproduce with an acceptable 

accuracy the true band gap in solids: gaps in DFT are strongly underestimated 

(up to 50%). This problem is present in both LDA and GGA and is common to 

HF with Slater’s local approximation to exchange. One may say that after all 

DFT is a ground state theory, and that KS eigen values and eigenvectors are 

purely mathematical quantities without any physical meaning, but it wouldn’t 

be a very satisfactory answer. In finite systems ionization potentials and 

electron affinities can be calculated as energy differences between the ground 

state and a state with one electron added or removed. In extended systems this is 

of course not possible. The reason for the infamous “band gap problem” lies in 
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the dependence of  the exact energy functional upon the number of electrons 

and in the in ability of approximate functional to reproduce it. In the next 

section we consider the extension of DFT to a factionary number of electrons. 

 

2.12 The hybrid functional: an accurate band gap 

 

Without proper corrections of the gap error, electronic properties calculated by 

pure LDA or GGA are not reliable, thus, cannot be compared to experimental 

results. In the worst case, defect levels can artificially appear in the band gap or 

disappear from the band gap leading to qualitatively wrong results. The 

observation, that LDA or GGA trends are opposite to those of HF, motivated 

the development of approximations which combine these two approaches, the 

so-called hybrid functional methods. I mention only the one parameter hybrid 

functional, which contains a DFT correlation with a combination of DFT and 

HF exchange in the following form: 

௑஼ܧ
௛௬௕ = ௑ுிܧߙ + (1 − ௑ீீ஺ܧ(ߙ +  ஼ீீ஺                                                                              (2.37)ܧ

Where ܧ௑ுி the exchange energy is calculated with the exact nonlocal HF wave 

function; ܧ௑ீீ஺ and ܧ஼ீீ஺are the conventional semi local GGA exchangeand 

correlation energies, and α is a mixing parameter. There are several hybrid 

functional that can be used in different calculations.B3PW91 was the first one 

introduced in 1993[31] , later in 1994 and1999 the popular B3LYP and PBE0 

functional appeared respectively[32,33].In 2003 the screened hybrid HSE06 

(Heyd-Scuseria Ernzerhof). 
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2.13 MBJ lda method 

 

Previously we discuss several approximations which describe properly the band 

structure of solids. These approximations such as The Local Density 

Approximation (LDA), the Generalized Gradient Approximation (GGA) , and 

LSDA+U[34]. Unfortunately they fail among others, describe very well the 

account for the band gap value of semiconducting based on the use of Green’s 

functions and perturbation theory as the GW approximation, GWA [35, 36], 

were proposed. In the last ten years, these efforts gave rise to substantially 

improved results. Some of the new proposals include, the screened hybrid 

functional of Heyd, Scuseria and Ernzerhof (HSE) [37] and the middle-range 

exchange and correlation hybrid functional of Henderson, Izmaylov, Scuseria 

and Saving (HISS)[38] . Another recent proposal is the modified Becke-

Johnson potential (mBJLDA) proposed by Tran and Blaha [39]. This potential 

was introduced to the Wien2k code in 2010.  Even with the several theoretical 

non-properly solved issues, the mBJLDA potential gives rise to acceptable 

predictions of the band gap value as compared to experiment as it was shown in 

figure 2.2. If one would prefer to sacrifice a little the precision obtained against 

the savings in computational cost, the mBJLDA potential seems the appropriate 

method 
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Figure 2.2: show the results obtained with LDA/GGA with Mbj potentials for 

fundamental band gab for 48 solids using wien2k package [40]. 

 

2.14 Bloch theorem and Plane Waves  

 

Expressing the wave function as a sum of plane waves can simplify the 

computation. In a periodic system Bloch’s theorem can be used 

߮௡௞(ݎ) = ݁௜௄.௥ݑ௡௞(ݎ)                                                                                                                      (2.38) 

Where  ݑ௡௞(ݎ) a function with the same periodicity as the super cell and k is 

wave vector representing the position in the Brillouin zone. The complete wave 

function for state n is given by: 

߮௡(ݎ) = ∑ ߮௡,௞(ݎ)௞                                                                                                                           (2.39) 
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The ݑ௡௞(ݎ) functions can be expanded in a plane wave basis set resulting in the 

following relation, 
 

φ୬୩(r) = ∑ c୬୩,ୋ e୧(୩ାୋ).୰
ୋ                                                                                                               (2.40) 

Where G are the reciprocal lattice vectors of the super cell (primitive cell 

containing the defect, with reduced translation symmetry compared to the host 

lattice) lattice under consideration. Even though the sum over G should be 

infinite, in practical terms it is truncated to a cutoff value (Gcutoff) and is 

usually expressed in terms of the boundary equivalent energy Ecutoff. 

 
ห(୩ାୋ)మห

ଶ
< Eୡ୳୲୭୤୤                                                                                                                 (2.41)  

This boundary is called the energy cut-off and is restricted by replacing an 

upper boundary to the kinetic energy (୩ାୋ)మ

ଶ
of the plane waves. The k should 

also be summed over the entire Brillouin zone. To reduce the computations to a 

manageable level the wave function is evaluated for a special set of k-points that 

approximate the entire Brillouin zone. In the present study the Monkhorst-Pack 

scheme is used in which the chosen points form a uniform grid in k-space. . 

 

2.15 K-Points 

 

Following on from Bloch’s theorem, given that each electron occupies a state of 

definite k , the infinite number of electrons within the solid gives rise to an 

infinite number of k-points. At each k-point, only a finite number of the 

available energy levels will be occupied. Thus one only needs to consider a 

finite number of electrons at an infinite number of k-points. This may seem to 

be replacing one infinity (number of electrons) with another one (number of k-

points) to little discernible advantage. However, one does not need to consider 
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all of these k-points ;rather, since the electron wave functions will be almost 

identical for values of k that are sufficiently close, one can represent the wave 

functions over a region of reciprocal space by considering the wave function at 

a single k-point. It is therefore sufficient to consider the electronic states at a 

finite number of k-points in order to determine the ground state electron density 

of the solid. The net effect of Bloch’s theorem therefore has been to change the 

problem of an infinite number of electrons to one o f considering only the 

number of electrons in the unit cell at a finite number of k points chosen so as to 

appropriately sample the Brillouin zone. An example of where these k-points 

are can be seen in figure 2.3. 

 

 

Figure 2.3: Example real-space unit cell  and Brillouin zoneatruncated octahedron and can 

be visualized with eight hexagonal faces and six square faces . The following symmetry 

points are shown: Γ the point in the center of the zone (origin of k space), X - the point in the 

middle of square faces, L - the point in the middle of hexagonal faces, and K - the point in the 

middle of the edge shared by two adjacent hexagons. The directions are: Δ - the axis 

connecting the Γ and X points,Λ - the axis connecting the Γ and L points, and Σ - the axis 

connecting the Γ and K points. 
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K-point sampling of the Brillouin zone is obtained by using a Monkhorst Pack 

(M-P) grid, which is an unbiased method of choosing a set of k-points[41] An 

M-P grid is a rectangular grid of points with fractional coordinate dimensions 

Mx x My x Mz spaced evenly throughout the Brillouin zone. The larger the 

dimensions of the grid, the finer and more accurate will be the sampling. 

 

2.16 Pseudo potentials 

 

One of the main problems encountered when solving the Schrödinger equation 

numerically for a nuclear potential is that this potential, of the form − ଵ
௥
 , is 

notsmall, and so it is not possible to treat it as a perturbation on the free electron 

problem, as is done in the nearly-free electron model. This is reflected in the 

atomic orbital, which decay exponentially as r → ∞ and oscillate rapidly close 

to the nucleus in order to maintain orthogonality with each other. The 

fundamental idea behind the pseudo- potential approximation is to’ freeze’ the 

tightly bound core electrons of each atom and replace them with an effective (or 

pseudo) potential (Ψ௣௦௘௨ௗ௢)which attenuates the strong Coulomb 

potential ( ௣ܸ௦௘௨ௗ௢)close to the nucleus. This approach was first introduced by 

Hans Hellmann in 1934[42].  It is justified by the fact that the contribution of 

the core electrons to the total energy, although large, is only very weakly 

affected by the atom’s chemical environment, and so does not play a significant 

role in its bonding properties; similarly, it is not unreasonable to assume that the 

core wave functions are unaffected when isolated atoms are brought together. 

The main advantage of removing the core electrons is to relax the orthogonality 

constraint they pose on the wave functions of the remaining valence electrons; 

in fact, these are no longer required to be orthogonal to the core states (although 

they must still maintain orthogonality with each other), and so can reduce the 
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number of nodes in their radial parts, with the lowest valence state for each 

angular momentum channel being node less. Therefore, the smooth pseudo 

potential results in the true valence wave functions being replaced by pseudised 

wave functions, which vary smoothly in the core region and only match the true 

ones outside the core radius ݎ௖ (see figure 2.4.). The advantage of dealing with a 

smooth function is obviously a computational one, since this function will be 

less demanding to approximate accurately with either a truncated basis 

expansion or a real-space grid representation. 

 

 

Figure 2.4: .comparison of a wave function in the coulomb potential of a 

nucleus (blue) to the one in the pseudo potential (red)The pseudised functions 

are smoother than their true counterparts for r <ݎ௖ , and match them exactly for r 

௖ݎ ≤ . 
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2.16.1 Ultra soft pseudo potentials 

Making the pseudo functions as smooth as possible without losing accuracy is 

one goal of pseudo potentials, because increasing the smoothness of the pseudo 

potentials decreases the range in Fourier space necessary to describe the valence 

properties to  a certain accuracy. In Vanderbilt's Ultra soft Pseudo potentials 

(USPP)[43]. The smoothness of the pseudo functions in comparison to norm-

conserving pseudo- potentials is increased by giving up the restriction of norm 

conservation. This led to much smaller cutoff energies for the expansion of the 

wave function in k-space resulting in faster computing times while maintaining 

the desired accuracy. 

 

2.16.2 Projector-augmented waves (PAW) 

 

The projector-augmented wave (PAW) method [44, 45] combines the pseudo 

potential approach with an all-electron approach. The wave function is 

parameterized b a pseudo function, but in the core region the pseudized wave 

function is substituted with the all electron wave function. This combines the 

great advantages of USPP, namely the reduction of the computational effort 

with the accuracy of an all electron method. 

 

2.17 Quantum Espresso 

 

Quantum Espresso is a variety of numerical methods & algorithms aimed at a 

chemically realistic modeling of materials from the nano scale upwards, based 

on the solution of the density functional theory (DFT).It is an integrated suite of 



44 
 

computer codes for electronic structure calculations and materials modeling 

based on DFT, plane waves and pseudo potentials(norm conserving, ultra-soft 

and projector augmented wave) to represent the electron-ion interactions. The 

ESPRESSO stands for opEn Source Package for Research in Electronic 

Structure, Simulation &Optimization. The codes are constructed around the use 

of periodic boundary conditions, which allows for a straightforward treatment 

of infinite crystalline systems [46]. 

Quantum espresso can do several important basic computations such as, 

Calculation of the Kohn-Sham (KS) orbital’s and energies for isolated systems, 

and of their ground state energies, Complete structural optimizations of the 

atomic coordinates ,ground state of magnetic or spin polarized systems,..etc. 

 

2.18 Choice of Boundary Conditions of DFT 
 
 
When implementing DFT, the choice of boundary conditions used in the 

calculations can be very important on the results calculated, as will be seen in 

many of the proceeding Chapters. There are two options for the treatment, 

periodic boundaries or boundaries to vacuum, commonly referred to as the 

super cell or cluster methodologies respectively. In supercell calculations, the 

modeling is performed within a supercell of tens to hundreds of atoms with 

periodic boundary conditions that form an infinite perfect crystal in the case of 

an undistorted super cell. When a defect or defects are introduced into the super 

cell it forms a periodic array of defects. Super cell calculations have the 

advantage that defect energies thus calculated are independent of the location of 

the defect within the super cell. This then gives more reliable results for any 

calculation involving the comparison of energies of different defect structures, 

including migration calculations and calculations comparing different structures 

of the same defect. In cluster calculations, the modeled sample consists of a 
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nano particle of usually a few hundred atoms, with boundaries to vacuum. The 

surface bonds of the sample are often terminated with hydrogen atoms to 

minimize their effect on the calculations. In the cluster, compared with super 

cell calculations, there are no defect-defect interactions, but instead interactions 

between the surface of the cluster and the defect within must be considered. 

Modern computing facilities can allow for the use of large atomic clusters, 

which can minimize this effect, but defects still need to be kept away from the 

cluster surface to avoid significant interaction. 

Cluster calculations can be more accurate under some conditions than super cell 

calculations, particularly when dealing with host material for which the LDA 

band gap underestimation is critical. Quantum confinement in the cluster 

artificially raises the calculated band-gap of the material, with the gap found to 

decrease towards the super cell value with increasing cluster size [47]. This 

effect has been employed to compensate for the LDA band gab underestimation.     
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CHAPTER THREE 
DEFECT AND IMPURITIES IN SEMICONDUCTOR  
 
3.1 Introduction 
 
A perfect crystal is an idealization; there is no such thing in nature. Atom 

arrangements in real materials do not follow perfect crystalline patterns. 

Nonetheless, most of the materials that are useful in engineering are crystalline 

to a very good approximation. There is fundamental physical reason for this. 

The preferred structures of solids at low temperature are those that minimize the 

energy. The low-energy atomic configurations are almost invariably crystalline 

since the regular pattern of the crystal lattice repeats whatever local 

configuration is most favorable for bonding. There is also a fundamental 

physical reason why the crystal is imperfect. While a perfect crystalline 

structure may be preferred energetically, at least in the limit of low temperature, 

atoms are relatively immobile in solids and it is, therefore, difficult to eliminate 

whatever imperfections are introduced into the crystal during its growth, 

processing or use the fact that real materials are not perfect crystals is critical to 

materials engineering. If materials were perfect crystals then their properties 

would be dictated by their composition and crystal structure alone, and would 

be very restricted in their values and their variety. It is the possibility of making 

imperfectly crystalline materials that permits materials scientists to tailor 

material properties into the diverse combinations that modern engineering 

devices require. As we shall see repeatedly in the body of this course, the most 

important features of the microstructure of an engineering material are the 

crystalline defects that are manipulated to control its behavior. 

It is useful to classify crystal lattice defects by their dimension. The 0- 

dimensional defects affect isolated sites in the crystal structure, and are hence 

called point defects. An example is a solute or impurity atom, which alters the 
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crystal pattern at a single point. The 1-dimensional defects are called 

dislocations. They are lines along which the crystal pattern is broken. The 2-

dimensional defects are surfaces, such as the external surface and the grain 

boundaries along which distinct crystallites are joined together. The 3-

dimensional defects change the crystal pattern over a finite volume. They 

include precipitates, which are small volumes of different crystal structure, and 

also include large voids or inclusions of second-phase particles. 

 

3.2 Point Defects 

 
A point defect disturbs the crystal pattern at an isolated site. Points defects can 

be divided in to native defects (or intrinsic defects), formed only from the host 

atom type, and impurities (or extrinsic defects) consisting of foreign atoms. The 

study of defects and impurities is very crucial in the afield of semiconductors, 

insulators, and metal physics [48-50].Defects have profound effects on 

materials properties, and can be used to control their electronic and 

optoelectronic properties. Although they can improve some properties and turn 

materials into useful device components, they can also have some undesirable 

effects. These changes in the properties occur already for small amounts of 

defects, and the term dopant is usually used for an impurity atom at low 

concentration, which is in the order of one per million host atoms. So the 

desired properties can be achieved without changes in composition of the 

material, but just by manipulating the crystal defects. Point defects can be 

further divided into the following 

(i) Vacancies 
Vacancies are lattice sites which are vacant by missing atoms. In other words, a 

vacancy is the absence of an atom from its normal location in a perfect crystal 

structure.  

(ii)  Schottky defects 
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A Schottky defect occurs when an equal number of cations and anions are 

missing from their lattice sites, and the electrical neutrality of the crystal is 

maintained. This type of   defect appears generally in ionic crystals, where the 

positive and negative ions do not differ too much in size. The Schottky defect is 

a type of vacancy named after Walter H. Schottky [51].  

 (iii)  Interstitials 

A self-interstitial is an atom from the crystal that is crowded into an interstitial 

site, a small void space that under ordinary circumstances is not occupied. This 

kind of defect is also represented in figure 3.1. In metals, a self-interstitial 

introduces relatively large distortions in the surrounding lattice because the 

atom is substantially larger than the interstitial position in which it is situated. 

Consequently, the formation of this defect is not highly probable, and it exists in 

very small concentrations, which are significantly lower than for vacancies 

Interstitial defects are formed when an extra atom is occupying a site in the 

crystal structure at which there is usually not an atom.  

(iv) Frenkel defects 

An atom displaced from its position to a nearby interstitial site is called a 

Frenkel defect, named after Yakov Frenkel. 

(v) Substitutionals 

Substitution defects are formed when an extra atom replaces a host atom.  

(vi)  Anti sites 

Ant site defects are a kind of substitution defects in which a host atom occupies 

the site which was originally occupied by another type of host atom. 

figure 3.1, schematically shows different types of defects in a crystal. 

Vacancies, Schottky, Frenkel, and anti site defects which do not involve foreign 

atoms are also called native or ’intrinsic’ defects, and other defects such as 

interstitials and substitutionals involving foreign impurity atoms are called 

extrinsic’ defects. 
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 Figure 3.1: Point defects: (a) vacancy, (b) interstitial atom, (c) small substitutional atom, 

(d) large substitutional atom, (e) Frenkel defect, (f) Schottky defect 

 

3.3 The structure of point defects 
 
A native defect or impurity will behave differently depending on its location in 

the crystal lattice. An impurity can either replace a host atom at a lattice site, 

which is known as a substitutional impurity, or be located in an open space in-

between the host atoms at an interstitial position. In III-V semiconductors there 

are two different substitutional sites since the impurity can either replace a 

group III or a group V atom. Interstitial atoms can, in principle, be located 

anywhere in-between lattice sites but will in practice always be located at (or 

close to) the most open regions where they cause the least strain on the 

surrounding crystal. In III-V semiconductors there are three main interstitial 

sites: the two tetragonal sites, either surrounded by four groups III or V atoms 
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and the hexagonal site. The native defects have the same types of interstitials, 

with the only difference being that the interstitial atom either can be a group III 

or group V atom. The other kinds of defects are the ant site defect, where a 

group III atom substitutes a group V atom at the ordinary lattice site (or vice 

versa) and the vacancies, where an atom of either type is missing from the 

lattice. For the impurities one can often predict whether it is going to behave 

like an acceptor or donor from the number of valence electrons. A group II (VI) 

substituting a group III (V) atom is expected to form a acceptor (donor) level in 

the band gap, as previously explained. For the native defects, on the other hand, 

it is not as apparent where their defect levels will be located in the band gap. For 

both vacancies and the cation anti site defect, the defect levels will ideally 

consist of a single non-degenerate level and a higher triply degenerate level 

originating from the valence band. In the neutral charge state these levels will 

be occupied by the electrons from the nearest-neighbors and also, in the case of 

the ant site, by the cations valence electrons. The lower and fully occupied av1-

level will often remain inside the valence band and leave only the triply 

degenerate level in the band gap, occupied by three, five and six electrons for 

the anion-, cation-vacancy and cation anti site respectively. For the anion anti 

site and the interstitial defects, the defect levels in the band gap will instead 

originate from the conduction band. For the interstitials, the valence electrons of 

the interstitial atom will occupy a higher level and for the anion anti site the five 

electrons of the nearest-neighbors and the five valence electrons will first 

occupy the av1 and levels inside the valence band and the remaining two 

electrons will then occupy the, typically deep, level in the band gap. This rough 

analysis might be interesting to get a better understanding of the underlying 

nature of the defect levels, but the actual positions of the defect levels are, of 

course, very much dependent on which III-V semiconductor they are in. Even 

more important, the symmetry of the defect will be reduced and the degeneracy 

of the defect level lifted if it lowers the energy of the system (the Jahn-Teller 
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effect). The only way to find the magnitude of this geometrical distortion is by 

explicit calculation. The next section is devoted to how to calculate the defect 

levels in an accurate way. 

3.4 Theoretical treatment of defects 
 
For defects, either found intrinsically in or extrinsically doped into a 

semiconductor which is to be used in an electrical device, there are two 

properties of main interest: their defect levels and their concentrations. The 

positions and occupancies of its defect levels are of interest because it will 

determine if the defect act as an acceptor, deep defect or donor, as described. 

The defect concentration is obviously of interest because the concentration of 

charge carriers will be directly proportional to the concentration of the do pants. 

If  the dopant only occurs in small numbers it will be useless no matter how 

good it might be in other aspects. In this section the theoretical tools for 

calculating there are, of course, many other properties of interest, such as the 

mobility and optical properties of defects and impurities, and these can be 

derived from that the defect levels and the defect energy (which is used to 

calculate the concentration). As mentioned before, defects are always present in 

real materials and they will therefore influence all material properties, 

conduction, color, magnetic behavior and so on. 

 

3.5 Defects in alkaline-earth fluorides 
 
 
Alkaline-earth fluorides occupy a special place among wide-gap dielectrics. 

Crystals of these compounds having the fluorite space group are widely used 

currently as ionizing radiation detectors, perspective elements of power optics, 

in scintillation equipment, etc. The use of this class of materials is impossible if 

their electronic structure and the formation of chemical bonds are not known in 

detail. A special interest presents the study of imperfect crystals, because 
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defects in crystals may be either a positive or negative factor for their practical 

applications Crystals of the fluorite group with F-centers were taken as 

defective crystals. These defects are model ones and have been adequately 

explored. With respect to theoretical methods, the interest to the study of  F-

centers stems from the need to describe both the defect wave function and 

displacements of ions surrounding a vacancy. An F-center presents interest for 

researcher, because it allows analyzing the relationship between electron and 

nuclear spins for a sufficiently large set of adjacent nuclei. Not far away the 

study of centers in Alkali earth fluoride has become very interesting and crucial 

in contemporary knowledge of defect engineering, which is aimed to tune the 

properties of materials in desired manner so as to get different behaviors and 

perfect properties. 

The F center in BaF2 is  an electron localized in a fluorine vacancy and it  has 

been identified by electron spin resonance(ESR) during Arend’s  investigation 

on addititively- colored crystal[52]. The structure is shown in figure 3.2  .Also 

in 1964 Arends  was measured approximately the values for the peak position of 

the F band in CaF2, SrF2 and BaF2 by investigating the effects of optical 

bleaching on the intensity of F-center EPR[53].In 1985 Hays& Stoneham  were  

for the first time measured experimentally the  optical absorption of  the F 

center in CaF2 which is found to be 3.3 eV.  In the beginning of 20th century 

Nepomnyashchikh et al. measured that X-ray irradiation at 77 K of undoped 

BaF2 produces F centers having an absorption band at 2.3 eV [54].  

F center in alkaline-earth fluoride crystals have had a wide range of study, this 

leads to find also other more complex centers, namely M and R centers 

composed of two and three F centers, respectively. Hayes demonstrated that F 

centers in additively-colored alkaline-earth fluoride crystals readily aggregate 

forming more complex[55],and by transmission spectroscopy Stenzel et al. 

showed that Al–K αX-rays generate a controllable amount of F, M, and R 

centers The F center in CaF2 is an electron localized in a fluorine vacancy. The 
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structure is shown in figure 3.2. The electron localization function (ELF) [56] 

shows that the electron is well localized on the vacancy. 

 
 
Figure 3.2: The structure of the F center: The electron is located on the fluorine 
vacancy (square). 

 

3.6 Conception of the formation energy  

 
When studying defects, the concentration of the defects is one observable which 

can be measured in experiments. The concentration is dependent on a number of 

experimental parameters, such as the concentration of impurity atoms or 

temperature, for example, but is also determined by the defect’s formation 

energy, which can be calculated. The formation energy of a defect can also be 

determined by experiment from an Arrhenius plot of the measured 

concentration as a function of temperature. 
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The equilibrium concentration of a defect is related to its formation energy as: 

஽ܥ ∝ ݁ି(ா೑(஽)/௄ಳ(்))                                                                                   (3.1) 

Where ܥ஽ is the concentration of defect D, ܭ஻  and T have their usual meanings 

and ܧ௙(ܦ) is the formation energy of the defect, defined as the energy required 

to form the defect from a source of suitable atoms. The nature of the source can 

vary with the defect or process being investigated and will be discussed shortly. 

In the neutral charge state, the formation energy is calculated as: 

(ைܦ)௙ܧ = (ைܦ)ܧ −  ∑ ݊௜ߤ௜௜                                                                 (3.2) 

Where ܧ(ܦை) is the total energy of a system containing the neutral defect, the 

sum is over all atomic species, ݊௜ is the number of atoms of species i in the 

system and ߤ௜ is the chemical potential of the species. The parameter ߤ௜ is 

defined as the derivativeof the Gibbs free energy G with respect to ݊௜ at 

constant pressure and temperature [57, 58]. G is defined as: 

ܩ   = ܧ + ܸ݌ − ܶܵ                                            (3.3) 

Where p and V are the pressure and volume of the system, T and S are the 

temperature and entropy and E is the total energy as mentioned above. The 

derivatives of the last two terms are negligible in most solid-state calculations, 

and so the chemical potential becomes: 

௜ߤ = డா
డ௡೔

                                                                                                           (3.4)    

which in turn leads to: 

ܧ = ∑ ݊௜ߤ௜௜                                                                                                      (3.5) 

for a system consisting of the source of the atomic species i. A suitable source 

for each species will depend on the nature of the process being studied, but for 

the work performed in this thesis, the source of atomic host atoms (Ba,Ca or F) 

is taken to be a super cell of undistorted crystal. 

An extra term is needed in Equation (3.2) to take into account the electron 
chemical potential: 
 
(௤ܦ)௙ܧ = (௤ܦ)ܧ −  ∑ ݊௜ߤ௜ + ௏ܧ)ݍ + ௘) ௜ߤ                                                   (3.6) 
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where ݍ is the charge on the system, ܧ௏ is the energy of the valence band top 

and ߤ௘is the Fermi level measured from the top of the valence band. The term 

௏ܧ) +  ௘) is then the calculated energy of the Fermi level, or the electronߤ

chemical potential. It should also be noted here that these equations hold true 

only for systems where different atoms of the same species can be considered 

equivalent. This is not the case for cluster calculations where host crystal atoms 

at different distances from the centre of the cluster will have different energies. 

Therefore, it is not possible to calculate formation energies in clusters, and 

energy comparison can be performed only between clusters containing the same 

number of atom in different arrangements. 
 

3.7 Chemical Potential 

 
As noted in the previous section, it is not straight forward to define the chemical 

potentials to use in Eq (3.6) for a multi-component system; in fact, it is not 

possible to do so uniquely, as they depend on the experimental growth 

conditions. However, it is possible to place from upper and lower bounds on 

their values independently of these conditions. 

Since the chemical potential for a species represents the energy needed to add 

or remove one of its atoms during the formation of  a defect, in order to define it 

we need to answer the following two questions: (i) what reservoir is the atom 

being removed to or taken from, and (ii) how much of the total energy of that 

reservoir can be attributed to this species alone. When considering one of the 

atomic species that constitute the host material, it is reasonable to assume that 

the reservoir of atoms is the material itself. Therefore, the chemical potential of 

a monatomic crystal is exactly equal to the energy per atom of the crystal. 

However, if more than one species is present, all that can be calculated is the 

energy per unit cell; this needs to be divided between the species. We can define 
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a range within which the chemical potential of each species must lie; as for the 

case of charged defects, therefore, all formation energies should strictly be 

considered to be functions of the atomic chemical potentials as well as the 

electronic one. Similarly as in Ref [59], applying for MF2 (M refer to Ba or Ca) 

we have: 

μMF2 = μM + 2μ F                                                                                    (3.7) 

      We can place upper limits on μM and μF by noting that for MF2 to form, 

Neither of these chemical potentials can be higher that the energy per atom of 

its species’ elemental configuration. This means  

          μM ≤ μMୠ୳୪୩                                                                                       (3.8) 

and 

          μF ≤μFிమ                                                                                               

(3.9) 

where  μMୠ୳୪୩ is the energy per atom of bulk M and μFிమ that of an F2  

molecule. By combining these two in equalities with Eq (3.7), we can also place 

lower limits on the chemical potentials: 
 
          μM ≥ μMF2 - μFிమ                                                                                
(3.10) 
and 
 
        μF ≥ μMF2 - μMୠ୳୪୩                                                                               
(3.11)  
 
These upper and lower bounds correspond experimentally to extreme M-rich 

 or F-rich growth conditions. Therefore it might sometimes be appropriate to 

simply set one of the two chemical potentials to its upper bound, depending  

on the experimental setup that is being considered; otherwise, the defect 

formation energy can be plotted as Ef(ξ) for 0 ≤ ξ ≤ 1 and 
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ஜ୊ (ஞ) ୀ  ஜ୑୊ଶ ି ஜ୑ౘ౫ౢౡ ାஞ(ஜ୊ಷమି ஜ୑୊ଶ ାஜ୑ౘ౫ౢౡ)
൰                                    

(3.12)                                                             
   
 
We should also note that these expressions are temperature and pressure 

dependent while this might only have a negligible effect for bulk solids, it will 

certainly have a strong effect on F. 

The ‘richness’ of one or the other component is described by the degree of non-

stoichiometry of the compound. The chemical potentials depends on identifying 

the defect type that accommodates the deviation from stoichiometry for A-rich 

or B-rich conditions (and, hence, the only defect type that persists at zero 

temperature); this is known as the constitutional defect. For A-rich (B-rich) 

conditions, the constitutional defect can be either VB (VA) or AB (BA); this can 

be determined by comparing the sum of formation energies of several defects 

forming (non-interacting) stoichiometric complexes that can therefore be 

calculated unambiguously by atomistic simulation [60]. 

For impurities it is not as simple to define the reservoir; this depends on the 

physical provenance of the impurity atoms in the system of interest. A hard 

upper bound is given as before by the energy per atom of the species’ elemental 

bulk phase. This upper bound can usually be reduced by considering the energy 

of other compounds that might form between the impurity and host species. 

However, the most direct way of estimating the chemical potential is simply to 

consider the experimental setup on a case-by case basis, and therefore determine 

the nature of the reservoir of impurity atoms; the energy per atom can then be 

calculated for this particular phase of the element. 

 
3.8 Transition level 
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The defect transition level is defined as the Fermi energy level where two 

defect charge states have the same formation energies f
ViE )( .  So the transition 

level can be written as: 

         21
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Where, )( 1)( qE d
Vi  and )( 2)( qEd

Vi  are the defects formation energies when the 

Fermi level is at the valence band maximum (EF = 0 ) ,and charge states q1 and 

q2.The calculation of the situations of the levels presented by point defects in 

the band gap is essential for comparison with experimental results, as these are 

usually what is used to identify the defect. 

 

3.9 Image Charge Correction 
 
 
The drawback of the use of standard super cell geometry is that defects are 

periodically and infinitely repeated spatially. The defect, instead of being 

surrounded by a large region of perfect bulk crystal as it would be under non-

degenerate conditions, is now surrounded by mirror images of itself (figure 3.3.) 

This will result in somewhat frustrated ionic relaxation, though these elastic 

energy effects tend to be short range and is rarely a problem for even modestly - 

Figure 3.3: Image charge correction schematic. The super cell (in dark green) is 

periodically replicated in space, due to plane wave basis, leading to artificially 

high defect concentrations. For charged defects this results in an overestimation 

of the electrostatic energy in the system. We want to correct for this to recover 

the ’sparse ‘level of defects 
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Sized cells (there is very little difference in relaxation energies for even a 2x2x2 

super cell versus a unit cell of MF2). However, when dealing with charged 

defects we form ’image charges’ leading to spurious electrostatic interactions. 

These columbic interactions between the defect and its mirror charges are long-

ranged and significant even for large cells. Corrections for this ’image charge’ 

effect have been the subject of much research, though the most common 

approach is based on the work of  Makov-Payne (MP) correction factor [61]. 

They considered the charge density to be the contribution of the periodic charge 

of the underlying crystal structure and the charge density of the periodic defect 

(which is simply the electron density difference between the host and host+ 

defect cells). The multi pole correction to the formation energy is: 

∆୑୔= ௤మఈ
ଶ௅ఌ

− ଶగ௤୕౨
ଷఌ௅య

+  (3.14)                                                (ହିܮ)ܱ

where  ߙ is the supercell lattice-dependant Madelung constant, ܮ is the length of 

the super cell, ߝ is the static dielectric constant, and Q୰ is the second radial 

moment of the a periodic charge density. The first two terms are the monopole 

and quadrupole corrections respectively. 

 

3.10 Potential Alignment Correction 

 



60 
 

Alkauskas et al [62, 63] .Recently made the observation that localized defect 

levels with respect to the average electrostatic potential are much less sensitive 

to computational model than with respect to the band-edges. Thus, to place the 

defect levels correctly with respect to the band-edges requires additional care in 

calculating the proper band edges relative to the electrostatic potential. It thus 

appears important that not only the band gap but also the individual band-edges 

In the case of charged defects with periodic boundary conditions there is a 

violation of charge neutrality, which causes the Coulomb potential to 

diverge[70].In momentum space formalism, one usually sets the G=0 term of 

the electrostatic and ionic potential (Vୢ (G=0) and V୍ (G=0)) to zero. The Kohn-

Sham eigen values are thus only defined with respect to the average electrostatic 

potential of the cell. For neutral systems this arbitrary offset still leads to a well-

defined total energy since the electron-electron and ion-ion contributions 

exactly cancel. In a charged system, ignoring the G=0 term can be viewed as 

equivalent to a uniform background charge (jellium) compensating for the net 

charge - though it is important to note that this only occurs for the potential. In a 

charged cell there is now an arbitrary offset to the total energy. Potential-

Alignment (PA) energy, which is needed for aligning the VBM between the 

perfect and defective super cells. PA is evaluated as: 

                PA = q (Vd - Vp)                                                                      (3.15) 

representing the difference between the average electrostatic potentials in the 

perfect (Vp) and defective (Vd) super cells at regions far from the defect. 
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CHAPTER FOUR 
SIMULATIONS and DISCUSSIONS 

 
4.1Simulations Methods 

In this chapter the defect formation energy is calculated from the total energy 

of the bulk and defect containing simulation structures using plane-wave 

pseudo-potential software: Quantum Espresso[46]. We used ultra soft pseudo-

potentials (USPP)[43].downloaded from Vanderbilt Ultra-Soft Pseudo-potential 

website [65].The calculation relies on the exchange–correlation functionality 

belonging to the Perdew-Burke-Ernzerhof (PBE)[18].type generalized gradient 

approximation (GGA). The cut-off energy for the plane wave basis set for the 

valence electrons is 816eV,544eV for BaF2 andCaF2 respectively. The defect 

super cells are formed by adding an interstitial atom (Ba,Ca or F) to the bulk 

structure or by removing an atom from it to form a vacancy. The charged defect 

simulation is performed by incrementing or decrementing the super cell 

electrons. The convergence thresholds for self- consistent calculation of the total 

energies were 10-6, 10-4, and 10-3 Rydberg where larger super cell has larger 

threshold. We employed  theMonkhorst–Pack[66] mesh with 5×5×5,5×5×2 and 

2×2×2 k-points to sample the first Brillouin zone in which denser mesh goes 

with smaller super cell. The Monkhorst-Pack grid method has been devised for 

obtaining accurate approximations to the electronic potential from a filled 

electronic band by calculating the electronic states at special sets of k points in 

the Brillouinzone[66]. The ground state atomic geometries were obtained by 

minimizing the Hellman-Feynman forces which is defined as the partial 

derivative of the Kohn-Sham energy with respect to the position of the 

ions[67,68].Since the simulation of condensed phases is concerned with a large 

number of electrons and a near infinite extension of wave functions, it is 
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necessary to use a relatively small atomistic model. The effect of edge effects 

on the results can be decreased by implementing periodic boundary conditions 

(PBC), in which a “supercell” is replicated throughout space. By creating an 

artificially periodic system the periodic part of the wave function is allowed to 

expand in a discrete set of PW’s whose wave vectors are the reciprocal lattice 

vectors of the crystal structure. In the supercell all the atoms are relaxed from 

their initial positions using the Broyden-Fletcher- Goldfarb-Shanno (BFGS) 

[69] Hessian update method until the energy and the residual forces are 

converged to the limits that are set prior to running the DFT calculation. The 

super cells are generated from the unit cell (figure 1.1) of BaF2, which belongs 

to the fluorite solid phase with cubic structure (Fm-3m space group). As shown 

in figure1.1, 12 atomic positions are generated by translating the base atoms, 

Baat (0.0, 0.0, 0.0), and F at (0.25a, 0.25a, 0.25a), with the primitive vectors 

(0.5a, 0.5a, 0.0) , (0.0, 0.5a, 0.5a)and (0.5a, 0.0, 0.5a); where a is the optimized 

lattice constant corresponding to the minimum energy of the converged total 

energy vs. lattice constant curve (data not shown). We use the following 

supercells: 2×2×2, 2×3×3 and 3×3×3 in terms of the 12 atoms unit cell 

(figure1.1) For example the 2×2×2, 2×3×3 and 3×3×3 super cells for bulk 

structure have 96, 144, and 324 atoms, respectively.The hybrid calculation is 

restricted to bulk CaF2 using the less computationally demanding primitive 

supercell consisting of 3 atoms, Ca (0, 0, 0), F (0.25a, 0.25a, 0.25a), and F 

(0.75a, 0.75a, 0.75a), as indicated by the small arrows in Figure(1.1)(a). The 

primitive vectors in this case are (0, 0.5a, 0.5a), (0.5a, 0, 0.5a), and (0.5a, 0.5a, 

0).The interstitial defect is placed in the octahedral site (0.5a, 0.5a, 0.5a) which 

is preferable as suggested by Nywereet al.[4]. All defective structures were 

carefully relaxed to minimize the forces between atomswith 0.08 nN as the 

conversion threshold on forces. 

 



63 
 

4.2BaF2 and CaF2 bulk: electronic structure and calculations 
Predicting the lattice constant as well as the optimal volume to a cell that has 

one degree of freedom is quite simple. Total energy calculations of the cell at 

various lattice constants around the minimal lattice constant are performed and 

the total energy is plotted against the volume. The minimum is found by fitting 

the data points to the Murnaghan equation of state [70]. Predicting the lattice 

parameters as well as the optimal volume for a cell that has a few degrees of 

freedom, such as a tetragonal or orthorhombic cell, can be done in the same 

fashion as one degree of freedom. However; the optimal lattice parameters need 

to be found self-consistently. While all but one parameter are held constant, the 

free parameter is simulated for a few energies around the minimum and a 

quadratic least squares is calculated to  find the minimal value. Then the other 

parameters are simulated as the first. The process is repeated until the minimal 

parameters become self-consistent. Internal degrees of freedom are optimized 

for each simulation. 

Since our structure is cubic and hence, has one degree of freedom we proceed 

by optimizing the lattice constant as described in the previous paragraph for the 

case of one degree of freedom. We focus on carefully optimizing the lattice 

constant because this optimization plays very serious role on formation energy 

calculations so we begin our work by calculating the lattice constant (ܽ௢) for 

BaF2 and CaF2compare it with their experimental lattice constant as shown in 

Table 4.1. below which shows the calculation of a ൫Å൯and the bulk modulus 

(B(GPa)) using various calculation methods such as the LDA and PW and PBE 

functionals for GGA pesudopotentials.  
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 Method      LDA  PW-

GGA  

PBE-GGA(our 

work) 

EXP 

BaF2 ܽ௢(Å) 6.09 6.32 6.20 6.17[71] 

 B(GPa) 70.6 63 58.5 59[72] 

CaF2 ܽ௢(Å) 5.34 5.51 5.50 5.46[72] 

 B(GPa) 103[73] 83 85 82.7[73] 
 

I have compared my data with many theoretical and experimental results 

as it was shown in Table 4.1. we can notice that forBaF2the LDA calculations 

underestimates the lattice constants (ܽ௢) by1.3% and overestimates the bulk 

modulus(B) by 24%.DFT with the GGAcorrection overestimates ܽ௢ by 2.4% 

and B by 10.5%. (PBE-GGA) gives the best result for the lattice constant ܽ௢ 

(overestimates only by2.2%) and also for B (overestimates by 2.6%),. For CaF2 

the LDA calculations underestimates the lattice constants (ܽ௢) by1.3% andand 

overestimates the bulk modulus(B)by 24.5%.DFT with the GGAcorrection 

overestimates ܽ௢ by 0.9%and B by 0.4%.lastly PBE overestimates the 

latticeconstants(ܽ௢) by0.7% andand overestimates the bulk modulus(B)by 2.8%. 

According to the all previous results it is clear that our method(PBE-

GGA) is the most consistent results with the experimental data for BaF2 and 

CaF2
. 

hence our calculations was in agoodaagreement with  many experimental 

data. Figure (4.1) shows the result of our calculation of the optimal lattice 

constant, a0~ 6.20Åfor BaF2, and   a0~5.50Åfor CaF2
.. The figure illustrates the 

total energy versus the lattice constant wherein a0 is the lattice constant value 

corresponding to the minimum total energy.  
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Figure4.1 (a)for BaF2 The calculated (using the supercell in (a)) energy vs. the 

lattice constant where the optimized lattice constant ~ 6.20 Å occurs near the 

minimum energy.  (b) for CaF2 The calculated (using the supercell in (a)) energy 

vs. the lattice constant where the optimized lattice constant ~ 5.5 Å occurs near 

the minimum energy.   

4.3 Simulations of BaF2 

4.3.1Band Gap Calculations for BaF2 
To determine the band gab for BaF2 we optimized value for the portion of 

the HartreeFock exchange energy in the hybrid functional PBE0[30]. which was 

found to be 28% of the exchange energy in the semilocal PBE functional. 

Among several portions, we find that (see figure. 4.2a) the 28% one produces a 

band gap, ܧ௚୔୆୉଴~ 10 eV, consistent with that obtained from mBJ method 

[39,40],known by its accuracy in comparison with experiment. This is clearly 

shown in the top panel of  figure 4.2 which shows the normalised density of 

states (NDOS) versus the energy.Figure.4.2b shows the underestimated band 

gap ܧ௚୔୆୉ ~ 7 eV resulting from semilocalPBE calculation with the PW 

Quantum Espresso (QE) and the full potential W2k software. Again both results 
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correlate, especially with regard to the positions of the underestimated band-gap 

edges. 

We stress that the PBE and PBE0 data with QE in figure 4.2. use the same 

norm-conserved pseudopotentials[74].On the other hand we usedultrasoft-

pseudopotentialsfor the determination of the formation energies. However, the 

main purpose of the data in figure 4.2. is to determine the difference (i.e, 

correction factor) between the valence band maxima, VBMPBE0 – VBMPBE, in 

the PBE and PBE0 calculations, which should be independent on the type of the 

pseudopotentials as suggested by Alkauskasetal[19]. Furthermore, we find it 

more feasible and convenient to generate the QE data in figure 4.2.using norm-

conserved pseudo potentials. 

VBM ~ 3.2 eV is the top of the valence band energy in bulk BaF2 

calculation. This is different from VBMPBE ~ 4 eV in figure 4.2b. due to the 

different pseudopotentials. However, we confirm that the band gap (~7eV) is 

unaffected for calculations with both pseudopotentials. 

The band gap reduction is a common error inherited to semilocal 

calculation[75]. The effect of this error on the values of the formation energies 

will be corrected through the correction factor VBMPBE0 – VBMPBE ~ 2 eV 

figure.4.2. Another source of error emanates from the interaction between the 

periodic charge images that can be corrected as discussed in Ref [76].This error 

is significant for small supercells and has, thus, not been considered in our 

calculations which use larger supercells. 
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4.3.2BaF2Formation Energy with Extrapolation Technique 
Recently, Nyawereet al.[4].pointed out that measured formation energy of 

native defects in BaF2 is limited to anion defects. They also pointed out the fact 

that there is a shortage in the theoretical calculation of the defect formation 

energy in BaF2. However, they focused on ab-initio calculations for the 

identification of stable native defects in BaF2 using small supercell with 96 

atomic sites. Therefore, in this thesis we built upon their work by extending the 

Figure 4.2The normalized density of states (NDOS) 
calculated with (a) hybrid GGA type PBE0 (thick grey 
line) using QE software and with mBJ corrected GGA 
(black line) implemented in W2k software (b) GGA type 
PBE (thick grey line) using QE software and with GGA 
type PBE (black line) using W2k software . The energy 
values for the Valence Band Maxima (VBM) and 
Conduction Band Minima (CBM) are indicated for each 
type of calculations by solid arrows. 
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simulation supercell up to 325 atoms, focusing on the calculation of the charge 

transition levels for native vacancies and interstitials. The values of the levels 

are extrapolated to the limit of infinite supercell size. 

The formation energies f
iE  and f

VE , respectively, for interstitial and 

vacancy are:  

)2.4()VBM(
)1.4()VBM(


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q
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q
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EqEEE
EqEEE


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Where, q
ViE )(  is the relaxed total energy of the charged (with charge q) defect 

structure, Eb is the calculated total energy of bulk supercell, EF is the electrons 

Fermi energy, and   is the defect chemical potential approximately taken as the 

simulationenergy of a single defect in a large empty cubic cell (12 Å side). We 

obtained  = -70.14 Ry and -48.34 Ry for free Ba and F, respectively. VBM ~ 

3.2 eV is the top of the valence band energy in bulk BaF2 calculation. This is 

different from VBMPBE ~ 4 eV in Figure (4.2).(b) due to the different 

pseudopotentials. However, we confirm that the band gap (~ 7 eV) is unaffected 

for calculations with both pseudopotentials. 

Table.4.1. compares the formation energies from this work with those 

calculated by Nywereet al[4] using the smallest 2×2×2 supercell at EF = 0. 

Obviously both data are in close agreement. Figure 4.3: shows f
ViE )( (at EF= 0) 

versus the reciprocal of the supercell size (L= the cubic root of the supercell 

volume) for charged F-1 and Ba+2 interstitials and vacancies. The linear trend of 

the data stimulates the linear extrapolation (solid lines, figure 4.3.) of f
ViE )( to the 

limit L-1 = 0 corresponding to infinitely large supercell. The extrapolation 

method allows for the estimation of values at a limit of very large.  
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Figure 4.3:The calculated formation energy vs. inverse supercell size (L-1) for 
charged F-1 and Ba+2 interstitials and vacancies in BaF2 structure. The 
simulation supercells are 2×2×2, 2×2×3 and 3×3×3 in terms of a 12 atoms unit 
cell (figure 1.1). The vacancy- (interstitial-) supercell has one atom less (extra 
atom).  supercells that are computationally intractable[76]. The values of f

ViE )(  
at L-1 = 0 are listed in the last column in Table 4.2.  

Table 4.2 :The formation energy (at EF = 0) for native 
defects in BaF2. 

 
Defect 

 
 

Formation energy (eV) 
Our 
calculatio
n (2×2×2) 
cell 

Nywereet al 
[4] 
 (2×2×2) 
cell 

Extrapolated 
to L-1 = 0 
(Figure.4.3) 

Ba+2 interstitial -10.91 -11.25 -9.82 
Ba-2 vacancy 15.01 15 16.20 
Ba0 interstitial 3.34 3.14 3.69 
Ba0 vacancy 15.51 15.64 15.67 
F0 interstitial -0.97 -0.62 -0.82 
F0 vacancy 9.27 8.73 9.68 
F-1 interstitial -0.72 -0.69 -0.68 
F+1 vacancy 2.28 2.29 2.30 
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According to Shi et al[14]the formation energy for the F0 vacancy is 7.82 eV 

which is lower than our extrapolated one by ~ 1.8 eV. This could be due to the 

different atomic potential used in their work and to their employment of smaller 

supercells than ours. However, we believe that our extrapolated data are more 

reliable owing to increased accuracy associated with large supercell 

calculations. 

In concurrence with Ref.[1], we found that the octahedral site is 

favored, and accordingly, all counts reported beneath allude to the interstitial 

in the octahedral site. The estimations of the formation energies are appeared 

in Table 4.2. The more negative the vitality, the less demanding it is to frame 

such a deformity. Thus, the formation of neutral flourine interstitial is easier 

than the barium interstitial. 

We are now going to discuss about  the existence of stable native 

defects in BaF2 structures. It is important to point out that the formation 

energies used are those  extrapolated to the limit of  infinite supercell size as 

listed in the last column of  Table 4.2. This will render our estimation of the 

formation energies and the transition levels (to be discussed afterwards) more 

accurate than Amolo et al calculations.  
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Figure 4.4:(Color online) Formation energy as a function of  Fermi energy  for 
F and F– interstitial defects in BaF2. 
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Figure 4.5:(Color online) Vacancy formation energies as a function of  Fermi 
energy for F and F+ 
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Figure 4.4.illustrates the interstitial formation energies for F and F– 

versus the Fermi level. On account of neutral F the line is parallel to the EF 

axis and crosses the formation energy axis at -0.82 eV. However, F– has 

formation energies less than that for the neutral F, indicating that F– is more 

stable than the neutral F. We in this manner infer that the anion interstitial in 

BaF2 is contrarily charged. figure 4.5:shows the formation energies versus EF 

for vacancies formed by removing F and F–. The formation energy of the 

neutral vacancy is 9.68 eV. In an extensive scope of estimations of the EF (up 

to around 6 eV), we find that the charged vacancy of F–, which is positively 

charged, is more stable than the neutral F. Therefore since the band gap ~7 eV, 

we infer that the fluorine vacancy is positively charged except for the cases 

when  EF  is greater than the conduction band, i.e. when the structure is heavily 

doped with donors. 
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Figure 4.6:(Color online) Interstitial formation energies as a function of Fermi 
energy for Ba and Ba+2 
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Figure 4.7:(Color online) Ba vacancy formation energy as a function of Fermi 
energy for Ba and Ba-2 

Figure .4.6.and  figure .4.7. demonstrate the formation energies versus EF for 

Ba interstitial and vacancy. Clearly the curve for neutral Ba interstitial 

intersects with the vertical axis at the formation energy of 3.69 eV. However 

the formation energies for the charged Ba interstitial is smaller than that for 

the neutral counterpart  for all  EF within the band gap. Therefore the charged 

Ba interstitial is expected to be more stable than the neutral one. For the Ba 

vacancies figure.4.7, it is clear that the formation energies for the charged one 

are smaller than the neutral one for all EF within the band gap. 

Frenkel defects are defined to be formed by shifting the atom from it 

substitutional position to an interstitial position, producing a vacancy-interstitial 

pair. Assuming that the pairs are weakly interacting (for example sitting far 

apart), their formation energy can be regarded as the summation of the 

formation energies of the isolated interstitial figure 4.4. and vacancy figure 4.5 

.Therefore, it is possible to regard the fluorine Frenkel defects as always 

consisting of charged defects. This is true only when EF is in proximity to the 
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conduction band minimum where we have charged interstitial but neutral 

vacancy. In the case that both defects are charged then the formation energy of 

the F Frenkel defect is 1.62 eV for all EF till near the bottom of the conduction 

band. This is completely opposite to the finding of Amolo et al who reported a 

range  of  formation energy from 2.33 to -0.8 eV near the conduction band. 

Their error arises from uncorrected calculation of the formation energy. While 

in our case the calculation has been corrected with the extrapolation method as 

discussed above. From figuers. 4.6 and 4.7, it is clear that the Barium Frenkel 

defects consist of charged defects for all EF with formation energy ~ 3.90 eV. 

4.4The transition level calculations and corrections methods  

4.4.1 BaF2 transition level 

The defect transition level is defined as the Fermi energy level where two 

defect charge states have the same f
ViE )(  as it was in Equations (3.13) so the 

values of )()( qEd
Vi  are listed in the last column of Table 4.2 for charged (with 

charges +2, -2, +1, and -1) and neutral (0 charge) defects. The values of 

),( 21)( qqVi  µsemilocal are  shown in the first column of Table 4.3 where (0, -2), 

(+2, 0), (+1, 0), and (0, -1) are the charge transitions (q1, q2) for, respectively, 

Ba vacancy (Bav), Ba interstitial (Bai), F vacancy (Fv), and F interstitial (Fi). 

µsemilocal are the values  before the correction for the error arising from the band 

gap underestimation. The correction factor  = VBMPBE0 – VBMPBE ~ 2 eV 

(figure 4.2) can be added to µsemilocal to place the level in the corrected band gap, 
PBE0
gE  ~ 10 eV (see figure 4.2a), associated with the PBE0 calculation. The 

corrected values µcorrected = µsemilocal +  are listed in the second column of  Table 

4. 2. It is clear that µcorrected are given with reference to the VBMPBE0 and, hence, 

falling within the corrected band gap ܧ௚୔୆୉଴ (figure 4.2b). On the other hand 

µsemilocal are given with respect to VBMPBE (figure 4.2a). 
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The above procedure of correcting the level positions follows tightly the 

correction recipe suggested in Ref [19]. The condition for implementing this 

recipe is that VBMPBE0  and  VBMPBE (figure 4.2) must be given with reference 

to a common ionic electrostatic potential. Satisfying this condition leads to the 

alignment of  µcorrected and  µsemilocal as demonstrated in Ref [19]. Such condition 

is true in our case since the QE calculations in figure 4.2 are based on the same 

pseudopotentials. Additionally the default energy scale in QE software is set 

relative to the ionic electrostatic potential. In other words the energy scale in 

figure 4.2 for the QE data is automatically given with respect to the ionic 

electrostatic potential. That is why the W2k NDOS figure 4.2 are manually 

shifted to align with that from QE calculation since the main purpose of the 

W2k data is to optimize the band gap size. 

Table 4.3: The correction of the transition levels (µsemilocal) from 
semilocal calculation using the correction factor = VBMPBE0 – 
VBMPBE ~ 2 eV in figure 4.2. µsemilocal is given with respect to VBMPBE0.   

Defect Charge 
transition 

µsemilocal (eV) µcorrected (eV) = 
µsemilocal +  

Bav (0, -2) 0.27     2.27     
Bai (+2, 0) 6.76  8.76  
Fv (+1, 0) 7.38 9.38 
Fi (0, – 1) 0.14 2.14 

 

Figure 4.10a shows the positions of µsemilocal in the plane of the formation 

energy versus the EF. These levels occur at the crossings of the dotted lines 

representing equations (4.1) and (4.2) with slopes q (0, ± 1 and ± 2) and 

intersecting the vertical axis at the extrapolated values (Table 4.2) of the 

formation energies. Clearly the semilocal calculation predicts the occurrence of 

Fv
+/0 within the conduction band, which is the case if the material is 

degenerately doped with donors. However, in contrast to semilocal result, the 
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corrected  Fv
+/0 level in Table 4.2 is predicted to be ~ 0.6 eV below the 

CBMPBE0. Generally, the hybrid-semilocal calculations predict that the levels 

(µcorrected, Table 4. 1) are located within the band gap with minimum separation 

~ 0.6 eV (for Fv
+/0) from the corrected CBMPBE0 (figure 4.2 ), while the 

uncorrected semilocallevels µsemilocal are almost touching with the 

underestimated band edges (VBMPBE and CBMPBE, figure 4.2). 

We will now assess the validity and accuracy of the extrapolated formation 

energies in Table 4.2. The necessity of this assessment is evident since the 

accuracy of extrapolation process is a key factor for the accuracy of the 

transition levels. For this purpose we will apply specific set of correction 

schemes to calculate the defect formation energies using relatively small 

supercells, 222 and 123. An agreement between the corrected and 

extrapolated energies will then signify the validity of the extrapolation method. 

For example, in figure.7 of Lanyet al[83] the corrected formation energies from 

supercells with  64 atoms agree with the extrapolated ones. 

 

4.4.2 Makove Payne and Potential Alingment calculations 

 

The formation energies from supercell calculation can be corrected to 

eliminate the small supercell size effects such as the unwanted interaction 

energy between image charges in periodic supercells, which is accounted for by 

incorporating the Makov-Payne (MP) correction factor in Eq (3.14)in chapter 

3by taking the momople term,so the equations can be written as follow: 

∆୑୔= ௤మఈ
ଶ௅ఌ

                                                                                                   (4.3) 

where7.33 = ߝ is the dielectric constant for BaF2,  = 2.83 is the Madelung 

constant for our cubic structure, q is the charge state of the defect, and L= 
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11.266 Å (123 cell) and 12.8Å (222 cell) is the cubic root of the supercell 

volume. MP represents the first term in the MP factor, which will lead to 

sufficient accuracy in the corrected formation energies as will be discussed in 

conjunction with Table 4.4. 

Another correction factor is the Potential-Alignment (PA) energy, which is 

needed for aligning the VBM between the perfect and defective supercells. PA 

is evaluated as PA = q (Vd - Vp), representing the difference  between the 

average  electrostatic potentials in the perfect (Vp) and defective (Vd) supercells 

at regions far from the defect. This is performed using the post-processing 

module (namely the code pp.x) in the QE software to evaluate the spherical 

average of the potential far from the defect. 

Incorporating the above factors in equations (4.1) and (4.2) yields the 

following equations (4.4) and (4.5 ) to be used for the evaluation of the 

corrected formation energies: 
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Where MP  and PA is the estimated factors along with the values of  Efcorr at 

EF = 0 calculated using 222 and 123 supercells.
 

 Figures 4.8 and 4.9, illustrates the good and accurate  potentials 

alignment for222 and 123 supercells 
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Figure 4.8: The potentials alignment for 123 super cell  with 
Ba,F  interstitials and vacancies. 
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Table 4.4: shows the estimated factors MP  and PAalong with the values of 

Efcorr  at  EF = 0 calculated using 222 and 123 supercells. It is evident that 

the corrected Efcorr obtained by using small supercells are consistent with each 

other and with the extrapolated values in Table 4.2. This consistency between 

Figure 4.9: The potentials alignment for 222 super cell  with 
Ba,F  interstitials and vacancies. 
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the corrected and extrapolated formation energies indicates that the extrapolated 

data are reliable. 

Table 4.4: The corrected formation energies obtained with 222 and 
123 supercell calculation using Makov-Payne (MP) and Potential-
Alignment (PA) correction methods 

Defects Charge 
state 

MP (eV) PA (eV) Efcorr (eV) 

222 123 222 123 222 123 
Bai +2 0.899 0.990 0.10 0.15 – 9.911 – 9.283 

Bav – 2 0.899 0.990 – 0.10 – 0.15 15.809 16.414 

Fi – 1 0.225 0.247 0.00 0.00 – 0.495 – 0.630 

Fv +1 0.225 0.247 0.00 0.00 2.505 2.485 

 

For simplicity we have not considered the band-filling effect, discussed in 

Ref[3], which usually emerges for structures with high impurity concentration, 

leading to the formation of band-gap impurity bands. figure 4.10b shows our 

calculated DOS vs. energy in defective 333 supercells. The data illustrates 

the presence of very sharp band gap peaks such as the one indicated as “Baid-

level’ arises from the d-orbitals of  the interstitial Ba+2 defects as revealed from 

the projected DOS calculations (using the projwfc.x code in QE). Thus, the data 

in figure 4.10b show no clear formation of  broad and delocalised impurity band 

in the band gap, suggesting that we are working in the dilute limit regime of the 

defect concentration which may minimize the band-filling effect. Here it is 

worth mentioning that the sharpness of the band gap DOS indicate that the 

defect wave functions are localized. The localization of the defect 

wavefunctions is required [19] for better accuracy in the calculation of the 

transition levels using the hybrid and semilocal scheme employed in this work. 

Additionally, this scheme works better for wide band gap materials as clearly 

illustrated in figure 4.2a in Ref[19]. Indeed our BaF2 with wide band gap 

satisfies this requirement as well. 
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Figure 4.10a: Thesemilocal transition levels, µsemilocal, from Table 4.3 are 
indicated by small arrows in the plane of the formation energy (Ef) versus EF. 
The dashed thin lines correspond to equations (4.1) and (4.2) with slope q and 
intersections represented by the extrapolated Ef in Table 4.1b.  The calculated 
normalized density of states using 333 defective supercells. The PBE band 
gap is Eg ~ 7 eV.  
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Finally we comment on that the formation energies for Bai-1 and Bai+1 

interstitials from semilocal calculations on 222 supercells have been found to 

be -14.1 eV and -20.5 eV. These indicate the high stability of these defects in 

the structures. However, they require careful adjustment of the simulation 

parameters for convenient convergence of the results. We will thus also 

consider the analysis of these defects in future work. 

 

4.5 The simulations of CaF2 

 
 4.5.1Band gab calculations of CaF2 

 

In this section we focus on the first principle calculation of the charge 

transition levels for native vacancies and interstitials in CaF2. The charge 

transition level is defined as the Fermi energy where two defect charge states 

have the same formation energy. We use the plane-wave (PW) density 

functional (DFT) method with the semilocal generalized-gradient-

approximation (GGA) [5]  pseudo-potentials known to underestimate the band 

gap. In order to locate the transition levels within the corrected band gap, we 

followed a similar approach as described in Ref[19] where the correction of the 

band gap is achieved by using hybrid PBE0 functional in GGA calculation. Our 

band gap from PBE0 calculation is ~ 10.6 eV, which correlates well with the 

experimental gap ~ 12 eV[1]. Thus the position of the transition levels are 

referenced to the corrected valence band maximum (VBMPBE0) in the PBE0 

calculation.  
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Finally we validated the band gap calculations using the Tran-Blaha 

modified-Becke-Johnson (TB mBJ[39]) correction to GGA employed by the 

DFT Wien2k[40] (here after referred to as w2k) simulation package which is a 

full-potential code based on Linearized Augmented Planewave (LAPW) 

method, known for  its accuracy. The calculated band gap from mBJ calculation 

was ~ 10.6 eV, matching well with that from the PBE0 calculation. 

The optimized value for the portion of the HartreeFock exchange energy in 

the hybrid functional PBE0[30] is 25% of the exchange energy in the semilocal 

PBE functional. As illustrated in figure 4.2b (Normalized Density of States 

(NDOS) versus the energy) we find that the 25 % one produces a band gap, 

 ௚୔୆୉଴ ~ 10.6 eV, consistent with that obtained from mBJ method[39,40] knownܧ

by its accuracy in comparison with experiment. Figure 4.11a. shows the 

underestimated band gap ܧ௚୔୆୉ ~ 8.3 eV resulting from semilocal PBE 

calculation with the PW Quantum Espresso (QE) and the full potential w2k 

software. Again both results correlate, especially with regard to the positions of 

the underestimated band-gap edges.  

We stress that  the PBE and PBE0 data with QE in figure 4.11 use the same 

norm-conserved pseudo potentials[74]. On the other hand we used ultrasoft-

pseudopotentials[43] for the determination of the formation energies. However, 

the main purpose of the data in figure 4.11 is to determine the difference (i.e, 

correction factor) between the valence band maxima, VBMPBE0 – VBMPBE, in 

the PBE and PBE0 calculations, which should be  independent on the type of 

the pseudopotentials as suggested by Alkauskaset al[19]. Furthermore, we find 

it more feasible and convenient to generate the QE data in figure 4.11 using 

norm-conserved pseudo potentials. 
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Figure.4.11:The normalized density of states (NDOS) calculated with (a) GGA 

type PBE (red line) using QE software and with GGA type PBE (black line) 

using w2k software. The energy values for the Valence Band Maxima (VBM) 

and Conduction Band Minima (CBM) are indicated for each type of 

calculations by solid arrows. (b) Hybrid GGA type PBE0 (red line) using QE 

software and with mBJ corrected GGA (black line) implemented in w2k 

software. 

 

4.5.2 Formations energies with Makove Payne corrections 

 
As it was in equations (4.1) and (4.2 ) : 

 is the defect chemical potential approximately taken as the simulation 

energy of a single defect in a large empty cubic cell (12 Å side). We obtained  

= -74.78 Ry and -48.32 Ry for free Ca and F, respectively. VBM ~ 3.4 eV is the 

top of  the valence band energy in bulk CaF2 calculation. This is different from 

VBMPBE ~ 5 eV in figure 4.12a due to the different pseudopotentials. However, 
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we confirm that the band gap (~ 8.3 eV) is unaffected for calculations with both 

pseudopotentials.The band gap reduction is a common error inherited to 

semilocal calculation[75]. The effect of this error on the values of the formation 

energies will be corrected through the correction factor VBMPBE0 – VBMPBE ~ 2 

eV (figure 4.11b). Another source of error in the value of the formation energy 

emanates from the interaction between the periodic charge images that can be 

corrected through the employment of the Makov-Payne (MP) correction 

factor[76]. 

Table 4.5.shows the calculated values of the corrected (Ef,corr = Ef + MP) and 
uncorrected  (Ef)  formation energies using equations (4.1)-(4.2) , 2×2×2 and 
3×3×3 supercells at EF = 0, where the Makov-Payne correction factor MP 

)2(2 Lq  . Here,  = 6.81 is the dielectric constant for CaF2,  = 2.83 is the 
Madelung constant for our cubic structure, q is the charge state of the defect, 
and L = 5.5 Å (222 cell) and 16.5 Å (333 cell) are the cubic root of the 
supercell volumes. MP represents the first term in the MP factor, which will 
lead to sufficient accuracy. Obviously values of Ef,corr from both 333 and 
222 calculations are in excellent agreement with each other. Therefore, the 
average formation energies, Ef,avg,  from both supercells are listed in the column 
of Table 4.5 .We point out that, for the large 333 supercell, we limit the 
calculation to the charged defects. Also for simplicity we ignore the potential 
alignment[83] correction energy for the defects.   
Table 4.5: The corrected, Ef,corr, (using Makov-Payne factor, MP) and 
uncorrected, Ef, formation energies at EF = 0 for native defects in CaF2. 
The calculations are performed for 2×2×2 and 3×3×3 supercells. 

Defect Ef (eV) MP (eV) Ef,corr = Ef + MP Ef,avg 
(eV) 2×2×2 3×3×3 2×2×2 3×3×3 2×2×2 3×3×3 

Ca+2 interstitial -11.30 -10.31 1.09 0.73 -10.21 -9.58 -9.895 
Ca-2 vacancy 15.37 15.97 1.09 0.73 16.46 16.7 16.58 
F-1 interstitial -0.54 -0.41 0.28 0.18 -0.26 -0.23 -0.245 
F+1 vacancy 2.31 3.00 0.28 0.18 2.59 3.18 2.885 
Ca0 interstitial 3.40 -- 0 -- 3.40 -- 3.4 
Ca0 vacancy 15.78 -- 0 -- 15.78 -- 15.78 
F0 interstitial -0.54 -- 0 -- -0.54 -- -0.54 
F0 vacancy 8.71 -- 0 -- 8.71 -- 8.71 
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Figure 4.12:(Color online) Formation energy as a function of Fermi energy for 
F and F– interstitial defects in CaF2. 
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Figure 4.13:(Color online) Vacancy formation energies as a function of Fermi 
energy for F and F+ in CaF2 
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Figure 4.14:(Color online) Interstitial formation energies as a function of 
Fermi energy for Ca and Ca+2 
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Figure 4.15:(Color online) vacancy formation energies as a function of Fermi 
energy for Ca and Ca+2 
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4.5.3The corrected Transition level  calculations for CaF2 

 

We calculated the transiton level for CaF2 from Equations 

(4.1),(4.2),(4.4),(4.5) as follow: 

)( 1)( qEd
Vi and )( 2)( qEd

Vi  are the defects formation energies at EF = 0 and charge 

states q1 and q2. The values of )()( qEd
Vi  are obtained from Ef,avg in the last column 

of  Table 4.5  for charged (with charges +2, -2, +1, and -1) and neutral (0 

charge) defects. The values of ),( 21)( qqVi µsemilocal are shown in the first 

column of  Table 4.6 where (0, -2), (+2, 0), (+1, 0), and (0, -1) are the charge 

transitions (q1, q2) for, respectively, Ca vacancy (Cav), Ca interstitial (Cai), F 

vacancy (Fv), and F interstitial (Fi). µsemilocal are the values before the correction 

for the error  arising from the band gap underestimation. The correction factor  

= VBMPBE0 – VBMPBE ~ 2 eV (figure. 4.11) can be added to µsemilocal to place 

the level in the corrected band gap, PBE0
gE  ~ 10.6 eV (see figure 4.11b), 

associated with the PBE0 calculation. The corrected values µcorrected = µsemilocal 

+  are listed in the second column of Table 4.6. It is clear that µcorrected are 

given with reference to the VBMPBE0 and, hence, falling within the corrected 

band gap ܧ௚୔୆୉଴ (figure 4.11a). On the other hand µsemilocal are given with 

respect to VBMPBE (figure 4.11b). 

The above procedure of correcting the level positions follows tightly the 

correction recipe suggested in Ref[39]. The condition for implementing this 

recipe is that VBMPBE0 and VBMPBE (figure.4.11) must be given with reference 

to a common ionic electrostatic potential. Satisfying this condition leads to the 

alignment of µcorrected and µsemilocal as demonstrated in Ref[39]. Such condition is 

true in our case since the QE calculations in figure 4.11 are based on the same 

pseudopotentials. Additionally the default energy scale in QE software is set 
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relative to the ionic electrostatic potential. In other words the energy scale in 

figure 4.11 for the QE data is automatically given with respect to the ionic 

electrostatic potential. That is why the w2k NDOS (figure 4.2) are manually 

shifted to align with that from QE calculation since the main purpose of the w2k 

data is to optimize the band gap size. 

Table 4.6: The correction of the transition levels (µsemilocal) from 

semilocal calculation using the correction factor  = VBMPBE0 – 

VBMPBE ~ 2 eV in figure 4.12. µsemilocal is given with respect to 

VBMPBE0.   

Defect Charge 
transition 

µsemilocal (eV) µcorrected (eV) = 
µsemilocal +  

Cav (0, -2)    0.40 2.40 
Cai (+2, 0) 6.65 8.56 
Fv (+1, 0) 5.83 7.83 
Fi (0, – 1) 0.30 2.30 

 

From table 4.3 and tabe 4.6 we can conclude that the transiton levels  of the barium 

Fluorides is similar to those for Calcium Flouride and this is due to their cubic compound 

structure ,besides the similarity in their properties. 
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

5.1CONCLUSION 

We have managed to calculate with high accuracy the charge transition levels of 

stable native defects in two of the fluorite structures, BaF2 and CaF2, using 

advanced first-principle calculation methods. After a thorough literature survey 

we recognized that such kind of investigation was lacking apart from a timely 

report by Nyawere et al about the identification of stable native defects in BaF2. 

This study has clearly illuminated the importance of accurate native defect 

levels for the technology and fundamental Physics specially after arriving at a 

value for the F-center level that was close to the experimental one obtained by 

optical absorption band method. Furthermore, the study has demonstrated that 

these wide gap fluorite structures could facilitate advanced investigation 

associated with the localized electronic wave function interactions between 

defects without sever interaction with the band states, rendering these materials 

as prototypes for fundamental studies of the physics of defect and isolated 

atoms.  

The transition level was assigned to the Fermi level where two defect charge 

states have the same formation energy. The error in the calculation of the 

formation energies arising from image charge interactions between periodic 

supercells have been relieved using Makov-Payne correction factor.Semilocal 

and hybrid density-functional calculations are performed, as described by 

Alkauskaset al (PRL 101, 046405 (2008)), in order to accurately place the 

transition levels, relative to the valence band maximum, in the corrected band 
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gap of  BaF2 and CaF2. Finally, full-potential, Linearized Augmented 

Planewave calculation, known for its accuracy, is performed to validate the 

band gaps from the semilocal and hybrid calculations. 

We also find that the charged cation in Barium Flouride is the most stable native 

defect than the encountered on in Calcium fluoride.More over we found that the 

transition levels of Barium Flouride are similar to those in Calcium Flouride.  

The results in figure (4.11a) and figure (4.11b) show three important points. 

First, GGA always over estimated the cell parameters, and the LDA was 

accurate in determining the cell parameters when using pbe0 pseudopotential. 

However, LDA under estimated the cell parameters when using the ultrasoft 

pseudopotential. Generally the universal feature of the LDA and GGA should 

be that the LDA tends to underestimate lattice parameters, which are then 

corrected by the GGA to values closer to the experimental results. However, we 

also found that the under estimation /overestimation of lattice parameter also 

depends on the pseudopotentials used in the calculations. For example, when 

using the norm-conserving pseudoopotential, both the LDA and GGA 

overestimated the lattice parameters, although the parameters in LDA 

calculation was just slightly overestimated. Secondly, the calculations using 

ultrasoftpseudopotential (usp) with the LDA and real space were not well 

converged comparing with the other cases. The use of ultrasoft pseudopotentials 

were acceptable only in reciprocal space. The best choice of approximations for 

use in our study is the combination of GGA + ultrasoftpseudopotential. 

The mBJLDA methods gives rise to acceptable predictions of the band gap 

value as compared to experiment,but this method is highly computational cost. 

If one would seek for precision without taking this factor into account, the 

quantum espresso is the method to use. If one wouldprefer to sacrifice a little 

the precision obtained against the savings in computational cost, the mBJLDA 

seems the appropriate method. In conclusion, we can typify the state of matters 
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with respect to the calculation of the band gap of  MF2 as follows,A quite 

precise method does exist, the quantum espresso simulations package,It’s 

computational cost is lower. A relatively quicker code, theWien2k implemented 

with the mBJLDA potential, gives somehow more accurate results than the 

other. 

5.2 Future work 
From here, there are many possible avenues that future work can take. For the 

transition level study in barium fluoride and calcium fluoride. There is a natural 

place to continue; now that we know the important defects to consider we can 

start looking for suitable dopants to obtain an n-type material and study their 

optical and electronic properties. Modern methods are still primarily in the 

realm of developing a huge database of potential dopants and then data mining 

the result for the proper energetic and effect on band structure. On a personal 

level, it is discouraging that this scattershot approach is the most sophisticated 

means of solving this problem, but it also should not be surprising as this is 

what the computer really does best. The art in this work is to prioritize the most 

likely candidate materials as well as determine how to preserve the most 

relevant physics in our calculations (such as choice of which pesudopotentials 

to use).More over we can use other sophisticated software for matter of 

comparative such as VASP simulation package known with it is accuracy in 

calculating band gab as well as wein2k software. 

It is very crucial to conduct further study on accuracy of hybrid functional 

applying on calculating the defect formation energies of Alkaline earth fluorides 

structure.  

It will be useful to perform the same techniques (extrapolations methods and  
potential alignment) to the reminder of the alkaline earth fluorides (SrF2, MgF2) 
in order to have  Comparative studies about their electronic properties  
,formation energies, and transition levels. 
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Appendices   

Appendix A 

 

EXAMPLE OF QUANTUM-ESPRESSO INPUT FILES 

#!/bin/sh 

# run from directory where this script is 

cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname 

EXAMPLE_DIR=`pwd` 

# check whether echo has the -e option 

if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi 

# function to test the exit status of a job 

$ECHO 

$ECHO "$EXAMPLE_DIR : starting" 

$ECHO 

$ECHO "This example shows how to use pw.x to calculate the total energy 

and" 

$ECHO "the band structure of four simple systems: Si, Al, Cu, Ni." 

# set the needed environment variables 

. ./environment_variables 

# required executables and pseudopotentials 
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BIN_LIST="pw.xdos.x" 

PSEUDO_LIST="S.pz-n-rrkjus_psl.0.1.UPF In.pz-dn-rrkjus_psl.0.2.2.UPF 

S.rel-pz-n-kjpaw_psl.0.1.UPF In.rel-pz-dn-kjpaw_psl.0.2.2.UPF" 

$ECHO 

$ECHO "  executables directory: $BIN_DIR" 

$ECHO "  pseudo directory:      $PSEUDO_DIR" 

$ECHO "  temporary directory:   $TMP_DIR" 

$ECHO "  checking that needed directories and files exist...\c" 

# check for directories 

for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do 

if test ! -d $DIR ; then 

        $ECHO 

        $ECHO "ERROR: $DIR not existent or not a directory" 

        $ECHO "Aborting" 

exit 1 

fi 

done 

for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results96_dos" ; do 

if test ! -d $DIR ; then 

mkdir $DIR 
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fi 

done 

cd $EXAMPLE_DIR/results96_dos 

# check for executables 

for FILE in $BIN_LIST ; do 

if test ! -x $BIN_DIR/$FILE ; then 

        $ECHO 

        $ECHO "ERROR: $BIN_DIR/$FILE not exist 

istent or not executable" 

        $ECHO "Aborting" 

exit 1 

fi 

done 

# how to run executables 

PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" 

DOS_COMMAND="$PARA_PREFIX $BIN_DIR/dos.x $PARA_POSTFIX" 

$ECHO 

$ECHO "  runningpw.x as: $PW_COMMAND" 

$ECHO "  runningdos.x as: $DOS_COMMAND" 
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$ECHO 

 # clean TMP_DIR 

   $ECHO "  cleaning $TMP_DIR...\c" 

rm -rf $TMP_DIR/* 

   $ECHO " done" 

  # band structure calculation along delta, sigma and lambda lines 

cat> CaF96.in << EOF 

&control 

calculation='scf', 

restart_mode='from_scratch', 

pseudo_dir='$PSEUDO_DIR/', 

outdir = '$TMP_DIR/', 

prefix='CaF1' 

etot_conv_thr= 1.0D-4, 

forc_conv_thr= 1.0D-3 

 / 

&system 

ibrav= 0, A= 1, nat=96, ntyp= 2, ecutwfc =40.0  

 / 
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&electrons 

mixing_beta = 0.5D0, 

conv_thr    = 1.D-6 

/  

ATOMIC_SPECIES 

Ca40.078  ca_pbe_v1.uspp.F.UPF 

 F 18.998404 f_pbe_v1.4.uspp.F.UPF 

ATOMIC_POSITIONS {angstrom} 

Ca  0.000000000         0.000000000         0.000000000      

Ca  0.000000000         2.731604576         2.731604576    

Ca  2.731604576         0.000000000         2.731604576    

Ca  2.731604576         2.731604576         0.000000000       

Ca  0.000000000         0.000000000         5.463209152      

Ca  5.463209152         0.000000000         0.000000000      

Ca  0.000000000         5.463209152         0.000000000   

Ca  0.000000000         2.731604576         8.194813728   

Ca  5.463209152         2.731604576         2.731604576   

Ca  0.000000000         8.194813728         2.731604576   

Ca  2.731604576         0.000000000         8.194813728   
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Ca  8.194813728         0.000000000         2.731604576   

Ca  2.731604576         5.463209152         2.731604576   

Ca  2.731604576         2.731604576         5.463209152   

Ca  8.194813728         2.731604576         0.000000000   

Ca  2.731604576         8.194813728         0.000000000   

Ca  0.000000000         5.463209152         5.463209152   

Ca  5.463209152         0.000000000         5.463209152  

Ca  5.463209152         5.463209152         0.000000000   

Ca  0.000000000         8.194813728         8.194813728   

Ca  5.463209152         2.731604576         8.194813728   

Ca  5.463209152         8.194813728         2.731604576   

Ca  2.731604576         5.463209152         8.194813728   

Ca  8.194813728         0.000000000         8.194813728   

Ca  8.194813728         5.463209152         2.731604576   

Ca  2.731604576         8.194813728         5.463209152   

Ca  8.194813728         2.731604576         5.463209152   

Ca  8.194813728         8.194813728         0.000000000   

Ca  5.463209152         5.463209152         5.463209152 

Ca  5.463209152         8.194813728         8.194813728 
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Ca  8.194813728         5.463209152         8.194813728   

Ca  8.194813728         8.194813728         5.463209152   

     F   1.365802288         1.365802288         1.365802288   

     F   9.560616016         9.560616016         9.560616016   

     F   9.560616016         9.560616016         1.365802288   

     F   1.365802288         1.365802288         9.560616016   

     F   9.560616016         1.365802288         9.560616016   

     F   1.365802288         9.560616016         1.365802288   

     F   1.365802288         9.560616016         9.560616016   

     F   9.560616016         1.365802288         1.365802288   

     F   1.365802288         4.097406864         4.097406864   

     F   9.560616016         1.365802288         4.097406864   

     F   1.365802288         4.097406864         1.365802288   

     F   9.560616016         4.097406864         1.365802288   

     F   1.365802288         1.365802288         4.097406864   

     F   9.560616016         4.097406864         4.097406864   

     F   4.097406864         1.365802288         4.097406864   

     F   1.365802288         9.560616016         4.097406864   

     F   4.097406864         1.365802288         1.365802288   
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     F   4.097406864         9.560616016         4.097406864   

     F   4.097406864         9.560616016         1.365802288   

     F   4.097406864         4.097406864         1.365802288   

     F   4.097406864         4.097406864         9.560616016   

     F   1.365802288         4.097406864         9.560616016   

     F   4.097406864         1.365802288         9.560616016   

     F   1.365802288         1.365802288         6.829011440   

     F   9.560616016         9.560616016         4.097406864   

     F   9.560616016         9.560616016         6.829011440   

     F   1.365802288         9.560616016         6.829011440   

     F   9.560616016         1.365802288         6.829011440   

     F   6.829011440         1.365802288         1.365802288   

     F   4.097406864         9.560616016         9.560616016   

     F   6.829011440         9.560616016         9.560616016   

     F   6.829011440         1.365802288         9.560616016   

     F   6.829011440         9.560616016         1.365802288   

     F   1.365802288         6.829011440         1.365802288   

     F   9.560616016         4.097406864         9.560616016   

     F   9.560616016         6.829011440         9.560616016   
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     F   9.560616016         6.829011440         1.365802288   

     F   1.365802288         6.829011440         9.560616016   

     F   1.365802288         4.097406864         6.829011440   

     F   9.560616016         4.097406864         6.829011440   

     F   6.829011440         4.097406864         4.097406864   

     F   4.097406864         4.097406864         4.097406864   

     F   6.829011440         4.097406864         1.365802288   

     F   6.829011440         1.365802288         4.097406864   

     F   1.365802288         6.829011440         4.097406864   

     F   9.560616016         6.829011440         4.097406864   

     F   4.097406864         1.365802288         6.829011440   

     F   4.097406864         9.560616016         6.829011440   

     F   6.829011440         9.560616016         4.097406864   

     F   4.097406864         6.829011440         4.097406864   

     F   4.097406864         6.829011440         1.365802288   

     F   4.097406864         4.097406864         6.829011440   

     F   6.829011440         4.097406864         9.560616016   

     F   4.097406864         6.829011440         9.560616016   

     F   1.365802288         6.829011440         6.829011440   
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     F   9.560616016         6.829011440         6.829011440   

     F   6.829011440         1.365802288         6.829011440   

     F   6.829011440         9.560616016         6.829011440   

     F   6.829011440         6.829011440         1.365802288   

     F   6.829011440         6.829011440         9.560616016   

     F   6.829011440         4.097406864         6.829011440   

     F   6.829011440         6.829011440         4.097406864   

     F   4.097406864         6.829011440         6.829011440   

     F   6.829011440         6.829011440         6.829011440   

K_POINTS  gamma 

CELL_PARAMETERS alat 

10.9264183044           0.0000000000         0.0000000000 

 0.0000000000          10.9264183044         0.0000000000 

 0.0000000000           0.0000000000        10.9264183044 

EOF 

$ECHO "  running the scf calculation for Si...\c" 

$PW_COMMAND < CaF96.in > CaF96.out 

    $ECHO " done" 

     #clean TMP_DIR 
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$ECHO "  cleaning $TMP_DIR...\c" 

rm -rf $TMP_DIR/* 

   $ECHO " done". 
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Appendix B 

QUANTUM ESPRESSO –HYBRID FILE OF (BaF2) 

 

#!/bin/sh 

 

# run from directory where this script is 

cd `echo $0 | sed 's/\(.*\)\/.*/\1/'` # extract pathname 

EXAMPLE_DIR=`pwd` 

 

# check whether echo has the -e option 

if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi 

 

$ECHO 

$ECHO "$EXAMPLE_DIR : starting" 

$ECHO 

$ECHO "This example shows how to use pw.x to calculate the total energy" 

$ECHO "of silicon and of a few small molecules using hybrid functionals." 

 

# set the needed environment variables 

. ../environment_variables 

 

# required executables and pseudopotentials 

BIN_LIST="pw.x" 

PSEUDO_LIST="Si.pz-vbc.UPF" 
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x_gamma_extrapolation=".TRUE." 

exxdiv_treatment="gygi-baldereschi" 

if [ ! -z "$1" ] ; then exxdiv_treatment="$1" ; fi 

if [ "$exxdiv_treatment" = "vcut_ws" ] ; then x_gamma_extrapolation=.FALSE. 
; fi 

if [ "$exxdiv_treatment" = "vcut_spherical" ] ; then 
x_gamma_extrapolation=.FALSE. ; fi 

ecutvcut=0.7 

 

$ECHO 

$ECHO "  executables directory: $BIN_DIR" 

$ECHO "  pseudo directory:      $PSEUDO_DIR" 

$ECHO "  temporary directory:   $TMP_DIR" 

$ECHO "  checking that needed directories and files exist...\c" 

 

# check for directories 

for DIR in "$BIN_DIR" "$PSEUDO_DIR" ; do 

    if test ! -d $DIR ; then  

        $ECHO 

        $ECHO "ERROR: $DIR not existent or not a directory" 

        $ECHO "Aborting" 

        exit 1 

    fi 

done 
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for DIR in "$TMP_DIR" "$EXAMPLE_DIR/results/BaF_hyb" ; do 

    if test ! -d $DIR ; then 

        mkdir $DIR 

    fi 

done 

cd $EXAMPLE_DIR/results/BaF_hyb 

 

# check for executables 

for FILE in $BIN_LIST ; do 

    if test ! -x $BIN_DIR/$FILE ; then 

        $ECHO 

        $ECHO "ERROR: $BIN_DIR/$FILE not existent or not executable" 

        $ECHO "Aborting" 

        exit 1 

    fi 

done 

 

# check for pseudopotentials 

for FILE in $PSEUDO_LIST ; do 

    if test ! -r $PSEUDO_DIR/$FILE ; then 

       $ECHO 

       $ECHO "Downloading $FILE to $PSEUDO_DIR...\c" 

            $WGET $PSEUDO_DIR/$FILE $NETWORK_PSEUDO/$FILE 2> 
/dev/null 

    fi 
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    if test $? != 0; then 

        $ECHO 

        $ECHO "ERROR: $PSEUDO_DIR/$FILE not existent or not readable" 

        $ECHO "Aborting" 

        exit 1 

    fi 

done 

$ECHO " done" 

 

# how to run executables 

PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX" 

DOS_COMMAND="$PARA_PREFIX $BIN_DIR/dos.x $PARA_POSTFIX" 

$ECHO 

$ECHO "  running pw.x as: $PW_COMMAND" 

$ECHO 

 

$ECHO 

$ECHO "  running PBE0 calculation for Si with nq=1,2,4 \c" 

$ECHO 

 

#for nq in 1 2 4; do 

 

# self-consistent calculation 

rm -rf $TMP_DIR/* 
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cat > BaF_scf_hyb.in << EOF 

 &control 

    calculation = 'scf' 

    restart_mode='from_scratch', 

    prefix='baf_hyb', 

    pseudo_dir = '$PSEUDO_DIR/', 

    outdir='$TMP_DIR/' 

 / 

 &system     

    ibrav=  0, A = 6.20010, nat=  3, ntyp= 2, 

    ecutwfc =15.0, occupations='tetrahedral', 

    input_dft='pbe0',  

    ecutvcut=$ecutvcut 

    x_gamma_extrapolation = $x_gamma_extrapolation 

 / 

 &electrons 

    mixing_beta = 0.7  

    conv_thr =  1.0d-3 

 / 

CELL_PARAMETERS {alat} 

  0.500000000000000   0.500000000000000   0.000000000000000 

  0.500000000000000   0.000000000000000   0.500000000000000 

  0.000000000000000   0.500000000000000   0.500000000000000 

ATOMIC_SPECIES 
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  Ba 137.32700 Ba.pz-hgh.UPF 

  F 18.99800 F.pz-hgh.UPF 

ATOMIC_POSITIONS 

 Ba   0.000000000000000   0.000000000000000   0.000000000000000 

 F   0.250000000000000   0.250000000000000   0.250000000000000 

 F   0.750000000000000   0.750000000000000   0.750000000000000  

K_POINTS {automatic} 

1 1 1 0 0 0 

EOF 

$ECHO "  running the scf calculation for Si with nq = 4 ...\c" 

$PW_COMMAND < BaF_scf_hyb.in > BaF_scf_hyb.out 

$ECHO " done" 

grep -e ! BaF_scf_hyb.out | tail -1 

# 

#DOS calculation 

cat > BaF_dos_hyb.in << EOF 

&DOS 

prefix='baf_hyb' 

outdir = '$TMP_DIR',  

DeltaE=0.001, 

fildos='BaF_dos_hyb.dos',     

   / 

EOF 

$ECHO "  running the scf calculation for Si...\c" 
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$DOS_COMMAND <BaF_dos_hyb.in> BaF_dos_hyb.out 

$ECHO " done" 

# 

# 

#done 

# clean TMP_DIR 

#$ECHO "  cleaning $TMP_DIR...\c" 

#rm -rf $TMP_DIR/barium* 

$ECHO " done" 
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