

Optimizing Gateway Placement in Wireless Mesh Network using Genetic

Algorithm and Simulated Annealing

الجينية ومحاكاة التلدينالخوارزمية ستخدام ات في الشبكة اللاسلكية المعشقة بلبواباأمثلة مواقع ا

BY

AWADALLAH MOHAMMED AHMED ALI

A dissertation submitted in Partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

(Computer Science)

Supervisor

Professor: Aisha Hassan Abdallah Hashim

College of Computer Science and Information Technology

Sudan University of Science & Technology

JANUARY 2016

I

ABSTRACT

Recently, Wireless Mesh Network (WMN) has gained important roles in current

communication technologies. It has been used in several applications and most of them

are critical applications such as surveillance, transportation systems and rescue systems.

Hence, the WMN attracts a lot of attention from many researchers. WMN consists mainly

of mesh clients MCs and mesh routers MRs, some of the latter are supplied by additional

functions to serve as Internet gateways (IGs). Thus, most of the network traffic is acting

toward IGs. Therefore, the network performance largely depends on the MRs’ placement,

especially the IGs. There are many research efforts on solving the gateway placement

problem (GPP) and it has been proven to be NP-Complete by many researchers. Thus,

finding the optimal solution is difficult. Therefore, finding near optimal solution is crucial

to improve the network performance. This research proposes a novel approach to solve

this problem using Genetic Algorithm (GA) and Simulated Annealing (SA) to achieve a

near optimal solution guided by a mathematical model, considering the number of IGs and

the number of hops that a packet traverses between the IG and the source / destination MR

(MR-IG). The main objective of the proposed approach is to minimize the variation of

MR-IG-hop counts (VAR-MR-IG-Hop) among MRs to insure that the IGs are placed in

the appropriate positions. Finally, the proposed set of algorithms is evaluated using many

generated instances using different parameters (population size, tournament size,

crossover type, mutation type) for GA and many parameters for the SA such as the internal

temperature, the final temperature and the parameters that have been used to change the

internal temperature and in the transition function. Furthermore, a comparison between

the two algorithms have been done. The experimental results for GA have shown high

convergence rate. Moreover, the algorithm has considerable scalability and robustness to

solve the GPP in large and small networks. In addition, SA has shown high convergence

rate and fast execution time in comparison with the GA. However, GA has better

performance in the small-size network with high scalability opportunities while SA is

faster than GA in the large-size network but it has limited chances for further optimization.

II

 مستخلص البحث

ي فقد تم إستخدامها ف .دوراً هاماً في مجال تكنولوجيا الإتصالات المعشقةالشبكات اللاسلكية لعبتفي هذه الآونة

اه العديد بتولهذا فقد جذبت إنالأنقاذ. وأنظمةالمواصلات المراقبة ومثل أنظمة والمهمةساسة العديد من التطبيقات الح

. بعض عملاءوأجهزة موجهات ،الأجهزةمن بشكل رئيسي من نوعين عشقةاللاسلكية الم من الباحثين. تتكون الشبكة

تم توجيهها فإن معظم البيانات يوبالتالي ، للشبكة العنكبوتيةجهات مزودة بمزايا إضافية تجعلها تعمل كبوابات وهذه الم

نالك العديد همن أعظم المشاكل التي تؤثر في أداء الشبكة. الشبكة قع البوابات في اعتبر تحديد موي، وهذه البواباتنحو

لة من وقد تم إثبات أن هذه المشك .بهاوالمشاكل المتعلقة مشكلة تحديد مواقع البواباتلتعالج قدمت التي من البحوث

ولذا كان لابد من إيجاد طرق .الأمثلالحصول على الحل الصعب تالي من وبال كثيرة حدود غير قطعية كاملة(النوع)

جديداً للحصول على الحل القريب من الأمثل بإستخدام حلاً من الحل الأمثل. هذا البحث يقدم قريب للحصول على حل

انات بين ي تعبرها حزمة البييهتم بعدد النقاط التنموذجاً رياضياً بإستخدامالتلدين محاكاة الخوازمية الجينية وخوازمية

لتحديد المواقع المثلى للبوابات بهدف الحصول هذا النموذج يهدف والموجهات الأخرى. الشبكة العنكبوتيةبوابات

 لىإبين الموجهات من حيث عدد النقاط التي تعبرها حزمة البيانات من أي موجه التباين تقليلعلى أداء أفضل وذلك ب

لكل خوارزمية عواملبإستخدام العديد من الحالات يتم توليدها الخوارزميات المقترحة بإستخدام أقرب بوابة وقد تم تقييم

ودرجة الحرارة الجينية خوارزميةوغيرها من عوامل الطرق تبادل الجينات، التغيير الإحيائي ،كحجم المجتمع

ن أ على النموذج المقترح التقييموقد أظهرت نتائج . التلدينمحاكاة والنهائية وغيرها من عوامل خوارزمية الداخلية

على الحصول على حلول جيدة في شبكات بأحجام مختلفة لها القدرةو إمكانيات جيدة ومتانةذات الخوازمية الجينية

القريب والذي قد لحل بينما الآخيرة يمكنها الوقوع في ا التلدين محاكاة ولكنها تستغرق زمناً أطول مقارنة بخوارزمية

دم الحل والتق ايبعد الخوارزمية عن الحل الأمثل بينما أظهرت الخوارزمية الجينية بفضل معاملاتها إبتعادها عن هذ

 دائماً نحو الحل الأمثل.

III

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful.

First and foremost, I thank my God (Allah S.W.T) who supplies all my needs. Thank you

for the inspiration and perseverance. Thank you, for the incomparable gift of salvation

and the eternal hope you offers all who would place their trust in you.

I would like to thank my supervisor, Professor Aisha Hassan, for sharing her knowledge,

guidance, patience and support throughout this dissertation.

 I truthfully present my appreciation to my beloved brother Mohammed Albarra Hassan

for sharing his knowledge on the Genetic algorithm and Optimization with me. I wish to

express my gratitude to my brother Mohammed Mahmoud Mantai for supporting me in

English language.

Lastly, I would like to thank my parents and my wife for their continued support of my

education.

I would like to acknowledge the financial support rendered by the University of Gezira

and the Faculty of Mathematical and Computer Sciences.

IV

DECLARATION

I hereby declare that this dissertation is the result of my own investigation, except where

otherwise stated. I also declare that it has not been previously or concurrently submitted

as a whole for any other degrees at Sudan University of Science and Technology or other

institutions.

Awadallah Mohammed Ahmed Ali

Signature________________ Date___________________

V

TABLE OF CONTENTS

Abstract ... I

البحث مستخلص .. II

Acknowledgements .. III

Declaration ... IV

Table of Contents .. V

List of Tables ... XI

List of Figures .. XII

List of Abbreviations .. XIII

CHAPTER ONE INTRODUCTION……………………………………………......1

1.1 Overview .. 1

1.2 Background .. 1

1.3 Problem Statement and its Significance .. 2

1.4 Research Objectives ... 3

1.5 Research Questions .. 4

1.6 Research Hypothesises / Philosophy ... 4

1.7 Research Methodology and Tools ... 5

1.8 Dissertation Organization .. 6

CHAPTER TWO LITERATURE REVIEW………………………………………..7

2.1 Background .. 7

VI

2.2 Mesh topology ... 7

2.3 Wireless Mesh Network ... 8

2.4 Wireless Mesh Network Architecture .. 9

2.4.1 Flat Wireless Mesh Network ... 10

2.4.2 Hierarchical Wireless Mesh Network .. 10

2.4.3 Hybrid Wireless Mesh Network .. 11

2.5 Wireless Mesh Network Applications ... 11

2.6 Internet Gateways (IGs) Placement Issues .. 13

2.7 Wireless Mesh Network Planning ... 14

2.8 Graph Concepts and it’s Applications ... 14

2.8.1 Connected Graphs .. 15

2.8.2 Directed Graphs ... 15

2.8.3 Undirected Graphs ... 16

2.8.4 Weighted Graphs ... 17

2.8.5 Paths: Distance and Metrics ... 17

2.8.6 Weight and Distance .. 18

2.8.7 Adjacency and incidence matrix .. 19

2.8.8 The Shortest path Problem: Dijkstra’s Algorithm 19

2.9 Optimization .. 20

2.10 Polynomial-time solvability ... 20

2.11 The sets P and NP .. 20

2.12 NP-Complete Problems ... 21

VII

2.13 Mathematical optimization .. 21

2.14 Combinatorial Optimization .. 23

2.14.1 Combinatorial Optimization Problems .. 23

2.14.2 Methods of Solution for the optimization Problems 25

2.14.2.1 Linear programming (LP) ... 25

2.14.2.2 Integer Linear Programming (ILP) .. 26

2.14.2.3 Recursion and enumeration .. 26

2.14.2.4 Heuristics .. 27

2.14.2.5 Statistical sampling ... 27

2.14.2.6 Special and ad hoc techniques .. 27

2.14.3 Evolutionary Methods (Evolutionary Algorithms) 27

2.14.3.1 Domains of Application ... 29

2.14.3.2 Genetic Algorithms .. 30

2.14.4 Simulated Annealing (SA) ... 31

2.14.5 Particle Swarm Optimization (PSO) .. 33

2.14.6 PSO Algorithm... 34

2.14.7 Ant Colony Optimization (ACO)... 34

2.15 Basic Network Models ... 35

2.15.1 Shortest Path Model ... 35

2.15.2 Traditional Methods for solving the Shortest Path Problem 35

VIII

2.15.2.1 Dijkstra’s algorithm .. 36

2.15.2.2 Bellman-Ford algorithm ... 36

2.15.2.3 Floyd-Warshall algorithm ... 36

2.16 Related Works .. 36

2.17 Summary .. 42

CHAPTER THREE GATEWAY PLACEMENT SOLUTION…………………..43

3.1 Background .. 43

3.2 Network Model .. 44

3.3 The problem formulation ... 45

3.4 Proposed Algorithms ... 48

3.5 The Evaluation Method.. 48

3.6 Summary .. 49

CHAPTER FOUR THE PROPOSED ALGORITHMS……………………………50

4.1 Network Model .. 50

4.2 The GA-Based Approach ... 51

4.2.1 Network Encoding (Chromosome Representation) 51

4.2.2 Fitness Function ... 51

4.2.2.1 MRs-VAR Fitness Function ... 52

4.2.2.2 IGs-VAR Fitness Function .. 52

4.2.2.3 VAR-MRs-IGs-Hop Fitness Function.. 52

4.2.3 Selection Operator ... 52

4.2.4 Crossover Operator .. 53

IX

4.2.4.1 Single Point Crossover .. 53

4.2.4.2 Two-Point Crossover... 53

4.2.4.3 Uniform Crossover .. 54

4.2.5 Mutation Operator .. 54

4.2.6 Repair Procedure .. 55

4.2.1 The initial population ... 56

4.2.2 The Algorithm Template.. 56

4.2.3 Illustration of the GA processes ... 57

4.3 The SA-Based Approach ... 60

4.3.1 Network Encoding (Representation).. 61

4.3.2 The initial solution ... 62

4.3.3 The fitness function.. 62

4.3.3.1 MRs-AVG Fitness Function .. 62

4.3.3.2 IGs-AVG Fitness Function .. 62

4.3.3.3 MRs-IGs-AVG Fitness Function ... 62

4.3.4 The best solution .. 63

4.3.5 The transition function ... 63

4.3.6 Cooling Control and Stopping Condition .. 63

4.3.7 The Algorithm Template (Pseudo code) .. 64

4.4 Summary .. 65

X

CHAPTER FIVE RESULTS ANALYSIS AND EVALUATION………………...66

5.1 The Evaluation of the GA-Based Algorithm ... 66

5.1.1 The effect of population size on convergence rate 67

5.1.2 The effect of tournament size on the convergence rate 70

5.1.3 The effect of crossover type on the convergence rate 71

5.2 The Evaluation of the SA-Based Algorithm .. 73

5.3 Summary .. 74

CHAPTER SIX CONCLUSION AND FUTURE RECOMMENDATIONS.….76

6.1 Conclusion ... 76

6.2 Dissertation Contribution ... 77

6.3 Future Works ... 77

References .. 78

Appendix A .. 89

Appendix B .. 105

Appendix C .. 112

XI

LIST OF TABLES

Table No. Page No.

Table 3.1: The notations and symbols used in the problem formulation 45

Table 4.1: The symbols that have been used in SA processes. .. 61
Table 5.1: Parameters used to evaluate the effect of population size 67
Table 5.2: Parameter’ settings to evaluate the effect of tournament size 70
Table 5.3: The parameter settings to evaluate the effect of crossover type 72
Table 5.4: Effect of different crossover types .. 72
Table 5.5: The Parameter’ settings of the experiment ... 73

XII

LIST OF FIGURES

Figure No. Page No.

Figure 1.1: the research framework ... 5

Figure 2.1: Full-mesh topology ... 8
Figure 2.2: Basic WMN Infrastructure. ... 9
Figure 2.3: infrastructure backbone WMN [7] .. 10
Figure 2.4: Hybrid WMN [16] ... 11
Figure 2.5: Simple connected graph .. 15
Figure 2.6: Directed Graph [20]. ... 16
Figure 2.7: Simple undirected graph [21]. ... 16
Figure 2.8: A sample of a weighted graph [22] ... 17

Figure 2.9: Search Techniques [35] ... 28
Figure 2.10: Evolutionary Algorithms and Soft computing [35] 28
Figure 2.11: Basic Evolution Cycle [35] ... 29
Figure 2.12: The basic GA programming chart ... 31

Figure 2.13: The basic steps of Simulated Annealing ... 33
Figure 3.1: A Simple Network Example ... 44

Figure 3.2: Network sample in undirected graph. ... 45
Figure 4.1: Network representation (edges’ matrix and configuration vectors) 50
Figure 4.2: Chromosome’s representation ... 51

Figure 4.3: Single-point crossover operator .. 53

Figure 4.4: Two-point Crossover operator .. 53
Figure 4.5: Mask Sample in Uniform Crossover ... 54
Figure 4.6: Uniform Crossover .. 54

Figure 4.7 : Mutation Operator .. 55
Figure 4.8: GA-Based Algorithm pseudocode .. 57

Figure 4.9 : sample of individual in the encoding stage .. 57
Figure 4.10: a sample of network configuration (Decoding stage) 58
Figure 4.11: Population’s sample of ten individuals ... 58

Figure 4.12: crossover process at the encoding stage .. 59
Figure 4.13: network sample generated by the crossover process 59
Figure 4.14: mutation process (in the encoding stage) .. 60

Figure 4.15: two networks generated by the mutation processes (decoding stage) 60
Figure 4.16: the solution representation in SA in the encoding stage 62

Figure 4.17: SA-Based algorithm pseudocode. ... 65
Figure 5.1: Initial GA results for four rounds and ten generations 67

Figure 5.2: VAR-MR-IG-Hop when the population size=100 .. 68
Figure 5.3: Convergence rate using different population sizes 68
Figure 5.4: Fitness values at the 3000 generation .. 69

Figure 5.5: AVG-MR-IG-Hop and VAR-MR-IG-Hop when the population size=100 .. 69
Figure 5.6: The relationship between AVG-MR-IG-Hop and VAR-MR-IG-Hop 70

Figure 5.7: Convergence Rate using different tournament sizes 71
Figure 5.8: Convergence rate of the three crossover types .. 73
Figure 5.9: VAR-MR-IG-Hop and Internal Temperature ... 74

Figure 5.10: Execution time at different values of internal temperature 74

XIII

LIST OF ABBREVIATIONS

ACO Ant Colony Optimization

ADSL Asynchronous Digital Subscriber Line

AVG-MR-IG-Hop Average Hop counts between MRs and their nearest IG

BACnet Building Automation and Control Networks

BWMN Backbone Wireless Mesh Network

EV Evolutionary Algorithm

GA Genetic Algorithm

GPP Gateway Placement Problem

HCA Hill Climbing Algorithm

IEEE Institute of Electrical and Electronics Engineers

IG Internet Gateway

ILP Integer Linear Programming

LP Linear Programming

MAC Medium Access Control (MAC)

MANET Mobile Ad hoc Network

MC Mesh Client

MR Mesh Router

PC Personal Computer

PDA Personal Digital Assistant

PSO Particle Swarm Optimization

QoS Quality of Services

RFID Radio Frequency Identification

SA Simulated Annealing

TSP Traveling Salesman Problem

VAR-MR-IG-Hop Variation of Hop counts between MRs and their nearest IG

(Variance)

WMN Wireless Mesh Network

WN Wireless Network

WR Wireless Router

1

CHAPTER ONE

INTRODUCTION

1.1 OVERVIEW

Obviously, accessing the information has become very important in our life. The

Internet is the most important source of information, the users of the internet growing

dramatically. Therefore, the demand for satiable network with high performance and

low risk of data loss is also increasing and users need to access their data over the

internet wherever they live. Thus, the internet access technologies for last mile become

very important. In this context, Wireless Mesh Network (WMN) is a useful

communication technology, as internet access to serve users at the last mile, especially

in rural areas, in the areas where many obstacles exist and also the construction cost is

an important factor due to the use of wireless communication, which provides the

internet access and other services in affordable cost.

1.2 BACKGROUND

WMN is a communication technology is used as an internet access to the end users and

in numerous applications such as neighbourhood networking, surveillance, emergency

and rescue systems. Most of the applications that the WMN supports are very critical

and sensitive to packet loss and delay, so that the stability is very important. WMN

mainly consists of mesh routers (MRs) and mesh clients (MCs), some of the formers

have additional functions and features and have external interfaces to connect the

internal network with the internet called internet gateways (IGs). Nowadays, the need

to access the data over the internet is increasing rapidly [1, 2]. Thus, that most of the

network traffic in a network either between the MCs via MRs inside the network or

to/from the internet via the IGs and this may create bottleneck points at the IGs due to

the huge amount of packets. Therefore, the locations of the IGs are very important to

achieve high throughput, minimizing delay and minimizing transmission time as well.

If the IGs placed, too far from the MRs this will increase the transmission time by

increasing the number of hops that the packets traverse from the source to the

destination, which will result in delay. Thus, packet loss may happen, and if they placed

2

close to MRs (by increasing the number of IGs), the transmission time decreases, but

the network cost will increase due to the high cost of the IG installation because of using

physical links to be connected to the internet. Therefore, IG placement optimization is

essential in WMNs planning and design, especially at the earlier stages of network

design, which usually based on topology considerations to minimize overheads of using

sophisticated protocols that will be used in the future to overcome the problem of IG

placement in high levels of network planning and configuration. Therefore, the network

performance depends largely on the optimal placement of MRs especially in the IGs.

Many researchers paid their attention and efforts to the WMNs, and considerable

research works have been achieved to solve the Gateway Placement Problem (GPP)

using different methods and purposes. In addition, many research works dealt with GPP

as an optimization problem [3]. Since GPP is considered as NP-Complete problem and

computationally can be modelled as a combinatorial optimization problem [4]. Thus,

finding the optimal solution is difficult. Hence, some sort of heuristic and metaheuristic

methods are required to find the near optimal solution. Recently, Evolutionary

Algorithms (EAs) such as Genetic Algorithms and Simulated Annealing (SA) were

widely used to solve the optimization problems. In this context, GAs recently have

proved their usefulness and efficiency to solve optimization problems especially the

combinatorial optimization problems in a reasonable time [1]. This research studies the

GPP as it proposes a novel approach to find a near optimal solution for the GPP in

WMN.

1.3 PROBLEM STATEMENT AND ITS SIGNIFICANCE

Currently, most of the network traffic move toward the IGs. Therefore, the IGs are

potential bottleneck points in the network, which may cause low network performance

by reducing the overall network throughput and high bandwidth consumption. Thus,

optimizing locations of the IGs is crucial in network planning for high performance [5]

[6]. If the IGs are located too far from the sources/destination MRs, then the number of

hops that the packet traverses would increase, which cause many problems such as

packet loss, delay. Hence, increasing the number of IGs will minimize the number of

hop counts, but this will result in higher construction cost due to the cost of physical

links that used to connect the IGs to the internet and also may generate interference if

the IGs are close to each other [7]. High throughput is required, but the throughput

3

degrades rapidly with a WMN system as the path length increases [8]. Therefore, if the

IGs placed in unsuitable positions, then the MRs those are far away from their IGs will

achieve low throughput, while other MRs those are close the IGs achieve high

throughput. Therefore, some IGs are overwhelmed with packet traffic, which may cause

bottleneck points in the network, whereas some of them with less traffic. Since the

Throughput is one of the most important parameters that affect the quality of service of

WMN [9]. Hence, optimizing the IGs positions is very important in WMN planning to

improve the network throughput. Thus, the number hops between MRs and the nearest

IGs should be minimized as much as possible. In this context, one must keep in mind

the variations in the number of hops that packet traverses from each MRs to reach the

nearest IGs (MR-IG-Hop) and vice versa should be considered early in the planning

stage (network topology). Thus, minimizing the variation in MR-IG-Hop is critical for

load balancing network. In addition, minimizing the load differences among the IGs

also is another issue to guarantee the IGs are distributed in a near optimal position. To

minimize the affects the above issues a new approach for IG placement in planning

stages (topology) is required.

1.4 RESEARCH OBJECTIVES

Considering the issues, which were stated in the problem definition, this research would

be conducted to achieve the following objectives:

 The main goal of this research is to achieve load balancing and enhance the overall

network throughput.

o MRs and IGs locations Optimization.

o Reduction of the construction cost by optimizing the locations of the IGs

rather than increasing the number of IGs based on the user requirements and

affordable cost.

 The Detailed objectives are:

o Development of the IG placement solution, to optimize the resource

utilization by computing the MRs and IGs locations.

o Improvement of the network performance by optimizing the IGs positions

according to the positions of MRs, Minimizing the differences in MR-IG-

Hop count among MRs.

4

o Optimizing the number of MRs associated with each IG, to achieve better

load balancing.

 The research outcomes as yelled from the achievement of the above objectives are:

o A new solution for solving the GPP.

o A new application (software), which may be used by other researchers in

WMN planning.

o New publications in the research area to increase the knowledge database.

o A new PhD dissertation.

1.5 RESEARCH QUESTIONS

This research will be conducted to answer the following questions in order to realize

the expected objectives:

 What are the design concerns in the proposed solution?

 What is the appropriate method (s) that can be used to deliver the expected

solution for the research problem?

 How the proposed solution will be evaluated?

1.6 RESEARCH HYPOTHESISES / PHILOSOPHY

The GPP in WMN is considered to be an NP-Complete problem and it can be modelled

as combinatorial optimization problem. Hence, it is difficult to find the optimal solution

or it is unlikely to be solvable in a reasonable amount of time [10] [4]. Therefore,

methods to find the near optimal solution are needed in this situation and the

metaheuristic methods are widely used as resolution methods [10]. There are many

(Meta) heuristic methods such as Genetic Algorithm (GA), Ant Colony Optimization

(ACO), Particle Swarm Optimization (PSO) and Simulated Annealing (SA). GAs have

shown their usefulness in resolution of many computational and combinatorial

optimization problems [11]. In addition, to enhance the performance of the WMN, more

focus should be given to the network topology rather than only focusing onto routing

optimization techniques, which is not sufficient to achieve a good performance, and also

to avoid the overhead generated by the routing protocol themselves as much as possible.

5

1.7 RESEARCH METHODOLOGY AND TOOLS

The following steps have guided the researcher to carry out this research:

1. Investigation of the current research works that dealt with the area of WMN

issues and challenges.

2. Determination of the open issues that need to be addressed.

3. Identification and formulation of the research problem.

4. Development of the proposed solution’s architecture to address the problem as

follows:

 Design of the proposed solution.

 Determination of the appropriate methods and tools.

5. Implementation of the algorithms.

6. Evaluation the overall solution

Figure 1.1 illustrates the research framework to deliver the research objectives.

Figure 1.1: the research framework

Evaluate the solution

Develop of the proposed solution

Investigate the current literature review

Formulate the Problem

Select the Appropriate methods and tools

Implement the Algorithms

Design the proposed solution

6

1.8 DISSERTATION ORGANIZATION

The organization of this dissertation chapters as follows:

Chapter 2: presents the literature review that related to the research topic, gives more

details about the research problem, and critically investigates the existing solutions,

which were proposed to address the research problem.

Chapter 3: presents the research methodology and the details of the proposed solution.

Chapter 4: presents the implementation and the details of the proposed algorithms.

Chapter 5: presents the results, discussion about the results.

Chapter 6: concludes the dissertation and presents the potential future works.

7

CHAPTER TWO

LITERATURE REVIEW

2.1 BACKGROUND

 Wireless Mesh Network (WMN) is a promising technology for the next

generations. However, there are some critical issues related to WMN that need to be

addressed for good network sustainability in market [12]. For example, how we can

achieve perfect planning in WMNs in order to enhance the network connectivity and

coverage, to avoid the bottleneck in the IGs, to avoid large number hops count [13].

What are the optimal number of MRs, IGs, and their optimal locations to increase the

network throughput in MRs, IGs and overall network performance [14]. This chapter

introduces the basic WMN concepts, its architecture, challenges and applications. In

addition, this chapter presents the optimization concepts, especially the combinatorial

optimization, optimization problems, the methods that are used to solve these problems

besides the basic concepts of the graph theory that are used to solve WMN and the

algorithms, which were used with the graph’s applications and network problem

solutions. Finally concludes with the previous research efforts in WMN planning,

especially GPP approaches.

2.2 MESH TOPOLOGY

A network where every node is connected to other nodes on the network through

multiple or single hops and some may be connected with more than one hop. In a mesh

topology, every node not only sends its own signals but also relays data from other

nodes. This type of topology is very expensive as there are many redundant connections,

thus it is not mostly used in computer networks. It is commonly used in wireless

networks. Flooding or routing technique is used in mesh topology.

Figure 1.1 shows a sample of full mesh topology.

8

Figure 2.1: Full-mesh topology

2.3 Wireless Mesh Network

WMN is a communication network made up of radio nodes organized in

a mesh topology. WMN consists of MRs and MCs as mentioned early in this

dissertation. Other than the routing capability for gateway or repeater functions as in a

conventional wireless router (WR), MR contains additional routing functions to support

mesh networking. For further improve and flexibility of mesh networking, an MR is

usually equipped with multiple wireless interfaces, which built on either the same or

different wireless access technologies. Compared with a conventional WR, an MR can

achieve the same coverage with much lower transmission power through multi-hop

communications. In spite of all these differences, the conventional WRs are usually

built on a similar hardware platform where MRs can be built on dedicated computer

systems (e.g., embedded systems) and look compact. The MRs in the WMN in contrast

with the other WN are self-healing and self-organized, self-configured, easily

maintainable, highly scalable and reliable service with the nodes in the network, because

if a single node goes down, other nodes are available [15]. They also can be built based

on general-purpose computer systems (e.g., laptop or PC) [16]. MCs also have the

necessary functions for mesh networking, so that may also work as a router in a special

type of WMN as we will see later in this chapter. However, IG or bridge (when MR

connect different networks with different technologies) functions do not exist in these

nodes. In addition, MC usually has only one wireless interface. Consequently, the

MR

Link

9

hardware platform and the software for MCs can be much simpler than those for MRs

can. MCs have a higher variety of device types compared to MRs such as a laptop,

desktop PC, pocket PC, Personal Digital Assistant (PDA), IP phone, Radio Frequency

Identification (RFID) reader, Building Automation and Control Networks (BACnet)

controller, and many other devices [16]. Figure 2.2 shows a demonstration of the basic

architecture of WMN.

Figure 2.2: Basic WMN Infrastructure.

2.4 WIRELESS MESH NETWORK ARCHITECTURE

WMNs are classified into three different categories based on the network topology: flat

WMN, hierarchical WMN, and hybrid. The following three subsections present a brief

discussion of these categories [8]. Figure 2.3 shows a sample of the infrastructure/

backbone WMN structure/ backbone WMN [17].

10

Figure 2.3: infrastructure backbone WMN [8]

2.4.1 Flat Wireless Mesh Network

Here the network consists of MCs that act as both hosts and routers. Thus, the MCs are

responsible of routing, network configuration, service provisioning, and other

application provisioning, packets forwarding, sending and receiving packets among

themselves. Thus, the network architecture is similar to an ad hoc WN [8].

2.4.2 Hierarchical Wireless Mesh Network

In this type, the network consists of multiple levels. The upper levels formed by the

MRs, which form the network backbone so, that MRs may not originate or terminate

data traffic, but they are responsible of packet forwarding. Thus, in this type of network,

the MRs are self-organize and self-healing to provide sustainable network backbone. In

addition, as in the other categories, some MRs are connected to the internet acting as

IGs to the whole network or a subset of the network. MCs are on the lowest level and

communicate via MRs so; MCs originate and terminate the data traffic inside the

network [8].

11

2.4.3 Hybrid Wireless Mesh Network

The network here is a special case of hierarchical WMNs where the WMN utilizes other

WNs for communication, such as Wi-Max network, cellular network, mobile ad hoc

network (MANET) and a normal backboned WMN which is connected to the internet

acting as a backhaul to other networks as shown in Figure 2.4. Here MR can act as IG

when it has an interface to the internet, normal router responsible for forwarding the

packets or a bridge when connect different networks with different technologies [8].

Figure 2.4: Hybrid WMN [17]

2.5 WIRELESS MESH NETWORK APPLICATIONS

WMN is effective alternative technology to offer low cost connectivity. Therefore,

WMNs have recently supported numerous applications (Broadband Internet Access for

last-mile as backbone, Emergency Networking, Community and Neighbourhood-

Networking, Transportation System and Surveillance Systems) better than other types

of WNs such as cellular networks, ad hoc networks, wireless sensor networks and

standard IEEE 802.11x networks [18]. Hereby, examples of some application scenarios

as following:

12

A. Neighbouring Community Networks

In a community, the usual solution is to deploy ADSL or cable. However, there are

some limitations that WMNs can improve as shown in following [18].

 The cable technology delivers the services for houses and therefore many areas

between houses will not be covered.

 A broadband IG between different houses cannot be shared and wireless services

should be established individually.

 A single path to each neighbour can communicate with the rest of the neighbours

or with the outside.

B. Corporative Networks

This scenario corresponds to having a small network in an office or a medium sized

network for all offices of a building or even a network to communicate offices located

in different buildings. Other similar scenarios include airports, hotels, shopping centres

or sports centres.

C. Metropolitan Area Networks

Deploying WMNs in metropolitan areas has a number of advantages. The physical layer

provides a higher average transmission to any cellular network and need not depend on

a wiring. In addition, deploying such infrastructure is much cheaper than cable or fibre

and can be easily and rapidly deployed in areas with few resources, which have never

had any network before. Moreover, the following application scenarios can use WMN:

 Transportation Systems: it used to provide information services to passengers,

remote monitoring of vehicle safety and communications with the driver and so

on.

 Automatic Control Buildings: In buildings, there are several electrical devices

to be controlled, including light, elevator, air conditioning, and so on.

 Surveillance: In corporate buildings, shopping malls and stores need broadband

data transmission technology (images and videos) for monitoring and

surveillance purposes.

13

2.6 INTERNET GATEWAYS (IGS) PLACEMENT ISSUES

Due to the complex structure of the WMN there are many conflicting requirements that

can influence (or will be influenced by) IGs placement approaches. In this subsection,

we discuss some of these issues as listed down [19]:

 Congestion: In WMNs, most traffic is forwarded through the IGs from the

internal network to the internet or vice versa. This may cause some IGs

overloaded and others received less traffic, so the IGs should be placed in such

a way that making load balancing and no node is over congested.

 Bandwidth: While designing gateway placement algorithm one must consider

that, the required bandwidth (the rate of data transfer in bits) of MCs should be

satisfied.

 Interference: interference between gateways can highly influence the network

performance. So the gateways should be placed in such a way that the

throughput is maximum and interference among gateways is minimum.

 Distance between nodes (location): the interference will degrade the

throughput when the gateways placed densely and if the distance is too much

the signal strength will be affected. Therefore, the distance between gateways

(gateway locations) should be optimized.

 Transmission Delay: Due to the indirect communication from source to

destination in WN, the packet stored in each node traversing and then

retransmitted. Thus, the transmission delay time is the storage time and the

original transmission time. So if the packet traverse through a long path the

transmission delay will increase and therefore the gateways should be placed in

such a way that the transmission delay must be minimized by decreasing the

number of hops between MRs and IGs (MR-IG-Hop) [19].

 Cost: the network performance (more gateways increase the network

throughput) will be improved by increasing the number of IGs, but this will

increase the network construction cost because the IGs usually use very

expensive wired links. Therefore, the number of IGs is also another issue in

WMN planning [19] [20].

14

 Coverage: when designing the network, we have to keep in mind that each MR

should be covered by more than one gateway, so that if one of the IGs fails then

MR may use the backup IG [19].

2.7 WIRELESS MESH NETWORK PLANNING

There are many techniques used in WMNs planning and in other WN types such as

WiMAX, WLAN… etc. In contrast, WMN planning is much more complex due to

many considerations during network planning stages as mentioned in this chapter and

most of these considerations conflict with some others. Hence, there are many research

efforts have been done to find the near optimal solution using optimization techniques,

especially the metaheuristic methods.

2.8 GRAPH CONCEPTS AND IT’S APPLICATIONS

Graph is a pair of two sets (V, E), where V is the set of vertices, and E is the set of

edges. Each element in set E has a multiplicity that is means the vertex can participate

more than once [21] . Throughout this research the vertices will be labelled with letters

and numbers (for instance, v1, v2, ….). The following list presents some terminologies

can be used to describe the graph [21].

1. The two vertices u and v are end vertices of the edge (u, v).

2. Edges that have the same end vertices are parallel.

3. An edge of the form (v, v) is a loop.

4. A graph is simple if it has no parallel edges or loops.

5. A graph with no edges (i.e. E is empty) is empty.

6. A graph with no vertices (i.e. V and E are empty) is a null graph.

7. A graph with only one vertex is trivial.

8. Edges are adjacent if they share a common end vertex.

9. Two vertices u and v are adjacent if they are connected by an edge, in other

words, (u, v) is an edge.

10. The degree of the vertex v, written as d (v), is the number of edges with v as an

end vertex. By convention, we count a loop twice and parallel edges contribute

separately.

11. A pendant vertex is a vertex whose degree is 1.

15

12. An edge that has a pendant vertex as an end vertex is a pendant edge.

13. An isolated vertex is a vertex whose degree is 0.

There are many graph types such as directed graphs, undirected graphs, weighted

graphs, un-weighted graphs, multigraphs and simple graphs. The following subsections

discuss some of these types.

2.8.1 Connected Graphs

The G=(V, E), A graph is said to be connected if for every pair of distinct vertices u, v

there is a u-v path joining them, otherwise, G is unconnected graph [22]. Figure 2.5

shows a simple connected graph [21].

Figure 2.5: Simple connected graph

2.8.2 Directed Graphs

If the vertices connected by directed edges or arcs then the graph is said to be a directed

graph or digraph. Figure 2.6 shows a simple directed graph.

16

Figure 2.6: Directed Graph [21].

2.8.3 Undirected Graphs

If the direction of the edges is not considered or for u and v vertices in the graph G, the

edges (u, v) and (v, u) will be considered as one and the same edge in G. In this case,

the graph G is known as undirected graph [22]. Figure 2.7 shows a simple undirected

graph.

Figure 2.7: Simple undirected graph [22].

17

2.8.4 Weighted Graphs

Whatever the type of the graph is directed or undirected graph. The edges of the graph

may represent real world problems. The vertices may represent cities’ map. In this case,

the edges represent the distance between the cities. Thus, the graph is a weighted graph

otherwise the graph is un-weighted [23]. Figure 2.8 shows a weighted graph.

Figure 2.8: A sample of a weighted graph [23]

2.8.5 Paths: Distance and Metrics

If the edge-weighted simple graph G = (V; E; i; h) without negative weight cycles. Here

𝐸 ⊆ 𝑉(2), 𝑖: 𝐸 → 𝑉(2) is an incidence function. And h: 𝐸 → V is an orientation function

and W:𝐸 → R is the weight function but if the graph G has not a weight function that

means each edge has unit weight. If 𝑣1, 𝑣2 ∈ 𝑉 and 𝑃 = (𝑒1, 𝑒2 , … , 𝑒𝑚) is a 𝑣1 − 𝑣2

path (so 𝑣1 is incident to 𝑒1 and 𝑣2 is incident to 𝑒𝑚), the weight of P can be defined

to be the sum of the weights of the edges in P [24]:

𝑊(𝑃) = ∑𝑊(𝑒𝑖)

𝑚

𝑖=1

The distance function 𝑑: 𝑉 × 𝑉 → 𝑅 𝑈 {∞} 𝑜𝑛 |𝐺 is defined by:

𝑑(v1, v2) = ∞

18

If 𝑣1 and v2 lie in distint connected components of G, and by

𝑑(v1, v2) = 𝑊(𝑃)𝑃
𝑚𝑖𝑛

If they are not lie in distinct connected component of the graph G or the case of taking

the minimum over all paths P from v1 to v2. If the graph G has no negative weight

cycles, so the minimum can be found as mentioned above. It follows by definition of

the distance function that d(v1, v2) = ∞ if and only if there is no path between u and v

[24].

2.8.6 Weight and Distance

A graph is said to be weighted if a numeric label or weight is assigned to each of its

edges. Depending on the application, the vertices can represent physical locations and

interpret the weight of an edge as the distance separating two adjacent vertices as

mentioned before. There might be a cost involved in travelling from a vertex to one of

its neighbours, in which case the weight assigned to the corresponding edge can

represent such a cost. The concept of weighted digraphs can be similarly defined. When

no explicit weights are assigned to the edges of an undirected graph or digraph, it is

usually convenient to consider each edge as having a weight of one or unit weight [24].

Based on the concept of weighted graphs, this shows what means for a path to be a

shortest path. Let G = (V; E) be a (di) graph with non-negative edge weights W(e) ∈ R

for each edge e ∈ E. The length or distance d(P) of a u-v path P from u ∈ V to v ∈ V

is the sum of the edge weights for edges in P. Denote by d(u; v) the smallest value of

d(P) for all paths P from u to v. When considering edge weights as physical distances,

a u-v path that realizes d (u; v) is sometimes called a shortest path from u to v. The

above definitions of distance and shortest path also apply to graphs with negative edge

weights. If the weight of an edge is not explicitly given, then the edge will be considered

to have a unit weight [24].

If the vertices u, v, and w in a graph G, the distance function d on G satisfies the

following property [24].

19

Using the lemma “Path distance as metric function”. Let G = (V; E) be a graph with

weight function W ∶ E → R Define a distance function d ∶ V × V → R given by

d(u, v) = {
∞ if there are no paths from u to v

min{ 𝓌(W)| W is a u − v walk , otherwise

Then d is a metric on V if it satisfies the following properties:

1. No negativity: 𝑑(𝑢, 𝑣) ≥ 0 with d (u, v) = 0 if and only if u = v.

2. Symmetry: d (u, v) = d (v, u).

3. Triangle inequality 𝑑(𝑢, 𝑣) + 𝑑(𝑣,𝑤) ≥ 𝑑(𝑢,𝑤).

The pair (V, d) is called a metric space, where the metric refers to the distance function

d. Any graphs when assumed to have finite sets of vertices. For this reason, (V, d) is

also known as a finite metric space. The distance matrix D = [d(ui, vi)] of a connected

graph is the distance matrix of its finite metric space [24].

2.8.7 Adjacency and incidence matrix

The adjacency matrix of a graph G = (V, E) is the V×V matrix A with [25] :

𝐴𝑢,𝑣 ∶= 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑢 𝑎𝑛𝑑 𝑣 ∈ 𝑉

The incidence matrix, or V×E incidence matrix, of G is the V×E matrix B with [25]:

𝐵𝑣,𝑒 = {

1 𝑖𝑓 𝑣 ∈ 𝑒 𝑎𝑛𝑑 𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑙𝑜𝑜𝑝,
2 𝑖𝑓 𝑣 ∈ 𝑒 𝑎𝑛𝑑 𝑒 𝑖𝑠 𝑎 𝑙𝑜𝑜𝑝,
0 𝑖𝑓 𝑣 ∉ 𝑒.

For 𝑣 ∈ V and e ∈ E. The transpose of B is called the E ×V incidence matrix of G, or

just the incidence matrix, if no confusion is expected [25].

2.8.8 The Shortest path Problem: Dijkstra’s Algorithm

Dijkstra's algorithm [26], which is discovered by E. W. Dijkstra in 1959, is a graph

search algorithm that solves the single-source shortest path problem for a graph with

non-negative edge weights and the graph has no self-loops [22]. The algorithm is a

20

generalization of breadth- first search. Dijkstra's algorithm can be used to find a shortest

route from a fixed city to any other city [22]. It has been used to solve the problem of

finding the shortest path in the graph. The edges of a graph or digraph are given non-

negative weights. The weight of a path is the sum of the weights of the path traversed

[21]. The algorithm returns the shortest path from the source node to the destination

node. The shortest path has an important impact on the routing protocol in the network.

Is used to represent the hop count in the network when the network represented by a

graph.

2.9 OPTIMIZATION

Is the processes of finding an alternative with the most cost effective or highest

achievable performance under the given constraints, by maximizing desired factors and

minimizing undesired ones. In comparison, maximization means trying to attain the

highest or maximum result or outcome without regard to cost or expense. Practice of

optimization is restricted by the lack of full information, and the lack of time to evaluate

what information is available [27].

2.10 POLYNOMIAL-TIME SOLVABILITY

A polynomial-time algorithm is an algorithm that terminates after a number of steps

bounded by a polynomial in the input size. Here a step consists of performing one

instruction. Such an algorithm is also called a good algorithm or an efficient algorithm.

Thus, the input size is the size of the input, that is, the number of bits that describe the

input. We say that a problem is polynomial-time solvable, or is solvable in polynomial

time, if it can be solved by a polynomial time algorithm. This definition may depend on

the chosen algorithmic model, but it has turned out that for most models the set of

problems solvable by a polynomial time algorithm is the same [25].

2.11 THE SETS P AND NP

P, NP, and co-NP are collections of decision problems: problems that can be answered

by yes or no, like whether a given graph has a perfect matching or a Hamiltonian circuit

[25].

http://www.businessdictionary.com/definition/cost.html
http://www.businessdictionary.com/definition/effective.html
http://www.businessdictionary.com/definition/achievable.html
http://www.businessdictionary.com/definition/performance.html
http://www.businessdictionary.com/definition/constraint.html
http://www.businessdictionary.com/definition/factor.html
http://www.businessdictionary.com/definition/maximization.html
http://www.businessdictionary.com/definition/mean.html
http://www.businessdictionary.com/definition/result.html
http://www.businessdictionary.com/definition/expense.html
http://www.businessdictionary.com/definition/practice.html
http://www.businessdictionary.com/definition/restricted.html
http://www.businessdictionary.com/definition/information.html

21

The P is the set of all decision problems that can be solved in polynomial time

algorithms. For example, the problem of determining whether a key is present in an

array or in a sorted array. Some decision problems have not polynomial-time algorithms

also not in P. For example, Traveling Salesman Problem (TSP) because no one has ever

created a polynomial-time algorithm to solve TSP and no one has ever proven that it

cannot solve with polynomial time algorithm. Therefore, there is a possibility for the

TSP to be in P set. In addition, there some problem can or not be in the P set [28].

A polynomial-time nondeterministic algorithm: is a nondeterministic algorithm whose

verification stage is polynomial-time algorithm.

NP is the set of all decision problems that can be solved by polynomial-time

nondeterministic algorithms [28].

2.12 NP-COMPLETE PROBLEMS

A problem B is called NP-complete if both of the following are true about B [28]:

1. B is in NP set.

2. For every other problem A in NP 𝐴 ∝ 𝐵 , which is means every other problem

A in NP can be reduced to B.

2.13 MATHEMATICAL OPTIMIZATION

A mathematical optimization problem, or just optimization problem, has the form [29]

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓0(𝑥) 2.1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓𝑖(𝑥) ≤ 𝑏𝑖 , 𝑖 = 1,… ,𝑚

Here the vector 𝐱 = (𝐱𝟏, … , 𝐱𝐦) is the optimization variable of the problem, the

function 𝑓0: 𝑅
𝑛 → 𝑅 is the objective function, the functions 𝑓𝑖: 𝑅

𝑛 → 𝑅 𝑖 = 1,… ,𝑚

are the (inequality) constraint functions, and the constraints 𝑏1, … , 𝑏𝑚 are the limits, or

bounds, for the constraints. A vector 𝑥∗ is called optimal, or a solution of the problem

(2.1), if it has the smallest objective value among all vectors that satisfy the constraints:

22

for any z with 𝑓1(𝑧) ≤ 𝑏1, … , 𝑓𝑚(𝑧) ≤ 𝑏𝑚 we have 𝑓0(𝑧) > 𝑓0(𝑥
∗). We generally

consider families or classes of optimization problems, characterized by particular forms

of the objective and constraint functions. As an important example, the optimization

problem (2.1) is called a LP if the objective and constraint functions 𝑓0, … , 𝑓𝑚 are linear

[29], which will be discussed later in this chapter.

The optimization problem (2.1) is an abstraction of the problem of making the best

possible choice of a vector in 𝑅𝑛 from a set of candidate choices. The variable x

represents the choice made; the constraints𝑓𝑖(𝑥) ≤ 𝑏𝑖 represent firm requirements or

specifications that limit the possible choices, and the objective value𝑓0(𝑥) represents

the cost of choosing x. (a one can also think of −𝑓0(𝑥) as representing the value, or

utility, of choosing x.) A solution of the optimization problem (2.1) corresponds to a

choice that has a minimum cost (or maximum utility), among all choices that meet the

firm requirements [29].

Many practical problems involving decision-making (or system design, analysis, and

operation) can be cast in the form of a mathematical optimization problem, or some

variation such as a multi-criterion optimization problem. Indeed, mathematical

optimization has become an important tool in many areas. It is widely used in

engineering, in electronic design automation, automatic control systems, and optimal

design problems arising in civil, chemical, mechanical, and aerospace engineering. The

Optimization is used for solving many problems in network design and operation,

finance, supply chain management, scheduling, and many other areas. The list of

applications is still steadily expanding [29].

The previous explanation shows an example of single objective optimization using

single objective function. However, the optimization problems can be formulated with

mutable objective functions. For instance, if there is a problem with two objective

functions f1 and f2. There are two approaches that can be used in the solution to find

the optimal solution, namely are hierarchical and simultaneous optimization. In the

former, the objectives are classified (sorted) according to their priority. Thus, for the bi-

objective case, one of the objectives, say f1, is considered as a primary objective and

the other, say f2, as a secondary one [30]. The meaning is that the search method firstly

try to optimize f1, and then when no further improvements are possible, it try to

23

optimize f2 without worsening the best value of f1 [30]. However, the hierarchical

optimization is commonly used in the WMNs problem [30].

2.14 COMBINATORIAL OPTIMIZATION

Combinatorial optimization is one of the most active areas of discrete mathematics [31].

It has roots in combinatorics, operations research, and theoretical computer science.

Combinatorial analysis is the mathematical study of the arrangement, grouping,

ordering, or selection of discrete objects, usually finite in number. Traditionally,

combinator lists have been concerned with questions of existence or of enumeration.

That is, does a particular type of arrangement exist? On the other hand, how many such

arrangements are there? [32].

In 1970s, a new line of combinatorial investigation has gained increasing importance.

The question asked is not “Does the arrangement exists?” or “How many arrangements

are there? “, but rather, “What is the best arrangement?” The existence of a particular

type of arrangement is usually not in question, and the number of such possible

arrangements is irrelevant. All that matters is finding an optimal arrangement, whether

it be one in a hundred or one in an effectively infinite number of possibilities [32]. A

large number of combinatorial optimization problems have been generated by research

in computer design, the theory of computation, and by the application of computers to

a myriad of numerical and non-numerical problems, which have required new methods,

new approaches, and new mathematical insights [32].

Combinatorial optimization searches for an optimum object in a finite collection of

objects. Typically, the collection has a concise representation such as a graph, while the

number of objects is huge or more precisely, grows exponentially in the size of the

representation like the problem of finding all matchings or finding all Hamiltonian

circuits. [25]

2.14.1 Combinatorial Optimization Problems

Combinatorial optimization problems arise everywhere and certainly in all areas of

technology and industrial management. A growing awareness of the importance of these

problems has been accompanied by a combinatorial explosion in proposals for their

24

solution [32]. Thousands of real-life problems that can be modelled as abstract

combinatorial optimization problems [33]. Most combinatorial optimization problems

can be formulated naturally in terms of graphs (based on the graph theory) and as a

linear programing (LP) or integer linear programing (ILP) [33].

Some representative optimization problems:

The problems were listed below involve graphs. These problems are some of

applications of a connected undirected graph G, together with a nonnegative length for

each arc [32].

 ARC-COVERING PROBLEM

If we have Arc (i, j) that means this arc covers node i and j. The problem here is, how

to find the smallest possible subset of arcs that can be chosen, such that each node of G

is covered by at least one arc of the subset [32].

 ARC-COLORING PROBLEM

The objective here is to paint the arcs of G various colours, subject to the constraint that

not all the arcs in any cycle are painted the same colour. What is the smallest number

of colours that will suffice [32].

 MIN-CUT PROBLEM

The objective is to find a subset of arcs (a “cut”) such that when these arcs are removed

from G, the graph becomes disconnected. For what subset of arcs is the sum of the arc

lengths minimized? [32].

 MAX-CUT PROBLEM

The objective is, to find a minimal cut such that the sum of the arc lengths is to be

maximized.

25

 SPANNING-TREE PROBLEM

The objective here is to find a subset of arcs such that when these arcs are removed from

G, the graph remains connected. For what subset of arcs is the sum of the arc lengths

maximized? (The complementary set of arcs is a “minimal spanning tree.“) [32].

 SHORTEST PATH PROBLEM

What is the shortest path between two nodes in a specific graph G.? This shortest path

may be in term of length (the number of nodes between the two nodes) or the minimum

cost when the arcs different cost and this may represent the many real-world problem

such as the distance between cities, which has been used in famous optimization

problem called “Traveling Salesman Problem (TSP)”.

 LONGEST PATH PROl3LEM

Is to find the longest path, without repeated nodes, between two specified nodes of G?

2.14.2 Methods of Solution for the optimization Problems

The previous section briefly discussed some optimization problems. One can classify

the solution methods into the following categories:

2.14.2.1 Linear programming (LP)

The LP is optimization model, which consists of one linear objective function and any

number of equality or inequality constraints. LP is concerned with extermination of a

linear objective function subject to linear inequality constraints. From a geometric point

of view, the constraints describe a convex polytope. In the simplex, the computation of

LP proceeds from one vertex of this polytope to another. One way to solve a

combinatorial optimization problem by LP is to formulate a system of linear inequality

constraints, which will cause the vertices of the convex polytope to correspond to

feasible solutions of the combinatorial problem. Sometimes this results in a relatively

small number of constraints, which can be listed explicitly in advance of the

computation. Problems for which this is the case include the network flow problems,

with the shortest path, min-cut, and assignment problems as special cases. LP is used to

26

solve many optimization problems such as arc-covering, arc-colouring, and spanning-

tree problems as special cases [32].

2.14.2.2 Integer Linear Programming (ILP)

The ILP formulates a set of linear inequalities constraints to describe a convex

polyhedron enclosing points (with integer coordinates) corresponding to feasible

solutions of the combinatorial problem. A variant of the simplex method is applied and

additional inequality constraints are generated as needed during the computation. These

additional inequalities or “cutting planes” ordinarily bear little predictable relation to

each other or to the original set of constraints [32].

ILP algorithms usually do not exploit any special combinatorial structure of the problem

at hand. For this reason, they are sufficiently general to “solve” virtually any

combinatorial optimization problem. Nevertheless, there is no possibility of establishing

good a priori bounds on the length of computations, and practical experience with these

algorithms has been very uneven [32].

2.14.2.3 Recursion and enumeration

Recursion and enumeration methods include dynamic programming and branch-and-

bound. Dynamic programming is a technique for determining optimal policies for a

sequential decision process. A surprisingly large number of optimization problems can

be cast into this form and some of the most useful applications of this technique are in

the combinatorial realm. In some cases, dynamic programming can be applied to solve

problems with a factorial number of feasible solutions such as TSP and Shortest Path

problem [32].

Branch-and-bound methods have been developed in a variety of contexts, and under a

variety of names, such as “backtrack programming” and “implicit enumeration.”

Essentially, the idea is to repeatedly break the set of feasible solutions into subsets, and

to calculate bounds on the costs of the solutions contained within them. The bounds are

used to discard entire subsets of solutions for further consideration. This simple but

effective technique has scored a number of notable successes in practical computations.

27

However, it is rarely possible to establish good bounds on the length of the computation

[32].

2.14.2.4 Heuristics

Heuristics include algorithms whose their justification is based on arguments of

plausibility, rather than mathematical proof. Often, these algorithms permit good

computational bounds. However, generally speaking, only solutions, which are “close”

to optimal or, at best, not the optimal solutions, are obtained [32].

2.14.2.5 Statistical sampling

Statistical sampling means, random generation of a number of solutions from the

population of all feasible solutions for making some sort of statistical inference about

the closeness of the best solution sampled to the actual optimum [32].

2.14.2.6 Special and ad hoc techniques

The special and ad hoc methods include those techniques, which do not conveniently

fall into one of the other categories [32].

2.14.3 Evolutionary Methods (Evolutionary Algorithms)

The evolutionary methods provide a mechanism for accomplishment global and local

search simultaneously [34]. The main evolutionary paradigms are genetic algorithm,

genetic programming, evolutionary strategies, and evolutionary programming [35].

This section presents a general overview of the evolutionary methods and more detailed

about some of these methods.

Evolutionary computing is a family of stochastic search techniques that imitate the

natural evolution proposed by Charles Darwin in 1858. In the realm of search

techniques, the classification in Figure 2.9 indicates the position of EAs [36]. EAs are

stochastic searches and optimization heuristics derived from the classic evolution

theory, which are implemented on computers in many cases. The basic idea is that if

only those individuals of a population reproduce the next generation, which meet a

28

certain selection criteria, and the other individuals of the population die, the population

will converge to those individuals meet the best selection criteria [37].

Figure 2.9: Search Techniques [36]

However, if the intelligence is considered as a kind of capability of an entity to adapt

itself to ever changing environment, EAs are could be considered as a subdivision of

soft computing as shown in Figure 2.10 [36].

The EAs are made of the several iterations of basic Evolution Cycle as shown in

Figure 2.11.

Figure 2.10: Evolutionary Algorithms and Soft computing [36]

29

Figure 2.11: Basic Evolution Cycle [36]

Different variations of Evolutionary Computing incorporate the same basic cycle with

a different presentations’ model or specific combinations of Variation, Mutation,

Selection, and Replacement methods. The interesting point in the implementation is the

balance between two opposite operations. For example, the Selection operation reduces

the diversity of the population while the Variation and Mutation operators try to increase

diversity of population. This fact leads to the convergence rate and quality of solution.

As an optimization algorithm, EAs should be analysed to find answers to fare questions

such as convergence Rate, Quality of evolved solution and Computational requirements

[36].

2.14.3.1 Domains of Application

The evolutionary optimization can be used in numerous applications such as:

1. Numerical, Combinatorial Optimization

2. System Modelling and Identification

3. Planning and Control

4. Engineering Design

5. Data Mining

6. Machine Learning

7. Artificial Life

30

2.14.3.2 Genetic Algorithms

Genetic algorithms (GA) are search algorithms that based on the rules of natural

selection and genetics. The bases of genetic algorithm approach are given by Holland

[38] and it has been deployed to solve wide range of problems [39]. The GA is a global

search heuristic to find exact or approximate solutions for optimization and search

problems. It is also, defined as a particular class of evolutionary algorithms (EAs),

which is based on an evolutionary biology concepts such as inheritance,

selection, mutation, and crossover. The technique inherited from the idea of the natural

evolution of the generations to find the near optimal solution by simulating the

biological cross of genes. GA is a tool used to solve kinds of computational problems

with a high-complexity. In addition to modelling the phenomena occurring in Nature,

they help in simulation, modelling, optimization, design and prediction purposes in

science, medicine, technology [40]. The process of applying the GA starts by using an

initial population, which were randomly generated to act as an initial candidate solution

to the problem. GA applies a fitness function to decide, which individual will be kept

in the new generation or the best elite depending on a specific criterion to evaluate the

quality of each individual. To avoid the local optimal solution GA uses selection,

crossover and mutation operators to select individuals that will be used for production

and to generate the new generation called offspring. The mutation operator makes small

changes in individual by swapping a small number of genes of the individual itself, but

the crossover operator generates new generation (child) by cross exchange a number of

genes between two individuals (parents). This helps GA to avoid running on local

optimum solution and it is a process to find a near optimal solution. Figure 2.12 shows

the basic steps of GA programming.

31

Figure 2.12: The basic GA programming chart

2.14.4 Simulated Annealing (SA)

The idea of SA is inspired from metallurgy science. The annealing is a technique that

involves heating and controlled cooling of a material to increase the size of

its crystals and lessen their defects. The heat causes the atoms to become unstuck from

their initial positions (a local minimum of the internal energy) and wander randomly

through states of higher energy; the slower cooling gives them more chances of finding

Apply mutation

operator to produce

mutated off-spring

Apply replacement operator

to incorporate new

individual into population

Select two individuals (Parents)

Use crossover to produce off-springs

Scoring: assign fitness to each off-spring
Crossover

finished?

Finished

Scoring: assign fitness

to each off-spring
Mutation

finished?

Terminate?

Yes

Seed (initial) population

Randomly Generate N individuals

Scoring: assign fitness to each individual

Start

Genesis

Natural

selection

Yes

No

No

Yes

No

Reproduction and

recombination

Natural

selection

Survival of fittest

Mutation

Select one off-spring

32

configurations with lower internal energy than the initial one. The processes of the SA

go through a number of steps as follows:

1. Replaces the current solution by a random "nearby" solution, chosen with a

probability that depends on the difference between the corresponding

function values and on a global parameter T (called the temperature), that is

gradually decreased during the process.

2. The dependency is such that the current solution changes almost randomly

when T is large, but increasingly "downhill" as T goes to zero. The

allowance for "uphill" moves saves the method from becoming stuck in local

minima, which are the bane of greedier methods.

Figure 2.13 illustrates the basic steps of the SA algorithm.

33

Figure 2.13: The basic steps of Simulated Annealing

2.14.5 Particle Swarm Optimization (PSO)

Practical Swarm Optimization (PSO), which is slightly, differs from GA and GP. PSO

is an algorithm from the field of Swarm Intelligence. The algorithm for PSO was

conceived based on observations of certain social behaviour in lower class or insects.

Adjust Temperature

Generate new solution

Assess New Solution

Accept new

solution?

Stop

Terminate?

Yes

Input and Assess initial solution

Estimate initial temperature

Start

No

Yes

Update Stores

No

34

In contrast of modifying genetic codes using genetic operations as used in GA, in PSO

movement of an individual is determined by the motion of the individual itself and that

of the surrounding individuals. [35].

2.14.6 PSO Algorithm

The PSO algorithm simulates the motion of a large number of individuals (“Particles”)

moving in multi-dimensional space. Each individual stores its own location vector (𝑥𝑖⃗⃗ ⃗),

velocity vector (𝑣𝑖⃗⃗⃗), and the position at which the individual obtained the highest fitness

value (𝑝𝑖⃗⃗⃗). All individuals also share information regarding the position with the highest

fitness value for the group (𝑝𝑔⃗⃗⃗⃗). As the generations progress, the velocity of each

individual is updated using the best overall location obtained up to current time for the

entire group and the best locations obtained up to current time for that individual. The

efficiency of this type of PSO search is certainly high because focused searching is

available near optimal solutions in relatively simple search space. However, the PSO

algorithm often gets trapped in local optimum in some sort of optimization problems.

GA mutation can be integrated with the PSO to overcome this limitation [35].

2.14.7 Ant Colony Optimization (ACO)

Ant colony optimization was introduced in the early 1990s as a novel technique for

solving hard combinatorial optimization problems. ACO belongs to the class of

metaheuristics [41] [42] [43], which are approximate algorithms used to obtain good

enough solutions to hard CO problems in a reasonable amount of computation time.

[44]. The inspiring source of ACO is the foraging behaviour of real ants. When

searching for food, ants initially explore the area surrounding their nest in a random

manner. As soon as an ant finds a food source, it evaluates the quantity and the quality

of the food and carries some of it back to the nest. During the return trip, the ant deposits

a chemical pheromone trail on the ground. The quantity of pheromone deposited, which

may depend on the quantity and quality of the food, will guide other ants to the food

source [44].Thus, indirect communication between the ants via pheromone trails

enables them to find shortest paths between their nest and food sources. This

characteristic of real ant colonies is exploited in artificial ant colonies in order to solve

CO problems [44].

35

2.15 BASIC NETWORK MODELS

Network design is one of the most important and most frequently encountered classes

of optimization problems [45] [46]. It is a combinatory field in graph theory and

combinatorial optimization. Many optimization problems in network design come

directly from everyday practice in engineering and management: determining shortest

or most reliable paths in traffic or communication networks, maximal or compatible

flows, or shortest tours; planning connections in traffic networks; coordinating projects;

and solving supply and demand problems [46].

The network design is also important for complexity theory, an area in the common

intersection of mathematics and theoretical computer science, which deals with the

analysis of algorithms [46]. However, there is a large class of network optimization

problems for which no reasonable fast algorithms have been developed. And many of

these network optimization problems arise frequently in applications. Given such a hard

network optimization problem, it is often possible to find an efficient algorithm whose

solution is approximately optimal [46]. The genetic algorithm (GA) is one of the most

powerful stochastic search and optimization techniques based on principles from

evolution theory [46].

2.15.1 Shortest Path Model

Shortest path problem (SPP) is at the heart of network optimization problems. The

shortest path can capture most significant ingredients of network optimization problem.

Even though it is relatively easy to solve a shortest path problem, the analysis and design

of efficient algorithms requires considerable talent [46].

2.15.2 Traditional Methods for solving the Shortest Path Problem

A method to solve SPP is sometimes called a routing algorithm. The common and

important algorithms for solving this problem are [46].

36

2.15.2.1 Dijkstra’s algorithm

Solves single source problem if all edge weights are nonnegative. This algorithm can in

fact compute the shortest paths from a given start point (source node) to all other nodes

(destination nodes) [46].

2.15.2.2 Bellman-Ford algorithm

Is used to compute single-source shortest paths in a weighted digraph (where some of

the edge weights may be negative). Dijkstra’s algorithm achieves the same problem

with a lower running time, but the edge weights should be nonnegative. Therefore,

Bellman-Ford is usually used only when there are negative edge weights [46].

2.15.2.3 Floyd-Warshall algorithm

It used to solve the all pairs shortest path problem in a weighted, directed graph by

multiplying an adjacency-matrix representation of the graph multiple times [46].

Recently, to address SPP, neural networks (NNs) and GAs (and other evolutionary

algorithms) received a great deal of attention regarding their potential as optimization

techniques for network optimization problems [46].

2.16 RELATED WORKS

The GPP has been considered to be an NP-Complete problem by many researchers. This

section presents some of the research works that dealt with the GPP as an optimization

problem. They use different methods for solving the GPP from different aspects and

purposes. In addition, this section shows the efficiency of evolutionary methods on

solving the GPP. Furthermore, this section discusses the research efforts that are closed

the proposed solution.

 In [47], the GPP has been studied and formulated as an ILP; two heuristic algorithms

were developed in order to minimize the number of IGs while satisfying the MRs’

throughput. The very important contribution is that GPP optimization proved as NP-

hard problem by reduction from capacitated facility location (CFL) [48]. In [49], the

GPP is computationally considered as N-Hard when it can be transformed into

37

minimum dominating set problem and it has been proven as NP-complete and then

adapted a recursive dominating set algorithm to solve the minimum dominating set

problem. The proposed algorithm considers the delay, relay load and IG constraints and

has better performance than the algorithms in [50] [51] [52].

In [53], two algorithms for load balancing among the clusters as well as satisfying the

quality of service constraints have been proposed. The network here has been divided

to a number of disjoint clusters and each algorithm aimed to minimize the load

difference between these clusters in term of aggregated traffic in the cluster head, which

were determined by the gateways. The first algorithm is greedy one named GA-LBC,

the second is combination of greedy, and GA formed new algorithm named HA-LBC.

The results showed that the Hybrid algorithm outperformed the greedy algorithm due

to the ability of GA to solve multiple objective problems.

In [54], a GA based solution has been proposed to solve the GPP. The approach aimed

to integrate the locations of the existing gateways that based on the physical links (wired

cable) as well as minimizing the number of extra gateways that are required to satisfy

the users’ demands to enhance the network capacity. The extra gateways based on

Hybrid-FSO/RF that may use either Free Space Optical (FSO) or RF to form new

clusters. The GA based solution is used to find the near optimal solution. However, the

evaluation result has shown that the proposed solution achieved the optimum solution

in small network made of up to 50 APs, which compared to result generated by the ILP

formulation. Furthermore, the result has shown the feasibility of the approach in a

relatively large network.

In [55] , a new solution has been proposed using GA to optimize the planning of WMN

backbone focusing on routing and channel assignment. However, the proposed

algorithm provides a good solution when dealing with large-scale WMN in relatively

small computation time. The experimental results show the effectiveness of GA

operators [55] but didn’t consider the locations of end users and also dealt with ready

network topology and may suffer from routing operations overhead [56].

In [57], a mixed approach of GA and LP methods has been proposed to optimize the

WMN planning at the early stages. The approach considers two issues related to the

38

WMN that affect the network performance, the approach used to solve the Channel

Assignment (CA) using GA and Multi-Channel Routing problems (MCR) using LP

methods. The main idea is to find the optimal CA configuration with corresponding

MCR schedule in the network in order to increase the overall network capacity.

However, the genetic algorithm based approach achieved good result in solving this

problem.

In [56], a new scheme has been proposed for planning and optimizing WMN, GA used

for planning the location of IGs and MRs and as well as for routing and channel

allocation optimization. However, the experimental results show that the proposed

algorithms outperform the introduced greedy algorithm.

In [58], a configuration model for a fixed WMN has been proposed for determining the

maximum and the optimal throughput depending on fixed wireless nodes with fixed

locations and data flows generated in a logical manner, and to determine how the

network can be configured to achieve the optimum throughput. They developed and

investigated optimization framework to define the optimal throughput and to set the

network configuration. They used an enumerative method to get numerical results in

different situations of interest and to get different insights about the network structure

considering the optimal routes, schedules and physical layer parameters. The proposed

model helps in determining the achievable throughput in correspondent scenario. The

main drawback of the proposed solutions in [59] [58] is that their algorithms based on

ready network.

In [52], a new solution has been proposed to solve the GPP using clustering technique

in the following four stages: select cluster heads, assign each node to an identified

cluster satisfying the delay constraint, break down the clusters that do not satisfy the

relay load constraint or the gateway capacity constraint, and finally select gateways to

reduce the maximum relay load [60]. However, the algorithm does not have competitive

performance because of the following two reasons: first, when identifying cluster heads

and assigning MRs to the identified cluster heads, the algorithm does not make use of

global information about the BWMN; second, splitting a cluster without considering re-

assigning those MRs to existing clusters may create some unnecessary clusters and

therefore increases the number of clusters significantly [60].

39

In [48], the researchers studied the Node placement problem, and then they proposed

an algorithm based on mathematical programming. In addition, they proposed another

two heuristic algorithms (“greedy algorithm and k-median based algorithm”) in order

to upgrade the highly congested nodes to IGs aiming to improve the packet delivery

ratio.

In [61], the WMN planning for load balancing has been studied and a new model to

optimize the load balancing in a multicast network called “Path-MR-Gateway load

balancing (PMRGLB)”. The model developed based on the PSO to minimize the all

following four factors: (1) network’s cost; (2) the length of the path; (3) interference in

the path; (4) load variation among the gateways. However, the proposed model achieved

better on minimizing the path length and load balancing as well.

In [62], a new approach based on EA has been to address the GPP. The proposed

approach aimed to maximize the network throughput. In this approach, the gateways

randomly distributed, and then the fitness calculated to find the near optimal solution.

However, the numerical results have shown that the proposed approach achieved better

than the “Multihop Traffic-flow Weight (MTW)” algorithm proposed in [63]. The

remarkable point here MTW algorithm has been evaluated in [63] and achieved better

than “Random Gateway Placement (RDP)”, “Regular Placement (RGP)” and ”Busiest

Router Placement (BRP)” algorithms. This shows us the superiority of the evolutionary

approaches over the random and the other conventional approaches in solving the

problem gateways placement.

In [64], the efficiency of the PSO, ACO and GA in solving the problem of gateway

placement has been studied and a comparative study between these algorithms has been

presented. The evaluation results show that all of these algorithms outperformed the

MTW. Moreover, the results show that the algorithms based on PSO and ACO showed

better proprieties than the one that is based on the GA in small networks.

In [56], a new scheme for planning and optimizing the gateway locations in WMN has

been proposed. The authors proposed two algorithms to optimize the location of the

gateways, an algorithm based on the simple GA, and the other based on proposed

improved GA. However, the experimental results show that both of the two algorithms

40

achieved better than the developed greedy algorithm and improved GA achieved better

than the simple one.

In [65], a GA based approach to find the near optimal solution for MRs and the node

placement problem has been proposed. The proposed approach aimed to maximize the

size of giant network’s component as a primary objective and the number of users to be

converted as second objective. The approach has been evaluated based on a number of

generated instances using different statistical distribution methods that were used in

estimating the users’ locations. The results show the usefulness of the GA on solving

the placement problem of nodes and MRs on different network sizes, but the user

coverage mainly depends on how the users were distributed in the specific area. In [66],

further discussion about the approach proposed in [65] and the analysis results shows

the efficiency of the GA on solving this problem.

In [67], the design of network topology and the gateway placement issues have been

studied in order to minimize the network construction cost. Two algorithms have been

proposed to address this problem; the first algorithm is the Predefined Gateway Set

Algorithm (PGSA); the second algorithm is the Self-Constituted Gateway Algorithm

(SCGA), also enhanced Dijkstra’s algorithm has been proposed that is used with the

GA in the main two algorithms to find network configuration with low-cost constraints

such as delay and link capacity. However, the evaluation results show that PGSA has

less computation time in comparison with SCGA, but the SCGA can achieve better

results when we are concerned with the network construction cost but it requires more

time.

In [5], the WMN design problem has been studied to minimize the network construction

cost by optimizing the number of gateways. Two algorithms have been proposed using

GA and SA. However, the proposed algorithms proved their ability to solve the network

design problem. Furthermore, the results show SA is faster than GA in a large-size

network, But GA achieved better than SA in the small-size network.

In [18], a comprehensive comparison study of GA and Hill Climbing Algorithm (HCA)

considering the MRs placement optimization problem in WMN has been done and the

41

results proved that the solutions based on GA outperform the solution that's based on

the HCA.

In [2], grid-based gateway deployment method has been proposed using cross-layer

throughput optimization. LP-Flow-Throughput (“linear programming based”) used as

an evaluation tool. The evaluation shows that, the method exploits the available

resources effectively and it performs better than the random and fixed deployment

methods.

In [68], a heuristic model to find an optimal position for IG has been proposed, which

it considers a single IG in WMN; they used the proposed model in [58] to generate

multiple scenarios and then compare their relative performance in terms of the network

throughput. However, the proposed solution can achieve a good performance by a

achieving the optimum through, but the solution can be used in networks with single

gateway only.

In [1] new approach has been proposed for load balancing considering the number of

IGs, the average MR-IG-hop count and the load in balance in the IGs.

In [69], a gateway placement approach to minimize the number of IGs and to guarantee

the bandwidth requirements in MRs and The Problem is formulated as a network flow

problem. A max-flow min-cut based algorithm is developed for IG selection. An MR

may be attached to multiple IGs through multiple paths. In this approach, the path length

between MR and IGW has not considered as an optimization parameter and thus long

paths may be selected [70].

In [71], the GPP has been confirmed as NP-Hard problem. The deployment of IGs has

been solved using heuristic algorithms and formulated as LP model. The problem here

was formulated as multi-objectives model to minimize the number of IGs and to

minimize IG-MR-Hop count in affordable computation complexity. The model has

distributed the IGs in clusters (IG as a cluster head) and each MR may has one more

path to reach the IG.

42

2.17 SUMMARY

From the previous sections in this chapter, many researchers have paid their attentions

to the WMN, especially the GPP. Thus, a considerable number of research works have

dealt with the GPP. But, some of them based on a fixed or ready network (pre-

established network), which take in the very limited chances in the enhancement, since

the enhancement became in a later phases of network design. Some of them based on

LP methods that have been proved that have restricted capabilities in larger size

networks. However, the research works that are very close to our model in [1] and [71].

Nevertheless, the main difference is, our model aims to minimize the variation in the

number of hop count between the MRs and their nearest IGs (VAR-MR-IG-Hop)

among MRs in the whole network to insure that the IGs are placed in the appropriate

positions, whereas the model that has been proposed in [1] is aimed to minimize the

AVG-MR-IG-Hop and model that has been proposed in [71] is aimed to minimize the

MR-IG-Hop.

43

CHAPTER THREE

GATEWAY PLACEMENT SOLUTION

3.1 BACKGROUND

WMN planning is an optimization problem as mentioned in the previous chapters. There

are many issues that should be considered when designing WMNs, such as the area that

will be covered, MCs’ distribution in the specific area, bandwidth demanded by all

clients, capacity of links and channels that should serve MR, the location of the IGs in

the specific area, the cost of the IGs, which require high cost physical links compared

with the wireless links used inside the network, the number of hops that the packet

travers from the source to the destination (the distance between source and destination),

especially the number of hops between each MR and the nearest IGs, the interference

in WNs so that the wireless nodes should be placed in such a way that the interference

is minimum so that to maximize the network throughput and the delay or the total time

for packet transfer. Hence, the WMN planning is an optimization problem due to the

conflicting requirements as mentioned before. For example, we can increase the

network through and decreasing the distance between source and destination easily by

increasing the number of IGs, but this will increase the construction cost due to the high

cost of physical links used in IGs construction, so the optimization in planning the

network is very important and its continuous challenge.

The main objective of this dissertation is to develop a new solution for IG placement

in WMN considering the number of hops that the packet traverse from each MRs to the

nearest IG (MR-IG-Hop) and the number of MRs associated with each IG to achieve

better load and traffic balance in the network. This research, proposes two algorithms

using GA and SA, both of the two algorithms aiming to minimize the variation in MR-

IG-Hop among the MRs in the whole network as well as minimizing the variation

among the IGs since each MR is associated with a specific IG. The problem is

formulated as a mathematical model, whereas the network is represented by an

undirected connected graph. The reset of this chapter presents and discusses the network

representation, problem formulation and the details of the proposed algorithms.

44

3.2 NETWORK MODEL

The network is represented by undirected, connected and weighted graph, the edges of

the graph is wireless links between the MRs including IGs inside the network. Since we

are only concerned with the number of hop counts between the MR and IG (path length),

the edges have the same weight with a value one. The IGs use the physical link to

provide the Internet service for the network. Figure 3.1 shows a simple network sample,

which consists of nine MRs (eight normal MRs and the ninth is IG). The vertices in the

graph represent the network (MRs and IGs) and the edges represent the links between

the MRs.

Figure 3.1: A Simple Network Example

The following figure shows the graph representation of the network model. The network

here consists of 25 MRs and 4 IGs.

Internet

IG

MR

...... Wireless Link

------ Wire Link

45

Figure 3.2: Network sample in undirected graph.

3.3 THE PROBLEM FORMULATION

The network here is defined as a set R= {R1, R2, … . , Rr} of r MRs that construct the

network, a subset N = { n1, n2, … . , nn} of n MRs that act as none gateways nodes, a

subset Gn= { g1, g2, … . , gg } of g IGs connected the internet as G ⊆ R where1 < g <

n, and a set E of m edges that connecting MRs denoted as eij ⊆ E where eij represents

the link between node i and node j. Thus, the network can be denoted as a graph G(R,

E), r=|R| is the number of MRs including the IGs. The number of IGs is g=r-n where

(1<=g<r). and the graph here is undirected graph and all its edges have the same weights

of the value one because we consider only the number of nodes between each node and

the nearest IG. The previous description will be used during all the next processes of

the proposed solution and the notations that will be employed in the problem

formulation and the other model stages are presented in the following table:

Table 3.1: The notations and symbols used in the problem formulation

Symbol Description

R The set of all MRs

r The number of all MRs.

N The set of none IG nodes.

n The number of none IG nodes.

E The set of all links between each MRs.

Gn The set of IGs.

g The number of IGs

46

lij Indicator with a value 1 if the path between the MR i and the IG j is the

smallest path between the MR i and each other IGs otherwise the indicator

should be 0.

Dij The distance between the MR i and the IG j.

gnj The number of all MRs associated (all the MRs that their nearest IG is IG

j) with the IG j.

yj The average hop count that the packet traverses between the IG j and every

MR associated with this IG.

𝑥i The distance between the MR i and the nearest IG.

𝑦 The average hop count among IGs.

𝑥 The average hop count among all MRs.

σ The variance between all MRs in term of hop count to the nearest IG

(VAR-MRs-IGs-Hop)

𝜎𝐼𝐺𝑠 The variance of hop count of the among the IGs (MRs associated with

each IG)

The network design problem is mathematically formulated as follows:

Min 𝜎 = (
1

n
∑(𝑥i − 𝑥)

2

n

i=1

) , 𝑤ℎ𝑒𝑟𝑒 𝑛 ≥ 1 (3.1)

Min σ𝐼𝐺𝑠 = (
1

g
∑ (yj − 𝑦)

2g
j=1) , 𝑤ℎ𝑒𝑟𝑒 𝑔 ≥ 1 (3.2)

Such that

𝑥i = min
j=1,…,g

(D(ni, gj)) , where i = 1,… , n
(3.3)

𝐷(𝑖, 𝑗) = {
1 , if i ≠ j and if i and j are adjecent
0 , if i = j
> 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}

where i = 1,… , n ; j = 1,… , g and 1 ≤ g < n

(3.4)

47

lij = {
 1 , if xi = min (D(ni, gj))

0 otherwise
 }

where i = 1,… , n ; j = 1,… , g and 1 ≤ g < n

(3.5)

yj =
(∑ xi ∗ lij

n
i=1)

∑ lij
n
i=1

 , where i = 1,… , n ; j = 1,… , g and 1 ≤ g < n (3.6)

𝑦 =
 ∑ 𝑦𝑗
𝑔
𝑗=1

𝑔
 , where j = 1,… , g 𝑎𝑛𝑑 𝑔 ≥ 1 (3.7)

𝑥 =
1

(𝑛)
∑𝑥𝑖

𝑛

𝑖=1

 , where i = 1,… , n and n ≥ 1
(3.8)

 (∑ lij

n

i=1

) ≥ 1 , where i = 1,… , n and j = 1, … , g
(3.9)

∀ 𝑛𝑖 , 𝑔𝑗 ∈ 𝑅 (3.10)

∀ 𝑛𝑖 ∈ 𝑁 𝑎𝑛𝑑 ∀ 𝑔𝑖 ∈ 𝐺𝑛 (3.11)

 ∄ ni ∈ Gn and ∄ 𝑔𝑗 ∈ 𝑁 (3.12)

The objective function (3.1) means minimizing the variation of hop count between MRs

and their nearest IGs (VAR-MR-IG-Hop), which denoted by MR-IG-Hop. The

objective function (3.2) means minimizing the variation of hop count between each IG

and its associated MRs to guarantee that, each IG is placed in the near optimal position

to serve a group of selected MRs that were selected based on the shortest paths between

the MRs and the IGs. Constraint (3.3) is used to calculate the shortest paths between the

corresponding MR and all IGs in the network using Dijkstra’s algorithm. Then, the

shortest path will be returned and this MR will be associated with the IG that satisfies

this constraint. Constraint (3.4) defines a rule for adjacent MRs as well as each MR with

itself. Constraint (3.5) returns the value one when the IG satisfies constraint (3.3)

48

otherwise return the value zero. Equation (3.6) is used to calculate the average hop

counts among the MRs that associated with the corresponding IG, which subjected to a

constraint (3.3). Equation (3.7) is used to calculate the average among the IGs that to be

used by the objective function (3.2). Equation (3.8) returns the average hop count among

the MRs (AVG-MR-IG-Hop) in the network to be used by the objective function (3.1).

3.4 PROPOSED ALGORITHMS

In order to deliver the final solution for GPP, two algorithms have been proposed. The

first algorithm based on the GA, the second algorithm based on the SA. More discussion

and details about these algorithms will be presented in chapter four and how these

algorithms will be implemented to solve the research problem that were guided by the

proposed mathematical model. Finally, the discussion about experimental results will

be presented in chapter five.

3.5 THE EVALUATION METHOD

Clearly, from literature review, GA and SA are evolutionary algorithms (EA). The EA

should be analysed to answer one of the following questions [36].

1. The convergence rate.

2. The quality of the evolved solution.

3. The computational requirements.

So far, no general analysis framework has been proposed to analyse the general form of

evolutionary algorithms, but some specific variations or implementations could be

focused along two lines of investigations: theoretical and empirical. The theoretical

approach attempts to discover mathematical truths of algorithms that will hold in a

reasonably broad domain of applications. However, the empirical approach attempts to

assess the performance of an implementation in a specific domain of application. Both

methods have advantages and disadvantages, and in practice they should be used as

complementary means to design and tune the specific instance of an algorithm.

Therefore, only the proposed algorithms will be evaluated and analysed to answer the

first two questions (the convergence rate and the quality of the evolved solution)

49

3.6 SUMMARY

This chapter has presented a brief discussion about the research problem (GPP) and the

proposed network model using undirected graph. In addition, the chapter has presented

and explained the mathematical formulation of the research problem and its solution

besides a brief overview about the proposed algorithms that will be used to solve the

research problem based on the proposed network model and mathematical formulation

to achieve the research objectives, which are also have been represented in the

mathematical with the objective functions. Moreover, the chapter has presented and

discussed the evaluation method that will be used to measure the quality of the proposed

algorithms.

The next chapter presents more details about the proposed algorithms and how they will

be implemented to solve the GPP.

50

CHAPTER FOUR

THE PROPOSED ALGORITHMS

This chapter presents in details how the proposed algorithms will be implemented, as

well as presenting the idea behind the tools and functions, which have been used to carry

out the proposed approaches. Furthermore, the chapter discusses the development

environment that has been used to implement the proposed algorithms. Finally, the

chapter presents a brief conclusion summarizing what have been done in the

implantation of the proposed algorithms.

4.1 NETWORK MODEL

The network model determines the network representation on the decoding stage. This

model simulates the real network configuration in mathematical method. The solution

represented by an undirected graph with one-unit weights edges as mentioned in the

previous chapter. The graph here is represented by n × n matrix where n is the number

of MRs in the network including the IGs. The matrix here represents the graph and

edges connect the vertices (MRs). Two vectors represent the network configuration.

The first one is 1 × g, which represents the IGs and the second one is 1 × (n − g)

vector, which represents the normal MRs. Both of the two vectors store the node IDs to

be in consistency with the matrix that represents the network. Figure 4.1 shows a

network configuration of nine MRs and one of them is an IG. The matrix shows the

edges between nodes in the graph, the first vector shows the normal MRs nodes and the

second vector shows the IGs nodes.

(

0 1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0
0

0
1
0
1
0
0
0
0
0

0
0
1
0
1
0
0
0
0

0
0
0
1
0
0
0
0
0

0
0
0
0
1
0
1
0
0

0
0
0
0
0
1
0
1
0)

{

1
2
3
4
6
7
8
9}

 {5}

Figure 4.1: Network representation (edges’ matrix and configuration vectors)

51

4.2 THE GA-BASED APPROACH

The following subsections present the detail of the GA based algorithm (the GA

representation for the GPP). The stages of applying GA to solve GPP those we will

discuss are firstly, the network representation (chromosome) or network encoding in

the real world. Secondly, the crossover operator and here we will present three crossover

types namely: uniform, single point and Two-point crossover. Thirdly, the mutation

operation and here we will present only inversion mutation type. Fourthly, the important

parts of our GA, the fitness function and here we will present three different fitness

functions that are used separately. Fifthly, the selection operator that will be used in the

proposed approach and finally: a novel repair procedure that have been used to keep the

number of the IGs constant in the network.

4.2.1 Network Encoding (Chromosome Representation)

The encoding process is the first and the core process of GA to represent the real-world

problem. In this research, all MRs are labelled from 1 to n where n is the number of

MRs including those were chosen as IGs. Therefore, the binary string has been used to

represent the chromosome as shown in Fig. 1, the order of gene in the chromosome

determines the node ID in the network, and the value of this gene determines either this

node is selected as an IG, which represented by 1 or selected as a normal MR, which

represented by 0.

The binary string representation is used to represent the network configuration in

encoding stage of the GA as shown in Figure 4.2. Then, this representation will be

inverted in the decoding stage to simulate the real network based on graph’s

representation, which have been discussed in section 4.1

Node ID 1 2 3 4 5 6

Node type 0 0 1 0 0 1

Figure 4.2: Chromosome’s representation

4.2.2 Fitness Function

The GA uses the fitness function to evaluate the quality of each individual in the current

population based on the objectives defined in equations (3.1, 3.2) guided by the decision

52

variables defined in the equations 3.3 through 3.8 and subject to constraints 3.9 through

3.18 The individual with the highest fitness value will be selected as elite to be kept in

the new population, while the remaining individuals of the new population will be

generated using crossover and mutation operators. Three different fitness functions have

been developed based on the combination of the objective functions for further

optimization opportunities as follows.

4.2.2.1 MRs-VAR Fitness Function

This function considers the objective (3.1) so, that the aim is, to minimize the VAR-

MRs-IGs only whatever the value of the objective (3.2).

4.2.2.2 IGs-VAR Fitness Function

This function considers the objective (3.2) so, that the aim is, to minimize the VAR-

MRs-IGs among the MRs associated with each IG only whatever the value of the

objective (3.1).

4.2.2.3 VAR-MRs-IGs-Hop Fitness Function

This function considers the objectives (3.1, 3.2) in the evaluation process. The idea is,

the objective 3.1 (𝑓1) is the primary objective while objective 3.2 (𝑓2) is the secondary

objective in the optimization processes. Here, we minimize 𝑓1 until no improvement

will happen, then minimizing 𝑓2 without worsening the value of 𝑓1.

4.2.3 Selection Operator

An ideal selection strategy should be such that it is able to adjust its selective pressure

and population diversity so, as to fine-tune GA search performance. The tournament

selection strategy provides selective pressure by holding a tournament competition

among the selected individuals on the tour [72]. The best individual from the tournament

is the one with the highest fitness, which is the winner of the tour. Therefore, the

algorithm uses the tournament selection to select a number of individuals from the

current generation based on a specific probability called the tournament probability

denoted by Tp. Then, the selected individuals will be ranked according to their fitness

53

values and the individual with the highest quality used to reproduce the offspring by

applying crossover and mutation operators.

4.2.4 Crossover Operator

Three types of crossover, single point, two point, and uniform have been used

alternatively for further optimization.

4.2.4.1 Single Point Crossover

The single-point crossover has been used to generate the new offspring’s, which is done

by selecting a single point within the parents. Copies the genes before this point from

the first parent in the corresponding positions of the child (offspring) and then fill the

remaining genes of the child from the second parent with the genes in the positions after

the selected point. Figure 4.3 shows how to perform the single-point crossover.

Figure 4.3: Single-point crossover operator

4.2.4.2 Two-Point Crossover

The two-point crossover has been used to generate the new offspring’s, which is done

by selecting two points within the parents, then copy the genes between these points

from the first parent in the corresponding positions of the child and fill the remaining

genes of the child from the second parent as illustrated in Figure 4.4.

Figure 4.4: Two-point Crossover operator

54

4.2.4.3 Uniform Crossover

The uniform crossover has been used to generate the new offspring’s based on a fixed

mixing ratio between two parents. Unlike single and two-point crossover, the Uniform

Crossover enables the parent chromosomes to contribute the gene level rather than the

segment level. Therefore, this type has been used for further optimization and to

compare the results of different crossover types. Here, the genes’ exchange operation

uses a specific probability called crossover probability and denoted by 𝑃𝑐 then, a random

mask of 1s and 0s will be generated with a chromosome length as follows:

 Generate a random number 𝑃𝑅 per each gene in the chromosome.

 Generate the random mask according to the following formula:

𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑚𝑎𝑠𝑘 𝑔𝑒𝑛𝑒 = {
1 𝑖𝑓 𝑃𝑅 < 𝑃𝑐
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 The final mask will be as shown in Figure 4.5:

Figure 4.5: Mask Sample in Uniform Crossover

 The one value indicates that, the corresponding gene in the child will be filled

from the first parent, where the zero value from the second parent. Figure 4.6

illustrates these steps.

Figure 4.6: Uniform Crossover

4.2.5 Mutation Operator

The swap mutation operator has been used to modify the individual by selecting two

positions within the individual randomly and swaps the genes in these positions to

produce a new individual and prevent GA from falling on the local optimum solution

as shown in

55

Figure 4.7.

Figure 4.7 : Mutation Operator

4.2.6 Repair Procedure

The number of IGs is constant (the number of IGs is determined before the starting of

the GA process) in this solution and we use designated parameter to keep the number

of IGs in the network but due to the genetic operator, especially the crossover operator

,which causes continuous changing within the individuals this number may either

increase or decrease. Therefore, this procedure has been added to the GA processes in

order to alter the individual that violates the constraint of IGs number.

The repair process runs as follows:

 Count the number of the genes that have the value 1, which represents the IGs

in the real network (in the decoding stage).

 If the number of IGs is greater than the desired number then do the repair as

follows:

o Generate a random number R between zero and the chromosome size

(the total number of MRs in the network).

o If the value of the gene at the position r is, one then this value will be

changed to zero to reduce the number of ones. Else if the gene at position

r is zero, then a new random number r will be generated

 Repeat these three until the required number of ones (IGs number) is met.

 1 2 3 4 5 6

Parent 0 0 1 0 0 1

 1 2 3 4 5 6

Offspring 0 0 0 0 1 1

56

4.2.1 The initial population

Firstly, the r number of MRs will be distributed in the area that we want to cover. Then,

the IGs will be selected randomly among the r MRs, where the number of IGs z is

considered as designated parameter. The previous description will be used to generate

each individual in the initial population P0 to be used in the reproduction of the next

generation through the GA operators (selection, crossover, and mutation besides the

repair procedure to maintain the number of IGs).

4.2.2 The Algorithm Template

Algorithm 1: GA-Based algorithm procedure (pseudocode)

Input:

Set i=0 ‘ iteration counter

Set initial parameters: Termination condition: Tc, Population Size: Z, tournament

probability: T𝑝

Step 1:

Generate the initial population Pi With the size Z.

Step 2: Evaluate Pi

If Pi Pass the Evaluation then

Step 3:

Do while not Tc

Select Elite = the best individual P𝑖 According to fitness value

For j =2 to z

Selects two parents (Pr1, Pr2) using selection operator with probability T𝑝

‘Generate the offspring using crossover on the selected individuals using following
formula:

Offspring=crossover(Pr1, Pr2)

‘Checks the validity of the offspring if not passes, then apply repair procedure.

If not checkIndividual (offspring) then

57

RepairGenes(offspring)

End if

‘Add offspring to the crossover population

𝐏𝐢
𝐜.Add (offspring)

Next j

‘Apply mutation using the following formula:

 𝐏𝐢
𝐦 = 𝐦𝐮𝐭𝐚𝐭𝐞(𝐏𝐢

𝐜).

Create a new generation 𝐏𝐢+𝟏 From the Elite the individuals in 𝐏𝐢
𝐦

i=i+1

Loop

Output:

Return the best solution

Figure 4.8: GA-Based Algorithm pseudocode

4.2.3 Illustration of the GA processes

The following subsection presents a part of GA processes to optimize the network

configuration by optimizing the locations of the IGs according to the constraints defined

in the problem formulation. Figure 4.9 shows an example of an individual in the

encoding stage (chromosome) and Figure 4.10 shows the correspondent network in the

decoding stage (the real world). The network will be represented here consists of 25

MRs and four IGs. In addition, the figures show how the genetic operators change and

optimize the network’s configuration.

1. Individual in the encoding and decoding stages.

Figure 4.9 : sample of individual in the encoding stage

Figure 4.10 shows the corresponding network configuration of the above individual.

The node IDs 7, 8, 15, and 25 represent the IGs.

58

Figure 4.10: a sample of network configuration (Decoding stage)

2. The population

Figure 4.11 shows a sample population in the GA. The population consists of

ten individuals.

Figure 4.11: Population’s sample of ten individuals

3. Crossover process

The best individual from the current generation will be selected as an elite based on the

result of the fitness function as mentioned before in this chapter. The elite individual

will be kept in the new generation. The remaining individuals of the new generation

will be generated using the current generation through the processes of crossover and

mutation operators. From each population a number of individuals will be selected using

the selection operator to be used in the reproduction to generate the new generation

(crossover’s generation) using the crossover operator. Figure 4.12 shows the crossover

process.

59

Figure 4.12: crossover process at the encoding stage

Figure 4.13 shows the corresponding network configuration of the first and the second

parents and the child before and after decoding stage.

Figure 4.13: network sample generated by the crossover process

4. Mutation Operator

The mutation will be applied to the new generation that has been generated by the

crossover operator (crossover’s generation). In this example, the mutation will be

applied to the child1 and child2 that have been shown in Figure 4.13 . Figure 4.14 and

Figure 4.15 show the effect of mutation operator in the encoding and decoding stages.

60

Figure 4.14: mutation process (in the encoding stage)

Figure 4.15: two networks generated by the mutation processes (decoding stage)

4.3 THE SA-BASED APPROACH

The SA algorithm works iteratively while the termination condition is false to find the

best solution. SA starts from initial solution at starting temperature (internal

temperature) denoted by T, which randomly generated and denoted here by S0 in each

iteration, new solution (current solution) Sw will be generated from the previous one

(Preceding solution) based on a specific procedure. Then the best solution Sb between

 S0 and Sw depends on a specific measure, according to the objective functions defined

in equations (3.1 and 3.2). If the new solution is better than the old one, then the new

solution will be chosen as Sb to replace the previous Sb. If not, then the replacement

will be done based on probability denoted by P forming a new function named transition

function. This function uses two parameters α and T to determine whether to accept this

61

solution as Sb or to keep the old Sb. While the iterations continue, and keeping the best

solution at each iteration, the T value is decreasing (cooling operation) until the final

temperature is reached, which denoted here by Tf and it is used as a termination

condition. Table 4.1 shows the symbols that have been used in the SA processes.

Table 4.1: The symbols that have been used in SA processes.

Symbol Description

T The internal temperature

𝑇𝑓 The final temperature

𝑆0 The initial solution

𝑆𝑤 The working solution

𝑆𝑏 The best solution

𝐸𝑤 The energy of the 𝑆𝑤.

𝐸𝑏 The energy of the 𝑆𝑏.

Α Is used to alter the temperature value.

Δ The energy difference between 𝑆𝑤 and 𝑆𝑏 (𝐸𝑏 − 𝐸𝑤)

R Random number

𝐴𝑐 The acceptence condition of the 𝑆𝑤 as the 𝑆𝑏

І The temperature incremental counter

G The IGs number

N The of MRs including the IGs

The following subsections present the details of the SA algorithm.

4.3.1 Network Encoding (Representation)

It is similar to network representation in the GA based algorithm. The algorithm uses a

binary string to represent the network solution in the encoding stage. The solution

consists of n bits represent the MRs in the network. The bits of value one represent the

IGs where the bits with the values zeroes represent the normal MRs. The order of the

bit in the string determines the node ID in the network, which is used to differentiate

between the nodes. The node IDs are used in both encoding and decoding stages. The

latter has been discussed in section 4.1. Figure 4.16 shows the solution representation

in the binary string.

62

Figure 4.16: the solution representation in SA in the encoding stage

4.3.2 The initial solution

The initial solution will be generated randomly with the consideration of the IGs

number. The solution length is equal to the number of the MRs in the network as

mentioned in the previous subsection. The number of the IGs will be kept also in

designated parameter in the same process of the GA solution. The solution here is a

single network configuration corresponding to the individual in the GA algorithm

representation. As shown in the Figure 4.16.

4.3.3 The fitness function

The quality of the solution is called the solution energy in the SA concepts, which is

inherited from the metallurgy science as mentioned before in chapter 2. The fitness uses

the same criterion in the GA solution based on the objective functions (3.1 and 3.2) and

the constraints and equations defined in the mathematical formulation of the problem

as follows:

4.3.3.1 MRs-AVG Fitness Function

This function considers the objective (3.1) so, as to minimize the variation in AVG-

MRs-IGs only whatever the value of the objective (3.2).

4.3.3.2 IGs-AVG Fitness Function

This function considers the objective (3.2) so, as to minimize the variation in AVG-

MRs-IGs among the MRs associated with each gateway only whatever the value of the

objective (3.1).

4.3.3.3 MRs-IGs-AVG Fitness Function

This function considers the objectives (3.1, 3.2) in the evaluation process. The idea is,

the objective 3.1 (𝑓1) is the primary objective while objective 3.2 (𝑓2) is the secondary

objective in the optimization process. Here, the aim is to minimize 𝑓1 until no

63

improvement happened for a long time, then minimizing 𝑓2 without worsening the

value of the 𝑓1.

4.3.4 The best solution

There are always two solutions during the SA processes, the current solution, which is

the best solution and working solution, which is the solution undergoes the evaluation

of the fitness function. If 𝑆𝑤 has a better fitness value (higher energy) than the

current 𝑆𝑏, then 𝑆𝑏will replaced by 𝑆𝑤, Otherwise, the 𝑆𝑏will be determined by a

function called “transition function.”

4.3.5 The transition function

This function is used to determine the best solution if the current working solution has

less energy than the best current solution. It uses probability transition for better chances

toward the optimal solution or tries to prevent the algorithm from not to stuck on the

local optimum solution. The processes of this function use two parameters α and T to

determine the acceptance or the rejection of the working solution as the best solution.

The function returns logical values true or false in comparison with a random number.

The true value indicates the acceptance and false indicates the rejection. The following

illustration shows the details of the transition processes.

1. Generate the random number R

2. Calculate δ value using the following formula: 𝛿 = 𝐸𝑏 − 𝐸𝑤

3. The acceptance of 𝑆𝑤 condition is: 𝐴𝑐 = {𝑡𝑟𝑢𝑒 , 𝑖𝑓 (𝑒
(−

𝛿

𝑇
) > 𝑅)

𝑓𝑎𝑙𝑠𝑒 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

4. If 𝐴𝑐 = 𝑡𝑟𝑢𝑒, then 𝑆𝑏 = 𝑆𝑤

4.3.6 Cooling Control and Stopping Condition

The algorithm processes start with high internal temperature (T) and final

temperature 𝑇𝑓. The parameter α is used to decrease the T value at each iteration as

follows:

𝑇 = 𝑇 ∗ 𝛼

64

The iterations will continue until the following condition (stopping condition) is true:

𝑇 = 𝑇𝑓

4.3.7 The Algorithm Template (Pseudo code)

Algorithm 2: SA Procedure

Input:

Initialize 𝑇, 𝑇𝑓 , 𝛼, 𝑔, 𝑛

𝑆0= Initial Solution ()

𝑆𝑤= Evaluate (𝑆0)

𝑆𝑏 = 𝑆𝑤

While 𝑇 > 𝑇𝑓 Do

While I < Iterations_At_Temperature do

𝑆𝑤=Generate(𝑆𝑤,T)

𝐸𝑤 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑛𝑒𝑟𝑔𝑦(𝑆𝑤)

𝐸𝑏=ComputeEnergy (𝑆𝑏

𝐴𝑐=Evaluate (T, 𝐸𝑤, 𝐸𝑏)

If 𝐴𝑐=True then

𝑆𝑏=𝑆𝑤

End if

I = I+1

End while

65

T = T * α

End while

Output:

Return 𝑆𝑏

Figure 4.17: SA-Based algorithm pseudocode.

4.4 SUMMARY

This chapter has presented the data structure of the graph representation and network

configuration using matrix and vectors. In addition, the detailed discussion about the

proposed algorithms has been done in this chapter. The first algorithm based on the GA

and the second based on the SA. Furthermore, the chapter has presented an illustration

about how these algorithms work to solve the research problem (GPP). The illustration

covered the representation of the network in the encoding stage, which they used by the

proposed algorithms to simulate the real network as well as the corresponding network

configuration in the decoding stage (Graph’s representation). The next chapter will

present and discuss the numerical results of the proposed algorithms and a comparison

between these algorithms as well.

66

CHAPTER FIVE

RESULTS ANALYSIS AND EVALUATION

This chapter presents the numerical results of the proposed algorithms (GA and SA), a

comparison between the two algorithms and deep insights in each algorithm to present

further optimization opportunities in different situations and parameters in the

algorithms. According to the best of our knowledge, currently there is no algorithm can

be found in the literature use the same parameters to solve the GPP. Therefore, we have

tested only our algorithms in the experiments and a comparison between them has been

done as well. We have tested the algorithms using 25 MRs and 4 IGs. We run the

application on Hewlett-Packard HP 2000 Notebook PC with Intel core-i3 2.40GHz

processor and 4.00GB of RAM and tested under Windows 7 (32-bit) operating system.

Microsoft Visual Studio 2010 (Visual Basic) has been used as a programming language

to implement the proposed algorithms. Two different applications have developed for

each algorithm, the first one uses the windows application, which based on graphical

user interface for ease of use, and the second one based on console application for less

memory consumption that is required by the graphical user interface. Finally, this

chapter presents a discussion about the two applications’ development environment.

5.1 THE EVALUATION OF THE GA-BASED ALGORITHM

The population evolution has been investigated to demonstrate the effectiveness of the

GA. In order to prove the correct functionality of the GA the growth of the fitness must

be observed over the new generations, which are produced by the genetic operators.

Thus, the effects of these operators have been investigated to show the effectiveness of

the GA. Therefore, we evaluated the algorithm using different conditions such as the

effects of population size, crossover type, mutation type and the tournament size. The

evaluation process is aimed to show the convergence rate of the proposed algorithm as

well as showing the robustness and the scalability of the proposed algorithm, which

may be used in high intensity situation. Moreover, the evaluation also aimed to show

the significance of the objective function on solving the GPP besides how it is different

from the existing research works that aimed to minimize the AVG-MR-IG-Hop to

67

enhance the network performance. The following subsections present and discuss the

generated results.

Figure 5.1 shows the generated result using population size of 100, two-point crossover

type, inversion mutation and tournament size of 10. The number of MRs is 100 with 10

IGs and we ran the algorithm for four rounds for only ten generations per each round,

the figure below shows that the algorithm always get good results, and this indicates

that the algorithm will get better result in the next generations. In addition, the results

show a positive convergence rate at each round.

Figure 5.1: Initial GA results for four rounds and ten generations

5.1.1 The effect of population size on convergence rate

The effect of population size on the convergence rate has been studied, and the

algorithm parameters that were used in the experiments as shown in Table 5.1.

Table 5.1: Parameters used to evaluate the effect of population size

Parameter Value

Crossover type 2-points

Mutation type Inversion

Tournament size 10

Number of MRs 25

Number of Gateways 4

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

Best VAR-MR-IG-Hop

Initial VAR-MR-IG-Hop

68

Population sizes 50,100,150

Maximum generation No. 6000

Figure 5.2 shows the VAR-MR-IG-Hop of the best solution of the initial population and

the current generation when the population size is 100. Figure 5.3 shows the

convergence rate using different population sizes: 50,100,150 and the results show that

the algorithm has a good convergence rate at different population size but the best

population size with the parameter values shown in Table 5.1 is 100, which shows the

lowest variation (highest convergence rate).

Figure 5.2: VAR-MR-IG-Hop when the population size=100

Figure 5.3: Convergence rate using different population sizes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1000 2000 3000 4000 5000

Generations

Best VAR-MR-IG-Hop (Current Generation)

Best VAR-MR-IG-Hop (Initial Population)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1000 2000 3000 4000

Pop100

Pop50

Pop150C
o
n
v
er

g
en

ce
ra

te

Generations

69

The algorithm has been ran three times using the population sizes 50,100,150 and the

fitness values of each instance have been compared at 3000 generations. The result, as

shown in Figure 5.4.

Figure 5.4: Fitness values at the 3000 generation

Figure 5.5: AVG-MR-IG-Hop and VAR-MR-IG-Hop when the population size=100

0

1

2

3

4

5

50 100 150

F
it

n
es

s
V

al
u
e

Population Size

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000 6000 7000

Generations

VAR-MR-IG-Hop AVG-MR-IG-Hop

70

Figure 5.6: The relationship between AVG-MR-IG-Hop and VAR-MR-IG-Hop

Figure 5.5 and Figure 5.6 show the relationship between the AVG-MR-IG-Hop and VAR-

MR-IG-Hop counts. Other algorithms for IG placement aimed to minimize the AVG-MR-

IG-Hop in order to minimize the bandwidth consumption, delay, the transmission time

and maximize the network throughput. However, depending only on AVG-MR-IG-Hop

does not guarantee that the all MRs positioned in near equal distance from their IGs.

From the result shown in Figure 5.5 while the AVG-MR-IG-Hop keeps decreasing

through the generations, the VAR-MR-IG-Hop has a constant value for a long period

with different VAR-MR-IG-Hop values. The result presented in Figure 5.6 shows that

the stability of the VAR-MR-IG-Hop value and the variety of AVG-MR-IG-Hop. This

result supports the philosophy behind using the VAR-MR-IG-Hop in our algorithms

rather than depending on AVG-MR-IG-Hop.

5.1.2 The effect of tournament size on the convergence rate

The algorithm has been tested using different tournament sizes and the other GA’s

parameters as shown in Table 5.2.

Table 5.2: Parameter’ settings to evaluate the effect of tournament size

Parameter Value

Crossover type 2-points

Mutation type Inversion

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000

VAR-MR-IG-Hop AVG-MR-IG-Hops

71

Tournament size 6,10,15,20,30

Number of MRs 25

Number of Gateways 4

Population size 100

Maximum generation No. 6000

Figure 5.7 shows the convergence rates of four instances of the algorithm for a number

of generations using different tournament sizes shown in Table 5.2. The results show

the highest convergence rate at 30-tournament size for 2000 generations, which means

30% of the population.

Figure 5.7: Convergence Rate using different tournament sizes

5.1.3 The effect of crossover type on the convergence rate

From the previous results the best population size is 100 and the best tournament size,

is 30% of the population where the total number of MRs is 25 (individual size) with

four IGs. The previous tests have been done using the 2-point crossover. In the

following section presents the effect of using different crossover types and the other

GA’s parameters as shown in Table 5.3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100 200 300 400 500 600 700 800 900 1000110012001300140015001600

C
o

n
ve

rg
e

n
ce

 R
at

e

Generations

Convergence Rate (T=6) Convergence Rate (T=10)

Convergence Rate (T=15) Convergence Rate (T=20)

Convergence Rate (T=30)

72

Table 5.3: The parameter settings to evaluate the effect of crossover type

Parameter Value

Crossover type Single point, 2-points, Uniform

Mutation type Inversion

Tournament size 30

Number of MRs 25

Number of Gateways 4

Population size 100

Maximum generation No. 1600

Table 5.4: Effect of different crossover types

 Single Point

crossover

2-Points Crossover Uniform Crossover

G
en

er
at

io
n
 N

o
.

C
o
n
v
er

g
en

ce
 R

at
e

A
V

G
-M

R
-I

G
-H

o
p

C
o
n
v
er

g
en

ce
 R

at
e

A
V

G
-M

R
-I

G
-H

o
p

C
o
n
v
er

g
en

ce
 R

at
e

A
V

G
-M

R
-I

G
-H

o
p

100 0.5805 1.8095 0.5857 1.8095 0.3482 2.0476

200 0.5805 1.6667 0.6381 1.8571 0.3482 2.8571

300 0.5805 1.6667 0.6524 2.0000 0.3482 1.8095

400 0.5805 2.0000 0.6524 1.9524 0.3482 2.2381

500 0.5977 1.7619 0.6524 2.4762 0.3482 1.9048

600 0.5977 2.0476 0.6667 2.2381 0.3482 1.9524

700 0.6839 2.0952 0.6667 1.9524 0.3482 2.4286

800 0.6839 1.9048 0.6667 1.9524 0.3482 1.7619

900 0.6839 1.9524 0.6667 2.0952 0.3482 1.8571

1000 0.6839 1.8095 0.6667 2.1429 0.3482 1.8571

1100 0.6839 2.1905 0.6667 2.0952 0.3482 1.9524

1200 0.6839 1.8095 0.7381 1.7619 0.3482 2.2381

1300 0.6839 2.1905 0.7381 1.8571 0.3482 1.9048

1400 0.6897 1.6190 0.7381 1.7619 0.3482 2.3810

1500 0.6897 1.7619 0.7381 2.0952 0.3482 2.1905

1600 0.6897 1.9524 0.7381 2.1905 0.3482 1.8571

73

Table 5.4 shows the convergence rate of the proposed GA algorithm and AVG-MR-IG-

Hops. The results show that, the highest convergence rate with 2-points crossover

through generations. Figure 5.8 shows the convergence rate of the three crossover types.

Figure 5.8: Convergence rate of the three crossover types

5.2 THE EVALUATION OF THE SA-BASED ALGORITHM

The algorithm has been ran using different values of internal temperature, iterated the

execution of the algorithm ten times for each temperature value and then the best

solution among them has been chosen. Table 5.5 describes the parameters used in the

experiments. Figure 5.9: VAR-MR-IG-Hop and Internal Temperature shows the VAR-

MR-IG-Hop of the best solutions.

Table 5.5: The Parameter’ settings of the experiment

Parameter Value

Alpha 0.99

Final Temperature 0.01

Internal Temperature 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

Number of MRs 25

Number of IGs 4

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0 500 1000 1500 2000

C
o

n
ve

rg
e

n
ce

 R
at

e

Single Point Crossover 2-points Crossover

Uniform Crossover

74

The experiments have shown that, the best results in internal temperature values of 200

and 500. However, in the optimization the time is very important. Thus, we can say that,

the best result is at internal temperature 200 because increasing the internal temperature

will increase the execution time. Figure 5.10: Execution time at different values of

internal temperature shows the execution time for at the different values of the internal

temperature at the best iteration among the ten iterations.

Figure 5.9: VAR-MR-IG-Hop and Internal Temperature

Figure 5.10: Execution time at different values of internal temperature

5.3 SUMMARY

This chapter has presented the evaluation of the proposed algorithms (the GA-Based

and SA-Based algorithms). The GA-Based algorithm has been evaluated using different

parameters (genetic operators) and have shown their usefulness to solve the GPP at

0.00000

0.05000

0.10000

0.15000

0.20000

0.25000

0.30000

0.35000

0.40000

0 200 400 600 800 1000 1200

Internal temperature

VAR-MR-IG-Hop

28

29

30

31

32

33

34

35

36

37

200 500 1000

Ex
e

cu
ti

o
n

 T
im

e
 (

in
 s

e
co

n
d

s)

Internal temperature

75

different situations. The SA-Based algorithm has been evaluated using different value

for the algorithm’s operators, especially the internal temperature, which has

considerable effect on the algorithm execution time. However, both of the two

algorithms have ability to deliver an acceptable solution for the GPP.

76

CHAPTER SIX

CONCLUSION AND FUTURE RECOMMENDATIONS

6.1 CONCLUSION

In this research, the GPP in WMN has been studied and addressed; a novel solution has

been proposed to solve this problem. Two algorithms have been developed based on

GA and SA to find the near optimal solution for the GPP. The proposed approach aimed

to minimize the VAR-MR-IG-Hop count among MRs in the network to insure that each

MRs were placed in a near optimal position from their nearest IG as well as to insure

the MRs were distributed equally among the IGs. The problem has been formulated as

a mathematical model and the network was represented as an undirected graph of a one-

unit weights. The Dijkstra’s algorithm has been used to calculate the shortest path

between the MRs and the IGs. The GA and the SA have been used to find the near

optimal solution based on the objective functions in the mathematical model. The two

algorithms have been evaluated based on generating instances to show the convergence

rate, the scalability, and the robustness of the algorithms. The experimental results have

shown good results for both algorithms. Further optimization has been done for both

algorithms using different parameters that formed, the processes these algorithms and

size of the networks to test the algorithms in high and low intensity situations. For the

GA the parameters that were considered in the test are population size, tournament size

and crossover type. For the SA the parameters that were considered in the experiments

are internal and final temperature besides the probability and the parameters that were

used in the transition function. The results have shown that the algorithms could achieve

good results in different situations in high intensity and low intensity. Hence, the

algorithms have considerable scalability and robustness to solve the GPP in large and

small networks. Moreover, the results have shown the positive significance of VAR-

MR-IG-hop in comparison with the AVG-MR-IG-hop on enhancing the network

performance by exploiting the resources in a way that cloud insures the load balance

among MRs. Finally, a comparison between GA and SA have been done. The results

have shown the GA achieved better than SA in the small-size networks and it has better

opportunities for further optimization through many generations. Nevertheless, the SA

77

can achieve better in large-size networks in small execution time and it is better than

GA when the time is an important issue but less quality in comparison with the GA has.

6.2 DISSERTATION CONTRIBUTION

This dissertation aimed to optimize the gateway placement in WMN. A new solution

has been developed to solve the GPP. The problem has been formulated as undirected

weighted and connected graph and guided by a mathematical model. Two algorithms

have been developed to find a near optimal solution for the research problem, the first

algorithm based on genetic algorithm where the second based on simulated annealing

algorithm. The evaluation results showed that, both of the algorithms have good results.

The following conference papers are presented at international conferences, these

papers are entitled as follows:

 Gateway Placement Approaches in Wireless Mesh Network: Study Survey,

IEEE International Conference – Khartoum Aug 2013.

 Investigation of Gateway Placement Approaches in Wireless Mesh Networks

using Genetic Algorithms, ICCCE2014, IIUM, Kuala Lumpur, Sept 2014

(published in IEEE explore).

Two journal papers have been published in international journal, these papers are

entitled as follows:

 Metaheuristic Approaches for Gateway Placement Optimization in Wireless

Mesh Networks: A Survey, International Journal of Computer Science and

Network Security, 2014

 A Genetic Approach for Gateway Placement in Wireless Mesh Networks,

International Journal of Computer Science and Network Security, 2015

6.3 FUTURE WORKS

For further enhancement, more objectives can be added to the existing solution’s

objectives such as the network throughput or any performance metrics.

78

REFERENCES

[1] Wu, Wenjia, Junzhou Luo, and Ming Yang, "Gateway placement optimization

for load balancing in wireless mesh networks," in Computer Supported

Cooperative Work in Design. CSCWD 2009. 13th International Conference on,

2009.

[2] Li, Fan, Yu Wang, and Xiang-Yang Li, "Gateway placement for throughput

optimization in wireless mesh networks," in Communications. ICC'07. IEEE

International Conference on., 2007.

[3] Awadallah M Ahmed, Aisha Hassan A Hashim, "A Genetic Approach for

Gateway Placement in Wireless Mesh Networks," International Journal of

Computer Science and Network Security (IJCSNS), vol. 15, no. 7, p. 11, 2015.

[4] Talay, Ahmet Cagatay, "A gateway access-point selection problem and traffic

balancing in wireless mesh networks," Applications of Evolutionary Computing.

Springer Berlin Heidelberg, pp. 161-168, 2007.

[5] Moheb R. Girgis, Tarek M., Bahgat A., Ahmed M. Rabie, "Solving the Wireless

Mesh Network Design Problem using Genetic Algorithm and Simulated

Annealing Optimization Methods," International Journal of Computer

Applications, vol. 96, no. 11, p. 0975 –8887, June 2014.

[6] Awadallah M. Ahmed, Aisha Hassan A. Hashim, "Metaheuristic Approaches for

Gateway Placement Optimization in Wireless Mesh Networks: A survey,"

IJCSNS International Journal of Computer Science and Network Security, vol.

14, no. 12, December 2014.

[7] Awadallah M. Ahmed, Aisha Hassan. A. Hashim, and Wan Haslina Hassan,

"Investigation of Gateway Placement Optimization Approaches in Wireless

Mesh Networks using Genetic Algorithms," in Computer and Communication

Engineering (ICCCE), 2014 International Conference on, Kuala Lumpur,

Malaysia, 2014.

79

[8] Yang Zhang,Jijun luo, Honglin Hu, Wireless Mesh Networking: Architectures,

Protocols and Standards (Wireless Networks and Mobile Communications),

2006.

[9] Huyao Dac-Nhuong Le, Nhu Gia Nguyen, Nghia Huu Dinh, Nguyen Dang Le,

and Vinh Trong Le, "Optimizing Gateway Placement in Wireless Mesh

Networks based on ACO Algorithm," International Journal of Computer and

Communication Engineering, vol. 2, no. 2, pp. 143--147, 2013.

[10] Oda, Tetsuya, et al., "Effects of population size for location-aware node

placement in WMNs: evaluation by a genetic algorithm--based approach,"

Personal and ubiquitous computing, no. 18.2, pp. 261-269, 2014.

[11] Barolli, Admir, et al., "Performance Evaluation of WMN-GA System for Node

Placement in WMNs Considering Exponential and Weibull Distribution of Mesh

Clients and Different Selection and Mutation Operators," in Complex,

Intelligent, and Software Intensive SysteSystems (CISIS), 2013 Seventh

International Conference on. IEEE, 2013.

[12] Jun, Jangeun, and Mihail L. Sichitiu, "The nominal capacity of wireless mesh

networks," Wireless Communications, IEEE, vol. 10.5, pp. 8-14, 2003.

[13] R. Draves, J. Padhye, and B. Zill, "Routing in multi-radio, multi-hop wireless

mesh networks," in ACM International Conference on Mobile Computing and

Networking (MobiCom), 2004.

[14] A. Raniwala and T. Chiueh, "Architecture and algorithms for an IEEE 802.11-

based multi-channel wireless mesh network," in IIEEE Conference on Computer

Communications (INFOCOM), 2005.

[15] Das, Banani and Roy, Sudipta, "Load Balancing Techniques for Wireless Mesh

Networks: A Survey," in Computational and Business Intelligence (ISCBI), 2013

International Symposium on, 2013.

[16] Akyildiz, Ian F., Xudong Wang, and Weilin Wang, "Wireless mesh networks: a

survey," Computer networks , vol. 47.4 , pp. 445-487, (2005).

[17] Akyildiz, I.F. and Xudong Wang, "A survey on wireless mesh networks,"

Communications Magazine, IEEE, vol. 43, no. 9, pp. S23-S30, Sept 2005.

80

[18] Oda, Tetsuya, et al., "A Comparison Study of GA and HC for Mesh Router Node

Placement in Wireless Mesh Networks," in Network-Based Information Systems

(NBiS), 2013 16th International Conference on. IEEE, 2013.

[19] Srivastava, Smriti, Anant Kumar Jaiswal, and Paramjeet Rawat., "Gateway

Placement Approaches: A Survey," International Journal of Engineering and

Innovative Technology , no. 1.4, pp. 306-309, 2012.

[20] Ahmed, Awadallah M., Aisha H. Abdalla, and Ismail El-Azhary, "Gateway

placement approaches in Wireless Mesh Network: Study survey," in Computing,

Electrical and Electronics Engineering (ICCEEE), 2013 International

Conference on. IEEE, 2013.

[21] Keijo Ruohonen (Translation by Janne Tamminen, Kung-Chung Lee and Robert

Piché), GRAPH THEORY, 2013.

[22] Joyner, David and Van Nguyen, Minh and Phillips, David, Algorithmic Graph

Theory and Sage, Version 0.8-r1991, 2013, p. 304.

[23] Bondy, John Adrian and Murty, Uppaluri Siva Ramachandra, Graph theory with

applications, vol. 6, Macmillan London, 1976.

[24] David Joyner, Minh Van Nguyen, Nathann Cohen, Algorithmic Graph Theory,

Version 0.7-r1843, 2011.

[25] Schrijver, Alexander, Combinatorial Optimization. Algorithms and

Combinatorics, Polyhedra and efficiency, vol. 24, Springer, 2004.

[26] Dijkstra, Edsger W, "A note on two problems in connexion with graphs,"

Numerische mathematik, vol. 1, no. 1, pp. 269--271, 1959.

[27] "www.businessdictionary.com," [Online]. Available:

http://www.businessdictionary.com/definition/optimization.html. [Accessed 26

January 2015].

[28] Richard E. Neapolitan, Kumarss Naimipour, Foundations of Algorithms Using

Java Pseudocode, Mississauga, Lonadon: Jones and Bartlett Publishers (Canada,

international-UK), 2004.

[29] Boyd, Stephen and Vandenberghe, Lieven, Convex optimization, Cambridge

university press, 2009.

81

[30] Xhafa, Fatos and Bravo, Albert and Barolli, Admir and Takizawa, Makoto, "An

Interface for Simulating Node Placement in Wireless Mesh Networks," in

Network-Based Information Systems (NBiS), 2012 15th International

Conference on, 2012.

[31] Korte, Bernhard, and Jens Vygen, "Combinatorial optimization. Algorithms and

Combinatorics," vol. 21, pp. 434-443, 2000.

[32] Lawler, Eugene L, Combinatorial optimization: networks and matroids, Courier

Dover Publications, 1976.

[33] Bernhard Korte, Jens Vygen, Combinatorial optimization: theory and

algorithms, 2 ed., Springer, 2002.

[34] Nikolaev, N. Y. and Iba, H., Adaptive Learining of Polynomial Networks

Genetic Programming, Backpropagation and Bayesian Methods, New York:

Springer, 2006.

[35] Hitoshi Iba, Nasimul Noman, New Frontier in Evolutionary Algorithms: Theory

and Applications, London: Imperial College Press, 2012.

[36] Dianati, Mehrdad and Song, Insop and Treiber, Mark, "An introduction to

genetic algorithms and evolution strategies," Technical report, University of

Waterloo, Ontario, N2L 3G1, Canada, 2002.

[37] Streichert, Felix, "Introduction to Evolutionary Algorithms," paper to be

presented Apr, vol. 4, 2002.

[38] J. H. Holand, "Adaptation in natural and artificial systems," Ann Arbor: The

University of Michigan Press, 1975.

[39] Abdullah, B and Abd-Alghafar, I and Salama, Gouda I and Abd-Alhafez, A,

"Performance evaluation of a genetic algorithm based approach to network

intrusion detection system," in 13th international conference on aerospace

sciences and aviation technology, Military Technical College, Kobry Elkobbah,

Cairo, Egypt, 2009.

[40] Paszkowicz, Wojciech, "Genetic algorithms, a nature-inspired tool: Survey of

applications in materials science and related fields," Materials and

Manufacturing Processes, vol. 24, no. 2, pp. 174--197, 2009.

82

[41] Blum, Christian and Roli, Andrea, "Metaheuristics in combinatorial

optimization: Overview and conceptual comparison," ACM Computing Surveys

(CSUR), vol. 35, no. 3, pp. 268--308, 2003.

[42] Glover, Fred and Kochenberger, Gary A, Handbook of Metaheuristics, Kluwer

Academic Publishers, Springer Science \& Business Media, 2003.

[43] Hoos, Holger H and St{\"u}tzle, Thomas, Stochastic Local Search: Foundations

and Applications, Elsevier, 2004.

[44] Dorigo, Marco, and Christian Blum, "Ant colony optimization theory: A

survey.," Theoretical computer science, vol. 344, no. 2, pp. 243-278, 2005.

[45] R. a. M. T. a. O. J. Ahuja, Networks flows, Prentice Hall, Englewood Cliffs, New

Jersey, 1993.

[46] Gen, Mitsuo and Cheng, Runwei and Lin, Lin, Network models and

optimization: Multiobjective genetic algorithm approach, Springer Science \&

Business Media, 2008, pp. 1--47.

[47] He, Bing, Bin Xie, and Dharma P. Agrawal, "Optimizing deployment of internet

gateway in wireless mesh networks," Computer Communications, no. 31.7, pp.

1259-1275, 2008.

[48] Hu, Jie., "Gateway Node Selection for Improving Traffic Delivery Ratio in

Wireless Mesh Networks," in International Conference on Computer, Networks

and Communication Engineering (ICCNCE 2013). Atlantis Press, 2013.

[49] B. Aoun, R. Boutaba, Y. Iraqi, and G. Kenward, "Gateway placement

optimization in wireless mesh networks with QoS constraints," Journal on

Selected Areas in Communications, vol. 24, no. 11, p. 2127– 2136, November

2006.

[50] J. Wong, R. Jafari, and M. Potkonjak, "Gateway placement for latency and

energy efficient data aggregation," in in Proceedings IEEE LCN, 2004.

[51] R. Chandra, L. Qiu, K. Jain, and M. Mahdian, "Optimizing the placement of

Internet TAPs in wireless neighborhood networks," in in Proceedings IEEE

ICNP, 2004.

83

[52] Y. Bejerano, "Efficient integration of multihop wireless and wired networks with

QoS constraints," IEEE/ACM Transactions on Networking, vol. 12, no. 6, p.

1064–1078, December 2004.

[53] Zeng, Feng, and Zhigang Chen., "Load balancing placement of gateways in

wireless mesh networks with QoS constraints," in Young Computer Scientists,

2008. ICYCS 2008. The 9th International Conference for. IEEE, 2008.

[54] Smadi, Mohammed N., et al., "Gateway placement in wireless mesh networks

using free space optical links," Computer Communications and Networks, 2008.

ICCCN'08. Proceedings of 17th International Conference on. IEEE, 2008.

[55] Pries, Rastin, et al. , "A genetic approach for wireless mesh network planning

and optimization," in Proceedings of the 2009 International Conference on

Wireless Communications and Mobile Computing: Connecting the World

Wirelessly. ACM, 2009.

[56] Pries, Rastin, et al., "Genetic algorithms for wireless mesh network planning," in

Proceedings of the 13th ACM international conference on Modeling, analysis,

and simulation of wireless and mobile systems. ACM, 2010.

[57] Lin, Ting-Yu, Kai-Chiuan Hsieh, and Hsin-Chun Huang., "Applying genetic

algorithms for multiradio wireless mesh network planning," Vehicular

Technology, IEEE Transactions on, no. 61.5, pp. 2256-2270, 2012.

[58] Karnik, Aditya, Aravind Iyer, and Catherine Rosenberg, "Throughput-optimal

configuration of fixed wireless networks," ACM Transactions on Networking

(TON), vol. 16.5 , pp. 1161-1174, 2008.

[59] Ge, Zhi-hui, and Tao-shen Li., "A novel gateway load-balance algorithm for

wireless mesh network," The Journal of China Universities of Posts and

Telecommunications , vol. 18, pp. 75-78, 2011.

[60] Maolin, T. A. N. G, "Gateways placement in backbone wireless mesh networks,"

Int'l J. of Communications, Network and System Sciences 2.1, pp. 44-50, 2009.

[61] Aljober, Mijahed Nasser, and R. C. Thool., "Multi-Objective Particle Swarm

Optimization for Multicast Load Balancing in Wireless Mesh Networks".

[62] Le, Dac-Nhuong, and Nhu Gia Nguyen, "A New Evolutionary Approach for

Gateway Placement in Wireless Mesh Networks," International Journal of

84

Computer Networks and Wireless Communications (IJCNWC) , no. 2.5, pp. 550-

555, 2012.

[63] Ping, Zhou, Wang Xudong, and Rao Ramesh., "On optimizing gateway

placement for throughput in wireless mesh networks," EURASIP Journal on

Wireless Communications and Networking, 2010.

[64] Le, Dac-Nhuong., "A Comparatives Study of Gateway Placement Optimization

in Wireless Mesh Network using GA, PSO and ACO," International Journal of

Information and Network Security (IJINS) , no. 2.4, pp. 292-304, 2013.

[65] Xhafa, Fatos, Christian Sánchez, and Leonard Barolli., "Genetic algorithms for

efficient placement of router nodes in wireless mesh networks," in Advanced

Information Networking and Applications (AINA), 2010 24th IEEE International

Conference on. IEEE, 2010.

[66] Xhafa, Fatos, et al., "Evaluation of genetic algorithms for mesh router nodes

placement in wireless mesh networks," Journal of Ambient Intelligence and

Humanized Computing, no. 1.4, pp. 271-282, 2010.

[67] Hsu, Chun-Yen, et al., "Survivable and delay-guaranteed backbone wireless

mesh network design," Journal of Parallel and Distributed Computing, no. 68.3,

pp. 306-320, 2008.

[68] Muthaiah, Skanda N., and C. Rosenberg, "Single gateway placement in wireless

mesh networks," in Proceedings of 8th international IEEE symposium on

computer networks, Turkey, 2008.

[69] R. Chandra, L. Qiu, K. Jain, M. Mahdian, "Optimizing the placement of

integration points in multi-hop wireless networks," in Proceedings of IEEE

ICNP, Berlin, 2004.

[70] Gumel, M. I., N. Faruk, and A. A. Ayeni, "Investigation and Addressing

Unfairness in Wireless Mesh Networks," Journal of Emerging Trends in

Computing and Information Sciences 2.

[71] He, Bing and Xie, Bin and Agrawal, Dharma P, "Optimizing the internet gateway

deployment in a wireless mesh network," in Mobile Adhoc and Sensor Systems,

2007. MASS 2007. IEEE Internatonal Conference on, 2007.

85

[72] Sivanandam, SN and Deepa, SN, Introduction to genetic algorithms, Springer

Science \& Business Media, 2007.

[73] Jun, Peng, and Zhou QiangQiang, "Gateways Placement Optimization in

Wireless Mesh Networks," in Networking and Digital Society. ICNDS'09.

International Conference on, 2009.

[74] Ding, Jingzhi, Jianxiao Xu, and Zhifeng Zheng, "Gateway Deployment

Optimization in Wireless Mesh Network: A Case Study in China," in Service

Operations, Logistics and Informatics. SOLI'09. IEEE/INFORMS International

Conference on. , 2009.

[75] Johnson, David S and Garey, Michael R, Computers and intractability: A guide

to the theory of NP-completeness, New York: NY, USA: W. H. Freeman & Co,

1990.

[76] Waharte S., Boutaba R., Iraqi Y., Ishibashi B., "Routing protocols in Wireless

Mesh Networks: Challenges and design considerations," Springer,Multimedia

Tools Applications., pp. 285-303, 2006.

[77] Lei W., Landfeldt B., "The problem of Placing Mobility Anchor points in

Wireless Mesh Networks," in In proceedings of 6th ACM International

Symposium on Mobility Management and Wireless access, MobiWac’08., 2008.

[78] Xhafa, Fatos, et al., "A simulated annealing algorithm for router nodes placement

problem in Wireless Mesh Networks," Simulation Modelling Practice and

Theory, no. 19.10, pp. 2276-2284, 2011.

[79] Lin, Chun-Cheng., "Dynamic router node placement in wireless mesh networks:

A PSO approach with constriction coefficient and its convergence analysis,"

Information Sciences , no. 232, pp. 294-308, 2013.

[80] Neumann, Frank and Witt, Carsten, "Combinatorial Optimization and

Computational Complexity," in Bioinspired Computation in Combinatorial

Optimization, Berlin Heidelberg, Springer, 2010, pp. 9-19.

[81] Hansen, Nikolaus and Arnold, Dirk V and Auger, Anne, "Evolution Strategies,"

Handbook of Computational Intelligence. Springer, 2013.

[82] Cornuejols, Gerard and T{\"u}t{\"u}nc{\"u}, Reha}, Optimization Methods in

Finance, Citeseer, 2005.

86

[83] Abdullah, B and Abd-Alghafar, I and Salama, Gouda I and Abd-Alhafez, A,

"Performance evaluation of a genetic algorithm based approach to network

intrusion detection system," in 13th international conference on aerospace

sciences and aviation technology, Military Technical College, Kobry Elkobbah,

Cairo, Egypt, 2009.

[84] Blum, Christian and Roli, Andrea, "Metaheuristics in combinatorial

optimization: Overview and conceptual comparison," ACM Computing Surveys

(CSUR), vol. 35, no. 3, pp. 268--308, 2003.

[85] Yagiura, Mutsunori and Ibaraki, Toshihide, "On metaheuristic algorithms for

combinatorial optimization problems," Systems and Computers in Japan, vol.

32, no. 3, pp. 33--55, 2001.

[86] Chih-Hao Lin and Pei-Ling Lin, "A New Non-dominated Sorting Genetic

Algorithm for Multi-Objective Optimization," in Modeling Simulation and

Optimization - Focus on Applications, ISBN: 978-953-307-055-1, S. C. (Ed.),

Ed., InTech, 2010.

[87] Angelova, Maria and Pencheva, Tania, "Tuning genetic algorithm parameters to

improve convergence time," International Journal of Chemical Engineering,

2011.

[88] Grotschel, M., and L. Lovász., Combinatorial optimization. "Handbook of

combinatorics 2", 1995, pp. 1541-1597.

[89] Champion, Brett and Strzebonski, Adam, "Constrained optimization," USA.

Champain: Wofram Research Inc, 2008.

[90] Kumar, Rajeev and Rockett, Peter, "Improved sampling of the Pareto-front in

multiobjective genetic optimizations by steady-state evolution: a Pareto

converging genetic algorithm," Evolutionary computation, vol. 10, no. 3, pp.

283--314, 2002.

[91] Goldberg, David E and Deb, Kalyanmoy, "A comparative analysis of selection

schemes used in genetic algorithms," Urbana, vol. 51, pp. 61801--2996, 1991.

[92] Das, Banani and Roy, Amit Kumar and Khan, Ajoy Kumar and Roy, Sudipta,

"Gateway-level Load Balancing Techniques for WMN: A Comparative Study,"

87

in Communication Systems and Network Technologies (CSNT), 2014 Fourth

International Conference on, 2014.

[93] Liu, Chun-yan and Fu, Bo and Huang, He-Jiao, "Delay minimization and priority

scheduling in wireless mesh Networks," Wireless Networks, vol. 20, no. 7, pp.

1955--1965, 2014.

[94] Mountassir, Tarik and Nassereddine, Bouchaib and Haqiq, Abdelkrim and

Bennani, Samir, "Wireless Mesh Networks Topology Auto Planning,"

International Journal of Computer Applications, vol. 52, no. 2, pp. 27--33, 2012.

[95] Le, Dac-Nhuong and Nguyen, Nhu Gia and Le, Nguyen Dang and Dinh, Nghia

Huu and Le, Vinh Trong, "ACO and PSO Algorithms Applied to Gateway

Placement Optimization in Wireless Mesh Networks," International

Proceedings of Computer Science \& Information Technology, vol. 57, 2012.

[96] Jahromi, Abdolhamid Eshraghniaye and Rad, Zohreh Besharati, "Optimal

topological design of power communication networks using genetic algorithm,"

Scientia Iranica, vol. 20, no. 3, pp. 945--957}, 2013.

[97] M. Barbehenn, "A Note on the Complexity of Dijkstra's Algorithm for Graphs

with Weighted Vertices," IEEE Transactions on Computers, vol. 47, no. 1, p.

263, 1998.

[98] Javaid, Muhammad Adeel, "Understanding Dijkstra's Algorithm," Available at

SSRN 2340905, 2013.

[99] Bertsekas, Dimitri P and Scientific, Athena, "Network Optimization: Continuous

and Discrete Models," INTERFACES-PROVIDENCE-INSTITUTE OF

MANAGEMENT SCIENCES-, vol. 28, pp. 73--75, 1998.

[100] Zhang, Xu and Qian, Zhi-Hong and Guo, Yu-Qi and Wang, Xue, "An efficient

hop count routing protocol for wireless ad hoc networks," International Journal

of automation and computing, vol. 11, no. 1, pp. 93--99, 2014.

[101] Vo, Hung Quoc and Hong, Choong Seon, "Hop-count based congestion-aware

multi-path routing in wireless mesh network," in Information Networking, 2008.

ICOIN 2008. International Conference on, 2008.

88

[102] Tehuang Liu and Wanjiun Liao, "Location-Dependent Throughput and Delay in

Wireless Mesh Networks," Vehicular Technology, IEEE Transactions on, vol.

57, no. 2, pp. 1188-1198, March 2008.

[103] David F. Barrero, David Camacho, and Mar´.a D. R-Moreno, "A Framework for

Agent-Based Evaluation of Genetic Algorithms," in Intelligent Distributed

Computing III, Berlin, Springer, 2009, pp. 31--41.

[104] Coello, Carlos A Coello and Van Veldhuizen, David A and Lamont, Gary B,

Evolutionary algorithms for solving multi-objective problems, vol. 242,

Springer, 2002.

[105] Abraham, Ajith and Jain, Lakhmi, Evolutionary multiobjective optimization,

Springer, 2005.

[106] Korte, Bernhard, Vygen, Jens, Combinatorial Optimization Theory and

Algorithms 5th edition, Springer, 2012.

[107] Caillouet, Christelle, Stéphane Pérennes, and Hervé Rivano., "Framework for

optimizing the capacity of wireless mesh networks," Computer

Communications, vol. 13, no. 34, pp. 1645-1659, 2011.

[108] Govil, Swati and Rawat, Paramjeet, "Comparative Analysis of Gateway

Placement Approaches for Wireless Mesh Network," International Journals of

Computer Techniques, vol. 3, no. 2, 2016.

89

APPENDIX A

The following visual basic (VB.Net) code defines the population, individual, Fitness

calculation (CalcFitness) and the main GA class besides the general module that defines

mutation, crossover repair function / procedure.

1. Population Class

Public Class Population

Friend individuals() As Individual

Public Sub New(ByVal populationSize As Integer, ByVal initialise As Boolean)

 individuals = New Individual(populationSize - 1) {}

 'Initialise population

 Dim NonePassed As Integer

 If initialise Then

 ' Loop and create individuals

 For i As Integer = 0 To size() - 1

 Dim newIndividual As New Individual()

 'NewIn:

 newIndividual.generateIndividual()

 saveIndividual(i, newIndividual)

 NonePassed = 0

 NonePassed = ChenkGenes(Me.getIndividual(i))

 If NonePassed <> 0 Then

 RepairGenes(Me.getIndividual(i), NonePassed)

 End If

 Next i

 End If

 End Sub

 ' Getters

Public Overridable Function getIndividual(ByVal index As Integer) As Individual

 Return individuals(index)

End Function

Public Overridable ReadOnly Property GetFittest As Individual

 Get

90

 Dim fittest As Individual = individuals(0)

 ' Loop through individuals to find fittest

 For i As Integer = 0 To size() - 1

 If fittest.getFitness >= getIndividual(i).getFitness Then

 fittest = getIndividual(i)

 End If

 Next i

 Return fittest

 End Get

End Property

 'Public methods

 'Get population size

Public Overridable Function size() As Integer

 Return individuals.Length

End Function

 'Save individual

Public Overridable Sub saveIndividual(ByVal index As Integer, ByVal indiv As

Individual)

 individuals(index) = indiv

End Sub

End Class

2. Individual class

Imports System.Math

Imports System.Random

Public Class Individual

 Friend Shared defaultGeneLength As Integer = IndividualSiZe

 Public genes(defaultGeneLength - 1) As Integer

 Dim R As New Random

 'Cache

 Dim fitness As Double = 0

 Friend GetMaxFitness As Object

 'Create a random individual

91

 Public Overridable Sub generateIndividual()

 For i As Integer = 0 To size() - 1

 genes(i) = "0"

 Next i

 Dim inx As Integer

 For i = 1 To GatewaysNo

 inx = CInt(R.Next(0, size() - 1))

 genes(inx) = "1"

 Next i

 End Sub

 'Getters and setters

‘Use this if you want to create individuals with different gene lengths

Public Shared WriteOnly Property SetDefaultGeneLength As Integer

 Set(ByVal length As Integer)

 defaultGeneLength = length

 End Set

End Property

Public Overridable Function getGene(ByVal index As Integer) As SByte

 Return genes(index)

End Function

Public Overridable Sub setGene(ByVal index As Integer, ByVal value As

SByte)

 genes(index) = value

 fitness = 0

End Sub

'Public methods

Public Overridable Function size() As Integer

 Return genes.Length

End Function

Public Overridable ReadOnly Property getFitness As Double

 Get

 Dim NewF As New FitnessCalc

 If fitness = 0 Then

92

 fitness = NewF.getFitness(Me)

 End If

 Return fitness

 End Get

 End Property

 Public Overrides Function ToString() As String

 Dim geneString As String = ""

 For i As Integer = 0 To size() - 1

 geneString &= getGene(i).ToString

 Next i

 Return geneString

 End Function

End Class

3. Fitness calculation class

Imports Microsoft.VisualBasic

Imports System.Math

Public Class FitnessCalc

 Public Function getFitness(ByVal individual As Individual) As Double

 Dim Gateways(GatewaysNo - 1) As Integer

 Dim Nodes(IndividualSiZe - GatewaysNo - 1) As Integer

 Dim x1 As Integer

 Dim x2 As Integer

 x1 = 0

 x2 = 0

 Dim NonePassed As Integer = 0

 NonePassed = ChenkGenes(individual)

 If NonePassed <> 0 Then

 RepairGenes(individual, NonePassed)

 End If

 For i = 0 To individual.size() - 1

 If individual.getGene(i).ToString = "1" Then

 Gateways.SetValue(i + 1, x1)

93

 x1 = x1 + 1

 ElseIf individual.getGene(i).ToString = "0" Then

 Nodes.SetValue(i + 1, x2)

 x2 = x2 + 1

 End If

 Next

 '' Calculate the standard deviation

 Dim v As Double

 v = GetVariant(Gateways, Nodes)

 Return v

 End Function

Private Function GetVariant(ByVal Gateways() As Integer, ByVal Nodes() As

Integer) As Double

 Dim NodeNo As Integer

 Dim NodeGateDistance(Nodes.Length - 1, 1) As Double

 Dim NearGateway As Integer

 Dim NodeDistance As Integer, ShortestDistance As Integer

 Dim NodesAverge As Double

 Dim NodesVar As Double

 Dim NodesCost As Integer

 NodeNo = Nodes.GetUpperBound(0)

 NodesCost = 0

 For i As Integer = 0 To NodeNo - 1

 ' Loop throuth all nodes

 NodeDistance = FrmDrawGraph.GetShortestPath(Nodes(i),Gateways(0))

 NearGateway = Gateways(0)

 For j As Integer = 1 To GatewaysNo - 1

 Application.DoEvents()

 ' Loop through all gateways

 ShortestDistance = FrmDrawGraph.GetShortestPath(Nodes(i),Gateways(j))

 If ShortestDistance < NodeDistance Then

 NodeDistance = ShortestDistance

 NearGateway = Gateways(j)

94

 End If

Next j

 If NodeDistance > 0 Then

 NodeGateDistance(i, 0) = NearGateway

 NodeGateDistance(i, 1) = NodeDistance

 End If

 NodesCost = NodesCost + NodeDistance

Next i

If NodeNo > 0 Then

 NodesAverge = NodesCost / NodeNo

End If

Dim SumDiff As Double

SumDiff = 0

For n As Integer = 1 To NodeNo

 SumDiff = SumDiff + System.Math.Pow(Abs((NodeGateDistance(n - 1, 1)-

NodesAverge)),2)

Next n

If NodeNo > 1 Then

 NodesVar = SumDiff / (NodeNo - 1)

End If

AerageHopCount = NodesAverge

Return NodesVar

End Function

Private Function GetVariantold(ByVal gateways() As Integer, ByVal Nodes() As

Integer) As Double

 Dim NodeNo As Integer

 Dim NodeGateDistance(Nodes.Length - 1, 1) As Double

 Dim NearGateway As Integer

 Dim NodeDistance As Integer, ShortestDistance As Integer

 NodeNo = Nodes.GetUpperBound(0)

95

 For i As Integer = 0 To NodeNo - 1

 ' Loop throuth all nodes

 NodeDistance = FrmTestGA.GetShortestPath(Nodes(i),gateways(0))

 NearGateway = gateways(0)

 For j As Integer = 1 To gateways.GetUpperBound(0)-1

 Application.DoEvents()

 ' Loop through all gateways

ShortestDistance=FrmTestGA.GetShortestPath(Nodes(i),gateways(j))

 If ShortestDistance < NodeDistance Then

 NodeDistance = ShortestDistance

 NearGateway = gateways(j)

 End If

 Next j

 If NodeDistance > 0 Then

 NodeGateDistance(i, 0) = NearGateway

 NodeGateDistance(i, 1) = NodeDistance

 End If

Next i

Dim NodePerG As Integer

Dim GateSum As Integer

Dim GateAvg As Double

Dim SumGateAvgs As Double

SumGateAvgs = 0

Dim avg As Double

Dim v As Double

Dim GatewayAverage(GatewaysNo - 1, 1) As Double

For g As Integer = 0 To GatewaysNo - 1

 NodePerG = 0

 GateSum = 0

 GateAvg = 0

 For node As Integer = 0 To NodeNo - 1

 If NodeGateDistance(node, 0) = g + 1 Then

96

 NodePerG = NodePerG + 1

 GateSum = GateSum + NodeGateDistance(node,1)

 End If

 Next node

 If NodePerG > 0 And GateSum > 0 Then

 GateAvg = GateSum / NodePerG

 Else

 GateAvg = 0

 End If

 GatewayAverage(g, 0) = g + 1

 GatewayAverage(g, 1) = GateAvg

 SumGateAvgs = SumGateAvgs + GateAvg

 Next g

 If GatewaysNo > 0 And SumGateAvgs > 0 Then

 avg = SumGateAvgs / GatewaysNo

 Else

 avg = 1000

 End If

 Dim SumDiff As Double

 SumDiff = 0

 For r As Integer = 0 To GatewaysNo - 1

 SumDiff = SumDiff + Math.Abs((GatewayAverage(r, 1) - avg)) *

Math.Abs((GatewayAverage(r, 1) - avg))

 Next r

 If GatewaysNo > 1 And SumDiff > 0 Then

 v = (SumDiff / GatewaysNo - 1)

 Else

 v = 200

 End If

 Return 0

End Function

End Class

97

4. GA class

Public Class Algorithm

 'Create a New Population

 Public Shared Function evolvePopulationNew(ByVal pop As Population) As

Population

 Dim newPopulation As New Population(pop.size(), False)

 Dim R As New Random

 ' Keep our best individual

 If elitism Then

 newPopulation.saveIndividual(0, pop.GetFittest)

 End If

 ' Crossover population

 Dim elitismOffset As Integer

 If elitism Then

 elitismOffset = 1

 Else

 elitismOffset = 0

 End If

 ' Loop over the population size and create new individuals with

 ' crossover

 Dim Inx1 As Integer

 Dim inx2 As Integer

 For i As Integer = elitismOffset To pop.size - 1

 Inx1 = R.Next(elitismOffset, pop.size() - 1)

 inx2 = R.Next(elitismOffset, pop.size() - 1)

 If Inx1 = inx2 Then

 Do Until Inx1 <> inx2

 inx2 = R.Next(elitismOffset, pop.size() - 1)

 Loop

 End If

98

 Dim newIndiv As Individual

 newIndiv = crossover(pop.getIndividual(Inx1), pop.getIndividual(inx2), 2)

 newPopulation.saveIndividual(i, newIndiv)

 Next i

 ' Mutate population

 Dim IndvToMutate As New Individual

 For j As Integer = elitismOffset To newPopulation.size() - 1

 mutate(newPopulation.getIndividual(j))

 Next j

 Return newPopulation

End Function

‘Evolve a population

Public Shared Function evolvePopulation(ByVal pop As Population) As Population

 Dim newPopulation As New Population(pop.size(), False)

 Dim RSel As New Random

 ' Keep our best individual

 If elitism Then

 newPopulation.saveIndividual(0, pop.GetFittest)

 End If

 ' Crossover population

 Dim elitismOffset As Integer

 If elitism Then

 elitismOffset = 1

 Else

 elitismOffset = 0

 End If

 ' Loop over the population size and create new individuals with

 ' crossover

99

 For i As Integer = elitismOffset To pop.size() - 1

 Dim indiv1 As Individual = tournamentSelection(pop)

 Dim indiv2 As Individual = selectIndividual(pop)

 Dim newIndiv As Individual = crossover(indiv1, indiv2, 2)

 newPopulation.saveIndividual(i, newIndiv)

 Next i

 ' Repair Genes

 Dim NonePassed As Integer

 NonePassed = 0

 For k As Integer = elitismOffset To newPopulation.size() - 1

 NonePassed = ChenkGenes(newPopulation.getIndividual(k))

 If NonePassed <> 0 Then

 RepairGenes(newPopulation.getIndividual(k), NonePassed)

 End If

 Next k

 ''

 ' Mutate population

 For i As Integer = elitismOffset To newPopulation.size() - 1

 mutate(newPopulation.getIndividual(i))

 Next i

 Return newPopulation

 End Function

Private Shared Function tournamentSelection(ByVal pop As Population) As

Individual

 ' Create a tournament population

 Dim tournament As New Population(tournamentSize, False)

 ' For each place in the tournament get a random individual

 For i As Integer = 0 To tournamentSize - 1

100

 Dim randomId As Integer = CInt(Math.Truncate((New

Random(1)).NextDouble() * pop.size()))

 tournament.saveIndividual(i, pop.getIndividual(randomId))

 Next i

 ' Get the fittest

 Dim fittest As Individual = tournament.GetFittest

 Return fittest

 End Function

Private Shared Function selectIndividual(ByVal pop As Population) As Individual

 Dim tournament(tournamentSize - 1) As Individual

 Dim tournamentFitness(tournamentSize - 1) As Double

 For i As Integer = 0 To tournamentSize - 1

 Dim index As Integer = CInt(Math.Truncate((New Random(1)).NextDouble() *

pop.size()))

 tournament(i) = pop.getIndividual(index)

 tournamentFitness(i) = pop.getIndividual(index).getFitness '

 Next i

 Dim bestIndividual As Individual = tournament(0)

 Dim bestFitness As Double = tournamentFitness(0)

 For i As Integer = 1 To tournamentSize - 1

 If tournamentFitness(i) < bestFitness Then

 bestIndividual = tournament(i)

 bestFitness = tournamentFitness(i)

 End If

 Next i

 Return bestIndividual

 End Function

End Class

5. General module (general settings, functions and procedures)

101

Module GeneralFunction

 Public Const uniformRate As Double = 0.5

 Public tournamentSize As Integer = 10

 Public Const mutationRate As Double = 0.015

 Public Const elitism As Boolean = True

 Public IndividualSiZe As Integer = 30

 Public GatewaysNo As Integer = 3

 Public CurrentIndividual As String

 Public IndividualParent1 As String

 Public IndividualParent2 As String

 Public TeriminationCondition As Boolean = False

 Public AerageHopCount As Double = 0

 Public R1 As New Random

 Public Function crossover(ByVal indiv1 As Individual, ByVal indiv2 As Individual,

ByVal CrossOverType As Integer) As Individual

 Dim Child As New Individual()

 Dim intCrossoverPoint As Integer

 Dim intCrossoverPoint2 As Integer

 Dim IntX As Integer

 ' Loop through genes

 Dim R As New Random

 If CrossOverType = 1 Then

 intCrossoverPoint = R.Next(uniformRate * indiv1.size, indiv1.size - 1)

 For i As Integer = 0 To indiv1.size() - 1

 If i < intCrossoverPoint Then

 Child.setGene(i, indiv1.getGene(i))

 Else

 Child.setGene(i, indiv2.getGene(i))

 End If

 Next i

 ElseIf CrossOverType = 2 Then

 For i = 0 To indiv2.size() - 1

 Child.setGene(i, indiv2.getGene(i))

102

 Next i

 Do

 intCrossoverPoint = R.Next(0, indiv1.size - 1)

 intCrossoverPoint2 = R.Next(0, indiv1.size - 1)

 Loop Until intCrossoverPoint <> intCrossoverPoint2

 If intCrossoverPoint > intCrossoverPoint2 Then

 IntX = intCrossoverPoint

 intCrossoverPoint = intCrossoverPoint2

 intCrossoverPoint2 = IntX

 End If

 For j As Integer = intCrossoverPoint To intCrossoverPoint2

 Child.setGene(j, indiv1.getGene(j))

 Next j

 End If

 Return Child

 End Function

 Public Sub mutate(ByVal indiv As Individual)

 ' Loop through genes

 Dim R As New Random

 Dim x1 As Integer

 Dim x2 As Integer = 0

 x1 = R.Next(IIf(indiv.size() Mod 2 = 0, indiv.size() / 2, (indiv.size()+1) / 2),

indiv.size() - 1)

s1:

 x2 = R.Next(0, (indiv.size() - 1))

 If indiv.getGene(x2) = indiv.getGene(x1) Then

 GoTo s1

 End If

103

 Dim gene As SByte

 gene = indiv.getGene(x1)

 indiv.setGene(x1, indiv.getGene(x2))

 indiv.setGene(x2, gene)

 End Sub

 Public Function ChenkGenes(Indiv As Individual) As Integer

 Dim Passed As Integer

 Dim NoOfOnes As Integer = 0

 For i As Integer = 0 To Indiv.size() - 1

 If Indiv.getGene(i) = "1" Then

 NoOfOnes = NoOfOnes + 1

 End If

 Next i

 Passed = NoOfOnes - GatewaysNo

 Return Passed

 End Function

Public Sub RepairGenes(ByVal indiv As Individual, ExtraGateway As Integer)

Dim i As Integer

If ExtraGateway > 0 Then

Dim ArrayOnes(GatewaysNo + ExtraGateway - 1) As Integer

For k = 1 To ExtraGateway

ReDim ArrayOnes(GatewaysNo + ExtraGateway - 1)

i = 0

For j As Integer = 0 To indiv.size() - 1

If indiv.getGene(j) = "1" Then

ArrayOnes(i) = j

i = i + 1

End If

Next j

 i = R1.Next(0, ArrayOnes.Length - 1)

104

 i = ArrayOnes(i)

 indiv.setGene(i, "0")

 Next k

 Else

 Dim Ix As Integer

 For n As Integer = ExtraGateway To -1

s1:

 Ix = R1.Next(0, indiv.size() - 1)

 If indiv.getGene(Ix) = "0" Then

 indiv.setGene(Ix, "1")

 Else

 GoTo s1

 End If

 Next n

 End If

 Dim PassedGenes As Integer = ChenkGenes(indiv)

 If PassedGenes <> 0 Then

 RepairGenes(indiv, PassedGenes)

 End If

 End Sub

 Public Sub GetGateways(ByVal indiv As Individual)

 Dim Gateways(GatewaysNo - 1) As Integer

 Dim x As Integer

 For i As Integer = 0 To indiv.size - 1

 If indiv.getGene(i).ToString = "1" Then

 Gateways.SetValue(i + 1, x)

x = x + 1

 End If

 Next i

 FrmDrawGraph.ListBox1.DataSource = Gateways

End Sub

End Module

105

APPENDIX B

The following vb.net code defines Dijkstra’s algorithm including Graph class and its

components (nodes and edges)

Namespace Dijkstra

 ''' Represents a collection of Vertex objects and Edge objects.

 Public Class Graph

 '//fields

 Private needsCalculate As Boolean = True

 '//properties

 Private _verticies As VertexCollection

 ''' Gets the verticies associated with this graph.

 Public ReadOnly Property Verticies() As VertexCollection

 Get

 If Me._verticies Is Nothing Then

 Me._verticies = New VertexCollection(Me)

 End If

 Return Me._verticies

 End Get

 End Property

 ''' Gets a value that indicates whether all the verticies in the graph are visited.

 Public ReadOnly Property Finished() As Boolean

 Get

 Return Me.Verticies.Finished

 End Get

 End Property

 Private _edges As EdgeCollection

 ''' Gets the edges associated with this graph's verticies.

 Public ReadOnly Property Edges() As EdgeCollection

 Get

 If Me._edges Is Nothing Then

 Me._edges = New EdgeCollection(Me)

 End If

 Return Me._edges

 End Get

 End Property

 '//methods

 Private Sub Dijkstra(ByVal initialVertex As Vertex)

 If initialVertex Is Nothing Then

 Throw New ArgumentNullException("initialVertex")

 End If

106

 If Not Me.needsCalculate Then

 Return

 End If

 '//initialize starting values

 For Each vertex As Vertex In Me.Verticies

 vertex.SetDistance(Double.PositiveInfinity)

 vertex.SetVisited(False)

 Next

 initialVertex.SetDistance(0.0R)

 Try

 '//calculate shortest paths

 Me.Dijkstra(Me, initialVertex)

 Catch ex As Exception

 Throw New AlgorithmException("The graph, vertex, or edges are invalid.

Either they are not all connected, or there are edges missing.", ex)

 End Try

 End Sub

 Private Sub Dijkstra(ByVal graph As Graph, ByVal current As Vertex)

 '//loop each neighboring vertex

 For Each neighbor In current.Neighbors

 If Not neighbor.Visited Then

 '//vertex has not been visited yet

 Dim edge = graph.Edges(current, neighbor)

 '//get the distance between the verticies

 Dim distance = (current.Distance + edge.Distance)

 '//check if the distance is smaller than it's previous distance

 If distance < neighbor.Distance Then

 neighbor.SetDistance(distance)

 '//sets the vertex that you would follow to get to this neighboring one

 neighbor.PreviousVertex = current

 End If

 End If

 Next

 '//mark Vertex visited

 current.SetVisited(True)

 If Not graph.Finished Then

 '//graph has unvisited verticies

 Me.Dijkstra(graph, graph.FindShortestVertex())

 End If

 Me.needsCalculate = False

 End Sub

 Private Function FindShortestVertex() As Vertex

 Dim result As Vertex = Nothing

 Dim min = Double.PositiveInfinity

 '//loop all unvisited verticies to find the vertex that has the smallest distance

 For Each vertex As Vertex In Me.Verticies

 If Not vertex.Visited Then

107

 If vertex.Distance < min Then

 '//set the current smallest vertex

 min = vertex.Distance

 result = vertex

 End If

 End If

 Next

 '//after all distances are evaluated return result

 Return result

 End Function

 ''' Adds a Vertex to the end of the collection.

 ''' <param name="key">The key used as an identifier for the Vertex. Can be

null.</param>

 Public Function AddVertex(ByVal key As String) As Vertex

 Dim vertex = New Vertex(Me, key)

 Me.Verticies.Add(vertex)

 Return vertex

 End Function

 ''' Removes the specified Vertex from the collection.

 ''' <param name="vertex">The Vertex to remove.</param>

 Public Sub RemoveVertex(ByVal vertex As Vertex)

 Me.Verticies.Remove(vertex)

 End Sub

 ''' Adds an Edge to the end of the collection.

 ''' <param name="first">The first Vertex for this Edge.</param>

 ''' <param name="second">The second Vertex for this Edge.</param>

 ''' <param name="distance">The distance between the two vertices.</param>

 Public Function AddEdge(ByVal first As Vertex, ByVal second As Vertex,

ByVal distance As Double) As Edge

 Dim edge = New Edge(Me, first, second, distance)

 Me.Edges.Add(edge)

 Return edge

 End Function

 ''' Adds an Edge to the end of the collection.

 ''' </summary>

 ''' <param name="firstKey">The key of the first Vertex for this Edge.</param>

 ''' <param name="secondKey">The key of the second Vertex for this

Edge.</param>

 ''' <param name="distance">The distance between the two vertices.</param>

 Public Function AddEdge(ByVal firstKey As String, ByVal secondKey As

String, ByVal distance As Double) As Edge

 Dim edge = New Edge(Me, Me.Verticies(firstKey), Me.Verticies(secondKey),

distance)

 Me.Edges.Add(edge)

 Return edge

 End Function

108

 ''' Removes the specified Edge from the collection.

 ''' <param name="edge">The Edge to remove.</param>

 Public Sub RemoveEdge(ByVal edge As Edge)

 Me.Edges.Remove(edge)

 End Sub

 ''' Calculates the Graph using the specified Vertex as the starting point.

 ''' <param name="initialVertex">The starting vertex to calculate from.</param>

 Public Sub Calculate(ByVal initialVertex As Vertex)

 Me.Dijkstra(initialVertex)

 End Sub

 ''' Resets the Graph by clearing all verticies and edges.

 Public Sub Reset()

 '//clear all contents

 Me.Verticies.Clear()

 Me.Edges.Clear()

 '//notify graph that it will need to recalculate

 Me.NotifyRecalculate()

 End Sub

 ''' Serializes this Graph to a file.

 ''' <param name="fileName">A string that contains the name of the file.</param>

 Public Sub Save(ByVal fileName As String)

 '//create the document

 Dim doc = <?xml version="1.0" encoding="utf-8"?>

 <root vertexCount=<%= Me.Verticies.Count %> edgeCount=<%=

Me.Edges.Count %>></root>

 '//loop all verticies

 For Each vertex As Vertex In Me.Verticies

 doc.Root.Add(<vertex>

 <key><%= vertex.Key %></key>

 </vertex>)

 Next

 '//loop all edges

 For Each edge As Edge In Me.Edges

 doc.Root.Add(<edge>

 <firstKey><%= edge.First.Key %></firstKey>

 <secondKey><%= edge.Second.Key %></secondKey>

 <distance><%= edge.Distance %></distance>

 </edge>)

 Next

 '//saves the file

 doc.Save(fileName)

 End Sub

 ''' Creates a new Graph from a file.

 ''' <param name="fileName"></param>

109

 ''' <remarks></remarks>

 Public Shared Function Load(ByVal fileName As String) As Graph

 '//try to read the Xml file

 Try

 '//load the Xml and create the new graph

 Dim doc = XDocument.Load(fileName)

 Dim graph = New Graph()

 '//get all verticies

 For Each node In doc.<root>.<vertex>

 graph.AddVertex(node.<key>.Value())

 Next

 '//get all edges

 For Each node In doc.<root>.<edge>

 graph.AddEdge(node.<firstKey>.Value(), node.<secondKey>.Value(), _

 Convert.ToDouble(node.<distance>.Value()))

 Next

 Return graph

 Catch ex As Exception

 Return Nothing

 End Try

 End Function

 ''' Gets the shortest distance between two verticies in the graph.

 ''' <param name="initialVertex">The starting vertex to calculate from.</param>

 ''' <param name="endingVertex">The ending Vertex to calculate to.</param>

 Public Function GetDistance(ByVal initialVertex As Vertex, ByVal

endingVertex As Vertex) As Double

 Me.Dijkstra(initialVertex)

 Return endingVertex.Distance

 End Function

 ''' Gets a string representation of the shortest path's order of verticies to follow.

 ''' <param name="initialVertex">The starting vertex to calculate from.</param>

 ''' <param name="endingVertex">The ending Vertex to calculate to.</param>

 Public Function GetPath(ByVal initialVertex As Vertex, ByVal endingVertex

As Vertex) As String

 Return Me.GetPath(initialVertex, endingVertex, False)

 End Function

 ''' Gets a string representation of the shortest path's order of verticies to follow.

 ''' <param name="initialVertex">The starting vertex to calculate from.</param>

 ''' <param name="endingVertex">The ending Vertex to calculate to.</param>

 ''' <param name="reverse">Indicates whether the direction of the string should

start at the end.</param>

 Public Function GetPath(ByVal initialVertex As Vertex, ByVal endingVertex

As Vertex, ByVal reverse As Boolean) As String

 Me.Dijkstra(initialVertex)

110

 Dim verticies = Me.GetVerticies(initialVertex, endingVertex, reverse)

 Dim builder = New Text.StringBuilder()

 For vertex = 0 To verticies.Count - 2

 builder.AppendFormat("{0} -> ", verticies(vertex).Key)

 Next

 builder.Append(verticies(verticies.Count - 1).Key)

 Return builder.ToString()

 End Function

 ''' Gets a System.TimeSpan object that represents the time it takes to calculate the

current instance.

 ''' <param name="initialVertex">The Vertex to start the calculation

from.</param>

 Public Function GetElapsed(ByVal initialVertex As Vertex) As TimeSpan

 '//notify graph that it will need to recalculate

 Me.NotifyRecalculate()

 '//create the watch object

 Dim watch = Stopwatch.StartNew()

 '//run the algorithm

 Me.Dijkstra(initialVertex)

 '//return results

 watch.Stop()

 Return watch.Elapsed

 End Function

 ''' Gets an array of the verticies that are used for the shortest path.

 ''' <param name="initialVertex">The starting vertex to calculate from.</param>

 ''' <param name="endingVertex">The ending Vertex to calculate to.</param>

 Public Function GetVerticies(ByVal initialVertex As Vertex, ByVal

endingVertex As Vertex) As Vertex()

 Return Me.GetVerticies(initialVertex, endingVertex, False)

 End Function

 ''' Gets an array of the verticies that are used for the shortest path.

 ''' <param name="initialVertex">The starting vertex to calculate from.</param>

 ''' <param name="endingVertex">The ending Vertex to calculate to.</param>

 ''' <param name="reverse">Indicates whether the order of the verticies should be

from end to start.</param>

 Public Function GetVerticies(ByVal initialVertex As Vertex, ByVal

endingVertex As Vertex, ByVal reverse As Boolean) As Vertex()

 Me.Dijkstra(initialVertex)

 Dim current = endingVertex

 Dim verticies = New List(Of Vertex)()

 Do Until current Is Nothing

 verticies.Add(current)

 current = current.PreviousVertex

 Loop

 If Not reverse Then

 verticies.Reverse()

111

 End If

 Return verticies.ToArray()

 End Function

 Friend Sub NotifyRecalculate()

 Me.needsCalculate = True

 End Sub

 End Class

End Namespace

112

APPENDIX C

The following vb.net code defines the main SA-Based algorithm class including the

settings of its parameters besides all the classes that are required to build the solution

such as solution, fitness calculation, Dijkstra’s algorithm (including the graph

definitions) classes. Moreover, this code defines the main function that initializes and

runs the algorithm.

Imports Microsoft.VisualBasic

Imports System

Imports System.Collections.Generic

Imports System.Random

Imports System.Math

Public Class MySA

 Private Const INITIAL_TEMPERATURE As Double = 100

 Private Const FINAL_TEMPERATURE As Double = 0.01

 Private Const ALPHA As Double = 0.99

 Private Const ITERATIONS_AT_TEMPERATURE As Integer = 1

 Private Shared currentSolution As New Solution()

 Private Shared workingSolution As New Solution()

 Private Shared bestSolution As New Solution()

 Private Const TARGET As Double = 0.02 ' correct answer.

 Public Shared BestSol As String

 Public Shared InitialSol As String

 Public Shared InitialSolutionEnergy As Double

 Private Shared Sub simulatedAnnealingAlgorithm()

 Dim solution As Boolean = False

 Dim useNew As Boolean = False

 Dim accepted As Integer = 0

 Dim temperature As Double = INITIAL_TEMPERATURE

 currentSolution = New Solution()

 workingSolution = New Solution()

113

 bestSolution = New Solution()

 initializeSolution()

 currentSolution.computeEnergy()

 'Keep initial Solution Engergy

 InitialSolutionEnergy =currentSolution.solutionEnergy()

Console.WriteLine("Fitness:"& currentSolution.solutionEnergy())

bestSolution.solutionEnergy(currentSolution.solutionEnergy())

workingSolution.Equals(currentSolution)

 Do While temperature > FINAL_TEMPERATURE

 accepted = 0

 For i As Integer = 0 To ITERATIONS_AT_TEMPERATURE - 1

 useNew = False

 workingSolution.randomChange()

 workingSolution.computeEnergy()

Console.WriteLine("Fitness:"& workingSolution.solutionEnergy())

 If workingSolution.solutionEnergy() <= currentSolution.solutionEnergy() Then

 useNew = True

 Else

 Dim test As Double = (New Random()).NextDouble()

'Get random value between 0.0 and 1.0

 Dim delta As Double = workingSolution.solutionEnergy() -

currentSolution.solutionEnergy()

 Dim calc As Double = Math.Exp(-delta / temperature)

 If calc > test Then

 accepted += 1

 useNew = True

 End If

 End If

 If useNew Then

 useNew = False

 currentSolution.Equals(workingSolution)

 If currentSolution.solutionEnergy() < bestSolution.solutionEnergy() Then

 bestSolution.Equals(currentSolution)

114

 solution = True

 End If

 Else

 workingSolution.Equals(currentSolution)

 End If

 Console.WriteLine("Current Solution Energy:" & currentSolution.solutionEnergy())

 Console.WriteLine("Working Solution Energy: " &

workingSolution.solutionEnergy())

 Console.WriteLine("Best Solution Energy: " & bestSolution.solutionEnergy())

 Next i

 temperature *= ALPHA

 Console.WriteLine("Temperature: " & temperature)

Loop

If solution Then

 BestSol = ""

 For j As Integer = 0 To IndividualSiZe - 1

 Console.Write(bestSolution.data(j) & ", ")

 BestSol = BestSol.ToString + bestSolution.data(j).ToString

 Next j

 Console.Write(ControlChars.Lf)

 If bestSolution.solutionEnergy() <= TARGET Then

 Console.WriteLine("Best solution is: Correct")

 Else

 Console.WriteLine("Best solution is: Not Correct")

 End If

End If

Return

End Sub

Private Shared Sub initializeMap()

Console.WriteLine("Enter No of Mesh Routers Per Square Side:")

'NodePerSide = Console.ReadLine()

 NodePerSide = 5

 IndividualSiZe = NodePerSide * NodePerSide

115

 Console.WriteLine("The individual Size will be:")

 Console.WriteLine(IndividualSiZe.ToString)

 Console.WriteLine("Enter No of Gateways:")

 'GatewaysNo = Console.ReadLine()

 GatewaysNo = 4

 EdgNo = 2 * NodePerSide * (NodePerSide - 1)

 ReDim EdgeMatrix(EdgNo - 1, 1)

 Filledges(NodePerSide)

End Sub

Private Shared Sub Filledges(SideNode As Integer)

Dim x1 As Integer, x2 As Integer, indx As Integer

For i As Integer = 1 To SideNode

 For j As Integer = 1 To SideNode - 1

 x1 = (i - 1) * SideNode + j

 x2 = (i - 1) * SideNode + j + 1

 EdgeMatrix(indx, 0) = x1

 EdgeMatrix(indx, 1) = x2

 indx = indx + 1

 Next j

Next i

For j As Integer = 1 To SideNode

 If i < SideNode Then

 x1 = (i - 1) * SideNode + j

 x2 = (i * SideNode + j)

 EdgeMatrix(indx, 0) = x1

 EdgeMatrix(indx, 1) = x2

 indx = indx + 1

 End If

Next j

End Sub

Private Shared Sub initializeSolution() ' Done

 'Initial setup of the solution.

 For i As Integer = 0 To IndividualSiZe - 1

116

 currentSolution.data(i, 0)

 Next i

 Dim inx As Integer

 Dim R As New Random

 For i = 1 To GatewaysNo

s1:

 inx = CInt(R.Next(0, IndividualSiZe - 1))

 If currentSolution.data(inx) = 1 Then

 GoTo s1

 End If

 currentSolution.data(inx, 1)

 Next i

 ' Randomly perturb the solution.

 For i As Integer = 0 To IndividualSiZe - 1

 currentSolution.randomChange()

 Next i

 'Keep initial Solution for convergence

 InitialSol = ""

 For i As Integer = 0 To IndividualSiZe - 1

 InitialSol = InitialSol.ToString + currentSolution.data(i).ToString

 Next i

 Return

End Sub

Private Shared Function getExclusiveRandomNumber(ByVal high As Integer,

ByVal except As Integer) As Integer

 Dim done As Boolean = False

 Dim getRand As Integer = 0

 Do While Not done

 getRand = (New Random()).Next(high)

 If getRand <> except Then

 done = True

 End If

 Loop

117

 Return getRand

End Function

Private Class Solution

 Private mSolutionEnergy As Double = 0.0

 Private mData() As Integer = Nothing

 Public Sub New()

 mData = New Integer(IndividualSiZe - 1) {}

 End Sub

 Public Sub New(ByVal that As Solution)

 mData = New Integer(IndividualSiZe - 1) {}

 For i As Integer = 0 To IndividualSiZe - 1

 Me.mData(i) = that.data(i)

 Next i

 Me.mSolutionEnergy = that.mSolutionEnergy

 End Sub

Public Overridable Sub Equals(ByVal that As Solution)

 For i As Integer = 0 To IndividualSiZe - 1

 Me.mData(i) = that.data(i)

 Next i

 Me.mSolutionEnergy = that.mSolutionEnergy

 Return

End Sub

Public Overridable Sub data(ByVal index As Integer, ByVal value As Integer)

 Me.mData(index) = value

 Return

End Sub

Public Overridable Function data(ByVal index As Integer) As Integer

 Return Me.mData(index)

End Function

Public Overridable Sub solutionEnergy(ByVal value As Double)

 Me.mSolutionEnergy = value

 Return

End Sub

118

Public Overridable Function solutionEnergy() As Double

 Return Me.mSolutionEnergy

End Function

Public Overridable Sub randomChange() ' done

 Dim temp As Integer = 0

 Dim x As Integer = 0

 Dim y As Integer = 0

 'Get two different random numbers.

 x = (New Random()).Next(IndividualSiZe - 1)

 y = getExclusiveRandomNumber(IndividualSiZe - 1, x)

 temp = Me.mData(x)

 Me.mData(x) = Me.mData(y)

 Me.mData(y) = temp

 Return

End Sub

Public Overridable Sub computeEnergy()

 Me.mSolutionEnergy = 0.0

 'Find the round-trip distance.

 Me.mSolutionEnergy = getFitness()

 Return

End Sub

'Calculate Eneragy

Public Function getFitness() As Double

 Dim Gateways(GatewaysNo - 1) As Integer

 Dim Nodes(IndividualSiZe - GatewaysNo - 1) As Integer

 Dim x1 As Integer

 Dim x2 As Integer

 x1 = 0

 x2 = 0

 For i = 0 To IndividualSiZe - 1

 If Me.data(i) = 1 Then

 Gateways.SetValue(i + 1, x1)

 x1 = x1 + 1

119

 ElseIf Me.data(i) = 0 Then

 Nodes.SetValue(i + 1, x2)

 x2 = x2 + 1

 End If

 Next i

 'Calculate the standard deviation

 Dim v As Double

 v = GetVariant(Gateways, Nodes)

 Return v

End Function

Private Function GetVariant(ByVal Gateways() As Integer, ByVal Nodes() As

Integer) As Double

 Dim NodeNo As Integer

Dim NodeGateDistance(IndividualSiZe - GatewaysNo - 1, 1) As Double

 Dim NearGateway As Integer

 Dim NodeDistance As Integer, ShortestDistance As Integer

 Dim NodesAverge As Double, NodesVar As Double

 Dim NodesCost As Integer

 NodeNo = IndividualSiZe - GatewaysNo

 NodesCost = 0

 Dim g As Graph

 For i As Integer = 0 To NodeNo – 1 ' Loop throuth all nodes

 g = New Graph

 ShortestDistance = 0

 NodeDistance = g.GetShortestPath(Nodes(i), Gateways(0))

 NearGateway = Gateways(0)

 For j As Integer = 0 To Gateways.GetUpperBound(0) - 1

 'Loop through all gateways

 ShortestDistance = g.GetShortestPath(Nodes(i), Gateways(j))

 If ShortestDistance < NodeDistance Then

 NodeDistance = ShortestDistance

 NearGateway = Gateways(j)

 End If

120

 Next j

 If NodeDistance > 0 Then

 NodeGateDistance(i, 0) = NearGateway

 NodeGateDistance(i, 1) = NodeDistance

 End If

 NodesCost = NodesCost + NodeDistance

 Next i

 If NodeNo > 0 Then

 NodesAverge = NodesCost / NodeNo

 End If

 Dim SumDiff As Double

 SumDiff = 0

 For n As Integer = 0 To NodeNo - 1

 SumDiff = SumDiff + System.Math.Pow(Abs((NodeGateDistance(n, 1) -

NodesAverge)), 2)

 Next n

 If NodeNo > 1 Then

 NodesVar = SumDiff / (NodeNo)

 End If

 AerageHopCount = NodesAverge

 'Calc Variance between Gateways

 Dim NodesPerG As Integer, SumG As Integer

 Dim AvgG(GatewaysNo) As Double, SumAges As Double, AvgAll As Double,

SumDiffAll As Double, Vall As Double

 SumDiffAll = 0

 Vall = 0

 NodesPerG = 0

 SumAges = 0

 For gcounter As Integer = 0 To Gateways.GetUpperBound(0) - 1

 NodesPerG = 0

 For n As Integer = 0 To NodeGateDistance.GetUpperBound(0)-1

 If NodeGateDistance(n, 0) = Gateways(gcounter) Then

 NodesPerG = NodesPerG + 1

121

 SumG = SumG + NodeGateDistance(n, 1)

 End If

 Next n

 If NodesPerG > 0 Then

 AvgG(gcounter) = SumG / NodesPerG

 SumAges = SumAges + (SumG / NodesPerG)

 End If

 Next gcounter

 AvgAll = SumAges / GatewaysNo

 For Gcounter As Integer = 0 To GatewaysNo - 1

 SumDiffAll = SumDiffAll + Pow((AvgG(Gcounter) - AvgAll), 2)

 Next Gcounter

 Vall = SumDiffAll / (GatewaysNo)

 Return NodesVar

 End Function

End Class ' Solution class

Public Shared Sub Main(ByVal args() As String)

 For i As Integer = 1 To 10

 initializeMap()

 Static start_time As DateTime

 Static stop_time As DateTime

 Dim elapsed_time As TimeSpan

 start_time = Now

 simulatedAnnealingAlgorithm()

 stop_time = Now

 elapsed_time = stop_time.Subtract(start_time)

 Console.WriteLine("Total Execution Time is (In seconds):" &

elapsed_time.TotalSeconds.ToString("0.000000"))

 Console.WriteLine("Total Execution Time is (In Minutes):" &

elapsed_time.TotalMinutes.ToString("0.000000"))

 Console.WriteLine("Total Execution Time is (In Hours):" &

elapsed_time.TotalHours.ToString("0.000000"))

122

 SendDataToExcel(IndividualSiZe, GatewaysNo, INITIAL_TEMPERATURE,

ALPHA, FINAL_TEMPERATURE _

,ITERATIONS_AT_TEMPERATURE, bestSolution.solutionEnergy(),

elapsed_time.TotalSeconds.ToString("0.000000") _

,elapsed_time.TotalMinutes.ToString("0.000000"),

elapsed_time.TotalHours.ToString("0.000000"), BestSol.ToString,

InitialSol.ToString, InitialSolutionEnergy)

Next i

Return

End Sub

End Class

