

قال تعالى: (وَتَرَى الْجِبَالَ تَحْسَبُهَا جَامِلَةً وَهَي تَمُ مَنَّ السَّحَابِ صُنِعَ اللَّهِ الَّذِي أَتَقَنَ كُلَّ شَيْ إِنَّهُ خَبِيرٌ بِمَا تَفْعَلُونَ) سورة النمل [6] صاق الله العظيمر

DEDICATION

This thesis was dedicated to:

The sake of Allah, my Creator and my Master,My great teacher and messenger, Mohammed (May Allah bless and grant him), who taught us the purpose of life; my second magnificent home; My great parents, who never stop giving of themselves in countless ways ,My beloved brothers and sisters; particularly my dearest brother , Mohammed, who stands by me in all situations when things look bleak, To all my family, the symbol of love and giving, My friends who encourage and support me,All the people in my life who touch my heart.

Acknowledgement

I would like to express my gratitude to my supervisor Doctor Amel Abdallah .A. Elfaki who has been always generous during all phases of the research, I highly appreciate the efforts expended ,for the useful comments, remarks and engagement through the learning process of this master thesis. Furthermore I would like to thank professor Mubarak Dirrar for introducing me to the basic concept of science and encouraged me to continuing my studying in physics.

Finally, I must express my very profound gratitude to my parents and to my [partners ,friends , supporters and advisors] for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without this thesis. This accomplishment would not have been possible without them. thank you.

List of contents

content	Page
Inauguration	I
Dedication	11
Acknowledgement	
List of contents	IV
List of Tables	VII
List of Figures	VIII
Abstract in English	IX
Abstract in Arabic	X
Chapter One : Introduction	
1.1 Materials science	1
1.2 Problem of the Study	2
1.3 purpose of the study	2
1.4 The Literature Review	2
1.4 Thesis layout:	4
Chapter two : Maxwell's Equations	
2.1 Introduction	5
2.2 Maxwell's Equations	5
2.3 Reflection , Refraction , Transmission and Absorption	6
2.3.1 Reflection	6
2.3.2 Refraction	6
2.3.3 Transmission	6
2.3.4 Absorption	7
2.4 laser properties	8
2.4.1 Monochromatic	8
2.4.2 Directional	8
2.4.3 Coherence	9
Chapter three : Composite Materials	
2.1 Introduction	10
3.1.1Metals	10
3.1.2 Ceramics	10
3.1.3Plastics	10
3.1.4 Semiconductors	11
3.1.5 Composites	11

3.2 Processing	11
3.2.1 Solidification Processing	12
3.2.2 Powder Processing	12
3.2.3Deposition Processing	12
3.2.4 Deformation Processing	12
3.3Structure	13
3.4 Properties	13
3.4.1 Mechanical Properties	13
3.4.2 Electrical Properties	13
3.4.3 Magnetic Properties	14
3.4.4 Optical and Dielectric Properties	14
3.4.5 Thermal Properties	14
3.5 Performance	14
3.6 Natural Composites	14
3.7 Common Categories of Composite Materials	15
3.8 Constituents of composite material	16
3.8.1 Functions a Matrix material	16
3.8.2 Functions a Reinforcement	17
3.9 Composite Material structure	17
3.10 Classes of Composite Materials.	17
3. 10.1 Polymer Matrix Composites (PMCs)	17
3.10.2 Metal Matrix Composites (MMCs)	18
3.10.3 Ceramic Matrix Composites (CMCs)	18
3.10.4 Carbon - Carbon Composite (CCC s)	18
3.10.5 Intermetallic Matrix Composites (IMC s).	18
3.11 Disadvantages of Composite Materials	19
Chapter Four: Materials and Methods	
4.1 Introduction	20
4.2 Materials Samples	20
4.2.1 Graphite	20
4.2.2 Gypsum	21
4.3 The Experimental part	22
4.4Instruments	22
4.4.1 Photoelectrical cell	22
4.4.2 AVO Meter	22
4.4.3 Laser Light Source	23

23

23 24

4.6 Experimental Procedures	25
4.7 Results and Discussions	25
4.7.1 Results of Gypsum Graphite Separately	25
4.7.2 Results of Gypsum Graphite as Composite	27
4.7.3 Coefficients	30
4.8 Conclusion	34
4.9 Recommendations	35
References	36

List of Tables

Table	Pag
Table (2.1) Shows Thermal Conductivity of Selected Materials	14
Table (4.1) Shows Some Physical Properties of Graphite	20
Table (4.2) Shows Some Physical Properties of Gypsum	20
Table (4.2) Shows Some Thysical Troperties of Gypsum Table (4.3) Results of Laser, for Graphite with at Distances 10cm and	21
15cm	20
Table (4.4) Results of white Light for Graphite at Distances10cm and	26
Table (15) Results of Laser for Gynsum at Distances 10cm and 15cm	26
Table (4.6) results of white light for Cynsum at distances 10cm and	20
15cm	20
Table (4.7) Results of Laser for Composite of Gypsum and Graphite with ratio(4:1) at a distance 10cm from source	27
Fig (4.8) Results of white light for composite Gypsum and Graphite with ratio (4:1) at Distance 10cm from source	28
Table (4.9) Results of Laser for Composite of Gypsum and Graphite with ratio(4:1) at a distance 15cm from source	28
Fig (4.10) Results of white light for composite Gypsum and Graphite with ratio (4:1) at Distance 15cm from source	29
Table (4.11) Three Coefficients of Gypsum and Graphite (4:1) ratio by Using Laser	30
Table (4.12) Three Coefficients of Gypsum and Graphite (4:1) ratio by Using white light	32

List of figures

Figure	Page
Fig (2.1) Reflection and Transmission	7
Fig (2.2)Directionality of laser light	8
Fig (2.3) Coherent Light Waves	9
Fig(1.1) Materials	11
Fig (3.2) shows Fibrous Composite	15
Fig (3.3) shows Continuous fiber(long fiber)	15
Fig (3.4) shows Particulate composite	15
Fig (3.5) Shows Flake Composite	16
Fig (3.6) shows Filler composite	16
Fig (3.7) Shows Composite Material Constituent	16
Fig(4.1) Graphite	21
Fig(4.2) Gypsum	21
Figure (4.3) Symbolic Representation of Photoelectric Cell.	22
Figure(4.4) of AVO Meter	22
Fig(4.5) Symbolic of Laser Source	23
Fig(4.6) Slice Of a Glass	23
Fig(4.7) Symbolic of White Light Source	24
Fig (4.8-A) Schematic Diagram of Experiment of Using Laser Source	24
Fig (4.8-B) Schematic Diagram of Experiment of Using White Light Source	25
Fig (4.9) Results of Laser for composite Gypsum and Graphite with ratio	27
(4:1) at Distance 10cm from source	
Fig (4.10)) Results of white light for composite Gypsum and Graphite with ratio (4:1) at Distance 10cm from source	28
Fig (4.11) Results of Laser for Composite of Gypsum and Graphite with	29
ratio(4.1) at a distance 15cm from source $\frac{1}{10}$	20
ratio (4:12) Results of white light for composite Gypsum and Graphite with ratio (4:1) at Distance 15cm from source	29
Fig(4.13) Mass Versus Absorption Of Laser By Gypsum Graphite Composite	31
(4:1)ratio	
Fig (4.14) Mass Versus Transmission Of Laser Through Gypsum Graphite	31
Composite(4:1)ratio	
Fig(4.15) Mass Versus Absorption Of White Light By Gypsum Graphite	33
Composite(4:1)ratio	
Fig (4.16) Mass versus Transmission of white light through gypsum graphit	33
composite	55

Abstract

In this work the required instruments had set up and required material had prepared. In the first, powder of material gypsum and graphite was taken as grams and projecting light form a distance and change the grams with changing of the distance of the projecting light for many times and thus got results by assistant of photocell and multimeter to calculate change of the voltage with of grams of powder material and taken as composite of two materials (gypsum and graphite) then hereafter studies change of velocity to find different changed of light and properties like wavelength , absorption ,transmission and reflection on the bases of available results .

Results showed that the rate of absorption is greater than reflection rate and rate of transmission is the least one these gypsum-graphite composite improved the characteristics of each other with comparative the characteristics of gypsum and graphite as different. The coefficients are increased with increased the Mass of material.

ملخص البحث:

في هذا العمل اعدت الاجهزة المطلوبة بالإضافة للمواد المطلوبة للإجراء التجرية. اخذت جرامات من المادة المسحوقة من الجبص والجرافيت وتم تسليط الضوء من مسافة معينة على المادة وأخذت قراءة فرق الجهد باستخدام الخلية الضوئية. وكررت التجربة بأخذ الجهد في كل مرة مع تغير عدد الجرامات من المادة مع تغير مسافة تسليط الضوء باستخدام شعاع الليزر والضوء الابيض وكما اخذت عينة مركبة من مادتين (جبص وجرافيت) وتم الحصول على النتائج والحسابات لمعرفة التغيرات التي حدثت في السرعة والطول الموجى وشدة الضوء وكما تمت دراسة خصائص اخرى للضوء كالامتصاص والانكسار و النفاذية بناءً على النتائج والعلاقات الفيزيائية التي تربط هذه الكميات ووجدت النتائج العملية تتوافق مع القوانين من حيث النظري.